Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 /* ethtool support for e1000 */
23
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
32
33 #include "e1000.h"
34
35 enum { NETDEV_STATS, E1000_STATS };
36
37 struct e1000_stats {
38 char stat_string[ETH_GSTRING_LEN];
39 int type;
40 int sizeof_stat;
41 int stat_offset;
42 };
43
44 #define E1000_STAT(str, m) { \
45 .stat_string = str, \
46 .type = E1000_STATS, \
47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 .stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50 .stat_string = str, \
51 .type = NETDEV_STATS, \
52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 E1000_STAT("rx_packets", stats.gprc),
57 E1000_STAT("tx_packets", stats.gptc),
58 E1000_STAT("rx_bytes", stats.gorc),
59 E1000_STAT("tx_bytes", stats.gotc),
60 E1000_STAT("rx_broadcast", stats.bprc),
61 E1000_STAT("tx_broadcast", stats.bptc),
62 E1000_STAT("rx_multicast", stats.mprc),
63 E1000_STAT("tx_multicast", stats.mptc),
64 E1000_NETDEV_STAT("rx_errors", rx_errors),
65 E1000_NETDEV_STAT("tx_errors", tx_errors),
66 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 E1000_STAT("multicast", stats.mprc),
68 E1000_STAT("collisions", stats.colc),
69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 E1000_STAT("rx_crc_errors", stats.crcerrs),
72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 E1000_STAT("rx_missed_errors", stats.mpc),
75 E1000_STAT("tx_aborted_errors", stats.ecol),
76 E1000_STAT("tx_carrier_errors", stats.tncrs),
77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 E1000_STAT("tx_window_errors", stats.latecol),
80 E1000_STAT("tx_abort_late_coll", stats.latecol),
81 E1000_STAT("tx_deferred_ok", stats.dc),
82 E1000_STAT("tx_single_coll_ok", stats.scc),
83 E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 E1000_STAT("tx_timeout_count", tx_timeout_count),
85 E1000_STAT("tx_restart_queue", restart_queue),
86 E1000_STAT("rx_long_length_errors", stats.roc),
87 E1000_STAT("rx_short_length_errors", stats.ruc),
88 E1000_STAT("rx_align_errors", stats.algnerrc),
89 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 E1000_STAT("rx_header_split", rx_hdr_split),
98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 E1000_STAT("tx_smbus", stats.mgptc),
100 E1000_STAT("rx_smbus", stats.mgprc),
101 E1000_STAT("dropped_smbus", stats.mgpdc),
102 E1000_STAT("rx_dma_failed", rx_dma_failed),
103 E1000_STAT("tx_dma_failed", tx_dma_failed),
104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 E1000_STAT("corr_ecc_errors", corr_errors),
107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108 };
109
110 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 "Register test (offline)", "Eeprom test (offline)",
114 "Interrupt test (offline)", "Loopback test (offline)",
115 "Link test (on/offline)"
116 };
117
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120 static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
122 {
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
125 u32 speed;
126
127 if (hw->phy.media_type == e1000_media_type_copper) {
128 ecmd->supported = (SUPPORTED_10baseT_Half |
129 SUPPORTED_10baseT_Full |
130 SUPPORTED_100baseT_Half |
131 SUPPORTED_100baseT_Full |
132 SUPPORTED_1000baseT_Full |
133 SUPPORTED_Autoneg |
134 SUPPORTED_TP);
135 if (hw->phy.type == e1000_phy_ife)
136 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 ecmd->advertising = ADVERTISED_TP;
138
139 if (hw->mac.autoneg == 1) {
140 ecmd->advertising |= ADVERTISED_Autoneg;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd->advertising |= hw->phy.autoneg_advertised;
143 }
144
145 ecmd->port = PORT_TP;
146 ecmd->phy_address = hw->phy.addr;
147 ecmd->transceiver = XCVR_INTERNAL;
148
149 } else {
150 ecmd->supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 ecmd->port = PORT_FIBRE;
159 ecmd->transceiver = XCVR_EXTERNAL;
160 }
161
162 speed = SPEED_UNKNOWN;
163 ecmd->duplex = DUPLEX_UNKNOWN;
164
165 if (netif_running(netdev)) {
166 if (netif_carrier_ok(netdev)) {
167 speed = adapter->link_speed;
168 ecmd->duplex = adapter->link_duplex - 1;
169 }
170 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
171 u32 status = er32(STATUS);
172
173 if (status & E1000_STATUS_LU) {
174 if (status & E1000_STATUS_SPEED_1000)
175 speed = SPEED_1000;
176 else if (status & E1000_STATUS_SPEED_100)
177 speed = SPEED_100;
178 else
179 speed = SPEED_10;
180
181 if (status & E1000_STATUS_FD)
182 ecmd->duplex = DUPLEX_FULL;
183 else
184 ecmd->duplex = DUPLEX_HALF;
185 }
186 }
187
188 ethtool_cmd_speed_set(ecmd, speed);
189 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191
192 /* MDI-X => 2; MDI =>1; Invalid =>0 */
193 if ((hw->phy.media_type == e1000_media_type_copper) &&
194 netif_carrier_ok(netdev))
195 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196 else
197 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199 if (hw->phy.mdix == AUTO_ALL_MODES)
200 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 else
202 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
203
204 return 0;
205 }
206
207 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
208 {
209 struct e1000_mac_info *mac = &adapter->hw.mac;
210
211 mac->autoneg = 0;
212
213 /* Make sure dplx is at most 1 bit and lsb of speed is not set
214 * for the switch() below to work
215 */
216 if ((spd & 1) || (dplx & ~1))
217 goto err_inval;
218
219 /* Fiber NICs only allow 1000 gbps Full duplex */
220 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
221 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
222 goto err_inval;
223 }
224
225 switch (spd + dplx) {
226 case SPEED_10 + DUPLEX_HALF:
227 mac->forced_speed_duplex = ADVERTISE_10_HALF;
228 break;
229 case SPEED_10 + DUPLEX_FULL:
230 mac->forced_speed_duplex = ADVERTISE_10_FULL;
231 break;
232 case SPEED_100 + DUPLEX_HALF:
233 mac->forced_speed_duplex = ADVERTISE_100_HALF;
234 break;
235 case SPEED_100 + DUPLEX_FULL:
236 mac->forced_speed_duplex = ADVERTISE_100_FULL;
237 break;
238 case SPEED_1000 + DUPLEX_FULL:
239 mac->autoneg = 1;
240 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
241 break;
242 case SPEED_1000 + DUPLEX_HALF: /* not supported */
243 default:
244 goto err_inval;
245 }
246
247 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
248 adapter->hw.phy.mdix = AUTO_ALL_MODES;
249
250 return 0;
251
252 err_inval:
253 e_err("Unsupported Speed/Duplex configuration\n");
254 return -EINVAL;
255 }
256
257 static int e1000_set_settings(struct net_device *netdev,
258 struct ethtool_cmd *ecmd)
259 {
260 struct e1000_adapter *adapter = netdev_priv(netdev);
261 struct e1000_hw *hw = &adapter->hw;
262 int ret_val = 0;
263
264 pm_runtime_get_sync(netdev->dev.parent);
265
266 /* When SoL/IDER sessions are active, autoneg/speed/duplex
267 * cannot be changed
268 */
269 if (hw->phy.ops.check_reset_block &&
270 hw->phy.ops.check_reset_block(hw)) {
271 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
272 ret_val = -EINVAL;
273 goto out;
274 }
275
276 /* MDI setting is only allowed when autoneg enabled because
277 * some hardware doesn't allow MDI setting when speed or
278 * duplex is forced.
