Merge tag 'xtensa-next-20130225' of git://github.com/czankel/xtensa-linux
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_i210.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 ******************************************************************************/
27
28 /* e1000_i210
29 * e1000_i211
30 */
31
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34
35 #include "e1000_hw.h"
36 #include "e1000_i210.h"
37
38 /**
39 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
40 * @hw: pointer to the HW structure
41 *
42 * Acquire the HW semaphore to access the PHY or NVM
43 */
44 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
45 {
46 u32 swsm;
47 s32 ret_val = E1000_SUCCESS;
48 s32 timeout = hw->nvm.word_size + 1;
49 s32 i = 0;
50
51 /* Get the FW semaphore. */
52 for (i = 0; i < timeout; i++) {
53 swsm = rd32(E1000_SWSM);
54 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
55
56 /* Semaphore acquired if bit latched */
57 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
58 break;
59
60 udelay(50);
61 }
62
63 if (i == timeout) {
64 /* Release semaphores */
65 igb_put_hw_semaphore(hw);
66 hw_dbg("Driver can't access the NVM\n");
67 ret_val = -E1000_ERR_NVM;
68 goto out;
69 }
70
71 out:
72 return ret_val;
73 }
74
75 /**
76 * igb_acquire_nvm_i210 - Request for access to EEPROM
77 * @hw: pointer to the HW structure
78 *
79 * Acquire the necessary semaphores for exclusive access to the EEPROM.
80 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
81 * Return successful if access grant bit set, else clear the request for
82 * EEPROM access and return -E1000_ERR_NVM (-1).
83 **/
84 s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
85 {
86 return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
87 }
88
89 /**
90 * igb_release_nvm_i210 - Release exclusive access to EEPROM
91 * @hw: pointer to the HW structure
92 *
93 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
94 * then release the semaphores acquired.
95 **/
96 void igb_release_nvm_i210(struct e1000_hw *hw)
97 {
98 igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
99 }
100
101 /**
102 * igb_put_hw_semaphore_i210 - Release hardware semaphore
103 * @hw: pointer to the HW structure
104 *
105 * Release hardware semaphore used to access the PHY or NVM
106 */
107 static void igb_put_hw_semaphore_i210(struct e1000_hw *hw)
108 {
109 u32 swsm;
110
111 swsm = rd32(E1000_SWSM);
112
113 swsm &= ~E1000_SWSM_SWESMBI;
114
115 wr32(E1000_SWSM, swsm);
116 }
117
118 /**
119 * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
120 * @hw: pointer to the HW structure
121 * @mask: specifies which semaphore to acquire
122 *
123 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
124 * will also specify which port we're acquiring the lock for.
125 **/
126 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
127 {
128 u32 swfw_sync;
129 u32 swmask = mask;
130 u32 fwmask = mask << 16;
131 s32 ret_val = E1000_SUCCESS;
132 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
133
134 while (i < timeout) {
135 if (igb_get_hw_semaphore_i210(hw)) {
136 ret_val = -E1000_ERR_SWFW_SYNC;
137 goto out;
138 }
139
140 swfw_sync = rd32(E1000_SW_FW_SYNC);
141 if (!(swfw_sync & fwmask))
142 break;
143
144 /*
145 * Firmware currently using resource (fwmask)
146 */
147 igb_put_hw_semaphore_i210(hw);
148 mdelay(5);
149 i++;
150 }
151
152 if (i == timeout) {
153 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
154 ret_val = -E1000_ERR_SWFW_SYNC;
155 goto out;
156 }
157
158 swfw_sync |= swmask;
159 wr32(E1000_SW_FW_SYNC, swfw_sync);
160
161 igb_put_hw_semaphore_i210(hw);
162 out:
163 return ret_val;
164 }
165
166 /**
167 * igb_release_swfw_sync_i210 - Release SW/FW semaphore
168 * @hw: pointer to the HW structure
169 * @mask: specifies which semaphore to acquire
170 *
171 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
172 * will also specify which port we're releasing the lock for.
