Merge tag 'fbdev-updates-for-3.6' of git://github.com/schandinat/linux-2.6
[deliverable/linux.git] / drivers / net / ethernet / i825xx / eepro.c
1 /* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */
2 /*
3 Written 1994, 1995,1996 by Bao C. Ha.
4
5 Copyright (C) 1994, 1995,1996 by Bao C. Ha.
6
7 This software may be used and distributed
8 according to the terms of the GNU General Public License,
9 incorporated herein by reference.
10
11 The author may be reached at bao.ha@srs.gov
12 or 418 Hastings Place, Martinez, GA 30907.
13
14 Things remaining to do:
15 Better record keeping of errors.
16 Eliminate transmit interrupt to reduce overhead.
17 Implement "concurrent processing". I won't be doing it!
18
19 Bugs:
20
21 If you have a problem of not detecting the 82595 during a
22 reboot (warm reset), disable the FLASH memory should fix it.
23 This is a compatibility hardware problem.
24
25 Versions:
26 0.13b basic ethtool support (aris, 09/13/2004)
27 0.13a in memory shortage, drop packets also in board
28 (Michael Westermann <mw@microdata-pos.de>, 07/30/2002)
29 0.13 irq sharing, rewrote probe function, fixed a nasty bug in
30 hardware_send_packet and a major cleanup (aris, 11/08/2001)
31 0.12d fixing a problem with single card detected as eight eth devices
32 fixing a problem with sudden drop in card performance
33 (chris (asdn@go2.pl), 10/29/2001)
34 0.12c fixing some problems with old cards (aris, 01/08/2001)
35 0.12b misc fixes (aris, 06/26/2000)
36 0.12a port of version 0.12a of 2.2.x kernels to 2.3.x
37 (aris (aris@conectiva.com.br), 05/19/2000)
38 0.11e some tweaks about multiple cards support (PdP, jul/aug 1999)
39 0.11d added __initdata, __init stuff; call spin_lock_init
40 in eepro_probe1. Replaced "eepro" by dev->name. Augmented
41 the code protected by spin_lock in interrupt routine
42 (PdP, 12/12/1998)
43 0.11c minor cleanup (PdP, RMC, 09/12/1998)
44 0.11b Pascal Dupuis (dupuis@lei.ucl.ac.be): works as a module
45 under 2.1.xx. Debug messages are flagged as KERN_DEBUG to
46 avoid console flooding. Added locking at critical parts. Now
47 the dawn thing is SMP safe.
48 0.11a Attempt to get 2.1.xx support up (RMC)
49 0.11 Brian Candler added support for multiple cards. Tested as
50 a module, no idea if it works when compiled into kernel.
51
52 0.10e Rick Bressler notified me that ifconfig up;ifconfig down fails
53 because the irq is lost somewhere. Fixed that by moving
54 request_irq and free_irq to eepro_open and eepro_close respectively.
55 0.10d Ugh! Now Wakeup works. Was seriously broken in my first attempt.
56 I'll need to find a way to specify an ioport other than
57 the default one in the PnP case. PnP definitively sucks.
58 And, yes, this is not the only reason.
59 0.10c PnP Wakeup Test for 595FX. uncomment #define PnPWakeup;
60 to use.
61 0.10b Should work now with (some) Pro/10+. At least for
62 me (and my two cards) it does. _No_ guarantee for
63 function with non-Pro/10+ cards! (don't have any)
64 (RMC, 9/11/96)
65
66 0.10 Added support for the Etherexpress Pro/10+. The
67 IRQ map was changed significantly from the old
68 pro/10. The new interrupt map was provided by
69 Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu).
70 (BCH, 9/3/96)
71
72 0.09 Fixed a race condition in the transmit algorithm,
73 which causes crashes under heavy load with fast
74 pentium computers. The performance should also
75 improve a bit. The size of RX buffer, and hence
76 TX buffer, can also be changed via lilo or insmod.
77 (BCH, 7/31/96)
78
79 0.08 Implement 32-bit I/O for the 82595TX and 82595FX
80 based lan cards. Disable full-duplex mode if TPE
81 is not used. (BCH, 4/8/96)
82
83 0.07a Fix a stat report which counts every packet as a
84 heart-beat failure. (BCH, 6/3/95)
85
86 0.07 Modified to support all other 82595-based lan cards.
87 The IRQ vector of the EtherExpress Pro will be set
88 according to the value saved in the EEPROM. For other
89 cards, I will do autoirq_request() to grab the next
90 available interrupt vector. (BCH, 3/17/95)
91
92 0.06a,b Interim released. Minor changes in the comments and
93 print out format. (BCH, 3/9/95 and 3/14/95)
94
95 0.06 First stable release that I am comfortable with. (BCH,
96 3/2/95)
97
98 0.05 Complete testing of multicast. (BCH, 2/23/95)
99
100 0.04 Adding multicast support. (BCH, 2/14/95)
101
102 0.03 First widely alpha release for public testing.
103 (BCH, 2/14/95)
104
105 */
106
107 static const char version[] =
108 "eepro.c: v0.13b 09/13/2004 aris@cathedrallabs.org\n";
109
110 #include <linux/module.h>
111
112 /*
113 Sources:
114
115 This driver wouldn't have been written without the availability
116 of the Crynwr's Lan595 driver source code. It helps me to
117 familiarize with the 82595 chipset while waiting for the Intel
118 documentation. I also learned how to detect the 82595 using
119 the packet driver's technique.
120
121 This driver is written by cutting and pasting the skeleton.c driver
122 provided by Donald Becker. I also borrowed the EEPROM routine from
123 Donald Becker's 82586 driver.
124
125 Datasheet for the Intel 82595 (including the TX and FX version). It
126 provides just enough info that the casual reader might think that it
127 documents the i82595.
128
129 The User Manual for the 82595. It provides a lot of the missing
130 information.
131
132 */
133
134 #include <linux/kernel.h>
135 #include <linux/types.h>
136 #include <linux/fcntl.h>
137 #include <linux/interrupt.h>
138 #include <linux/ioport.h>
139 #include <linux/in.h>
140 #include <linux/string.h>
141 #include <linux/errno.h>
142 #include <linux/netdevice.h>
143 #include <linux/etherdevice.h>
144 #include <linux/skbuff.h>
145 #include <linux/spinlock.h>
146 #include <linux/init.h>
147 #include <linux/delay.h>
148 #include <linux/bitops.h>
149 #include <linux/ethtool.h>
150
151 #include <asm/io.h>
152 #include <asm/dma.h>
153
154 #define DRV_NAME "eepro"
155 #define DRV_VERSION "0.13c"
156
157 #define compat_dev_kfree_skb( skb, mode ) dev_kfree_skb( (skb) )
158 /* I had reports of looong delays with SLOW_DOWN defined as udelay(2) */
159 #define SLOW_DOWN inb(0x80)
160 /* udelay(2) */
161 #define compat_init_data __initdata
162 enum iftype { AUI=0, BNC=1, TPE=2 };
163
164 /* First, a few definitions that the brave might change. */
165 /* A zero-terminated list of I/O addresses to be probed. */
166 static unsigned int eepro_portlist[] compat_init_data =
167 { 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0};
168 /* note: 0x300 is default, the 595FX supports ALL IO Ports
169 from 0x000 to 0x3F0, some of which are reserved in PCs */
170
171 /* To try the (not-really PnP Wakeup: */
172 /*
173 #define PnPWakeup
174 */
175
176 /* use 0 for production, 1 for verification, >2 for debug */
177 #ifndef NET_DEBUG
178 #define NET_DEBUG 0
179 #endif
180 static unsigned int net_debug = NET_DEBUG;
181
182 /* The number of low I/O ports used by the ethercard. */
