Merge remote-tracking branch 'ipvs-next/master'
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
180 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
181
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 static int igb_disable_sriov(struct pci_dev *dev);
186 static int igb_pci_disable_sriov(struct pci_dev *dev);
187 #endif
188
189 #ifdef CONFIG_PM
190 #ifdef CONFIG_PM_SLEEP
191 static int igb_suspend(struct device *);
192 #endif
193 static int igb_resume(struct device *);
194 static int igb_runtime_suspend(struct device *dev);
195 static int igb_runtime_resume(struct device *dev);
196 static int igb_runtime_idle(struct device *dev);
197 static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
221 #endif /* CONFIG_PCI_IOV */
222
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227
228 static const struct pci_error_handlers igb_err_handler = {
229 .error_detected = igb_io_error_detected,
230 .slot_reset = igb_io_slot_reset,
231 .resume = igb_io_resume,
232 };
233
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236 static struct pci_driver igb_driver = {
237 .name = igb_driver_name,
238 .id_table = igb_pci_tbl,
239 .probe = igb_probe,
240 .remove = igb_remove,
241 #ifdef CONFIG_PM
242 .driver.pm = &igb_pm_ops,
243 #endif
244 .shutdown = igb_shutdown,
245 .sriov_configure = igb_pci_sriov_configure,
246 .err_handler = &igb_err_handler
247 };
248
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259 struct igb_reg_info {
260 u32 ofs;
261 char *name;
262 };
263
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266 /* General Registers */
267 {E1000_CTRL, "CTRL"},
268 {E1000_STATUS, "STATUS"},
269 {E1000_CTRL_EXT, "CTRL_EXT"},
270
271 /* Interrupt Registers */
272 {E1000_ICR, "ICR"},
273
274 /* RX Registers */
275 {E1000_RCTL, "RCTL"},
276 {E1000_RDLEN(0), "RDLEN"},
277 {E1000_RDH(0), "RDH"},
278 {E1000_RDT(0), "RDT"},
279 {E1000_RXDCTL(0), "RXDCTL"},
280 {E1000_RDBAL(0), "RDBAL"},
281 {E1000_RDBAH(0), "RDBAH"},
282
283 /* TX Registers */
284 {E1000_TCTL, "TCTL"},
285 {E1000_TDBAL(0), "TDBAL"},
286 {E1000_TDBAH(0), "TDBAH"},
287 {E1000_TDLEN(0), "TDLEN"},
288 {E1000_TDH(0), "TDH"},
289 {E1000_TDT(0), "TDT"},
290 {E1000_TXDCTL(0), "TXDCTL"},
291 {E1000_TDFH, "TDFH"},
292 {E1000_TDFT, "TDFT"},
293 {E1000_TDFHS, "TDFHS"},
294 {E1000_TDFPC, "TDFPC"},
295
296 /* List Terminator */
297 {}
298 };
299
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303 int n = 0;
304 char rname[16];
305 u32 regs[8];
306
307 switch (reginfo->ofs) {
308 case E1000_RDLEN(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDLEN(n));
311 break;
312 case E1000_RDH(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDH(n));
315 break;
316 case E1000_RDT(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDT(n));
319 break;
320 case E1000_RXDCTL(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RXDCTL(n));
323 break;
324 case E1000_RDBAL(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAL(n));
327 break;
328 case E1000_RDBAH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDBAH(n));
331 break;
332 case E1000_TDBAL(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDBAL(n));
335 break;
336 case E1000_TDBAH(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDBAH(n));
339 break;
340 case E1000_TDLEN(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDLEN(n));
343 break;
344 case E1000_TDH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TDH(n));
347 break;
348 case E1000_TDT(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_TDT(n));
351 break;
352 case E1000_TXDCTL(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TXDCTL(n));
355 break;
356 default:
357 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358 return;
359 }
360
361 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 regs[2], regs[3]);
364 }
365
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369 struct net_device *netdev = adapter->netdev;
370 struct e1000_hw *hw = &adapter->hw;
371 struct igb_reg_info *reginfo;
372 struct igb_ring *tx_ring;
373 union e1000_adv_tx_desc *tx_desc;
374 struct my_u0 { u64 a; u64 b; } *u0;
375 struct igb_ring *rx_ring;
376 union e1000_adv_rx_desc *rx_desc;
377 u32 staterr;
378 u16 i, n;
379
380 if (!netif_msg_hw(adapter))
381 return;
382
383 /* Print netdevice Info */
384 if (netdev) {
385 dev_info(&adapter->pdev->dev, "Net device Info\n");
386 pr_info("Device Name state trans_start last_rx\n");
387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
388 netdev->state, dev_trans_start(netdev), netdev->last_rx);
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
393 pr_info(" Register Name Value\n");
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
405 for (n = 0; n < adapter->num_tx_queues; n++) {
406 struct igb_tx_buffer *buffer_info;
407 tx_ring = adapter->tx_ring[n];
408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
440
441 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
442 const char *next_desc;
443 struct igb_tx_buffer *buffer_info;
444 tx_desc = IGB_TX_DESC(tx_ring, i);
445 buffer_info = &tx_ring->tx_buffer_info[i];
446 u0 = (struct my_u0 *)tx_desc;
447 if (i == tx_ring->next_to_use &&
448 i == tx_ring->next_to_clean)
449 next_desc = " NTC/U";
450 else if (i == tx_ring->next_to_use)
451 next_desc = " NTU";
452 else if (i == tx_ring->next_to_clean)
453 next_desc = " NTC";
454 else
455 next_desc = "";
456
457 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
458 i, le64_to_cpu(u0->a),
459 le64_to_cpu(u0->b),
460 (u64)dma_unmap_addr(buffer_info, dma),
461 dma_unmap_len(buffer_info, len),
462 buffer_info->next_to_watch,
463 (u64)buffer_info->time_stamp,
464 buffer_info->skb, next_desc);
465
466 if (netif_msg_pktdata(adapter) && buffer_info->skb)
467 print_hex_dump(KERN_INFO, "",
468 DUMP_PREFIX_ADDRESS,
469 16, 1, buffer_info->skb->data,
470 dma_unmap_len(buffer_info, len),
471 true);
472 }
473 }
474
475 /* Print RX Rings Summary */
476 rx_ring_summary:
477 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
478 pr_info("Queue [NTU] [NTC]\n");
479 for (n = 0; n < adapter->num_rx_queues; n++) {
480 rx_ring = adapter->rx_ring[n];
481 pr_info(" %5d %5X %5X\n",
482 n, rx_ring->next_to_use, rx_ring->next_to_clean);
483 }
484
485 /* Print RX Rings */
486 if (!netif_msg_rx_status(adapter))
487 goto exit;
488
489 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491 /* Advanced Receive Descriptor (Read) Format
492 * 63 1 0
493 * +-----------------------------------------------------+
494 * 0 | Packet Buffer Address [63:1] |A0/NSE|
495 * +----------------------------------------------+------+
496 * 8 | Header Buffer Address [63:1] | DD |
497 * +-----------------------------------------------------+
498 *
499 *
500 * Advanced Receive Descriptor (Write-Back) Format
501 *
502 * 63 48 47 32 31 30 21 20 17 16 4 3 0
503 * +------------------------------------------------------+
504 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
505 * | Checksum Ident | | | | Type | Type |
506 * +------------------------------------------------------+
507 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508 * +------------------------------------------------------+
509 * 63 48 47 32 31 20 19 0
510 */
511
512 for (n = 0; n < adapter->num_rx_queues; n++) {
513 rx_ring = adapter->rx_ring[n];
514 pr_info("------------------------------------\n");
515 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516 pr_info("------------------------------------\n");
517 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
518 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
519
520 for (i = 0; i < rx_ring->count; i++) {
521 const char *next_desc;
522 struct igb_rx_buffer *buffer_info;
523 buffer_info = &rx_ring->rx_buffer_info[i];
524 rx_desc = IGB_RX_DESC(rx_ring, i);
525 u0 = (struct my_u0 *)rx_desc;
526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527
528 if (i == rx_ring->next_to_use)
529 next_desc = " NTU";
530 else if (i == rx_ring->next_to_clean)
531 next_desc = " NTC";
532 else
533 next_desc = "";
534
535 if (staterr & E1000_RXD_STAT_DD) {
536 /* Descriptor Done */
537 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
538 "RWB", i,
539 le64_to_cpu(u0->a),
540 le64_to_cpu(u0->b),
541 next_desc);
542 } else {
543 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
544 "R ", i,
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 (u64)buffer_info->dma,
548 next_desc);
549
550 if (netif_msg_pktdata(adapter) &&
551 buffer_info->dma && buffer_info->page) {
552 print_hex_dump(KERN_INFO, "",
553 DUMP_PREFIX_ADDRESS,
554 16, 1,
555 page_address(buffer_info->page) +
556 buffer_info->page_offset,
557 IGB_RX_BUFSZ, true);
558 }
559 }
560 }
561 }
562
563 exit:
564 return;
565 }
566
567 /**
568 * igb_get_i2c_data - Reads the I2C SDA data bit
569 * @hw: pointer to hardware structure
570 * @i2cctl: Current value of I2CCTL register
571 *
572 * Returns the I2C data bit value
573 **/
574 static int igb_get_i2c_data(void *data)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 return !!(i2cctl & E1000_I2C_DATA_IN);
581 }
582
583 /**
584 * igb_set_i2c_data - Sets the I2C data bit
585 * @data: pointer to hardware structure
586 * @state: I2C data value (0 or 1) to set
587 *
588 * Sets the I2C data bit
589 **/
590 static void igb_set_i2c_data(void *data, int state)
591 {
592 struct igb_adapter *adapter = (struct igb_adapter *)data;
593 struct e1000_hw *hw = &adapter->hw;
594 s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596 if (state)
597 i2cctl |= E1000_I2C_DATA_OUT;
598 else
599 i2cctl &= ~E1000_I2C_DATA_OUT;
600
601 i2cctl &= ~E1000_I2C_DATA_OE_N;
602 i2cctl |= E1000_I2C_CLK_OE_N;
603 wr32(E1000_I2CPARAMS, i2cctl);
604 wrfl();
605
606 }
607
608 /**
609 * igb_set_i2c_clk - Sets the I2C SCL clock
610 * @data: pointer to hardware structure
611 * @state: state to set clock
612 *
613 * Sets the I2C clock line to state
614 **/
615 static void igb_set_i2c_clk(void *data, int state)
616 {
617 struct igb_adapter *adapter = (struct igb_adapter *)data;
618 struct e1000_hw *hw = &adapter->hw;
619 s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621 if (state) {
622 i2cctl |= E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 } else {
625 i2cctl &= ~E1000_I2C_CLK_OUT;
626 i2cctl &= ~E1000_I2C_CLK_OE_N;
627 }
628 wr32(E1000_I2CPARAMS, i2cctl);
629 wrfl();
630 }
631
632 /**
633 * igb_get_i2c_clk - Gets the I2C SCL clock state
634 * @data: pointer to hardware structure
635 *
636 * Gets the I2C clock state
637 **/
638 static int igb_get_i2c_clk(void *data)
639 {
640 struct igb_adapter *adapter = (struct igb_adapter *)data;
641 struct e1000_hw *hw = &adapter->hw;
642 s32 i2cctl = rd32(E1000_I2CPARAMS);
643
644 return !!(i2cctl & E1000_I2C_CLK_IN);
645 }
646
647 static const struct i2c_algo_bit_data igb_i2c_algo = {
648 .setsda = igb_set_i2c_data,
649 .setscl = igb_set_i2c_clk,
650 .getsda = igb_get_i2c_data,
651 .getscl = igb_get_i2c_clk,
652 .udelay = 5,
653 .timeout = 20,
654 };
655
656 /**
657 * igb_get_hw_dev - return device
658 * @hw: pointer to hardware structure
659 *
660 * used by hardware layer to print debugging information
661 **/
662 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
663 {
664 struct igb_adapter *adapter = hw->back;
665 return adapter->netdev;
666 }
667
668 /**
669 * igb_init_module - Driver Registration Routine
670 *
671 * igb_init_module is the first routine called when the driver is
672 * loaded. All it does is register with the PCI subsystem.
673 **/
674 static int __init igb_init_module(void)
675 {
676 int ret;
677
678 pr_info("%s - version %s\n",
679 igb_driver_string, igb_driver_version);
680 pr_info("%s\n", igb_copyright);
681
682 #ifdef CONFIG_IGB_DCA
683 dca_register_notify(&dca_notifier);
684 #endif
685 ret = pci_register_driver(&igb_driver);
686 return ret;
687 }
688
689 module_init(igb_init_module);
690
691 /**
692 * igb_exit_module - Driver Exit Cleanup Routine
693 *
694 * igb_exit_module is called just before the driver is removed
695 * from memory.
696 **/
697 static void __exit igb_exit_module(void)
698 {
699 #ifdef CONFIG_IGB_DCA
700 dca_unregister_notify(&dca_notifier);
701 #endif
702 pci_unregister_driver(&igb_driver);
703 }
704
705 module_exit(igb_exit_module);
706
707 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708 /**
709 * igb_cache_ring_register - Descriptor ring to register mapping
710 * @adapter: board private structure to initialize
711 *
712 * Once we know the feature-set enabled for the device, we'll cache
713 * the register offset the descriptor ring is assigned to.
714 **/
715 static void igb_cache_ring_register(struct igb_adapter *adapter)
716 {
717 int i = 0, j = 0;
718 u32 rbase_offset = adapter->vfs_allocated_count;
719
720 switch (adapter->hw.mac.type) {
721 case e1000_82576:
722 /* The queues are allocated for virtualization such that VF 0
723 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724 * In order to avoid collision we start at the first free queue
725 * and continue consuming queues in the same sequence
726 */
727 if (adapter->vfs_allocated_count) {
728 for (; i < adapter->rss_queues; i++)
729 adapter->rx_ring[i]->reg_idx = rbase_offset +
730 Q_IDX_82576(i);
731 }
732 /* Fall through */
733 case e1000_82575:
734 case e1000_82580:
735 case e1000_i350:
736 case e1000_i354:
737 case e1000_i210:
738 case e1000_i211:
739 /* Fall through */
740 default:
741 for (; i < adapter->num_rx_queues; i++)
742 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
743 for (; j < adapter->num_tx_queues; j++)
744 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
745 break;
746 }
747 }
748
749 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
750 {
751 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
752 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
753 u32 value = 0;
754
755 if (E1000_REMOVED(hw_addr))
756 return ~value;
757
758 value = readl(&hw_addr[reg]);
759
760 /* reads should not return all F's */
761 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
762 struct net_device *netdev = igb->netdev;
763 hw->hw_addr = NULL;
764 netif_device_detach(netdev);
765 netdev_err(netdev, "PCIe link lost, device now detached\n");
766 }
767
768 return value;
769 }
770
771 /**
772 * igb_write_ivar - configure ivar for given MSI-X vector
773 * @hw: pointer to the HW structure
774 * @msix_vector: vector number we are allocating to a given ring
775 * @index: row index of IVAR register to write within IVAR table
776 * @offset: column offset of in IVAR, should be multiple of 8
777 *
778 * This function is intended to handle the writing of the IVAR register
779 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
780 * each containing an cause allocation for an Rx and Tx ring, and a
781 * variable number of rows depending on the number of queues supported.
782 **/
783 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
784 int index, int offset)
785 {
786 u32 ivar = array_rd32(E1000_IVAR0, index);
787
788 /* clear any bits that are currently set */
789 ivar &= ~((u32)0xFF << offset);
790
791 /* write vector and valid bit */
792 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
793
794 array_wr32(E1000_IVAR0, index, ivar);
795 }
796
797 #define IGB_N0_QUEUE -1
798 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
799 {
800 struct igb_adapter *adapter = q_vector->adapter;
801 struct e1000_hw *hw = &adapter->hw;
802 int rx_queue = IGB_N0_QUEUE;
803 int tx_queue = IGB_N0_QUEUE;
804 u32 msixbm = 0;
805
806 if (q_vector->rx.ring)
807 rx_queue = q_vector->rx.ring->reg_idx;
808 if (q_vector->tx.ring)
809 tx_queue = q_vector->tx.ring->reg_idx;
810
811 switch (hw->mac.type) {
812 case e1000_82575:
813 /* The 82575 assigns vectors using a bitmask, which matches the
814 * bitmask for the EICR/EIMS/EIMC registers. To assign one
815 * or more queues to a vector, we write the appropriate bits
816 * into the MSIXBM register for that vector.
817 */
818 if (rx_queue > IGB_N0_QUEUE)
819 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
820 if (tx_queue > IGB_N0_QUEUE)
821 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
822 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
823 msixbm |= E1000_EIMS_OTHER;
824 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
825 q_vector->eims_value = msixbm;
826 break;
827 case e1000_82576:
828 /* 82576 uses a table that essentially consists of 2 columns
829 * with 8 rows. The ordering is column-major so we use the
830 * lower 3 bits as the row index, and the 4th bit as the
831 * column offset.
832 */
833 if (rx_queue > IGB_N0_QUEUE)
834 igb_write_ivar(hw, msix_vector,
835 rx_queue & 0x7,
836 (rx_queue & 0x8) << 1);
837 if (tx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 tx_queue & 0x7,
840 ((tx_queue & 0x8) << 1) + 8);
841 q_vector->eims_value = BIT(msix_vector);
842 break;
843 case e1000_82580:
844 case e1000_i350:
845 case e1000_i354:
846 case e1000_i210:
847 case e1000_i211:
848 /* On 82580 and newer adapters the scheme is similar to 82576
849 * however instead of ordering column-major we have things
850 * ordered row-major. So we traverse the table by using
851 * bit 0 as the column offset, and the remaining bits as the
852 * row index.
