Merge remote-tracking branches 'spi/topic/img-spfi', 'spi/topic/imx', 'spi/topic...
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 /* e1000_82575
25 * e1000_82576
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37
38 static s32 igb_get_invariants_82575(struct e1000_hw *);
39 static s32 igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32 igb_check_for_link_82575(struct e1000_hw *);
44 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32 igb_init_hw_82575(struct e1000_hw *);
46 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32 igb_reset_hw_82575(struct e1000_hw *);
51 static s32 igb_reset_hw_82580(struct e1000_hw *);
52 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 u16 *);
62 static s32 igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32 igb_reset_init_script_82575(struct e1000_hw *);
66 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75
76 /**
77 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78 * @hw: pointer to the HW structure
79 *
80 * Called to determine if the I2C pins are being used for I2C or as an
81 * external MDIO interface since the two options are mutually exclusive.
82 **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85 u32 reg = 0;
86 bool ext_mdio = false;
87
88 switch (hw->mac.type) {
89 case e1000_82575:
90 case e1000_82576:
91 reg = rd32(E1000_MDIC);
92 ext_mdio = !!(reg & E1000_MDIC_DEST);
93 break;
94 case e1000_82580:
95 case e1000_i350:
96 case e1000_i354:
97 case e1000_i210:
98 case e1000_i211:
99 reg = rd32(E1000_MDICNFG);
100 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 break;
102 default:
103 break;
104 }
105 return ext_mdio;
106 }
107
108 /**
109 * igb_check_for_link_media_swap - Check which M88E1112 interface linked
110 * @hw: pointer to the HW structure
111 *
112 * Poll the M88E1112 interfaces to see which interface achieved link.
113 */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116 struct e1000_phy_info *phy = &hw->phy;
117 s32 ret_val;
118 u16 data;
119 u8 port = 0;
120
121 /* Check the copper medium. */
122 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123 if (ret_val)
124 return ret_val;
125
126 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127 if (ret_val)
128 return ret_val;
129
130 if (data & E1000_M88E1112_STATUS_LINK)
131 port = E1000_MEDIA_PORT_COPPER;
132
133 /* Check the other medium. */
134 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135 if (ret_val)
136 return ret_val;
137
138 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139 if (ret_val)
140 return ret_val;
141
142 /* reset page to 0 */
143 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
144 if (ret_val)
145 return ret_val;
146
147 if (data & E1000_M88E1112_STATUS_LINK)
148 port = E1000_MEDIA_PORT_OTHER;
149
150 /* Determine if a swap needs to happen. */
151 if (port && (hw->dev_spec._82575.media_port != port)) {
152 hw->dev_spec._82575.media_port = port;
153 hw->dev_spec._82575.media_changed = true;
154 } else {
155 ret_val = igb_check_for_link_82575(hw);
156 }
157
158 return 0;
159 }
160
161 /**
162 * igb_init_phy_params_82575 - Init PHY func ptrs.
163 * @hw: pointer to the HW structure
164 **/
165 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
166 {
167 struct e1000_phy_info *phy = &hw->phy;
168 s32 ret_val = 0;
169 u32 ctrl_ext;
170
171 if (hw->phy.media_type != e1000_media_type_copper) {
172 phy->type = e1000_phy_none;
173 goto out;
174 }
175
176 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
177 phy->reset_delay_us = 100;
178
179 ctrl_ext = rd32(E1000_CTRL_EXT);
180
181 if (igb_sgmii_active_82575(hw)) {
182 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
183 ctrl_ext |= E1000_CTRL_I2C_ENA;
184 } else {
185 phy->ops.reset = igb_phy_hw_reset;
186 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
187 }
188
189 wr32(E1000_CTRL_EXT, ctrl_ext);
190 igb_reset_mdicnfg_82580(hw);
191
192 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
193 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
194 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
195 } else {
196 switch (hw->mac.type) {
197 case e1000_82580:
198 case e1000_i350:
199 case e1000_i354:
200 phy->ops.read_reg = igb_read_phy_reg_82580;
201 phy->ops.write_reg = igb_write_phy_reg_82580;
202 break;
203 case e1000_i210:
204 case e1000_i211:
205 phy->ops.read_reg = igb_read_phy_reg_gs40g;
206 phy->ops.write_reg = igb_write_phy_reg_gs40g;
207 break;
208 default:
209 phy->ops.read_reg = igb_read_phy_reg_igp;
210 phy->ops.write_reg = igb_write_phy_reg_igp;
211 }
212 }
213
214 /* set lan id */
215 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
216 E1000_STATUS_FUNC_SHIFT;
217
218 /* Set phy->phy_addr and phy->id. */
219 ret_val = igb_get_phy_id_82575(hw);
220 if (ret_val)
221 return ret_val;
222
223 /* Verify phy id and set remaining function pointers */
224 switch (phy->id) {
225 case M88E1543_E_PHY_ID:
226 case I347AT4_E_PHY_ID:
227 case M88E1112_E_PHY_ID:
228 case M88E1111_I_PHY_ID:
229 phy->type = e1000_phy_m88;
230 phy->ops.check_polarity = igb_check_polarity_m88;
231 phy->ops.get_phy_info = igb_get_phy_info_m88;
232 if (phy->id != M88E1111_I_PHY_ID)
233 phy->ops.get_cable_length =
234 igb_get_cable_length_m88_gen2;
235 else
236 phy->ops.get_cable_length = igb_get_cable_length_m88;
237 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
238 /* Check if this PHY is confgured for media swap. */
239 if (phy->id == M88E1112_E_PHY_ID) {
240 u16 data;
241
242 ret_val = phy->ops.write_reg(hw,
243 E1000_M88E1112_PAGE_ADDR,
244 2);
245 if (ret_val)
246 goto out;
247
248 ret_val = phy->ops.read_reg(hw,
249 E1000_M88E1112_MAC_CTRL_1,
250 &data);
251 if (ret_val)
252 goto out;
253
254 data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
255 E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
256 if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
257 data == E1000_M88E1112_AUTO_COPPER_BASEX)
258 hw->mac.ops.check_for_link =
259 igb_check_for_link_media_swap;
260 }
261 break;
262 case IGP03E1000_E_PHY_ID:
263 phy->type = e1000_phy_igp_3;
264 phy->ops.get_phy_info = igb_get_phy_info_igp;
265 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
266 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
267 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
268 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
269 break;
270 case I82580_I_PHY_ID:
271 case I350_I_PHY_ID:
272 phy->type = e1000_phy_82580;
273 phy->ops.force_speed_duplex =
274 igb_phy_force_speed_duplex_82580;
275 phy->ops.get_cable_length = igb_get_cable_length_82580;
276 phy->ops.get_phy_info = igb_get_phy_info_82580;
277 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
278 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
279 break;
280 case I210_I_PHY_ID:
281 phy->type = e1000_phy_i210;
282 phy->ops.check_polarity = igb_check_polarity_m88;
283 phy->ops.get_phy_info = igb_get_phy_info_m88;
284 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
285 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
286 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
287 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
288 break;
289 default:
290 ret_val = -E1000_ERR_PHY;
291 goto out;
292 }
293
294 out:
295 return ret_val;
296 }
297
298 /**
299 * igb_init_nvm_params_82575 - Init NVM func ptrs.
300 * @hw: pointer to the HW structure
301 **/
302 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
303 {
304 struct e1000_nvm_info *nvm = &hw->nvm;
305 u32 eecd = rd32(E1000_EECD);
306 u16 size;
307
308 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
309 E1000_EECD_SIZE_EX_SHIFT);
310
311 /* Added to a constant, "size" becomes the left-shift value
312 * for setting word_size.
313 */
314 size += NVM_WORD_SIZE_BASE_SHIFT;
315
316 /* Just in case size is out of range, cap it to the largest
317 * EEPROM size supported
318 */
319 if (size > 15)
320 size = 15;
321
322 nvm->word_size = 1 << size;
323 nvm->opcode_bits = 8;
324 nvm->delay_usec = 1;
325
326 switch (nvm->override) {
327 case e1000_nvm_override_spi_large:
328 nvm->page_size = 32;
329 nvm->address_bits = 16;
330 break;
331 case e1000_nvm_override_spi_small:
332 nvm->page_size = 8;
333 nvm->address_bits = 8;
334 break;
335 default:
336 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
337 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
338 16 : 8;
339 break;
340 }
341 if (nvm->word_size == (1 << 15))
342 nvm->page_size = 128;
343
344 nvm->type = e1000_nvm_eeprom_spi;
345
346 /* NVM Function Pointers */
347 nvm->ops.acquire = igb_acquire_nvm_82575;
348 nvm->ops.release = igb_release_nvm_82575;
349 nvm->ops.write = igb_write_nvm_spi;
350 nvm->ops.validate = igb_validate_nvm_checksum;
351 nvm->ops.update = igb_update_nvm_checksum;
352 if (nvm->word_size < (1 << 15))
353 nvm->ops.read = igb_read_nvm_eerd;
354 else
355 nvm->ops.read = igb_read_nvm_spi;
356
357 /* override generic family function pointers for specific descendants */
358 switch (hw->mac.type) {
359 case e1000_82580:
360 nvm->ops.validate = igb_validate_nvm_checksum_82580;
361 nvm->ops.update = igb_update_nvm_checksum_82580;
362 break;
363 case e1000_i354:
364 case e1000_i350:
365 nvm->ops.validate = igb_validate_nvm_checksum_i350;
366 nvm->ops.update = igb_update_nvm_checksum_i350;
367 break;
368 default:
369 break;
370 }
371
372 return 0;
373 }
374
375 /**
376 * igb_init_mac_params_82575 - Init MAC func ptrs.