183 #define EEPRO_IO_EXTENT 16
184
185 /* Different 82595 chips */
186 #define LAN595 0
187 #define LAN595TX 1
188 #define LAN595FX 2
189 #define LAN595FX_10ISA 3
190
191 /* Information that need to be kept for each board. */
192 struct eepro_local {
193 unsigned rx_start;
194 unsigned tx_start; /* start of the transmit chain */
195 int tx_last; /* pointer to last packet in the transmit chain */
196 unsigned tx_end; /* end of the transmit chain (plus 1) */
197 int eepro; /* 1 for the EtherExpress Pro/10,
198 2 for the EtherExpress Pro/10+,
199 3 for the EtherExpress 10 (blue cards),
200 0 for other 82595-based lan cards. */
201 int version; /* a flag to indicate if this is a TX or FX
202 version of the 82595 chip. */
203 int stepping;
204
205 spinlock_t lock; /* Serializing lock */
206
207 unsigned rcv_ram; /* pre-calculated space for rx */
208 unsigned xmt_ram; /* pre-calculated space for tx */
209 unsigned char xmt_bar;
210 unsigned char xmt_lower_limit_reg;
211 unsigned char xmt_upper_limit_reg;
212 short xmt_lower_limit;
213 short xmt_upper_limit;
214 short rcv_lower_limit;
215 short rcv_upper_limit;
216 unsigned char eeprom_reg;
217 unsigned short word[8];
218 };
219
220 /* The station (ethernet) address prefix, used for IDing the board. */
221 #define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
222 #define SA_ADDR1 0xaa
223 #define SA_ADDR2 0x00
224
225 #define GetBit(x,y) ((x & (1<<y))>>y)
226
227 /* EEPROM Word 0: */
228 #define ee_PnP 0 /* Plug 'n Play enable bit */
229 #define ee_Word1 1 /* Word 1? */
230 #define ee_BusWidth 2 /* 8/16 bit */
231 #define ee_FlashAddr 3 /* Flash Address */
232 #define ee_FlashMask 0x7 /* Mask */
233 #define ee_AutoIO 6 /* */
234 #define ee_reserved0 7 /* =0! */
235 #define ee_Flash 8 /* Flash there? */
236 #define ee_AutoNeg 9 /* Auto Negotiation enabled? */
237 #define ee_IO0 10 /* IO Address LSB */
238 #define ee_IO0Mask 0x /*...*/
239 #define ee_IO1 15 /* IO MSB */
240
241 /* EEPROM Word 1: */
242 #define ee_IntSel 0 /* Interrupt */
243 #define ee_IntMask 0x7
244 #define ee_LI 3 /* Link Integrity 0= enabled */
245 #define ee_PC 4 /* Polarity Correction 0= enabled */
246 #define ee_TPE_AUI 5 /* PortSelection 1=TPE */
247 #define ee_Jabber 6 /* Jabber prevention 0= enabled */
248 #define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
249 #define ee_SMOUT 8 /* SMout Pin Control 0= Input */
250 #define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
251 #define ee_reserved1 10 /* .. 12 =0! */
252 #define ee_AltReady 13 /* Alternate Ready, 0=normal */
253 #define ee_reserved2 14 /* =0! */
254 #define ee_Duplex 15
255
256 /* Word2,3,4: */
257 #define ee_IA5 0 /*bit start for individual Addr Byte 5 */
258 #define ee_IA4 8 /*bit start for individual Addr Byte 5 */
259 #define ee_IA3 0 /*bit start for individual Addr Byte 5 */
260 #define ee_IA2 8 /*bit start for individual Addr Byte 5 */
261 #define ee_IA1 0 /*bit start for individual Addr Byte 5 */
262 #define ee_IA0 8 /*bit start for individual Addr Byte 5 */
263
264 /* Word 5: */
265 #define ee_BNC_TPE 0 /* 0=TPE */
266 #define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
267 #define ee_BootTypeMask 0x3
268 #define ee_NumConn 3 /* Number of Connections 0= One or Two */
269 #define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
270 #define ee_PortTPE 5
271 #define ee_PortBNC 6
272 #define ee_PortAUI 7
273 #define ee_PowerMgt 10 /* 0= disabled */
274 #define ee_CP 13 /* Concurrent Processing */
275 #define ee_CPMask 0x7
276
277 /* Word 6: */
278 #define ee_Stepping 0 /* Stepping info */
279 #define ee_StepMask 0x0F
280 #define ee_BoardID 4 /* Manucaturer Board ID, reserved */
281 #define ee_BoardMask 0x0FFF
282
283 /* Word 7: */
284 #define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
285 #define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
286
287 /*..*/
288 #define ee_SIZE 0x40 /* total EEprom Size */
289 #define ee_Checksum 0xBABA /* initial and final value for adding checksum */
290
291
292 /* Card identification via EEprom: */
293 #define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
294 #define ee_addr_id 0x11 /* Word offset for Card ID */
295 #define ee_addr_SN 0x12 /* Serial Number */
296 #define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
297
298
299 #define ee_vendor_intel0 0x25 /* Vendor ID Intel */
300 #define ee_vendor_intel1 0xD4
301 #define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
302 #define ee_id_eepro10p1 0x31
303
304 #define TX_TIMEOUT ((4*HZ)/10)
305
306 /* Index to functions, as function prototypes. */
307
308 static int eepro_probe1(struct net_device *dev, int autoprobe);
309 static int eepro_open(struct net_device *dev);
310 static netdev_tx_t eepro_send_packet(struct sk_buff *skb,
311 struct net_device *dev);
312 static irqreturn_t eepro_interrupt(int irq, void *dev_id);
313 static void eepro_rx(struct net_device *dev);
314 static void eepro_transmit_interrupt(struct net_device *dev);
315 static int eepro_close(struct net_device *dev);
316 static void set_multicast_list(struct net_device *dev);
317 static void eepro_tx_timeout (struct net_device *dev);
318
319 static int read_eeprom(int ioaddr, int location, struct net_device *dev);
320 static int hardware_send_packet(struct net_device *dev, void *buf, short length);
321 static int eepro_grab_irq(struct net_device *dev);
322
323 /*
324 Details of the i82595.
325
326 You will need either the datasheet or the user manual to understand what
327 is going on here. The 82595 is very different from the 82586, 82593.
328
329 The receive algorithm in eepro_rx() is just an implementation of the
330 RCV ring structure that the Intel 82595 imposes at the hardware level.
331 The receive buffer is set at 24K, and the transmit buffer is 8K. I
332 am assuming that the total buffer memory is 32K, which is true for the
333 Intel EtherExpress Pro/10. If it is less than that on a generic card,
334 the driver will be broken.
335
336 The transmit algorithm in the hardware_send_packet() is similar to the
337 one in the eepro_rx(). The transmit buffer is a ring linked list.
338 I just queue the next available packet to the end of the list. In my
339 system, the 82595 is so fast that the list seems to always contain a
340 single packet. In other systems with faster computers and more congested
341 network traffics, the ring linked list should improve performance by
342 allowing up to 8K worth of packets to be queued.
343
344 The sizes of the receive and transmit buffers can now be changed via lilo
345 or insmod. Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0"
346 where rx-buffer is in KB unit. Modules uses the parameter mem which is
347 also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer."
348 The receive buffer has to be more than 3K or less than 29K. Otherwise,
349 it is reset to the default of 24K, and, hence, 8K for the trasnmit
350 buffer (transmit-buffer = 32K - receive-buffer).