853 */
854 if (rx_queue > IGB_N0_QUEUE)
855 igb_write_ivar(hw, msix_vector,
856 rx_queue >> 1,
857 (rx_queue & 0x1) << 4);
858 if (tx_queue > IGB_N0_QUEUE)
859 igb_write_ivar(hw, msix_vector,
860 tx_queue >> 1,
861 ((tx_queue & 0x1) << 4) + 8);
862 q_vector->eims_value = BIT(msix_vector);
863 break;
864 default:
865 BUG();
866 break;
867 }
868
869 /* add q_vector eims value to global eims_enable_mask */
870 adapter->eims_enable_mask |= q_vector->eims_value;
871
872 /* configure q_vector to set itr on first interrupt */
873 q_vector->set_itr = 1;
874 }
875
876 /**
877 * igb_configure_msix - Configure MSI-X hardware
878 * @adapter: board private structure to initialize
879 *
880 * igb_configure_msix sets up the hardware to properly
881 * generate MSI-X interrupts.
882 **/
883 static void igb_configure_msix(struct igb_adapter *adapter)
884 {
885 u32 tmp;
886 int i, vector = 0;
887 struct e1000_hw *hw = &adapter->hw;
888
889 adapter->eims_enable_mask = 0;
890
891 /* set vector for other causes, i.e. link changes */
892 switch (hw->mac.type) {
893 case e1000_82575:
894 tmp = rd32(E1000_CTRL_EXT);
895 /* enable MSI-X PBA support*/
896 tmp |= E1000_CTRL_EXT_PBA_CLR;
897
898 /* Auto-Mask interrupts upon ICR read. */
899 tmp |= E1000_CTRL_EXT_EIAME;
900 tmp |= E1000_CTRL_EXT_IRCA;
901
902 wr32(E1000_CTRL_EXT, tmp);
903
904 /* enable msix_other interrupt */
905 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
906 adapter->eims_other = E1000_EIMS_OTHER;
907
908 break;
909
910 case e1000_82576:
911 case e1000_82580:
912 case e1000_i350:
913 case e1000_i354:
914 case e1000_i210:
915 case e1000_i211:
916 /* Turn on MSI-X capability first, or our settings
917 * won't stick. And it will take days to debug.
918 */
919 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
920 E1000_GPIE_PBA | E1000_GPIE_EIAME |
921 E1000_GPIE_NSICR);
922
923 /* enable msix_other interrupt */
924 adapter->eims_other = BIT(vector);
925 tmp = (vector++ | E1000_IVAR_VALID) << 8;
926
927 wr32(E1000_IVAR_MISC, tmp);
928 break;
929 default:
930 /* do nothing, since nothing else supports MSI-X */
931 break;
932 } /* switch (hw->mac.type) */
933
934 adapter->eims_enable_mask |= adapter->eims_other;
935
936 for (i = 0; i < adapter->num_q_vectors; i++)
937 igb_assign_vector(adapter->q_vector[i], vector++);
938
939 wrfl();
940 }
941
942 /**
943 * igb_request_msix - Initialize MSI-X interrupts
944 * @adapter: board private structure to initialize
945 *
946 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
947 * kernel.
948 **/
949 static int igb_request_msix(struct igb_adapter *adapter)
950 {
951 struct net_device *netdev = adapter->netdev;
952 int i, err = 0, vector = 0, free_vector = 0;
953
954 err = request_irq(adapter->msix_entries[vector].vector,
955 igb_msix_other, 0, netdev->name, adapter);
956 if (err)
957 goto err_out;
958
959 for (i = 0; i < adapter->num_q_vectors; i++) {
960 struct igb_q_vector *q_vector = adapter->q_vector[i];
961
962 vector++;
963
964 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
965
966 if (q_vector->rx.ring && q_vector->tx.ring)
967 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
968 q_vector->rx.ring->queue_index);
969 else if (q_vector->tx.ring)
970 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
971 q_vector->tx.ring->queue_index);
972 else if (q_vector->rx.ring)
973 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
974 q_vector->rx.ring->queue_index);
975 else
976 sprintf(q_vector->name, "%s-unused", netdev->name);
977
978 err = request_irq(adapter->msix_entries[vector].vector,
979 igb_msix_ring, 0, q_vector->name,
980 q_vector);
981 if (err)
982 goto err_free;
983 }
984
985 igb_configure_msix(adapter);
986 return 0;
987
988 err_free:
989 /* free already assigned IRQs */
990 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
991
992 vector--;
993 for (i = 0; i < vector; i++) {
994 free_irq(adapter->msix_entries[free_vector++].vector,
995 adapter->q_vector[i]);
996 }
997 err_out:
998 return err;
999 }
1000
1001 /**
1002 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1003 * @adapter: board private structure to initialize
1004 * @v_idx: Index of vector to be freed
1005 *
1006 * This function frees the memory allocated to the q_vector.
1007 **/
1008 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1009 {
1010 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011
1012 adapter->q_vector[v_idx] = NULL;
1013
1014 /* igb_get_stats64() might access the rings on this vector,
1015 * we must wait a grace period before freeing it.
1016 */
1017 if (q_vector)
1018 kfree_rcu(q_vector, rcu);
1019 }
1020
1021 /**
1022 * igb_reset_q_vector - Reset config for interrupt vector
1023 * @adapter: board private structure to initialize
1024 * @v_idx: Index of vector to be reset
1025 *
1026 * If NAPI is enabled it will delete any references to the
1027 * NAPI struct. This is preparation for igb_free_q_vector.
1028 **/
1029 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1030 {
1031 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1032
1033 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1034 * allocated. So, q_vector is NULL so we should stop here.
1035 */
1036 if (!q_vector)
1037 return;
1038
1039 if (q_vector->tx.ring)
1040 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1041
1042 if (q_vector->rx.ring)
1043 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1044
1045 netif_napi_del(&q_vector->napi);
1046
1047 }
1048
1049 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1050 {
1051 int v_idx = adapter->num_q_vectors;
1052
1053 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1054 pci_disable_msix(adapter->pdev);
1055 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1056 pci_disable_msi(adapter->pdev);
1057
1058 while (v_idx--)
1059 igb_reset_q_vector(adapter, v_idx);
1060 }
1061
1062 /**
1063 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1064 * @adapter: board private structure to initialize
1065 *
1066 * This function frees the memory allocated to the q_vectors. In addition if
1067 * NAPI is enabled it will delete any references to the NAPI struct prior
1068 * to freeing the q_vector.
1069 **/
1070 static void igb_free_q_vectors(struct igb_adapter *adapter)
1071 {
1072 int v_idx = adapter->num_q_vectors;
1073
1074 adapter->num_tx_queues = 0;
1075 adapter->num_rx_queues = 0;
1076 adapter->num_q_vectors = 0;
1077
1078 while (v_idx--) {
1079 igb_reset_q_vector(adapter, v_idx);
1080 igb_free_q_vector(adapter, v_idx);
1081 }
1082 }
1083
1084 /**
1085 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1086 * @adapter: board private structure to initialize
1087 *
1088 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1089 * MSI-X interrupts allocated.
1090 */
1091 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1092 {
1093 igb_free_q_vectors(adapter);
1094 igb_reset_interrupt_capability(adapter);
1095 }
1096
1097 /**
1098 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1099 * @adapter: board private structure to initialize
1100 * @msix: boolean value of MSIX capability
1101 *
1102 * Attempt to configure interrupts using the best available
1103 * capabilities of the hardware and kernel.
1104 **/
1105 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1106 {
1107 int err;
1108 int numvecs, i;
1109
1110 if (!msix)
1111 goto msi_only;
1112 adapter->flags |= IGB_FLAG_HAS_MSIX;
1113
1114 /* Number of supported queues. */
1115 adapter->num_rx_queues = adapter->rss_queues;
1116 if (adapter->vfs_allocated_count)
1117 adapter->num_tx_queues = 1;
1118 else
1119 adapter->num_tx_queues = adapter->rss_queues;
1120
1121 /* start with one vector for every Rx queue */
1122 numvecs = adapter->num_rx_queues;
1123
1124 /* if Tx handler is separate add 1 for every Tx queue */
1125 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1126 numvecs += adapter->num_tx_queues;
1127
1128 /* store the number of vectors reserved for queues */
1129 adapter->num_q_vectors = numvecs;
1130
1131 /* add 1 vector for link status interrupts */
1132 numvecs++;
1133 for (i = 0; i < numvecs; i++)
1134 adapter->msix_entries[i].entry = i;
1135
1136 err = pci_enable_msix_range(adapter->pdev,
1137 adapter->msix_entries,
1138 numvecs,
1139 numvecs);
1140 if (err > 0)
1141 return;
1142
1143 igb_reset_interrupt_capability(adapter);
1144
1145 /* If we can't do MSI-X, try MSI */
1146 msi_only:
1147 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1148 #ifdef CONFIG_PCI_IOV
1149 /* disable SR-IOV for non MSI-X configurations */
1150 if (adapter->vf_data) {
1151 struct e1000_hw *hw = &adapter->hw;
1152 /* disable iov and allow time for transactions to clear */
1153 pci_disable_sriov(adapter->pdev);
1154 msleep(500);
1155
1156 kfree(adapter->vf_data);
1157 adapter->vf_data = NULL;
1158 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1159 wrfl();
1160 msleep(100);
1161 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1162 }
1163 #endif
1164 adapter->vfs_allocated_count = 0;
1165 adapter->rss_queues = 1;
1166 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1167 adapter->num_rx_queues = 1;
1168 adapter->num_tx_queues = 1;
1169 adapter->num_q_vectors = 1;
1170 if (!pci_enable_msi(adapter->pdev))
1171 adapter->flags |= IGB_FLAG_HAS_MSI;
1172 }
1173
1174 static void igb_add_ring(struct igb_ring *ring,
1175 struct igb_ring_container *head)
1176 {
1177 head->ring = ring;
1178 head->count++;
1179 }
1180
1181 /**
1182 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1183 * @adapter: board private structure to initialize
1184 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1185 * @v_idx: index of vector in adapter struct
1186 * @txr_count: total number of Tx rings to allocate
1187 * @txr_idx: index of first Tx ring to allocate
1188 * @rxr_count: total number of Rx rings to allocate
1189 * @rxr_idx: index of first Rx ring to allocate
1190 *
1191 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1192 **/
1193 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1194 int v_count, int v_idx,
1195 int txr_count, int txr_idx,
1196 int rxr_count, int rxr_idx)
1197 {
1198 struct igb_q_vector *q_vector;
1199 struct igb_ring *ring;
1200 int ring_count, size;
1201
1202 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1203 if (txr_count > 1 || rxr_count > 1)
1204 return -ENOMEM;
1205
1206 ring_count = txr_count + rxr_count;
1207 size = sizeof(struct igb_q_vector) +
1208 (sizeof(struct igb_ring) * ring_count);
1209
1210 /* allocate q_vector and rings */
1211 q_vector = adapter->q_vector[v_idx];
1212 if (!q_vector) {
1213 q_vector = kzalloc(size, GFP_KERNEL);
1214 } else if (size > ksize(q_vector)) {
1215 kfree_rcu(q_vector, rcu);
1216 q_vector = kzalloc(size, GFP_KERNEL);
1217 } else {
1218 memset(q_vector, 0, size);
1219 }
1220 if (!q_vector)
1221 return -ENOMEM;
1222
1223 /* initialize NAPI */
1224 netif_napi_add(adapter->netdev, &q_vector->napi,
1225 igb_poll, 64);
1226
1227 /* tie q_vector and adapter together */
1228 adapter->q_vector[v_idx] = q_vector;
1229 q_vector->adapter = adapter;
1230
1231 /* initialize work limits */
1232 q_vector->tx.work_limit = adapter->tx_work_limit;
1233
1234 /* initialize ITR configuration */
1235 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1236 q_vector->itr_val = IGB_START_ITR;
1237
1238 /* initialize pointer to rings */
1239 ring = q_vector->ring;
1240
1241 /* intialize ITR */
1242 if (rxr_count) {
1243 /* rx or rx/tx vector */
1244 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1245 q_vector->itr_val = adapter->rx_itr_setting;
1246 } else {
1247 /* tx only vector */
1248 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1249 q_vector->itr_val = adapter->tx_itr_setting;
1250 }
1251
1252 if (txr_count) {
1253 /* assign generic ring traits */
1254 ring->dev = &adapter->pdev->dev;
1255 ring->netdev = adapter->netdev;
1256
1257 /* configure backlink on ring */
1258 ring->q_vector = q_vector;
1259
1260 /* update q_vector Tx values */
1261 igb_add_ring(ring, &q_vector->tx);
1262
1263 /* For 82575, context index must be unique per ring. */
1264 if (adapter->hw.mac.type == e1000_82575)
1265 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1266
1267 /* apply Tx specific ring traits */
1268 ring->count = adapter->tx_ring_count;
1269 ring->queue_index = txr_idx;
1270
1271 u64_stats_init(&ring->tx_syncp);
1272 u64_stats_init(&ring->tx_syncp2);
1273
1274 /* assign ring to adapter */
1275 adapter->tx_ring[txr_idx] = ring;
1276
1277 /* push pointer to next ring */
1278 ring++;
1279 }
1280
1281 if (rxr_count) {
1282 /* assign generic ring traits */
1283 ring->dev = &adapter->pdev->dev;
1284 ring->netdev = adapter->netdev;
1285
1286 /* configure backlink on ring */
1287 ring->q_vector = q_vector;
1288
1289 /* update q_vector Rx values */
1290 igb_add_ring(ring, &q_vector->rx);
1291
1292 /* set flag indicating ring supports SCTP checksum offload */
1293 if (adapter->hw.mac.type >= e1000_82576)
1294 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295
1296 /* On i350, i354, i210, and i211, loopback VLAN packets
1297 * have the tag byte-swapped.
1298 */
1299 if (adapter->hw.mac.type >= e1000_i350)
1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302 /* apply Rx specific ring traits */
1303 ring->count = adapter->rx_ring_count;
1304 ring->queue_index = rxr_idx;
1305
1306 u64_stats_init(&ring->rx_syncp);
1307
1308 /* assign ring to adapter */
1309 adapter->rx_ring[rxr_idx] = ring;
1310 }
1311
1312 return 0;
1313 }
1314
1315
1316 /**
1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
1319 *
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
1322 **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325 int q_vectors = adapter->num_q_vectors;
1326 int rxr_remaining = adapter->num_rx_queues;
1327 int txr_remaining = adapter->num_tx_queues;
1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 int err;
1330
1331 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 for (; rxr_remaining; v_idx++) {
1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 0, 0, 1, rxr_idx);
1335
1336 if (err)
1337 goto err_out;
1338
1339 /* update counts and index */
1340 rxr_remaining--;
1341 rxr_idx++;
1342 }
1343 }
1344
1345 for (; v_idx < q_vectors; v_idx++) {
1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348
1349 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 tqpv, txr_idx, rqpv, rxr_idx);
1351
1352 if (err)
1353 goto err_out;
1354
1355 /* update counts and index */
1356 rxr_remaining -= rqpv;
1357 txr_remaining -= tqpv;
1358 rxr_idx++;
1359 txr_idx++;
1360 }
1361
1362 return 0;
1363
1364 err_out:
1365 adapter->num_tx_queues = 0;
1366 adapter->num_rx_queues = 0;
1367 adapter->num_q_vectors = 0;
1368
1369 while (v_idx--)
1370 igb_free_q_vector(adapter, v_idx);
1371
1372 return -ENOMEM;
1373 }
1374
1375 /**
1376 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377 * @adapter: board private structure to initialize
1378 * @msix: boolean value of MSIX capability
1379 *
1380 * This function initializes the interrupts and allocates all of the queues.
1381 **/
1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384 struct pci_dev *pdev = adapter->pdev;
1385 int err;
1386
1387 igb_set_interrupt_capability(adapter, msix);
1388
1389 err = igb_alloc_q_vectors(adapter);
1390 if (err) {
1391 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 goto err_alloc_q_vectors;
1393 }
1394
1395 igb_cache_ring_register(adapter);
1396
1397 return 0;
1398
1399 err_alloc_q_vectors:
1400 igb_reset_interrupt_capability(adapter);
1401 return err;
1402 }
1403
1404 /**
1405 * igb_request_irq - initialize interrupts
1406 * @adapter: board private structure to initialize
1407 *
1408 * Attempts to configure interrupts using the best available
1409 * capabilities of the hardware and kernel.
