Merge branch 'work.const-qstr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
1 /* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28
29 #include "fm10k.h"
30
31 #define DRV_VERSION "0.21.2-k"
32 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
33 const char fm10k_driver_version[] = DRV_VERSION;
34 char fm10k_driver_name[] = "fm10k";
35 static const char fm10k_driver_string[] = DRV_SUMMARY;
36 static const char fm10k_copyright[] =
37 "Copyright (c) 2013 - 2016 Intel Corporation.";
38
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION(DRV_SUMMARY);
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue;
46
47 /**
48 * fm10k_init_module - Driver Registration Routine
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53 static int __init fm10k_init_module(void)
54 {
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
58 /* create driver workqueue */
59 fm10k_workqueue = alloc_workqueue("fm10k", WQ_MEM_RECLAIM, 0);
60
61 fm10k_dbg_init();
62
63 return fm10k_register_pci_driver();
64 }
65 module_init(fm10k_init_module);
66
67 /**
68 * fm10k_exit_module - Driver Exit Cleanup Routine
69 *
70 * fm10k_exit_module is called just before the driver is removed
71 * from memory.
72 **/
73 static void __exit fm10k_exit_module(void)
74 {
75 fm10k_unregister_pci_driver();
76
77 fm10k_dbg_exit();
78
79 /* destroy driver workqueue */
80 destroy_workqueue(fm10k_workqueue);
81 }
82 module_exit(fm10k_exit_module);
83
84 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
85 struct fm10k_rx_buffer *bi)
86 {
87 struct page *page = bi->page;
88 dma_addr_t dma;
89
90 /* Only page will be NULL if buffer was consumed */
91 if (likely(page))
92 return true;
93
94 /* alloc new page for storage */
95 page = dev_alloc_page();
96 if (unlikely(!page)) {
97 rx_ring->rx_stats.alloc_failed++;
98 return false;
99 }
100
101 /* map page for use */
102 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
103
104 /* if mapping failed free memory back to system since
105 * there isn't much point in holding memory we can't use
106 */
107 if (dma_mapping_error(rx_ring->dev, dma)) {
108 __free_page(page);
109
110 rx_ring->rx_stats.alloc_failed++;
111 return false;
112 }
113
114 bi->dma = dma;
115 bi->page = page;
116 bi->page_offset = 0;
117
118 return true;
119 }
120
121 /**
122 * fm10k_alloc_rx_buffers - Replace used receive buffers
123 * @rx_ring: ring to place buffers on
124 * @cleaned_count: number of buffers to replace
125 **/
126 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
127 {
128 union fm10k_rx_desc *rx_desc;
129 struct fm10k_rx_buffer *bi;
130 u16 i = rx_ring->next_to_use;
131
132 /* nothing to do */
133 if (!cleaned_count)
134 return;
135
136 rx_desc = FM10K_RX_DESC(rx_ring, i);
137 bi = &rx_ring->rx_buffer[i];
138 i -= rx_ring->count;
139
140 do {
141 if (!fm10k_alloc_mapped_page(rx_ring, bi))
142 break;
143
144 /* Refresh the desc even if buffer_addrs didn't change
145 * because each write-back erases this info.
146 */
147 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
148
149 rx_desc++;
150 bi++;
151 i++;
152 if (unlikely(!i)) {
153 rx_desc = FM10K_RX_DESC(rx_ring, 0);
154 bi = rx_ring->rx_buffer;
155 i -= rx_ring->count;
156 }
157
158 /* clear the status bits for the next_to_use descriptor */
159 rx_desc->d.staterr = 0;
160
161 cleaned_count--;
162 } while (cleaned_count);
163
164 i += rx_ring->count;
165
166 if (rx_ring->next_to_use != i) {
167 /* record the next descriptor to use */
168 rx_ring->next_to_use = i;
169
170 /* update next to alloc since we have filled the ring */
171 rx_ring->next_to_alloc = i;
172
173 /* Force memory writes to complete before letting h/w
174 * know there are new descriptors to fetch. (Only
175 * applicable for weak-ordered memory model archs,
176 * such as IA-64).
177 */
178 wmb();
179
180 /* notify hardware of new descriptors */
181 writel(i, rx_ring->tail);
182 }
183 }
184
185 /**
186 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
187 * @rx_ring: rx descriptor ring to store buffers on
188 * @old_buff: donor buffer to have page reused
189 *
190 * Synchronizes page for reuse by the interface
191 **/
192 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
193 struct fm10k_rx_buffer *old_buff)
194 {
195 struct fm10k_rx_buffer *new_buff;
196 u16 nta = rx_ring->next_to_alloc;
197
198 new_buff = &rx_ring->rx_buffer[nta];
199
200 /* update, and store next to alloc */
201 nta++;
202 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
203
204 /* transfer page from old buffer to new buffer */
205 *new_buff = *old_buff;
206
207 /* sync the buffer for use by the device */
208 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
209 old_buff->page_offset,
210 FM10K_RX_BUFSZ,
211 DMA_FROM_DEVICE);
212 }
213
214 static inline bool fm10k_page_is_reserved(struct page *page)
215 {
216 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
217 }
218
219 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
220 struct page *page,
221 unsigned int __maybe_unused truesize)
222 {
223 /* avoid re-using remote pages */
224 if (unlikely(fm10k_page_is_reserved(page)))
225 return false;
226
227 #if (PAGE_SIZE < 8192)
228 /* if we are only owner of page we can reuse it */
229 if (unlikely(page_count(page) != 1))
230 return false;
231
232 /* flip page offset to other buffer */
233 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
234 #else
235 /* move offset up to the next cache line */
236 rx_buffer->page_offset += truesize;
237
238 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
239 return false;
240 #endif
241
242 /* Even if we own the page, we are not allowed to use atomic_set()
243 * This would break get_page_unless_zero() users.
244 */
245 page_ref_inc(page);
246
247 return true;
248 }
249
250 /**
251 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
252 * @rx_buffer: buffer containing page to add
253 * @rx_desc: descriptor containing length of buffer written by hardware
254 * @skb: sk_buff to place the data into
255 *
256 * This function will add the data contained in rx_buffer->page to the skb.
257 * This is done either through a direct copy if the data in the buffer is
258 * less than the skb header size, otherwise it will just attach the page as
259 * a frag to the skb.
260 *
261 * The function will then update the page offset if necessary and return
262 * true if the buffer can be reused by the interface.
263 **/
264 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
265 union fm10k_rx_desc *rx_desc,
266 struct sk_buff *skb)
267 {
268 struct page *page = rx_buffer->page;
269 unsigned char *va = page_address(page) + rx_buffer->page_offset;
270 unsigned int size = le16_to_cpu(rx_desc->w.length);
271 #if (PAGE_SIZE < 8192)
272 unsigned int truesize = FM10K_RX_BUFSZ;
273 #else
274 unsigned int truesize = ALIGN(size, 512);
275 #endif
276 unsigned int pull_len;
277
278 if (unlikely(skb_is_nonlinear(skb)))
279 goto add_tail_frag;
280
281 if (likely(size <= FM10K_RX_HDR_LEN)) {
282 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
283
284 /* page is not reserved, we can reuse buffer as-is */
285 if (likely(!fm10k_page_is_reserved(page)))
286 return true;
287
288 /* this page cannot be reused so discard it */
289 __free_page(page);
290 return false;
291 }
292
293 /* we need the header to contain the greater of either ETH_HLEN or
294 * 60 bytes if the skb->len is less than 60 for skb_pad.