351
352 */
353 #define RAM_SIZE 0x8000
354
355 #define RCV_HEADER 8
356 #define RCV_DEFAULT_RAM 0x6000
357
358 #define XMT_HEADER 8
359 #define XMT_DEFAULT_RAM (RAM_SIZE - RCV_DEFAULT_RAM)
360
361 #define XMT_START_PRO RCV_DEFAULT_RAM
362 #define XMT_START_10 0x0000
363 #define RCV_START_PRO 0x0000
364 #define RCV_START_10 XMT_DEFAULT_RAM
365
366 #define RCV_DONE 0x0008
367 #define RX_OK 0x2000
368 #define RX_ERROR 0x0d81
369
370 #define TX_DONE_BIT 0x0080
371 #define TX_OK 0x2000
372 #define CHAIN_BIT 0x8000
373 #define XMT_STATUS 0x02
374 #define XMT_CHAIN 0x04
375 #define XMT_COUNT 0x06
376
377 #define BANK0_SELECT 0x00
378 #define BANK1_SELECT 0x40
379 #define BANK2_SELECT 0x80
380
381 /* Bank 0 registers */
382 #define COMMAND_REG 0x00 /* Register 0 */
383 #define MC_SETUP 0x03
384 #define XMT_CMD 0x04
385 #define DIAGNOSE_CMD 0x07
386 #define RCV_ENABLE_CMD 0x08
387 #define RCV_DISABLE_CMD 0x0a
388 #define STOP_RCV_CMD 0x0b
389 #define RESET_CMD 0x0e
390 #define POWER_DOWN_CMD 0x18
391 #define RESUME_XMT_CMD 0x1c
392 #define SEL_RESET_CMD 0x1e
393 #define STATUS_REG 0x01 /* Register 1 */
394 #define RX_INT 0x02
395 #define TX_INT 0x04
396 #define EXEC_STATUS 0x30
397 #define ID_REG 0x02 /* Register 2 */
398 #define R_ROBIN_BITS 0xc0 /* round robin counter */
399 #define ID_REG_MASK 0x2c
400 #define ID_REG_SIG 0x24
401 #define AUTO_ENABLE 0x10
402 #define INT_MASK_REG 0x03 /* Register 3 */
403 #define RX_STOP_MASK 0x01
404 #define RX_MASK 0x02
405 #define TX_MASK 0x04
406 #define EXEC_MASK 0x08
407 #define ALL_MASK 0x0f
408 #define IO_32_BIT 0x10
409 #define RCV_BAR 0x04 /* The following are word (16-bit) registers */
410 #define RCV_STOP 0x06
411
412 #define XMT_BAR_PRO 0x0a
413 #define XMT_BAR_10 0x0b
414
415 #define HOST_ADDRESS_REG 0x0c
416 #define IO_PORT 0x0e
417 #define IO_PORT_32_BIT 0x0c
418
419 /* Bank 1 registers */
420 #define REG1 0x01
421 #define WORD_WIDTH 0x02
422 #define INT_ENABLE 0x80
423 #define INT_NO_REG 0x02
424 #define RCV_LOWER_LIMIT_REG 0x08
425 #define RCV_UPPER_LIMIT_REG 0x09
426
427 #define XMT_LOWER_LIMIT_REG_PRO 0x0a
428 #define XMT_UPPER_LIMIT_REG_PRO 0x0b
429 #define XMT_LOWER_LIMIT_REG_10 0x0b
430 #define XMT_UPPER_LIMIT_REG_10 0x0a
431
432 /* Bank 2 registers */
433 #define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
434 #define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
435 #define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
436 #define REG2 0x02
437 #define PRMSC_Mode 0x01
438 #define Multi_IA 0x20
439 #define REG3 0x03
440 #define TPE_BIT 0x04
441 #define BNC_BIT 0x20
442 #define REG13 0x0d
443 #define FDX 0x00
444 #define A_N_ENABLE 0x02
445
446 #define I_ADD_REG0 0x04
447 #define I_ADD_REG1 0x05
448 #define I_ADD_REG2 0x06
449 #define I_ADD_REG3 0x07
450 #define I_ADD_REG4 0x08
451 #define I_ADD_REG5 0x09
452
453 #define EEPROM_REG_PRO 0x0a
454 #define EEPROM_REG_10 0x0b
455
456 #define EESK 0x01
457 #define EECS 0x02
458 #define EEDI 0x04
459 #define EEDO 0x08
460
461 /* do a full reset */
462 #define eepro_reset(ioaddr) outb(RESET_CMD, ioaddr)
463
464 /* do a nice reset */
465 #define eepro_sel_reset(ioaddr) { \
466 outb(SEL_RESET_CMD, ioaddr); \
467 SLOW_DOWN; \
468 SLOW_DOWN; \
469 }
470
471 /* disable all interrupts */
472 #define eepro_dis_int(ioaddr) outb(ALL_MASK, ioaddr + INT_MASK_REG)
473
474 /* clear all interrupts */
475 #define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
476
477 /* enable tx/rx */
478 #define eepro_en_int(ioaddr) outb(ALL_MASK & ~(RX_MASK | TX_MASK), \
479 ioaddr + INT_MASK_REG)
480
481 /* enable exec event interrupt */
482 #define eepro_en_intexec(ioaddr) outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG)
483
484 /* enable rx */
485 #define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
486
487 /* disable rx */
488 #define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
489
490 /* switch bank */
491 #define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
492 #define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
493 #define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
494
495 /* enable interrupt line */
496 #define eepro_en_intline(ioaddr) outb(inb(ioaddr + REG1) | INT_ENABLE,\
497 ioaddr + REG1)
498
499 /* disable interrupt line */
500 #define eepro_dis_intline(ioaddr) outb(inb(ioaddr + REG1) & 0x7f, \
501 ioaddr + REG1);
502
503 /* set diagnose flag */
504 #define eepro_diag(ioaddr) outb(DIAGNOSE_CMD, ioaddr)
505
506 /* ack for rx int */
507 #define eepro_ack_rx(ioaddr) outb (RX_INT, ioaddr + STATUS_REG)
508
509 /* ack for tx int */
510 #define eepro_ack_tx(ioaddr) outb (TX_INT, ioaddr + STATUS_REG)
511
512 /* a complete sel reset */
513 #define eepro_complete_selreset(ioaddr) { \
514 dev->stats.tx_errors++;\
515 eepro_sel_reset(ioaddr);\
516 lp->tx_end = \
517 lp->xmt_lower_limit;\
518 lp->tx_start = lp->tx_end;\
519 lp->tx_last = 0;\
520 dev->trans_start = jiffies;\
521 netif_wake_queue(dev);\
522 eepro_en_rx(ioaddr);\
523 }
524
525 /* Check for a network adaptor of this type, and return '0' if one exists.
526 If dev->base_addr == 0, probe all likely locations.
527 If dev->base_addr == 1, always return failure.
528 If dev->base_addr == 2, allocate space for the device and return success
529 (detachable devices only).
530 */
531 static int __init do_eepro_probe(struct net_device *dev)
532 {
533 int i;
534 int base_addr = dev->base_addr;
535 int irq = dev->irq;
536
537 #ifdef PnPWakeup
538 /* XXXX for multiple cards should this only be run once? */
539
540 /* Wakeup: */
541 #define WakeupPort 0x279
542 #define WakeupSeq {0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE,\
543 0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61,\
544 0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1,\
545 0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x43}
546
547 {
548 unsigned short int WS[32]=WakeupSeq;
549
550 if (request_region(WakeupPort, 2, "eepro wakeup")) {
551 if (net_debug>5)
552 printk(KERN_DEBUG "Waking UP\n");
553
554 outb_p(0,WakeupPort);
555 outb_p(0,WakeupPort);
556 for (i=0; i<32; i++) {
557 outb_p(WS[i],WakeupPort);
558 if (net_debug>5) printk(KERN_DEBUG ": %#x ",WS[i]);
559 }
560
561 release_region(WakeupPort, 2);
562 } else
563 printk(KERN_WARNING "PnP wakeup region busy!\n");
564 }
565 #endif
566
567 if (base_addr > 0x1ff) /* Check a single specified location. */
568 return eepro_probe1(dev, 0);
569
570 else if (base_addr != 0) /* Don't probe at all. */
571 return -ENXIO;
572
573 for (i = 0; eepro_portlist[i]; i++) {
574 dev->base_addr = eepro_portlist[i];
575 dev->irq = irq;
576 if (eepro_probe1(dev, 1) == 0)
577 return 0;
578 }
579
580 return -ENODEV;
581 }
582
583 #ifndef MODULE
584 struct net_device * __init eepro_probe(int unit)
585 {
586 struct net_device *dev = alloc_etherdev(sizeof(struct eepro_local));
587 int err;
588
589 if (!dev)
590 return ERR_PTR(-ENODEV);
591
592 sprintf(dev->name, "eth%d", unit);
593 netdev_boot_setup_check(dev);
594
595 err = do_eepro_probe(dev);
596 if (err)
597 goto out;
598 return dev;
599 out:
600 free_netdev(dev);
601 return ERR_PTR(err);
602 }
603 #endif
604
605 static void __init printEEPROMInfo(struct net_device *dev)
606 {
607 struct eepro_local *lp = netdev_priv(dev);
608 int ioaddr = dev->base_addr;
609 unsigned short Word;
610 int i,j;
611
612 j = ee_Checksum;
613 for (i = 0; i < 8; i++)
614 j += lp->word[i];
615 for ( ; i < ee_SIZE; i++)
616 j += read_eeprom(ioaddr, i, dev);
617
618 printk(KERN_DEBUG "Checksum: %#x\n",j&0xffff);
619
620 Word = lp->word[0];
621 printk(KERN_DEBUG "Word0:\n");
622 printk(KERN_DEBUG " Plug 'n Pray: %d\n",GetBit(Word,ee_PnP));
623 printk(KERN_DEBUG " Buswidth: %d\n",(GetBit(Word,ee_BusWidth)+1)*8 );
624 printk(KERN_DEBUG " AutoNegotiation: %d\n",GetBit(Word,ee_AutoNeg));
625 printk(KERN_DEBUG " IO Address: %#x\n", (Word>>ee_IO0)<<4);