377 * @hw: pointer to the HW structure
378 **/
379 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
380 {
381 struct e1000_mac_info *mac = &hw->mac;
382 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
383
384 /* Set mta register count */
385 mac->mta_reg_count = 128;
386 /* Set rar entry count */
387 switch (mac->type) {
388 case e1000_82576:
389 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
390 break;
391 case e1000_82580:
392 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
393 break;
394 case e1000_i350:
395 case e1000_i354:
396 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
397 break;
398 default:
399 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
400 break;
401 }
402 /* reset */
403 if (mac->type >= e1000_82580)
404 mac->ops.reset_hw = igb_reset_hw_82580;
405 else
406 mac->ops.reset_hw = igb_reset_hw_82575;
407
408 if (mac->type >= e1000_i210) {
409 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
410 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
411
412 } else {
413 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
414 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
415 }
416
417 /* Set if part includes ASF firmware */
418 mac->asf_firmware_present = true;
419 /* Set if manageability features are enabled. */
420 mac->arc_subsystem_valid =
421 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
422 ? true : false;
423 /* enable EEE on i350 parts and later parts */
424 if (mac->type >= e1000_i350)
425 dev_spec->eee_disable = false;
426 else
427 dev_spec->eee_disable = true;
428 /* Allow a single clear of the SW semaphore on I210 and newer */
429 if (mac->type >= e1000_i210)
430 dev_spec->clear_semaphore_once = true;
431 /* physical interface link setup */
432 mac->ops.setup_physical_interface =
433 (hw->phy.media_type == e1000_media_type_copper)
434 ? igb_setup_copper_link_82575
435 : igb_setup_serdes_link_82575;
436
437 if (mac->type == e1000_82580) {
438 switch (hw->device_id) {
439 /* feature not supported on these id's */
440 case E1000_DEV_ID_DH89XXCC_SGMII:
441 case E1000_DEV_ID_DH89XXCC_SERDES:
442 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
443 case E1000_DEV_ID_DH89XXCC_SFP:
444 break;
445 default:
446 hw->dev_spec._82575.mas_capable = true;
447 break;
448 }
449 }
450 return 0;
451 }
452
453 /**
454 * igb_set_sfp_media_type_82575 - derives SFP module media type.
455 * @hw: pointer to the HW structure
456 *
457 * The media type is chosen based on SFP module.
458 * compatibility flags retrieved from SFP ID EEPROM.
459 **/
460 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
461 {
462 s32 ret_val = E1000_ERR_CONFIG;
463 u32 ctrl_ext = 0;
464 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
465 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
466 u8 tranceiver_type = 0;
467 s32 timeout = 3;
468
469 /* Turn I2C interface ON and power on sfp cage */
470 ctrl_ext = rd32(E1000_CTRL_EXT);
471 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
472 wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
473
474 wrfl();
475
476 /* Read SFP module data */
477 while (timeout) {
478 ret_val = igb_read_sfp_data_byte(hw,
479 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
480 &tranceiver_type);
481 if (ret_val == 0)
482 break;
483 msleep(100);
484 timeout--;
485 }
486 if (ret_val != 0)
487 goto out;
488
489 ret_val = igb_read_sfp_data_byte(hw,
490 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
491 (u8 *)eth_flags);
492 if (ret_val != 0)
493 goto out;
494
495 /* Check if there is some SFP module plugged and powered */
496 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
497 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
498 dev_spec->module_plugged = true;
499 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
500 hw->phy.media_type = e1000_media_type_internal_serdes;
501 } else if (eth_flags->e100_base_fx) {
502 dev_spec->sgmii_active = true;
503 hw->phy.media_type = e1000_media_type_internal_serdes;
504 } else if (eth_flags->e1000_base_t) {
505 dev_spec->sgmii_active = true;
506 hw->phy.media_type = e1000_media_type_copper;
507 } else {
508 hw->phy.media_type = e1000_media_type_unknown;
509 hw_dbg("PHY module has not been recognized\n");
510 goto out;
511 }
512 } else {
513 hw->phy.media_type = e1000_media_type_unknown;
514 }
515 ret_val = 0;
516 out:
517 /* Restore I2C interface setting */
518 wr32(E1000_CTRL_EXT, ctrl_ext);
519 return ret_val;
520 }
521
522 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
523 {
524 struct e1000_mac_info *mac = &hw->mac;
525 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
526 s32 ret_val;
527 u32 ctrl_ext = 0;
528 u32 link_mode = 0;
529
530 switch (hw->device_id) {
531 case E1000_DEV_ID_82575EB_COPPER:
532 case E1000_DEV_ID_82575EB_FIBER_SERDES:
533 case E1000_DEV_ID_82575GB_QUAD_COPPER:
534 mac->type = e1000_82575;
535 break;
536 case E1000_DEV_ID_82576:
537 case E1000_DEV_ID_82576_NS:
538 case E1000_DEV_ID_82576_NS_SERDES:
539 case E1000_DEV_ID_82576_FIBER:
540 case E1000_DEV_ID_82576_SERDES:
541 case E1000_DEV_ID_82576_QUAD_COPPER:
542 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
543 case E1000_DEV_ID_82576_SERDES_QUAD:
544 mac->type = e1000_82576;
545 break;
546 case E1000_DEV_ID_82580_COPPER:
547 case E1000_DEV_ID_82580_FIBER:
548 case E1000_DEV_ID_82580_QUAD_FIBER:
549 case E1000_DEV_ID_82580_SERDES:
550 case E1000_DEV_ID_82580_SGMII:
551 case E1000_DEV_ID_82580_COPPER_DUAL:
552 case E1000_DEV_ID_DH89XXCC_SGMII:
553 case E1000_DEV_ID_DH89XXCC_SERDES:
554 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
555 case E1000_DEV_ID_DH89XXCC_SFP:
556 mac->type = e1000_82580;
557 break;
558 case E1000_DEV_ID_I350_COPPER:
559 case E1000_DEV_ID_I350_FIBER:
560 case E1000_DEV_ID_I350_SERDES:
561 case E1000_DEV_ID_I350_SGMII:
562 mac->type = e1000_i350;
563 break;
564 case E1000_DEV_ID_I210_COPPER:
565 case E1000_DEV_ID_I210_FIBER:
566 case E1000_DEV_ID_I210_SERDES:
567 case E1000_DEV_ID_I210_SGMII:
568 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
569 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
570 mac->type = e1000_i210;
571 break;
572 case E1000_DEV_ID_I211_COPPER:
573 mac->type = e1000_i211;
574 break;
575 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
576 case E1000_DEV_ID_I354_SGMII:
577 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
578 mac->type = e1000_i354;
579 break;
580 default:
581 return -E1000_ERR_MAC_INIT;
582 }
583
584 /* Set media type */
585 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
586 * based on the EEPROM. We cannot rely upon device ID. There
587 * is no distinguishable difference between fiber and internal
588 * SerDes mode on the 82575. There can be an external PHY attached
589 * on the SGMII interface. For this, we'll set sgmii_active to true.
590 */
591 hw->phy.media_type = e1000_media_type_copper;
592 dev_spec->sgmii_active = false;
593 dev_spec->module_plugged = false;
594
595 ctrl_ext = rd32(E1000_CTRL_EXT);
596
597 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
598 switch (link_mode) {
599 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
600 hw->phy.media_type = e1000_media_type_internal_serdes;
601 break;
602 case E1000_CTRL_EXT_LINK_MODE_SGMII:
603 /* Get phy control interface type set (MDIO vs. I2C)*/
604 if (igb_sgmii_uses_mdio_82575(hw)) {
605 hw->phy.media_type = e1000_media_type_copper;
606 dev_spec->sgmii_active = true;
607 break;
608 }
609 /* fall through for I2C based SGMII */
610 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
611 /* read media type from SFP EEPROM */
612 ret_val = igb_set_sfp_media_type_82575(hw);
613 if ((ret_val != 0) ||
614 (hw->phy.media_type == e1000_media_type_unknown)) {
615 /* If media type was not identified then return media
616 * type defined by the CTRL_EXT settings.
617 */
618 hw->phy.media_type = e1000_media_type_internal_serdes;
619
620 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
621 hw->phy.media_type = e1000_media_type_copper;
622 dev_spec->sgmii_active = true;
623 }
624
625 break;
626 }
627
628 /* do not change link mode for 100BaseFX */
629 if (dev_spec->eth_flags.e100_base_fx)
630 break;
631
632 /* change current link mode setting */
633 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
634
635 if (hw->phy.media_type == e1000_media_type_copper)
636 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
637 else
638 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
639
640 wr32(E1000_CTRL_EXT, ctrl_ext);
641
642 break;
643 default:
644 break;
645 }
646
647 /* mac initialization and operations */
648 ret_val = igb_init_mac_params_82575(hw);
649 if (ret_val)
650 goto out;
651
652 /* NVM initialization */
653 ret_val = igb_init_nvm_params_82575(hw);
654 switch (hw->mac.type) {
655 case e1000_i210:
656 case e1000_i211:
657 ret_val = igb_init_nvm_params_i210(hw);
658 break;
659 default:
660 break;
661 }
662
663 if (ret_val)
664 goto out;
665
666 /* if part supports SR-IOV then initialize mailbox parameters */
667 switch (mac->type) {
668 case e1000_82576:
669 case e1000_i350:
670 igb_init_mbx_params_pf(hw);
671 break;
672 default:
673 break;
674 }
675
676 /* setup PHY parameters */
677 ret_val = igb_init_phy_params_82575(hw);
678
679 out:
680 return ret_val;
681 }
682
683 /**
684 * igb_acquire_phy_82575 - Acquire rights to access PHY
685 * @hw: pointer to the HW structure
686 *
687 * Acquire access rights to the correct PHY. This is a
688 * function pointer entry point called by the api module.
689 **/
690 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
691 {
692 u16 mask = E1000_SWFW_PHY0_SM;
693
694 if (hw->bus.func == E1000_FUNC_1)
695 mask = E1000_SWFW_PHY1_SM;
696 else if (hw->bus.func == E1000_FUNC_2)
697 mask = E1000_SWFW_PHY2_SM;
698 else if (hw->bus.func == E1000_FUNC_3)
699 mask = E1000_SWFW_PHY3_SM;
700
701 return hw->mac.ops.acquire_swfw_sync(hw, mask);
702 }
703
704 /**
705 * igb_release_phy_82575 - Release rights to access PHY
706 * @hw: pointer to the HW structure
707 *
708 * A wrapper to release access rights to the correct PHY. This is a
709 * function pointer entry point called by the api module.
710 **/
711 static void igb_release_phy_82575(struct e1000_hw *hw)
712 {
713 u16 mask = E1000_SWFW_PHY0_SM;
714
715 if (hw->bus.func == E1000_FUNC_1)
716 mask = E1000_SWFW_PHY1_SM;
717 else if (hw->bus.func == E1000_FUNC_2)
718 mask = E1000_SWFW_PHY2_SM;
719 else if (hw->bus.func == E1000_FUNC_3)
720 mask = E1000_SWFW_PHY3_SM;
721
722 hw->mac.ops.release_swfw_sync(hw, mask);
723 }
724
725 /**
726 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
727 * @hw: pointer to the HW structure
728 * @offset: register offset to be read
729 * @data: pointer to the read data
730 *
731 * Reads the PHY register at offset using the serial gigabit media independent
732 * interface and stores the retrieved information in data.