1410 **/
1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413 struct net_device *netdev = adapter->netdev;
1414 struct pci_dev *pdev = adapter->pdev;
1415 int err = 0;
1416
1417 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418 err = igb_request_msix(adapter);
1419 if (!err)
1420 goto request_done;
1421 /* fall back to MSI */
1422 igb_free_all_tx_resources(adapter);
1423 igb_free_all_rx_resources(adapter);
1424
1425 igb_clear_interrupt_scheme(adapter);
1426 err = igb_init_interrupt_scheme(adapter, false);
1427 if (err)
1428 goto request_done;
1429
1430 igb_setup_all_tx_resources(adapter);
1431 igb_setup_all_rx_resources(adapter);
1432 igb_configure(adapter);
1433 }
1434
1435 igb_assign_vector(adapter->q_vector[0], 0);
1436
1437 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438 err = request_irq(pdev->irq, igb_intr_msi, 0,
1439 netdev->name, adapter);
1440 if (!err)
1441 goto request_done;
1442
1443 /* fall back to legacy interrupts */
1444 igb_reset_interrupt_capability(adapter);
1445 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446 }
1447
1448 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449 netdev->name, adapter);
1450
1451 if (err)
1452 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453 err);
1454
1455 request_done:
1456 return err;
1457 }
1458
1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462 int vector = 0, i;
1463
1464 free_irq(adapter->msix_entries[vector++].vector, adapter);
1465
1466 for (i = 0; i < adapter->num_q_vectors; i++)
1467 free_irq(adapter->msix_entries[vector++].vector,
1468 adapter->q_vector[i]);
1469 } else {
1470 free_irq(adapter->pdev->irq, adapter);
1471 }
1472 }
1473
1474 /**
1475 * igb_irq_disable - Mask off interrupt generation on the NIC
1476 * @adapter: board private structure
1477 **/
1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480 struct e1000_hw *hw = &adapter->hw;
1481
1482 /* we need to be careful when disabling interrupts. The VFs are also
1483 * mapped into these registers and so clearing the bits can cause
1484 * issues on the VF drivers so we only need to clear what we set
1485 */
1486 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487 u32 regval = rd32(E1000_EIAM);
1488
1489 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 regval = rd32(E1000_EIAC);
1492 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493 }
1494
1495 wr32(E1000_IAM, 0);
1496 wr32(E1000_IMC, ~0);
1497 wrfl();
1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499 int i;
1500
1501 for (i = 0; i < adapter->num_q_vectors; i++)
1502 synchronize_irq(adapter->msix_entries[i].vector);
1503 } else {
1504 synchronize_irq(adapter->pdev->irq);
1505 }
1506 }
1507
1508 /**
1509 * igb_irq_enable - Enable default interrupt generation settings
1510 * @adapter: board private structure
1511 **/
1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514 struct e1000_hw *hw = &adapter->hw;
1515
1516 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518 u32 regval = rd32(E1000_EIAC);
1519
1520 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 regval = rd32(E1000_EIAM);
1522 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523 wr32(E1000_EIMS, adapter->eims_enable_mask);
1524 if (adapter->vfs_allocated_count) {
1525 wr32(E1000_MBVFIMR, 0xFF);
1526 ims |= E1000_IMS_VMMB;
1527 }
1528 wr32(E1000_IMS, ims);
1529 } else {
1530 wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 E1000_IMS_DRSTA);
1534 }
1535 }
1536
1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539 struct e1000_hw *hw = &adapter->hw;
1540 u16 pf_id = adapter->vfs_allocated_count;
1541 u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 u16 old_vid = adapter->mng_vlan_id;
1543
1544 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 /* add VID to filter table */
1546 igb_vfta_set(hw, vid, pf_id, true, true);
1547 adapter->mng_vlan_id = vid;
1548 } else {
1549 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 }
1551
1552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 (vid != old_vid) &&
1554 !test_bit(old_vid, adapter->active_vlans)) {
1555 /* remove VID from filter table */
1556 igb_vfta_set(hw, vid, pf_id, false, true);
1557 }
1558 }
1559
1560 /**
1561 * igb_release_hw_control - release control of the h/w to f/w
1562 * @adapter: address of board private structure
1563 *
1564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565 * For ASF and Pass Through versions of f/w this means that the
1566 * driver is no longer loaded.
1567 **/
1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 ctrl_ext;
1572
1573 /* Let firmware take over control of h/w */
1574 ctrl_ext = rd32(E1000_CTRL_EXT);
1575 wr32(E1000_CTRL_EXT,
1576 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578
1579 /**
1580 * igb_get_hw_control - get control of the h/w from f/w
1581 * @adapter: address of board private structure
1582 *
1583 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584 * For ASF and Pass Through versions of f/w this means that
1585 * the driver is loaded.
1586 **/
1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589 struct e1000_hw *hw = &adapter->hw;
1590 u32 ctrl_ext;
1591
1592 /* Let firmware know the driver has taken over */
1593 ctrl_ext = rd32(E1000_CTRL_EXT);
1594 wr32(E1000_CTRL_EXT,
1595 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597
1598 /**
1599 * igb_configure - configure the hardware for RX and TX
1600 * @adapter: private board structure
1601 **/
1602 static void igb_configure(struct igb_adapter *adapter)
1603 {
1604 struct net_device *netdev = adapter->netdev;
1605 int i;
1606
1607 igb_get_hw_control(adapter);
1608 igb_set_rx_mode(netdev);
1609
1610 igb_restore_vlan(adapter);
1611
1612 igb_setup_tctl(adapter);
1613 igb_setup_mrqc(adapter);
1614 igb_setup_rctl(adapter);
1615
1616 igb_nfc_filter_restore(adapter);
1617 igb_configure_tx(adapter);
1618 igb_configure_rx(adapter);
1619
1620 igb_rx_fifo_flush_82575(&adapter->hw);
1621
1622 /* call igb_desc_unused which always leaves
1623 * at least 1 descriptor unused to make sure
1624 * next_to_use != next_to_clean
1625 */
1626 for (i = 0; i < adapter->num_rx_queues; i++) {
1627 struct igb_ring *ring = adapter->rx_ring[i];
1628 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1629 }
1630 }
1631
1632 /**
1633 * igb_power_up_link - Power up the phy/serdes link
1634 * @adapter: address of board private structure
1635 **/
1636 void igb_power_up_link(struct igb_adapter *adapter)
1637 {
1638 igb_reset_phy(&adapter->hw);
1639
1640 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1641 igb_power_up_phy_copper(&adapter->hw);
1642 else
1643 igb_power_up_serdes_link_82575(&adapter->hw);
1644
1645 igb_setup_link(&adapter->hw);
1646 }
1647
1648 /**
1649 * igb_power_down_link - Power down the phy/serdes link
1650 * @adapter: address of board private structure
1651 */
1652 static void igb_power_down_link(struct igb_adapter *adapter)
1653 {
1654 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1655 igb_power_down_phy_copper_82575(&adapter->hw);
1656 else
1657 igb_shutdown_serdes_link_82575(&adapter->hw);
1658 }
1659
1660 /**
1661 * Detect and switch function for Media Auto Sense
1662 * @adapter: address of the board private structure
1663 **/
1664 static void igb_check_swap_media(struct igb_adapter *adapter)
1665 {
1666 struct e1000_hw *hw = &adapter->hw;
1667 u32 ctrl_ext, connsw;
1668 bool swap_now = false;
1669
1670 ctrl_ext = rd32(E1000_CTRL_EXT);
1671 connsw = rd32(E1000_CONNSW);
1672
1673 /* need to live swap if current media is copper and we have fiber/serdes
1674 * to go to.
1675 */
1676
1677 if ((hw->phy.media_type == e1000_media_type_copper) &&
1678 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1679 swap_now = true;
1680 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1681 /* copper signal takes time to appear */
1682 if (adapter->copper_tries < 4) {
1683 adapter->copper_tries++;
1684 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1685 wr32(E1000_CONNSW, connsw);
1686 return;
1687 } else {
1688 adapter->copper_tries = 0;
1689 if ((connsw & E1000_CONNSW_PHYSD) &&
1690 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1691 swap_now = true;
1692 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1693 wr32(E1000_CONNSW, connsw);
1694 }
1695 }
1696 }
1697
1698 if (!swap_now)
1699 return;
1700
1701 switch (hw->phy.media_type) {
1702 case e1000_media_type_copper:
1703 netdev_info(adapter->netdev,
1704 "MAS: changing media to fiber/serdes\n");
1705 ctrl_ext |=
1706 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1707 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1708 adapter->copper_tries = 0;
1709 break;
1710 case e1000_media_type_internal_serdes:
1711 case e1000_media_type_fiber:
1712 netdev_info(adapter->netdev,
1713 "MAS: changing media to copper\n");
1714 ctrl_ext &=
1715 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1716 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1717 break;
1718 default:
1719 /* shouldn't get here during regular operation */
1720 netdev_err(adapter->netdev,
1721 "AMS: Invalid media type found, returning\n");
1722 break;
1723 }
1724 wr32(E1000_CTRL_EXT, ctrl_ext);
1725 }
1726
1727 /**
1728 * igb_up - Open the interface and prepare it to handle traffic
1729 * @adapter: board private structure
1730 **/
1731 int igb_up(struct igb_adapter *adapter)
1732 {
1733 struct e1000_hw *hw = &adapter->hw;
1734 int i;
1735
1736 /* hardware has been reset, we need to reload some things */
1737 igb_configure(adapter);
1738
1739 clear_bit(__IGB_DOWN, &adapter->state);
1740
1741 for (i = 0; i < adapter->num_q_vectors; i++)
1742 napi_enable(&(adapter->q_vector[i]->napi));
1743
1744 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1745 igb_configure_msix(adapter);
1746 else
1747 igb_assign_vector(adapter->q_vector[0], 0);
1748
1749 /* Clear any pending interrupts. */
1750 rd32(E1000_ICR);
1751 igb_irq_enable(adapter);
1752
1753 /* notify VFs that reset has been completed */
1754 if (adapter->vfs_allocated_count) {
1755 u32 reg_data = rd32(E1000_CTRL_EXT);
1756
1757 reg_data |= E1000_CTRL_EXT_PFRSTD;
1758 wr32(E1000_CTRL_EXT, reg_data);
1759 }
1760
1761 netif_tx_start_all_queues(adapter->netdev);
1762
1763 /* start the watchdog. */
1764 hw->mac.get_link_status = 1;
1765 schedule_work(&adapter->watchdog_task);
1766
1767 if ((adapter->flags & IGB_FLAG_EEE) &&
1768 (!hw->dev_spec._82575.eee_disable))
1769 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1770
1771 return 0;
1772 }
1773
1774 void igb_down(struct igb_adapter *adapter)
1775 {
1776 struct net_device *netdev = adapter->netdev;
1777 struct e1000_hw *hw = &adapter->hw;
1778 u32 tctl, rctl;
1779 int i;
1780
1781 /* signal that we're down so the interrupt handler does not
1782 * reschedule our watchdog timer
1783 */
1784 set_bit(__IGB_DOWN, &adapter->state);
1785
1786 /* disable receives in the hardware */
1787 rctl = rd32(E1000_RCTL);
1788 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1789 /* flush and sleep below */
1790
1791 netif_carrier_off(netdev);
1792 netif_tx_stop_all_queues(netdev);
1793
1794 /* disable transmits in the hardware */
1795 tctl = rd32(E1000_TCTL);
1796 tctl &= ~E1000_TCTL_EN;
1797 wr32(E1000_TCTL, tctl);
1798 /* flush both disables and wait for them to finish */
1799 wrfl();
1800 usleep_range(10000, 11000);
1801
1802 igb_irq_disable(adapter);
1803
1804 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1805
1806 for (i = 0; i < adapter->num_q_vectors; i++) {
1807 if (adapter->q_vector[i]) {
1808 napi_synchronize(&adapter->q_vector[i]->napi);
1809 napi_disable(&adapter->q_vector[i]->napi);
1810 }
1811 }
1812
1813 del_timer_sync(&adapter->watchdog_timer);
1814 del_timer_sync(&adapter->phy_info_timer);
1815
1816 /* record the stats before reset*/
1817 spin_lock(&adapter->stats64_lock);
1818 igb_update_stats(adapter, &adapter->stats64);
1819 spin_unlock(&adapter->stats64_lock);
1820
1821 adapter->link_speed = 0;
1822 adapter->link_duplex = 0;
1823
1824 if (!pci_channel_offline(adapter->pdev))
1825 igb_reset(adapter);
1826
1827 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1828 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1829
1830 igb_clean_all_tx_rings(adapter);
1831 igb_clean_all_rx_rings(adapter);
1832 #ifdef CONFIG_IGB_DCA
1833
1834 /* since we reset the hardware DCA settings were cleared */
1835 igb_setup_dca(adapter);
1836 #endif
1837 }
1838
1839 void igb_reinit_locked(struct igb_adapter *adapter)
1840 {
1841 WARN_ON(in_interrupt());
1842 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1843 usleep_range(1000, 2000);
1844 igb_down(adapter);
1845 igb_up(adapter);
1846 clear_bit(__IGB_RESETTING, &adapter->state);
1847 }
1848
1849 /** igb_enable_mas - Media Autosense re-enable after swap
1850 *
1851 * @adapter: adapter struct
1852 **/
1853 static void igb_enable_mas(struct igb_adapter *adapter)
1854 {
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 connsw = rd32(E1000_CONNSW);
1857
1858 /* configure for SerDes media detect */
1859 if ((hw->phy.media_type == e1000_media_type_copper) &&
1860 (!(connsw & E1000_CONNSW_SERDESD))) {
1861 connsw |= E1000_CONNSW_ENRGSRC;
1862 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1863 wr32(E1000_CONNSW, connsw);
1864 wrfl();
1865 }
1866 }
1867
1868 void igb_reset(struct igb_adapter *adapter)
1869 {
1870 struct pci_dev *pdev = adapter->pdev;
1871 struct e1000_hw *hw = &adapter->hw;
1872 struct e1000_mac_info *mac = &hw->mac;
1873 struct e1000_fc_info *fc = &hw->fc;
1874 u32 pba, hwm;
1875
1876 /* Repartition Pba for greater than 9k mtu
1877 * To take effect CTRL.RST is required.
1878 */
1879 switch (mac->type) {
1880 case e1000_i350:
1881 case e1000_i354:
1882 case e1000_82580:
1883 pba = rd32(E1000_RXPBS);
1884 pba = igb_rxpbs_adjust_82580(pba);
1885 break;
1886 case e1000_82576:
1887 pba = rd32(E1000_RXPBS);
1888 pba &= E1000_RXPBS_SIZE_MASK_82576;
1889 break;
1890 case e1000_82575:
1891 case e1000_i210:
1892 case e1000_i211:
1893 default:
1894 pba = E1000_PBA_34K;
1895 break;
1896 }
1897
1898 if (mac->type == e1000_82575) {
1899 u32 min_rx_space, min_tx_space, needed_tx_space;
1900
1901 /* write Rx PBA so that hardware can report correct Tx PBA */
1902 wr32(E1000_PBA, pba);
1903
1904 /* To maintain wire speed transmits, the Tx FIFO should be
1905 * large enough to accommodate two full transmit packets,
1906 * rounded up to the next 1KB and expressed in KB. Likewise,
1907 * the Rx FIFO should be large enough to accommodate at least
1908 * one full receive packet and is similarly rounded up and
1909 * expressed in KB.
1910 */
1911 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1912
1913 /* The Tx FIFO also stores 16 bytes of information about the Tx
1914 * but don't include Ethernet FCS because hardware appends it.
1915 * We only need to round down to the nearest 512 byte block
1916 * count since the value we care about is 2 frames, not 1.
1917 */
1918 min_tx_space = adapter->max_frame_size;
1919 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1920 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1921
1922 /* upper 16 bits has Tx packet buffer allocation size in KB */
1923 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1924
1925 /* If current Tx allocation is less than the min Tx FIFO size,
1926 * and the min Tx FIFO size is less than the current Rx FIFO
1927 * allocation, take space away from current Rx allocation.
1928 */
1929 if (needed_tx_space < pba) {
1930 pba -= needed_tx_space;
1931
1932 /* if short on Rx space, Rx wins and must trump Tx
1933 * adjustment
1934 */
1935 if (pba < min_rx_space)
1936 pba = min_rx_space;
1937 }
1938
1939 /* adjust PBA for jumbo frames */
1940 wr32(E1000_PBA, pba);
1941 }
1942
1943 /* flow control settings
1944 * The high water mark must be low enough to fit one full frame
1945 * after transmitting the pause frame. As such we must have enough
1946 * space to allow for us to complete our current transmit and then
1947 * receive the frame that is in progress from the link partner.
1948 * Set it to:
1949 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1950 */
1951 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1952
1953 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1954 fc->low_water = fc->high_water - 16;
1955 fc->pause_time = 0xFFFF;
1956 fc->send_xon = 1;
1957 fc->current_mode = fc->requested_mode;
1958
1959 /* disable receive for all VFs and wait one second */
1960 if (adapter->vfs_allocated_count) {
1961 int i;
1962
1963 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965
1966 /* ping all the active vfs to let them know we are going down */
1967 igb_ping_all_vfs(adapter);
1968
1969 /* disable transmits and receives */
1970 wr32(E1000_VFRE, 0);
1971 wr32(E1000_VFTE, 0);
1972 }
1973
1974 /* Allow time for pending master requests to run */
1975 hw->mac.ops.reset_hw(hw);
1976 wr32(E1000_WUC, 0);
1977
1978 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 /* need to resetup here after media swap */
1980 adapter->ei.get_invariants(hw);
1981 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 }
1983 if ((mac->type == e1000_82575) &&
1984 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1985 igb_enable_mas(adapter);
1986 }
1987 if (hw->mac.ops.init_hw(hw))
1988 dev_err(&pdev->dev, "Hardware Error\n");
1989
1990 /* Flow control settings reset on hardware reset, so guarantee flow
1991 * control is off when forcing speed.
1992 */
1993 if (!hw->mac.autoneg)
1994 igb_force_mac_fc(hw);
1995
1996 igb_init_dmac(adapter, pba);
1997 #ifdef CONFIG_IGB_HWMON
1998 /* Re-initialize the thermal sensor on i350 devices. */
1999 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001 /* If present, re-initialize the external thermal sensor
2002 * interface.
2003 */
2004 if (adapter->ets)
2005 mac->ops.init_thermal_sensor_thresh(hw);
2006 }
2007 }
2008 #endif
2009 /* Re-establish EEE setting */
2010 if (hw->phy.media_type == e1000_media_type_copper) {
2011 switch (mac->type) {
2012 case e1000_i350:
2013 case e1000_i210:
2014 case e1000_i211:
2015 igb_set_eee_i350(hw, true, true);
2016 break;
2017 case e1000_i354:
2018 igb_set_eee_i354(hw, true, true);
2019 break;
2020 default:
2021 break;
2022 }
2023 }
2024 if (!netif_running(adapter->netdev))
2025 igb_power_down_link(adapter);
2026
2027 igb_update_mng_vlan(adapter);
2028
2029 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031
2032 /* Re-enable PTP, where applicable. */
2033 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2034 igb_ptp_reset(adapter);
2035
2036 igb_get_phy_info(hw);
2037 }
2038
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 netdev_features_t features)
2041 {
2042 /* Since there is no support for separate Rx/Tx vlan accel
2043 * enable/disable make sure Tx flag is always in same state as Rx.