626
627 if (net_debug>4) {
628 Word = lp->word[1];
629 printk(KERN_DEBUG "Word1:\n");
630 printk(KERN_DEBUG " INT: %d\n", Word & ee_IntMask);
631 printk(KERN_DEBUG " LI: %d\n", GetBit(Word,ee_LI));
632 printk(KERN_DEBUG " PC: %d\n", GetBit(Word,ee_PC));
633 printk(KERN_DEBUG " TPE/AUI: %d\n", GetBit(Word,ee_TPE_AUI));
634 printk(KERN_DEBUG " Jabber: %d\n", GetBit(Word,ee_Jabber));
635 printk(KERN_DEBUG " AutoPort: %d\n", !GetBit(Word,ee_AutoPort));
636 printk(KERN_DEBUG " Duplex: %d\n", GetBit(Word,ee_Duplex));
637 }
638
639 Word = lp->word[5];
640 printk(KERN_DEBUG "Word5:\n");
641 printk(KERN_DEBUG " BNC: %d\n",GetBit(Word,ee_BNC_TPE));
642 printk(KERN_DEBUG " NumConnectors: %d\n",GetBit(Word,ee_NumConn));
643 printk(KERN_DEBUG " Has ");
644 if (GetBit(Word,ee_PortTPE)) printk(KERN_DEBUG "TPE ");
645 if (GetBit(Word,ee_PortBNC)) printk(KERN_DEBUG "BNC ");
646 if (GetBit(Word,ee_PortAUI)) printk(KERN_DEBUG "AUI ");
647 printk(KERN_DEBUG "port(s)\n");
648
649 Word = lp->word[6];
650 printk(KERN_DEBUG "Word6:\n");
651 printk(KERN_DEBUG " Stepping: %d\n",Word & ee_StepMask);
652 printk(KERN_DEBUG " BoardID: %d\n",Word>>ee_BoardID);
653
654 Word = lp->word[7];
655 printk(KERN_DEBUG "Word7:\n");
656 printk(KERN_DEBUG " INT to IRQ:\n");
657
658 for (i=0, j=0; i<15; i++)
659 if (GetBit(Word,i)) printk(KERN_DEBUG " INT%d -> IRQ %d;",j++,i);
660
661 printk(KERN_DEBUG "\n");
662 }
663
664 /* function to recalculate the limits of buffer based on rcv_ram */
665 static void eepro_recalc (struct net_device *dev)
666 {
667 struct eepro_local * lp;
668
669 lp = netdev_priv(dev);
670 lp->xmt_ram = RAM_SIZE - lp->rcv_ram;
671
672 if (lp->eepro == LAN595FX_10ISA) {
673 lp->xmt_lower_limit = XMT_START_10;
674 lp->xmt_upper_limit = (lp->xmt_ram - 2);
675 lp->rcv_lower_limit = lp->xmt_ram;
676 lp->rcv_upper_limit = (RAM_SIZE - 2);
677 }
678 else {
679 lp->rcv_lower_limit = RCV_START_PRO;
680 lp->rcv_upper_limit = (lp->rcv_ram - 2);
681 lp->xmt_lower_limit = lp->rcv_ram;
682 lp->xmt_upper_limit = (RAM_SIZE - 2);
683 }
684 }
685
686 /* prints boot-time info */
687 static void __init eepro_print_info (struct net_device *dev)
688 {
689 struct eepro_local * lp = netdev_priv(dev);
690 int i;
691 const char * ifmap[] = {"AUI", "10Base2", "10BaseT"};
692
693 i = inb(dev->base_addr + ID_REG);
694 printk(KERN_DEBUG " id: %#x ",i);
695 printk(" io: %#x ", (unsigned)dev->base_addr);
696
697 switch (lp->eepro) {
698 case LAN595FX_10ISA:
699 printk("%s: Intel EtherExpress 10 ISA\n at %#x,",
700 dev->name, (unsigned)dev->base_addr);
701 break;
702 case LAN595FX:
703 printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,",
704 dev->name, (unsigned)dev->base_addr);
705 break;
706 case LAN595TX:
707 printk("%s: Intel EtherExpress Pro/10 ISA at %#x,",
708 dev->name, (unsigned)dev->base_addr);
709 break;
710 case LAN595:
711 printk("%s: Intel 82595-based lan card at %#x,",
712 dev->name, (unsigned)dev->base_addr);
713 break;
714 }
715
716 printk(" %pM", dev->dev_addr);
717
718 if (net_debug > 3)
719 printk(KERN_DEBUG ", %dK RCV buffer",
720 (int)(lp->rcv_ram)/1024);
721
722 if (dev->irq > 2)
723 printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]);
724 else
725 printk(", %s.\n", ifmap[dev->if_port]);
726
727 if (net_debug > 3) {
728 i = lp->word[5];
729 if (i & 0x2000) /* bit 13 of EEPROM word 5 */
730 printk(KERN_DEBUG "%s: Concurrent Processing is "
731 "enabled but not used!\n", dev->name);
732 }
733
734 /* Check the station address for the manufacturer's code */
735 if (net_debug>3)
736 printEEPROMInfo(dev);
737 }
738
739 static const struct ethtool_ops eepro_ethtool_ops;
740
741 static const struct net_device_ops eepro_netdev_ops = {
742 .ndo_open = eepro_open,
743 .ndo_stop = eepro_close,
744 .ndo_start_xmit = eepro_send_packet,
745 .ndo_set_rx_mode = set_multicast_list,
746 .ndo_tx_timeout = eepro_tx_timeout,
747 .ndo_change_mtu = eth_change_mtu,
748 .ndo_set_mac_address = eth_mac_addr,
749 .ndo_validate_addr = eth_validate_addr,
750 };
751
752 /* This is the real probe routine. Linux has a history of friendly device
753 probes on the ISA bus. A good device probe avoids doing writes, and
754 verifies that the correct device exists and functions. */
755
756 static int __init eepro_probe1(struct net_device *dev, int autoprobe)
757 {
758 unsigned short station_addr[3], id, counter;
759 int i;
760 struct eepro_local *lp;
761 int ioaddr = dev->base_addr;
762 int err;
763
764 /* Grab the region so we can find another board if autoIRQ fails. */
765 if (!request_region(ioaddr, EEPRO_IO_EXTENT, DRV_NAME)) {
766 if (!autoprobe)
767 printk(KERN_WARNING "EEPRO: io-port 0x%04x in use\n",
768 ioaddr);
769 return -EBUSY;
770 }
771
772 /* Now, we are going to check for the signature of the
773 ID_REG (register 2 of bank 0) */
774
775 id = inb(ioaddr + ID_REG);
776
777 if ((id & ID_REG_MASK) != ID_REG_SIG)
778 goto exit;
779
780 /* We seem to have the 82595 signature, let's
781 play with its counter (last 2 bits of
782 register 2 of bank 0) to be sure. */
783
784 counter = id & R_ROBIN_BITS;
785
786 if ((inb(ioaddr + ID_REG) & R_ROBIN_BITS) != (counter + 0x40))
787 goto exit;
788
789 lp = netdev_priv(dev);
790 memset(lp, 0, sizeof(struct eepro_local));
791 lp->xmt_bar = XMT_BAR_PRO;
792 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
793 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
794 lp->eeprom_reg = EEPROM_REG_PRO;
795 spin_lock_init(&lp->lock);
796
797 /* Now, get the ethernet hardware address from
798 the EEPROM */
799 station_addr[0] = read_eeprom(ioaddr, 2, dev);
800
801 /* FIXME - find another way to know that we've found
802 * an Etherexpress 10
803 */
804 if (station_addr[0] == 0x0000 || station_addr[0] == 0xffff) {
805 lp->eepro = LAN595FX_10ISA;
806 lp->eeprom_reg = EEPROM_REG_10;
807 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
808 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
809 lp->xmt_bar = XMT_BAR_10;
810 station_addr[0] = read_eeprom(ioaddr, 2, dev);
811 }
812
813 /* get all words at once. will be used here and for ethtool */
814 for (i = 0; i < 8; i++) {
815 lp->word[i] = read_eeprom(ioaddr, i, dev);
816 }
817 station_addr[1] = lp->word[3];
818 station_addr[2] = lp->word[4];
819
820 if (!lp->eepro) {
821 if (lp->word[7] == ee_FX_INT2IRQ)
822 lp->eepro = 2;
823 else if (station_addr[2] == SA_ADDR1)
824 lp->eepro = 1;
825 }
826
827 /* Fill in the 'dev' fields. */
828 for (i=0; i < 6; i++)
829 dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i];
830
831 /* RX buffer must be more than 3K and less than 29K */
832 if (dev->mem_end < 3072 || dev->mem_end > 29696)
833 lp->rcv_ram = RCV_DEFAULT_RAM;
834
835 /* calculate {xmt,rcv}_{lower,upper}_limit */
836 eepro_recalc(dev);
837
838 if (GetBit(lp->word[5], ee_BNC_TPE))
839 dev->if_port = BNC;
840 else
841 dev->if_port = TPE;
842
843 if (dev->irq < 2 && lp->eepro != 0) {
844 /* Mask off INT number */
845 int count = lp->word[1] & 7;
846 unsigned irqMask = lp->word[7];
847
848 while (count--)
849 irqMask &= irqMask - 1;
850
851 count = ffs(irqMask);
852
853 if (count)
854 dev->irq = count - 1;
855
856 if (dev->irq < 2) {
857 printk(KERN_ERR " Duh! illegal interrupt vector stored in EEPROM.\n");
858 goto exit;
859 } else if (dev->irq == 2) {
860 dev->irq = 9;
861 }
862 }
863
864 dev->netdev_ops = &eepro_netdev_ops;
865 dev->watchdog_timeo = TX_TIMEOUT;
866 dev->ethtool_ops = &eepro_ethtool_ops;
867
868 /* print boot time info */
869 eepro_print_info(dev);
870
871 /* reset 82595 */
872 eepro_reset(ioaddr);
873
874 err = register_netdev(dev);
875 if (err)
876 goto err;
877 return 0;
878 exit:
879 err = -ENODEV;
880 err:
881 release_region(dev->base_addr, EEPRO_IO_EXTENT);
882 return err;
883 }
884
885 /* Open/initialize the board. This is called (in the current kernel)
886 sometime after booting when the 'ifconfig' program is run.