733 **/
734 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
735 u16 *data)
736 {
737 s32 ret_val = -E1000_ERR_PARAM;
738
739 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
740 hw_dbg("PHY Address %u is out of range\n", offset);
741 goto out;
742 }
743
744 ret_val = hw->phy.ops.acquire(hw);
745 if (ret_val)
746 goto out;
747
748 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
749
750 hw->phy.ops.release(hw);
751
752 out:
753 return ret_val;
754 }
755
756 /**
757 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
758 * @hw: pointer to the HW structure
759 * @offset: register offset to write to
760 * @data: data to write at register offset
761 *
762 * Writes the data to PHY register at the offset using the serial gigabit
763 * media independent interface.
764 **/
765 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
766 u16 data)
767 {
768 s32 ret_val = -E1000_ERR_PARAM;
769
770
771 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
772 hw_dbg("PHY Address %d is out of range\n", offset);
773 goto out;
774 }
775
776 ret_val = hw->phy.ops.acquire(hw);
777 if (ret_val)
778 goto out;
779
780 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
781
782 hw->phy.ops.release(hw);
783
784 out:
785 return ret_val;
786 }
787
788 /**
789 * igb_get_phy_id_82575 - Retrieve PHY addr and id
790 * @hw: pointer to the HW structure
791 *
792 * Retrieves the PHY address and ID for both PHY's which do and do not use
793 * sgmi interface.
794 **/
795 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
796 {
797 struct e1000_phy_info *phy = &hw->phy;
798 s32 ret_val = 0;
799 u16 phy_id;
800 u32 ctrl_ext;
801 u32 mdic;
802
803 /* Extra read required for some PHY's on i354 */
804 if (hw->mac.type == e1000_i354)
805 igb_get_phy_id(hw);
806
807 /* For SGMII PHYs, we try the list of possible addresses until
808 * we find one that works. For non-SGMII PHYs
809 * (e.g. integrated copper PHYs), an address of 1 should
810 * work. The result of this function should mean phy->phy_addr
811 * and phy->id are set correctly.
812 */
813 if (!(igb_sgmii_active_82575(hw))) {
814 phy->addr = 1;
815 ret_val = igb_get_phy_id(hw);
816 goto out;
817 }
818
819 if (igb_sgmii_uses_mdio_82575(hw)) {
820 switch (hw->mac.type) {
821 case e1000_82575:
822 case e1000_82576:
823 mdic = rd32(E1000_MDIC);
824 mdic &= E1000_MDIC_PHY_MASK;
825 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
826 break;
827 case e1000_82580:
828 case e1000_i350:
829 case e1000_i354:
830 case e1000_i210:
831 case e1000_i211:
832 mdic = rd32(E1000_MDICNFG);
833 mdic &= E1000_MDICNFG_PHY_MASK;
834 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
835 break;
836 default:
837 ret_val = -E1000_ERR_PHY;
838 goto out;
839 }
840 ret_val = igb_get_phy_id(hw);
841 goto out;
842 }
843
844 /* Power on sgmii phy if it is disabled */
845 ctrl_ext = rd32(E1000_CTRL_EXT);
846 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
847 wrfl();
848 msleep(300);
849
850 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
851 * Therefore, we need to test 1-7
852 */
853 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
854 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
855 if (ret_val == 0) {
856 hw_dbg("Vendor ID 0x%08X read at address %u\n",
857 phy_id, phy->addr);
858 /* At the time of this writing, The M88 part is
859 * the only supported SGMII PHY product.
860 */
861 if (phy_id == M88_VENDOR)
862 break;
863 } else {
864 hw_dbg("PHY address %u was unreadable\n", phy->addr);
865 }
866 }
867
868 /* A valid PHY type couldn't be found. */
869 if (phy->addr == 8) {
870 phy->addr = 0;
871 ret_val = -E1000_ERR_PHY;
872 goto out;
873 } else {
874 ret_val = igb_get_phy_id(hw);
875 }
876
877 /* restore previous sfp cage power state */
878 wr32(E1000_CTRL_EXT, ctrl_ext);
879
880 out:
881 return ret_val;
882 }
883
884 /**
885 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
886 * @hw: pointer to the HW structure
887 *
888 * Resets the PHY using the serial gigabit media independent interface.
889 **/
890 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
891 {
892 s32 ret_val;
893
894 /* This isn't a true "hard" reset, but is the only reset
895 * available to us at this time.
896 */
897
898 hw_dbg("Soft resetting SGMII attached PHY...\n");
899
900 /* SFP documentation requires the following to configure the SPF module
901 * to work on SGMII. No further documentation is given.
902 */
903 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
904 if (ret_val)
905 goto out;
906
907 ret_val = igb_phy_sw_reset(hw);
908
909 out:
910 return ret_val;
911 }
912
913 /**
914 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
915 * @hw: pointer to the HW structure
916 * @active: true to enable LPLU, false to disable
917 *
918 * Sets the LPLU D0 state according to the active flag. When
919 * activating LPLU this function also disables smart speed
920 * and vice versa. LPLU will not be activated unless the
921 * device autonegotiation advertisement meets standards of
922 * either 10 or 10/100 or 10/100/1000 at all duplexes.
923 * This is a function pointer entry point only called by
924 * PHY setup routines.
925 **/
926 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
927 {
928 struct e1000_phy_info *phy = &hw->phy;
929 s32 ret_val;
930 u16 data;
931
932 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
933 if (ret_val)
934 goto out;
935
936 if (active) {
937 data |= IGP02E1000_PM_D0_LPLU;
938 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
939 data);
940 if (ret_val)
941 goto out;
942
943 /* When LPLU is enabled, we should disable SmartSpeed */
944 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
945 &data);
946 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
947 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
948 data);
949 if (ret_val)
950 goto out;
951 } else {
952 data &= ~IGP02E1000_PM_D0_LPLU;
953 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
954 data);
955 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
956 * during Dx states where the power conservation is most
957 * important. During driver activity we should enable
958 * SmartSpeed, so performance is maintained.
959 */
960 if (phy->smart_speed == e1000_smart_speed_on) {
961 ret_val = phy->ops.read_reg(hw,
962 IGP01E1000_PHY_PORT_CONFIG, &data);
963 if (ret_val)
964 goto out;
965
966 data |= IGP01E1000_PSCFR_SMART_SPEED;
967 ret_val = phy->ops.write_reg(hw,
968 IGP01E1000_PHY_PORT_CONFIG, data);
969 if (ret_val)
970 goto out;
971 } else if (phy->smart_speed == e1000_smart_speed_off) {
972 ret_val = phy->ops.read_reg(hw,
973 IGP01E1000_PHY_PORT_CONFIG, &data);
974 if (ret_val)
975 goto out;
976
977 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
978 ret_val = phy->ops.write_reg(hw,
979 IGP01E1000_PHY_PORT_CONFIG, data);
980 if (ret_val)
981 goto out;
982 }
983 }
984
985 out:
986 return ret_val;
987 }
988
989 /**
990 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
991 * @hw: pointer to the HW structure
992 * @active: true to enable LPLU, false to disable
993 *
994 * Sets the LPLU D0 state according to the active flag. When
995 * activating LPLU this function also disables smart speed
996 * and vice versa. LPLU will not be activated unless the
997 * device autonegotiation advertisement meets standards of
998 * either 10 or 10/100 or 10/100/1000 at all duplexes.
999 * This is a function pointer entry point only called by
1000 * PHY setup routines.
1001 **/
1002 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1003 {
1004 struct e1000_phy_info *phy = &hw->phy;
1005 u16 data;
1006
1007 data = rd32(E1000_82580_PHY_POWER_MGMT);
1008
1009 if (active) {
1010 data |= E1000_82580_PM_D0_LPLU;
1011
1012 /* When LPLU is enabled, we should disable SmartSpeed */
1013 data &= ~E1000_82580_PM_SPD;
1014 } else {
1015 data &= ~E1000_82580_PM_D0_LPLU;
1016
1017 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1018 * during Dx states where the power conservation is most
1019 * important. During driver activity we should enable
1020 * SmartSpeed, so performance is maintained.
1021 */
1022 if (phy->smart_speed == e1000_smart_speed_on)
1023 data |= E1000_82580_PM_SPD;
1024 else if (phy->smart_speed == e1000_smart_speed_off)
1025 data &= ~E1000_82580_PM_SPD; }
1026
1027 wr32(E1000_82580_PHY_POWER_MGMT, data);
1028 return 0;
1029 }
1030
1031 /**
1032 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1033 * @hw: pointer to the HW structure
1034 * @active: boolean used to enable/disable lplu
1035 *
1036 * Success returns 0, Failure returns 1
1037 *
1038 * The low power link up (lplu) state is set to the power management level D3
1039 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1040 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1041 * is used during Dx states where the power conservation is most important.
1042 * During driver activity, SmartSpeed should be enabled so performance is
1043 * maintained.
1044 **/
1045 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1046 {
1047 struct e1000_phy_info *phy = &hw->phy;
1048 u16 data;
1049
1050 data = rd32(E1000_82580_PHY_POWER_MGMT);
1051
1052 if (!active) {
1053 data &= ~E1000_82580_PM_D3_LPLU;
1054 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1055 * during Dx states where the power conservation is most
1056 * important. During driver activity we should enable
1057 * SmartSpeed, so performance is maintained.
1058 */
1059 if (phy->smart_speed == e1000_smart_speed_on)
1060 data |= E1000_82580_PM_SPD;
1061 else if (phy->smart_speed == e1000_smart_speed_off)
1062 data &= ~E1000_82580_PM_SPD;
1063 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1064 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1065 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1066 data |= E1000_82580_PM_D3_LPLU;
1067 /* When LPLU is enabled, we should disable SmartSpeed */
1068 data &= ~E1000_82580_PM_SPD;
1069 }
1070
1071 wr32(E1000_82580_PHY_POWER_MGMT, data);
1072 return 0;
1073 }
1074
1075 /**
1076 * igb_acquire_nvm_82575 - Request for access to EEPROM
1077 * @hw: pointer to the HW structure
1078 *
1079 * Acquire the necessary semaphores for exclusive access to the EEPROM.
1080 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1081 * Return successful if access grant bit set, else clear the request for
1082 * EEPROM access and return -E1000_ERR_NVM (-1).