2044 */
2045 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 features |= NETIF_F_HW_VLAN_CTAG_TX;
2047 else
2048 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049
2050 return features;
2051 }
2052
2053 static int igb_set_features(struct net_device *netdev,
2054 netdev_features_t features)
2055 {
2056 netdev_features_t changed = netdev->features ^ features;
2057 struct igb_adapter *adapter = netdev_priv(netdev);
2058
2059 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060 igb_vlan_mode(netdev, features);
2061
2062 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2063 return 0;
2064
2065 if (!(features & NETIF_F_NTUPLE)) {
2066 struct hlist_node *node2;
2067 struct igb_nfc_filter *rule;
2068
2069 spin_lock(&adapter->nfc_lock);
2070 hlist_for_each_entry_safe(rule, node2,
2071 &adapter->nfc_filter_list, nfc_node) {
2072 igb_erase_filter(adapter, rule);
2073 hlist_del(&rule->nfc_node);
2074 kfree(rule);
2075 }
2076 spin_unlock(&adapter->nfc_lock);
2077 adapter->nfc_filter_count = 0;
2078 }
2079
2080 netdev->features = features;
2081
2082 if (netif_running(netdev))
2083 igb_reinit_locked(adapter);
2084 else
2085 igb_reset(adapter);
2086
2087 return 0;
2088 }
2089
2090 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2091 struct net_device *dev,
2092 const unsigned char *addr, u16 vid,
2093 u16 flags)
2094 {
2095 /* guarantee we can provide a unique filter for the unicast address */
2096 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2097 struct igb_adapter *adapter = netdev_priv(dev);
2098 struct e1000_hw *hw = &adapter->hw;
2099 int vfn = adapter->vfs_allocated_count;
2100 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2101
2102 if (netdev_uc_count(dev) >= rar_entries)
2103 return -ENOMEM;
2104 }
2105
2106 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2107 }
2108
2109 #define IGB_MAX_MAC_HDR_LEN 127
2110 #define IGB_MAX_NETWORK_HDR_LEN 511
2111
2112 static netdev_features_t
2113 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2114 netdev_features_t features)
2115 {
2116 unsigned int network_hdr_len, mac_hdr_len;
2117
2118 /* Make certain the headers can be described by a context descriptor */
2119 mac_hdr_len = skb_network_header(skb) - skb->data;
2120 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2121 return features & ~(NETIF_F_HW_CSUM |
2122 NETIF_F_SCTP_CRC |
2123 NETIF_F_HW_VLAN_CTAG_TX |
2124 NETIF_F_TSO |
2125 NETIF_F_TSO6);
2126
2127 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2128 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2129 return features & ~(NETIF_F_HW_CSUM |
2130 NETIF_F_SCTP_CRC |
2131 NETIF_F_TSO |
2132 NETIF_F_TSO6);
2133
2134 /* We can only support IPV4 TSO in tunnels if we can mangle the
2135 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2136 */
2137 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2138 features &= ~NETIF_F_TSO;
2139
2140 return features;
2141 }
2142
2143 static const struct net_device_ops igb_netdev_ops = {
2144 .ndo_open = igb_open,
2145 .ndo_stop = igb_close,
2146 .ndo_start_xmit = igb_xmit_frame,
2147 .ndo_get_stats64 = igb_get_stats64,
2148 .ndo_set_rx_mode = igb_set_rx_mode,
2149 .ndo_set_mac_address = igb_set_mac,
2150 .ndo_change_mtu = igb_change_mtu,
2151 .ndo_do_ioctl = igb_ioctl,
2152 .ndo_tx_timeout = igb_tx_timeout,
2153 .ndo_validate_addr = eth_validate_addr,
2154 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2155 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2156 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2157 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2158 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2159 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2160 .ndo_get_vf_config = igb_ndo_get_vf_config,
2161 #ifdef CONFIG_NET_POLL_CONTROLLER
2162 .ndo_poll_controller = igb_netpoll,
2163 #endif
2164 .ndo_fix_features = igb_fix_features,
2165 .ndo_set_features = igb_set_features,
2166 .ndo_fdb_add = igb_ndo_fdb_add,
2167 .ndo_features_check = igb_features_check,
2168 };
2169
2170 /**
2171 * igb_set_fw_version - Configure version string for ethtool
2172 * @adapter: adapter struct
2173 **/
2174 void igb_set_fw_version(struct igb_adapter *adapter)
2175 {
2176 struct e1000_hw *hw = &adapter->hw;
2177 struct e1000_fw_version fw;
2178
2179 igb_get_fw_version(hw, &fw);
2180
2181 switch (hw->mac.type) {
2182 case e1000_i210:
2183 case e1000_i211:
2184 if (!(igb_get_flash_presence_i210(hw))) {
2185 snprintf(adapter->fw_version,
2186 sizeof(adapter->fw_version),
2187 "%2d.%2d-%d",
2188 fw.invm_major, fw.invm_minor,
2189 fw.invm_img_type);
2190 break;
2191 }
2192 /* fall through */
2193 default:
2194 /* if option is rom valid, display its version too */
2195 if (fw.or_valid) {
2196 snprintf(adapter->fw_version,
2197 sizeof(adapter->fw_version),
2198 "%d.%d, 0x%08x, %d.%d.%d",
2199 fw.eep_major, fw.eep_minor, fw.etrack_id,
2200 fw.or_major, fw.or_build, fw.or_patch);
2201 /* no option rom */
2202 } else if (fw.etrack_id != 0X0000) {
2203 snprintf(adapter->fw_version,
2204 sizeof(adapter->fw_version),
2205 "%d.%d, 0x%08x",
2206 fw.eep_major, fw.eep_minor, fw.etrack_id);
2207 } else {
2208 snprintf(adapter->fw_version,
2209 sizeof(adapter->fw_version),
2210 "%d.%d.%d",
2211 fw.eep_major, fw.eep_minor, fw.eep_build);
2212 }
2213 break;
2214 }
2215 }
2216
2217 /**
2218 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2219 *
2220 * @adapter: adapter struct
2221 **/
2222 static void igb_init_mas(struct igb_adapter *adapter)
2223 {
2224 struct e1000_hw *hw = &adapter->hw;
2225 u16 eeprom_data;
2226
2227 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2228 switch (hw->bus.func) {
2229 case E1000_FUNC_0:
2230 if (eeprom_data & IGB_MAS_ENABLE_0) {
2231 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2232 netdev_info(adapter->netdev,
2233 "MAS: Enabling Media Autosense for port %d\n",
2234 hw->bus.func);
2235 }
2236 break;
2237 case E1000_FUNC_1:
2238 if (eeprom_data & IGB_MAS_ENABLE_1) {
2239 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240 netdev_info(adapter->netdev,
2241 "MAS: Enabling Media Autosense for port %d\n",
2242 hw->bus.func);
2243 }
2244 break;
2245 case E1000_FUNC_2:
2246 if (eeprom_data & IGB_MAS_ENABLE_2) {
2247 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248 netdev_info(adapter->netdev,
2249 "MAS: Enabling Media Autosense for port %d\n",
2250 hw->bus.func);
2251 }
2252 break;
2253 case E1000_FUNC_3:
2254 if (eeprom_data & IGB_MAS_ENABLE_3) {
2255 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256 netdev_info(adapter->netdev,
2257 "MAS: Enabling Media Autosense for port %d\n",
2258 hw->bus.func);
2259 }
2260 break;
2261 default:
2262 /* Shouldn't get here */
2263 netdev_err(adapter->netdev,
2264 "MAS: Invalid port configuration, returning\n");
2265 break;
2266 }
2267 }
2268
2269 /**
2270 * igb_init_i2c - Init I2C interface
2271 * @adapter: pointer to adapter structure
2272 **/
2273 static s32 igb_init_i2c(struct igb_adapter *adapter)
2274 {
2275 s32 status = 0;
2276
2277 /* I2C interface supported on i350 devices */
2278 if (adapter->hw.mac.type != e1000_i350)
2279 return 0;
2280
2281 /* Initialize the i2c bus which is controlled by the registers.
2282 * This bus will use the i2c_algo_bit structue that implements
2283 * the protocol through toggling of the 4 bits in the register.
2284 */
2285 adapter->i2c_adap.owner = THIS_MODULE;
2286 adapter->i2c_algo = igb_i2c_algo;
2287 adapter->i2c_algo.data = adapter;
2288 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2289 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2290 strlcpy(adapter->i2c_adap.name, "igb BB",
2291 sizeof(adapter->i2c_adap.name));
2292 status = i2c_bit_add_bus(&adapter->i2c_adap);
2293 return status;
2294 }
2295
2296 /**
2297 * igb_probe - Device Initialization Routine
2298 * @pdev: PCI device information struct
2299 * @ent: entry in igb_pci_tbl
2300 *
2301 * Returns 0 on success, negative on failure
2302 *
2303 * igb_probe initializes an adapter identified by a pci_dev structure.
2304 * The OS initialization, configuring of the adapter private structure,
2305 * and a hardware reset occur.
2306 **/
2307 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2308 {
2309 struct net_device *netdev;
2310 struct igb_adapter *adapter;
2311 struct e1000_hw *hw;
2312 u16 eeprom_data = 0;
2313 s32 ret_val;
2314 static int global_quad_port_a; /* global quad port a indication */
2315 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2316 int err, pci_using_dac;
2317 u8 part_str[E1000_PBANUM_LENGTH];
2318
2319 /* Catch broken hardware that put the wrong VF device ID in
2320 * the PCIe SR-IOV capability.
2321 */
2322 if (pdev->is_virtfn) {
2323 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2324 pci_name(pdev), pdev->vendor, pdev->device);
2325 return -EINVAL;
2326 }
2327
2328 err = pci_enable_device_mem(pdev);
2329 if (err)
2330 return err;
2331
2332 pci_using_dac = 0;
2333 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2334 if (!err) {
2335 pci_using_dac = 1;
2336 } else {
2337 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2338 if (err) {
2339 dev_err(&pdev->dev,
2340 "No usable DMA configuration, aborting\n");
2341 goto err_dma;
2342 }
2343 }
2344
2345 err = pci_request_mem_regions(pdev, igb_driver_name);
2346 if (err)
2347 goto err_pci_reg;
2348
2349 pci_enable_pcie_error_reporting(pdev);
2350
2351 pci_set_master(pdev);
2352 pci_save_state(pdev);
2353
2354 err = -ENOMEM;
2355 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2356 IGB_MAX_TX_QUEUES);
2357 if (!netdev)
2358 goto err_alloc_etherdev;
2359
2360 SET_NETDEV_DEV(netdev, &pdev->dev);
2361
2362 pci_set_drvdata(pdev, netdev);
2363 adapter = netdev_priv(netdev);
2364 adapter->netdev = netdev;
2365 adapter->pdev = pdev;
2366 hw = &adapter->hw;
2367 hw->back = adapter;
2368 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2369
2370 err = -EIO;
2371 adapter->io_addr = pci_iomap(pdev, 0, 0);
2372 if (!adapter->io_addr)
2373 goto err_ioremap;
2374 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2375 hw->hw_addr = adapter->io_addr;
2376
2377 netdev->netdev_ops = &igb_netdev_ops;
2378 igb_set_ethtool_ops(netdev);
2379 netdev->watchdog_timeo = 5 * HZ;
2380
2381 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2382
2383 netdev->mem_start = pci_resource_start(pdev, 0);
2384 netdev->mem_end = pci_resource_end(pdev, 0);
2385
2386 /* PCI config space info */
2387 hw->vendor_id = pdev->vendor;
2388 hw->device_id = pdev->device;
2389 hw->revision_id = pdev->revision;
2390 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2391 hw->subsystem_device_id = pdev->subsystem_device;
2392
2393 /* Copy the default MAC, PHY and NVM function pointers */
2394 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2395 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2396 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2397 /* Initialize skew-specific constants */
2398 err = ei->get_invariants(hw);
2399 if (err)
2400 goto err_sw_init;
2401
2402 /* setup the private structure */
2403 err = igb_sw_init(adapter);
2404 if (err)
2405 goto err_sw_init;
2406
2407 igb_get_bus_info_pcie(hw);
2408
2409 hw->phy.autoneg_wait_to_complete = false;
2410
2411 /* Copper options */
2412 if (hw->phy.media_type == e1000_media_type_copper) {
2413 hw->phy.mdix = AUTO_ALL_MODES;
2414 hw->phy.disable_polarity_correction = false;
2415 hw->phy.ms_type = e1000_ms_hw_default;
2416 }
2417
2418 if (igb_check_reset_block(hw))
2419 dev_info(&pdev->dev,
2420 "PHY reset is blocked due to SOL/IDER session.\n");
2421
2422 /* features is initialized to 0 in allocation, it might have bits
2423 * set by igb_sw_init so we should use an or instead of an
2424 * assignment.
2425 */
2426 netdev->features |= NETIF_F_SG |
2427 NETIF_F_TSO |
2428 NETIF_F_TSO6 |
2429 NETIF_F_RXHASH |
2430 NETIF_F_RXCSUM |
2431 NETIF_F_HW_CSUM;
2432
2433 if (hw->mac.type >= e1000_82576)
2434 netdev->features |= NETIF_F_SCTP_CRC;
2435
2436 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2437 NETIF_F_GSO_GRE_CSUM | \
2438 NETIF_F_GSO_IPXIP4 | \
2439 NETIF_F_GSO_IPXIP6 | \
2440 NETIF_F_GSO_UDP_TUNNEL | \
2441 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2442
2443 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2444 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2445
2446 /* copy netdev features into list of user selectable features */
2447 netdev->hw_features |= netdev->features |
2448 NETIF_F_HW_VLAN_CTAG_RX |
2449 NETIF_F_HW_VLAN_CTAG_TX |
2450 NETIF_F_RXALL;
2451
2452 if (hw->mac.type >= e1000_i350)
2453 netdev->hw_features |= NETIF_F_NTUPLE;
2454
2455 if (pci_using_dac)
2456 netdev->features |= NETIF_F_HIGHDMA;
2457
2458 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2459 netdev->mpls_features |= NETIF_F_HW_CSUM;
2460 netdev->hw_enc_features |= netdev->vlan_features;
2461
2462 /* set this bit last since it cannot be part of vlan_features */
2463 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2464 NETIF_F_HW_VLAN_CTAG_RX |
2465 NETIF_F_HW_VLAN_CTAG_TX;
2466
2467 netdev->priv_flags |= IFF_SUPP_NOFCS;
2468
2469 netdev->priv_flags |= IFF_UNICAST_FLT;
2470
2471 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2472
2473 /* before reading the NVM, reset the controller to put the device in a
2474 * known good starting state
2475 */
2476 hw->mac.ops.reset_hw(hw);
2477
2478 /* make sure the NVM is good , i211/i210 parts can have special NVM
2479 * that doesn't contain a checksum
2480 */
2481 switch (hw->mac.type) {
2482 case e1000_i210:
2483 case e1000_i211:
2484 if (igb_get_flash_presence_i210(hw)) {
2485 if (hw->nvm.ops.validate(hw) < 0) {
2486 dev_err(&pdev->dev,
2487 "The NVM Checksum Is Not Valid\n");
2488 err = -EIO;
2489 goto err_eeprom;
2490 }
2491 }
2492 break;
2493 default:
2494 if (hw->nvm.ops.validate(hw) < 0) {
2495 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2496 err = -EIO;
2497 goto err_eeprom;
2498 }
2499 break;
2500 }
2501
2502 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2503 /* copy the MAC address out of the NVM */
2504 if (hw->mac.ops.read_mac_addr(hw))
2505 dev_err(&pdev->dev, "NVM Read Error\n");
2506 }
2507
2508 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2509
2510 if (!is_valid_ether_addr(netdev->dev_addr)) {
2511 dev_err(&pdev->dev, "Invalid MAC Address\n");
2512 err = -EIO;
2513 goto err_eeprom;
2514 }
2515
2516 /* get firmware version for ethtool -i */
2517 igb_set_fw_version(adapter);
2518
2519 /* configure RXPBSIZE and TXPBSIZE */
2520 if (hw->mac.type == e1000_i210) {
2521 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2522 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2523 }
2524
2525 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2526 (unsigned long) adapter);
2527 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2528 (unsigned long) adapter);
2529
2530 INIT_WORK(&adapter->reset_task, igb_reset_task);
2531 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2532
2533 /* Initialize link properties that are user-changeable */
2534 adapter->fc_autoneg = true;
2535 hw->mac.autoneg = true;
2536 hw->phy.autoneg_advertised = 0x2f;
2537
2538 hw->fc.requested_mode = e1000_fc_default;
2539 hw->fc.current_mode = e1000_fc_default;
2540
2541 igb_validate_mdi_setting(hw);
2542
2543 /* By default, support wake on port A */
2544 if (hw->bus.func == 0)
2545 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2546
2547 /* Check the NVM for wake support on non-port A ports */
2548 if (hw->mac.type >= e1000_82580)
2549 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2550 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2551 &eeprom_data);
2552 else if (hw->bus.func == 1)
2553 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2554
2555 if (eeprom_data & IGB_EEPROM_APME)
2556 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2557
2558 /* now that we have the eeprom settings, apply the special cases where
2559 * the eeprom may be wrong or the board simply won't support wake on
2560 * lan on a particular port
2561 */
2562 switch (pdev->device) {
2563 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2564 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2565 break;
2566 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2567 case E1000_DEV_ID_82576_FIBER:
2568 case E1000_DEV_ID_82576_SERDES:
2569 /* Wake events only supported on port A for dual fiber
2570 * regardless of eeprom setting
2571 */
2572 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2573 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2574 break;
2575 case E1000_DEV_ID_82576_QUAD_COPPER:
2576 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2577 /* if quad port adapter, disable WoL on all but port A */
2578 if (global_quad_port_a != 0)
2579 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2580 else
2581 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2582 /* Reset for multiple quad port adapters */
2583 if (++global_quad_port_a == 4)
2584 global_quad_port_a = 0;
2585 break;
2586 default:
2587 /* If the device can't wake, don't set software support */
2588 if (!device_can_wakeup(&adapter->pdev->dev))
2589 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2590 }
2591
2592 /* initialize the wol settings based on the eeprom settings */
2593 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2594 adapter->wol |= E1000_WUFC_MAG;
2595
2596 /* Some vendors want WoL disabled by default, but still supported */
2597 if ((hw->mac.type == e1000_i350) &&
2598 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2599 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2600 adapter->wol = 0;
2601 }
2602
2603 /* Some vendors want the ability to Use the EEPROM setting as
2604 * enable/disable only, and not for capability
2605 */
2606 if (((hw->mac.type == e1000_i350) ||
2607 (hw->mac.type == e1000_i354)) &&
2608 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2609 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2610 adapter->wol = 0;
2611 }
2612 if (hw->mac.type == e1000_i350) {
2613 if (((pdev->subsystem_device == 0x5001) ||
2614 (pdev->subsystem_device == 0x5002)) &&
2615 (hw->bus.func == 0)) {
2616 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2617 adapter->wol = 0;
2618 }
2619 if (pdev->subsystem_device == 0x1F52)
2620 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2621 }
2622
2623 device_set_wakeup_enable(&adapter->pdev->dev,
2624 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2625
2626 /* reset the hardware with the new settings */
2627 igb_reset(adapter);
2628
2629 /* Init the I2C interface */
2630 err = igb_init_i2c(adapter);
2631 if (err) {
2632 dev_err(&pdev->dev, "failed to init i2c interface\n");
2633 goto err_eeprom;
2634 }
2635
2636 /* let the f/w know that the h/w is now under the control of the
2637 * driver.
