net/xfrm/xfrm_output.c: move EXPORT_SYMBOL
[deliverable/linux.git] / drivers / net / ethernet / icplus / ipg.c
1 /*
2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3 *
4 * Copyright (C) 2003, 2007 IC Plus Corp
5 *
6 * Original Author:
7 *
8 * Craig Rich
9 * Sundance Technology, Inc.
10 * www.sundanceti.com
11 * craig_rich@sundanceti.com
12 *
13 * Current Maintainer:
14 *
15 * Sorbica Shieh.
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
18 *
19 * Jesse Huang
20 * http://www.icplus.com.tw
21 * jesse@icplus.com.tw
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/crc32.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/gfp.h>
30 #include <linux/mii.h>
31 #include <linux/mutex.h>
32
33 #include <asm/div64.h>
34
35 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37 #define IPG_RESET_MASK \
38 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
40 IPG_AC_AUTO_INIT)
41
42 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
43 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
44 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
45
46 #define ipg_r32(reg) ioread32(ioaddr + (reg))
47 #define ipg_r16(reg) ioread16(ioaddr + (reg))
48 #define ipg_r8(reg) ioread8(ioaddr + (reg))
49
50 enum {
51 netdev_io_size = 128
52 };
53
54 #include "ipg.h"
55 #define DRV_NAME "ipg"
56
57 MODULE_AUTHOR("IC Plus Corp. 2003");
58 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59 MODULE_LICENSE("GPL");
60
61 /*
62 * Defaults
63 */
64 #define IPG_MAX_RXFRAME_SIZE 0x0600
65 #define IPG_RXFRAG_SIZE 0x0600
66 #define IPG_RXSUPPORT_SIZE 0x0600
67 #define IPG_IS_JUMBO false
68
69 /*
70 * Variable record -- index by leading revision/length
71 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
72 */
73 static const unsigned short DefaultPhyParam[] = {
74 /* 11/12/03 IP1000A v1-3 rev=0x40 */
75 /*--------------------------------------------------------------------------
76 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
79 --------------------------------------------------------------------------*/
80 /* 12/17/03 IP1000A v1-4 rev=0x40 */
81 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82 0x0000,
83 30, 0x005e, 9, 0x0700,
84 /* 01/09/04 IP1000A v1-5 rev=0x41 */
85 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
86 0x0000,
87 30, 0x005e, 9, 0x0700,
88 0x0000
89 };
90
91 static const char * const ipg_brand_name[] = {
92 "IC PLUS IP1000 1000/100/10 based NIC",
93 "Sundance Technology ST2021 based NIC",
94 "Tamarack Microelectronics TC9020/9021 based NIC",
95 "D-Link NIC IP1000A"
96 };
97
98 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
99 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
100 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
101 { PCI_VDEVICE(DLINK, 0x9021), 2 },
102 { PCI_VDEVICE(DLINK, 0x4020), 3 },
103 { 0, }
104 };
105
106 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
107
108 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
109 {
110 struct ipg_nic_private *sp = netdev_priv(dev);
111 return sp->ioaddr;
112 }
113
114 #ifdef IPG_DEBUG
115 static void ipg_dump_rfdlist(struct net_device *dev)
116 {
117 struct ipg_nic_private *sp = netdev_priv(dev);
118 void __iomem *ioaddr = sp->ioaddr;
119 unsigned int i;
120 u32 offset;
121
122 IPG_DEBUG_MSG("_dump_rfdlist\n");
123
124 netdev_info(dev, "rx_current = %02x\n", sp->rx_current);
125 netdev_info(dev, "rx_dirty = %02x\n", sp->rx_dirty);
126 netdev_info(dev, "RFDList start address = %016lx\n",
127 (unsigned long)sp->rxd_map);
128 netdev_info(dev, "RFDListPtr register = %08x%08x\n",
129 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
130
131 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
132 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
133 netdev_info(dev, "%02x %04x RFDNextPtr = %016lx\n",
134 i, offset, (unsigned long)sp->rxd[i].next_desc);
135 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
136 netdev_info(dev, "%02x %04x RFS = %016lx\n",
137 i, offset, (unsigned long)sp->rxd[i].rfs);
138 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
139 netdev_info(dev, "%02x %04x frag_info = %016lx\n",
140 i, offset, (unsigned long)sp->rxd[i].frag_info);
141 }
142 }
143
144 static void ipg_dump_tfdlist(struct net_device *dev)
145 {
146 struct ipg_nic_private *sp = netdev_priv(dev);
147 void __iomem *ioaddr = sp->ioaddr;
148 unsigned int i;
149 u32 offset;
150
151 IPG_DEBUG_MSG("_dump_tfdlist\n");
152
153 netdev_info(dev, "tx_current = %02x\n", sp->tx_current);
154 netdev_info(dev, "tx_dirty = %02x\n", sp->tx_dirty);
155 netdev_info(dev, "TFDList start address = %016lx\n",
156 (unsigned long) sp->txd_map);
157 netdev_info(dev, "TFDListPtr register = %08x%08x\n",
158 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
159
160 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
161 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
162 netdev_info(dev, "%02x %04x TFDNextPtr = %016lx\n",
163 i, offset, (unsigned long)sp->txd[i].next_desc);
164
165 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
166 netdev_info(dev, "%02x %04x TFC = %016lx\n",
167 i, offset, (unsigned long) sp->txd[i].tfc);
168 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
169 netdev_info(dev, "%02x %04x frag_info = %016lx\n",
170 i, offset, (unsigned long) sp->txd[i].frag_info);
171 }
172 }
173 #endif
174
175 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
176 {
177 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
178 ndelay(IPG_PC_PHYCTRLWAIT_NS);
179 }
180
181 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
182 {
183 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
184 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
185 }
186
187 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
188 {
189 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
190
191 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
192 }
193
194 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
195 {
196 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
197 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
198 }
199
200 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
201 {
202 u16 bit_data;
203
204 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
205
206 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
207
208 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
209
210 return bit_data;
211 }
212
213 /*
214 * Read a register from the Physical Layer device located
215 * on the IPG NIC, using the IPG PHYCTRL register.
216 */
217 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
218 {
219 void __iomem *ioaddr = ipg_ioaddr(dev);
220 /*
221 * The GMII mangement frame structure for a read is as follows:
222 *
223 * |Preamble|st|op|phyad|regad|ta| data |idle|
224 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
225 *
226 * <32 1s> = 32 consecutive logic 1 values
227 * A = bit of Physical Layer device address (MSB first)
228 * R = bit of register address (MSB first)
229 * z = High impedance state
230 * D = bit of read data (MSB first)
231 *
232 * Transmission order is 'Preamble' field first, bits transmitted
233 * left to right (first to last).
234 */
235 struct {
236 u32 field;
237 unsigned int len;
238 } p[] = {
239 { GMII_PREAMBLE, 32 }, /* Preamble */
240 { GMII_ST, 2 }, /* ST */
241 { GMII_READ, 2 }, /* OP */
242 { phy_id, 5 }, /* PHYAD */
243 { phy_reg, 5 }, /* REGAD */
244 { 0x0000, 2 }, /* TA */
245 { 0x0000, 16 }, /* DATA */
246 { 0x0000, 1 } /* IDLE */
247 };
248 unsigned int i, j;
249 u8 polarity, data;
250
251 polarity = ipg_r8(PHY_CTRL);
252 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
253
254 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255 for (j = 0; j < 5; j++) {
256 for (i = 0; i < p[j].len; i++) {
257 /* For each variable length field, the MSB must be
258 * transmitted first. Rotate through the field bits,
259 * starting with the MSB, and move each bit into the
260 * the 1st (2^1) bit position (this is the bit position
261 * corresponding to the MgmtData bit of the PhyCtrl
262 * register for the IPG).
263 *
264 * Example: ST = 01;
265 *
266 * First write a '0' to bit 1 of the PhyCtrl
267 * register, then write a '1' to bit 1 of the
268 * PhyCtrl register.
269 *
270 * To do this, right shift the MSB of ST by the value:
271 * [field length - 1 - #ST bits already written]
272 * then left shift this result by 1.
273 */
274 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
275 data &= IPG_PC_MGMTDATA;
276 data |= polarity | IPG_PC_MGMTDIR;
277
278 ipg_drive_phy_ctl_low_high(ioaddr, data);
279 }
280 }
281
282 send_three_state(ioaddr, polarity);
283
284 read_phy_bit(ioaddr, polarity);
285
286 /*
287 * For a read cycle, the bits for the next two fields (TA and
288 * DATA) are driven by the PHY (the IPG reads these bits).