295 */
296 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
297
298 /* align pull length to size of long to optimize memcpy performance */
299 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
300
301 /* update all of the pointers */
302 va += pull_len;
303 size -= pull_len;
304
305 add_tail_frag:
306 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
307 (unsigned long)va & ~PAGE_MASK, size, truesize);
308
309 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
310 }
311
312 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
313 union fm10k_rx_desc *rx_desc,
314 struct sk_buff *skb)
315 {
316 struct fm10k_rx_buffer *rx_buffer;
317 struct page *page;
318
319 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
320 page = rx_buffer->page;
321 prefetchw(page);
322
323 if (likely(!skb)) {
324 void *page_addr = page_address(page) +
325 rx_buffer->page_offset;
326
327 /* prefetch first cache line of first page */
328 prefetch(page_addr);
329 #if L1_CACHE_BYTES < 128
330 prefetch(page_addr + L1_CACHE_BYTES);
331 #endif
332
333 /* allocate a skb to store the frags */
334 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
335 FM10K_RX_HDR_LEN);
336 if (unlikely(!skb)) {
337 rx_ring->rx_stats.alloc_failed++;
338 return NULL;
339 }
340
341 /* we will be copying header into skb->data in
342 * pskb_may_pull so it is in our interest to prefetch
343 * it now to avoid a possible cache miss
344 */
345 prefetchw(skb->data);
346 }
347
348 /* we are reusing so sync this buffer for CPU use */
349 dma_sync_single_range_for_cpu(rx_ring->dev,
350 rx_buffer->dma,
351 rx_buffer->page_offset,
352 FM10K_RX_BUFSZ,
353 DMA_FROM_DEVICE);
354
355 /* pull page into skb */
356 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
357 /* hand second half of page back to the ring */
358 fm10k_reuse_rx_page(rx_ring, rx_buffer);
359 } else {
360 /* we are not reusing the buffer so unmap it */
361 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
362 PAGE_SIZE, DMA_FROM_DEVICE);
363 }
364
365 /* clear contents of rx_buffer */
366 rx_buffer->page = NULL;
367
368 return skb;
369 }
370
371 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
372 union fm10k_rx_desc *rx_desc,
373 struct sk_buff *skb)
374 {
375 skb_checksum_none_assert(skb);
376
377 /* Rx checksum disabled via ethtool */
378 if (!(ring->netdev->features & NETIF_F_RXCSUM))
379 return;
380
381 /* TCP/UDP checksum error bit is set */
382 if (fm10k_test_staterr(rx_desc,
383 FM10K_RXD_STATUS_L4E |
384 FM10K_RXD_STATUS_L4E2 |
385 FM10K_RXD_STATUS_IPE |
386 FM10K_RXD_STATUS_IPE2)) {
387 ring->rx_stats.csum_err++;
388 return;
389 }
390
391 /* It must be a TCP or UDP packet with a valid checksum */
392 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
393 skb->encapsulation = true;
394 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
395 return;
396
397 skb->ip_summed = CHECKSUM_UNNECESSARY;
398
399 ring->rx_stats.csum_good++;
400 }
401
402 #define FM10K_RSS_L4_TYPES_MASK \
403 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
404 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
405 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
406 BIT(FM10K_RSSTYPE_IPV6_UDP))
407
408 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
409 union fm10k_rx_desc *rx_desc,
410 struct sk_buff *skb)
411 {
412 u16 rss_type;
413
414 if (!(ring->netdev->features & NETIF_F_RXHASH))
415 return;
416
417 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
418 if (!rss_type)
419 return;
420
421 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
422 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
423 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
424 }
425
426 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
427 union fm10k_rx_desc __maybe_unused *rx_desc,
428 struct sk_buff *skb)
429 {
430 struct net_device *dev = rx_ring->netdev;
431 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
432
433 /* check to see if DGLORT belongs to a MACVLAN */
434 if (l2_accel) {
435 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
436
437 idx -= l2_accel->dglort;
438 if (idx < l2_accel->size && l2_accel->macvlan[idx])
439 dev = l2_accel->macvlan[idx];
440 else
441 l2_accel = NULL;
442 }
443
444 skb->protocol = eth_type_trans(skb, dev);
445
446 if (!l2_accel)
447 return;
448
449 /* update MACVLAN statistics */
450 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
451 !!(rx_desc->w.hdr_info &
452 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
453 }
454
455 /**
456 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
457 * @rx_ring: rx descriptor ring packet is being transacted on
458 * @rx_desc: pointer to the EOP Rx descriptor
459 * @skb: pointer to current skb being populated
460 *
461 * This function checks the ring, descriptor, and packet information in
462 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
463 * other fields within the skb.
464 **/
465 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
466 union fm10k_rx_desc *rx_desc,
467 struct sk_buff *skb)
468 {
469 unsigned int len = skb->len;
470
471 fm10k_rx_hash(rx_ring, rx_desc, skb);
472
473 fm10k_rx_checksum(rx_ring, rx_desc, skb);
474
475 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
476
477 skb_record_rx_queue(skb, rx_ring->queue_index);
478
479 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
480
481 if (rx_desc->w.vlan) {
482 u16 vid = le16_to_cpu(rx_desc->w.vlan);
483
484 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
485 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
486 else if (vid & VLAN_PRIO_MASK)
487 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
488 vid & VLAN_PRIO_MASK);
489 }
490
491 fm10k_type_trans(rx_ring, rx_desc, skb);
492
493 return len;
494 }
495
496 /**
497 * fm10k_is_non_eop - process handling of non-EOP buffers
498 * @rx_ring: Rx ring being processed
499 * @rx_desc: Rx descriptor for current buffer
500 *
501 * This function updates next to clean. If the buffer is an EOP buffer
502 * this function exits returning false, otherwise it will place the
503 * sk_buff in the next buffer to be chained and return true indicating
504 * that this is in fact a non-EOP buffer.
505 **/
506 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
507 union fm10k_rx_desc *rx_desc)
508 {
509 u32 ntc = rx_ring->next_to_clean + 1;
510
511 /* fetch, update, and store next to clean */
512 ntc = (ntc < rx_ring->count) ? ntc : 0;
513 rx_ring->next_to_clean = ntc;
514
515 prefetch(FM10K_RX_DESC(rx_ring, ntc));
516
517 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
518 return false;
519
520 return true;
521 }
522
523 /**
524 * fm10k_cleanup_headers - Correct corrupted or empty headers
525 * @rx_ring: rx descriptor ring packet is being transacted on
526 * @rx_desc: pointer to the EOP Rx descriptor
527 * @skb: pointer to current skb being fixed
528 *
529 * Address the case where we are pulling data in on pages only
530 * and as such no data is present in the skb header.
531 *
532 * In addition if skb is not at least 60 bytes we need to pad it so that
533 * it is large enough to qualify as a valid Ethernet frame.
534 *
535 * Returns true if an error was encountered and skb was freed.