173 **/
174 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
175 {
176 u32 swfw_sync;
177
178 while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
179 ; /* Empty */
180
181 swfw_sync = rd32(E1000_SW_FW_SYNC);
182 swfw_sync &= ~mask;
183 wr32(E1000_SW_FW_SYNC, swfw_sync);
184
185 igb_put_hw_semaphore_i210(hw);
186 }
187
188 /**
189 * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
190 * @hw: pointer to the HW structure
191 * @offset: offset of word in the Shadow Ram to read
192 * @words: number of words to read
193 * @data: word read from the Shadow Ram
194 *
195 * Reads a 16 bit word from the Shadow Ram using the EERD register.
196 * Uses necessary synchronization semaphores.
197 **/
198 s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
199 u16 *data)
200 {
201 s32 status = E1000_SUCCESS;
202 u16 i, count;
203
204 /* We cannot hold synchronization semaphores for too long,
205 * because of forceful takeover procedure. However it is more efficient
206 * to read in bursts than synchronizing access for each word. */
207 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
208 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
209 E1000_EERD_EEWR_MAX_COUNT : (words - i);
210 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
211 status = igb_read_nvm_eerd(hw, offset, count,
212 data + i);
213 hw->nvm.ops.release(hw);
214 } else {
215 status = E1000_ERR_SWFW_SYNC;
216 }
217
218 if (status != E1000_SUCCESS)
219 break;
220 }
221
222 return status;
223 }
224
225 /**
226 * igb_write_nvm_srwr - Write to Shadow Ram using EEWR
227 * @hw: pointer to the HW structure
228 * @offset: offset within the Shadow Ram to be written to
229 * @words: number of words to write
230 * @data: 16 bit word(s) to be written to the Shadow Ram
231 *
232 * Writes data to Shadow Ram at offset using EEWR register.
233 *
234 * If igb_update_nvm_checksum is not called after this function , the
235 * Shadow Ram will most likely contain an invalid checksum.
236 **/
237 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
238 u16 *data)
239 {
240 struct e1000_nvm_info *nvm = &hw->nvm;
241 u32 i, k, eewr = 0;
242 u32 attempts = 100000;
243 s32 ret_val = E1000_SUCCESS;
244
245 /*
246 * A check for invalid values: offset too large, too many words,
247 * too many words for the offset, and not enough words.
248 */
249 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
250 (words == 0)) {
251 hw_dbg("nvm parameter(s) out of bounds\n");
252 ret_val = -E1000_ERR_NVM;
253 goto out;
254 }
255
256 for (i = 0; i < words; i++) {
257 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
258 (data[i] << E1000_NVM_RW_REG_DATA) |
259 E1000_NVM_RW_REG_START;
260
261 wr32(E1000_SRWR, eewr);
262
263 for (k = 0; k < attempts; k++) {
264 if (E1000_NVM_RW_REG_DONE &
265 rd32(E1000_SRWR)) {
266 ret_val = E1000_SUCCESS;
267 break;
268 }
269 udelay(5);
270 }
271
272 if (ret_val != E1000_SUCCESS) {
273 hw_dbg("Shadow RAM write EEWR timed out\n");
274 break;
275 }
276 }
277
278 out:
279 return ret_val;
280 }
281
282 /**
283 * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
284 * @hw: pointer to the HW structure
285 * @offset: offset within the Shadow RAM to be written to
286 * @words: number of words to write
287 * @data: 16 bit word(s) to be written to the Shadow RAM
288 *
289 * Writes data to Shadow RAM at offset using EEWR register.
290 *
291 * If e1000_update_nvm_checksum is not called after this function , the
292 * data will not be committed to FLASH and also Shadow RAM will most likely
293 * contain an invalid checksum.
294 *
295 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
296 * partially written.
297 */
298 s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
299 u16 *data)
300 {
301 s32 status = E1000_SUCCESS;
302 u16 i, count;
303
304 /* We cannot hold synchronization semaphores for too long,
305 * because of forceful takeover procedure. However it is more efficient
306 * to write in bursts than synchronizing access for each word.