887
888 This routine should set everything up anew at each open, even
889 registers that "should" only need to be set once at boot, so that
890 there is non-reboot way to recover if something goes wrong.
891 */
892
893 static const char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1};
894 static const char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1};
895 static int eepro_grab_irq(struct net_device *dev)
896 {
897 static const int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12, 0 };
898 const int *irqp = irqlist;
899 int temp_reg, ioaddr = dev->base_addr;
900
901 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
902
903 /* Enable the interrupt line. */
904 eepro_en_intline(ioaddr);
905
906 /* be CAREFUL, BANK 0 now */
907 eepro_sw2bank0(ioaddr);
908
909 /* clear all interrupts */
910 eepro_clear_int(ioaddr);
911
912 /* Let EXEC event to interrupt */
913 eepro_en_intexec(ioaddr);
914
915 do {
916 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
917
918 temp_reg = inb(ioaddr + INT_NO_REG);
919 outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG);
920
921 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
922
923 if (request_irq (*irqp, NULL, IRQF_SHARED, "bogus", dev) != EBUSY) {
924 unsigned long irq_mask;
925 /* Twinkle the interrupt, and check if it's seen */
926 irq_mask = probe_irq_on();
927
928 eepro_diag(ioaddr); /* RESET the 82595 */
929 mdelay(20);
930
931 if (*irqp == probe_irq_off(irq_mask)) /* It's a good IRQ line */
932 break;
933
934 /* clear all interrupts */
935 eepro_clear_int(ioaddr);
936 }
937 } while (*++irqp);
938
939 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
940
941 /* Disable the physical interrupt line. */
942 eepro_dis_intline(ioaddr);
943
944 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
945
946 /* Mask all the interrupts. */
947 eepro_dis_int(ioaddr);
948
949 /* clear all interrupts */
950 eepro_clear_int(ioaddr);
951
952 return dev->irq;
953 }
954
955 static int eepro_open(struct net_device *dev)
956 {
957 unsigned short temp_reg, old8, old9;
958 int irqMask;
959 int i, ioaddr = dev->base_addr;
960 struct eepro_local *lp = netdev_priv(dev);
961
962 if (net_debug > 3)
963 printk(KERN_DEBUG "%s: entering eepro_open routine.\n", dev->name);
964
965 irqMask = lp->word[7];
966
967 if (lp->eepro == LAN595FX_10ISA) {
968 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 3;\n");
969 }
970 else if (irqMask == ee_FX_INT2IRQ) /* INT to IRQ Mask */
971 {
972 lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */
973 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 2;\n");
974 }
975
976 else if ((dev->dev_addr[0] == SA_ADDR0 &&
977 dev->dev_addr[1] == SA_ADDR1 &&
978 dev->dev_addr[2] == SA_ADDR2))
979 {
980 lp->eepro = 1;
981 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 1;\n");
982 } /* Yes, an Intel EtherExpress Pro/10 */
983
984 else lp->eepro = 0; /* No, it is a generic 82585 lan card */
985
986 /* Get the interrupt vector for the 82595 */
987 if (dev->irq < 2 && eepro_grab_irq(dev) == 0) {
988 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
989 return -EAGAIN;
990 }
991
992 if (request_irq(dev->irq , eepro_interrupt, 0, dev->name, dev)) {
993 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
994 return -EAGAIN;
995 }
996
997 /* Initialize the 82595. */
998
999 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1000 temp_reg = inb(ioaddr + lp->eeprom_reg);
1001
1002 lp->stepping = temp_reg >> 5; /* Get the stepping number of the 595 */
1003
1004 if (net_debug > 3)
1005 printk(KERN_DEBUG "The stepping of the 82595 is %d\n", lp->stepping);
1006
1007 if (temp_reg & 0x10) /* Check the TurnOff Enable bit */
1008 outb(temp_reg & 0xef, ioaddr + lp->eeprom_reg);
1009 for (i=0; i < 6; i++)
1010 outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i);
1011
1012 temp_reg = inb(ioaddr + REG1); /* Setup Transmit Chaining */
1013 outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */
1014 | RCV_Discard_BadFrame, ioaddr + REG1);
1015
1016 temp_reg = inb(ioaddr + REG2); /* Match broadcast */
1017 outb(temp_reg | 0x14, ioaddr + REG2);
1018
1019 temp_reg = inb(ioaddr + REG3);
1020 outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */
1021
1022 /* Set the receiving mode */
1023 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
1024
1025 /* Set the interrupt vector */
1026 temp_reg = inb(ioaddr + INT_NO_REG);
1027 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1028 outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG);
1029 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1030
1031
1032 temp_reg = inb(ioaddr + INT_NO_REG);
1033 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1034 outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG);
1035 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1036
1037 if (net_debug > 3)
1038 printk(KERN_DEBUG "eepro_open: content of INT Reg is %x\n", temp_reg);
1039
1040
1041 /* Initialize the RCV and XMT upper and lower limits */
1042 outb(lp->rcv_lower_limit >> 8, ioaddr + RCV_LOWER_LIMIT_REG);
1043 outb(lp->rcv_upper_limit >> 8, ioaddr + RCV_UPPER_LIMIT_REG);
1044 outb(lp->xmt_lower_limit >> 8, ioaddr + lp->xmt_lower_limit_reg);
1045 outb(lp->xmt_upper_limit >> 8, ioaddr + lp->xmt_upper_limit_reg);
1046
1047 /* Enable the interrupt line. */
1048 eepro_en_intline(ioaddr);
1049
1050 /* Switch back to Bank 0 */
1051 eepro_sw2bank0(ioaddr);
1052
1053 /* Let RX and TX events to interrupt */
1054 eepro_en_int(ioaddr);
1055
1056 /* clear all interrupts */
1057 eepro_clear_int(ioaddr);
1058
1059 /* Initialize RCV */
1060 outw(lp->rcv_lower_limit, ioaddr + RCV_BAR);
1061 lp->rx_start = lp->rcv_lower_limit;
1062 outw(lp->rcv_upper_limit | 0xfe, ioaddr + RCV_STOP);
1063
1064 /* Initialize XMT */
1065 outw(lp->xmt_lower_limit, ioaddr + lp->xmt_bar);