536 **/
537 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
538 union fm10k_rx_desc *rx_desc,
539 struct sk_buff *skb)
540 {
541 if (unlikely((fm10k_test_staterr(rx_desc,
542 FM10K_RXD_STATUS_RXE)))) {
543 #define FM10K_TEST_RXD_BIT(rxd, bit) \
544 ((rxd)->w.csum_err & cpu_to_le16(bit))
545 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
546 rx_ring->rx_stats.switch_errors++;
547 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
548 rx_ring->rx_stats.drops++;
549 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
550 rx_ring->rx_stats.pp_errors++;
551 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
552 rx_ring->rx_stats.link_errors++;
553 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
554 rx_ring->rx_stats.length_errors++;
555 dev_kfree_skb_any(skb);
556 rx_ring->rx_stats.errors++;
557 return true;
558 }
559
560 /* if eth_skb_pad returns an error the skb was freed */
561 if (eth_skb_pad(skb))
562 return true;
563
564 return false;
565 }
566
567 /**
568 * fm10k_receive_skb - helper function to handle rx indications
569 * @q_vector: structure containing interrupt and ring information
570 * @skb: packet to send up
571 **/
572 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
573 struct sk_buff *skb)
574 {
575 napi_gro_receive(&q_vector->napi, skb);
576 }
577
578 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
579 struct fm10k_ring *rx_ring,
580 int budget)
581 {
582 struct sk_buff *skb = rx_ring->skb;
583 unsigned int total_bytes = 0, total_packets = 0;
584 u16 cleaned_count = fm10k_desc_unused(rx_ring);
585
586 while (likely(total_packets < budget)) {
587 union fm10k_rx_desc *rx_desc;
588
589 /* return some buffers to hardware, one at a time is too slow */
590 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
591 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
592 cleaned_count = 0;
593 }
594
595 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
596
597 if (!rx_desc->d.staterr)
598 break;
599
600 /* This memory barrier is needed to keep us from reading
601 * any other fields out of the rx_desc until we know the
602 * descriptor has been written back
603 */
604 dma_rmb();
605
606 /* retrieve a buffer from the ring */
607 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
608
609 /* exit if we failed to retrieve a buffer */
610 if (!skb)
611 break;
612
613 cleaned_count++;
614
615 /* fetch next buffer in frame if non-eop */
616 if (fm10k_is_non_eop(rx_ring, rx_desc))
617 continue;
618
619 /* verify the packet layout is correct */
620 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
621 skb = NULL;
622 continue;
623 }
624
625 /* populate checksum, timestamp, VLAN, and protocol */
626 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
627
628 fm10k_receive_skb(q_vector, skb);
629
630 /* reset skb pointer */
631 skb = NULL;
632
633 /* update budget accounting */
634 total_packets++;
635 }
636
637 /* place incomplete frames back on ring for completion */
638 rx_ring->skb = skb;
639
640 u64_stats_update_begin(&rx_ring->syncp);
641 rx_ring->stats.packets += total_packets;
642 rx_ring->stats.bytes += total_bytes;
643 u64_stats_update_end(&rx_ring->syncp);
644 q_vector->rx.total_packets += total_packets;
645 q_vector->rx.total_bytes += total_bytes;
646
647 return total_packets;
648 }
649
650 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
651 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
652 {
653 struct fm10k_intfc *interface = netdev_priv(skb->dev);
654 struct fm10k_vxlan_port *vxlan_port;
655
656 /* we can only offload a vxlan if we recognize it as such */
657 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
658 struct fm10k_vxlan_port, list);
659
660 if (!vxlan_port)
661 return NULL;
662 if (vxlan_port->port != udp_hdr(skb)->dest)
663 return NULL;
664
665 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
666 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
667 }
668
669 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
670 #define NVGRE_TNI htons(0x2000)
671 struct fm10k_nvgre_hdr {
672 __be16 flags;
673 __be16 proto;
674 __be32 tni;
675 };
676
677 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
678 {
679 struct fm10k_nvgre_hdr *nvgre_hdr;
680 int hlen = ip_hdrlen(skb);
681
682 /* currently only IPv4 is supported due to hlen above */
683 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
684 return NULL;
685
686 /* our transport header should be NVGRE */
687 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
688
689 /* verify all reserved flags are 0 */
690 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
691 return NULL;
692
693 /* report start of ethernet header */
694 if (nvgre_hdr->flags & NVGRE_TNI)
695 return (struct ethhdr *)(nvgre_hdr + 1);
696
697 return (struct ethhdr *)(&nvgre_hdr->tni);
698 }
699
700 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
701 {
702 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
703 struct ethhdr *eth_hdr;
704
705 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
706 skb->inner_protocol != htons(ETH_P_TEB))
707 return 0;
708
709 switch (vlan_get_protocol(skb)) {
710 case htons(ETH_P_IP):
711 l4_hdr = ip_hdr(skb)->protocol;
712 break;
713 case htons(ETH_P_IPV6):
714 l4_hdr = ipv6_hdr(skb)->nexthdr;
715 break;
716 default:
717 return 0;
718 }
719
720 switch (l4_hdr) {
721 case IPPROTO_UDP:
722 eth_hdr = fm10k_port_is_vxlan(skb);
723 break;
724 case IPPROTO_GRE:
725 eth_hdr = fm10k_gre_is_nvgre(skb);
726 break;
727 default:
728 return 0;
729 }
730
731 if (!eth_hdr)
732 return 0;
733
734 switch (eth_hdr->h_proto) {
735 case htons(ETH_P_IP):
736 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
737 break;
738 case htons(ETH_P_IPV6):
739 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
740 break;
741 default:
742 return 0;
743 }
744
745 switch (inner_l4_hdr) {
746 case IPPROTO_TCP:
747 inner_l4_hlen = inner_tcp_hdrlen(skb);
748 break;
749 case IPPROTO_UDP:
750 inner_l4_hlen = 8;
751 break;
752 default:
753 return 0;
754 }
755
756 /* The hardware allows tunnel offloads only if the combined inner and
757 * outer header is 184 bytes or less
758 */
759 if (skb_inner_transport_header(skb) + inner_l4_hlen -
760 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
761 return 0;
762
763 return eth_hdr->h_proto;
764 }
765
766 static int fm10k_tso(struct fm10k_ring *tx_ring,
767 struct fm10k_tx_buffer *first)
768 {
769 struct sk_buff *skb = first->skb;
770 struct fm10k_tx_desc *tx_desc;
771 unsigned char *th;
772 u8 hdrlen;
773
774 if (skb->ip_summed != CHECKSUM_PARTIAL)
775 return 0;
776
777 if (!skb_is_gso(skb))
778 return 0;
779
780 /* compute header lengths */
781 if (skb->encapsulation) {
782 if (!fm10k_tx_encap_offload(skb))
783 goto err_vxlan;
784 th = skb_inner_transport_header(skb);
785 } else {
786 th = skb_transport_header(skb);
787 }
788
789 /* compute offset from SOF to transport header and add header len */
790 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
791
792 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
793