2638 */
2639 igb_get_hw_control(adapter);
2640
2641 strcpy(netdev->name, "eth%d");
2642 err = register_netdev(netdev);
2643 if (err)
2644 goto err_register;
2645
2646 /* carrier off reporting is important to ethtool even BEFORE open */
2647 netif_carrier_off(netdev);
2648
2649 #ifdef CONFIG_IGB_DCA
2650 if (dca_add_requester(&pdev->dev) == 0) {
2651 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2652 dev_info(&pdev->dev, "DCA enabled\n");
2653 igb_setup_dca(adapter);
2654 }
2655
2656 #endif
2657 #ifdef CONFIG_IGB_HWMON
2658 /* Initialize the thermal sensor on i350 devices. */
2659 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2660 u16 ets_word;
2661
2662 /* Read the NVM to determine if this i350 device supports an
2663 * external thermal sensor.
2664 */
2665 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2666 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2667 adapter->ets = true;
2668 else
2669 adapter->ets = false;
2670 if (igb_sysfs_init(adapter))
2671 dev_err(&pdev->dev,
2672 "failed to allocate sysfs resources\n");
2673 } else {
2674 adapter->ets = false;
2675 }
2676 #endif
2677 /* Check if Media Autosense is enabled */
2678 adapter->ei = *ei;
2679 if (hw->dev_spec._82575.mas_capable)
2680 igb_init_mas(adapter);
2681
2682 /* do hw tstamp init after resetting */
2683 igb_ptp_init(adapter);
2684
2685 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2686 /* print bus type/speed/width info, not applicable to i354 */
2687 if (hw->mac.type != e1000_i354) {
2688 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2689 netdev->name,
2690 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2691 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2692 "unknown"),
2693 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2694 "Width x4" :
2695 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2696 "Width x2" :
2697 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2698 "Width x1" : "unknown"), netdev->dev_addr);
2699 }
2700
2701 if ((hw->mac.type >= e1000_i210 ||
2702 igb_get_flash_presence_i210(hw))) {
2703 ret_val = igb_read_part_string(hw, part_str,
2704 E1000_PBANUM_LENGTH);
2705 } else {
2706 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2707 }
2708
2709 if (ret_val)
2710 strcpy(part_str, "Unknown");
2711 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2712 dev_info(&pdev->dev,
2713 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2714 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2715 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2716 adapter->num_rx_queues, adapter->num_tx_queues);
2717 if (hw->phy.media_type == e1000_media_type_copper) {
2718 switch (hw->mac.type) {
2719 case e1000_i350:
2720 case e1000_i210:
2721 case e1000_i211:
2722 /* Enable EEE for internal copper PHY devices */
2723 err = igb_set_eee_i350(hw, true, true);
2724 if ((!err) &&
2725 (!hw->dev_spec._82575.eee_disable)) {
2726 adapter->eee_advert =
2727 MDIO_EEE_100TX | MDIO_EEE_1000T;
2728 adapter->flags |= IGB_FLAG_EEE;
2729 }
2730 break;
2731 case e1000_i354:
2732 if ((rd32(E1000_CTRL_EXT) &
2733 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2734 err = igb_set_eee_i354(hw, true, true);
2735 if ((!err) &&
2736 (!hw->dev_spec._82575.eee_disable)) {
2737 adapter->eee_advert =
2738 MDIO_EEE_100TX | MDIO_EEE_1000T;
2739 adapter->flags |= IGB_FLAG_EEE;
2740 }
2741 }
2742 break;
2743 default:
2744 break;
2745 }
2746 }
2747 pm_runtime_put_noidle(&pdev->dev);
2748 return 0;
2749
2750 err_register:
2751 igb_release_hw_control(adapter);
2752 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2753 err_eeprom:
2754 if (!igb_check_reset_block(hw))
2755 igb_reset_phy(hw);
2756
2757 if (hw->flash_address)
2758 iounmap(hw->flash_address);
2759 err_sw_init:
2760 kfree(adapter->shadow_vfta);
2761 igb_clear_interrupt_scheme(adapter);
2762 #ifdef CONFIG_PCI_IOV
2763 igb_disable_sriov(pdev);
2764 #endif
2765 pci_iounmap(pdev, adapter->io_addr);
2766 err_ioremap:
2767 free_netdev(netdev);
2768 err_alloc_etherdev:
2769 pci_release_mem_regions(pdev);
2770 err_pci_reg:
2771 err_dma:
2772 pci_disable_device(pdev);
2773 return err;
2774 }
2775
2776 #ifdef CONFIG_PCI_IOV
2777 static int igb_disable_sriov(struct pci_dev *pdev)
2778 {
2779 struct net_device *netdev = pci_get_drvdata(pdev);
2780 struct igb_adapter *adapter = netdev_priv(netdev);
2781 struct e1000_hw *hw = &adapter->hw;
2782
2783 /* reclaim resources allocated to VFs */
2784 if (adapter->vf_data) {
2785 /* disable iov and allow time for transactions to clear */
2786 if (pci_vfs_assigned(pdev)) {
2787 dev_warn(&pdev->dev,
2788 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2789 return -EPERM;
2790 } else {
2791 pci_disable_sriov(pdev);
2792 msleep(500);
2793 }
2794
2795 kfree(adapter->vf_data);
2796 adapter->vf_data = NULL;
2797 adapter->vfs_allocated_count = 0;
2798 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2799 wrfl();
2800 msleep(100);
2801 dev_info(&pdev->dev, "IOV Disabled\n");
2802
2803 /* Re-enable DMA Coalescing flag since IOV is turned off */
2804 adapter->flags |= IGB_FLAG_DMAC;
2805 }
2806
2807 return 0;
2808 }
2809
2810 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2811 {
2812 struct net_device *netdev = pci_get_drvdata(pdev);
2813 struct igb_adapter *adapter = netdev_priv(netdev);
2814 int old_vfs = pci_num_vf(pdev);
2815 int err = 0;
2816 int i;
2817
2818 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2819 err = -EPERM;
2820 goto out;
2821 }
2822 if (!num_vfs)
2823 goto out;
2824
2825 if (old_vfs) {
2826 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2827 old_vfs, max_vfs);
2828 adapter->vfs_allocated_count = old_vfs;
2829 } else
2830 adapter->vfs_allocated_count = num_vfs;
2831
2832 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2833 sizeof(struct vf_data_storage), GFP_KERNEL);
2834
2835 /* if allocation failed then we do not support SR-IOV */
2836 if (!adapter->vf_data) {
2837 adapter->vfs_allocated_count = 0;
2838 dev_err(&pdev->dev,
2839 "Unable to allocate memory for VF Data Storage\n");
2840 err = -ENOMEM;
2841 goto out;
2842 }
2843
2844 /* only call pci_enable_sriov() if no VFs are allocated already */
2845 if (!old_vfs) {
2846 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2847 if (err)
2848 goto err_out;
2849 }
2850 dev_info(&pdev->dev, "%d VFs allocated\n",
2851 adapter->vfs_allocated_count);
2852 for (i = 0; i < adapter->vfs_allocated_count; i++)
2853 igb_vf_configure(adapter, i);
2854
2855 /* DMA Coalescing is not supported in IOV mode. */
2856 adapter->flags &= ~IGB_FLAG_DMAC;
2857 goto out;
2858
2859 err_out:
2860 kfree(adapter->vf_data);
2861 adapter->vf_data = NULL;
2862 adapter->vfs_allocated_count = 0;
2863 out:
2864 return err;
2865 }
2866
2867 #endif
2868 /**
2869 * igb_remove_i2c - Cleanup I2C interface
2870 * @adapter: pointer to adapter structure
2871 **/
2872 static void igb_remove_i2c(struct igb_adapter *adapter)
2873 {
2874 /* free the adapter bus structure */
2875 i2c_del_adapter(&adapter->i2c_adap);
2876 }
2877
2878 /**
2879 * igb_remove - Device Removal Routine
2880 * @pdev: PCI device information struct
2881 *
2882 * igb_remove is called by the PCI subsystem to alert the driver
2883 * that it should release a PCI device. The could be caused by a
2884 * Hot-Plug event, or because the driver is going to be removed from
2885 * memory.
2886 **/
2887 static void igb_remove(struct pci_dev *pdev)
2888 {
2889 struct net_device *netdev = pci_get_drvdata(pdev);
2890 struct igb_adapter *adapter = netdev_priv(netdev);
2891 struct e1000_hw *hw = &adapter->hw;
2892
2893 pm_runtime_get_noresume(&pdev->dev);
2894 #ifdef CONFIG_IGB_HWMON
2895 igb_sysfs_exit(adapter);
2896 #endif
2897 igb_remove_i2c(adapter);
2898 igb_ptp_stop(adapter);
2899 /* The watchdog timer may be rescheduled, so explicitly
2900 * disable watchdog from being rescheduled.
2901 */
2902 set_bit(__IGB_DOWN, &adapter->state);
2903 del_timer_sync(&adapter->watchdog_timer);
2904 del_timer_sync(&adapter->phy_info_timer);
2905
2906 cancel_work_sync(&adapter->reset_task);
2907 cancel_work_sync(&adapter->watchdog_task);
2908
2909 #ifdef CONFIG_IGB_DCA
2910 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2911 dev_info(&pdev->dev, "DCA disabled\n");
2912 dca_remove_requester(&pdev->dev);
2913 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2914 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2915 }
2916 #endif
2917
2918 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2919 * would have already happened in close and is redundant.
2920 */
2921 igb_release_hw_control(adapter);
2922
2923 #ifdef CONFIG_PCI_IOV
2924 igb_disable_sriov(pdev);
2925 #endif
2926
2927 unregister_netdev(netdev);
2928
2929 igb_clear_interrupt_scheme(adapter);
2930
2931 pci_iounmap(pdev, adapter->io_addr);
2932 if (hw->flash_address)
2933 iounmap(hw->flash_address);
2934 pci_release_mem_regions(pdev);
2935
2936 kfree(adapter->shadow_vfta);
2937 free_netdev(netdev);
2938
2939 pci_disable_pcie_error_reporting(pdev);
2940
2941 pci_disable_device(pdev);
2942 }
2943
2944 /**
2945 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2946 * @adapter: board private structure to initialize
2947 *
2948 * This function initializes the vf specific data storage and then attempts to
2949 * allocate the VFs. The reason for ordering it this way is because it is much
2950 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2951 * the memory for the VFs.
2952 **/
2953 static void igb_probe_vfs(struct igb_adapter *adapter)
2954 {
2955 #ifdef CONFIG_PCI_IOV
2956 struct pci_dev *pdev = adapter->pdev;
2957 struct e1000_hw *hw = &adapter->hw;
2958
2959 /* Virtualization features not supported on i210 family. */
2960 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2961 return;
2962
2963 /* Of the below we really only want the effect of getting
2964 * IGB_FLAG_HAS_MSIX set (if available), without which
2965 * igb_enable_sriov() has no effect.
2966 */
2967 igb_set_interrupt_capability(adapter, true);
2968 igb_reset_interrupt_capability(adapter);
2969
2970 pci_sriov_set_totalvfs(pdev, 7);
2971 igb_enable_sriov(pdev, max_vfs);
2972
2973 #endif /* CONFIG_PCI_IOV */
2974 }
2975
2976 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2977 {
2978 struct e1000_hw *hw = &adapter->hw;
2979 u32 max_rss_queues;
2980
2981 /* Determine the maximum number of RSS queues supported. */
2982 switch (hw->mac.type) {
2983 case e1000_i211:
2984 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2985 break;
2986 case e1000_82575:
2987 case e1000_i210:
2988 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2989 break;
2990 case e1000_i350:
2991 /* I350 cannot do RSS and SR-IOV at the same time */
2992 if (!!adapter->vfs_allocated_count) {
2993 max_rss_queues = 1;
2994 break;
2995 }
2996 /* fall through */
2997 case e1000_82576:
2998 if (!!adapter->vfs_allocated_count) {
2999 max_rss_queues = 2;
3000 break;
3001 }
3002 /* fall through */
3003 case e1000_82580:
3004 case e1000_i354:
3005 default:
3006 max_rss_queues = IGB_MAX_RX_QUEUES;
3007 break;
3008 }
3009
3010 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3011
3012 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3013 }
3014
3015 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3016 const u32 max_rss_queues)
3017 {
3018 struct e1000_hw *hw = &adapter->hw;
3019
3020 /* Determine if we need to pair queues. */
3021 switch (hw->mac.type) {
3022 case e1000_82575:
3023 case e1000_i211:
3024 /* Device supports enough interrupts without queue pairing. */
3025 break;
3026 case e1000_82576:
3027 case e1000_82580:
3028 case e1000_i350:
3029 case e1000_i354:
3030 case e1000_i210:
3031 default:
3032 /* If rss_queues > half of max_rss_queues, pair the queues in
3033 * order to conserve interrupts due to limited supply.
3034 */
3035 if (adapter->rss_queues > (max_rss_queues / 2))
3036 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3037 else
3038 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3039 break;
3040 }
3041 }
3042
3043 /**
3044 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3045 * @adapter: board private structure to initialize
3046 *
3047 * igb_sw_init initializes the Adapter private data structure.
3048 * Fields are initialized based on PCI device information and
3049 * OS network device settings (MTU size).
3050 **/
3051 static int igb_sw_init(struct igb_adapter *adapter)
3052 {
3053 struct e1000_hw *hw = &adapter->hw;
3054 struct net_device *netdev = adapter->netdev;
3055 struct pci_dev *pdev = adapter->pdev;
3056
3057 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3058
3059 /* set default ring sizes */
3060 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3061 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3062
3063 /* set default ITR values */
3064 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3065 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3066
3067 /* set default work limits */
3068 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3069
3070 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3071 VLAN_HLEN;
3072 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3073
3074 spin_lock_init(&adapter->nfc_lock);
3075 spin_lock_init(&adapter->stats64_lock);
3076 #ifdef CONFIG_PCI_IOV
3077 switch (hw->mac.type) {
3078 case e1000_82576:
3079 case e1000_i350:
3080 if (max_vfs > 7) {
3081 dev_warn(&pdev->dev,
3082 "Maximum of 7 VFs per PF, using max\n");
3083 max_vfs = adapter->vfs_allocated_count = 7;
3084 } else
3085 adapter->vfs_allocated_count = max_vfs;
3086 if (adapter->vfs_allocated_count)
3087 dev_warn(&pdev->dev,
3088 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3089 break;
3090 default:
3091 break;
3092 }
3093 #endif /* CONFIG_PCI_IOV */
3094
3095 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3096 adapter->flags |= IGB_FLAG_HAS_MSIX;
3097
3098 igb_probe_vfs(adapter);
3099
3100 igb_init_queue_configuration(adapter);
3101
3102 /* Setup and initialize a copy of the hw vlan table array */
3103 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3104 GFP_ATOMIC);
3105
3106 /* This call may decrease the number of queues */
3107 if (igb_init_interrupt_scheme(adapter, true)) {
3108 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3109 return -ENOMEM;
3110 }
3111
3112 /* Explicitly disable IRQ since the NIC can be in any state. */
3113 igb_irq_disable(adapter);
3114
3115 if (hw->mac.type >= e1000_i350)
3116 adapter->flags &= ~IGB_FLAG_DMAC;
3117
3118 set_bit(__IGB_DOWN, &adapter->state);
3119 return 0;
3120 }
3121
3122 /**
3123 * igb_open - Called when a network interface is made active
3124 * @netdev: network interface device structure
3125 *
3126 * Returns 0 on success, negative value on failure
3127 *
3128 * The open entry point is called when a network interface is made
3129 * active by the system (IFF_UP). At this point all resources needed
3130 * for transmit and receive operations are allocated, the interrupt
3131 * handler is registered with the OS, the watchdog timer is started,
3132 * and the stack is notified that the interface is ready.