279 */
280 if (ecmd->eth_tp_mdix_ctrl) {
281 if (hw->phy.media_type != e1000_media_type_copper) {
282 ret_val = -EOPNOTSUPP;
283 goto out;
284 }
285
286 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
287 (ecmd->autoneg != AUTONEG_ENABLE)) {
288 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
289 ret_val = -EINVAL;
290 goto out;
291 }
292 }
293
294 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
295 usleep_range(1000, 2000);
296
297 if (ecmd->autoneg == AUTONEG_ENABLE) {
298 hw->mac.autoneg = 1;
299 if (hw->phy.media_type == e1000_media_type_fiber)
300 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
301 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
302 else
303 hw->phy.autoneg_advertised = ecmd->advertising |
304 ADVERTISED_TP | ADVERTISED_Autoneg;
305 ecmd->advertising = hw->phy.autoneg_advertised;
306 if (adapter->fc_autoneg)
307 hw->fc.requested_mode = e1000_fc_default;
308 } else {
309 u32 speed = ethtool_cmd_speed(ecmd);
310 /* calling this overrides forced MDI setting */
311 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
312 ret_val = -EINVAL;
313 goto out;
314 }
315 }
316
317 /* MDI-X => 2; MDI => 1; Auto => 3 */
318 if (ecmd->eth_tp_mdix_ctrl) {
319 /* fix up the value for auto (3 => 0) as zero is mapped
320 * internally to auto
321 */
322 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
323 hw->phy.mdix = AUTO_ALL_MODES;
324 else
325 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
326 }
327
328 /* reset the link */
329 if (netif_running(adapter->netdev)) {
330 e1000e_down(adapter, true);
331 e1000e_up(adapter);
332 } else {
333 e1000e_reset(adapter);
334 }
335
336 out:
337 pm_runtime_put_sync(netdev->dev.parent);
338 clear_bit(__E1000_RESETTING, &adapter->state);
339 return ret_val;
340 }
341
342 static void e1000_get_pauseparam(struct net_device *netdev,
343 struct ethtool_pauseparam *pause)
344 {
345 struct e1000_adapter *adapter = netdev_priv(netdev);
346 struct e1000_hw *hw = &adapter->hw;
347
348 pause->autoneg =
349 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
350
351 if (hw->fc.current_mode == e1000_fc_rx_pause) {
352 pause->rx_pause = 1;
353 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
354 pause->tx_pause = 1;
355 } else if (hw->fc.current_mode == e1000_fc_full) {
356 pause->rx_pause = 1;
357 pause->tx_pause = 1;
358 }
359 }
360
361 static int e1000_set_pauseparam(struct net_device *netdev,
362 struct ethtool_pauseparam *pause)
363 {
364 struct e1000_adapter *adapter = netdev_priv(netdev);
365 struct e1000_hw *hw = &adapter->hw;
366 int retval = 0;
367
368 adapter->fc_autoneg = pause->autoneg;
369
370 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
371 usleep_range(1000, 2000);
372
373 pm_runtime_get_sync(netdev->dev.parent);
374
375 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
376 hw->fc.requested_mode = e1000_fc_default;
377 if (netif_running(adapter->netdev)) {
378 e1000e_down(adapter, true);
379 e1000e_up(adapter);
380 } else {
381 e1000e_reset(adapter);
382 }
383 } else {
384 if (pause->rx_pause && pause->tx_pause)
385 hw->fc.requested_mode = e1000_fc_full;
386 else if (pause->rx_pause && !pause->tx_pause)
387 hw->fc.requested_mode = e1000_fc_rx_pause;
388 else if (!pause->rx_pause && pause->tx_pause)
389 hw->fc.requested_mode = e1000_fc_tx_pause;
390 else if (!pause->rx_pause && !pause->tx_pause)
391 hw->fc.requested_mode = e1000_fc_none;
392
393 hw->fc.current_mode = hw->fc.requested_mode;
394
395 if (hw->phy.media_type == e1000_media_type_fiber) {
396 retval = hw->mac.ops.setup_link(hw);
397 /* implicit goto out */
398 } else {
399 retval = e1000e_force_mac_fc(hw);
400 if (retval)
401 goto out;
402 e1000e_set_fc_watermarks(hw);
403 }
404 }
405
406 out:
407 pm_runtime_put_sync(netdev->dev.parent);
408 clear_bit(__E1000_RESETTING, &adapter->state);
409 return retval;
410 }
411
412 static u32 e1000_get_msglevel(struct net_device *netdev)
413 {
414 struct e1000_adapter *adapter = netdev_priv(netdev);
415 return adapter->msg_enable;
416 }
417
418 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
419 {
420 struct e1000_adapter *adapter = netdev_priv(netdev);
421 adapter->msg_enable = data;
422 }
423
424 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
425 {
426 #define E1000_REGS_LEN 32 /* overestimate */
427 return E1000_REGS_LEN * sizeof(u32);
428 }
429
430 static void e1000_get_regs(struct net_device *netdev,
431 struct ethtool_regs *regs, void *p)
432 {
433 struct e1000_adapter *adapter = netdev_priv(netdev);
434 struct e1000_hw *hw = &adapter->hw;
435 u32 *regs_buff = p;
436 u16 phy_data;
437
438 pm_runtime_get_sync(netdev->dev.parent);
439
440 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
441
442 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
443 adapter->pdev->device;
444
445 regs_buff[0] = er32(CTRL);
446 regs_buff[1] = er32(STATUS);
447
448 regs_buff[2] = er32(RCTL);
449 regs_buff[3] = er32(RDLEN(0));
450 regs_buff[4] = er32(RDH(0));
451 regs_buff[5] = er32(RDT(0));
452 regs_buff[6] = er32(RDTR);
453
454 regs_buff[7] = er32(TCTL);
455 regs_buff[8] = er32(TDLEN(0));
456 regs_buff[9] = er32(TDH(0));
457 regs_buff[10] = er32(TDT(0));
458 regs_buff[11] = er32(TIDV);
459
460 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
461
462 /* ethtool doesn't use anything past this point, so all this
463 * code is likely legacy junk for apps that may or may not exist
464 */
465 if (hw->phy.type == e1000_phy_m88) {
466 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
467 regs_buff[13] = (u32)phy_data; /* cable length */
468 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
471 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
472 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
473 regs_buff[18] = regs_buff[13]; /* cable polarity */
474 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
475 regs_buff[20] = regs_buff[17]; /* polarity correction */
476 /* phy receive errors */
477 regs_buff[22] = adapter->phy_stats.receive_errors;
478 regs_buff[23] = regs_buff[13]; /* mdix mode */
479 }
480 regs_buff[21] = 0; /* was idle_errors */
481 e1e_rphy(hw, MII_STAT1000, &phy_data);
482 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
483 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
484
485 pm_runtime_put_sync(netdev->dev.parent);
486 }
487
488 static int e1000_get_eeprom_len(struct net_device *netdev)
489 {
490 struct e1000_adapter *adapter = netdev_priv(netdev);
491 return adapter->hw.nvm.word_size * 2;
492 }
493
494 static int e1000_get_eeprom(struct net_device *netdev,
495 struct ethtool_eeprom *eeprom, u8 *bytes)
496 {
497 struct e1000_adapter *adapter = netdev_priv(netdev);
498 struct e1000_hw *hw = &adapter->hw;
499 u16 *eeprom_buff;
500 int first_word;
501 int last_word;
502 int ret_val = 0;
503 u16 i;
504
505 if (eeprom->len == 0)
506 return -EINVAL;
507
508 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
509
510 first_word = eeprom->offset >> 1;
511 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
512
513 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
514 GFP_KERNEL);
515 if (!eeprom_buff)
516 return -ENOMEM;
517
518 pm_runtime_get_sync(netdev->dev.parent);
519
520 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
521 ret_val = e1000_read_nvm(hw, first_word,
522 last_word - first_word + 1,
523 eeprom_buff);
524 } else {
525 for (i = 0; i < last_word - first_word + 1; i++) {
526 ret_val = e1000_read_nvm(hw, first_word + i, 1,
527 &eeprom_buff[i]);
528 if (ret_val)
529 break;
530 }
531 }
532
533 pm_runtime_put_sync(netdev->dev.parent);
534
535 if (ret_val) {
536 /* a read error occurred, throw away the result */
537 memset(eeprom_buff, 0xff, sizeof(u16) *
538 (last_word - first_word + 1));
539 } else {
540 /* Device's eeprom is always little-endian, word addressable */
541 for (i = 0; i < last_word - first_word + 1; i++)
542 le16_to_cpus(&eeprom_buff[i]);
543 }
544
545 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
546 kfree(eeprom_buff);
547
548 return ret_val;
549 }
550
551 static int e1000_set_eeprom(struct net_device *netdev,
552 struct ethtool_eeprom *eeprom, u8 *bytes)
553 {