289 */
290 for (i = 0; i < p[6].len; i++) {
291 p[6].field |=
292 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
293 }
294
295 send_three_state(ioaddr, polarity);
296 send_three_state(ioaddr, polarity);
297 send_three_state(ioaddr, polarity);
298 send_end(ioaddr, polarity);
299
300 /* Return the value of the DATA field. */
301 return p[6].field;
302 }
303
304 /*
305 * Write to a register from the Physical Layer device located
306 * on the IPG NIC, using the IPG PHYCTRL register.
307 */
308 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
309 {
310 void __iomem *ioaddr = ipg_ioaddr(dev);
311 /*
312 * The GMII mangement frame structure for a read is as follows:
313 *
314 * |Preamble|st|op|phyad|regad|ta| data |idle|
315 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
316 *
317 * <32 1s> = 32 consecutive logic 1 values
318 * A = bit of Physical Layer device address (MSB first)
319 * R = bit of register address (MSB first)
320 * z = High impedance state
321 * D = bit of write data (MSB first)
322 *
323 * Transmission order is 'Preamble' field first, bits transmitted
324 * left to right (first to last).
325 */
326 struct {
327 u32 field;
328 unsigned int len;
329 } p[] = {
330 { GMII_PREAMBLE, 32 }, /* Preamble */
331 { GMII_ST, 2 }, /* ST */
332 { GMII_WRITE, 2 }, /* OP */
333 { phy_id, 5 }, /* PHYAD */
334 { phy_reg, 5 }, /* REGAD */
335 { 0x0002, 2 }, /* TA */
336 { val & 0xffff, 16 }, /* DATA */
337 { 0x0000, 1 } /* IDLE */
338 };
339 unsigned int i, j;
340 u8 polarity, data;
341
342 polarity = ipg_r8(PHY_CTRL);
343 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
344
345 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346 for (j = 0; j < 7; j++) {
347 for (i = 0; i < p[j].len; i++) {
348 /* For each variable length field, the MSB must be
349 * transmitted first. Rotate through the field bits,
350 * starting with the MSB, and move each bit into the
351 * the 1st (2^1) bit position (this is the bit position
352 * corresponding to the MgmtData bit of the PhyCtrl
353 * register for the IPG).
354 *
355 * Example: ST = 01;
356 *
357 * First write a '0' to bit 1 of the PhyCtrl
358 * register, then write a '1' to bit 1 of the
359 * PhyCtrl register.
360 *
361 * To do this, right shift the MSB of ST by the value:
362 * [field length - 1 - #ST bits already written]
363 * then left shift this result by 1.
364 */
365 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
366 data &= IPG_PC_MGMTDATA;
367 data |= polarity | IPG_PC_MGMTDIR;
368
369 ipg_drive_phy_ctl_low_high(ioaddr, data);
370 }
371 }
372
373 /* The last cycle is a tri-state, so read from the PHY. */
374 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
375 ipg_r8(PHY_CTRL);
376 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
377 }
378
379 static void ipg_set_led_mode(struct net_device *dev)
380 {
381 struct ipg_nic_private *sp = netdev_priv(dev);
382 void __iomem *ioaddr = sp->ioaddr;
383 u32 mode;
384
385 mode = ipg_r32(ASIC_CTRL);
386 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
387
388 if ((sp->led_mode & 0x03) > 1)
389 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
390
391 if ((sp->led_mode & 0x01) == 1)
392 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
393
394 if ((sp->led_mode & 0x08) == 8)
395 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
396
397 ipg_w32(mode, ASIC_CTRL);
398 }
399
400 static void ipg_set_phy_set(struct net_device *dev)
401 {
402 struct ipg_nic_private *sp = netdev_priv(dev);
403 void __iomem *ioaddr = sp->ioaddr;
404 int physet;
405
406 physet = ipg_r8(PHY_SET);
407 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408 physet |= ((sp->led_mode & 0x70) >> 4);
409 ipg_w8(physet, PHY_SET);
410 }
411
412 static int ipg_reset(struct net_device *dev, u32 resetflags)
413 {
414 /* Assert functional resets via the IPG AsicCtrl
415 * register as specified by the 'resetflags' input
416 * parameter.
417 */
418 void __iomem *ioaddr = ipg_ioaddr(dev);
419 unsigned int timeout_count = 0;
420
421 IPG_DEBUG_MSG("_reset\n");
422
423 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
424
425 /* Delay added to account for problem with 10Mbps reset. */
426 mdelay(IPG_AC_RESETWAIT);
427
428 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429 mdelay(IPG_AC_RESETWAIT);
430 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431 return -ETIME;
432 }
433 /* Set LED Mode in Asic Control */
434 ipg_set_led_mode(dev);
435
436 /* Set PHYSet Register Value */
437 ipg_set_phy_set(dev);
438 return 0;
439 }
440
441 /* Find the GMII PHY address. */
442 static int ipg_find_phyaddr(struct net_device *dev)
443 {
444 unsigned int phyaddr, i;
445
446 for (i = 0; i < 32; i++) {
447 u32 status;
448
449 /* Search for the correct PHY address among 32 possible. */
450 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
451
452 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453 GMII_PHY_ID1
454 */
455
456 status = mdio_read(dev, phyaddr, MII_BMSR);
457
458 if ((status != 0xFFFF) && (status != 0))
459 return phyaddr;
460 }
461
462 return 0x1f;
463 }
464
465 /*
466 * Configure IPG based on result of IEEE 802.3 PHY
467 * auto-negotiation.
468 */
469 static int ipg_config_autoneg(struct net_device *dev)
470 {
471 struct ipg_nic_private *sp = netdev_priv(dev);
472 void __iomem *ioaddr = sp->ioaddr;
473 unsigned int txflowcontrol;
474 unsigned int rxflowcontrol;
475 unsigned int fullduplex;
476 u32 mac_ctrl_val;
477 u32 asicctrl;
478 u8 phyctrl;
479 const char *speed;
480 const char *duplex;
481 const char *tx_desc;
482 const char *rx_desc;
483
484 IPG_DEBUG_MSG("_config_autoneg\n");
485
486 asicctrl = ipg_r32(ASIC_CTRL);
487 phyctrl = ipg_r8(PHY_CTRL);
488 mac_ctrl_val = ipg_r32(MAC_CTRL);
489
490 /* Set flags for use in resolving auto-negotiation, assuming
491 * non-1000Mbps, half duplex, no flow control.
492 */
493 fullduplex = 0;
494 txflowcontrol = 0;
495 rxflowcontrol = 0;
496
497 /* To accommodate a problem in 10Mbps operation,
498 * set a global flag if PHY running in 10Mbps mode.
499 */
500 sp->tenmbpsmode = 0;
501
502 /* Determine actual speed of operation. */
503 switch (phyctrl & IPG_PC_LINK_SPEED) {
504 case IPG_PC_LINK_SPEED_10MBPS:
505 speed = "10Mbps";
506 sp->tenmbpsmode = 1;
507 break;
508 case IPG_PC_LINK_SPEED_100MBPS:
509 speed = "100Mbps";
510 break;
511 case IPG_PC_LINK_SPEED_1000MBPS:
512 speed = "1000Mbps";
513 break;
514 default:
515 speed = "undefined!";
516 return 0;
517 }
518
519 netdev_info(dev, "Link speed = %s\n", speed);
520 if (sp->tenmbpsmode == 1)
521 netdev_info(dev, "10Mbps operational mode enabled\n");
522
523 if (phyctrl & IPG_PC_DUPLEX_STATUS) {
524 fullduplex = 1;
525 txflowcontrol = 1;
526 rxflowcontrol = 1;
527 }
528
529 /* Configure full duplex, and flow control. */
530 if (fullduplex == 1) {
531
532 /* Configure IPG for full duplex operation. */
533
534 duplex = "full";
535
536 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537
538 if (txflowcontrol == 1) {
539 tx_desc = "";
540 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541 } else {
542 tx_desc = "no ";
543 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
544 }
545
546 if (rxflowcontrol == 1) {
547 rx_desc = "";
548 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549 } else {
550 rx_desc = "no ";
551 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
552 }
553 } else {
554 duplex = "half";
555 tx_desc = "no ";
556 rx_desc = "no ";
557 mac_ctrl_val &= (~IPG_MC_DUPLEX_SELECT_FD &
558 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559 ~IPG_MC_RX_FLOW_CONTROL_ENABLE);
560 }
561
562 netdev_info(dev, "setting %s duplex, %sTX, %sRX flow control\n",
563 duplex, tx_desc, rx_desc);
564 ipg_w32(mac_ctrl_val, MAC_CTRL);
565
566 return 0;
567 }
568
569 /* Determine and configure multicast operation and set
570 * receive mode for IPG.