307 */
308 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
309 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
310 E1000_EERD_EEWR_MAX_COUNT : (words - i);
311 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
312 status = igb_write_nvm_srwr(hw, offset, count,
313 data + i);
314 hw->nvm.ops.release(hw);
315 } else {
316 status = E1000_ERR_SWFW_SYNC;
317 }
318
319 if (status != E1000_SUCCESS)
320 break;
321 }
322
323 return status;
324 }
325
326 /**
327 * igb_read_nvm_i211 - Read NVM wrapper function for I211
328 * @hw: pointer to the HW structure
329 * @address: the word address (aka eeprom offset) to read
330 * @data: pointer to the data read
331 *
332 * Wrapper function to return data formerly found in the NVM.
333 **/
334 s32 igb_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words,
335 u16 *data)
336 {
337 s32 ret_val = E1000_SUCCESS;
338
339 /* Only the MAC addr is required to be present in the iNVM */
340 switch (offset) {
341 case NVM_MAC_ADDR:
342 ret_val = igb_read_invm_i211(hw, offset, &data[0]);
343 ret_val |= igb_read_invm_i211(hw, offset+1, &data[1]);
344 ret_val |= igb_read_invm_i211(hw, offset+2, &data[2]);
345 if (ret_val != E1000_SUCCESS)
346 hw_dbg("MAC Addr not found in iNVM\n");
347 break;
348 case NVM_INIT_CTRL_2:
349 ret_val = igb_read_invm_i211(hw, (u8)offset, data);
350 if (ret_val != E1000_SUCCESS) {
351 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
352 ret_val = E1000_SUCCESS;
353 }
354 break;
355 case NVM_INIT_CTRL_4:
356 ret_val = igb_read_invm_i211(hw, (u8)offset, data);
357 if (ret_val != E1000_SUCCESS) {
358 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
359 ret_val = E1000_SUCCESS;
360 }
361 break;
362 case NVM_LED_1_CFG:
363 ret_val = igb_read_invm_i211(hw, (u8)offset, data);
364 if (ret_val != E1000_SUCCESS) {
365 *data = NVM_LED_1_CFG_DEFAULT_I211;
366 ret_val = E1000_SUCCESS;
367 }
368 break;
369 case NVM_LED_0_2_CFG:
370 igb_read_invm_i211(hw, offset, data);
371 if (ret_val != E1000_SUCCESS) {
372 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
373 ret_val = E1000_SUCCESS;
374 }
375 break;
376 case NVM_ID_LED_SETTINGS:
377 ret_val = igb_read_invm_i211(hw, (u8)offset, data);
378 if (ret_val != E1000_SUCCESS) {
379 *data = ID_LED_RESERVED_FFFF;
380 ret_val = E1000_SUCCESS;
381 }
382 case NVM_SUB_DEV_ID:
383 *data = hw->subsystem_device_id;
384 break;
385 case NVM_SUB_VEN_ID:
386 *data = hw->subsystem_vendor_id;
387 break;
388 case NVM_DEV_ID:
389 *data = hw->device_id;
390 break;
391 case NVM_VEN_ID:
392 *data = hw->vendor_id;
393 break;
394 default:
395 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
396 *data = NVM_RESERVED_WORD;
397 break;
398 }
399 return ret_val;
400 }
401
402 /**
403 * igb_read_invm_i211 - Reads OTP
404 * @hw: pointer to the HW structure
405 * @address: the word address (aka eeprom offset) to read
406 * @data: pointer to the data read
407 *
408 * Reads 16-bit words from the OTP. Return error when the word is not
409 * stored in OTP.