794 /* update gso size and bytecount with header size */
795 first->gso_segs = skb_shinfo(skb)->gso_segs;
796 first->bytecount += (first->gso_segs - 1) * hdrlen;
797
798 /* populate Tx descriptor header size and mss */
799 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
800 tx_desc->hdrlen = hdrlen;
801 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
802
803 return 1;
804 err_vxlan:
805 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
806 if (!net_ratelimit())
807 netdev_err(tx_ring->netdev,
808 "TSO requested for unsupported tunnel, disabling offload\n");
809 return -1;
810 }
811
812 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
813 struct fm10k_tx_buffer *first)
814 {
815 struct sk_buff *skb = first->skb;
816 struct fm10k_tx_desc *tx_desc;
817 union {
818 struct iphdr *ipv4;
819 struct ipv6hdr *ipv6;
820 u8 *raw;
821 } network_hdr;
822 u8 *transport_hdr;
823 __be16 frag_off;
824 __be16 protocol;
825 u8 l4_hdr = 0;
826
827 if (skb->ip_summed != CHECKSUM_PARTIAL)
828 goto no_csum;
829
830 if (skb->encapsulation) {
831 protocol = fm10k_tx_encap_offload(skb);
832 if (!protocol) {
833 if (skb_checksum_help(skb)) {
834 dev_warn(tx_ring->dev,
835 "failed to offload encap csum!\n");
836 tx_ring->tx_stats.csum_err++;
837 }
838 goto no_csum;
839 }
840 network_hdr.raw = skb_inner_network_header(skb);
841 transport_hdr = skb_inner_transport_header(skb);
842 } else {
843 protocol = vlan_get_protocol(skb);
844 network_hdr.raw = skb_network_header(skb);
845 transport_hdr = skb_transport_header(skb);
846 }
847
848 switch (protocol) {
849 case htons(ETH_P_IP):
850 l4_hdr = network_hdr.ipv4->protocol;
851 break;
852 case htons(ETH_P_IPV6):
853 l4_hdr = network_hdr.ipv6->nexthdr;
854 if (likely((transport_hdr - network_hdr.raw) ==
855 sizeof(struct ipv6hdr)))
856 break;
857 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
858 sizeof(struct ipv6hdr),
859 &l4_hdr, &frag_off);
860 if (unlikely(frag_off))
861 l4_hdr = NEXTHDR_FRAGMENT;
862 break;
863 default:
864 break;
865 }
866
867 switch (l4_hdr) {
868 case IPPROTO_TCP:
869 case IPPROTO_UDP:
870 break;
871 case IPPROTO_GRE:
872 if (skb->encapsulation)
873 break;
874 default:
875 if (unlikely(net_ratelimit())) {
876 dev_warn(tx_ring->dev,
877 "partial checksum, version=%d l4 proto=%x\n",
878 protocol, l4_hdr);
879 }
880 skb_checksum_help(skb);
881 tx_ring->tx_stats.csum_err++;
882 goto no_csum;
883 }
884
885 /* update TX checksum flag */
886 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
887 tx_ring->tx_stats.csum_good++;
888
889 no_csum:
890 /* populate Tx descriptor header size and mss */
891 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
892 tx_desc->hdrlen = 0;
893 tx_desc->mss = 0;
894 }
895
896 #define FM10K_SET_FLAG(_input, _flag, _result) \
897 ((_flag <= _result) ? \
898 ((u32)(_input & _flag) * (_result / _flag)) : \
899 ((u32)(_input & _flag) / (_flag / _result)))
900
901 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
902 {
903 /* set type for advanced descriptor with frame checksum insertion */
904 u32 desc_flags = 0;
905
906 /* set checksum offload bits */
907 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
908 FM10K_TXD_FLAG_CSUM);
909
910 return desc_flags;
911 }
912
913 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
914 struct fm10k_tx_desc *tx_desc, u16 i,
915 dma_addr_t dma, unsigned int size, u8 desc_flags)
916 {
917 /* set RS and INT for last frame in a cache line */
918 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
919 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
920
921 /* record values to descriptor */
922 tx_desc->buffer_addr = cpu_to_le64(dma);
923 tx_desc->flags = desc_flags;
924 tx_desc->buflen = cpu_to_le16(size);
925
926 /* return true if we just wrapped the ring */
927 return i == tx_ring->count;
928 }
929
930 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
931 {
932 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
933
934 /* Memory barrier before checking head and tail */
935 smp_mb();
936
937 /* Check again in a case another CPU has just made room available */
938 if (likely(fm10k_desc_unused(tx_ring) < size))
939 return -EBUSY;
940
941 /* A reprieve! - use start_queue because it doesn't call schedule */
942 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
943 ++tx_ring->tx_stats.restart_queue;
944 return 0;
945 }
946
947 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
948 {
949 if (likely(fm10k_desc_unused(tx_ring) >= size))
950 return 0;
951 return __fm10k_maybe_stop_tx(tx_ring, size);
952 }
953
954 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
955 struct fm10k_tx_buffer *first)
956 {
957 struct sk_buff *skb = first->skb;
958 struct fm10k_tx_buffer *tx_buffer;
959 struct fm10k_tx_desc *tx_desc;
960 struct skb_frag_struct *frag;
961 unsigned char *data;
962 dma_addr_t dma;
963 unsigned int data_len, size;
964 u32 tx_flags = first->tx_flags;
965 u16 i = tx_ring->next_to_use;
966 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
967
968 tx_desc = FM10K_TX_DESC(tx_ring, i);
969
970 /* add HW VLAN tag */
971 if (skb_vlan_tag_present(skb))
972 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
973 else
974 tx_desc->vlan = 0;
975
976 size = skb_headlen(skb);
977 data = skb->data;
978
979 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
980
981 data_len = skb->data_len;
982 tx_buffer = first;
983
984 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
985 if (dma_mapping_error(tx_ring->dev, dma))
986 goto dma_error;
987
988 /* record length, and DMA address */
989 dma_unmap_len_set(tx_buffer, len, size);
990 dma_unmap_addr_set(tx_buffer, dma, dma);
991
992 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
993 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
994 FM10K_MAX_DATA_PER_TXD, flags)) {
995 tx_desc = FM10K_TX_DESC(tx_ring, 0);
996 i = 0;
997 }
998
999 dma += FM10K_MAX_DATA_PER_TXD;
1000 size -= FM10K_MAX_DATA_PER_TXD;
1001 }
1002
1003 if (likely(!data_len))
1004 break;
1005
1006 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1007 dma, size, flags)) {
1008 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1009 i = 0;
1010 }
1011
1012 size = skb_frag_size(frag);
1013 data_len -= size;
1014
1015 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1016 DMA_TO_DEVICE);
1017
1018 tx_buffer = &tx_ring->tx_buffer[i];
1019 }
1020
1021 /* write last descriptor with LAST bit set */
1022 flags |= FM10K_TXD_FLAG_LAST;
1023
1024 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1025 i = 0;
1026
1027 /* record bytecount for BQL */
1028 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1029
1030 /* record SW timestamp if HW timestamp is not available */
1031 skb_tx_timestamp(first->skb);
1032
1033 /* Force memory writes to complete before letting h/w know there
1034 * are new descriptors to fetch. (Only applicable for weak-ordered
1035 * memory model archs, such as IA-64).
1036 *
1037 * We also need this memory barrier to make certain all of the
1038 * status bits have been updated before next_to_watch is written.