571 */
572 static void ipg_nic_set_multicast_list(struct net_device *dev)
573 {
574 void __iomem *ioaddr = ipg_ioaddr(dev);
575 struct netdev_hw_addr *ha;
576 unsigned int hashindex;
577 u32 hashtable[2];
578 u8 receivemode;
579
580 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
581
582 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
583
584 if (dev->flags & IFF_PROMISC) {
585 /* NIC to be configured in promiscuous mode. */
586 receivemode = IPG_RM_RECEIVEALLFRAMES;
587 } else if ((dev->flags & IFF_ALLMULTI) ||
588 ((dev->flags & IFF_MULTICAST) &&
589 (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
590 /* NIC to be configured to receive all multicast
591 * frames. */
592 receivemode |= IPG_RM_RECEIVEMULTICAST;
593 } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
594 /* NIC to be configured to receive selected
595 * multicast addresses. */
596 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
597 }
598
599 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
600 * The IPG applies a cyclic-redundancy-check (the same CRC
601 * used to calculate the frame data FCS) to the destination
602 * address all incoming multicast frames whose destination
603 * address has the multicast bit set. The least significant
604 * 6 bits of the CRC result are used as an addressing index
605 * into the hash table. If the value of the bit addressed by
606 * this index is a 1, the frame is passed to the host system.
607 */
608
609 /* Clear hashtable. */
610 hashtable[0] = 0x00000000;
611 hashtable[1] = 0x00000000;
612
613 /* Cycle through all multicast addresses to filter. */
614 netdev_for_each_mc_addr(ha, dev) {
615 /* Calculate CRC result for each multicast address. */
616 hashindex = crc32_le(0xffffffff, ha->addr,
617 ETH_ALEN);
618
619 /* Use only the least significant 6 bits. */
620 hashindex = hashindex & 0x3F;
621
622 /* Within "hashtable", set bit number "hashindex"
623 * to a logic 1.
624 */
625 set_bit(hashindex, (void *)hashtable);
626 }
627
628 /* Write the value of the hashtable, to the 4, 16 bit
629 * HASHTABLE IPG registers.
630 */
631 ipg_w32(hashtable[0], HASHTABLE_0);
632 ipg_w32(hashtable[1], HASHTABLE_1);
633
634 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
635
636 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637 }
638
639 static int ipg_io_config(struct net_device *dev)
640 {
641 struct ipg_nic_private *sp = netdev_priv(dev);
642 void __iomem *ioaddr = ipg_ioaddr(dev);
643 u32 origmacctrl;
644 u32 restoremacctrl;
645
646 IPG_DEBUG_MSG("_io_config\n");
647
648 origmacctrl = ipg_r32(MAC_CTRL);
649
650 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
651
652 /* Based on compilation option, determine if FCS is to be
653 * stripped on receive frames by IPG.
654 */
655 if (!IPG_STRIP_FCS_ON_RX)
656 restoremacctrl |= IPG_MC_RCV_FCS;
657
658 /* Determine if transmitter and/or receiver are
659 * enabled so we may restore MACCTRL correctly.
660 */
661 if (origmacctrl & IPG_MC_TX_ENABLED)
662 restoremacctrl |= IPG_MC_TX_ENABLE;
663
664 if (origmacctrl & IPG_MC_RX_ENABLED)
665 restoremacctrl |= IPG_MC_RX_ENABLE;
666
667 /* Transmitter and receiver must be disabled before setting
668 * IFSSelect.
669 */
670 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671 IPG_MC_RSVD_MASK, MAC_CTRL);
672
673 /* Now that transmitter and receiver are disabled, write
674 * to IFSSelect.
675 */
676 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
677
678 /* Set RECEIVEMODE register. */
679 ipg_nic_set_multicast_list(dev);
680
681 ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
682
683 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
684 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
686 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
687 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
689 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
694 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
695
696 /* IPG multi-frag frame bug workaround.
697 * Per silicon revision B3 eratta.
698 */
699 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
700
701 /* IPG TX poll now bug workaround.
702 * Per silicon revision B3 eratta.
703 */
704 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
705
706 /* IPG RX poll now bug workaround.
707 * Per silicon revision B3 eratta.
708 */
709 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
710
711 /* Now restore MACCTRL to original setting. */
712 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
713
714 /* Disable unused RMON statistics. */
715 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
716
717 /* Disable unused MIB statistics. */
718 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
724
725 return 0;
726 }
727
728 /*
729 * Create a receive buffer within system memory and update
730 * NIC private structure appropriately.
731 */
732 static int ipg_get_rxbuff(struct net_device *dev, int entry)
733 {
734 struct ipg_nic_private *sp = netdev_priv(dev);
735 struct ipg_rx *rxfd = sp->rxd + entry;
736 struct sk_buff *skb;
737 u64 rxfragsize;
738
739 IPG_DEBUG_MSG("_get_rxbuff\n");
740
741 skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
742 if (!skb) {
743 sp->rx_buff[entry] = NULL;
744 return -ENOMEM;
745 }
746
747 /* Save the address of the sk_buff structure. */
748 sp->rx_buff[entry] = skb;
749
750 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
751 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752
753 /* Set the RFD fragment length. */
754 rxfragsize = sp->rxfrag_size;
755 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
756
757 return 0;
758 }
759
760 static int init_rfdlist(struct net_device *dev)
761 {
762 struct ipg_nic_private *sp = netdev_priv(dev);
763 void __iomem *ioaddr = sp->ioaddr;
764 unsigned int i;
765
766 IPG_DEBUG_MSG("_init_rfdlist\n");
767
768 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
769 struct ipg_rx *rxfd = sp->rxd + i;
770
771 if (sp->rx_buff[i]) {
772 pci_unmap_single(sp->pdev,
773 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
774 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
775 dev_kfree_skb_irq(sp->rx_buff[i]);
776 sp->rx_buff[i] = NULL;
777 }
778
779 /* Clear out the RFS field. */
780 rxfd->rfs = 0x0000000000000000;
781
782 if (ipg_get_rxbuff(dev, i) < 0) {
783 /*
784 * A receive buffer was not ready, break the
785 * RFD list here.
786 */
787 IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
788
789 /* Just in case we cannot allocate a single RFD.
790 * Should not occur.
791 */
792 if (i == 0) {
793 netdev_err(dev, "No memory available for RFD list\n");
794 return -ENOMEM;
795 }
796 }
797
798 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
799 sizeof(struct ipg_rx)*(i + 1));
800 }
801 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
802
803 sp->rx_current = 0;
804 sp->rx_dirty = 0;
805
806 /* Write the location of the RFDList to the IPG. */
807 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
808 ipg_w32(0x00000000, RFD_LIST_PTR_1);
809
810 return 0;
811 }
812
813 static void init_tfdlist(struct net_device *dev)
814 {
815 struct ipg_nic_private *sp = netdev_priv(dev);
816 void __iomem *ioaddr = sp->ioaddr;
817 unsigned int i;
818
819 IPG_DEBUG_MSG("_init_tfdlist\n");
820
821 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
822 struct ipg_tx *txfd = sp->txd + i;
823
824 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
825
826 if (sp->tx_buff[i]) {
827 dev_kfree_skb_irq(sp->tx_buff[i]);
828 sp->tx_buff[i] = NULL;
829 }
830
831 txfd->next_desc = cpu_to_le64(sp->txd_map +
832 sizeof(struct ipg_tx)*(i + 1));
833 }
834 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
835
836 sp->tx_current = 0;
837 sp->tx_dirty = 0;
838
839 /* Write the location of the TFDList to the IPG. */
840 IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
841 (u32) sp->txd_map);
842 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
843 ipg_w32(0x00000000, TFD_LIST_PTR_1);
844
845 sp->reset_current_tfd = 1;
846 }
847
848 /*
849 * Free all transmit buffers which have already been transferred
850 * via DMA to the IPG.
851 */
852 static void ipg_nic_txfree(struct net_device *dev)
853 {
854 struct ipg_nic_private *sp = netdev_priv(dev);
855 unsigned int released, pending, dirty;
856
857 IPG_DEBUG_MSG("_nic_txfree\n");
858
859 pending = sp->tx_current - sp->tx_dirty;
860 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
861
862 for (released = 0; released < pending; released++) {
863 struct sk_buff *skb = sp->tx_buff[dirty];
864 struct ipg_tx *txfd = sp->txd + dirty;
865
866 IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd->tfc);
867
868 /* Look at each TFD's TFC field beginning
869 * at the last freed TFD up to the current TFD.
870 * If the TFDDone bit is set, free the associated
871 * buffer.