554 struct e1000_adapter *adapter = netdev_priv(netdev);
555 struct e1000_hw *hw = &adapter->hw;
556 u16 *eeprom_buff;
557 void *ptr;
558 int max_len;
559 int first_word;
560 int last_word;
561 int ret_val = 0;
562 u16 i;
563
564 if (eeprom->len == 0)
565 return -EOPNOTSUPP;
566
567 if (eeprom->magic !=
568 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
569 return -EFAULT;
570
571 if (adapter->flags & FLAG_READ_ONLY_NVM)
572 return -EINVAL;
573
574 max_len = hw->nvm.word_size * 2;
575
576 first_word = eeprom->offset >> 1;
577 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579 if (!eeprom_buff)
580 return -ENOMEM;
581
582 ptr = (void *)eeprom_buff;
583
584 pm_runtime_get_sync(netdev->dev.parent);
585
586 if (eeprom->offset & 1) {
587 /* need read/modify/write of first changed EEPROM word */
588 /* only the second byte of the word is being modified */
589 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
590 ptr++;
591 }
592 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
593 /* need read/modify/write of last changed EEPROM word */
594 /* only the first byte of the word is being modified */
595 ret_val = e1000_read_nvm(hw, last_word, 1,
596 &eeprom_buff[last_word - first_word]);
597
598 if (ret_val)
599 goto out;
600
601 /* Device's eeprom is always little-endian, word addressable */
602 for (i = 0; i < last_word - first_word + 1; i++)
603 le16_to_cpus(&eeprom_buff[i]);
604
605 memcpy(ptr, bytes, eeprom->len);
606
607 for (i = 0; i < last_word - first_word + 1; i++)
608 cpu_to_le16s(&eeprom_buff[i]);
609
610 ret_val = e1000_write_nvm(hw, first_word,
611 last_word - first_word + 1, eeprom_buff);
612
613 if (ret_val)
614 goto out;
615
616 /* Update the checksum over the first part of the EEPROM if needed
617 * and flush shadow RAM for applicable controllers
618 */
619 if ((first_word <= NVM_CHECKSUM_REG) ||
620 (hw->mac.type == e1000_82583) ||
621 (hw->mac.type == e1000_82574) ||
622 (hw->mac.type == e1000_82573))
623 ret_val = e1000e_update_nvm_checksum(hw);
624
625 out:
626 pm_runtime_put_sync(netdev->dev.parent);
627 kfree(eeprom_buff);
628 return ret_val;
629 }
630
631 static void e1000_get_drvinfo(struct net_device *netdev,
632 struct ethtool_drvinfo *drvinfo)
633 {
634 struct e1000_adapter *adapter = netdev_priv(netdev);
635
636 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
637 strlcpy(drvinfo->version, e1000e_driver_version,
638 sizeof(drvinfo->version));
639
640 /* EEPROM image version # is reported as firmware version # for
641 * PCI-E controllers
642 */
643 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
644 "%d.%d-%d",
645 (adapter->eeprom_vers & 0xF000) >> 12,
646 (adapter->eeprom_vers & 0x0FF0) >> 4,
647 (adapter->eeprom_vers & 0x000F));
648
649 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
650 sizeof(drvinfo->bus_info));
651 }
652
653 static void e1000_get_ringparam(struct net_device *netdev,
654 struct ethtool_ringparam *ring)
655 {
656 struct e1000_adapter *adapter = netdev_priv(netdev);
657
658 ring->rx_max_pending = E1000_MAX_RXD;
659 ring->tx_max_pending = E1000_MAX_TXD;
660 ring->rx_pending = adapter->rx_ring_count;
661 ring->tx_pending = adapter->tx_ring_count;
662 }
663
664 static int e1000_set_ringparam(struct net_device *netdev,
665 struct ethtool_ringparam *ring)
666 {
667 struct e1000_adapter *adapter = netdev_priv(netdev);
668 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
669 int err = 0, size = sizeof(struct e1000_ring);
670 bool set_tx = false, set_rx = false;
671 u16 new_rx_count, new_tx_count;
672
673 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
674 return -EINVAL;
675
676 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
677 E1000_MAX_RXD);
678 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
679
680 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
681 E1000_MAX_TXD);
682 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
683
684 if ((new_tx_count == adapter->tx_ring_count) &&
685 (new_rx_count == adapter->rx_ring_count))
686 /* nothing to do */
687 return 0;
688
689 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
690 usleep_range(1000, 2000);
691
692 if (!netif_running(adapter->netdev)) {
693 /* Set counts now and allocate resources during open() */
694 adapter->tx_ring->count = new_tx_count;
695 adapter->rx_ring->count = new_rx_count;
696 adapter->tx_ring_count = new_tx_count;
697 adapter->rx_ring_count = new_rx_count;
698 goto clear_reset;
699 }
700
701 set_tx = (new_tx_count != adapter->tx_ring_count);
702 set_rx = (new_rx_count != adapter->rx_ring_count);
703
704 /* Allocate temporary storage for ring updates */
705 if (set_tx) {
706 temp_tx = vmalloc(size);
707 if (!temp_tx) {
708 err = -ENOMEM;
709 goto free_temp;
710 }
711 }
712 if (set_rx) {
713 temp_rx = vmalloc(size);
714 if (!temp_rx) {
715 err = -ENOMEM;
716 goto free_temp;
717 }
718 }
719
720 pm_runtime_get_sync(netdev->dev.parent);
721
722 e1000e_down(adapter, true);
723
724 /* We can't just free everything and then setup again, because the
725 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
726 * structs. First, attempt to allocate new resources...
727 */
728 if (set_tx) {
729 memcpy(temp_tx, adapter->tx_ring, size);
730 temp_tx->count = new_tx_count;
731 err = e1000e_setup_tx_resources(temp_tx);
732 if (err)
733 goto err_setup;
734 }
735 if (set_rx) {
736 memcpy(temp_rx, adapter->rx_ring, size);
737 temp_rx->count = new_rx_count;
738 err = e1000e_setup_rx_resources(temp_rx);
739 if (err)
740 goto err_setup_rx;
741 }
742
743 /* ...then free the old resources and copy back any new ring data */
744 if (set_tx) {
745 e1000e_free_tx_resources(adapter->tx_ring);
746 memcpy(adapter->tx_ring, temp_tx, size);
747 adapter->tx_ring_count = new_tx_count;
748 }
749 if (set_rx) {
750 e1000e_free_rx_resources(adapter->rx_ring);
751 memcpy(adapter->rx_ring, temp_rx, size);
752 adapter->rx_ring_count = new_rx_count;
753 }
754
755 err_setup_rx:
756 if (err && set_tx)
757 e1000e_free_tx_resources(temp_tx);
758 err_setup:
759 e1000e_up(adapter);
760 pm_runtime_put_sync(netdev->dev.parent);
761 free_temp:
762 vfree(temp_tx);
763 vfree(temp_rx);
764 clear_reset:
765 clear_bit(__E1000_RESETTING, &adapter->state);
766 return err;
767 }
768
769 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
770 int reg, int offset, u32 mask, u32 write)
771 {
772 u32 pat, val;
773 static const u32 test[] = {
774 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
775 };
776 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
777 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
778 (test[pat] & write));
779 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
780 if (val != (test[pat] & write & mask)) {
781 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
782 reg + (offset << 2), val,
783 (test[pat] & write & mask));
784 *data = reg;
785 return true;
786 }
787 }
788 return false;
789 }
790
791 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
792 int reg, u32 mask, u32 write)
793 {
794 u32 val;
795
796 __ew32(&adapter->hw, reg, write & mask);
797 val = __er32(&adapter->hw, reg);
798 if ((write & mask) != (val & mask)) {
799 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
800 reg, (val & mask), (write & mask));
801 *data = reg;
802 return true;
803 }
804 return false;
805 }
806
807 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
808 do { \
809 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
810 return 1; \
811 } while (0)
812 #define REG_PATTERN_TEST(reg, mask, write) \
813 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
814
815 #define REG_SET_AND_CHECK(reg, mask, write) \
816 do { \
817 if (reg_set_and_check(adapter, data, reg, mask, write)) \
818 return 1; \
819 } while (0)
820
821 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
822 {
823 struct e1000_hw *hw = &adapter->hw;
824 struct e1000_mac_info *mac = &adapter->hw.mac;
825 u32 value;
826 u32 before;
827 u32 after;
828 u32 i;
829 u32 toggle;
830 u32 mask;
831 u32 wlock_mac = 0;
832
833 /* The status register is Read Only, so a write should fail.
834 * Some bits that get toggled are ignored. There are several bits
835 * on newer hardware that are r/w.