1066 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1067 lp->tx_last = 0;
1068
1069 /* Check for the i82595TX and i82595FX */
1070 old8 = inb(ioaddr + 8);
1071 outb(~old8, ioaddr + 8);
1072
1073 if ((temp_reg = inb(ioaddr + 8)) == old8) {
1074 if (net_debug > 3)
1075 printk(KERN_DEBUG "i82595 detected!\n");
1076 lp->version = LAN595;
1077 }
1078 else {
1079 lp->version = LAN595TX;
1080 outb(old8, ioaddr + 8);
1081 old9 = inb(ioaddr + 9);
1082
1083 if (irqMask==ee_FX_INT2IRQ) {
1084 if (net_debug > 3) {
1085 printk(KERN_DEBUG "IrqMask: %#x\n",irqMask);
1086 printk(KERN_DEBUG "i82595FX detected!\n");
1087 }
1088 lp->version = LAN595FX;
1089 outb(old9, ioaddr + 9);
1090 if (dev->if_port != TPE) { /* Hopefully, this will fix the
1091 problem of using Pentiums and
1092 pro/10 w/ BNC. */
1093 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1094 temp_reg = inb(ioaddr + REG13);
1095 /* disable the full duplex mode since it is not
1096 applicable with the 10Base2 cable. */
1097 outb(temp_reg & ~(FDX | A_N_ENABLE), REG13);
1098 eepro_sw2bank0(ioaddr); /* be CAREFUL, BANK 0 now */
1099 }
1100 }
1101 else if (net_debug > 3) {
1102 printk(KERN_DEBUG "temp_reg: %#x ~old9: %#x\n",temp_reg,((~old9)&0xff));
1103 printk(KERN_DEBUG "i82595TX detected!\n");
1104 }
1105 }
1106
1107 eepro_sel_reset(ioaddr);
1108
1109 netif_start_queue(dev);
1110
1111 if (net_debug > 3)
1112 printk(KERN_DEBUG "%s: exiting eepro_open routine.\n", dev->name);
1113
1114 /* enabling rx */
1115 eepro_en_rx(ioaddr);
1116
1117 return 0;
1118 }
1119
1120 static void eepro_tx_timeout (struct net_device *dev)
1121 {
1122 struct eepro_local *lp = netdev_priv(dev);
1123 int ioaddr = dev->base_addr;
1124
1125 /* if (net_debug > 1) */
1126 printk (KERN_ERR "%s: transmit timed out, %s?\n", dev->name,
1127 "network cable problem");
1128 /* This is not a duplicate. One message for the console,
1129 one for the log file */
1130 printk (KERN_DEBUG "%s: transmit timed out, %s?\n", dev->name,
1131 "network cable problem");
1132 eepro_complete_selreset(ioaddr);
1133 }
1134
1135
1136 static netdev_tx_t eepro_send_packet(struct sk_buff *skb,
1137 struct net_device *dev)
1138 {
1139 struct eepro_local *lp = netdev_priv(dev);
1140 unsigned long flags;
1141 int ioaddr = dev->base_addr;
1142 short length = skb->len;
1143
1144 if (net_debug > 5)
1145 printk(KERN_DEBUG "%s: entering eepro_send_packet routine.\n", dev->name);
1146
1147 if (length < ETH_ZLEN) {
1148 if (skb_padto(skb, ETH_ZLEN))
1149 return NETDEV_TX_OK;
1150 length = ETH_ZLEN;
1151 }
1152 netif_stop_queue (dev);
1153
1154 eepro_dis_int(ioaddr);
1155 spin_lock_irqsave(&lp->lock, flags);
1156
1157 {
1158 unsigned char *buf = skb->data;
1159
1160 if (hardware_send_packet(dev, buf, length))
1161 /* we won't wake queue here because we're out of space */
1162 dev->stats.tx_dropped++;
1163 else {
1164 dev->stats.tx_bytes+=skb->len;
1165 netif_wake_queue(dev);
1166 }
1167
1168 }
1169
1170 dev_kfree_skb (skb);
1171
1172 /* You might need to clean up and record Tx statistics here. */
1173 /* dev->stats.tx_aborted_errors++; */
1174
1175 if (net_debug > 5)
1176 printk(KERN_DEBUG "%s: exiting eepro_send_packet routine.\n", dev->name);
1177
1178 eepro_en_int(ioaddr);
1179 spin_unlock_irqrestore(&lp->lock, flags);
1180
1181 return NETDEV_TX_OK;
1182 }
1183
1184
1185 /* The typical workload of the driver:
1186 Handle the network interface interrupts. */
1187
1188 static irqreturn_t
1189 eepro_interrupt(int irq, void *dev_id)
1190 {
1191 struct net_device *dev = dev_id;
1192 struct eepro_local *lp;
1193 int ioaddr, status, boguscount = 20;
1194 int handled = 0;
1195
1196 lp = netdev_priv(dev);
1197
1198 spin_lock(&lp->lock);
1199
1200 if (net_debug > 5)
1201 printk(KERN_DEBUG "%s: entering eepro_interrupt routine.\n", dev->name);
1202
1203 ioaddr = dev->base_addr;
1204
1205 while (((status = inb(ioaddr + STATUS_REG)) & (RX_INT|TX_INT)) && (boguscount--))
1206 {
1207 handled = 1;
1208 if (status & RX_INT) {
1209 if (net_debug > 4)
1210 printk(KERN_DEBUG "%s: packet received interrupt.\n", dev->name);
1211
1212 eepro_dis_int(ioaddr);
1213
1214 /* Get the received packets */
1215 eepro_ack_rx(ioaddr);
1216 eepro_rx(dev);
1217
1218 eepro_en_int(ioaddr);
1219 }
1220 if (status & TX_INT) {
1221 if (net_debug > 4)
1222 printk(KERN_DEBUG "%s: packet transmit interrupt.\n", dev->name);
1223
1224
1225 eepro_dis_int(ioaddr);
1226
1227 /* Process the status of transmitted packets */
1228 eepro_ack_tx(ioaddr);
1229 eepro_transmit_interrupt(dev);
1230
1231 eepro_en_int(ioaddr);
1232 }
1233 }
1234
1235 if (net_debug > 5)
1236 printk(KERN_DEBUG "%s: exiting eepro_interrupt routine.\n", dev->name);
1237
1238 spin_unlock(&lp->lock);
1239 return IRQ_RETVAL(handled);
1240 }
1241
1242 static int eepro_close(struct net_device *dev)
1243 {
1244 struct eepro_local *lp = netdev_priv(dev);
1245 int ioaddr = dev->base_addr;
1246 short temp_reg;
1247
1248 netif_stop_queue(dev);
1249
1250 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
1251
1252 /* Disable the physical interrupt line. */
1253 temp_reg = inb(ioaddr + REG1);
1254 outb(temp_reg & 0x7f, ioaddr + REG1);
1255
1256 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
1257
1258 /* Flush the Tx and disable Rx. */
1259 outb(STOP_RCV_CMD, ioaddr);
1260 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1261 lp->tx_last = 0;
1262
1263 /* Mask all the interrupts. */
1264 eepro_dis_int(ioaddr);
1265
1266 /* clear all interrupts */
1267 eepro_clear_int(ioaddr);
1268
1269 /* Reset the 82595 */
1270 eepro_reset(ioaddr);
1271
1272 /* release the interrupt */
1273 free_irq(dev->irq, dev);
1274
1275 /* Update the statistics here. What statistics? */
1276
1277 return 0;
1278 }
1279
1280 /* Set or clear the multicast filter for this adaptor.