872 */
873 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
874 break;
875
876 /* Free the transmit buffer. */
877 if (skb) {
878 pci_unmap_single(sp->pdev,
879 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
880 skb->len, PCI_DMA_TODEVICE);
881
882 dev_kfree_skb_irq(skb);
883
884 sp->tx_buff[dirty] = NULL;
885 }
886 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
887 }
888
889 sp->tx_dirty += released;
890
891 if (netif_queue_stopped(dev) &&
892 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
893 netif_wake_queue(dev);
894 }
895 }
896
897 static void ipg_tx_timeout(struct net_device *dev)
898 {
899 struct ipg_nic_private *sp = netdev_priv(dev);
900 void __iomem *ioaddr = sp->ioaddr;
901
902 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
903 IPG_AC_FIFO);
904
905 spin_lock_irq(&sp->lock);
906
907 /* Re-configure after DMA reset. */
908 if (ipg_io_config(dev) < 0)
909 netdev_info(dev, "Error during re-configuration\n");
910
911 init_tfdlist(dev);
912
913 spin_unlock_irq(&sp->lock);
914
915 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
916 MAC_CTRL);
917 }
918
919 /*
920 * For TxComplete interrupts, free all transmit
921 * buffers which have already been transferred via DMA
922 * to the IPG.
923 */
924 static void ipg_nic_txcleanup(struct net_device *dev)
925 {
926 struct ipg_nic_private *sp = netdev_priv(dev);
927 void __iomem *ioaddr = sp->ioaddr;
928 unsigned int i;
929
930 IPG_DEBUG_MSG("_nic_txcleanup\n");
931
932 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
933 /* Reading the TXSTATUS register clears the
934 * TX_COMPLETE interrupt.
935 */
936 u32 txstatusdword = ipg_r32(TX_STATUS);
937
938 IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword);
939
940 /* Check for Transmit errors. Error bits only valid if
941 * TX_COMPLETE bit in the TXSTATUS register is a 1.
942 */
943 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
944 break;
945
946 /* If in 10Mbps mode, indicate transmit is ready. */
947 if (sp->tenmbpsmode) {
948 netif_wake_queue(dev);
949 }
950
951 /* Transmit error, increment stat counters. */
952 if (txstatusdword & IPG_TS_TX_ERROR) {
953 IPG_DEBUG_MSG("Transmit error\n");
954 sp->stats.tx_errors++;
955 }
956
957 /* Late collision, re-enable transmitter. */
958 if (txstatusdword & IPG_TS_LATE_COLLISION) {
959 IPG_DEBUG_MSG("Late collision on transmit\n");
960 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
961 IPG_MC_RSVD_MASK, MAC_CTRL);
962 }
963
964 /* Maximum collisions, re-enable transmitter. */
965 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
966 IPG_DEBUG_MSG("Maximum collisions on transmit\n");
967 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
968 IPG_MC_RSVD_MASK, MAC_CTRL);
969 }
970
971 /* Transmit underrun, reset and re-enable
972 * transmitter.
973 */
974 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
975 IPG_DEBUG_MSG("Transmitter underrun\n");
976 sp->stats.tx_fifo_errors++;
977 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
978 IPG_AC_NETWORK | IPG_AC_FIFO);
979
980 /* Re-configure after DMA reset. */
981 if (ipg_io_config(dev) < 0) {
982 netdev_info(dev, "Error during re-configuration\n");
983 }
984 init_tfdlist(dev);
985
986 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
987 IPG_MC_RSVD_MASK, MAC_CTRL);
988 }
989 }
990
991 ipg_nic_txfree(dev);
992 }
993
994 /* Provides statistical information about the IPG NIC. */
995 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
996 {
997 struct ipg_nic_private *sp = netdev_priv(dev);
998 void __iomem *ioaddr = sp->ioaddr;
999 u16 temp1;
1000 u16 temp2;
1001
1002 IPG_DEBUG_MSG("_nic_get_stats\n");
1003
1004 /* Check to see if the NIC has been initialized via nic_open,
1005 * before trying to read statistic registers.
1006 */
1007 if (!netif_running(dev))
1008 return &sp->stats;
1009
1010 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1011 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1012 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1013 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1014 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1015 sp->stats.rx_errors += temp1;
1016 sp->stats.rx_missed_errors += temp1;
1017 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1018 ipg_r32(IPG_LATECOLLISIONS);
1019 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1020 sp->stats.collisions += temp1;
1021 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1022 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1023 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1024 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1025
1026 /* detailed tx_errors */
1027 sp->stats.tx_carrier_errors += temp2;
1028
1029 /* detailed rx_errors */
1030 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1031 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1032 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1033
1034 /* Unutilized IPG statistic registers. */
1035 ipg_r32(IPG_MCSTFRAMESRCVDOK);
1036
1037 return &sp->stats;
1038 }
1039
1040 /* Restore used receive buffers. */
1041 static int ipg_nic_rxrestore(struct net_device *dev)
1042 {
1043 struct ipg_nic_private *sp = netdev_priv(dev);
1044 const unsigned int curr = sp->rx_current;
1045 unsigned int dirty = sp->rx_dirty;
1046
1047 IPG_DEBUG_MSG("_nic_rxrestore\n");
1048
1049 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1050 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1051
1052 /* rx_copybreak may poke hole here and there. */
1053 if (sp->rx_buff[entry])
1054 continue;
1055
1056 /* Generate a new receive buffer to replace the
1057 * current buffer (which will be released by the
1058 * Linux system).
1059 */
1060 if (ipg_get_rxbuff(dev, entry) < 0) {
1061 IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1062
1063 break;
1064 }
1065
1066 /* Reset the RFS field. */
1067 sp->rxd[entry].rfs = 0x0000000000000000;
1068 }
1069 sp->rx_dirty = dirty;
1070
1071 return 0;
1072 }
1073
1074 /* use jumboindex and jumbosize to control jumbo frame status
1075 * initial status is jumboindex=-1 and jumbosize=0
1076 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1077 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1078 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1079 * previous receiving and need to continue dumping the current one
1080 */
1081 enum {
1082 NORMAL_PACKET,
1083 ERROR_PACKET
1084 };
1085
1086 enum {
1087 FRAME_NO_START_NO_END = 0,
1088 FRAME_WITH_START = 1,
1089 FRAME_WITH_END = 10,
1090 FRAME_WITH_START_WITH_END = 11
1091 };
1092
1093 static void ipg_nic_rx_free_skb(struct net_device *dev)
1094 {
1095 struct ipg_nic_private *sp = netdev_priv(dev);
1096 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1097
1098 if (sp->rx_buff[entry]) {
1099 struct ipg_rx *rxfd = sp->rxd + entry;
1100
1101 pci_unmap_single(sp->pdev,
1102 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1103 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1104 dev_kfree_skb_irq(sp->rx_buff[entry]);
1105 sp->rx_buff[entry] = NULL;
1106 }
1107 }
1108
1109 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1110 {
1111 struct ipg_nic_private *sp = netdev_priv(dev);
1112 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1113 int type = FRAME_NO_START_NO_END;
1114
1115 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1116 type += FRAME_WITH_START;
1117 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1118 type += FRAME_WITH_END;
1119 return type;
1120 }
1121
1122 static int ipg_nic_rx_check_error(struct net_device *dev)
1123 {
1124 struct ipg_nic_private *sp = netdev_priv(dev);
1125 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1126 struct ipg_rx *rxfd = sp->rxd + entry;
1127
1128 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1129 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1130 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1131 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1132 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1133 (unsigned long) rxfd->rfs);
1134
1135 /* Increment general receive error statistic. */
1136 sp->stats.rx_errors++;
1137
1138 /* Increment detailed receive error statistics. */
1139 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1140 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1141
1142 sp->stats.rx_fifo_errors++;
1143 }
1144
1145 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1146 IPG_DEBUG_MSG("RX runt occurred\n");
1147 sp->stats.rx_length_errors++;
1148 }
1149
1150 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1151 * error count handled by a IPG statistic register.
1152 */
1153
1154 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1155 IPG_DEBUG_MSG("RX alignment error occurred\n");
1156 sp->stats.rx_frame_errors++;
1157 }
1158
1159 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1160 * handled by a IPG statistic register.
1161 */
1162
1163 /* Free the memory associated with the RX
1164 * buffer since it is erroneous and we will
1165 * not pass it to higher layer processes.