836 */
837 switch (mac->type) {
838 case e1000_82571:
839 case e1000_82572:
840 case e1000_80003es2lan:
841 toggle = 0x7FFFF3FF;
842 break;
843 default:
844 toggle = 0x7FFFF033;
845 break;
846 }
847
848 before = er32(STATUS);
849 value = (er32(STATUS) & toggle);
850 ew32(STATUS, toggle);
851 after = er32(STATUS) & toggle;
852 if (value != after) {
853 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
854 after, value);
855 *data = 1;
856 return 1;
857 }
858 /* restore previous status */
859 ew32(STATUS, before);
860
861 if (!(adapter->flags & FLAG_IS_ICH)) {
862 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
863 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
864 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
866 }
867
868 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
869 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
870 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
871 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
872 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
873 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
874 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
875 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
876 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
877 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
878
879 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
880
881 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
882 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
883 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
884
885 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
887 if (!(adapter->flags & FLAG_IS_ICH))
888 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
889 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
890 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
891 mask = 0x8003FFFF;
892 switch (mac->type) {
893 case e1000_ich10lan:
894 case e1000_pchlan:
895 case e1000_pch2lan:
896 case e1000_pch_lpt:
897 case e1000_pch_spt:
898 mask |= (1 << 18);
899 break;
900 default:
901 break;
902 }
903
904 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
905 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
906 E1000_FWSM_WLOCK_MAC_SHIFT;
907
908 for (i = 0; i < mac->rar_entry_count; i++) {
909 if ((mac->type == e1000_pch_lpt) ||
910 (mac->type == e1000_pch_spt)) {
911 /* Cannot test write-protected SHRAL[n] registers */
912 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
913 continue;
914
915 /* SHRAH[9] different than the others */
916 if (i == 10)
917 mask |= (1 << 30);
918 else
919 mask &= ~(1 << 30);
920 }
921 if (mac->type == e1000_pch2lan) {
922 /* SHRAH[0,1,2] different than previous */
923 if (i == 1)
924 mask &= 0xFFF4FFFF;
925 /* SHRAH[3] different than SHRAH[0,1,2] */
926 if (i == 4)
927 mask |= (1 << 30);
928 /* RAR[1-6] owned by management engine - skipping */
929 if (i > 0)
930 i += 6;
931 }
932
933 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
934 0xFFFFFFFF);
935 /* reset index to actual value */
936 if ((mac->type == e1000_pch2lan) && (i > 6))
937 i -= 6;
938 }
939
940 for (i = 0; i < mac->mta_reg_count; i++)
941 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
942
943 *data = 0;
944
945 return 0;
946 }
947
948 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
949 {
950 u16 temp;
951 u16 checksum = 0;
952 u16 i;
953
954 *data = 0;
955 /* Read and add up the contents of the EEPROM */
956 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
957 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
958 *data = 1;
959 return *data;
960 }
961 checksum += temp;
962 }
963
964 /* If Checksum is not Correct return error else test passed */
965 if ((checksum != (u16)NVM_SUM) && !(*data))
966 *data = 2;
967
968 return *data;
969 }
970
971 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
972 {
973 struct net_device *netdev = (struct net_device *)data;
974 struct e1000_adapter *adapter = netdev_priv(netdev);
975 struct e1000_hw *hw = &adapter->hw;
976
977 adapter->test_icr |= er32(ICR);
978
979 return IRQ_HANDLED;
980 }
981
982 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
983 {
984 struct net_device *netdev = adapter->netdev;
985 struct e1000_hw *hw = &adapter->hw;
986 u32 mask;
987 u32 shared_int = 1;
988 u32 irq = adapter->pdev->irq;
989 int i;
990 int ret_val = 0;
991 int int_mode = E1000E_INT_MODE_LEGACY;
992
993 *data = 0;
994
995 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
996 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
997 int_mode = adapter->int_mode;
998 e1000e_reset_interrupt_capability(adapter);
999 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1000 e1000e_set_interrupt_capability(adapter);
1001 }
1002 /* Hook up test interrupt handler just for this test */
1003 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1004 netdev)) {
1005 shared_int = 0;
1006 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1007 netdev)) {
1008 *data = 1;
1009 ret_val = -1;
1010 goto out;
1011 }
1012 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1013
1014 /* Disable all the interrupts */
1015 ew32(IMC, 0xFFFFFFFF);
1016 e1e_flush();
1017 usleep_range(10000, 20000);
1018
1019 /* Test each interrupt */
1020 for (i = 0; i < 10; i++) {
1021 /* Interrupt to test */
1022 mask = 1 << i;
1023
1024 if (adapter->flags & FLAG_IS_ICH) {
1025 switch (mask) {
1026 case E1000_ICR_RXSEQ:
1027 continue;
1028 case 0x00000100:
1029 if (adapter->hw.mac.type == e1000_ich8lan ||
1030 adapter->hw.mac.type == e1000_ich9lan)
1031 continue;
1032 break;
1033 default:
1034 break;
1035 }
1036 }
1037
1038 if (!shared_int) {
1039 /* Disable the interrupt to be reported in
1040 * the cause register and then force the same
1041 * interrupt and see if one gets posted. If
1042 * an interrupt was posted to the bus, the
1043 * test failed.
1044 */
1045 adapter->test_icr = 0;
1046 ew32(IMC, mask);
1047 ew32(ICS, mask);
1048 e1e_flush();
1049 usleep_range(10000, 20000);
1050
1051 if (adapter->test_icr & mask) {
1052 *data = 3;
1053 break;
1054 }
1055 }
1056
1057 /* Enable the interrupt to be reported in
1058 * the cause register and then force the same
1059 * interrupt and see if one gets posted. If
1060 * an interrupt was not posted to the bus, the
1061 * test failed.
1062 */
1063 adapter->test_icr = 0;
1064 ew32(IMS, mask);
1065 ew32(ICS, mask);
1066 e1e_flush();
1067 usleep_range(10000, 20000);
1068
1069 if (!(adapter->test_icr & mask)) {
1070 *data = 4;
1071 break;
1072 }
1073
1074 if (!shared_int) {
1075 /* Disable the other interrupts to be reported in
1076 * the cause register and then force the other
1077 * interrupts and see if any get posted. If
1078 * an interrupt was posted to the bus, the
1079 * test failed.
1080 */
1081 adapter->test_icr = 0;
1082 ew32(IMC, ~mask & 0x00007FFF);
1083 ew32(ICS, ~mask & 0x00007FFF);
1084 e1e_flush();
1085 usleep_range(10000, 20000);
1086
1087 if (adapter->test_icr) {
1088 *data = 5;
1089 break;
1090 }
1091 }
1092 }
1093
1094 /* Disable all the interrupts */
1095 ew32(IMC, 0xFFFFFFFF);
1096 e1e_flush();
1097 usleep_range(10000, 20000);
1098
1099 /* Unhook test interrupt handler */
1100 free_irq(irq, netdev);
1101
1102 out:
1103 if (int_mode == E1000E_INT_MODE_MSIX) {
1104 e1000e_reset_interrupt_capability(adapter);
1105 adapter->int_mode = int_mode;
1106 e1000e_set_interrupt_capability(adapter);
1107 }
1108
1109 return ret_val;
1110 }
1111
1112 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1113 {
1114 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1115 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1116 struct pci_dev *pdev = adapter->pdev;
1117 struct e1000_buffer *buffer_info;
1118 int i;
1119
1120 if (tx_ring->desc && tx_ring->buffer_info) {
1121 for (i = 0; i < tx_ring->count; i++) {
1122 buffer_info = &tx_ring->buffer_info[i];
1123
1124 if (buffer_info->dma)
1125 dma_unmap_single(&pdev->dev,
1126 buffer_info->dma,
1127 buffer_info->length,
1128 DMA_TO_DEVICE);
1129 if (buffer_info->skb)
1130 dev_kfree_skb(buffer_info->skb);
1131 }
1132 }
1133
1134 if (rx_ring->desc && rx_ring->buffer_info) {
1135 for (i = 0; i < rx_ring->count; i++) {
1136 buffer_info = &rx_ring->buffer_info[i];
1137
1138 if (buffer_info->dma)
1139 dma_unmap_single(&pdev->dev,
1140 buffer_info->dma,
1141 2048, DMA_FROM_DEVICE);
1142 if (buffer_info->skb)
1143 dev_kfree_skb(buffer_info->skb);
1144 }
1145 }
1146
1147 if (tx_ring->desc) {
1148 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1149 tx_ring->dma);
1150 tx_ring->desc = NULL;
1151 }
1152 if (rx_ring->desc) {
1153 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1154 rx_ring->dma);
1155 rx_ring->desc = NULL;
1156 }
1157