1083 **/
1084 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1085 {
1086 s32 ret_val;
1087
1088 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1089 if (ret_val)
1090 goto out;
1091
1092 ret_val = igb_acquire_nvm(hw);
1093
1094 if (ret_val)
1095 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1096
1097 out:
1098 return ret_val;
1099 }
1100
1101 /**
1102 * igb_release_nvm_82575 - Release exclusive access to EEPROM
1103 * @hw: pointer to the HW structure
1104 *
1105 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
1106 * then release the semaphores acquired.
1107 **/
1108 static void igb_release_nvm_82575(struct e1000_hw *hw)
1109 {
1110 igb_release_nvm(hw);
1111 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1112 }
1113
1114 /**
1115 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1116 * @hw: pointer to the HW structure
1117 * @mask: specifies which semaphore to acquire
1118 *
1119 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
1120 * will also specify which port we're acquiring the lock for.
1121 **/
1122 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1123 {
1124 u32 swfw_sync;
1125 u32 swmask = mask;
1126 u32 fwmask = mask << 16;
1127 s32 ret_val = 0;
1128 s32 i = 0, timeout = 200;
1129
1130 while (i < timeout) {
1131 if (igb_get_hw_semaphore(hw)) {
1132 ret_val = -E1000_ERR_SWFW_SYNC;
1133 goto out;
1134 }
1135
1136 swfw_sync = rd32(E1000_SW_FW_SYNC);
1137 if (!(swfw_sync & (fwmask | swmask)))
1138 break;
1139
1140 /* Firmware currently using resource (fwmask)
1141 * or other software thread using resource (swmask)
1142 */
1143 igb_put_hw_semaphore(hw);
1144 mdelay(5);
1145 i++;
1146 }
1147
1148 if (i == timeout) {
1149 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1150 ret_val = -E1000_ERR_SWFW_SYNC;
1151 goto out;
1152 }
1153
1154 swfw_sync |= swmask;
1155 wr32(E1000_SW_FW_SYNC, swfw_sync);
1156
1157 igb_put_hw_semaphore(hw);
1158
1159 out:
1160 return ret_val;
1161 }
1162
1163 /**
1164 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
1165 * @hw: pointer to the HW structure
1166 * @mask: specifies which semaphore to acquire
1167 *
1168 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
1169 * will also specify which port we're releasing the lock for.
1170 **/
1171 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1172 {
1173 u32 swfw_sync;
1174
1175 while (igb_get_hw_semaphore(hw) != 0)
1176 ; /* Empty */
1177
1178 swfw_sync = rd32(E1000_SW_FW_SYNC);
1179 swfw_sync &= ~mask;
1180 wr32(E1000_SW_FW_SYNC, swfw_sync);
1181
1182 igb_put_hw_semaphore(hw);
1183 }
1184
1185 /**
1186 * igb_get_cfg_done_82575 - Read config done bit
1187 * @hw: pointer to the HW structure
1188 *
1189 * Read the management control register for the config done bit for
1190 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1191 * to read the config done bit, so an error is *ONLY* logged and returns
1192 * 0. If we were to return with error, EEPROM-less silicon
1193 * would not be able to be reset or change link.
1194 **/
1195 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1196 {
1197 s32 timeout = PHY_CFG_TIMEOUT;
1198 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1199
1200 if (hw->bus.func == 1)
1201 mask = E1000_NVM_CFG_DONE_PORT_1;
1202 else if (hw->bus.func == E1000_FUNC_2)
1203 mask = E1000_NVM_CFG_DONE_PORT_2;
1204 else if (hw->bus.func == E1000_FUNC_3)
1205 mask = E1000_NVM_CFG_DONE_PORT_3;
1206
1207 while (timeout) {
1208 if (rd32(E1000_EEMNGCTL) & mask)
1209 break;
1210 usleep_range(1000, 2000);
1211 timeout--;
1212 }
1213 if (!timeout)
1214 hw_dbg("MNG configuration cycle has not completed.\n");
1215
1216 /* If EEPROM is not marked present, init the PHY manually */
1217 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1218 (hw->phy.type == e1000_phy_igp_3))
1219 igb_phy_init_script_igp3(hw);
1220
1221 return 0;
1222 }
1223
1224 /**
1225 * igb_get_link_up_info_82575 - Get link speed/duplex info
1226 * @hw: pointer to the HW structure
1227 * @speed: stores the current speed
1228 * @duplex: stores the current duplex
1229 *
1230 * This is a wrapper function, if using the serial gigabit media independent
1231 * interface, use PCS to retrieve the link speed and duplex information.
1232 * Otherwise, use the generic function to get the link speed and duplex info.
1233 **/
1234 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1235 u16 *duplex)
1236 {
1237 s32 ret_val;
1238
1239 if (hw->phy.media_type != e1000_media_type_copper)
1240 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1241 duplex);
1242 else
1243 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1244 duplex);
1245
1246 return ret_val;
1247 }
1248
1249 /**
1250 * igb_check_for_link_82575 - Check for link
1251 * @hw: pointer to the HW structure
1252 *
1253 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1254 * use the generic interface for determining link.
1255 **/
1256 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1257 {
1258 s32 ret_val;
1259 u16 speed, duplex;
1260
1261 if (hw->phy.media_type != e1000_media_type_copper) {
1262 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1263 &duplex);
1264 /* Use this flag to determine if link needs to be checked or
1265 * not. If we have link clear the flag so that we do not
1266 * continue to check for link.
1267 */
1268 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1269
1270 /* Configure Flow Control now that Auto-Neg has completed.
1271 * First, we need to restore the desired flow control
1272 * settings because we may have had to re-autoneg with a
1273 * different link partner.
1274 */
1275 ret_val = igb_config_fc_after_link_up(hw);
1276 if (ret_val)
1277 hw_dbg("Error configuring flow control\n");
1278 } else {
1279 ret_val = igb_check_for_copper_link(hw);
1280 }
1281
1282 return ret_val;
1283 }
1284
1285 /**
1286 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1287 * @hw: pointer to the HW structure
1288 **/
1289 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1290 {
1291 u32 reg;
1292
1293
1294 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1295 !igb_sgmii_active_82575(hw))
1296 return;
1297
1298 /* Enable PCS to turn on link */
1299 reg = rd32(E1000_PCS_CFG0);
1300 reg |= E1000_PCS_CFG_PCS_EN;
1301 wr32(E1000_PCS_CFG0, reg);
1302
1303 /* Power up the laser */
1304 reg = rd32(E1000_CTRL_EXT);
1305 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1306 wr32(E1000_CTRL_EXT, reg);
1307
1308 /* flush the write to verify completion */
1309 wrfl();
1310 usleep_range(1000, 2000);
1311 }
1312
1313 /**
1314 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1315 * @hw: pointer to the HW structure
1316 * @speed: stores the current speed
1317 * @duplex: stores the current duplex
1318 *
1319 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1320 * duplex, then store the values in the pointers provided.
1321 **/
1322 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1323 u16 *duplex)
1324 {
1325 struct e1000_mac_info *mac = &hw->mac;
1326 u32 pcs, status;
1327
1328 /* Set up defaults for the return values of this function */
1329 mac->serdes_has_link = false;
1330 *speed = 0;
1331 *duplex = 0;
1332
1333 /* Read the PCS Status register for link state. For non-copper mode,
1334 * the status register is not accurate. The PCS status register is
1335 * used instead.
1336 */
1337 pcs = rd32(E1000_PCS_LSTAT);
1338
1339 /* The link up bit determines when link is up on autoneg. The sync ok
1340 * gets set once both sides sync up and agree upon link. Stable link
1341 * can be determined by checking for both link up and link sync ok
1342 */
1343 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1344 mac->serdes_has_link = true;
1345
1346 /* Detect and store PCS speed */
1347 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1348 *speed = SPEED_1000;
1349 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1350 *speed = SPEED_100;
1351 else
1352 *speed = SPEED_10;
1353
1354 /* Detect and store PCS duplex */
1355 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1356 *duplex = FULL_DUPLEX;
1357 else
1358 *duplex = HALF_DUPLEX;
1359
1360 /* Check if it is an I354 2.5Gb backplane connection. */
1361 if (mac->type == e1000_i354) {
1362 status = rd32(E1000_STATUS);
1363 if ((status & E1000_STATUS_2P5_SKU) &&
1364 !(status & E1000_STATUS_2P5_SKU_OVER)) {
1365 *speed = SPEED_2500;
1366 *duplex = FULL_DUPLEX;
1367 hw_dbg("2500 Mbs, ");
1368 hw_dbg("Full Duplex\n");
1369 }
1370 }
1371
1372 }
1373
1374 return 0;
1375 }
1376
1377 /**
1378 * igb_shutdown_serdes_link_82575 - Remove link during power down
1379 * @hw: pointer to the HW structure
1380 *
1381 * In the case of fiber serdes, shut down optics and PCS on driver unload
1382 * when management pass thru is not enabled.
1383 **/
1384 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1385 {
1386 u32 reg;
1387
1388 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1389 igb_sgmii_active_82575(hw))
1390 return;
1391
1392 if (!igb_enable_mng_pass_thru(hw)) {
1393 /* Disable PCS to turn off link */
1394 reg = rd32(E1000_PCS_CFG0);
1395 reg &= ~E1000_PCS_CFG_PCS_EN;
1396 wr32(E1000_PCS_CFG0, reg);
1397
1398 /* shutdown the laser */
1399 reg = rd32(E1000_CTRL_EXT);
1400 reg |= E1000_CTRL_EXT_SDP3_DATA;
1401 wr32(E1000_CTRL_EXT, reg);
1402
1403 /* flush the write to verify completion */
1404 wrfl();
1405 usleep_range(1000, 2000);
1406 }
1407 }
1408
1409 /**
1410 * igb_reset_hw_82575 - Reset hardware
1411 * @hw: pointer to the HW structure
1412 *
1413 * This resets the hardware into a known state. This is a
1414 * function pointer entry point called by the api module.
1415 **/
1416 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1417 {
1418 u32 ctrl;
1419 s32 ret_val;
1420
1421 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1422 * on the last TLP read/write transaction when MAC is reset.