1166 */
1167 if (sp->rx_buff[entry]) {
1168 pci_unmap_single(sp->pdev,
1169 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1170 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1171
1172 dev_kfree_skb_irq(sp->rx_buff[entry]);
1173 sp->rx_buff[entry] = NULL;
1174 }
1175 return ERROR_PACKET;
1176 }
1177 return NORMAL_PACKET;
1178 }
1179
1180 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1181 struct ipg_nic_private *sp,
1182 struct ipg_rx *rxfd, unsigned entry)
1183 {
1184 struct ipg_jumbo *jumbo = &sp->jumbo;
1185 struct sk_buff *skb;
1186 int framelen;
1187
1188 if (jumbo->found_start) {
1189 dev_kfree_skb_irq(jumbo->skb);
1190 jumbo->found_start = 0;
1191 jumbo->current_size = 0;
1192 jumbo->skb = NULL;
1193 }
1194
1195 /* 1: found error, 0 no error */
1196 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1197 return;
1198
1199 skb = sp->rx_buff[entry];
1200 if (!skb)
1201 return;
1202
1203 /* accept this frame and send to upper layer */
1204 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1205 if (framelen > sp->rxfrag_size)
1206 framelen = sp->rxfrag_size;
1207
1208 skb_put(skb, framelen);
1209 skb->protocol = eth_type_trans(skb, dev);
1210 skb_checksum_none_assert(skb);
1211 netif_rx(skb);
1212 sp->rx_buff[entry] = NULL;
1213 }
1214
1215 static void ipg_nic_rx_with_start(struct net_device *dev,
1216 struct ipg_nic_private *sp,
1217 struct ipg_rx *rxfd, unsigned entry)
1218 {
1219 struct ipg_jumbo *jumbo = &sp->jumbo;
1220 struct pci_dev *pdev = sp->pdev;
1221 struct sk_buff *skb;
1222
1223 /* 1: found error, 0 no error */
1224 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1225 return;
1226
1227 /* accept this frame and send to upper layer */
1228 skb = sp->rx_buff[entry];
1229 if (!skb)
1230 return;
1231
1232 if (jumbo->found_start)
1233 dev_kfree_skb_irq(jumbo->skb);
1234
1235 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1236 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1237
1238 skb_put(skb, sp->rxfrag_size);
1239
1240 jumbo->found_start = 1;
1241 jumbo->current_size = sp->rxfrag_size;
1242 jumbo->skb = skb;
1243
1244 sp->rx_buff[entry] = NULL;
1245 }
1246
1247 static void ipg_nic_rx_with_end(struct net_device *dev,
1248 struct ipg_nic_private *sp,
1249 struct ipg_rx *rxfd, unsigned entry)
1250 {
1251 struct ipg_jumbo *jumbo = &sp->jumbo;
1252
1253 /* 1: found error, 0 no error */
1254 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1255 struct sk_buff *skb = sp->rx_buff[entry];
1256
1257 if (!skb)
1258 return;
1259
1260 if (jumbo->found_start) {
1261 int framelen, endframelen;
1262
1263 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1264
1265 endframelen = framelen - jumbo->current_size;
1266 if (framelen > sp->rxsupport_size)
1267 dev_kfree_skb_irq(jumbo->skb);
1268 else {
1269 memcpy(skb_put(jumbo->skb, endframelen),
1270 skb->data, endframelen);
1271
1272 jumbo->skb->protocol =
1273 eth_type_trans(jumbo->skb, dev);
1274
1275 skb_checksum_none_assert(jumbo->skb);
1276 netif_rx(jumbo->skb);
1277 }
1278 }
1279
1280 jumbo->found_start = 0;
1281 jumbo->current_size = 0;
1282 jumbo->skb = NULL;
1283
1284 ipg_nic_rx_free_skb(dev);
1285 } else {
1286 dev_kfree_skb_irq(jumbo->skb);
1287 jumbo->found_start = 0;
1288 jumbo->current_size = 0;
1289 jumbo->skb = NULL;
1290 }
1291 }
1292
1293 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1294 struct ipg_nic_private *sp,
1295 struct ipg_rx *rxfd, unsigned entry)
1296 {
1297 struct ipg_jumbo *jumbo = &sp->jumbo;
1298
1299 /* 1: found error, 0 no error */
1300 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1301 struct sk_buff *skb = sp->rx_buff[entry];
1302
1303 if (skb) {
1304 if (jumbo->found_start) {
1305 jumbo->current_size += sp->rxfrag_size;
1306 if (jumbo->current_size <= sp->rxsupport_size) {
1307 memcpy(skb_put(jumbo->skb,
1308 sp->rxfrag_size),
1309 skb->data, sp->rxfrag_size);
1310 }
1311 }
1312 ipg_nic_rx_free_skb(dev);
1313 }
1314 } else {
1315 dev_kfree_skb_irq(jumbo->skb);
1316 jumbo->found_start = 0;
1317 jumbo->current_size = 0;
1318 jumbo->skb = NULL;
1319 }
1320 }
1321
1322 static int ipg_nic_rx_jumbo(struct net_device *dev)
1323 {
1324 struct ipg_nic_private *sp = netdev_priv(dev);
1325 unsigned int curr = sp->rx_current;
1326 void __iomem *ioaddr = sp->ioaddr;
1327 unsigned int i;
1328
1329 IPG_DEBUG_MSG("_nic_rx\n");
1330
1331 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1332 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1333 struct ipg_rx *rxfd = sp->rxd + entry;
1334
1335 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1336 break;
1337
1338 switch (ipg_nic_rx_check_frame_type(dev)) {
1339 case FRAME_WITH_START_WITH_END:
1340 ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1341 break;
1342 case FRAME_WITH_START:
1343 ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1344 break;
1345 case FRAME_WITH_END:
1346 ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1347 break;
1348 case FRAME_NO_START_NO_END:
1349 ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1350 break;
1351 }
1352 }
1353
1354 sp->rx_current = curr;
1355
1356 if (i == IPG_MAXRFDPROCESS_COUNT) {
1357 /* There are more RFDs to process, however the
1358 * allocated amount of RFD processing time has
1359 * expired. Assert Interrupt Requested to make
1360 * sure we come back to process the remaining RFDs.
1361 */
1362 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1363 }
1364
1365 ipg_nic_rxrestore(dev);
1366
1367 return 0;
1368 }
1369
1370 static int ipg_nic_rx(struct net_device *dev)
1371 {
1372 /* Transfer received Ethernet frames to higher network layers. */
1373 struct ipg_nic_private *sp = netdev_priv(dev);
1374 unsigned int curr = sp->rx_current;
1375 void __iomem *ioaddr = sp->ioaddr;
1376 struct ipg_rx *rxfd;
1377 unsigned int i;
1378
1379 IPG_DEBUG_MSG("_nic_rx\n");
1380
1381 #define __RFS_MASK \
1382 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1383
1384 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1385 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1386 struct sk_buff *skb = sp->rx_buff[entry];
1387 unsigned int framelen;
1388
1389 rxfd = sp->rxd + entry;
1390
1391 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1392 break;
1393
1394 /* Get received frame length. */
1395 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1396
1397 /* Check for jumbo frame arrival with too small
1398 * RXFRAG_SIZE.
1399 */
1400 if (framelen > sp->rxfrag_size) {
1401 IPG_DEBUG_MSG
1402 ("RFS FrameLen > allocated fragment size\n");
1403
1404 framelen = sp->rxfrag_size;
1405 }
1406
1407 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1408 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1409 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1410 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1411
1412 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1413 (unsigned long int) rxfd->rfs);
1414
1415 /* Increment general receive error statistic. */
1416 sp->stats.rx_errors++;
1417
1418 /* Increment detailed receive error statistics. */
1419 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1420 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1421 sp->stats.rx_fifo_errors++;
1422 }
1423
1424 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1425 IPG_DEBUG_MSG("RX runt occurred\n");
1426 sp->stats.rx_length_errors++;
1427 }
1428
1429 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1430 /* Do nothing, error count handled by a IPG
1431 * statistic register.
1432 */
1433
1434 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1435 IPG_DEBUG_MSG("RX alignment error occurred\n");
1436 sp->stats.rx_frame_errors++;
1437 }
1438
1439 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1440 /* Do nothing, error count handled by a IPG
1441 * statistic register.
1442 */
1443
1444 /* Free the memory associated with the RX
1445 * buffer since it is erroneous and we will
1446 * not pass it to higher layer processes.
1447 */
1448 if (skb) {
1449 __le64 info = rxfd->frag_info;
1450
1451 pci_unmap_single(sp->pdev,
1452 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1453 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1454
1455 dev_kfree_skb_irq(skb);
1456 }
1457 } else {
1458
1459 /* Adjust the new buffer length to accommodate the size
1460 * of the received frame.
1461 */
1462 skb_put(skb, framelen);
1463
1464 /* Set the buffer's protocol field to Ethernet. */
1465 skb->protocol = eth_type_trans(skb, dev);
1466
1467 /* The IPG encountered an error with (or
1468 * there were no) IP/TCP/UDP checksums.