1158 kfree(tx_ring->buffer_info);
1159 tx_ring->buffer_info = NULL;
1160 kfree(rx_ring->buffer_info);
1161 rx_ring->buffer_info = NULL;
1162 }
1163
1164 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1165 {
1166 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1167 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1168 struct pci_dev *pdev = adapter->pdev;
1169 struct e1000_hw *hw = &adapter->hw;
1170 u32 rctl;
1171 int i;
1172 int ret_val;
1173
1174 /* Setup Tx descriptor ring and Tx buffers */
1175
1176 if (!tx_ring->count)
1177 tx_ring->count = E1000_DEFAULT_TXD;
1178
1179 tx_ring->buffer_info = kcalloc(tx_ring->count,
1180 sizeof(struct e1000_buffer), GFP_KERNEL);
1181 if (!tx_ring->buffer_info) {
1182 ret_val = 1;
1183 goto err_nomem;
1184 }
1185
1186 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1187 tx_ring->size = ALIGN(tx_ring->size, 4096);
1188 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1189 &tx_ring->dma, GFP_KERNEL);
1190 if (!tx_ring->desc) {
1191 ret_val = 2;
1192 goto err_nomem;
1193 }
1194 tx_ring->next_to_use = 0;
1195 tx_ring->next_to_clean = 0;
1196
1197 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1198 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1199 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1200 ew32(TDH(0), 0);
1201 ew32(TDT(0), 0);
1202 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1203 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1204 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1205
1206 for (i = 0; i < tx_ring->count; i++) {
1207 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1208 struct sk_buff *skb;
1209 unsigned int skb_size = 1024;
1210
1211 skb = alloc_skb(skb_size, GFP_KERNEL);
1212 if (!skb) {
1213 ret_val = 3;
1214 goto err_nomem;
1215 }
1216 skb_put(skb, skb_size);
1217 tx_ring->buffer_info[i].skb = skb;
1218 tx_ring->buffer_info[i].length = skb->len;
1219 tx_ring->buffer_info[i].dma =
1220 dma_map_single(&pdev->dev, skb->data, skb->len,
1221 DMA_TO_DEVICE);
1222 if (dma_mapping_error(&pdev->dev,
1223 tx_ring->buffer_info[i].dma)) {
1224 ret_val = 4;
1225 goto err_nomem;
1226 }
1227 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1228 tx_desc->lower.data = cpu_to_le32(skb->len);
1229 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1230 E1000_TXD_CMD_IFCS |
1231 E1000_TXD_CMD_RS);
1232 tx_desc->upper.data = 0;
1233 }
1234
1235 /* Setup Rx descriptor ring and Rx buffers */
1236
1237 if (!rx_ring->count)
1238 rx_ring->count = E1000_DEFAULT_RXD;
1239
1240 rx_ring->buffer_info = kcalloc(rx_ring->count,
1241 sizeof(struct e1000_buffer), GFP_KERNEL);
1242 if (!rx_ring->buffer_info) {
1243 ret_val = 5;
1244 goto err_nomem;
1245 }
1246
1247 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1248 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1249 &rx_ring->dma, GFP_KERNEL);
1250 if (!rx_ring->desc) {
1251 ret_val = 6;
1252 goto err_nomem;
1253 }
1254 rx_ring->next_to_use = 0;
1255 rx_ring->next_to_clean = 0;
1256
1257 rctl = er32(RCTL);
1258 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1259 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1260 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1261 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1262 ew32(RDLEN(0), rx_ring->size);
1263 ew32(RDH(0), 0);
1264 ew32(RDT(0), 0);
1265 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1266 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1267 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1268 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1269 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1270 ew32(RCTL, rctl);
1271
1272 for (i = 0; i < rx_ring->count; i++) {
1273 union e1000_rx_desc_extended *rx_desc;
1274 struct sk_buff *skb;
1275
1276 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1277 if (!skb) {
1278 ret_val = 7;
1279 goto err_nomem;
1280 }
1281 skb_reserve(skb, NET_IP_ALIGN);
1282 rx_ring->buffer_info[i].skb = skb;
1283 rx_ring->buffer_info[i].dma =
1284 dma_map_single(&pdev->dev, skb->data, 2048,
1285 DMA_FROM_DEVICE);
1286 if (dma_mapping_error(&pdev->dev,
1287 rx_ring->buffer_info[i].dma)) {
1288 ret_val = 8;
1289 goto err_nomem;
1290 }
1291 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1292 rx_desc->read.buffer_addr =
1293 cpu_to_le64(rx_ring->buffer_info[i].dma);
1294 memset(skb->data, 0x00, skb->len);
1295 }
1296
1297 return 0;
1298
1299 err_nomem:
1300 e1000_free_desc_rings(adapter);
1301 return ret_val;
1302 }
1303
1304 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1305 {
1306 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1307 e1e_wphy(&adapter->hw, 29, 0x001F);
1308 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1309 e1e_wphy(&adapter->hw, 29, 0x001A);
1310 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1311 }
1312
1313 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1314 {
1315 struct e1000_hw *hw = &adapter->hw;
1316 u32 ctrl_reg = 0;
1317 u16 phy_reg = 0;
1318 s32 ret_val = 0;
1319
1320 hw->mac.autoneg = 0;
1321
1322 if (hw->phy.type == e1000_phy_ife) {
1323 /* force 100, set loopback */
1324 e1e_wphy(hw, MII_BMCR, 0x6100);
1325
1326 /* Now set up the MAC to the same speed/duplex as the PHY. */
1327 ctrl_reg = er32(CTRL);
1328 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1329 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1330 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1331 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1332 E1000_CTRL_FD); /* Force Duplex to FULL */
1333
1334 ew32(CTRL, ctrl_reg);
1335 e1e_flush();
1336 usleep_range(500, 1000);
1337
1338 return 0;
1339 }
1340
1341 /* Specific PHY configuration for loopback */
1342 switch (hw->phy.type) {
1343 case e1000_phy_m88:
1344 /* Auto-MDI/MDIX Off */
1345 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1346 /* reset to update Auto-MDI/MDIX */
1347 e1e_wphy(hw, MII_BMCR, 0x9140);
1348 /* autoneg off */
1349 e1e_wphy(hw, MII_BMCR, 0x8140);
1350 break;
1351 case e1000_phy_gg82563:
1352 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1353 break;
1354 case e1000_phy_bm:
1355 /* Set Default MAC Interface speed to 1GB */
1356 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1357 phy_reg &= ~0x0007;
1358 phy_reg |= 0x006;
1359 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1360 /* Assert SW reset for above settings to take effect */
1361 hw->phy.ops.commit(hw);
1362 usleep_range(1000, 2000);
1363 /* Force Full Duplex */
1364 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1365 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1366 /* Set Link Up (in force link) */
1367 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1368 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1369 /* Force Link */
1370 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1371 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1372 /* Set Early Link Enable */
1373 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1374 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1375 break;
1376 case e1000_phy_82577:
1377 case e1000_phy_82578:
1378 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1379 ret_val = hw->phy.ops.acquire(hw);
1380 if (ret_val) {
1381 e_err("Cannot setup 1Gbps loopback.\n");
1382 return ret_val;
1383 }
1384 e1000_configure_k1_ich8lan(hw, false);
1385 hw->phy.ops.release(hw);
1386 break;
1387 case e1000_phy_82579:
1388 /* Disable PHY energy detect power down */
1389 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1390 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1391 /* Disable full chip energy detect */
1392 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1393 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1394 /* Enable loopback on the PHY */
1395 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1396 break;
1397 default:
1398 break;
1399 }
1400
1401 /* force 1000, set loopback */
1402 e1e_wphy(hw, MII_BMCR, 0x4140);
1403 msleep(250);
1404
1405 /* Now set up the MAC to the same speed/duplex as the PHY. */
1406 ctrl_reg = er32(CTRL);
1407 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1408 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1409 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1410 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1411 E1000_CTRL_FD); /* Force Duplex to FULL */
1412
1413 if (adapter->flags & FLAG_IS_ICH)
1414 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1415
1416 if (hw->phy.media_type == e1000_media_type_copper &&
1417 hw->phy.type == e1000_phy_m88) {
1418 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1419 } else {
1420 /* Set the ILOS bit on the fiber Nic if half duplex link is
1421 * detected.