1423 */
1424 ret_val = igb_disable_pcie_master(hw);
1425 if (ret_val)
1426 hw_dbg("PCI-E Master disable polling has failed.\n");
1427
1428 /* set the completion timeout for interface */
1429 ret_val = igb_set_pcie_completion_timeout(hw);
1430 if (ret_val)
1431 hw_dbg("PCI-E Set completion timeout has failed.\n");
1432
1433 hw_dbg("Masking off all interrupts\n");
1434 wr32(E1000_IMC, 0xffffffff);
1435
1436 wr32(E1000_RCTL, 0);
1437 wr32(E1000_TCTL, E1000_TCTL_PSP);
1438 wrfl();
1439
1440 usleep_range(10000, 20000);
1441
1442 ctrl = rd32(E1000_CTRL);
1443
1444 hw_dbg("Issuing a global reset to MAC\n");
1445 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1446
1447 ret_val = igb_get_auto_rd_done(hw);
1448 if (ret_val) {
1449 /* When auto config read does not complete, do not
1450 * return with an error. This can happen in situations
1451 * where there is no eeprom and prevents getting link.
1452 */
1453 hw_dbg("Auto Read Done did not complete\n");
1454 }
1455
1456 /* If EEPROM is not present, run manual init scripts */
1457 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1458 igb_reset_init_script_82575(hw);
1459
1460 /* Clear any pending interrupt events. */
1461 wr32(E1000_IMC, 0xffffffff);
1462 rd32(E1000_ICR);
1463
1464 /* Install any alternate MAC address into RAR0 */
1465 ret_val = igb_check_alt_mac_addr(hw);
1466
1467 return ret_val;
1468 }
1469
1470 /**
1471 * igb_init_hw_82575 - Initialize hardware
1472 * @hw: pointer to the HW structure
1473 *
1474 * This inits the hardware readying it for operation.
1475 **/
1476 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1477 {
1478 struct e1000_mac_info *mac = &hw->mac;
1479 s32 ret_val;
1480 u16 i, rar_count = mac->rar_entry_count;
1481
1482 if ((hw->mac.type >= e1000_i210) &&
1483 !(igb_get_flash_presence_i210(hw))) {
1484 ret_val = igb_pll_workaround_i210(hw);
1485 if (ret_val)
1486 return ret_val;
1487 }
1488
1489 /* Initialize identification LED */
1490 ret_val = igb_id_led_init(hw);
1491 if (ret_val) {
1492 hw_dbg("Error initializing identification LED\n");
1493 /* This is not fatal and we should not stop init due to this */
1494 }
1495
1496 /* Disabling VLAN filtering */
1497 hw_dbg("Initializing the IEEE VLAN\n");
1498 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1499 igb_clear_vfta_i350(hw);
1500 else
1501 igb_clear_vfta(hw);
1502
1503 /* Setup the receive address */
1504 igb_init_rx_addrs(hw, rar_count);
1505
1506 /* Zero out the Multicast HASH table */
1507 hw_dbg("Zeroing the MTA\n");
1508 for (i = 0; i < mac->mta_reg_count; i++)
1509 array_wr32(E1000_MTA, i, 0);
1510
1511 /* Zero out the Unicast HASH table */
1512 hw_dbg("Zeroing the UTA\n");
1513 for (i = 0; i < mac->uta_reg_count; i++)
1514 array_wr32(E1000_UTA, i, 0);
1515
1516 /* Setup link and flow control */
1517 ret_val = igb_setup_link(hw);
1518
1519 /* Clear all of the statistics registers (clear on read). It is
1520 * important that we do this after we have tried to establish link
1521 * because the symbol error count will increment wildly if there
1522 * is no link.
1523 */
1524 igb_clear_hw_cntrs_82575(hw);
1525 return ret_val;
1526 }
1527
1528 /**
1529 * igb_setup_copper_link_82575 - Configure copper link settings
1530 * @hw: pointer to the HW structure
1531 *
1532 * Configures the link for auto-neg or forced speed and duplex. Then we check
1533 * for link, once link is established calls to configure collision distance
1534 * and flow control are called.
1535 **/
1536 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1537 {
1538 u32 ctrl;
1539 s32 ret_val;
1540 u32 phpm_reg;
1541
1542 ctrl = rd32(E1000_CTRL);
1543 ctrl |= E1000_CTRL_SLU;
1544 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1545 wr32(E1000_CTRL, ctrl);
1546
1547 /* Clear Go Link Disconnect bit on supported devices */
1548 switch (hw->mac.type) {
1549 case e1000_82580:
1550 case e1000_i350:
1551 case e1000_i210:
1552 case e1000_i211:
1553 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1554 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1555 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1556 break;
1557 default:
1558 break;
1559 }
1560
1561 ret_val = igb_setup_serdes_link_82575(hw);
1562 if (ret_val)
1563 goto out;
1564
1565 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1566 /* allow time for SFP cage time to power up phy */
1567 msleep(300);
1568
1569 ret_val = hw->phy.ops.reset(hw);
1570 if (ret_val) {
1571 hw_dbg("Error resetting the PHY.\n");
1572 goto out;
1573 }
1574 }
1575 switch (hw->phy.type) {
1576 case e1000_phy_i210:
1577 case e1000_phy_m88:
1578 switch (hw->phy.id) {
1579 case I347AT4_E_PHY_ID:
1580 case M88E1112_E_PHY_ID:
1581 case M88E1543_E_PHY_ID:
1582 case I210_I_PHY_ID:
1583 ret_val = igb_copper_link_setup_m88_gen2(hw);
1584 break;
1585 default:
1586 ret_val = igb_copper_link_setup_m88(hw);
1587 break;
1588 }
1589 break;
1590 case e1000_phy_igp_3:
1591 ret_val = igb_copper_link_setup_igp(hw);
1592 break;
1593 case e1000_phy_82580:
1594 ret_val = igb_copper_link_setup_82580(hw);
1595 break;
1596 default:
1597 ret_val = -E1000_ERR_PHY;
1598 break;
1599 }
1600
1601 if (ret_val)
1602 goto out;
1603
1604 ret_val = igb_setup_copper_link(hw);
1605 out:
1606 return ret_val;
1607 }
1608
1609 /**
1610 * igb_setup_serdes_link_82575 - Setup link for serdes
1611 * @hw: pointer to the HW structure
1612 *
1613 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1614 * used on copper connections where the serialized gigabit media independent
1615 * interface (sgmii), or serdes fiber is being used. Configures the link
1616 * for auto-negotiation or forces speed/duplex.
1617 **/
1618 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1619 {
1620 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1621 bool pcs_autoneg;
1622 s32 ret_val = 0;
1623 u16 data;
1624
1625 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1626 !igb_sgmii_active_82575(hw))
1627 return ret_val;
1628
1629
1630 /* On the 82575, SerDes loopback mode persists until it is
1631 * explicitly turned off or a power cycle is performed. A read to
1632 * the register does not indicate its status. Therefore, we ensure
1633 * loopback mode is disabled during initialization.
1634 */
1635 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1636
1637 /* power on the sfp cage if present and turn on I2C */
1638 ctrl_ext = rd32(E1000_CTRL_EXT);
1639 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1640 ctrl_ext |= E1000_CTRL_I2C_ENA;
1641 wr32(E1000_CTRL_EXT, ctrl_ext);
1642
1643 ctrl_reg = rd32(E1000_CTRL);
1644 ctrl_reg |= E1000_CTRL_SLU;
1645
1646 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1647 /* set both sw defined pins */
1648 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1649
1650 /* Set switch control to serdes energy detect */
1651 reg = rd32(E1000_CONNSW);
1652 reg |= E1000_CONNSW_ENRGSRC;
1653 wr32(E1000_CONNSW, reg);
1654 }
1655
1656 reg = rd32(E1000_PCS_LCTL);
1657
1658 /* default pcs_autoneg to the same setting as mac autoneg */
1659 pcs_autoneg = hw->mac.autoneg;
1660
1661 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1662 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1663 /* sgmii mode lets the phy handle forcing speed/duplex */
1664 pcs_autoneg = true;
1665 /* autoneg time out should be disabled for SGMII mode */
1666 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1667 break;
1668 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1669 /* disable PCS autoneg and support parallel detect only */
1670 pcs_autoneg = false;
1671 default:
1672 if (hw->mac.type == e1000_82575 ||
1673 hw->mac.type == e1000_82576) {
1674 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1675 if (ret_val) {
1676 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1677 return ret_val;
1678 }
1679
1680 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1681 pcs_autoneg = false;
1682 }
1683
1684 /* non-SGMII modes only supports a speed of 1000/Full for the
1685 * link so it is best to just force the MAC and let the pcs
1686 * link either autoneg or be forced to 1000/Full
1687 */
1688 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1689 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1690
1691 /* set speed of 1000/Full if speed/duplex is forced */
1692 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1693 break;
1694 }
1695
1696 wr32(E1000_CTRL, ctrl_reg);
1697
1698 /* New SerDes mode allows for forcing speed or autonegotiating speed
1699 * at 1gb. Autoneg should be default set by most drivers. This is the
1700 * mode that will be compatible with older link partners and switches.
1701 * However, both are supported by the hardware and some drivers/tools.
1702 */
1703 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1704 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1705
1706 if (pcs_autoneg) {
1707 /* Set PCS register for autoneg */
1708 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1709 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1710
1711 /* Disable force flow control for autoneg */
1712 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1713
1714 /* Configure flow control advertisement for autoneg */
1715 anadv_reg = rd32(E1000_PCS_ANADV);
1716 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1717 switch (hw->fc.requested_mode) {
1718 case e1000_fc_full:
1719 case e1000_fc_rx_pause:
1720 anadv_reg |= E1000_TXCW_ASM_DIR;
1721 anadv_reg |= E1000_TXCW_PAUSE;
1722 break;
1723 case e1000_fc_tx_pause:
1724 anadv_reg |= E1000_TXCW_ASM_DIR;
1725 break;
1726 default:
1727 break;
1728 }
1729 wr32(E1000_PCS_ANADV, anadv_reg);
1730
1731 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1732 } else {
1733 /* Set PCS register for forced link */
1734 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1735
1736 /* Force flow control for forced link */
1737 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1738
1739 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1740 }
1741
1742 wr32(E1000_PCS_LCTL, reg);
1743
1744 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1745 igb_force_mac_fc(hw);
1746
1747 return ret_val;
1748 }
1749
1750 /**
1751 * igb_sgmii_active_82575 - Return sgmii state
1752 * @hw: pointer to the HW structure
1753 *
1754 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1755 * which can be enabled for use in the embedded applications. Simply
1756 * return the current state of the sgmii interface.
1757 **/
1758 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1759 {
1760 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1761 return dev_spec->sgmii_active;
1762 }
1763
1764 /**
1765 * igb_reset_init_script_82575 - Inits HW defaults after reset
1766 * @hw: pointer to the HW structure
1767 *
1768 * Inits recommended HW defaults after a reset when there is no EEPROM
1769 * detected. This is only for the 82575.