1469 * This may or may not indicate an invalid
1470 * IP/TCP/UDP frame was received. Let the
1471 * upper layer decide.
1472 */
1473 skb_checksum_none_assert(skb);
1474
1475 /* Hand off frame for higher layer processing.
1476 * The function netif_rx() releases the sk_buff
1477 * when processing completes.
1478 */
1479 netif_rx(skb);
1480 }
1481
1482 /* Assure RX buffer is not reused by IPG. */
1483 sp->rx_buff[entry] = NULL;
1484 }
1485
1486 /*
1487 * If there are more RFDs to process and the allocated amount of RFD
1488 * processing time has expired, assert Interrupt Requested to make
1489 * sure we come back to process the remaining RFDs.
1490 */
1491 if (i == IPG_MAXRFDPROCESS_COUNT)
1492 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1493
1494 #ifdef IPG_DEBUG
1495 /* Check if the RFD list contained no receive frame data. */
1496 if (!i)
1497 sp->EmptyRFDListCount++;
1498 #endif
1499 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1500 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1501 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1502 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1503
1504 rxfd = sp->rxd + entry;
1505
1506 IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1507
1508 /* An unexpected event, additional code needed to handle
1509 * properly. So for the time being, just disregard the
1510 * frame.
1511 */
1512
1513 /* Free the memory associated with the RX
1514 * buffer since it is erroneous and we will
1515 * not pass it to higher layer processes.
1516 */
1517 if (sp->rx_buff[entry]) {
1518 pci_unmap_single(sp->pdev,
1519 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1520 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1521 dev_kfree_skb_irq(sp->rx_buff[entry]);
1522 }
1523
1524 /* Assure RX buffer is not reused by IPG. */
1525 sp->rx_buff[entry] = NULL;
1526 }
1527
1528 sp->rx_current = curr;
1529
1530 /* Check to see if there are a minimum number of used
1531 * RFDs before restoring any (should improve performance.)
1532 */
1533 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1534 ipg_nic_rxrestore(dev);
1535
1536 return 0;
1537 }
1538
1539 static void ipg_reset_after_host_error(struct work_struct *work)
1540 {
1541 struct ipg_nic_private *sp =
1542 container_of(work, struct ipg_nic_private, task.work);
1543 struct net_device *dev = sp->dev;
1544
1545 /*
1546 * Acknowledge HostError interrupt by resetting
1547 * IPG DMA and HOST.
1548 */
1549 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1550
1551 init_rfdlist(dev);
1552 init_tfdlist(dev);
1553
1554 if (ipg_io_config(dev) < 0) {
1555 netdev_info(dev, "Cannot recover from PCI error\n");
1556 schedule_delayed_work(&sp->task, HZ);
1557 }
1558 }
1559
1560 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1561 {
1562 struct net_device *dev = dev_inst;
1563 struct ipg_nic_private *sp = netdev_priv(dev);
1564 void __iomem *ioaddr = sp->ioaddr;
1565 unsigned int handled = 0;
1566 u16 status;
1567
1568 IPG_DEBUG_MSG("_interrupt_handler\n");
1569
1570 if (sp->is_jumbo)
1571 ipg_nic_rxrestore(dev);
1572
1573 spin_lock(&sp->lock);
1574
1575 /* Get interrupt source information, and acknowledge
1576 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1577 * IntRequested, MacControlFrame, LinkEvent) interrupts
1578 * if issued. Also, all IPG interrupts are disabled by
1579 * reading IntStatusAck.
1580 */
1581 status = ipg_r16(INT_STATUS_ACK);
1582
1583 IPG_DEBUG_MSG("IntStatusAck = %04x\n", status);
1584
1585 /* Shared IRQ of remove event. */
1586 if (!(status & IPG_IS_RSVD_MASK))
1587 goto out_enable;
1588
1589 handled = 1;
1590
1591 if (unlikely(!netif_running(dev)))
1592 goto out_unlock;
1593
1594 /* If RFDListEnd interrupt, restore all used RFDs. */
1595 if (status & IPG_IS_RFD_LIST_END) {
1596 IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1597
1598 /* The RFD list end indicates an RFD was encountered
1599 * with a 0 NextPtr, or with an RFDDone bit set to 1
1600 * (indicating the RFD is not read for use by the
1601 * IPG.) Try to restore all RFDs.
1602 */
1603 ipg_nic_rxrestore(dev);
1604
1605 #ifdef IPG_DEBUG
1606 /* Increment the RFDlistendCount counter. */
1607 sp->RFDlistendCount++;
1608 #endif
1609 }
1610
1611 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1612 * IntRequested interrupt, process received frames. */
1613 if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1614 (status & IPG_IS_RFD_LIST_END) ||
1615 (status & IPG_IS_RX_DMA_COMPLETE) ||
1616 (status & IPG_IS_INT_REQUESTED)) {
1617 #ifdef IPG_DEBUG
1618 /* Increment the RFD list checked counter if interrupted
1619 * only to check the RFD list. */
1620 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1621 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1622 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1623 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1624 IPG_IS_UPDATE_STATS)))
1625 sp->RFDListCheckedCount++;
1626 #endif
1627
1628 if (sp->is_jumbo)
1629 ipg_nic_rx_jumbo(dev);
1630 else
1631 ipg_nic_rx(dev);
1632 }
1633
1634 /* If TxDMAComplete interrupt, free used TFDs. */
1635 if (status & IPG_IS_TX_DMA_COMPLETE)
1636 ipg_nic_txfree(dev);
1637
1638 /* TxComplete interrupts indicate one of numerous actions.
1639 * Determine what action to take based on TXSTATUS register.
1640 */
1641 if (status & IPG_IS_TX_COMPLETE)
1642 ipg_nic_txcleanup(dev);
1643
1644 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1645 if (status & IPG_IS_UPDATE_STATS)
1646 ipg_nic_get_stats(dev);
1647
1648 /* If HostError interrupt, reset IPG. */
1649 if (status & IPG_IS_HOST_ERROR) {
1650 IPG_DDEBUG_MSG("HostError Interrupt\n");
1651
1652 schedule_delayed_work(&sp->task, 0);
1653 }
1654
1655 /* If LinkEvent interrupt, resolve autonegotiation. */
1656 if (status & IPG_IS_LINK_EVENT) {
1657 if (ipg_config_autoneg(dev) < 0)
1658 netdev_info(dev, "Auto-negotiation error\n");
1659 }
1660
1661 /* If MACCtrlFrame interrupt, do nothing. */
1662 if (status & IPG_IS_MAC_CTRL_FRAME)
1663 IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1664
1665 /* If RxComplete interrupt, do nothing. */
1666 if (status & IPG_IS_RX_COMPLETE)
1667 IPG_DEBUG_MSG("RxComplete interrupt\n");
1668
1669 /* If RxEarly interrupt, do nothing. */
1670 if (status & IPG_IS_RX_EARLY)
1671 IPG_DEBUG_MSG("RxEarly interrupt\n");
1672
1673 out_enable:
1674 /* Re-enable IPG interrupts. */
1675 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1676 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1677 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1678 out_unlock:
1679 spin_unlock(&sp->lock);
1680
1681 return IRQ_RETVAL(handled);
1682 }
1683
1684 static void ipg_rx_clear(struct ipg_nic_private *sp)
1685 {
1686 unsigned int i;
1687
1688 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1689 if (sp->rx_buff[i]) {
1690 struct ipg_rx *rxfd = sp->rxd + i;
1691
1692 dev_kfree_skb_irq(sp->rx_buff[i]);
1693 sp->rx_buff[i] = NULL;
1694 pci_unmap_single(sp->pdev,
1695 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1696 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1697 }
1698 }
1699 }
1700
1701 static void ipg_tx_clear(struct ipg_nic_private *sp)
1702 {
1703 unsigned int i;
1704
1705 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1706 if (sp->tx_buff[i]) {
1707 struct ipg_tx *txfd = sp->txd + i;
1708
1709 pci_unmap_single(sp->pdev,
1710 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1711 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1712
1713 dev_kfree_skb_irq(sp->tx_buff[i]);
1714
1715 sp->tx_buff[i] = NULL;
1716 }
1717 }
1718 }
1719
1720 static int ipg_nic_open(struct net_device *dev)
1721 {
1722 struct ipg_nic_private *sp = netdev_priv(dev);
1723 void __iomem *ioaddr = sp->ioaddr;
1724 struct pci_dev *pdev = sp->pdev;
1725 int rc;
1726
1727 IPG_DEBUG_MSG("_nic_open\n");
1728
1729 sp->rx_buf_sz = sp->rxsupport_size;
1730
1731 /* Check for interrupt line conflicts, and request interrupt
1732 * line for IPG.