1039 */
1040 wmb();
1041
1042 /* set next_to_watch value indicating a packet is present */
1043 first->next_to_watch = tx_desc;
1044
1045 tx_ring->next_to_use = i;
1046
1047 /* Make sure there is space in the ring for the next send. */
1048 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1049
1050 /* notify HW of packet */
1051 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1052 writel(i, tx_ring->tail);
1053
1054 /* we need this if more than one processor can write to our tail
1055 * at a time, it synchronizes IO on IA64/Altix systems
1056 */
1057 mmiowb();
1058 }
1059
1060 return;
1061 dma_error:
1062 dev_err(tx_ring->dev, "TX DMA map failed\n");
1063
1064 /* clear dma mappings for failed tx_buffer map */
1065 for (;;) {
1066 tx_buffer = &tx_ring->tx_buffer[i];
1067 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1068 if (tx_buffer == first)
1069 break;
1070 if (i == 0)
1071 i = tx_ring->count;
1072 i--;
1073 }
1074
1075 tx_ring->next_to_use = i;
1076 }
1077
1078 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1079 struct fm10k_ring *tx_ring)
1080 {
1081 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1082 struct fm10k_tx_buffer *first;
1083 unsigned short f;
1084 u32 tx_flags = 0;
1085 int tso;
1086
1087 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1088 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1089 * + 2 desc gap to keep tail from touching head
1090 * otherwise try next time
1091 */
1092 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1093 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1094
1095 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1096 tx_ring->tx_stats.tx_busy++;
1097 return NETDEV_TX_BUSY;
1098 }
1099
1100 /* record the location of the first descriptor for this packet */
1101 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1102 first->skb = skb;
1103 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1104 first->gso_segs = 1;
1105
1106 /* record initial flags and protocol */
1107 first->tx_flags = tx_flags;
1108
1109 tso = fm10k_tso(tx_ring, first);
1110 if (tso < 0)
1111 goto out_drop;
1112 else if (!tso)
1113 fm10k_tx_csum(tx_ring, first);
1114
1115 fm10k_tx_map(tx_ring, first);
1116
1117 return NETDEV_TX_OK;
1118
1119 out_drop:
1120 dev_kfree_skb_any(first->skb);
1121 first->skb = NULL;
1122
1123 return NETDEV_TX_OK;
1124 }
1125
1126 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1127 {
1128 return ring->stats.packets;
1129 }
1130
1131 u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1132 {
1133 struct fm10k_intfc *interface = ring->q_vector->interface;
1134 struct fm10k_hw *hw = &interface->hw;
1135
1136 u32 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1137 u32 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1138
1139 return ((head <= tail) ? tail : tail + ring->count) - head;
1140 }
1141
1142 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1143 {
1144 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1145 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1146 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1147
1148 clear_check_for_tx_hang(tx_ring);
1149
1150 /* Check for a hung queue, but be thorough. This verifies
1151 * that a transmit has been completed since the previous
1152 * check AND there is at least one packet pending. By
1153 * requiring this to fail twice we avoid races with
1154 * clearing the ARMED bit and conditions where we
1155 * run the check_tx_hang logic with a transmit completion
1156 * pending but without time to complete it yet.
1157 */
1158 if (!tx_pending || (tx_done_old != tx_done)) {
1159 /* update completed stats and continue */
1160 tx_ring->tx_stats.tx_done_old = tx_done;
1161 /* reset the countdown */
1162 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1163
1164 return false;
1165 }
1166
1167 /* make sure it is true for two checks in a row */
1168 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1169 }
1170
1171 /**
1172 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1173 * @interface: driver private struct
1174 **/
1175 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1176 {
1177 /* Do the reset outside of interrupt context */
1178 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1179 interface->tx_timeout_count++;
1180 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1181 fm10k_service_event_schedule(interface);
1182 }
1183 }
1184
1185 /**
1186 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1187 * @q_vector: structure containing interrupt and ring information
1188 * @tx_ring: tx ring to clean
1189 * @napi_budget: Used to determine if we are in netpoll
1190 **/
1191 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1192 struct fm10k_ring *tx_ring, int napi_budget)
1193 {
1194 struct fm10k_intfc *interface = q_vector->interface;
1195 struct fm10k_tx_buffer *tx_buffer;
1196 struct fm10k_tx_desc *tx_desc;
1197 unsigned int total_bytes = 0, total_packets = 0;
1198 unsigned int budget = q_vector->tx.work_limit;
1199 unsigned int i = tx_ring->next_to_clean;
1200
1201 if (test_bit(__FM10K_DOWN, &interface->state))
1202 return true;
1203
1204 tx_buffer = &tx_ring->tx_buffer[i];
1205 tx_desc = FM10K_TX_DESC(tx_ring, i);
1206 i -= tx_ring->count;
1207
1208 do {
1209 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1210
1211 /* if next_to_watch is not set then there is no work pending */
1212 if (!eop_desc)
1213 break;
1214
1215 /* prevent any other reads prior to eop_desc */
1216 read_barrier_depends();
1217
1218 /* if DD is not set pending work has not been completed */
1219 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1220 break;
1221
1222 /* clear next_to_watch to prevent false hangs */
1223 tx_buffer->next_to_watch = NULL;
1224
1225 /* update the statistics for this packet */
1226 total_bytes += tx_buffer->bytecount;
1227 total_packets += tx_buffer->gso_segs;
1228
1229 /* free the skb */
1230 napi_consume_skb(tx_buffer->skb, napi_budget);
1231
1232 /* unmap skb header data */
1233 dma_unmap_single(tx_ring->dev,
1234 dma_unmap_addr(tx_buffer, dma),
1235 dma_unmap_len(tx_buffer, len),
1236 DMA_TO_DEVICE);
1237
1238 /* clear tx_buffer data */
1239 tx_buffer->skb = NULL;
1240 dma_unmap_len_set(tx_buffer, len, 0);
1241
1242 /* unmap remaining buffers */
1243 while (tx_desc != eop_desc) {
1244 tx_buffer++;
1245 tx_desc++;
1246 i++;
1247 if (unlikely(!i)) {
1248 i -= tx_ring->count;
1249 tx_buffer = tx_ring->tx_buffer;
1250 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1251 }
1252
1253 /* unmap any remaining paged data */
1254 if (dma_unmap_len(tx_buffer, len)) {
1255 dma_unmap_page(tx_ring->dev,
1256 dma_unmap_addr(tx_buffer, dma),
1257 dma_unmap_len(tx_buffer, len),
1258 DMA_TO_DEVICE);
1259 dma_unmap_len_set(tx_buffer, len, 0);
1260 }
1261 }
1262
1263 /* move us one more past the eop_desc for start of next pkt */
1264 tx_buffer++;
1265 tx_desc++;
1266 i++;
1267 if (unlikely(!i)) {
1268 i -= tx_ring->count;
1269 tx_buffer = tx_ring->tx_buffer;
1270 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1271 }
1272
1273 /* issue prefetch for next Tx descriptor */
1274 prefetch(tx_desc);
1275
1276 /* update budget accounting */
1277 budget--;
1278 } while (likely(budget));
1279
1280 i += tx_ring->count;
1281 tx_ring->next_to_clean = i;
1282 u64_stats_update_begin(&tx_ring->syncp);
1283 tx_ring->stats.bytes += total_bytes;
1284 tx_ring->stats.packets += total_packets;
1285 u64_stats_update_end(&tx_ring->syncp);
1286 q_vector->tx.total_bytes += total_bytes;
1287 q_vector->tx.total_packets += total_packets;
1288
1289 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1290 /* schedule immediate reset if we believe we hung */
1291 struct fm10k_hw *hw = &interface->hw;
1292
1293 netif_err(interface, drv, tx_ring->netdev,
1294 "Detected Tx Unit Hang\n"
1295 " Tx Queue <%d>\n"
1296 " TDH, TDT <%x>, <%x>\n"
1297 " next_to_use <%x>\n"
1298 " next_to_clean <%x>\n",
1299 tx_ring->queue_index,
1300 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1301 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1302 tx_ring->next_to_use, i);
1303
1304 netif_stop_subqueue(tx_ring->netdev,
1305 tx_ring->queue_index);
1306
1307 netif_info(interface, probe, tx_ring->netdev,
1308 "tx hang %d detected on queue %d, resetting interface\n",
1309 interface->tx_timeout_count + 1,
1310 tx_ring->queue_index);
1311
1312 fm10k_tx_timeout_reset(interface);
1313
1314 /* the netdev is about to reset, no point in enabling stuff */
1315 return true;
1316 }
1317
1318 /* notify netdev of completed buffers */
1319 netdev_tx_completed_queue(txring_txq(tx_ring),
1320 total_packets, total_bytes);
1321
1322 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1323 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1324 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1325 /* Make sure that anybody stopping the queue after this
1326 * sees the new next_to_clean.