1770 **/
1771 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1772 {
1773 if (hw->mac.type == e1000_82575) {
1774 hw_dbg("Running reset init script for 82575\n");
1775 /* SerDes configuration via SERDESCTRL */
1776 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1777 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1778 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1779 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1780
1781 /* CCM configuration via CCMCTL register */
1782 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1783 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1784
1785 /* PCIe lanes configuration */
1786 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1787 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1788 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1789 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1790
1791 /* PCIe PLL Configuration */
1792 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1793 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1794 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1795 }
1796
1797 return 0;
1798 }
1799
1800 /**
1801 * igb_read_mac_addr_82575 - Read device MAC address
1802 * @hw: pointer to the HW structure
1803 **/
1804 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1805 {
1806 s32 ret_val = 0;
1807
1808 /* If there's an alternate MAC address place it in RAR0
1809 * so that it will override the Si installed default perm
1810 * address.
1811 */
1812 ret_val = igb_check_alt_mac_addr(hw);
1813 if (ret_val)
1814 goto out;
1815
1816 ret_val = igb_read_mac_addr(hw);
1817
1818 out:
1819 return ret_val;
1820 }
1821
1822 /**
1823 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1824 * @hw: pointer to the HW structure
1825 *
1826 * In the case of a PHY power down to save power, or to turn off link during a
1827 * driver unload, or wake on lan is not enabled, remove the link.
1828 **/
1829 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1830 {
1831 /* If the management interface is not enabled, then power down */
1832 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1833 igb_power_down_phy_copper(hw);
1834 }
1835
1836 /**
1837 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1838 * @hw: pointer to the HW structure
1839 *
1840 * Clears the hardware counters by reading the counter registers.
1841 **/
1842 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1843 {
1844 igb_clear_hw_cntrs_base(hw);
1845
1846 rd32(E1000_PRC64);
1847 rd32(E1000_PRC127);
1848 rd32(E1000_PRC255);
1849 rd32(E1000_PRC511);
1850 rd32(E1000_PRC1023);
1851 rd32(E1000_PRC1522);
1852 rd32(E1000_PTC64);
1853 rd32(E1000_PTC127);
1854 rd32(E1000_PTC255);
1855 rd32(E1000_PTC511);
1856 rd32(E1000_PTC1023);
1857 rd32(E1000_PTC1522);
1858
1859 rd32(E1000_ALGNERRC);
1860 rd32(E1000_RXERRC);
1861 rd32(E1000_TNCRS);
1862 rd32(E1000_CEXTERR);
1863 rd32(E1000_TSCTC);
1864 rd32(E1000_TSCTFC);
1865
1866 rd32(E1000_MGTPRC);
1867 rd32(E1000_MGTPDC);
1868 rd32(E1000_MGTPTC);
1869
1870 rd32(E1000_IAC);
1871 rd32(E1000_ICRXOC);
1872
1873 rd32(E1000_ICRXPTC);
1874 rd32(E1000_ICRXATC);
1875 rd32(E1000_ICTXPTC);
1876 rd32(E1000_ICTXATC);
1877 rd32(E1000_ICTXQEC);
1878 rd32(E1000_ICTXQMTC);
1879 rd32(E1000_ICRXDMTC);
1880
1881 rd32(E1000_CBTMPC);
1882 rd32(E1000_HTDPMC);
1883 rd32(E1000_CBRMPC);
1884 rd32(E1000_RPTHC);
1885 rd32(E1000_HGPTC);
1886 rd32(E1000_HTCBDPC);
1887 rd32(E1000_HGORCL);
1888 rd32(E1000_HGORCH);
1889 rd32(E1000_HGOTCL);
1890 rd32(E1000_HGOTCH);
1891 rd32(E1000_LENERRS);
1892
1893 /* This register should not be read in copper configurations */
1894 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1895 igb_sgmii_active_82575(hw))
1896 rd32(E1000_SCVPC);
1897 }
1898
1899 /**
1900 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1901 * @hw: pointer to the HW structure
1902 *
1903 * After rx enable if managability is enabled then there is likely some
1904 * bad data at the start of the fifo and possibly in the DMA fifo. This
1905 * function clears the fifos and flushes any packets that came in as rx was
1906 * being enabled.
1907 **/
1908 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1909 {
1910 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1911 int i, ms_wait;
1912
1913 if (hw->mac.type != e1000_82575 ||
1914 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1915 return;
1916
1917 /* Disable all RX queues */
1918 for (i = 0; i < 4; i++) {
1919 rxdctl[i] = rd32(E1000_RXDCTL(i));
1920 wr32(E1000_RXDCTL(i),
1921 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1922 }
1923 /* Poll all queues to verify they have shut down */
1924 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1925 usleep_range(1000, 2000);
1926 rx_enabled = 0;
1927 for (i = 0; i < 4; i++)
1928 rx_enabled |= rd32(E1000_RXDCTL(i));
1929 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1930 break;
1931 }
1932
1933 if (ms_wait == 10)
1934 hw_dbg("Queue disable timed out after 10ms\n");
1935
1936 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1937 * incoming packets are rejected. Set enable and wait 2ms so that
1938 * any packet that was coming in as RCTL.EN was set is flushed
1939 */
1940 rfctl = rd32(E1000_RFCTL);
1941 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1942
1943 rlpml = rd32(E1000_RLPML);
1944 wr32(E1000_RLPML, 0);
1945
1946 rctl = rd32(E1000_RCTL);
1947 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1948 temp_rctl |= E1000_RCTL_LPE;
1949
1950 wr32(E1000_RCTL, temp_rctl);
1951 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1952 wrfl();
1953 usleep_range(2000, 3000);
1954
1955 /* Enable RX queues that were previously enabled and restore our
1956 * previous state
1957 */
1958 for (i = 0; i < 4; i++)
1959 wr32(E1000_RXDCTL(i), rxdctl[i]);
1960 wr32(E1000_RCTL, rctl);
1961 wrfl();
1962
1963 wr32(E1000_RLPML, rlpml);
1964 wr32(E1000_RFCTL, rfctl);
1965
1966 /* Flush receive errors generated by workaround */
1967 rd32(E1000_ROC);
1968 rd32(E1000_RNBC);
1969 rd32(E1000_MPC);
1970 }
1971
1972 /**
1973 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1974 * @hw: pointer to the HW structure
1975 *
1976 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1977 * however the hardware default for these parts is 500us to 1ms which is less
1978 * than the 10ms recommended by the pci-e spec. To address this we need to
1979 * increase the value to either 10ms to 200ms for capability version 1 config,
1980 * or 16ms to 55ms for version 2.
1981 **/
1982 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1983 {
1984 u32 gcr = rd32(E1000_GCR);
1985 s32 ret_val = 0;
1986 u16 pcie_devctl2;
1987
1988 /* only take action if timeout value is defaulted to 0 */
1989 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1990 goto out;
1991
1992 /* if capabilities version is type 1 we can write the
1993 * timeout of 10ms to 200ms through the GCR register
1994 */
1995 if (!(gcr & E1000_GCR_CAP_VER2)) {
1996 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1997 goto out;
1998 }
1999
2000 /* for version 2 capabilities we need to write the config space
2001 * directly in order to set the completion timeout value for
2002 * 16ms to 55ms
2003 */
2004 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2005 &pcie_devctl2);
2006 if (ret_val)
2007 goto out;
2008
2009 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2010
2011 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2012 &pcie_devctl2);
2013 out:
2014 /* disable completion timeout resend */
2015 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2016
2017 wr32(E1000_GCR, gcr);
2018 return ret_val;
2019 }
2020
2021 /**
2022 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2023 * @hw: pointer to the hardware struct
2024 * @enable: state to enter, either enabled or disabled
2025 * @pf: Physical Function pool - do not set anti-spoofing for the PF
2026 *
2027 * enables/disables L2 switch anti-spoofing functionality.
2028 **/
2029 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2030 {
2031 u32 reg_val, reg_offset;
2032
2033 switch (hw->mac.type) {
2034 case e1000_82576:
2035 reg_offset = E1000_DTXSWC;
2036 break;
2037 case e1000_i350:
2038 case e1000_i354:
2039 reg_offset = E1000_TXSWC;
2040 break;
2041 default:
2042 return;
2043 }
2044
2045 reg_val = rd32(reg_offset);
2046 if (enable) {
2047 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2048 E1000_DTXSWC_VLAN_SPOOF_MASK);
2049 /* The PF can spoof - it has to in order to
2050 * support emulation mode NICs
2051 */
2052 reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2053 } else {
2054 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2055 E1000_DTXSWC_VLAN_SPOOF_MASK);
2056 }
2057 wr32(reg_offset, reg_val);
2058 }
2059
2060 /**
2061 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2062 * @hw: pointer to the hardware struct
2063 * @enable: state to enter, either enabled or disabled
2064 *
2065 * enables/disables L2 switch loopback functionality.
2066 **/
2067 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2068 {
2069 u32 dtxswc;
2070
2071 switch (hw->mac.type) {
2072 case e1000_82576:
2073 dtxswc = rd32(E1000_DTXSWC);
2074 if (enable)
2075 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2076 else
2077 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2078 wr32(E1000_DTXSWC, dtxswc);
2079 break;
2080 case e1000_i354:
2081 case e1000_i350:
2082 dtxswc = rd32(E1000_TXSWC);
2083 if (enable)
2084 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2085 else
2086 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2087 wr32(E1000_TXSWC, dtxswc);
2088 break;
2089 default:
2090 /* Currently no other hardware supports loopback */
2091 break;
2092 }
2093
2094 }
2095
2096 /**
2097 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
2098 * @hw: pointer to the hardware struct
2099 * @enable: state to enter, either enabled or disabled
2100 *
2101 * enables/disables replication of packets across multiple pools.
2102 **/
2103 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2104 {
2105 u32 vt_ctl = rd32(E1000_VT_CTL);
2106
2107 if (enable)
2108 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2109 else
2110 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2111
2112 wr32(E1000_VT_CTL, vt_ctl);
2113 }
2114
2115 /**
2116 * igb_read_phy_reg_82580 - Read 82580 MDI control register
2117 * @hw: pointer to the HW structure
2118 * @offset: register offset to be read
2119 * @data: pointer to the read data
2120 *
2121 * Reads the MDI control register in the PHY at offset and stores the
2122 * information read to data.