1422 */
1423 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1424 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1425 }
1426
1427 ew32(CTRL, ctrl_reg);
1428
1429 /* Disable the receiver on the PHY so when a cable is plugged in, the
1430 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1431 */
1432 if (hw->phy.type == e1000_phy_m88)
1433 e1000_phy_disable_receiver(adapter);
1434
1435 usleep_range(500, 1000);
1436
1437 return 0;
1438 }
1439
1440 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1441 {
1442 struct e1000_hw *hw = &adapter->hw;
1443 u32 ctrl = er32(CTRL);
1444 int link;
1445
1446 /* special requirements for 82571/82572 fiber adapters */
1447
1448 /* jump through hoops to make sure link is up because serdes
1449 * link is hardwired up
1450 */
1451 ctrl |= E1000_CTRL_SLU;
1452 ew32(CTRL, ctrl);
1453
1454 /* disable autoneg */
1455 ctrl = er32(TXCW);
1456 ctrl &= ~(1 << 31);
1457 ew32(TXCW, ctrl);
1458
1459 link = (er32(STATUS) & E1000_STATUS_LU);
1460
1461 if (!link) {
1462 /* set invert loss of signal */
1463 ctrl = er32(CTRL);
1464 ctrl |= E1000_CTRL_ILOS;
1465 ew32(CTRL, ctrl);
1466 }
1467
1468 /* special write to serdes control register to enable SerDes analog
1469 * loopback
1470 */
1471 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1472 e1e_flush();
1473 usleep_range(10000, 20000);
1474
1475 return 0;
1476 }
1477
1478 /* only call this for fiber/serdes connections to es2lan */
1479 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1480 {
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 ctrlext = er32(CTRL_EXT);
1483 u32 ctrl = er32(CTRL);
1484
1485 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1486 * on mac_type 80003es2lan)
1487 */
1488 adapter->tx_fifo_head = ctrlext;
1489
1490 /* clear the serdes mode bits, putting the device into mac loopback */
1491 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1492 ew32(CTRL_EXT, ctrlext);
1493
1494 /* force speed to 1000/FD, link up */
1495 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1496 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1497 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1498 ew32(CTRL, ctrl);
1499
1500 /* set mac loopback */
1501 ctrl = er32(RCTL);
1502 ctrl |= E1000_RCTL_LBM_MAC;
1503 ew32(RCTL, ctrl);
1504
1505 /* set testing mode parameters (no need to reset later) */
1506 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1507 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1508 ew32(KMRNCTRLSTA,
1509 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1510
1511 return 0;
1512 }
1513
1514 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1515 {
1516 struct e1000_hw *hw = &adapter->hw;
1517 u32 rctl, fext_nvm11, tarc0;
1518
1519 if (hw->mac.type == e1000_pch_spt) {
1520 fext_nvm11 = er32(FEXTNVM11);
1521 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1522 ew32(FEXTNVM11, fext_nvm11);
1523 tarc0 = er32(TARC(0));
1524 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1525 tarc0 &= 0xcfffffff;
1526 /* set bit 29 (value of MULR requests is now 2) */
1527 tarc0 |= 0x20000000;
1528 ew32(TARC(0), tarc0);
1529 }
1530 if (hw->phy.media_type == e1000_media_type_fiber ||
1531 hw->phy.media_type == e1000_media_type_internal_serdes) {
1532 switch (hw->mac.type) {
1533 case e1000_80003es2lan:
1534 return e1000_set_es2lan_mac_loopback(adapter);
1535 case e1000_82571:
1536 case e1000_82572:
1537 return e1000_set_82571_fiber_loopback(adapter);
1538 default:
1539 rctl = er32(RCTL);
1540 rctl |= E1000_RCTL_LBM_TCVR;
1541 ew32(RCTL, rctl);
1542 return 0;
1543 }
1544 } else if (hw->phy.media_type == e1000_media_type_copper) {
1545 return e1000_integrated_phy_loopback(adapter);
1546 }
1547
1548 return 7;
1549 }
1550
1551 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1552 {
1553 struct e1000_hw *hw = &adapter->hw;
1554 u32 rctl, fext_nvm11, tarc0;
1555 u16 phy_reg;
1556
1557 rctl = er32(RCTL);
1558 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1559 ew32(RCTL, rctl);
1560
1561 switch (hw->mac.type) {
1562 case e1000_pch_spt:
1563 fext_nvm11 = er32(FEXTNVM11);
1564 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1565 ew32(FEXTNVM11, fext_nvm11);
1566 tarc0 = er32(TARC(0));
1567 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1568 /* set bit 29 (value of MULR requests is now 0) */
1569 tarc0 &= 0xcfffffff;
1570 ew32(TARC(0), tarc0);
1571 /* fall through */
1572 case e1000_80003es2lan:
1573 if (hw->phy.media_type == e1000_media_type_fiber ||
1574 hw->phy.media_type == e1000_media_type_internal_serdes) {
1575 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1576 ew32(CTRL_EXT, adapter->tx_fifo_head);
1577 adapter->tx_fifo_head = 0;
1578 }
1579 /* fall through */
1580 case e1000_82571:
1581 case e1000_82572:
1582 if (hw->phy.media_type == e1000_media_type_fiber ||
1583 hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1585 e1e_flush();
1586 usleep_range(10000, 20000);
1587 break;
1588 }
1589 /* Fall Through */
1590 default:
1591 hw->mac.autoneg = 1;
1592 if (hw->phy.type == e1000_phy_gg82563)
1593 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1594 e1e_rphy(hw, MII_BMCR, &phy_reg);
1595 if (phy_reg & BMCR_LOOPBACK) {
1596 phy_reg &= ~BMCR_LOOPBACK;
1597 e1e_wphy(hw, MII_BMCR, phy_reg);
1598 if (hw->phy.ops.commit)
1599 hw->phy.ops.commit(hw);
1600 }
1601 break;
1602 }
1603 }
1604
1605 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1606 unsigned int frame_size)
1607 {
1608 memset(skb->data, 0xFF, frame_size);
1609 frame_size &= ~1;
1610 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1611 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1612 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1613 }
1614
1615 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1616 unsigned int frame_size)
1617 {
1618 frame_size &= ~1;
1619 if (*(skb->data + 3) == 0xFF)
1620 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1621 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1622 return 0;
1623 return 13;
1624 }
1625
1626 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1627 {
1628 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1629 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1630 struct pci_dev *pdev = adapter->pdev;
1631 struct e1000_hw *hw = &adapter->hw;
1632 struct e1000_buffer *buffer_info;
1633 int i, j, k, l;
1634 int lc;
1635 int good_cnt;
1636 int ret_val = 0;
1637 unsigned long time;
1638
1639 ew32(RDT(0), rx_ring->count - 1);
1640
1641 /* Calculate the loop count based on the largest descriptor ring
1642 * The idea is to wrap the largest ring a number of times using 64
1643 * send/receive pairs during each loop
1644 */
1645
1646 if (rx_ring->count <= tx_ring->count)
1647 lc = ((tx_ring->count / 64) * 2) + 1;
1648 else
1649 lc = ((rx_ring->count / 64) * 2) + 1;
1650
1651 k = 0;
1652 l = 0;
1653 /* loop count loop */
1654 for (j = 0; j <= lc; j++) {
1655 /* send the packets */
1656 for (i = 0; i < 64; i++) {
1657 buffer_info = &tx_ring->buffer_info[k];
1658
1659 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1660 dma_sync_single_for_device(&pdev->dev,
1661 buffer_info->dma,
1662 buffer_info->length,
1663 DMA_TO_DEVICE);
1664 k++;
1665 if (k == tx_ring->count)
1666 k = 0;
1667 }
1668 ew32(TDT(0), k);
1669 e1e_flush();
1670 msleep(200);
1671 time = jiffies; /* set the start time for the receive */
1672 good_cnt = 0;
1673 /* receive the sent packets */
1674 do {
1675 buffer_info = &rx_ring->buffer_info[l];
1676
1677 dma_sync_single_for_cpu(&pdev->dev,
1678 buffer_info->dma, 2048,
1679 DMA_FROM_DEVICE);
1680
1681 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1682 1024);
1683 if (!ret_val)
1684 good_cnt++;
1685 l++;
1686 if (l == rx_ring->count)
1687 l = 0;
1688 /* time + 20 msecs (200 msecs on 2.4) is more than
1689 * enough time to complete the receives, if it's
1690 * exceeded, break and error off
1691 */
1692 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1693 if (good_cnt != 64) {
1694 ret_val = 13; /* ret_val is the same as mis-compare */
1695 break;
1696 }
1697 if (time_after(jiffies, time + 20)) {
1698 ret_val = 14; /* error code for time out error */
1699 break;
1700 }
1701 }
1702 return ret_val;
1703 }
1704
1705 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1706 {
1707 struct e1000_hw *hw = &adapter->hw;
1708
1709 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1710 if (hw->phy.ops.check_reset_block &&
1711 hw->phy.ops.check_reset_block(hw)) {
1712 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1713 *data = 0;
1714 goto out;
1715 }
1716
1717 *data = e1000_setup_desc_rings(adapter);
1718 if (*data)
1719 goto out;
1720
1721 *data = e1000_setup_loopback_test(adapter);
1722 if (*data)
1723 goto err_loopback;
1724
1725 *data = e1000_run_loopback_test(adapter);
1726 e1000_loopback_cleanup(adapter);
1727
1728 err_loopback:
1729 e1000_free_desc_rings(adapter);
1730 out:
1731 return *data;
1732 }
1733
1734 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1735 {
1736 struct e1000_hw *hw = &adapter->hw;
1737
1738 *data = 0;
1739 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1740 int i = 0;
1741
1742 hw->mac.serdes_has_link = false;
1743
1744 /* On some blade server designs, link establishment
1745 * could take as long as 2-3 minutes
1746 */
1747 do {
1748 hw->mac.ops.check_for_link(hw);
1749 if (hw->mac.serdes_has_link)
1750 return *data;
1751 msleep(20);
1752 } while (i++ < 3750);
1753
1754 *data = 1;
1755 } else {
1756 hw->mac.ops.check_for_link(hw);
1757 if (hw->mac.autoneg)
1758 /* On some Phy/switch combinations, link establishment
1759 * can take a few seconds more than expected.