1281 */
1282 static void
1283 set_multicast_list(struct net_device *dev)
1284 {
1285 struct eepro_local *lp = netdev_priv(dev);
1286 short ioaddr = dev->base_addr;
1287 unsigned short mode;
1288 struct netdev_hw_addr *ha;
1289 int mc_count = netdev_mc_count(dev);
1290
1291 if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || mc_count > 63)
1292 {
1293 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1294 mode = inb(ioaddr + REG2);
1295 outb(mode | PRMSC_Mode, ioaddr + REG2);
1296 mode = inb(ioaddr + REG3);
1297 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1298 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1299 }
1300
1301 else if (mc_count == 0)
1302 {
1303 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1304 mode = inb(ioaddr + REG2);
1305 outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */
1306 mode = inb(ioaddr + REG3);
1307 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1308 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1309 }
1310
1311 else
1312 {
1313 unsigned short status, *eaddrs;
1314 int i, boguscount = 0;
1315
1316 /* Disable RX and TX interrupts. Necessary to avoid
1317 corruption of the HOST_ADDRESS_REG by interrupt
1318 service routines. */
1319 eepro_dis_int(ioaddr);
1320
1321 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1322 mode = inb(ioaddr + REG2);
1323 outb(mode | Multi_IA, ioaddr + REG2);
1324 mode = inb(ioaddr + REG3);
1325 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1326 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1327 outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG);
1328 outw(MC_SETUP, ioaddr + IO_PORT);
1329 outw(0, ioaddr + IO_PORT);
1330 outw(0, ioaddr + IO_PORT);
1331 outw(6 * (mc_count + 1), ioaddr + IO_PORT);
1332
1333 netdev_for_each_mc_addr(ha, dev) {
1334 eaddrs = (unsigned short *) ha->addr;
1335 outw(*eaddrs++, ioaddr + IO_PORT);
1336 outw(*eaddrs++, ioaddr + IO_PORT);
1337 outw(*eaddrs++, ioaddr + IO_PORT);
1338 }
1339
1340 eaddrs = (unsigned short *) dev->dev_addr;
1341 outw(eaddrs[0], ioaddr + IO_PORT);
1342 outw(eaddrs[1], ioaddr + IO_PORT);
1343 outw(eaddrs[2], ioaddr + IO_PORT);
1344 outw(lp->tx_end, ioaddr + lp->xmt_bar);
1345 outb(MC_SETUP, ioaddr);
1346
1347 /* Update the transmit queue */
1348 i = lp->tx_end + XMT_HEADER + 6 * (mc_count + 1);
1349
1350 if (lp->tx_start != lp->tx_end)
1351 {
1352 /* update the next address and the chain bit in the
1353 last packet */
1354 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1355 outw(i, ioaddr + IO_PORT);
1356 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1357 status = inw(ioaddr + IO_PORT);
1358 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1359 lp->tx_end = i ;
1360 }
1361 else {
1362 lp->tx_start = lp->tx_end = i ;
1363 }
1364
1365 /* Acknowledge that the MC setup is done */
1366 do { /* We should be doing this in the eepro_interrupt()! */
1367 SLOW_DOWN;
1368 SLOW_DOWN;
1369 if (inb(ioaddr + STATUS_REG) & 0x08)
1370 {
1371 i = inb(ioaddr);
1372 outb(0x08, ioaddr + STATUS_REG);
1373
1374 if (i & 0x20) { /* command ABORTed */
1375 printk(KERN_NOTICE "%s: multicast setup failed.\n",
1376 dev->name);
1377 break;
1378 } else if ((i & 0x0f) == 0x03) { /* MC-Done */
1379 printk(KERN_DEBUG "%s: set Rx mode to %d address%s.\n",
1380 dev->name, mc_count,
1381 mc_count > 1 ? "es":"");
1382 break;
1383 }
1384 }
1385 } while (++boguscount < 100);
1386
1387 /* Re-enable RX and TX interrupts */
1388 eepro_en_int(ioaddr);
1389 }
1390 if (lp->eepro == LAN595FX_10ISA) {
1391 eepro_complete_selreset(ioaddr);
1392 }
1393 else
1394 eepro_en_rx(ioaddr);
1395 }
1396
1397 /* The horrible routine to read a word from the serial EEPROM. */
1398 /* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
1399
1400 /* The delay between EEPROM clock transitions. */
1401 #define eeprom_delay() { udelay(40); }
1402 #define EE_READ_CMD (6 << 6)
1403
1404 static int
1405 read_eeprom(int ioaddr, int location, struct net_device *dev)
1406 {
1407 int i;
1408 unsigned short retval = 0;
1409 struct eepro_local *lp = netdev_priv(dev);
1410 short ee_addr = ioaddr + lp->eeprom_reg;
1411 int read_cmd = location | EE_READ_CMD;
1412 short ctrl_val = EECS ;
1413
1414 /* XXXX - black magic */
1415 eepro_sw2bank1(ioaddr);
1416 outb(0x00, ioaddr + STATUS_REG);
1417 /* XXXX - black magic */
1418
1419 eepro_sw2bank2(ioaddr);
1420 outb(ctrl_val, ee_addr);
1421
1422 /* Shift the read command bits out. */
1423 for (i = 8; i >= 0; i--) {
1424 short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI
1425 : ctrl_val;
1426 outb(outval, ee_addr);
1427 outb(outval | EESK, ee_addr); /* EEPROM clock tick. */
1428 eeprom_delay();
1429 outb(outval, ee_addr); /* Finish EEPROM a clock tick. */
1430 eeprom_delay();
1431 }
1432 outb(ctrl_val, ee_addr);
1433
1434 for (i = 16; i > 0; i--) {
1435 outb(ctrl_val | EESK, ee_addr); eeprom_delay();
1436 retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
1437 outb(ctrl_val, ee_addr); eeprom_delay();
1438 }
1439
1440 /* Terminate the EEPROM access. */
1441 ctrl_val &= ~EECS;
1442 outb(ctrl_val | EESK, ee_addr);
1443 eeprom_delay();
1444 outb(ctrl_val, ee_addr);
1445 eeprom_delay();
1446 eepro_sw2bank0(ioaddr);
1447 return retval;
1448 }
1449
1450 static int
1451 hardware_send_packet(struct net_device *dev, void *buf, short length)
1452 {
1453 struct eepro_local *lp = netdev_priv(dev);
1454 short ioaddr = dev->base_addr;
1455 unsigned status, tx_available, last, end;
1456
1457 if (net_debug > 5)
1458 printk(KERN_DEBUG "%s: entering hardware_send_packet routine.\n", dev->name);
1459
1460 /* determine how much of the transmit buffer space is available */
1461 if (lp->tx_end > lp->tx_start)
1462 tx_available = lp->xmt_ram - (lp->tx_end - lp->tx_start);
1463 else if (lp->tx_end < lp->tx_start)
1464 tx_available = lp->tx_start - lp->tx_end;
1465 else tx_available = lp->xmt_ram;
1466
1467 if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) {
1468 /* No space available ??? */
1469 return 1;
1470 }
1471
1472 last = lp->tx_end;
1473 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1474
1475 if (end >= lp->xmt_upper_limit + 2) { /* the transmit buffer is wrapped around */
1476 if ((lp->xmt_upper_limit + 2 - last) <= XMT_HEADER) {
1477 /* Arrrr!!!, must keep the xmt header together,
1478 several days were lost to chase this one down. */
1479 last = lp->xmt_lower_limit;
1480 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1481 }
1482 else end = lp->xmt_lower_limit + (end -
1483 lp->xmt_upper_limit + 2);
1484 }
1485
1486 outw(last, ioaddr + HOST_ADDRESS_REG);
1487 outw(XMT_CMD, ioaddr + IO_PORT);
1488 outw(0, ioaddr + IO_PORT);
1489 outw(end, ioaddr + IO_PORT);
1490 outw(length, ioaddr + IO_PORT);
1491
1492 if (lp->version == LAN595)
1493 outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1);
1494 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1495 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1496 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1497 outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2);
1498 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1499 }
1500
1501 /* A dummy read to flush the DRAM write pipeline */
1502 status = inw(ioaddr + IO_PORT);
1503
1504 if (lp->tx_start == lp->tx_end) {
1505 outw(last, ioaddr + lp->xmt_bar);
1506 outb(XMT_CMD, ioaddr);
1507 lp->tx_start = last; /* I don't like to change tx_start here */
1508 }
1509 else {
1510 /* update the next address and the chain bit in the
1511 last packet */
1512
1513 if (lp->tx_end != last) {
1514 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1515 outw(last, ioaddr + IO_PORT);
1516 }
1517
1518 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1519 status = inw(ioaddr + IO_PORT);
1520 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1521
1522 /* Continue the transmit command */
1523 outb(RESUME_XMT_CMD, ioaddr);
1524 }
1525
1526 lp->tx_last = last;
1527 lp->tx_end = end;
1528
1529 if (net_debug > 5)
1530 printk(KERN_DEBUG "%s: exiting hardware_send_packet routine.\n", dev->name);
1531
1532 return 0;
1533 }
1534
1535 static void
1536 eepro_rx(struct net_device *dev)
1537 {
1538 struct eepro_local *lp = netdev_priv(dev);
1539 short ioaddr = dev->base_addr;