2123 **/
2124 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2125 {
2126 s32 ret_val;
2127
2128 ret_val = hw->phy.ops.acquire(hw);
2129 if (ret_val)
2130 goto out;
2131
2132 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2133
2134 hw->phy.ops.release(hw);
2135
2136 out:
2137 return ret_val;
2138 }
2139
2140 /**
2141 * igb_write_phy_reg_82580 - Write 82580 MDI control register
2142 * @hw: pointer to the HW structure
2143 * @offset: register offset to write to
2144 * @data: data to write to register at offset
2145 *
2146 * Writes data to MDI control register in the PHY at offset.
2147 **/
2148 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2149 {
2150 s32 ret_val;
2151
2152
2153 ret_val = hw->phy.ops.acquire(hw);
2154 if (ret_val)
2155 goto out;
2156
2157 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2158
2159 hw->phy.ops.release(hw);
2160
2161 out:
2162 return ret_val;
2163 }
2164
2165 /**
2166 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2167 * @hw: pointer to the HW structure
2168 *
2169 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2170 * the values found in the EEPROM. This addresses an issue in which these
2171 * bits are not restored from EEPROM after reset.
2172 **/
2173 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2174 {
2175 s32 ret_val = 0;
2176 u32 mdicnfg;
2177 u16 nvm_data = 0;
2178
2179 if (hw->mac.type != e1000_82580)
2180 goto out;
2181 if (!igb_sgmii_active_82575(hw))
2182 goto out;
2183
2184 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2185 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2186 &nvm_data);
2187 if (ret_val) {
2188 hw_dbg("NVM Read Error\n");
2189 goto out;
2190 }
2191
2192 mdicnfg = rd32(E1000_MDICNFG);
2193 if (nvm_data & NVM_WORD24_EXT_MDIO)
2194 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2195 if (nvm_data & NVM_WORD24_COM_MDIO)
2196 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2197 wr32(E1000_MDICNFG, mdicnfg);
2198 out:
2199 return ret_val;
2200 }
2201
2202 /**
2203 * igb_reset_hw_82580 - Reset hardware
2204 * @hw: pointer to the HW structure
2205 *
2206 * This resets function or entire device (all ports, etc.)
2207 * to a known state.
2208 **/
2209 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2210 {
2211 s32 ret_val = 0;
2212 /* BH SW mailbox bit in SW_FW_SYNC */
2213 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2214 u32 ctrl;
2215 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2216
2217 hw->dev_spec._82575.global_device_reset = false;
2218
2219 /* due to hw errata, global device reset doesn't always
2220 * work on 82580
2221 */
2222 if (hw->mac.type == e1000_82580)
2223 global_device_reset = false;
2224
2225 /* Get current control state. */
2226 ctrl = rd32(E1000_CTRL);
2227
2228 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2229 * on the last TLP read/write transaction when MAC is reset.
2230 */
2231 ret_val = igb_disable_pcie_master(hw);
2232 if (ret_val)
2233 hw_dbg("PCI-E Master disable polling has failed.\n");
2234
2235 hw_dbg("Masking off all interrupts\n");
2236 wr32(E1000_IMC, 0xffffffff);
2237 wr32(E1000_RCTL, 0);
2238 wr32(E1000_TCTL, E1000_TCTL_PSP);
2239 wrfl();
2240
2241 usleep_range(10000, 11000);
2242
2243 /* Determine whether or not a global dev reset is requested */
2244 if (global_device_reset &&
2245 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2246 global_device_reset = false;
2247
2248 if (global_device_reset &&
2249 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2250 ctrl |= E1000_CTRL_DEV_RST;
2251 else
2252 ctrl |= E1000_CTRL_RST;
2253
2254 wr32(E1000_CTRL, ctrl);
2255 wrfl();
2256
2257 /* Add delay to insure DEV_RST has time to complete */
2258 if (global_device_reset)
2259 usleep_range(5000, 6000);
2260
2261 ret_val = igb_get_auto_rd_done(hw);
2262 if (ret_val) {
2263 /* When auto config read does not complete, do not
2264 * return with an error. This can happen in situations
2265 * where there is no eeprom and prevents getting link.
2266 */
2267 hw_dbg("Auto Read Done did not complete\n");
2268 }
2269
2270 /* clear global device reset status bit */
2271 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2272
2273 /* Clear any pending interrupt events. */
2274 wr32(E1000_IMC, 0xffffffff);
2275 rd32(E1000_ICR);
2276
2277 ret_val = igb_reset_mdicnfg_82580(hw);
2278 if (ret_val)
2279 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2280
2281 /* Install any alternate MAC address into RAR0 */
2282 ret_val = igb_check_alt_mac_addr(hw);
2283
2284 /* Release semaphore */
2285 if (global_device_reset)
2286 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2287
2288 return ret_val;
2289 }
2290
2291 /**
2292 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2293 * @data: data received by reading RXPBS register
2294 *
2295 * The 82580 uses a table based approach for packet buffer allocation sizes.
2296 * This function converts the retrieved value into the correct table value
2297 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2298 * 0x0 36 72 144 1 2 4 8 16
2299 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2300 */
2301 u16 igb_rxpbs_adjust_82580(u32 data)
2302 {
2303 u16 ret_val = 0;
2304
2305 if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2306 ret_val = e1000_82580_rxpbs_table[data];
2307
2308 return ret_val;
2309 }
2310
2311 /**
2312 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2313 * checksum
2314 * @hw: pointer to the HW structure
2315 * @offset: offset in words of the checksum protected region
2316 *
2317 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2318 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2319 **/
2320 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2321 u16 offset)
2322 {
2323 s32 ret_val = 0;
2324 u16 checksum = 0;
2325 u16 i, nvm_data;
2326
2327 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2328 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2329 if (ret_val) {
2330 hw_dbg("NVM Read Error\n");
2331 goto out;
2332 }
2333 checksum += nvm_data;
2334 }
2335
2336 if (checksum != (u16) NVM_SUM) {
2337 hw_dbg("NVM Checksum Invalid\n");
2338 ret_val = -E1000_ERR_NVM;
2339 goto out;
2340 }
2341
2342 out:
2343 return ret_val;
2344 }
2345
2346 /**
2347 * igb_update_nvm_checksum_with_offset - Update EEPROM
2348 * checksum
2349 * @hw: pointer to the HW structure
2350 * @offset: offset in words of the checksum protected region
2351 *
2352 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2353 * up to the checksum. Then calculates the EEPROM checksum and writes the
2354 * value to the EEPROM.
2355 **/
2356 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2357 {
2358 s32 ret_val;
2359 u16 checksum = 0;
2360 u16 i, nvm_data;
2361
2362 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2363 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2364 if (ret_val) {
2365 hw_dbg("NVM Read Error while updating checksum.\n");
2366 goto out;
2367 }
2368 checksum += nvm_data;
2369 }
2370 checksum = (u16) NVM_SUM - checksum;
2371 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2372 &checksum);
2373 if (ret_val)
2374 hw_dbg("NVM Write Error while updating checksum.\n");
2375
2376 out:
2377 return ret_val;
2378 }
2379
2380 /**
2381 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2382 * @hw: pointer to the HW structure
2383 *
2384 * Calculates the EEPROM section checksum by reading/adding each word of
2385 * the EEPROM and then verifies that the sum of the EEPROM is
2386 * equal to 0xBABA.
2387 **/
2388 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2389 {
2390 s32 ret_val = 0;
2391 u16 eeprom_regions_count = 1;
2392 u16 j, nvm_data;
2393 u16 nvm_offset;
2394
2395 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2396 if (ret_val) {
2397 hw_dbg("NVM Read Error\n");
2398 goto out;
2399 }
2400
2401 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2402 /* if checksums compatibility bit is set validate checksums
2403 * for all 4 ports.
2404 */
2405 eeprom_regions_count = 4;
2406 }
2407
2408 for (j = 0; j < eeprom_regions_count; j++) {
2409 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2410 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2411 nvm_offset);
2412 if (ret_val != 0)
2413 goto out;
2414 }
2415
2416 out:
2417 return ret_val;
2418 }
2419
2420 /**
2421 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2422 * @hw: pointer to the HW structure
2423 *
2424 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2425 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2426 * checksum and writes the value to the EEPROM.
2427 **/
2428 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2429 {
2430 s32 ret_val;
2431 u16 j, nvm_data;
2432 u16 nvm_offset;
2433
2434 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435 if (ret_val) {
2436 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2437 goto out;
2438 }
2439
2440 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2441 /* set compatibility bit to validate checksums appropriately */
2442 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2443 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2444 &nvm_data);
2445 if (ret_val) {
2446 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2447 goto out;
2448 }
2449 }
2450
2451 for (j = 0; j < 4; j++) {
2452 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2453 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2454 if (ret_val)
2455 goto out;
2456 }
2457
2458 out:
2459 return ret_val;
2460 }
2461
2462 /**
2463 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2464 * @hw: pointer to the HW structure
2465 *
2466 * Calculates the EEPROM section checksum by reading/adding each word of
2467 * the EEPROM and then verifies that the sum of the EEPROM is
2468 * equal to 0xBABA.
2469 **/
2470 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2471 {
2472 s32 ret_val = 0;
2473 u16 j;
2474 u16 nvm_offset;
2475
2476 for (j = 0; j < 4; j++) {
2477 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2478 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2479 nvm_offset);
2480 if (ret_val != 0)
2481 goto out;
2482 }
2483
2484 out:
2485 return ret_val;
2486 }
2487
2488 /**
2489 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2490 * @hw: pointer to the HW structure
2491 *
2492 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2493 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2494 * checksum and writes the value to the EEPROM.
2495 **/
2496 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2497 {
2498 s32 ret_val = 0;
2499 u16 j;
2500 u16 nvm_offset;
2501
2502 for (j = 0; j < 4; j++) {
2503 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2504 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2505 if (ret_val != 0)
2506 goto out;
2507 }
2508
2509 out:
2510 return ret_val;
2511 }
2512
2513 /**
2514 * __igb_access_emi_reg - Read/write EMI register
2515 * @hw: pointer to the HW structure
2516 * @addr: EMI address to program
2517 * @data: pointer to value to read/write from/to the EMI address
2518 * @read: boolean flag to indicate read or write
2519 **/
2520 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2521 u16 *data, bool read)
2522 {
2523 s32 ret_val = 0;
2524
2525 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2526 if (ret_val)
2527 return ret_val;
2528
2529 if (read)
2530 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2531 else
2532 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2533
2534 return ret_val;
2535 }
2536
2537 /**
2538 * igb_read_emi_reg - Read Extended Management Interface register
2539 * @hw: pointer to the HW structure
2540 * @addr: EMI address to program
2541 * @data: value to be read from the EMI address
2542 **/
2543 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2544 {
2545 return __igb_access_emi_reg(hw, addr, data, true);
2546 }
2547
2548 /**
2549 * igb_set_eee_i350 - Enable/disable EEE support
2550 * @hw: pointer to the HW structure
2551 * @adv1G: boolean flag enabling 1G EEE advertisement
2552 * @adv100m: boolean flag enabling 100M EEE advertisement
2553 *
2554 * Enable/disable EEE based on setting in dev_spec structure.