3133 **/
3134 static int __igb_open(struct net_device *netdev, bool resuming)
3135 {
3136 struct igb_adapter *adapter = netdev_priv(netdev);
3137 struct e1000_hw *hw = &adapter->hw;
3138 struct pci_dev *pdev = adapter->pdev;
3139 int err;
3140 int i;
3141
3142 /* disallow open during test */
3143 if (test_bit(__IGB_TESTING, &adapter->state)) {
3144 WARN_ON(resuming);
3145 return -EBUSY;
3146 }
3147
3148 if (!resuming)
3149 pm_runtime_get_sync(&pdev->dev);
3150
3151 netif_carrier_off(netdev);
3152
3153 /* allocate transmit descriptors */
3154 err = igb_setup_all_tx_resources(adapter);
3155 if (err)
3156 goto err_setup_tx;
3157
3158 /* allocate receive descriptors */
3159 err = igb_setup_all_rx_resources(adapter);
3160 if (err)
3161 goto err_setup_rx;
3162
3163 igb_power_up_link(adapter);
3164
3165 /* before we allocate an interrupt, we must be ready to handle it.
3166 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3167 * as soon as we call pci_request_irq, so we have to setup our
3168 * clean_rx handler before we do so.
3169 */
3170 igb_configure(adapter);
3171
3172 err = igb_request_irq(adapter);
3173 if (err)
3174 goto err_req_irq;
3175
3176 /* Notify the stack of the actual queue counts. */
3177 err = netif_set_real_num_tx_queues(adapter->netdev,
3178 adapter->num_tx_queues);
3179 if (err)
3180 goto err_set_queues;
3181
3182 err = netif_set_real_num_rx_queues(adapter->netdev,
3183 adapter->num_rx_queues);
3184 if (err)
3185 goto err_set_queues;
3186
3187 /* From here on the code is the same as igb_up() */
3188 clear_bit(__IGB_DOWN, &adapter->state);
3189
3190 for (i = 0; i < adapter->num_q_vectors; i++)
3191 napi_enable(&(adapter->q_vector[i]->napi));
3192
3193 /* Clear any pending interrupts. */
3194 rd32(E1000_ICR);
3195
3196 igb_irq_enable(adapter);
3197
3198 /* notify VFs that reset has been completed */
3199 if (adapter->vfs_allocated_count) {
3200 u32 reg_data = rd32(E1000_CTRL_EXT);
3201
3202 reg_data |= E1000_CTRL_EXT_PFRSTD;
3203 wr32(E1000_CTRL_EXT, reg_data);
3204 }
3205
3206 netif_tx_start_all_queues(netdev);
3207
3208 if (!resuming)
3209 pm_runtime_put(&pdev->dev);
3210
3211 /* start the watchdog. */
3212 hw->mac.get_link_status = 1;
3213 schedule_work(&adapter->watchdog_task);
3214
3215 return 0;
3216
3217 err_set_queues:
3218 igb_free_irq(adapter);
3219 err_req_irq:
3220 igb_release_hw_control(adapter);
3221 igb_power_down_link(adapter);
3222 igb_free_all_rx_resources(adapter);
3223 err_setup_rx:
3224 igb_free_all_tx_resources(adapter);
3225 err_setup_tx:
3226 igb_reset(adapter);
3227 if (!resuming)
3228 pm_runtime_put(&pdev->dev);
3229
3230 return err;
3231 }
3232
3233 int igb_open(struct net_device *netdev)
3234 {
3235 return __igb_open(netdev, false);
3236 }
3237
3238 /**
3239 * igb_close - Disables a network interface
3240 * @netdev: network interface device structure
3241 *
3242 * Returns 0, this is not allowed to fail
3243 *
3244 * The close entry point is called when an interface is de-activated
3245 * by the OS. The hardware is still under the driver's control, but
3246 * needs to be disabled. A global MAC reset is issued to stop the
3247 * hardware, and all transmit and receive resources are freed.
3248 **/
3249 static int __igb_close(struct net_device *netdev, bool suspending)
3250 {
3251 struct igb_adapter *adapter = netdev_priv(netdev);
3252 struct pci_dev *pdev = adapter->pdev;
3253
3254 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3255
3256 if (!suspending)
3257 pm_runtime_get_sync(&pdev->dev);
3258
3259 igb_down(adapter);
3260 igb_free_irq(adapter);
3261
3262 igb_nfc_filter_exit(adapter);
3263
3264 igb_free_all_tx_resources(adapter);
3265 igb_free_all_rx_resources(adapter);
3266
3267 if (!suspending)
3268 pm_runtime_put_sync(&pdev->dev);
3269 return 0;
3270 }
3271
3272 int igb_close(struct net_device *netdev)
3273 {
3274 return __igb_close(netdev, false);
3275 }
3276
3277 /**
3278 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3279 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3280 *
3281 * Return 0 on success, negative on failure
3282 **/
3283 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3284 {
3285 struct device *dev = tx_ring->dev;
3286 int size;
3287
3288 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3289
3290 tx_ring->tx_buffer_info = vzalloc(size);
3291 if (!tx_ring->tx_buffer_info)
3292 goto err;
3293
3294 /* round up to nearest 4K */
3295 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3296 tx_ring->size = ALIGN(tx_ring->size, 4096);
3297
3298 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3299 &tx_ring->dma, GFP_KERNEL);
3300 if (!tx_ring->desc)
3301 goto err;
3302
3303 tx_ring->next_to_use = 0;
3304 tx_ring->next_to_clean = 0;
3305
3306 return 0;
3307
3308 err:
3309 vfree(tx_ring->tx_buffer_info);
3310 tx_ring->tx_buffer_info = NULL;
3311 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3312 return -ENOMEM;
3313 }
3314
3315 /**
3316 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3317 * (Descriptors) for all queues
3318 * @adapter: board private structure
3319 *
3320 * Return 0 on success, negative on failure
3321 **/
3322 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3323 {
3324 struct pci_dev *pdev = adapter->pdev;
3325 int i, err = 0;
3326
3327 for (i = 0; i < adapter->num_tx_queues; i++) {
3328 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3329 if (err) {
3330 dev_err(&pdev->dev,
3331 "Allocation for Tx Queue %u failed\n", i);
3332 for (i--; i >= 0; i--)
3333 igb_free_tx_resources(adapter->tx_ring[i]);
3334 break;
3335 }
3336 }
3337
3338 return err;
3339 }
3340
3341 /**
3342 * igb_setup_tctl - configure the transmit control registers
3343 * @adapter: Board private structure
3344 **/
3345 void igb_setup_tctl(struct igb_adapter *adapter)
3346 {
3347 struct e1000_hw *hw = &adapter->hw;
3348 u32 tctl;
3349
3350 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3351 wr32(E1000_TXDCTL(0), 0);
3352
3353 /* Program the Transmit Control Register */
3354 tctl = rd32(E1000_TCTL);
3355 tctl &= ~E1000_TCTL_CT;
3356 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3357 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3358
3359 igb_config_collision_dist(hw);
3360
3361 /* Enable transmits */
3362 tctl |= E1000_TCTL_EN;
3363
3364 wr32(E1000_TCTL, tctl);
3365 }
3366
3367 /**
3368 * igb_configure_tx_ring - Configure transmit ring after Reset
3369 * @adapter: board private structure
3370 * @ring: tx ring to configure
3371 *
3372 * Configure a transmit ring after a reset.
3373 **/
3374 void igb_configure_tx_ring(struct igb_adapter *adapter,
3375 struct igb_ring *ring)
3376 {
3377 struct e1000_hw *hw = &adapter->hw;
3378 u32 txdctl = 0;
3379 u64 tdba = ring->dma;
3380 int reg_idx = ring->reg_idx;
3381
3382 /* disable the queue */
3383 wr32(E1000_TXDCTL(reg_idx), 0);
3384 wrfl();
3385 mdelay(10);
3386
3387 wr32(E1000_TDLEN(reg_idx),
3388 ring->count * sizeof(union e1000_adv_tx_desc));
3389 wr32(E1000_TDBAL(reg_idx),
3390 tdba & 0x00000000ffffffffULL);
3391 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3392
3393 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3394 wr32(E1000_TDH(reg_idx), 0);
3395 writel(0, ring->tail);
3396
3397 txdctl |= IGB_TX_PTHRESH;
3398 txdctl |= IGB_TX_HTHRESH << 8;
3399 txdctl |= IGB_TX_WTHRESH << 16;
3400
3401 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3402 wr32(E1000_TXDCTL(reg_idx), txdctl);
3403 }
3404
3405 /**
3406 * igb_configure_tx - Configure transmit Unit after Reset
3407 * @adapter: board private structure
3408 *
3409 * Configure the Tx unit of the MAC after a reset.
3410 **/
3411 static void igb_configure_tx(struct igb_adapter *adapter)
3412 {
3413 int i;
3414
3415 for (i = 0; i < adapter->num_tx_queues; i++)
3416 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3417 }
3418
3419 /**
3420 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3421 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3422 *
3423 * Returns 0 on success, negative on failure
3424 **/
3425 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3426 {
3427 struct device *dev = rx_ring->dev;
3428 int size;
3429
3430 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3431
3432 rx_ring->rx_buffer_info = vzalloc(size);
3433 if (!rx_ring->rx_buffer_info)
3434 goto err;
3435
3436 /* Round up to nearest 4K */
3437 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3438 rx_ring->size = ALIGN(rx_ring->size, 4096);
3439
3440 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3441 &rx_ring->dma, GFP_KERNEL);
3442 if (!rx_ring->desc)
3443 goto err;
3444
3445 rx_ring->next_to_alloc = 0;
3446 rx_ring->next_to_clean = 0;
3447 rx_ring->next_to_use = 0;
3448
3449 return 0;
3450
3451 err:
3452 vfree(rx_ring->rx_buffer_info);
3453 rx_ring->rx_buffer_info = NULL;
3454 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3455 return -ENOMEM;
3456 }
3457
3458 /**
3459 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3460 * (Descriptors) for all queues
3461 * @adapter: board private structure
3462 *
3463 * Return 0 on success, negative on failure
3464 **/
3465 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3466 {
3467 struct pci_dev *pdev = adapter->pdev;
3468 int i, err = 0;
3469
3470 for (i = 0; i < adapter->num_rx_queues; i++) {
3471 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3472 if (err) {
3473 dev_err(&pdev->dev,
3474 "Allocation for Rx Queue %u failed\n", i);
3475 for (i--; i >= 0; i--)
3476 igb_free_rx_resources(adapter->rx_ring[i]);
3477 break;
3478 }
3479 }
3480
3481 return err;
3482 }
3483
3484 /**
3485 * igb_setup_mrqc - configure the multiple receive queue control registers
3486 * @adapter: Board private structure
3487 **/
3488 static void igb_setup_mrqc(struct igb_adapter *adapter)
3489 {
3490 struct e1000_hw *hw = &adapter->hw;
3491 u32 mrqc, rxcsum;
3492 u32 j, num_rx_queues;
3493 u32 rss_key[10];
3494
3495 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3496 for (j = 0; j < 10; j++)
3497 wr32(E1000_RSSRK(j), rss_key[j]);
3498
3499 num_rx_queues = adapter->rss_queues;
3500
3501 switch (hw->mac.type) {
3502 case e1000_82576:
3503 /* 82576 supports 2 RSS queues for SR-IOV */
3504 if (adapter->vfs_allocated_count)
3505 num_rx_queues = 2;
3506 break;
3507 default:
3508 break;
3509 }
3510
3511 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3512 for (j = 0; j < IGB_RETA_SIZE; j++)
3513 adapter->rss_indir_tbl[j] =
3514 (j * num_rx_queues) / IGB_RETA_SIZE;
3515 adapter->rss_indir_tbl_init = num_rx_queues;
3516 }
3517 igb_write_rss_indir_tbl(adapter);
3518
3519 /* Disable raw packet checksumming so that RSS hash is placed in
3520 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3521 * offloads as they are enabled by default
3522 */
3523 rxcsum = rd32(E1000_RXCSUM);
3524 rxcsum |= E1000_RXCSUM_PCSD;
3525
3526 if (adapter->hw.mac.type >= e1000_82576)
3527 /* Enable Receive Checksum Offload for SCTP */
3528 rxcsum |= E1000_RXCSUM_CRCOFL;
3529
3530 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3531 wr32(E1000_RXCSUM, rxcsum);
3532
3533 /* Generate RSS hash based on packet types, TCP/UDP
3534 * port numbers and/or IPv4/v6 src and dst addresses
3535 */
3536 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3537 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3538 E1000_MRQC_RSS_FIELD_IPV6 |
3539 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3540 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3541
3542 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3543 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3544 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3545 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3546
3547 /* If VMDq is enabled then we set the appropriate mode for that, else
3548 * we default to RSS so that an RSS hash is calculated per packet even
3549 * if we are only using one queue
3550 */
3551 if (adapter->vfs_allocated_count) {
3552 if (hw->mac.type > e1000_82575) {
3553 /* Set the default pool for the PF's first queue */
3554 u32 vtctl = rd32(E1000_VT_CTL);
3555
3556 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3557 E1000_VT_CTL_DISABLE_DEF_POOL);
3558 vtctl |= adapter->vfs_allocated_count <<
3559 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3560 wr32(E1000_VT_CTL, vtctl);
3561 }
3562 if (adapter->rss_queues > 1)
3563 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3564 else
3565 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3566 } else {
3567 if (hw->mac.type != e1000_i211)
3568 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3569 }
3570 igb_vmm_control(adapter);
3571
3572 wr32(E1000_MRQC, mrqc);
3573 }
3574
3575 /**
3576 * igb_setup_rctl - configure the receive control registers
3577 * @adapter: Board private structure
3578 **/
3579 void igb_setup_rctl(struct igb_adapter *adapter)
3580 {
3581 struct e1000_hw *hw = &adapter->hw;
3582 u32 rctl;
3583
3584 rctl = rd32(E1000_RCTL);
3585
3586 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3587 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3588
3589 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3590 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3591
3592 /* enable stripping of CRC. It's unlikely this will break BMC
3593 * redirection as it did with e1000. Newer features require
3594 * that the HW strips the CRC.
3595 */
3596 rctl |= E1000_RCTL_SECRC;
3597
3598 /* disable store bad packets and clear size bits. */
3599 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3600
3601 /* enable LPE to allow for reception of jumbo frames */
3602 rctl |= E1000_RCTL_LPE;
3603
3604 /* disable queue 0 to prevent tail write w/o re-config */
3605 wr32(E1000_RXDCTL(0), 0);
3606
3607 /* Attention!!! For SR-IOV PF driver operations you must enable
3608 * queue drop for all VF and PF queues to prevent head of line blocking
3609 * if an un-trusted VF does not provide descriptors to hardware.
3610 */
3611 if (adapter->vfs_allocated_count) {
3612 /* set all queue drop enable bits */
3613 wr32(E1000_QDE, ALL_QUEUES);
3614 }
3615
3616 /* This is useful for sniffing bad packets. */
3617 if (adapter->netdev->features & NETIF_F_RXALL) {
3618 /* UPE and MPE will be handled by normal PROMISC logic
3619 * in e1000e_set_rx_mode
3620 */
3621 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3622 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3623 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3624
3625 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3626 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3627 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3628 * and that breaks VLANs.
3629 */
3630 }
3631
3632 wr32(E1000_RCTL, rctl);
3633 }
3634
3635 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3636 int vfn)
3637 {
3638 struct e1000_hw *hw = &adapter->hw;
3639 u32 vmolr;
3640
3641 if (size > MAX_JUMBO_FRAME_SIZE)
3642 size = MAX_JUMBO_FRAME_SIZE;
3643
3644 vmolr = rd32(E1000_VMOLR(vfn));
3645 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3646 vmolr |= size | E1000_VMOLR_LPE;
3647 wr32(E1000_VMOLR(vfn), vmolr);
3648
3649 return 0;
3650 }
3651
3652 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3653 int vfn, bool enable)
3654 {
3655 struct e1000_hw *hw = &adapter->hw;
3656 u32 val, reg;
3657
3658 if (hw->mac.type < e1000_82576)
3659 return;
3660
3661 if (hw->mac.type == e1000_i350)
3662 reg = E1000_DVMOLR(vfn);
3663 else
3664 reg = E1000_VMOLR(vfn);
3665
3666 val = rd32(reg);
3667 if (enable)
3668 val |= E1000_VMOLR_STRVLAN;
3669 else
3670 val &= ~(E1000_VMOLR_STRVLAN);
3671 wr32(reg, val);
3672 }
3673
3674 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3675 int vfn, bool aupe)
3676 {
3677 struct e1000_hw *hw = &adapter->hw;
3678 u32 vmolr;
3679
3680 /* This register exists only on 82576 and newer so if we are older then
3681 * we should exit and do nothing
3682 */
3683 if (hw->mac.type < e1000_82576)
3684 return;
3685
3686 vmolr = rd32(E1000_VMOLR(vfn));
3687 if (aupe)
3688 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3689 else
3690 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3691
3692 /* clear all bits that might not be set */
3693 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3694
3695 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3696 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3697 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3698 * multicast packets
3699 */
3700 if (vfn <= adapter->vfs_allocated_count)
3701 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3702
3703 wr32(E1000_VMOLR(vfn), vmolr);
3704 }
3705
3706 /**
3707 * igb_configure_rx_ring - Configure a receive ring after Reset
3708 * @adapter: board private structure
3709 * @ring: receive ring to be configured
3710 *
3711 * Configure the Rx unit of the MAC after a reset.