1540 short boguscount = 20;
1541 short rcv_car = lp->rx_start;
1542 unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size;
1543
1544 if (net_debug > 5)
1545 printk(KERN_DEBUG "%s: entering eepro_rx routine.\n", dev->name);
1546
1547 /* Set the read pointer to the start of the RCV */
1548 outw(rcv_car, ioaddr + HOST_ADDRESS_REG);
1549
1550 rcv_event = inw(ioaddr + IO_PORT);
1551
1552 while (rcv_event == RCV_DONE) {
1553
1554 rcv_status = inw(ioaddr + IO_PORT);
1555 rcv_next_frame = inw(ioaddr + IO_PORT);
1556 rcv_size = inw(ioaddr + IO_PORT);
1557
1558 if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) {
1559
1560 /* Malloc up new buffer. */
1561 struct sk_buff *skb;
1562
1563 dev->stats.rx_bytes+=rcv_size;
1564 rcv_size &= 0x3fff;
1565 skb = netdev_alloc_skb(dev, rcv_size + 5);
1566 if (skb == NULL) {
1567 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1568 dev->stats.rx_dropped++;
1569 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1570 lp->rx_start = rcv_next_frame;
1571 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1572
1573 break;
1574 }
1575 skb_reserve(skb,2);
1576
1577 if (lp->version == LAN595)
1578 insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1);
1579 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1580 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1581 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1582 insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size),
1583 (rcv_size + 3) >> 2);
1584 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1585 }
1586
1587 skb->protocol = eth_type_trans(skb,dev);
1588 netif_rx(skb);
1589 dev->stats.rx_packets++;
1590 }
1591
1592 else { /* Not sure will ever reach here,
1593 I set the 595 to discard bad received frames */
1594 dev->stats.rx_errors++;
1595
1596 if (rcv_status & 0x0100)
1597 dev->stats.rx_over_errors++;
1598
1599 else if (rcv_status & 0x0400)
1600 dev->stats.rx_frame_errors++;
1601
1602 else if (rcv_status & 0x0800)
1603 dev->stats.rx_crc_errors++;
1604
1605 printk(KERN_DEBUG "%s: event = %#x, status = %#x, next = %#x, size = %#x\n",
1606 dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size);
1607 }
1608
1609 if (rcv_status & 0x1000)
1610 dev->stats.rx_length_errors++;
1611
1612 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1613 lp->rx_start = rcv_next_frame;
1614
1615 if (--boguscount == 0)
1616 break;
1617
1618 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1619 rcv_event = inw(ioaddr + IO_PORT);
1620
1621 }
1622 if (rcv_car == 0)
1623 rcv_car = lp->rcv_upper_limit | 0xff;
1624
1625 outw(rcv_car - 1, ioaddr + RCV_STOP);
1626
1627 if (net_debug > 5)
1628 printk(KERN_DEBUG "%s: exiting eepro_rx routine.\n", dev->name);
1629 }
1630
1631 static void
1632 eepro_transmit_interrupt(struct net_device *dev)
1633 {
1634 struct eepro_local *lp = netdev_priv(dev);
1635 short ioaddr = dev->base_addr;
1636 short boguscount = 25;
1637 short xmt_status;
1638
1639 while ((lp->tx_start != lp->tx_end) && boguscount--) {
1640
1641 outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG);
1642 xmt_status = inw(ioaddr+IO_PORT);
1643
1644 if (!(xmt_status & TX_DONE_BIT))
1645 break;
1646
1647 xmt_status = inw(ioaddr+IO_PORT);
1648 lp->tx_start = inw(ioaddr+IO_PORT);
1649
1650 netif_wake_queue (dev);
1651
1652 if (xmt_status & TX_OK)
1653 dev->stats.tx_packets++;
1654 else {
1655 dev->stats.tx_errors++;
1656 if (xmt_status & 0x0400) {
1657 dev->stats.tx_carrier_errors++;
1658 printk(KERN_DEBUG "%s: carrier error\n",
1659 dev->name);
1660 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1661 dev->name, xmt_status);
1662 }
1663 else {
1664 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1665 dev->name, xmt_status);
1666 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1667 dev->name, xmt_status);
1668 }
1669 }
1670 if (xmt_status & 0x000f) {
1671 dev->stats.collisions += (xmt_status & 0x000f);
1672 }
1673
1674 if ((xmt_status & 0x0040) == 0x0) {
1675 dev->stats.tx_heartbeat_errors++;
1676 }
1677 }
1678 }
1679
1680 static int eepro_ethtool_get_settings(struct net_device *dev,
1681 struct ethtool_cmd *cmd)
1682 {
1683 struct eepro_local *lp = netdev_priv(dev);
1684
1685 cmd->supported = SUPPORTED_10baseT_Half |
1686 SUPPORTED_10baseT_Full |
1687 SUPPORTED_Autoneg;
1688 cmd->advertising = ADVERTISED_10baseT_Half |
1689 ADVERTISED_10baseT_Full |
1690 ADVERTISED_Autoneg;
1691
1692 if (GetBit(lp->word[5], ee_PortTPE)) {
1693 cmd->supported |= SUPPORTED_TP;
1694 cmd->advertising |= ADVERTISED_TP;
1695 }
1696 if (GetBit(lp->word[5], ee_PortBNC)) {
1697 cmd->supported |= SUPPORTED_BNC;
1698 cmd->advertising |= ADVERTISED_BNC;
1699 }
1700 if (GetBit(lp->word[5], ee_PortAUI)) {
1701 cmd->supported |= SUPPORTED_AUI;
1702 cmd->advertising |= ADVERTISED_AUI;
1703 }
1704
1705 ethtool_cmd_speed_set(cmd, SPEED_10);
1706
1707 if (dev->if_port == TPE && lp->word[1] & ee_Duplex) {
1708 cmd->duplex = DUPLEX_FULL;
1709 }
1710 else {
1711 cmd->duplex = DUPLEX_HALF;
1712 }
1713
1714 cmd->port = dev->if_port;
1715 cmd->phy_address = dev->base_addr;
1716 cmd->transceiver = XCVR_INTERNAL;
1717
1718 if (lp->word[0] & ee_AutoNeg) {
1719 cmd->autoneg = 1;
1720 }
1721
1722 return 0;
1723 }
1724
1725 static void eepro_ethtool_get_drvinfo(struct net_device *dev,
1726 struct ethtool_drvinfo *drvinfo)
1727 {
1728 strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
1729 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1730 snprintf(drvinfo->bus_info, sizeof(drvinfo->bus_info),
1731 "ISA 0x%lx", dev->base_addr);
1732 }
1733
1734 static const struct ethtool_ops eepro_ethtool_ops = {
1735 .get_settings = eepro_ethtool_get_settings,
1736 .get_drvinfo = eepro_ethtool_get_drvinfo,
1737 };
1738
1739 #ifdef MODULE
1740
1741 #define MAX_EEPRO 8
1742 static struct net_device *dev_eepro[MAX_EEPRO];
1743
1744 static int io[MAX_EEPRO] = {
1745 [0 ... MAX_EEPRO-1] = -1
1746 };
1747 static int irq[MAX_EEPRO];
1748 static int mem[MAX_EEPRO] = { /* Size of the rx buffer in KB */
1749 [0 ... MAX_EEPRO-1] = RCV_DEFAULT_RAM/1024
1750 };
1751 static int autodetect;
1752
1753 static int n_eepro;
1754 /* For linux 2.1.xx */
1755
1756 MODULE_AUTHOR("Pascal Dupuis and others");
1757 MODULE_DESCRIPTION("Intel i82595 ISA EtherExpressPro10/10+ driver");
1758 MODULE_LICENSE("GPL");
1759
1760 module_param_array(io, int, NULL, 0);
1761 module_param_array(irq, int, NULL, 0);
1762 module_param_array(mem, int, NULL, 0);
1763 module_param(autodetect, int, 0);
1764 MODULE_PARM_DESC(io, "EtherExpress Pro/10 I/O base address(es)");
1765 MODULE_PARM_DESC(irq, "EtherExpress Pro/10 IRQ number(s)");
1766 MODULE_PARM_DESC(mem, "EtherExpress Pro/10 Rx buffer size(es) in kB (3-29)");
1767 MODULE_PARM_DESC(autodetect, "EtherExpress Pro/10 force board(s) detection (0-1)");
1768
1769 int __init init_module(void)
1770 {
1771 struct net_device *dev;
1772 int i;
1773 if (io[0] == -1 && autodetect == 0) {
1774 printk(KERN_WARNING "eepro_init_module: Probe is very dangerous in ISA boards!\n");
1775 printk(KERN_WARNING "eepro_init_module: Please add \"autodetect=1\" to force probe\n");
1776 return -ENODEV;
1777 }
1778 else if (autodetect) {
1779 /* if autodetect is set then we must force detection */
1780 for (i = 0; i < MAX_EEPRO; i++) {
1781 io[i] = 0;
1782 }
1783
1784 printk(KERN_INFO "eepro_init_module: Auto-detecting boards (May God protect us...)\n");
1785 }
1786
1787 for (i = 0; i < MAX_EEPRO && io[i] != -1; i++) {
1788 dev = alloc_etherdev(sizeof(struct eepro_local));
1789 if (!dev)
1790 break;
1791
1792 dev->mem_end = mem[i];
1793 dev->base_addr = io[i];
1794 dev->irq = irq[i];
1795
1796 if (do_eepro_probe(dev) == 0) {
1797 dev_eepro[n_eepro++] = dev;
1798 continue;
1799 }
1800 free_netdev(dev);
1801 break;
1802 }
1803
1804 if (n_eepro)
1805 printk(KERN_INFO "%s", version);
1806
1807 return n_eepro ? 0 : -ENODEV;
1808 }
1809
1810 void __exit
1811 cleanup_module(void)
1812 {
1813 int i;
1814
1815 for (i=0; i<n_eepro; i++) {
1816 struct net_device *dev = dev_eepro[i];
1817 unregister_netdev(dev);
1818 release_region(dev->base_addr, EEPRO_IO_EXTENT);
1819 free_netdev(dev);
1820 }
1821 }
1822 #endif /* MODULE */
This page took 0.141236 seconds and 5 git commands to generate.