1327 */
1328 smp_mb();
1329 if (__netif_subqueue_stopped(tx_ring->netdev,
1330 tx_ring->queue_index) &&
1331 !test_bit(__FM10K_DOWN, &interface->state)) {
1332 netif_wake_subqueue(tx_ring->netdev,
1333 tx_ring->queue_index);
1334 ++tx_ring->tx_stats.restart_queue;
1335 }
1336 }
1337
1338 return !!budget;
1339 }
1340
1341 /**
1342 * fm10k_update_itr - update the dynamic ITR value based on packet size
1343 *
1344 * Stores a new ITR value based on strictly on packet size. The
1345 * divisors and thresholds used by this function were determined based
1346 * on theoretical maximum wire speed and testing data, in order to
1347 * minimize response time while increasing bulk throughput.
1348 *
1349 * @ring_container: Container for rings to have ITR updated
1350 **/
1351 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1352 {
1353 unsigned int avg_wire_size, packets, itr_round;
1354
1355 /* Only update ITR if we are using adaptive setting */
1356 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1357 goto clear_counts;
1358
1359 packets = ring_container->total_packets;
1360 if (!packets)
1361 goto clear_counts;
1362
1363 avg_wire_size = ring_container->total_bytes / packets;
1364
1365 /* The following is a crude approximation of:
1366 * wmem_default / (size + overhead) = desired_pkts_per_int
1367 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1368 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1369 *
1370 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1371 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1372 * formula down to
1373 *
1374 * (34 * (size + 24)) / (size + 640) = ITR
1375 *
1376 * We first do some math on the packet size and then finally bitshift
1377 * by 8 after rounding up. We also have to account for PCIe link speed
1378 * difference as ITR scales based on this.
1379 */
1380 if (avg_wire_size <= 360) {
1381 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1382 avg_wire_size *= 8;
1383 avg_wire_size += 376;
1384 } else if (avg_wire_size <= 1152) {
1385 /* 77K ints/sec to 45K ints/sec */
1386 avg_wire_size *= 3;
1387 avg_wire_size += 2176;
1388 } else if (avg_wire_size <= 1920) {
1389 /* 45K ints/sec to 38K ints/sec */
1390 avg_wire_size += 4480;
1391 } else {
1392 /* plateau at a limit of 38K ints/sec */
1393 avg_wire_size = 6656;
1394 }
1395
1396 /* Perform final bitshift for division after rounding up to ensure
1397 * that the calculation will never get below a 1. The bit shift
1398 * accounts for changes in the ITR due to PCIe link speed.
1399 */
1400 itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1401 avg_wire_size += BIT(itr_round) - 1;
1402 avg_wire_size >>= itr_round;
1403
1404 /* write back value and retain adaptive flag */
1405 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1406
1407 clear_counts:
1408 ring_container->total_bytes = 0;
1409 ring_container->total_packets = 0;
1410 }
1411
1412 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1413 {
1414 /* Enable auto-mask and clear the current mask */
1415 u32 itr = FM10K_ITR_ENABLE;
1416
1417 /* Update Tx ITR */
1418 fm10k_update_itr(&q_vector->tx);
1419
1420 /* Update Rx ITR */
1421 fm10k_update_itr(&q_vector->rx);
1422
1423 /* Store Tx itr in timer slot 0 */
1424 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1425
1426 /* Shift Rx itr to timer slot 1 */
1427 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1428
1429 /* Write the final value to the ITR register */
1430 writel(itr, q_vector->itr);
1431 }
1432
1433 static int fm10k_poll(struct napi_struct *napi, int budget)
1434 {
1435 struct fm10k_q_vector *q_vector =
1436 container_of(napi, struct fm10k_q_vector, napi);
1437 struct fm10k_ring *ring;
1438 int per_ring_budget, work_done = 0;
1439 bool clean_complete = true;
1440
1441 fm10k_for_each_ring(ring, q_vector->tx) {
1442 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1443 clean_complete = false;
1444 }
1445
1446 /* Handle case where we are called by netpoll with a budget of 0 */
1447 if (budget <= 0)
1448 return budget;
1449
1450 /* attempt to distribute budget to each queue fairly, but don't
1451 * allow the budget to go below 1 because we'll exit polling
1452 */
1453 if (q_vector->rx.count > 1)
1454 per_ring_budget = max(budget / q_vector->rx.count, 1);
1455 else
1456 per_ring_budget = budget;
1457
1458 fm10k_for_each_ring(ring, q_vector->rx) {
1459 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1460
1461 work_done += work;
1462 if (work >= per_ring_budget)
1463 clean_complete = false;
1464 }
1465
1466 /* If all work not completed, return budget and keep polling */
1467 if (!clean_complete)
1468 return budget;
1469
1470 /* all work done, exit the polling mode */
1471 napi_complete_done(napi, work_done);
1472
1473 /* re-enable the q_vector */
1474 fm10k_qv_enable(q_vector);
1475
1476 return 0;
1477 }
1478
1479 /**
1480 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1481 * @interface: board private structure to initialize
1482 *
1483 * When QoS (Quality of Service) is enabled, allocate queues for
1484 * each traffic class. If multiqueue isn't available,then abort QoS
1485 * initialization.
1486 *
1487 * This function handles all combinations of Qos and RSS.
1488 *
1489 **/
1490 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1491 {
1492 struct net_device *dev = interface->netdev;
1493 struct fm10k_ring_feature *f;
1494 int rss_i, i;
1495 int pcs;
1496
1497 /* Map queue offset and counts onto allocated tx queues */
1498 pcs = netdev_get_num_tc(dev);
1499
1500 if (pcs <= 1)
1501 return false;
1502
1503 /* set QoS mask and indices */
1504 f = &interface->ring_feature[RING_F_QOS];
1505 f->indices = pcs;
1506 f->mask = BIT(fls(pcs - 1)) - 1;
1507
1508 /* determine the upper limit for our current DCB mode */
1509 rss_i = interface->hw.mac.max_queues / pcs;
1510 rss_i = BIT(fls(rss_i) - 1);
1511
1512 /* set RSS mask and indices */
1513 f = &interface->ring_feature[RING_F_RSS];
1514 rss_i = min_t(u16, rss_i, f->limit);
1515 f->indices = rss_i;
1516 f->mask = BIT(fls(rss_i - 1)) - 1;
1517
1518 /* configure pause class to queue mapping */
1519 for (i = 0; i < pcs; i++)
1520 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1521
1522 interface->num_rx_queues = rss_i * pcs;
1523 interface->num_tx_queues = rss_i * pcs;
1524
1525 return true;
1526 }
1527
1528 /**
1529 * fm10k_set_rss_queues: Allocate queues for RSS
1530 * @interface: board private structure to initialize
1531 *
1532 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1533 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1534 *
1535 **/
1536 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1537 {
1538 struct fm10k_ring_feature *f;
1539 u16 rss_i;
1540
1541 f = &interface->ring_feature[RING_F_RSS];
1542 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1543
1544 /* record indices and power of 2 mask for RSS */
1545 f->indices = rss_i;
1546 f->mask = BIT(fls(rss_i - 1)) - 1;
1547
1548 interface->num_rx_queues = rss_i;
1549 interface->num_tx_queues = rss_i;
1550
1551 return true;
1552 }
1553
1554 /**
1555 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1556 * @interface: board private structure to initialize
1557 *
1558 * This is the top level queue allocation routine. The order here is very
1559 * important, starting with the "most" number of features turned on at once,
1560 * and ending with the smallest set of features. This way large combinations
1561 * can be allocated if they're turned on, and smaller combinations are the
1562 * fallthrough conditions.