1760 */
1761 msleep_interruptible(5000);
1762
1763 if (!(er32(STATUS) & E1000_STATUS_LU))
1764 *data = 1;
1765 }
1766 return *data;
1767 }
1768
1769 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1770 int sset)
1771 {
1772 switch (sset) {
1773 case ETH_SS_TEST:
1774 return E1000_TEST_LEN;
1775 case ETH_SS_STATS:
1776 return E1000_STATS_LEN;
1777 default:
1778 return -EOPNOTSUPP;
1779 }
1780 }
1781
1782 static void e1000_diag_test(struct net_device *netdev,
1783 struct ethtool_test *eth_test, u64 *data)
1784 {
1785 struct e1000_adapter *adapter = netdev_priv(netdev);
1786 u16 autoneg_advertised;
1787 u8 forced_speed_duplex;
1788 u8 autoneg;
1789 bool if_running = netif_running(netdev);
1790
1791 pm_runtime_get_sync(netdev->dev.parent);
1792
1793 set_bit(__E1000_TESTING, &adapter->state);
1794
1795 if (!if_running) {
1796 /* Get control of and reset hardware */
1797 if (adapter->flags & FLAG_HAS_AMT)
1798 e1000e_get_hw_control(adapter);
1799
1800 e1000e_power_up_phy(adapter);
1801
1802 adapter->hw.phy.autoneg_wait_to_complete = 1;
1803 e1000e_reset(adapter);
1804 adapter->hw.phy.autoneg_wait_to_complete = 0;
1805 }
1806
1807 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1808 /* Offline tests */
1809
1810 /* save speed, duplex, autoneg settings */
1811 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1812 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1813 autoneg = adapter->hw.mac.autoneg;
1814
1815 e_info("offline testing starting\n");
1816
1817 if (if_running)
1818 /* indicate we're in test mode */
1819 dev_close(netdev);
1820
1821 if (e1000_reg_test(adapter, &data[0]))
1822 eth_test->flags |= ETH_TEST_FL_FAILED;
1823
1824 e1000e_reset(adapter);
1825 if (e1000_eeprom_test(adapter, &data[1]))
1826 eth_test->flags |= ETH_TEST_FL_FAILED;
1827
1828 e1000e_reset(adapter);
1829 if (e1000_intr_test(adapter, &data[2]))
1830 eth_test->flags |= ETH_TEST_FL_FAILED;
1831
1832 e1000e_reset(adapter);
1833 if (e1000_loopback_test(adapter, &data[3]))
1834 eth_test->flags |= ETH_TEST_FL_FAILED;
1835
1836 /* force this routine to wait until autoneg complete/timeout */
1837 adapter->hw.phy.autoneg_wait_to_complete = 1;
1838 e1000e_reset(adapter);
1839 adapter->hw.phy.autoneg_wait_to_complete = 0;
1840
1841 if (e1000_link_test(adapter, &data[4]))
1842 eth_test->flags |= ETH_TEST_FL_FAILED;
1843
1844 /* restore speed, duplex, autoneg settings */
1845 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1846 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1847 adapter->hw.mac.autoneg = autoneg;
1848 e1000e_reset(adapter);
1849
1850 clear_bit(__E1000_TESTING, &adapter->state);
1851 if (if_running)
1852 dev_open(netdev);
1853 } else {
1854 /* Online tests */
1855
1856 e_info("online testing starting\n");
1857
1858 /* register, eeprom, intr and loopback tests not run online */
1859 data[0] = 0;
1860 data[1] = 0;
1861 data[2] = 0;
1862 data[3] = 0;
1863
1864 if (e1000_link_test(adapter, &data[4]))
1865 eth_test->flags |= ETH_TEST_FL_FAILED;
1866
1867 clear_bit(__E1000_TESTING, &adapter->state);
1868 }
1869
1870 if (!if_running) {
1871 e1000e_reset(adapter);
1872
1873 if (adapter->flags & FLAG_HAS_AMT)
1874 e1000e_release_hw_control(adapter);
1875 }
1876
1877 msleep_interruptible(4 * 1000);
1878
1879 pm_runtime_put_sync(netdev->dev.parent);
1880 }
1881
1882 static void e1000_get_wol(struct net_device *netdev,
1883 struct ethtool_wolinfo *wol)
1884 {
1885 struct e1000_adapter *adapter = netdev_priv(netdev);
1886
1887 wol->supported = 0;
1888 wol->wolopts = 0;
1889
1890 if (!(adapter->flags & FLAG_HAS_WOL) ||
1891 !device_can_wakeup(&adapter->pdev->dev))
1892 return;
1893
1894 wol->supported = WAKE_UCAST | WAKE_MCAST |
1895 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1896
1897 /* apply any specific unsupported masks here */
1898 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1899 wol->supported &= ~WAKE_UCAST;
1900
1901 if (adapter->wol & E1000_WUFC_EX)
1902 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1903 }
1904
1905 if (adapter->wol & E1000_WUFC_EX)
1906 wol->wolopts |= WAKE_UCAST;
1907 if (adapter->wol & E1000_WUFC_MC)
1908 wol->wolopts |= WAKE_MCAST;
1909 if (adapter->wol & E1000_WUFC_BC)
1910 wol->wolopts |= WAKE_BCAST;
1911 if (adapter->wol & E1000_WUFC_MAG)
1912 wol->wolopts |= WAKE_MAGIC;
1913 if (adapter->wol & E1000_WUFC_LNKC)
1914 wol->wolopts |= WAKE_PHY;
1915 }
1916
1917 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1918 {
1919 struct e1000_adapter *adapter = netdev_priv(netdev);
1920
1921 if (!(adapter->flags & FLAG_HAS_WOL) ||
1922 !device_can_wakeup(&adapter->pdev->dev) ||
1923 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1924 WAKE_MAGIC | WAKE_PHY)))
1925 return -EOPNOTSUPP;
1926
1927 /* these settings will always override what we currently have */
1928 adapter->wol = 0;
1929
1930 if (wol->wolopts & WAKE_UCAST)
1931 adapter->wol |= E1000_WUFC_EX;
1932 if (wol->wolopts & WAKE_MCAST)
1933 adapter->wol |= E1000_WUFC_MC;
1934 if (wol->wolopts & WAKE_BCAST)
1935 adapter->wol |= E1000_WUFC_BC;
1936 if (wol->wolopts & WAKE_MAGIC)
1937 adapter->wol |= E1000_WUFC_MAG;
1938 if (wol->wolopts & WAKE_PHY)
1939 adapter->wol |= E1000_WUFC_LNKC;
1940
1941 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1942
1943 return 0;
1944 }
1945
1946 static int e1000_set_phys_id(struct net_device *netdev,
1947 enum ethtool_phys_id_state state)
1948 {
1949 struct e1000_adapter *adapter = netdev_priv(netdev);
1950 struct e1000_hw *hw = &adapter->hw;
1951
1952 switch (state) {
1953 case ETHTOOL_ID_ACTIVE:
1954 pm_runtime_get_sync(netdev->dev.parent);
1955
1956 if (!hw->mac.ops.blink_led)
1957 return 2; /* cycle on/off twice per second */
1958
1959 hw->mac.ops.blink_led(hw);
1960 break;
1961
1962 case ETHTOOL_ID_INACTIVE:
1963 if (hw->phy.type == e1000_phy_ife)
1964 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1965 hw->mac.ops.led_off(hw);
1966 hw->mac.ops.cleanup_led(hw);
1967 pm_runtime_put_sync(netdev->dev.parent);
1968 break;
1969
1970 case ETHTOOL_ID_ON:
1971 hw->mac.ops.led_on(hw);
1972 break;
1973
1974 case ETHTOOL_ID_OFF:
1975 hw->mac.ops.led_off(hw);
1976 break;
1977 }
1978
1979 return 0;
1980 }
1981
1982 static int e1000_get_coalesce(struct net_device *netdev,
1983 struct ethtool_coalesce *ec)
1984 {
1985 struct e1000_adapter *adapter = netdev_priv(netdev);
1986
1987 if (adapter->itr_setting <= 4)
1988 ec->rx_coalesce_usecs = adapter->itr_setting;
1989 else
1990 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1991
1992 return 0;
1993 }
1994
1995 static int e1000_set_coalesce(struct net_device *netdev,
1996 struct ethtool_coalesce *ec)
1997 {
1998 struct e1000_adapter *adapter = netdev_priv(netdev);
1999
2000 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2001 ((ec->rx_coalesce_usecs > 4) &&
2002 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2003 (ec->rx_coalesce_usecs == 2))
2004 return -EINVAL;
2005
2006 if (ec->rx_coalesce_usecs == 4) {
2007 adapter->itr_setting = 4;
2008 adapter->itr = adapter->itr_setting;
2009 } else if (ec->rx_coalesce_usecs <= 3) {
2010 adapter->itr = 20000;
2011 adapter->itr_setting = ec->rx_coalesce_usecs;
2012 } else {
2013 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2014 adapter->itr_setting = adapter->itr & ~3;
2015 }
2016
2017 pm_runtime_get_sync(netdev->dev.parent);
2018
2019 if (adapter->itr_setting != 0)
2020 e1000e_write_itr(adapter, adapter->itr);
2021 else
2022 e1000e_write_itr(adapter, 0);
2023
2024 pm_runtime_put_sync(netdev->dev.parent);
2025
2026 return 0;
2027 }
2028
2029 static int e1000_nway_reset(struct net_device *netdev)
2030 {
2031 struct e1000_adapter *adapter = netdev_priv(netdev);
2032
2033 if (!netif_running(netdev))
2034 return -EAGAIN;
2035
2036 if (!adapter->hw.mac.autoneg)
2037 return -EINVAL;
2038
2039 pm_runtime_get_sync(netdev->dev.parent);
2040 e1000e_reinit_locked(adapter);
2041 pm_runtime_put_sync(netdev->dev.parent);
2042
2043 return 0;
2044 }
2045
2046 static void e1000_get_ethtool_stats(struct net_device *netdev,
2047 struct ethtool_stats __always_unused *stats,
2048 u64 *data)
2049 {
2050 struct e1000_adapter *adapter = netdev_priv(netdev);
2051 struct rtnl_link_stats64 net_stats;
2052 int i;
2053 char *p = NULL;
2054
2055 pm_runtime_get_sync(netdev->dev.parent);
2056
2057 e1000e_get_stats64(netdev, &net_stats);
2058
2059 pm_runtime_put_sync(netdev->dev.parent);
2060