2555 *
2556 **/
2557 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2558 {
2559 u32 ipcnfg, eeer;
2560
2561 if ((hw->mac.type < e1000_i350) ||
2562 (hw->phy.media_type != e1000_media_type_copper))
2563 goto out;
2564 ipcnfg = rd32(E1000_IPCNFG);
2565 eeer = rd32(E1000_EEER);
2566
2567 /* enable or disable per user setting */
2568 if (!(hw->dev_spec._82575.eee_disable)) {
2569 u32 eee_su = rd32(E1000_EEE_SU);
2570
2571 if (adv100M)
2572 ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2573 else
2574 ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2575
2576 if (adv1G)
2577 ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2578 else
2579 ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2580
2581 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2582 E1000_EEER_LPI_FC);
2583
2584 /* This bit should not be set in normal operation. */
2585 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2586 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2587
2588 } else {
2589 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2590 E1000_IPCNFG_EEE_100M_AN);
2591 eeer &= ~(E1000_EEER_TX_LPI_EN |
2592 E1000_EEER_RX_LPI_EN |
2593 E1000_EEER_LPI_FC);
2594 }
2595 wr32(E1000_IPCNFG, ipcnfg);
2596 wr32(E1000_EEER, eeer);
2597 rd32(E1000_IPCNFG);
2598 rd32(E1000_EEER);
2599 out:
2600
2601 return 0;
2602 }
2603
2604 /**
2605 * igb_set_eee_i354 - Enable/disable EEE support
2606 * @hw: pointer to the HW structure
2607 * @adv1G: boolean flag enabling 1G EEE advertisement
2608 * @adv100m: boolean flag enabling 100M EEE advertisement
2609 *
2610 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2611 *
2612 **/
2613 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2614 {
2615 struct e1000_phy_info *phy = &hw->phy;
2616 s32 ret_val = 0;
2617 u16 phy_data;
2618
2619 if ((hw->phy.media_type != e1000_media_type_copper) ||
2620 (phy->id != M88E1543_E_PHY_ID))
2621 goto out;
2622
2623 if (!hw->dev_spec._82575.eee_disable) {
2624 /* Switch to PHY page 18. */
2625 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2626 if (ret_val)
2627 goto out;
2628
2629 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2630 &phy_data);
2631 if (ret_val)
2632 goto out;
2633
2634 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2635 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2636 phy_data);
2637 if (ret_val)
2638 goto out;
2639
2640 /* Return the PHY to page 0. */
2641 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2642 if (ret_val)
2643 goto out;
2644
2645 /* Turn on EEE advertisement. */
2646 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2647 E1000_EEE_ADV_DEV_I354,
2648 &phy_data);
2649 if (ret_val)
2650 goto out;
2651
2652 if (adv100M)
2653 phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2654 else
2655 phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2656
2657 if (adv1G)
2658 phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2659 else
2660 phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2661
2662 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2663 E1000_EEE_ADV_DEV_I354,
2664 phy_data);
2665 } else {
2666 /* Turn off EEE advertisement. */
2667 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2668 E1000_EEE_ADV_DEV_I354,
2669 &phy_data);
2670 if (ret_val)
2671 goto out;
2672
2673 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2674 E1000_EEE_ADV_1000_SUPPORTED);
2675 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2676 E1000_EEE_ADV_DEV_I354,
2677 phy_data);
2678 }
2679
2680 out:
2681 return ret_val;
2682 }
2683
2684 /**
2685 * igb_get_eee_status_i354 - Get EEE status
2686 * @hw: pointer to the HW structure
2687 * @status: EEE status
2688 *
2689 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2690 * been received.
2691 **/
2692 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2693 {
2694 struct e1000_phy_info *phy = &hw->phy;
2695 s32 ret_val = 0;
2696 u16 phy_data;
2697
2698 /* Check if EEE is supported on this device. */
2699 if ((hw->phy.media_type != e1000_media_type_copper) ||
2700 (phy->id != M88E1543_E_PHY_ID))
2701 goto out;
2702
2703 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2704 E1000_PCS_STATUS_DEV_I354,
2705 &phy_data);
2706 if (ret_val)
2707 goto out;
2708
2709 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2710 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2711
2712 out:
2713 return ret_val;
2714 }
2715
2716 static const u8 e1000_emc_temp_data[4] = {
2717 E1000_EMC_INTERNAL_DATA,
2718 E1000_EMC_DIODE1_DATA,
2719 E1000_EMC_DIODE2_DATA,
2720 E1000_EMC_DIODE3_DATA
2721 };
2722 static const u8 e1000_emc_therm_limit[4] = {
2723 E1000_EMC_INTERNAL_THERM_LIMIT,
2724 E1000_EMC_DIODE1_THERM_LIMIT,
2725 E1000_EMC_DIODE2_THERM_LIMIT,
2726 E1000_EMC_DIODE3_THERM_LIMIT
2727 };
2728
2729 #ifdef CONFIG_IGB_HWMON
2730 /**
2731 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2732 * @hw: pointer to hardware structure
2733 *
2734 * Updates the temperatures in mac.thermal_sensor_data
2735 **/
2736 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2737 {
2738 u16 ets_offset;
2739 u16 ets_cfg;
2740 u16 ets_sensor;
2741 u8 num_sensors;
2742 u8 sensor_index;
2743 u8 sensor_location;
2744 u8 i;
2745 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2746
2747 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2748 return E1000_NOT_IMPLEMENTED;
2749
2750 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2751
2752 /* Return the internal sensor only if ETS is unsupported */
2753 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2754 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2755 return 0;
2756
2757 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2758 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2759 != NVM_ETS_TYPE_EMC)
2760 return E1000_NOT_IMPLEMENTED;
2761
2762 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2763 if (num_sensors > E1000_MAX_SENSORS)
2764 num_sensors = E1000_MAX_SENSORS;
2765
2766 for (i = 1; i < num_sensors; i++) {
2767 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2768 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2769 NVM_ETS_DATA_INDEX_SHIFT);
2770 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2771 NVM_ETS_DATA_LOC_SHIFT);
2772
2773 if (sensor_location != 0)
2774 hw->phy.ops.read_i2c_byte(hw,
2775 e1000_emc_temp_data[sensor_index],
2776 E1000_I2C_THERMAL_SENSOR_ADDR,
2777 &data->sensor[i].temp);
2778 }
2779 return 0;
2780 }
2781
2782 /**
2783 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2784 * @hw: pointer to hardware structure
2785 *
2786 * Sets the thermal sensor thresholds according to the NVM map
2787 * and save off the threshold and location values into mac.thermal_sensor_data
2788 **/
2789 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2790 {
2791 u16 ets_offset;
2792 u16 ets_cfg;
2793 u16 ets_sensor;
2794 u8 low_thresh_delta;
2795 u8 num_sensors;
2796 u8 sensor_index;
2797 u8 sensor_location;
2798 u8 therm_limit;
2799 u8 i;
2800 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2801
2802 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2803 return E1000_NOT_IMPLEMENTED;
2804
2805 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2806
2807 data->sensor[0].location = 0x1;
2808 data->sensor[0].caution_thresh =
2809 (rd32(E1000_THHIGHTC) & 0xFF);
2810 data->sensor[0].max_op_thresh =
2811 (rd32(E1000_THLOWTC) & 0xFF);
2812
2813 /* Return the internal sensor only if ETS is unsupported */
2814 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2815 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2816 return 0;
2817
2818 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2819 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2820 != NVM_ETS_TYPE_EMC)
2821 return E1000_NOT_IMPLEMENTED;
2822
2823 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2824 NVM_ETS_LTHRES_DELTA_SHIFT);
2825 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2826
2827 for (i = 1; i <= num_sensors; i++) {
2828 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2829 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2830 NVM_ETS_DATA_INDEX_SHIFT);
2831 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2832 NVM_ETS_DATA_LOC_SHIFT);
2833 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2834
2835 hw->phy.ops.write_i2c_byte(hw,
2836 e1000_emc_therm_limit[sensor_index],
2837 E1000_I2C_THERMAL_SENSOR_ADDR,
2838 therm_limit);
2839
2840 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2841 data->sensor[i].location = sensor_location;
2842 data->sensor[i].caution_thresh = therm_limit;
2843 data->sensor[i].max_op_thresh = therm_limit -
2844 low_thresh_delta;
2845 }
2846 }
2847 return 0;
2848 }
2849
2850 #endif
2851 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2852 .init_hw = igb_init_hw_82575,
2853 .check_for_link = igb_check_for_link_82575,
2854 .rar_set = igb_rar_set,
2855 .read_mac_addr = igb_read_mac_addr_82575,
2856 .get_speed_and_duplex = igb_get_link_up_info_82575,
2857 #ifdef CONFIG_IGB_HWMON
2858 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2859 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2860 #endif
2861 };
2862
2863 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2864 .acquire = igb_acquire_phy_82575,
2865 .get_cfg_done = igb_get_cfg_done_82575,
2866 .release = igb_release_phy_82575,
2867 .write_i2c_byte = igb_write_i2c_byte,
2868 .read_i2c_byte = igb_read_i2c_byte,
2869 };
2870
2871 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2872 .acquire = igb_acquire_nvm_82575,
2873 .read = igb_read_nvm_eerd,
2874 .release = igb_release_nvm_82575,
2875 .write = igb_write_nvm_spi,
2876 };
2877
2878 const struct e1000_info e1000_82575_info = {
2879 .get_invariants = igb_get_invariants_82575,
2880 .mac_ops = &e1000_mac_ops_82575,
2881 .phy_ops = &e1000_phy_ops_82575,
2882 .nvm_ops = &e1000_nvm_ops_82575,
2883 };
2884
This page took 0.093686 seconds and 5 git commands to generate.