1563 *
1564 **/
1565 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1566 {
1567 /* Attempt to setup QoS and RSS first */
1568 if (fm10k_set_qos_queues(interface))
1569 return;
1570
1571 /* If we don't have QoS, just fallback to only RSS. */
1572 fm10k_set_rss_queues(interface);
1573 }
1574
1575 /**
1576 * fm10k_reset_num_queues - Reset the number of queues to zero
1577 * @interface: board private structure
1578 *
1579 * This function should be called whenever we need to reset the number of
1580 * queues after an error condition.
1581 */
1582 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1583 {
1584 interface->num_tx_queues = 0;
1585 interface->num_rx_queues = 0;
1586 interface->num_q_vectors = 0;
1587 }
1588
1589 /**
1590 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1591 * @interface: board private structure to initialize
1592 * @v_count: q_vectors allocated on interface, used for ring interleaving
1593 * @v_idx: index of vector in interface struct
1594 * @txr_count: total number of Tx rings to allocate
1595 * @txr_idx: index of first Tx ring to allocate
1596 * @rxr_count: total number of Rx rings to allocate
1597 * @rxr_idx: index of first Rx ring to allocate
1598 *
1599 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1600 **/
1601 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1602 unsigned int v_count, unsigned int v_idx,
1603 unsigned int txr_count, unsigned int txr_idx,
1604 unsigned int rxr_count, unsigned int rxr_idx)
1605 {
1606 struct fm10k_q_vector *q_vector;
1607 struct fm10k_ring *ring;
1608 int ring_count, size;
1609
1610 ring_count = txr_count + rxr_count;
1611 size = sizeof(struct fm10k_q_vector) +
1612 (sizeof(struct fm10k_ring) * ring_count);
1613
1614 /* allocate q_vector and rings */
1615 q_vector = kzalloc(size, GFP_KERNEL);
1616 if (!q_vector)
1617 return -ENOMEM;
1618
1619 /* initialize NAPI */
1620 netif_napi_add(interface->netdev, &q_vector->napi,
1621 fm10k_poll, NAPI_POLL_WEIGHT);
1622
1623 /* tie q_vector and interface together */
1624 interface->q_vector[v_idx] = q_vector;
1625 q_vector->interface = interface;
1626 q_vector->v_idx = v_idx;
1627
1628 /* initialize pointer to rings */
1629 ring = q_vector->ring;
1630
1631 /* save Tx ring container info */
1632 q_vector->tx.ring = ring;
1633 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1634 q_vector->tx.itr = interface->tx_itr;
1635 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1636 q_vector->tx.count = txr_count;
1637
1638 while (txr_count) {
1639 /* assign generic ring traits */
1640 ring->dev = &interface->pdev->dev;
1641 ring->netdev = interface->netdev;
1642
1643 /* configure backlink on ring */
1644 ring->q_vector = q_vector;
1645
1646 /* apply Tx specific ring traits */
1647 ring->count = interface->tx_ring_count;
1648 ring->queue_index = txr_idx;
1649
1650 /* assign ring to interface */
1651 interface->tx_ring[txr_idx] = ring;
1652
1653 /* update count and index */
1654 txr_count--;
1655 txr_idx += v_count;
1656
1657 /* push pointer to next ring */
1658 ring++;
1659 }
1660
1661 /* save Rx ring container info */
1662 q_vector->rx.ring = ring;
1663 q_vector->rx.itr = interface->rx_itr;
1664 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1665 q_vector->rx.count = rxr_count;
1666
1667 while (rxr_count) {
1668 /* assign generic ring traits */
1669 ring->dev = &interface->pdev->dev;
1670 ring->netdev = interface->netdev;
1671 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1672
1673 /* configure backlink on ring */
1674 ring->q_vector = q_vector;
1675
1676 /* apply Rx specific ring traits */
1677 ring->count = interface->rx_ring_count;
1678 ring->queue_index = rxr_idx;
1679
1680 /* assign ring to interface */
1681 interface->rx_ring[rxr_idx] = ring;
1682
1683 /* update count and index */
1684 rxr_count--;
1685 rxr_idx += v_count;
1686
1687 /* push pointer to next ring */
1688 ring++;
1689 }
1690
1691 fm10k_dbg_q_vector_init(q_vector);
1692
1693 return 0;
1694 }
1695
1696 /**
1697 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1698 * @interface: board private structure to initialize
1699 * @v_idx: Index of vector to be freed
1700 *
1701 * This function frees the memory allocated to the q_vector. In addition if
1702 * NAPI is enabled it will delete any references to the NAPI struct prior
1703 * to freeing the q_vector.
1704 **/
1705 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1706 {
1707 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1708 struct fm10k_ring *ring;
1709
1710 fm10k_dbg_q_vector_exit(q_vector);
1711
1712 fm10k_for_each_ring(ring, q_vector->tx)
1713 interface->tx_ring[ring->queue_index] = NULL;
1714
1715 fm10k_for_each_ring(ring, q_vector->rx)
1716 interface->rx_ring[ring->queue_index] = NULL;
1717
1718 interface->q_vector[v_idx] = NULL;
1719 netif_napi_del(&q_vector->napi);
1720 kfree_rcu(q_vector, rcu);
1721 }
1722
1723 /**
1724 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1725 * @interface: board private structure to initialize
1726 *
1727 * We allocate one q_vector per queue interrupt. If allocation fails we
1728 * return -ENOMEM.
1729 **/
1730 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1731 {
1732 unsigned int q_vectors = interface->num_q_vectors;
1733 unsigned int rxr_remaining = interface->num_rx_queues;
1734 unsigned int txr_remaining = interface->num_tx_queues;
1735 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1736 int err;
1737
1738 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1739 for (; rxr_remaining; v_idx++) {
1740 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1741 0, 0, 1, rxr_idx);
1742 if (err)
1743 goto err_out;
1744
1745 /* update counts and index */
1746 rxr_remaining--;
1747 rxr_idx++;
1748 }
1749 }
1750
1751 for (; v_idx < q_vectors; v_idx++) {
1752 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1753 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1754
1755 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1756 tqpv, txr_idx,
1757 rqpv, rxr_idx);
1758
1759 if (err)
1760 goto err_out;
1761
1762 /* update counts and index */
1763 rxr_remaining -= rqpv;
1764 txr_remaining -= tqpv;
1765 rxr_idx++;
1766 txr_idx++;
1767 }
1768
1769 return 0;
1770
1771 err_out:
1772 fm10k_reset_num_queues(interface);
1773
1774 while (v_idx--)
1775 fm10k_free_q_vector(interface, v_idx);
1776
1777 return -ENOMEM;
1778 }
1779
1780 /**
1781 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1782 * @interface: board private structure to initialize
1783 *
1784 * This function frees the memory allocated to the q_vectors. In addition if
1785 * NAPI is enabled it will delete any references to the NAPI struct prior
1786 * to freeing the q_vector.