2061 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2062 switch (e1000_gstrings_stats[i].type) {
2063 case NETDEV_STATS:
2064 p = (char *)&net_stats +
2065 e1000_gstrings_stats[i].stat_offset;
2066 break;
2067 case E1000_STATS:
2068 p = (char *)adapter +
2069 e1000_gstrings_stats[i].stat_offset;
2070 break;
2071 default:
2072 data[i] = 0;
2073 continue;
2074 }
2075
2076 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2077 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2078 }
2079 }
2080
2081 static void e1000_get_strings(struct net_device __always_unused *netdev,
2082 u32 stringset, u8 *data)
2083 {
2084 u8 *p = data;
2085 int i;
2086
2087 switch (stringset) {
2088 case ETH_SS_TEST:
2089 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2090 break;
2091 case ETH_SS_STATS:
2092 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2093 memcpy(p, e1000_gstrings_stats[i].stat_string,
2094 ETH_GSTRING_LEN);
2095 p += ETH_GSTRING_LEN;
2096 }
2097 break;
2098 }
2099 }
2100
2101 static int e1000_get_rxnfc(struct net_device *netdev,
2102 struct ethtool_rxnfc *info,
2103 u32 __always_unused *rule_locs)
2104 {
2105 info->data = 0;
2106
2107 switch (info->cmd) {
2108 case ETHTOOL_GRXFH: {
2109 struct e1000_adapter *adapter = netdev_priv(netdev);
2110 struct e1000_hw *hw = &adapter->hw;
2111 u32 mrqc;
2112
2113 pm_runtime_get_sync(netdev->dev.parent);
2114 mrqc = er32(MRQC);
2115 pm_runtime_put_sync(netdev->dev.parent);
2116
2117 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2118 return 0;
2119
2120 switch (info->flow_type) {
2121 case TCP_V4_FLOW:
2122 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2123 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2124 /* fall through */
2125 case UDP_V4_FLOW:
2126 case SCTP_V4_FLOW:
2127 case AH_ESP_V4_FLOW:
2128 case IPV4_FLOW:
2129 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2130 info->data |= RXH_IP_SRC | RXH_IP_DST;
2131 break;
2132 case TCP_V6_FLOW:
2133 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2134 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2135 /* fall through */
2136 case UDP_V6_FLOW:
2137 case SCTP_V6_FLOW:
2138 case AH_ESP_V6_FLOW:
2139 case IPV6_FLOW:
2140 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2141 info->data |= RXH_IP_SRC | RXH_IP_DST;
2142 break;
2143 default:
2144 break;
2145 }
2146 return 0;
2147 }
2148 default:
2149 return -EOPNOTSUPP;
2150 }
2151 }
2152
2153 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2154 {
2155 struct e1000_adapter *adapter = netdev_priv(netdev);
2156 struct e1000_hw *hw = &adapter->hw;
2157 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2158 u32 ret_val;
2159
2160 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2161 return -EOPNOTSUPP;
2162
2163 switch (hw->phy.type) {
2164 case e1000_phy_82579:
2165 cap_addr = I82579_EEE_CAPABILITY;
2166 lpa_addr = I82579_EEE_LP_ABILITY;
2167 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2168 break;
2169 case e1000_phy_i217:
2170 cap_addr = I217_EEE_CAPABILITY;
2171 lpa_addr = I217_EEE_LP_ABILITY;
2172 pcs_stat_addr = I217_EEE_PCS_STATUS;
2173 break;
2174 default:
2175 return -EOPNOTSUPP;
2176 }
2177
2178 pm_runtime_get_sync(netdev->dev.parent);
2179
2180 ret_val = hw->phy.ops.acquire(hw);
2181 if (ret_val) {
2182 pm_runtime_put_sync(netdev->dev.parent);
2183 return -EBUSY;
2184 }
2185
2186 /* EEE Capability */
2187 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2188 if (ret_val)
2189 goto release;
2190 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2191
2192 /* EEE Advertised */
2193 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2194
2195 /* EEE Link Partner Advertised */
2196 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2197 if (ret_val)
2198 goto release;
2199 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2200
2201 /* EEE PCS Status */
2202 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2203 if (ret_val)
2204 goto release;
2205 if (hw->phy.type == e1000_phy_82579)
2206 phy_data <<= 8;
2207
2208 /* Result of the EEE auto negotiation - there is no register that
2209 * has the status of the EEE negotiation so do a best-guess based
2210 * on whether Tx or Rx LPI indications have been received.
2211 */
2212 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2213 edata->eee_active = true;
2214
2215 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2216 edata->tx_lpi_enabled = true;
2217 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2218
2219 release:
2220 hw->phy.ops.release(hw);
2221 if (ret_val)
2222 ret_val = -ENODATA;
2223
2224 pm_runtime_put_sync(netdev->dev.parent);
2225
2226 return ret_val;
2227 }
2228
2229 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2230 {
2231 struct e1000_adapter *adapter = netdev_priv(netdev);
2232 struct e1000_hw *hw = &adapter->hw;
2233 struct ethtool_eee eee_curr;
2234 s32 ret_val;
2235
2236 ret_val = e1000e_get_eee(netdev, &eee_curr);
2237 if (ret_val)
2238 return ret_val;
2239
2240 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2241 e_err("Setting EEE tx-lpi is not supported\n");
2242 return -EINVAL;
2243 }
2244
2245 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2246 e_err("Setting EEE Tx LPI timer is not supported\n");
2247 return -EINVAL;
2248 }
2249
2250 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2251 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2252 return -EINVAL;
2253 }
2254
2255 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2256
2257 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2258
2259 pm_runtime_get_sync(netdev->dev.parent);
2260
2261 /* reset the link */
2262 if (netif_running(netdev))
2263 e1000e_reinit_locked(adapter);
2264 else
2265 e1000e_reset(adapter);
2266
2267 pm_runtime_put_sync(netdev->dev.parent);
2268
2269 return 0;
2270 }
2271
2272 static int e1000e_get_ts_info(struct net_device *netdev,
2273 struct ethtool_ts_info *info)
2274 {
2275 struct e1000_adapter *adapter = netdev_priv(netdev);
2276
2277 ethtool_op_get_ts_info(netdev, info);
2278
2279 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2280 return 0;
2281
2282 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2283 SOF_TIMESTAMPING_RX_HARDWARE |
2284 SOF_TIMESTAMPING_RAW_HARDWARE);
2285
2286 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2287
2288 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2289 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2290 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2291 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2292 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2293 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2294 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2295 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2296 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2297 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2298 (1 << HWTSTAMP_FILTER_ALL));
2299
2300 if (adapter->ptp_clock)
2301 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2302
2303 return 0;
2304 }
2305
2306 static const struct ethtool_ops e1000_ethtool_ops = {
2307 .get_settings = e1000_get_settings,
2308 .set_settings = e1000_set_settings,
2309 .get_drvinfo = e1000_get_drvinfo,
2310 .get_regs_len = e1000_get_regs_len,
2311 .get_regs = e1000_get_regs,
2312 .get_wol = e1000_get_wol,
2313 .set_wol = e1000_set_wol,
2314 .get_msglevel = e1000_get_msglevel,
2315 .set_msglevel = e1000_set_msglevel,
2316 .nway_reset = e1000_nway_reset,
2317 .get_link = ethtool_op_get_link,
2318 .get_eeprom_len = e1000_get_eeprom_len,
2319 .get_eeprom = e1000_get_eeprom,
2320 .set_eeprom = e1000_set_eeprom,
2321 .get_ringparam = e1000_get_ringparam,
2322 .set_ringparam = e1000_set_ringparam,
2323 .get_pauseparam = e1000_get_pauseparam,
2324 .set_pauseparam = e1000_set_pauseparam,
2325 .self_test = e1000_diag_test,
2326 .get_strings = e1000_get_strings,
2327 .set_phys_id = e1000_set_phys_id,
2328 .get_ethtool_stats = e1000_get_ethtool_stats,
2329 .get_sset_count = e1000e_get_sset_count,
2330 .get_coalesce = e1000_get_coalesce,
2331 .set_coalesce = e1000_set_coalesce,
2332 .get_rxnfc = e1000_get_rxnfc,
2333 .get_ts_info = e1000e_get_ts_info,
2334 .get_eee = e1000e_get_eee,
2335 .set_eee = e1000e_set_eee,
2336 };
2337
2338 void e1000e_set_ethtool_ops(struct net_device *netdev)
2339 {
2340 netdev->ethtool_ops = &e1000_ethtool_ops;
2341 }
This page took 0.085309 seconds and 5 git commands to generate.