1733 *
1734 * IMPORTANT: Disable IPG interrupts prior to registering
1735 * IRQ.
1736 */
1737 ipg_w16(0x0000, INT_ENABLE);
1738
1739 /* Register the interrupt line to be used by the IPG within
1740 * the Linux system.
1741 */
1742 rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1743 dev->name, dev);
1744 if (rc < 0) {
1745 netdev_info(dev, "Error when requesting interrupt\n");
1746 goto out;
1747 }
1748
1749 dev->irq = pdev->irq;
1750
1751 rc = -ENOMEM;
1752
1753 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1754 &sp->rxd_map, GFP_KERNEL);
1755 if (!sp->rxd)
1756 goto err_free_irq_0;
1757
1758 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1759 &sp->txd_map, GFP_KERNEL);
1760 if (!sp->txd)
1761 goto err_free_rx_1;
1762
1763 rc = init_rfdlist(dev);
1764 if (rc < 0) {
1765 netdev_info(dev, "Error during configuration\n");
1766 goto err_free_tx_2;
1767 }
1768
1769 init_tfdlist(dev);
1770
1771 rc = ipg_io_config(dev);
1772 if (rc < 0) {
1773 netdev_info(dev, "Error during configuration\n");
1774 goto err_release_tfdlist_3;
1775 }
1776
1777 /* Resolve autonegotiation. */
1778 if (ipg_config_autoneg(dev) < 0)
1779 netdev_info(dev, "Auto-negotiation error\n");
1780
1781 /* initialize JUMBO Frame control variable */
1782 sp->jumbo.found_start = 0;
1783 sp->jumbo.current_size = 0;
1784 sp->jumbo.skb = NULL;
1785
1786 /* Enable transmit and receive operation of the IPG. */
1787 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1788 IPG_MC_RSVD_MASK, MAC_CTRL);
1789
1790 netif_start_queue(dev);
1791 out:
1792 return rc;
1793
1794 err_release_tfdlist_3:
1795 ipg_tx_clear(sp);
1796 ipg_rx_clear(sp);
1797 err_free_tx_2:
1798 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1799 err_free_rx_1:
1800 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1801 err_free_irq_0:
1802 free_irq(pdev->irq, dev);
1803 goto out;
1804 }
1805
1806 static int ipg_nic_stop(struct net_device *dev)
1807 {
1808 struct ipg_nic_private *sp = netdev_priv(dev);
1809 void __iomem *ioaddr = sp->ioaddr;
1810 struct pci_dev *pdev = sp->pdev;
1811
1812 IPG_DEBUG_MSG("_nic_stop\n");
1813
1814 netif_stop_queue(dev);
1815
1816 IPG_DUMPTFDLIST(dev);
1817
1818 do {
1819 (void) ipg_r16(INT_STATUS_ACK);
1820
1821 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1822
1823 synchronize_irq(pdev->irq);
1824 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1825
1826 ipg_rx_clear(sp);
1827
1828 ipg_tx_clear(sp);
1829
1830 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1831 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1832
1833 free_irq(pdev->irq, dev);
1834
1835 return 0;
1836 }
1837
1838 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1839 struct net_device *dev)
1840 {
1841 struct ipg_nic_private *sp = netdev_priv(dev);
1842 void __iomem *ioaddr = sp->ioaddr;
1843 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1844 unsigned long flags;
1845 struct ipg_tx *txfd;
1846
1847 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1848
1849 /* If in 10Mbps mode, stop the transmit queue so
1850 * no more transmit frames are accepted.
1851 */
1852 if (sp->tenmbpsmode)
1853 netif_stop_queue(dev);
1854
1855 if (sp->reset_current_tfd) {
1856 sp->reset_current_tfd = 0;
1857 entry = 0;
1858 }
1859
1860 txfd = sp->txd + entry;
1861
1862 sp->tx_buff[entry] = skb;
1863
1864 /* Clear all TFC fields, except TFDDONE. */
1865 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1866
1867 /* Specify the TFC field within the TFD. */
1868 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1869 (IPG_TFC_FRAMEID & sp->tx_current) |
1870 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1871 /*
1872 * 16--17 (WordAlign) <- 3 (disable),
1873 * 0--15 (FrameId) <- sp->tx_current,
1874 * 24--27 (FragCount) <- 1
1875 */
1876
1877 /* Request TxComplete interrupts at an interval defined
1878 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1879 * Request TxComplete interrupt for every frame
1880 * if in 10Mbps mode to accommodate problem with 10Mbps
1881 * processing.
1882 */
1883 if (sp->tenmbpsmode)
1884 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1885 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1886 /* Based on compilation option, determine if FCS is to be
1887 * appended to transmit frame by IPG.
1888 */
1889 if (!(IPG_APPEND_FCS_ON_TX))
1890 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1891
1892 /* Based on compilation option, determine if IP, TCP and/or
1893 * UDP checksums are to be added to transmit frame by IPG.
1894 */
1895 if (IPG_ADD_IPCHECKSUM_ON_TX)
1896 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1897
1898 if (IPG_ADD_TCPCHECKSUM_ON_TX)
1899 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1900
1901 if (IPG_ADD_UDPCHECKSUM_ON_TX)
1902 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1903
1904 /* Based on compilation option, determine if VLAN tag info is to be
1905 * inserted into transmit frame by IPG.
1906 */
1907 if (IPG_INSERT_MANUAL_VLAN_TAG) {
1908 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1909 ((u64) IPG_MANUAL_VLAN_VID << 32) |
1910 ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1911 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1912 }
1913
1914 /* The fragment start location within system memory is defined
1915 * by the sk_buff structure's data field. The physical address
1916 * of this location within the system's virtual memory space
1917 * is determined using the IPG_HOST2BUS_MAP function.
1918 */
1919 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1920 skb->len, PCI_DMA_TODEVICE));
1921
1922 /* The length of the fragment within system memory is defined by
1923 * the sk_buff structure's len field.
1924 */
1925 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1926 ((u64) (skb->len & 0xffff) << 48));
1927
1928 /* Clear the TFDDone bit last to indicate the TFD is ready
1929 * for transfer to the IPG.
1930 */
1931 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1932
1933 spin_lock_irqsave(&sp->lock, flags);
1934
1935 sp->tx_current++;
1936
1937 mmiowb();
1938
1939 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1940
1941 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1942 netif_stop_queue(dev);
1943
1944 spin_unlock_irqrestore(&sp->lock, flags);
1945
1946 return NETDEV_TX_OK;
1947 }
1948
1949 static void ipg_set_phy_default_param(unsigned char rev,
1950 struct net_device *dev, int phy_address)
1951 {
1952 unsigned short length;
1953 unsigned char revision;
1954 const unsigned short *phy_param;
1955 unsigned short address, value;
1956
1957 phy_param = &DefaultPhyParam[0];
1958 length = *phy_param & 0x00FF;
1959 revision = (unsigned char)((*phy_param) >> 8);
1960 phy_param++;
1961 while (length != 0) {
1962 if (rev == revision) {
1963 while (length > 1) {
1964 address = *phy_param;
1965 value = *(phy_param + 1);
1966 phy_param += 2;
1967 mdio_write(dev, phy_address, address, value);
1968 length -= 4;
1969 }
1970 break;
1971 } else {
1972 phy_param += length / 2;
1973 length = *phy_param & 0x00FF;
1974 revision = (unsigned char)((*phy_param) >> 8);
1975 phy_param++;
1976 }
1977 }
1978 }
1979
1980 static int read_eeprom(struct net_device *dev, int eep_addr)
1981 {
1982 void __iomem *ioaddr = ipg_ioaddr(dev);
1983 unsigned int i;
1984 int ret = 0;
1985 u16 value;
1986
1987 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1988 ipg_w16(value, EEPROM_CTRL);
1989
1990 for (i = 0; i < 1000; i++) {
1991 u16 data;
1992
1993 mdelay(10);
1994 data = ipg_r16(EEPROM_CTRL);
1995 if (!(data & IPG_EC_EEPROM_BUSY)) {
1996 ret = ipg_r16(EEPROM_DATA);
1997 break;
1998 }
1999 }
2000 return ret;
2001 }
2002
2003 static void ipg_init_mii(struct net_device *dev)
2004 {
2005 struct ipg_nic_private *sp = netdev_priv(dev);
2006 struct mii_if_info *mii_if = &sp->mii_if;
2007 int phyaddr;
2008
2009 mii_if->dev = dev;
2010 mii_if->mdio_read = mdio_read;
2011 mii_if->mdio_write = mdio_write;
2012 mii_if->phy_id_mask = 0x1f;
2013 mii_if->reg_num_mask = 0x1f;
2014
2015 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2016
2017 if (phyaddr != 0x1f) {
2018 u16 mii_phyctrl, mii_1000cr;
2019
2020 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
2021 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2022 GMII_PHY_1000BASETCONTROL_PreferMaster;
2023 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2024
2025 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2026
2027 /* Set default phyparam */
2028 ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2029
2030 /* Reset PHY */
2031 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2032 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2033
2034 }
2035 }
2036
2037 static int ipg_hw_init(struct net_device *dev)
2038 {
2039 struct ipg_nic_private *sp = netdev_priv(dev);
2040 void __iomem *ioaddr = sp->ioaddr;
2041 unsigned int i;
2042 int rc;
2043
2044 /* Read/Write and Reset EEPROM Value */
2045 /* Read LED Mode Configuration from EEPROM */
2046 sp->led_mode = read_eeprom(dev, 6);
2047
2048 /* Reset all functions within the IPG. Do not assert
2049 * RST_OUT as not compatible with some PHYs.