3712 **/
3713 void igb_configure_rx_ring(struct igb_adapter *adapter,
3714 struct igb_ring *ring)
3715 {
3716 struct e1000_hw *hw = &adapter->hw;
3717 u64 rdba = ring->dma;
3718 int reg_idx = ring->reg_idx;
3719 u32 srrctl = 0, rxdctl = 0;
3720
3721 /* disable the queue */
3722 wr32(E1000_RXDCTL(reg_idx), 0);
3723
3724 /* Set DMA base address registers */
3725 wr32(E1000_RDBAL(reg_idx),
3726 rdba & 0x00000000ffffffffULL);
3727 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3728 wr32(E1000_RDLEN(reg_idx),
3729 ring->count * sizeof(union e1000_adv_rx_desc));
3730
3731 /* initialize head and tail */
3732 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3733 wr32(E1000_RDH(reg_idx), 0);
3734 writel(0, ring->tail);
3735
3736 /* set descriptor configuration */
3737 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3738 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3739 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3740 if (hw->mac.type >= e1000_82580)
3741 srrctl |= E1000_SRRCTL_TIMESTAMP;
3742 /* Only set Drop Enable if we are supporting multiple queues */
3743 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3744 srrctl |= E1000_SRRCTL_DROP_EN;
3745
3746 wr32(E1000_SRRCTL(reg_idx), srrctl);
3747
3748 /* set filtering for VMDQ pools */
3749 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3750
3751 rxdctl |= IGB_RX_PTHRESH;
3752 rxdctl |= IGB_RX_HTHRESH << 8;
3753 rxdctl |= IGB_RX_WTHRESH << 16;
3754
3755 /* enable receive descriptor fetching */
3756 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3757 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3758 }
3759
3760 /**
3761 * igb_configure_rx - Configure receive Unit after Reset
3762 * @adapter: board private structure
3763 *
3764 * Configure the Rx unit of the MAC after a reset.
3765 **/
3766 static void igb_configure_rx(struct igb_adapter *adapter)
3767 {
3768 int i;
3769
3770 /* set the correct pool for the PF default MAC address in entry 0 */
3771 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3772 adapter->vfs_allocated_count);
3773
3774 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3775 * the Base and Length of the Rx Descriptor Ring
3776 */
3777 for (i = 0; i < adapter->num_rx_queues; i++)
3778 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3779 }
3780
3781 /**
3782 * igb_free_tx_resources - Free Tx Resources per Queue
3783 * @tx_ring: Tx descriptor ring for a specific queue
3784 *
3785 * Free all transmit software resources
3786 **/
3787 void igb_free_tx_resources(struct igb_ring *tx_ring)
3788 {
3789 igb_clean_tx_ring(tx_ring);
3790
3791 vfree(tx_ring->tx_buffer_info);
3792 tx_ring->tx_buffer_info = NULL;
3793
3794 /* if not set, then don't free */
3795 if (!tx_ring->desc)
3796 return;
3797
3798 dma_free_coherent(tx_ring->dev, tx_ring->size,
3799 tx_ring->desc, tx_ring->dma);
3800
3801 tx_ring->desc = NULL;
3802 }
3803
3804 /**
3805 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3806 * @adapter: board private structure
3807 *
3808 * Free all transmit software resources
3809 **/
3810 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3811 {
3812 int i;
3813
3814 for (i = 0; i < adapter->num_tx_queues; i++)
3815 if (adapter->tx_ring[i])
3816 igb_free_tx_resources(adapter->tx_ring[i]);
3817 }
3818
3819 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3820 struct igb_tx_buffer *tx_buffer)
3821 {
3822 if (tx_buffer->skb) {
3823 dev_kfree_skb_any(tx_buffer->skb);
3824 if (dma_unmap_len(tx_buffer, len))
3825 dma_unmap_single(ring->dev,
3826 dma_unmap_addr(tx_buffer, dma),
3827 dma_unmap_len(tx_buffer, len),
3828 DMA_TO_DEVICE);
3829 } else if (dma_unmap_len(tx_buffer, len)) {
3830 dma_unmap_page(ring->dev,
3831 dma_unmap_addr(tx_buffer, dma),
3832 dma_unmap_len(tx_buffer, len),
3833 DMA_TO_DEVICE);
3834 }
3835 tx_buffer->next_to_watch = NULL;
3836 tx_buffer->skb = NULL;
3837 dma_unmap_len_set(tx_buffer, len, 0);
3838 /* buffer_info must be completely set up in the transmit path */
3839 }
3840
3841 /**
3842 * igb_clean_tx_ring - Free Tx Buffers
3843 * @tx_ring: ring to be cleaned
3844 **/
3845 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3846 {
3847 struct igb_tx_buffer *buffer_info;
3848 unsigned long size;
3849 u16 i;
3850
3851 if (!tx_ring->tx_buffer_info)
3852 return;
3853 /* Free all the Tx ring sk_buffs */
3854
3855 for (i = 0; i < tx_ring->count; i++) {
3856 buffer_info = &tx_ring->tx_buffer_info[i];
3857 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3858 }
3859
3860 netdev_tx_reset_queue(txring_txq(tx_ring));
3861
3862 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3863 memset(tx_ring->tx_buffer_info, 0, size);
3864
3865 /* Zero out the descriptor ring */
3866 memset(tx_ring->desc, 0, tx_ring->size);
3867
3868 tx_ring->next_to_use = 0;
3869 tx_ring->next_to_clean = 0;
3870 }
3871
3872 /**
3873 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3874 * @adapter: board private structure
3875 **/
3876 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3877 {
3878 int i;
3879
3880 for (i = 0; i < adapter->num_tx_queues; i++)
3881 if (adapter->tx_ring[i])
3882 igb_clean_tx_ring(adapter->tx_ring[i]);
3883 }
3884
3885 /**
3886 * igb_free_rx_resources - Free Rx Resources
3887 * @rx_ring: ring to clean the resources from
3888 *
3889 * Free all receive software resources
3890 **/
3891 void igb_free_rx_resources(struct igb_ring *rx_ring)
3892 {
3893 igb_clean_rx_ring(rx_ring);
3894
3895 vfree(rx_ring->rx_buffer_info);
3896 rx_ring->rx_buffer_info = NULL;
3897
3898 /* if not set, then don't free */
3899 if (!rx_ring->desc)
3900 return;
3901
3902 dma_free_coherent(rx_ring->dev, rx_ring->size,
3903 rx_ring->desc, rx_ring->dma);
3904
3905 rx_ring->desc = NULL;
3906 }
3907
3908 /**
3909 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3910 * @adapter: board private structure
3911 *
3912 * Free all receive software resources
3913 **/
3914 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3915 {
3916 int i;
3917
3918 for (i = 0; i < adapter->num_rx_queues; i++)
3919 if (adapter->rx_ring[i])
3920 igb_free_rx_resources(adapter->rx_ring[i]);
3921 }
3922
3923 /**
3924 * igb_clean_rx_ring - Free Rx Buffers per Queue
3925 * @rx_ring: ring to free buffers from
3926 **/
3927 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3928 {
3929 unsigned long size;
3930 u16 i;
3931
3932 if (rx_ring->skb)
3933 dev_kfree_skb(rx_ring->skb);
3934 rx_ring->skb = NULL;
3935
3936 if (!rx_ring->rx_buffer_info)
3937 return;
3938
3939 /* Free all the Rx ring sk_buffs */
3940 for (i = 0; i < rx_ring->count; i++) {
3941 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3942
3943 if (!buffer_info->page)
3944 continue;
3945
3946 dma_unmap_page(rx_ring->dev,
3947 buffer_info->dma,
3948 PAGE_SIZE,
3949 DMA_FROM_DEVICE);
3950 __free_page(buffer_info->page);
3951
3952 buffer_info->page = NULL;
3953 }
3954
3955 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3956 memset(rx_ring->rx_buffer_info, 0, size);
3957
3958 /* Zero out the descriptor ring */
3959 memset(rx_ring->desc, 0, rx_ring->size);
3960
3961 rx_ring->next_to_alloc = 0;
3962 rx_ring->next_to_clean = 0;
3963 rx_ring->next_to_use = 0;
3964 }
3965
3966 /**
3967 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3968 * @adapter: board private structure
3969 **/
3970 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3971 {
3972 int i;
3973
3974 for (i = 0; i < adapter->num_rx_queues; i++)
3975 if (adapter->rx_ring[i])
3976 igb_clean_rx_ring(adapter->rx_ring[i]);
3977 }
3978
3979 /**
3980 * igb_set_mac - Change the Ethernet Address of the NIC
3981 * @netdev: network interface device structure
3982 * @p: pointer to an address structure
3983 *
3984 * Returns 0 on success, negative on failure
3985 **/
3986 static int igb_set_mac(struct net_device *netdev, void *p)
3987 {
3988 struct igb_adapter *adapter = netdev_priv(netdev);
3989 struct e1000_hw *hw = &adapter->hw;
3990 struct sockaddr *addr = p;
3991
3992 if (!is_valid_ether_addr(addr->sa_data))
3993 return -EADDRNOTAVAIL;
3994
3995 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3996 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3997
3998 /* set the correct pool for the new PF MAC address in entry 0 */
3999 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
4000 adapter->vfs_allocated_count);
4001
4002 return 0;
4003 }
4004
4005 /**
4006 * igb_write_mc_addr_list - write multicast addresses to MTA
4007 * @netdev: network interface device structure
4008 *
4009 * Writes multicast address list to the MTA hash table.
4010 * Returns: -ENOMEM on failure
4011 * 0 on no addresses written
4012 * X on writing X addresses to MTA
4013 **/
4014 static int igb_write_mc_addr_list(struct net_device *netdev)
4015 {
4016 struct igb_adapter *adapter = netdev_priv(netdev);
4017 struct e1000_hw *hw = &adapter->hw;
4018 struct netdev_hw_addr *ha;
4019 u8 *mta_list;
4020 int i;
4021
4022 if (netdev_mc_empty(netdev)) {
4023 /* nothing to program, so clear mc list */
4024 igb_update_mc_addr_list(hw, NULL, 0);
4025 igb_restore_vf_multicasts(adapter);
4026 return 0;
4027 }
4028
4029 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4030 if (!mta_list)
4031 return -ENOMEM;
4032
4033 /* The shared function expects a packed array of only addresses. */
4034 i = 0;
4035 netdev_for_each_mc_addr(ha, netdev)
4036 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4037
4038 igb_update_mc_addr_list(hw, mta_list, i);
4039 kfree(mta_list);
4040
4041 return netdev_mc_count(netdev);
4042 }
4043
4044 /**
4045 * igb_write_uc_addr_list - write unicast addresses to RAR table
4046 * @netdev: network interface device structure
4047 *
4048 * Writes unicast address list to the RAR table.
4049 * Returns: -ENOMEM on failure/insufficient address space
4050 * 0 on no addresses written
4051 * X on writing X addresses to the RAR table
4052 **/
4053 static int igb_write_uc_addr_list(struct net_device *netdev)
4054 {
4055 struct igb_adapter *adapter = netdev_priv(netdev);
4056 struct e1000_hw *hw = &adapter->hw;
4057 unsigned int vfn = adapter->vfs_allocated_count;
4058 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4059 int count = 0;
4060
4061 /* return ENOMEM indicating insufficient memory for addresses */
4062 if (netdev_uc_count(netdev) > rar_entries)
4063 return -ENOMEM;
4064
4065 if (!netdev_uc_empty(netdev) && rar_entries) {
4066 struct netdev_hw_addr *ha;
4067
4068 netdev_for_each_uc_addr(ha, netdev) {
4069 if (!rar_entries)
4070 break;
4071 igb_rar_set_qsel(adapter, ha->addr,
4072 rar_entries--,
4073 vfn);
4074 count++;
4075 }
4076 }
4077 /* write the addresses in reverse order to avoid write combining */
4078 for (; rar_entries > 0 ; rar_entries--) {
4079 wr32(E1000_RAH(rar_entries), 0);
4080 wr32(E1000_RAL(rar_entries), 0);
4081 }
4082 wrfl();
4083
4084 return count;
4085 }
4086
4087 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4088 {
4089 struct e1000_hw *hw = &adapter->hw;
4090 u32 i, pf_id;
4091
4092 switch (hw->mac.type) {
4093 case e1000_i210:
4094 case e1000_i211:
4095 case e1000_i350:
4096 /* VLAN filtering needed for VLAN prio filter */
4097 if (adapter->netdev->features & NETIF_F_NTUPLE)
4098 break;
4099 /* fall through */
4100 case e1000_82576:
4101 case e1000_82580:
4102 case e1000_i354:
4103 /* VLAN filtering needed for pool filtering */
4104 if (adapter->vfs_allocated_count)
4105 break;
4106 /* fall through */
4107 default:
4108 return 1;
4109 }
4110
4111 /* We are already in VLAN promisc, nothing to do */
4112 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4113 return 0;
4114
4115 if (!adapter->vfs_allocated_count)
4116 goto set_vfta;
4117
4118 /* Add PF to all active pools */
4119 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4120
4121 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4122 u32 vlvf = rd32(E1000_VLVF(i));
4123
4124 vlvf |= BIT(pf_id);
4125 wr32(E1000_VLVF(i), vlvf);
4126 }
4127
4128 set_vfta:
4129 /* Set all bits in the VLAN filter table array */
4130 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4131 hw->mac.ops.write_vfta(hw, i, ~0U);
4132
4133 /* Set flag so we don't redo unnecessary work */
4134 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4135
4136 return 0;
4137 }
4138
4139 #define VFTA_BLOCK_SIZE 8
4140 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4141 {
4142 struct e1000_hw *hw = &adapter->hw;
4143 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4144 u32 vid_start = vfta_offset * 32;
4145 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4146 u32 i, vid, word, bits, pf_id;
4147
4148 /* guarantee that we don't scrub out management VLAN */
4149 vid = adapter->mng_vlan_id;
4150 if (vid >= vid_start && vid < vid_end)
4151 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4152
4153 if (!adapter->vfs_allocated_count)
4154 goto set_vfta;
4155
4156 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4157
4158 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4159 u32 vlvf = rd32(E1000_VLVF(i));
4160
4161 /* pull VLAN ID from VLVF */
4162 vid = vlvf & VLAN_VID_MASK;
4163
4164 /* only concern ourselves with a certain range */
4165 if (vid < vid_start || vid >= vid_end)
4166 continue;
4167
4168 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4169 /* record VLAN ID in VFTA */
4170 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4171
4172 /* if PF is part of this then continue */
4173 if (test_bit(vid, adapter->active_vlans))
4174 continue;
4175 }
4176
4177 /* remove PF from the pool */
4178 bits = ~BIT(pf_id);
4179 bits &= rd32(E1000_VLVF(i));
4180 wr32(E1000_VLVF(i), bits);
4181 }
4182
4183 set_vfta:
4184 /* extract values from active_vlans and write back to VFTA */
4185 for (i = VFTA_BLOCK_SIZE; i--;) {
4186 vid = (vfta_offset + i) * 32;
4187 word = vid / BITS_PER_LONG;
4188 bits = vid % BITS_PER_LONG;
4189
4190 vfta[i] |= adapter->active_vlans[word] >> bits;
4191
4192 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4193 }
4194 }
4195
4196 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4197 {
4198 u32 i;
4199
4200 /* We are not in VLAN promisc, nothing to do */
4201 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4202 return;
4203
4204 /* Set flag so we don't redo unnecessary work */
4205 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4206
4207 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4208 igb_scrub_vfta(adapter, i);
4209 }
4210
4211 /**
4212 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4213 * @netdev: network interface device structure
4214 *
4215 * The set_rx_mode entry point is called whenever the unicast or multicast
4216 * address lists or the network interface flags are updated. This routine is
4217 * responsible for configuring the hardware for proper unicast, multicast,
4218 * promiscuous mode, and all-multi behavior.