410 **/
411 s32 igb_read_invm_i211(struct e1000_hw *hw, u16 address, u16 *data)
412 {
413 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
414 u32 invm_dword;
415 u16 i;
416 u8 record_type, word_address;
417
418 for (i = 0; i < E1000_INVM_SIZE; i++) {
419 invm_dword = rd32(E1000_INVM_DATA_REG(i));
420 /* Get record type */
421 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
422 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
423 break;
424 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
425 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
426 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
427 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
428 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
429 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
430 if (word_address == (u8)address) {
431 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
432 hw_dbg("Read INVM Word 0x%02x = %x",
433 address, *data);
434 status = E1000_SUCCESS;
435 break;
436 }
437 }
438 }
439 if (status != E1000_SUCCESS)
440 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
441 return status;
442 }
443
444 /**
445 * igb_read_invm_version - Reads iNVM version and image type
446 * @hw: pointer to the HW structure
447 * @invm_ver: version structure for the version read
448 *
449 * Reads iNVM version and image type.
450 **/
451 s32 igb_read_invm_version(struct e1000_hw *hw,
452 struct e1000_fw_version *invm_ver) {
453 u32 *record = NULL;
454 u32 *next_record = NULL;
455 u32 i = 0;
456 u32 invm_dword = 0;
457 u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
458 E1000_INVM_RECORD_SIZE_IN_BYTES);
459 u32 buffer[E1000_INVM_SIZE];
460 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
461 u16 version = 0;
462
463 /* Read iNVM memory */
464 for (i = 0; i < E1000_INVM_SIZE; i++) {
465 invm_dword = rd32(E1000_INVM_DATA_REG(i));
466 buffer[i] = invm_dword;
467 }
468
469 /* Read version number */
470 for (i = 1; i < invm_blocks; i++) {
471 record = &buffer[invm_blocks - i];
472 next_record = &buffer[invm_blocks - i + 1];
473
474 /* Check if we have first version location used */
475 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
476 version = 0;
477 status = E1000_SUCCESS;
478 break;
479 }
480 /* Check if we have second version location used */
481 else if ((i == 1) &&
482 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
483 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
484 status = E1000_SUCCESS;
485 break;
486 }
487 /* Check if we have odd version location
488 * used and it is the last one used
489 */
490 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
491 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
492 (i != 1))) {
493 version = (*next_record & E1000_INVM_VER_FIELD_TWO)
494 >> 13;
495 status = E1000_SUCCESS;
496 break;
497 }
498 /* Check if we have even version location
499 * used and it is the last one used
500 */
501 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
502 ((*record & 0x3) == 0)) {
503 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
504 status = E1000_SUCCESS;
505 break;
506 }
507 }
508
509 if (status == E1000_SUCCESS) {
510 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
511 >> E1000_INVM_MAJOR_SHIFT;
512 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
513 }
514 /* Read Image Type */
515 for (i = 1; i < invm_blocks; i++) {
516 record = &buffer[invm_blocks - i];
517 next_record = &buffer[invm_blocks - i + 1];
518
519 /* Check if we have image type in first location used */
520 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
521 invm_ver->invm_img_type = 0;
522 status = E1000_SUCCESS;
523 break;
524 }
525 /* Check if we have image type in first location used */
526 else if ((((*record & 0x3) == 0) &&
527 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
528 ((((*record & 0x3) != 0) && (i != 1)))) {
529 invm_ver->invm_img_type =
530 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
531 status = E1000_SUCCESS;
532 break;
533 }
534 }
535 return status;
536 }
537
538 /**
539 * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
540 * @hw: pointer to the HW structure
541 *
542 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
543 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
544 **/
545 s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
546 {
547 s32 status = E1000_SUCCESS;
548 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
549
550 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
551
552 /*
553 * Replace the read function with semaphore grabbing with
554 * the one that skips this for a while.
555 * We have semaphore taken already here.
556 */
557 read_op_ptr = hw->nvm.ops.read;
558 hw->nvm.ops.read = igb_read_nvm_eerd;
559
560 status = igb_validate_nvm_checksum(hw);
561
562 /* Revert original read operation. */
563 hw->nvm.ops.read = read_op_ptr;
564
565 hw->nvm.ops.release(hw);
566 } else {
567 status = E1000_ERR_SWFW_SYNC;
568 }
569
570 return status;
571 }
572
573
574 /**
575 * igb_update_nvm_checksum_i210 - Update EEPROM checksum
576 * @hw: pointer to the HW structure
577 *
578 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
579 * up to the checksum. Then calculates the EEPROM checksum and writes the
580 * value to the EEPROM. Next commit EEPROM data onto the Flash.