2050 */
2051 rc = ipg_reset(dev, IPG_RESET_MASK);
2052 if (rc < 0)
2053 goto out;
2054
2055 ipg_init_mii(dev);
2056
2057 /* Read MAC Address from EEPROM */
2058 for (i = 0; i < 3; i++)
2059 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2060
2061 for (i = 0; i < 3; i++)
2062 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2063
2064 /* Set station address in ethernet_device structure. */
2065 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2066 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2067 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2068 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2069 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2070 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2071 out:
2072 return rc;
2073 }
2074
2075 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2076 {
2077 struct ipg_nic_private *sp = netdev_priv(dev);
2078 int rc;
2079
2080 mutex_lock(&sp->mii_mutex);
2081 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2082 mutex_unlock(&sp->mii_mutex);
2083
2084 return rc;
2085 }
2086
2087 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2088 {
2089 struct ipg_nic_private *sp = netdev_priv(dev);
2090 int err;
2091
2092 /* Function to accommodate changes to Maximum Transfer Unit
2093 * (or MTU) of IPG NIC. Cannot use default function since
2094 * the default will not allow for MTU > 1500 bytes.
2095 */
2096
2097 IPG_DEBUG_MSG("_nic_change_mtu\n");
2098
2099 /*
2100 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2101 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2102 */
2103 if (new_mtu < 68 || new_mtu > 10240)
2104 return -EINVAL;
2105
2106 err = ipg_nic_stop(dev);
2107 if (err)
2108 return err;
2109
2110 dev->mtu = new_mtu;
2111
2112 sp->max_rxframe_size = new_mtu;
2113
2114 sp->rxfrag_size = new_mtu;
2115 if (sp->rxfrag_size > 4088)
2116 sp->rxfrag_size = 4088;
2117
2118 sp->rxsupport_size = sp->max_rxframe_size;
2119
2120 if (new_mtu > 0x0600)
2121 sp->is_jumbo = true;
2122 else
2123 sp->is_jumbo = false;
2124
2125 return ipg_nic_open(dev);
2126 }
2127
2128 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2129 {
2130 struct ipg_nic_private *sp = netdev_priv(dev);
2131 int rc;
2132
2133 mutex_lock(&sp->mii_mutex);
2134 rc = mii_ethtool_gset(&sp->mii_if, cmd);
2135 mutex_unlock(&sp->mii_mutex);
2136
2137 return rc;
2138 }
2139
2140 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2141 {
2142 struct ipg_nic_private *sp = netdev_priv(dev);
2143 int rc;
2144
2145 mutex_lock(&sp->mii_mutex);
2146 rc = mii_ethtool_sset(&sp->mii_if, cmd);
2147 mutex_unlock(&sp->mii_mutex);
2148
2149 return rc;
2150 }
2151
2152 static int ipg_nway_reset(struct net_device *dev)
2153 {
2154 struct ipg_nic_private *sp = netdev_priv(dev);
2155 int rc;
2156
2157 mutex_lock(&sp->mii_mutex);
2158 rc = mii_nway_restart(&sp->mii_if);
2159 mutex_unlock(&sp->mii_mutex);
2160
2161 return rc;
2162 }
2163
2164 static const struct ethtool_ops ipg_ethtool_ops = {
2165 .get_settings = ipg_get_settings,
2166 .set_settings = ipg_set_settings,
2167 .nway_reset = ipg_nway_reset,
2168 };
2169
2170 static void ipg_remove(struct pci_dev *pdev)
2171 {
2172 struct net_device *dev = pci_get_drvdata(pdev);
2173 struct ipg_nic_private *sp = netdev_priv(dev);
2174
2175 IPG_DEBUG_MSG("_remove\n");
2176
2177 /* Un-register Ethernet device. */
2178 unregister_netdev(dev);
2179
2180 pci_iounmap(pdev, sp->ioaddr);
2181
2182 pci_release_regions(pdev);
2183
2184 free_netdev(dev);
2185 pci_disable_device(pdev);
2186 }
2187
2188 static const struct net_device_ops ipg_netdev_ops = {
2189 .ndo_open = ipg_nic_open,
2190 .ndo_stop = ipg_nic_stop,
2191 .ndo_start_xmit = ipg_nic_hard_start_xmit,
2192 .ndo_get_stats = ipg_nic_get_stats,
2193 .ndo_set_rx_mode = ipg_nic_set_multicast_list,
2194 .ndo_do_ioctl = ipg_ioctl,
2195 .ndo_tx_timeout = ipg_tx_timeout,
2196 .ndo_change_mtu = ipg_nic_change_mtu,
2197 .ndo_set_mac_address = eth_mac_addr,
2198 .ndo_validate_addr = eth_validate_addr,
2199 };
2200
2201 static int ipg_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2202 {
2203 unsigned int i = id->driver_data;
2204 struct ipg_nic_private *sp;
2205 struct net_device *dev;
2206 void __iomem *ioaddr;
2207 int rc;
2208
2209 rc = pci_enable_device(pdev);
2210 if (rc < 0)
2211 goto out;
2212
2213 pr_info("%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2214
2215 pci_set_master(pdev);
2216
2217 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2218 if (rc < 0) {
2219 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2220 if (rc < 0) {
2221 pr_err("%s: DMA config failed\n", pci_name(pdev));
2222 goto err_disable_0;
2223 }
2224 }
2225
2226 /*
2227 * Initialize net device.
2228 */
2229 dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2230 if (!dev) {
2231 rc = -ENOMEM;
2232 goto err_disable_0;
2233 }
2234
2235 sp = netdev_priv(dev);
2236 spin_lock_init(&sp->lock);
2237 mutex_init(&sp->mii_mutex);
2238
2239 sp->is_jumbo = IPG_IS_JUMBO;
2240 sp->rxfrag_size = IPG_RXFRAG_SIZE;
2241 sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2242 sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2243
2244 /* Declare IPG NIC functions for Ethernet device methods.
2245 */
2246 dev->netdev_ops = &ipg_netdev_ops;
2247 SET_NETDEV_DEV(dev, &pdev->dev);
2248 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2249
2250 rc = pci_request_regions(pdev, DRV_NAME);
2251 if (rc)
2252 goto err_free_dev_1;
2253
2254 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2255 if (!ioaddr) {
2256 pr_err("%s: cannot map MMIO\n", pci_name(pdev));
2257 rc = -EIO;
2258 goto err_release_regions_2;
2259 }
2260
2261 /* Save the pointer to the PCI device information. */
2262 sp->ioaddr = ioaddr;
2263 sp->pdev = pdev;
2264 sp->dev = dev;
2265
2266 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2267
2268 pci_set_drvdata(pdev, dev);
2269
2270 rc = ipg_hw_init(dev);
2271 if (rc < 0)
2272 goto err_unmap_3;
2273
2274 rc = register_netdev(dev);
2275 if (rc < 0)
2276 goto err_unmap_3;
2277
2278 netdev_info(dev, "Ethernet device registered\n");
2279 out:
2280 return rc;
2281
2282 err_unmap_3:
2283 pci_iounmap(pdev, ioaddr);
2284 err_release_regions_2:
2285 pci_release_regions(pdev);
2286 err_free_dev_1:
2287 free_netdev(dev);
2288 err_disable_0:
2289 pci_disable_device(pdev);
2290 goto out;
2291 }
2292
2293 static struct pci_driver ipg_pci_driver = {
2294 .name = IPG_DRIVER_NAME,
2295 .id_table = ipg_pci_tbl,
2296 .probe = ipg_probe,
2297 .remove = ipg_remove,
2298 };
2299
2300 module_pci_driver(ipg_pci_driver);
This page took 0.07793 seconds and 5 git commands to generate.