1787 **/
1788 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1789 {
1790 int v_idx = interface->num_q_vectors;
1791
1792 fm10k_reset_num_queues(interface);
1793
1794 while (v_idx--)
1795 fm10k_free_q_vector(interface, v_idx);
1796 }
1797
1798 /**
1799 * f10k_reset_msix_capability - reset MSI-X capability
1800 * @interface: board private structure to initialize
1801 *
1802 * Reset the MSI-X capability back to its starting state
1803 **/
1804 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1805 {
1806 pci_disable_msix(interface->pdev);
1807 kfree(interface->msix_entries);
1808 interface->msix_entries = NULL;
1809 }
1810
1811 /**
1812 * f10k_init_msix_capability - configure MSI-X capability
1813 * @interface: board private structure to initialize
1814 *
1815 * Attempt to configure the interrupts using the best available
1816 * capabilities of the hardware and the kernel.
1817 **/
1818 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1819 {
1820 struct fm10k_hw *hw = &interface->hw;
1821 int v_budget, vector;
1822
1823 /* It's easy to be greedy for MSI-X vectors, but it really
1824 * doesn't do us much good if we have a lot more vectors
1825 * than CPU's. So let's be conservative and only ask for
1826 * (roughly) the same number of vectors as there are CPU's.
1827 * the default is to use pairs of vectors
1828 */
1829 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1830 v_budget = min_t(u16, v_budget, num_online_cpus());
1831
1832 /* account for vectors not related to queues */
1833 v_budget += NON_Q_VECTORS(hw);
1834
1835 /* At the same time, hardware can only support a maximum of
1836 * hw.mac->max_msix_vectors vectors. With features
1837 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1838 * descriptor queues supported by our device. Thus, we cap it off in
1839 * those rare cases where the cpu count also exceeds our vector limit.
1840 */
1841 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1842
1843 /* A failure in MSI-X entry allocation is fatal. */
1844 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1845 GFP_KERNEL);
1846 if (!interface->msix_entries)
1847 return -ENOMEM;
1848
1849 /* populate entry values */
1850 for (vector = 0; vector < v_budget; vector++)
1851 interface->msix_entries[vector].entry = vector;
1852
1853 /* Attempt to enable MSI-X with requested value */
1854 v_budget = pci_enable_msix_range(interface->pdev,
1855 interface->msix_entries,
1856 MIN_MSIX_COUNT(hw),
1857 v_budget);
1858 if (v_budget < 0) {
1859 kfree(interface->msix_entries);
1860 interface->msix_entries = NULL;
1861 return v_budget;
1862 }
1863
1864 /* record the number of queues available for q_vectors */
1865 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1866
1867 return 0;
1868 }
1869
1870 /**
1871 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1872 * @interface: Interface structure continaining rings and devices
1873 *
1874 * Cache the descriptor ring offsets for Qos
1875 **/
1876 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1877 {
1878 struct net_device *dev = interface->netdev;
1879 int pc, offset, rss_i, i, q_idx;
1880 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1881 u8 num_pcs = netdev_get_num_tc(dev);
1882
1883 if (num_pcs <= 1)
1884 return false;
1885
1886 rss_i = interface->ring_feature[RING_F_RSS].indices;
1887
1888 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1889 q_idx = pc;
1890 for (i = 0; i < rss_i; i++) {
1891 interface->tx_ring[offset + i]->reg_idx = q_idx;
1892 interface->tx_ring[offset + i]->qos_pc = pc;
1893 interface->rx_ring[offset + i]->reg_idx = q_idx;
1894 interface->rx_ring[offset + i]->qos_pc = pc;
1895 q_idx += pc_stride;
1896 }
1897 }
1898
1899 return true;
1900 }
1901
1902 /**
1903 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1904 * @interface: Interface structure continaining rings and devices
1905 *
1906 * Cache the descriptor ring offsets for RSS
1907 **/
1908 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1909 {
1910 int i;
1911
1912 for (i = 0; i < interface->num_rx_queues; i++)
1913 interface->rx_ring[i]->reg_idx = i;
1914
1915 for (i = 0; i < interface->num_tx_queues; i++)
1916 interface->tx_ring[i]->reg_idx = i;
1917 }
1918
1919 /**
1920 * fm10k_assign_rings - Map rings to network devices
1921 * @interface: Interface structure containing rings and devices
1922 *
1923 * This function is meant to go though and configure both the network
1924 * devices so that they contain rings, and configure the rings so that
1925 * they function with their network devices.
1926 **/
1927 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1928 {
1929 if (fm10k_cache_ring_qos(interface))
1930 return;
1931
1932 fm10k_cache_ring_rss(interface);
1933 }
1934
1935 static void fm10k_init_reta(struct fm10k_intfc *interface)
1936 {
1937 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1938 u32 reta;
1939
1940 /* If the Rx flow indirection table has been configured manually, we
1941 * need to maintain it when possible.
1942 */
1943 if (netif_is_rxfh_configured(interface->netdev)) {
1944 for (i = FM10K_RETA_SIZE; i--;) {
1945 reta = interface->reta[i];
1946 if ((((reta << 24) >> 24) < rss_i) &&
1947 (((reta << 16) >> 24) < rss_i) &&
1948 (((reta << 8) >> 24) < rss_i) &&
1949 (((reta) >> 24) < rss_i))
1950 continue;
1951
1952 /* this should never happen */
1953 dev_err(&interface->pdev->dev,
1954 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1955 goto repopulate_reta;
1956 }
1957
1958 /* do nothing if all of the elements are in bounds */
1959 return;
1960 }
1961
1962 repopulate_reta:
1963 fm10k_write_reta(interface, NULL);
1964 }
1965
1966 /**
1967 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1968 * @interface: board private structure to initialize
1969 *
1970 * We determine which queueing scheme to use based on...
1971 * - Hardware queue count (num_*_queues)
1972 * - defined by miscellaneous hardware support/features (RSS, etc.)
1973 **/
1974 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1975 {
1976 int err;
1977
1978 /* Number of supported queues */
1979 fm10k_set_num_queues(interface);
1980
1981 /* Configure MSI-X capability */
1982 err = fm10k_init_msix_capability(interface);
1983 if (err) {
1984 dev_err(&interface->pdev->dev,
1985 "Unable to initialize MSI-X capability\n");
1986 goto err_init_msix;
1987 }
1988
1989 /* Allocate memory for queues */
1990 err = fm10k_alloc_q_vectors(interface);
1991 if (err) {
1992 dev_err(&interface->pdev->dev,
1993 "Unable to allocate queue vectors\n");
1994 goto err_alloc_q_vectors;
1995 }
1996
1997 /* Map rings to devices, and map devices to physical queues */
1998 fm10k_assign_rings(interface);
1999
2000 /* Initialize RSS redirection table */
2001 fm10k_init_reta(interface);
2002
2003 return 0;
2004
2005 err_alloc_q_vectors:
2006 fm10k_reset_msix_capability(interface);
2007 err_init_msix:
2008 fm10k_reset_num_queues(interface);
2009 return err;
2010 }
2011
2012 /**
2013 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2014 * @interface: board private structure to clear queueing scheme on
2015 *
2016 * We go through and clear queueing specific resources and reset the structure
2017 * to pre-load conditions
2018 **/
2019 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2020 {
2021 fm10k_free_q_vectors(interface);
2022 fm10k_reset_msix_capability(interface);
2023 }
This page took 0.075104 seconds and 6 git commands to generate.