581 **/
582 s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
583 {
584 s32 ret_val = E1000_SUCCESS;
585 u16 checksum = 0;
586 u16 i, nvm_data;
587
588 /*
589 * Read the first word from the EEPROM. If this times out or fails, do
590 * not continue or we could be in for a very long wait while every
591 * EEPROM read fails
592 */
593 ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
594 if (ret_val != E1000_SUCCESS) {
595 hw_dbg("EEPROM read failed\n");
596 goto out;
597 }
598
599 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
600 /*
601 * Do not use hw->nvm.ops.write, hw->nvm.ops.read
602 * because we do not want to take the synchronization
603 * semaphores twice here.
604 */
605
606 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
607 ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
608 if (ret_val) {
609 hw->nvm.ops.release(hw);
610 hw_dbg("NVM Read Error while updating checksum.\n");
611 goto out;
612 }
613 checksum += nvm_data;
614 }
615 checksum = (u16) NVM_SUM - checksum;
616 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
617 &checksum);
618 if (ret_val != E1000_SUCCESS) {
619 hw->nvm.ops.release(hw);
620 hw_dbg("NVM Write Error while updating checksum.\n");
621 goto out;
622 }
623
624 hw->nvm.ops.release(hw);
625
626 ret_val = igb_update_flash_i210(hw);
627 } else {
628 ret_val = -E1000_ERR_SWFW_SYNC;
629 }
630 out:
631 return ret_val;
632 }
633
634 /**
635 * igb_pool_flash_update_done_i210 - Pool FLUDONE status.
636 * @hw: pointer to the HW structure
637 *
638 */
639 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
640 {
641 s32 ret_val = -E1000_ERR_NVM;
642 u32 i, reg;
643
644 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
645 reg = rd32(E1000_EECD);
646 if (reg & E1000_EECD_FLUDONE_I210) {
647 ret_val = E1000_SUCCESS;
648 break;
649 }
650 udelay(5);
651 }
652
653 return ret_val;
654 }
655
656 /**
657 * igb_update_flash_i210 - Commit EEPROM to the flash
658 * @hw: pointer to the HW structure
659 *
660 **/
661 s32 igb_update_flash_i210(struct e1000_hw *hw)
662 {
663 s32 ret_val = E1000_SUCCESS;
664 u32 flup;
665
666 ret_val = igb_pool_flash_update_done_i210(hw);
667 if (ret_val == -E1000_ERR_NVM) {
668 hw_dbg("Flash update time out\n");
669 goto out;
670 }
671
672 flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
673 wr32(E1000_EECD, flup);
674
675 ret_val = igb_pool_flash_update_done_i210(hw);
676 if (ret_val == E1000_SUCCESS)
677 hw_dbg("Flash update complete\n");
678 else
679 hw_dbg("Flash update time out\n");
680
681 out:
682 return ret_val;
683 }
684
685 /**
686 * igb_valid_led_default_i210 - Verify a valid default LED config
687 * @hw: pointer to the HW structure
688 * @data: pointer to the NVM (EEPROM)
689 *
690 * Read the EEPROM for the current default LED configuration. If the
691 * LED configuration is not valid, set to a valid LED configuration.
692 **/
693 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
694 {
695 s32 ret_val;
696
697 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
698 if (ret_val) {
699 hw_dbg("NVM Read Error\n");
700 goto out;
701 }
702
703 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
704 switch (hw->phy.media_type) {
705 case e1000_media_type_internal_serdes:
706 *data = ID_LED_DEFAULT_I210_SERDES;
707 break;
708 case e1000_media_type_copper:
709 default:
710 *data = ID_LED_DEFAULT_I210;
711 break;
712 }
713 }
714 out:
715 return ret_val;
716 }
This page took 0.077986 seconds and 6 git commands to generate.