4219 **/
4220 static void igb_set_rx_mode(struct net_device *netdev)
4221 {
4222 struct igb_adapter *adapter = netdev_priv(netdev);
4223 struct e1000_hw *hw = &adapter->hw;
4224 unsigned int vfn = adapter->vfs_allocated_count;
4225 u32 rctl = 0, vmolr = 0;
4226 int count;
4227
4228 /* Check for Promiscuous and All Multicast modes */
4229 if (netdev->flags & IFF_PROMISC) {
4230 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4231 vmolr |= E1000_VMOLR_MPME;
4232
4233 /* enable use of UTA filter to force packets to default pool */
4234 if (hw->mac.type == e1000_82576)
4235 vmolr |= E1000_VMOLR_ROPE;
4236 } else {
4237 if (netdev->flags & IFF_ALLMULTI) {
4238 rctl |= E1000_RCTL_MPE;
4239 vmolr |= E1000_VMOLR_MPME;
4240 } else {
4241 /* Write addresses to the MTA, if the attempt fails
4242 * then we should just turn on promiscuous mode so
4243 * that we can at least receive multicast traffic
4244 */
4245 count = igb_write_mc_addr_list(netdev);
4246 if (count < 0) {
4247 rctl |= E1000_RCTL_MPE;
4248 vmolr |= E1000_VMOLR_MPME;
4249 } else if (count) {
4250 vmolr |= E1000_VMOLR_ROMPE;
4251 }
4252 }
4253 }
4254
4255 /* Write addresses to available RAR registers, if there is not
4256 * sufficient space to store all the addresses then enable
4257 * unicast promiscuous mode
4258 */
4259 count = igb_write_uc_addr_list(netdev);
4260 if (count < 0) {
4261 rctl |= E1000_RCTL_UPE;
4262 vmolr |= E1000_VMOLR_ROPE;
4263 }
4264
4265 /* enable VLAN filtering by default */
4266 rctl |= E1000_RCTL_VFE;
4267
4268 /* disable VLAN filtering for modes that require it */
4269 if ((netdev->flags & IFF_PROMISC) ||
4270 (netdev->features & NETIF_F_RXALL)) {
4271 /* if we fail to set all rules then just clear VFE */
4272 if (igb_vlan_promisc_enable(adapter))
4273 rctl &= ~E1000_RCTL_VFE;
4274 } else {
4275 igb_vlan_promisc_disable(adapter);
4276 }
4277
4278 /* update state of unicast, multicast, and VLAN filtering modes */
4279 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4280 E1000_RCTL_VFE);
4281 wr32(E1000_RCTL, rctl);
4282
4283 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4284 * the VMOLR to enable the appropriate modes. Without this workaround
4285 * we will have issues with VLAN tag stripping not being done for frames
4286 * that are only arriving because we are the default pool
4287 */
4288 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4289 return;
4290
4291 /* set UTA to appropriate mode */
4292 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4293
4294 vmolr |= rd32(E1000_VMOLR(vfn)) &
4295 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4296
4297 /* enable Rx jumbo frames, no need for restriction */
4298 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4299 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4300
4301 wr32(E1000_VMOLR(vfn), vmolr);
4302 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4303
4304 igb_restore_vf_multicasts(adapter);
4305 }
4306
4307 static void igb_check_wvbr(struct igb_adapter *adapter)
4308 {
4309 struct e1000_hw *hw = &adapter->hw;
4310 u32 wvbr = 0;
4311
4312 switch (hw->mac.type) {
4313 case e1000_82576:
4314 case e1000_i350:
4315 wvbr = rd32(E1000_WVBR);
4316 if (!wvbr)
4317 return;
4318 break;
4319 default:
4320 break;
4321 }
4322
4323 adapter->wvbr |= wvbr;
4324 }
4325
4326 #define IGB_STAGGERED_QUEUE_OFFSET 8
4327
4328 static void igb_spoof_check(struct igb_adapter *adapter)
4329 {
4330 int j;
4331
4332 if (!adapter->wvbr)
4333 return;
4334
4335 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4336 if (adapter->wvbr & BIT(j) ||
4337 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4338 dev_warn(&adapter->pdev->dev,
4339 "Spoof event(s) detected on VF %d\n", j);
4340 adapter->wvbr &=
4341 ~(BIT(j) |
4342 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4343 }
4344 }
4345 }
4346
4347 /* Need to wait a few seconds after link up to get diagnostic information from
4348 * the phy
4349 */
4350 static void igb_update_phy_info(unsigned long data)
4351 {
4352 struct igb_adapter *adapter = (struct igb_adapter *) data;
4353 igb_get_phy_info(&adapter->hw);
4354 }
4355
4356 /**
4357 * igb_has_link - check shared code for link and determine up/down
4358 * @adapter: pointer to driver private info
4359 **/
4360 bool igb_has_link(struct igb_adapter *adapter)
4361 {
4362 struct e1000_hw *hw = &adapter->hw;
4363 bool link_active = false;
4364
4365 /* get_link_status is set on LSC (link status) interrupt or
4366 * rx sequence error interrupt. get_link_status will stay
4367 * false until the e1000_check_for_link establishes link
4368 * for copper adapters ONLY
4369 */
4370 switch (hw->phy.media_type) {
4371 case e1000_media_type_copper:
4372 if (!hw->mac.get_link_status)
4373 return true;
4374 case e1000_media_type_internal_serdes:
4375 hw->mac.ops.check_for_link(hw);
4376 link_active = !hw->mac.get_link_status;
4377 break;
4378 default:
4379 case e1000_media_type_unknown:
4380 break;
4381 }
4382
4383 if (((hw->mac.type == e1000_i210) ||
4384 (hw->mac.type == e1000_i211)) &&
4385 (hw->phy.id == I210_I_PHY_ID)) {
4386 if (!netif_carrier_ok(adapter->netdev)) {
4387 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4388 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4389 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4390 adapter->link_check_timeout = jiffies;
4391 }
4392 }
4393
4394 return link_active;
4395 }
4396
4397 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4398 {
4399 bool ret = false;
4400 u32 ctrl_ext, thstat;
4401
4402 /* check for thermal sensor event on i350 copper only */
4403 if (hw->mac.type == e1000_i350) {
4404 thstat = rd32(E1000_THSTAT);
4405 ctrl_ext = rd32(E1000_CTRL_EXT);
4406
4407 if ((hw->phy.media_type == e1000_media_type_copper) &&
4408 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4409 ret = !!(thstat & event);
4410 }
4411
4412 return ret;
4413 }
4414
4415 /**
4416 * igb_check_lvmmc - check for malformed packets received
4417 * and indicated in LVMMC register
4418 * @adapter: pointer to adapter
4419 **/
4420 static void igb_check_lvmmc(struct igb_adapter *adapter)
4421 {
4422 struct e1000_hw *hw = &adapter->hw;
4423 u32 lvmmc;
4424
4425 lvmmc = rd32(E1000_LVMMC);
4426 if (lvmmc) {
4427 if (unlikely(net_ratelimit())) {
4428 netdev_warn(adapter->netdev,
4429 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4430 lvmmc);
4431 }
4432 }
4433 }
4434
4435 /**
4436 * igb_watchdog - Timer Call-back
4437 * @data: pointer to adapter cast into an unsigned long
4438 **/
4439 static void igb_watchdog(unsigned long data)
4440 {
4441 struct igb_adapter *adapter = (struct igb_adapter *)data;
4442 /* Do the rest outside of interrupt context */
4443 schedule_work(&adapter->watchdog_task);
4444 }
4445
4446 static void igb_watchdog_task(struct work_struct *work)
4447 {
4448 struct igb_adapter *adapter = container_of(work,
4449 struct igb_adapter,
4450 watchdog_task);
4451 struct e1000_hw *hw = &adapter->hw;
4452 struct e1000_phy_info *phy = &hw->phy;
4453 struct net_device *netdev = adapter->netdev;
4454 u32 link;
4455 int i;
4456 u32 connsw;
4457 u16 phy_data, retry_count = 20;
4458
4459 link = igb_has_link(adapter);
4460
4461 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4462 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4463 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4464 else
4465 link = false;
4466 }
4467
4468 /* Force link down if we have fiber to swap to */
4469 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4470 if (hw->phy.media_type == e1000_media_type_copper) {
4471 connsw = rd32(E1000_CONNSW);
4472 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4473 link = 0;
4474 }
4475 }
4476 if (link) {
4477 /* Perform a reset if the media type changed. */
4478 if (hw->dev_spec._82575.media_changed) {
4479 hw->dev_spec._82575.media_changed = false;
4480 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4481 igb_reset(adapter);
4482 }
4483 /* Cancel scheduled suspend requests. */
4484 pm_runtime_resume(netdev->dev.parent);
4485
4486 if (!netif_carrier_ok(netdev)) {
4487 u32 ctrl;
4488
4489 hw->mac.ops.get_speed_and_duplex(hw,
4490 &adapter->link_speed,
4491 &adapter->link_duplex);
4492
4493 ctrl = rd32(E1000_CTRL);
4494 /* Links status message must follow this format */
4495 netdev_info(netdev,
4496 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4497 netdev->name,
4498 adapter->link_speed,
4499 adapter->link_duplex == FULL_DUPLEX ?
4500 "Full" : "Half",
4501 (ctrl & E1000_CTRL_TFCE) &&
4502 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4503 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4504 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4505
4506 /* disable EEE if enabled */
4507 if ((adapter->flags & IGB_FLAG_EEE) &&
4508 (adapter->link_duplex == HALF_DUPLEX)) {
4509 dev_info(&adapter->pdev->dev,
4510 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4511 adapter->hw.dev_spec._82575.eee_disable = true;
4512 adapter->flags &= ~IGB_FLAG_EEE;
4513 }
4514
4515 /* check if SmartSpeed worked */
4516 igb_check_downshift(hw);
4517 if (phy->speed_downgraded)
4518 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4519
4520 /* check for thermal sensor event */
4521 if (igb_thermal_sensor_event(hw,
4522 E1000_THSTAT_LINK_THROTTLE))
4523 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4524
4525 /* adjust timeout factor according to speed/duplex */
4526 adapter->tx_timeout_factor = 1;
4527 switch (adapter->link_speed) {
4528 case SPEED_10:
4529 adapter->tx_timeout_factor = 14;
4530 break;
4531 case SPEED_100:
4532 /* maybe add some timeout factor ? */
4533 break;
4534 }
4535
4536 if (adapter->link_speed != SPEED_1000)
4537 goto no_wait;
4538
4539 /* wait for Remote receiver status OK */
4540 retry_read_status:
4541 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4542 &phy_data)) {
4543 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4544 retry_count) {
4545 msleep(100);
4546 retry_count--;
4547 goto retry_read_status;
4548 } else if (!retry_count) {
4549 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4550 }
4551 } else {
4552 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4553 }
4554 no_wait:
4555 netif_carrier_on(netdev);
4556
4557 igb_ping_all_vfs(adapter);
4558 igb_check_vf_rate_limit(adapter);
4559
4560 /* link state has changed, schedule phy info update */
4561 if (!test_bit(__IGB_DOWN, &adapter->state))
4562 mod_timer(&adapter->phy_info_timer,
4563 round_jiffies(jiffies + 2 * HZ));
4564 }
4565 } else {
4566 if (netif_carrier_ok(netdev)) {
4567 adapter->link_speed = 0;
4568 adapter->link_duplex = 0;
4569
4570 /* check for thermal sensor event */
4571 if (igb_thermal_sensor_event(hw,
4572 E1000_THSTAT_PWR_DOWN)) {
4573 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4574 }
4575
4576 /* Links status message must follow this format */
4577 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4578 netdev->name);
4579 netif_carrier_off(netdev);
4580
4581 igb_ping_all_vfs(adapter);
4582
4583 /* link state has changed, schedule phy info update */
4584 if (!test_bit(__IGB_DOWN, &adapter->state))
4585 mod_timer(&adapter->phy_info_timer,
4586 round_jiffies(jiffies + 2 * HZ));
4587
4588 /* link is down, time to check for alternate media */
4589 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4590 igb_check_swap_media(adapter);
4591 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4592 schedule_work(&adapter->reset_task);
4593 /* return immediately */
4594 return;
4595 }
4596 }
4597 pm_schedule_suspend(netdev->dev.parent,
4598 MSEC_PER_SEC * 5);
4599
4600 /* also check for alternate media here */
4601 } else if (!netif_carrier_ok(netdev) &&
4602 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4603 igb_check_swap_media(adapter);
4604 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4605 schedule_work(&adapter->reset_task);
4606 /* return immediately */
4607 return;
4608 }
4609 }
4610 }
4611
4612 spin_lock(&adapter->stats64_lock);
4613 igb_update_stats(adapter, &adapter->stats64);
4614 spin_unlock(&adapter->stats64_lock);
4615
4616 for (i = 0; i < adapter->num_tx_queues; i++) {
4617 struct igb_ring *tx_ring = adapter->tx_ring[i];
4618 if (!netif_carrier_ok(netdev)) {
4619 /* We've lost link, so the controller stops DMA,
4620 * but we've got queued Tx work that's never going
4621 * to get done, so reset controller to flush Tx.
4622 * (Do the reset outside of interrupt context).
4623 */
4624 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4625 adapter->tx_timeout_count++;
4626 schedule_work(&adapter->reset_task);
4627 /* return immediately since reset is imminent */
4628 return;
4629 }
4630 }
4631
4632 /* Force detection of hung controller every watchdog period */
4633 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4634 }
4635
4636 /* Cause software interrupt to ensure Rx ring is cleaned */
4637 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4638 u32 eics = 0;
4639
4640 for (i = 0; i < adapter->num_q_vectors; i++)
4641 eics |= adapter->q_vector[i]->eims_value;
4642 wr32(E1000_EICS, eics);
4643 } else {
4644 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4645 }
4646
4647 igb_spoof_check(adapter);
4648 igb_ptp_rx_hang(adapter);
4649
4650 /* Check LVMMC register on i350/i354 only */
4651 if ((adapter->hw.mac.type == e1000_i350) ||
4652 (adapter->hw.mac.type == e1000_i354))
4653 igb_check_lvmmc(adapter);
4654
4655 /* Reset the timer */
4656 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4657 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4658 mod_timer(&adapter->watchdog_timer,
4659 round_jiffies(jiffies + HZ));
4660 else
4661 mod_timer(&adapter->watchdog_timer,
4662 round_jiffies(jiffies + 2 * HZ));
4663 }
4664 }
4665
4666 enum latency_range {
4667 lowest_latency = 0,
4668 low_latency = 1,
4669 bulk_latency = 2,
4670 latency_invalid = 255
4671 };
4672
4673 /**
4674 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4675 * @q_vector: pointer to q_vector
4676 *
4677 * Stores a new ITR value based on strictly on packet size. This
4678 * algorithm is less sophisticated than that used in igb_update_itr,
4679 * due to the difficulty of synchronizing statistics across multiple
4680 * receive rings. The divisors and thresholds used by this function
4681 * were determined based on theoretical maximum wire speed and testing
4682 * data, in order to minimize response time while increasing bulk
4683 * throughput.
4684 * This functionality is controlled by ethtool's coalescing settings.
4685 * NOTE: This function is called only when operating in a multiqueue
4686 * receive environment.
4687 **/
4688 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4689 {
4690 int new_val = q_vector->itr_val;
4691 int avg_wire_size = 0;
4692 struct igb_adapter *adapter = q_vector->adapter;
4693 unsigned int packets;
4694
4695 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4696 * ints/sec - ITR timer value of 120 ticks.
4697 */
4698 if (adapter->link_speed != SPEED_1000) {
4699 new_val = IGB_4K_ITR;
4700 goto set_itr_val;
4701 }
4702
4703 packets = q_vector->rx.total_packets;
4704 if (packets)
4705 avg_wire_size = q_vector->rx.total_bytes / packets;
4706
4707 packets = q_vector->tx.total_packets;
4708 if (packets)
4709 avg_wire_size = max_t(u32, avg_wire_size,
4710 q_vector->tx.total_bytes / packets);
4711
4712 /* if avg_wire_size isn't set no work was done */
4713 if (!avg_wire_size)
4714 goto clear_counts;
4715
4716 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4717 avg_wire_size += 24;
4718
4719 /* Don't starve jumbo frames */
4720 avg_wire_size = min(avg_wire_size, 3000);
4721
4722 /* Give a little boost to mid-size frames */
4723 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4724 new_val = avg_wire_size / 3;
4725 else
4726 new_val = avg_wire_size / 2;
4727
4728 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4729 if (new_val < IGB_20K_ITR &&
4730 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4731 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4732 new_val = IGB_20K_ITR;
4733
4734 set_itr_val:
4735 if (new_val != q_vector->itr_val) {
4736 q_vector->itr_val = new_val;
4737 q_vector->set_itr = 1;
4738 }
4739 clear_counts:
4740 q_vector->rx.total_bytes = 0;
4741 q_vector->rx.total_packets = 0;
4742 q_vector->tx.total_bytes = 0;
4743 q_vector->tx.total_packets = 0;
4744 }
4745
4746 /**
4747 * igb_update_itr - update the dynamic ITR value based on statistics
4748 * @q_vector: pointer to q_vector
4749 * @ring_container: ring info to update the itr for
4750 *
4751 * Stores a new ITR value based on packets and byte
4752 * counts during the last interrupt. The advantage of per interrupt
4753 * computation is faster updates and more accurate ITR for the current
4754 * traffic pattern. Constants in this function were computed
4755 * based on theoretical maximum wire speed and thresholds were set based
4756 * on testing data as well as attempting to minimize response time
4757 * while increasing bulk throughput.
4758 * This functionality is controlled by ethtool's coalescing settings.
4759 * NOTE: These calculations are only valid when operating in a single-
4760 * queue environment.
4761 **/
4762 static void igb_update_itr(struct igb_q_vector *q_vector,
4763 struct igb_ring_container *ring_container)
4764 {
4765 unsigned int packets = ring_container->total_packets;
4766 unsigned int bytes = ring_container->total_bytes;
4767 u8 itrval = ring_container->itr;
4768
4769 /* no packets, exit with status unchanged */
4770 if (packets == 0)
4771 return;
4772
4773 switch (itrval) {
4774 case lowest_latency:
4775 /* handle TSO and jumbo frames */
4776 if (bytes/packets > 8000)
4777 itrval = bulk_latency;
4778 else if ((packets < 5) && (bytes > 512))
4779 itrval = low_latency;
4780 break;
4781 case low_latency: /* 50 usec aka 20000 ints/s */
4782 if (bytes > 10000) {
4783 /* this if handles the TSO accounting */
4784 if (bytes/packets > 8000)
4785 itrval = bulk_latency;
4786 else if ((packets < 10) || ((bytes/packets) > 1200))
4787 itrval = bulk_latency;
4788 else if ((packets > 35))
4789 itrval = lowest_latency;
4790 } else if (bytes/packets > 2000) {
4791 itrval = bulk_latency;
4792 } else if (packets <= 2 && bytes < 512) {
4793 itrval = lowest_latency;
4794 }
4795 break;
4796 case bulk_latency: /* 250 usec aka 4000 ints/s */
4797 if (bytes > 25000) {
4798 if (packets > 35)
4799 itrval = low_latency;
4800 } else if (bytes < 1500) {
4801 itrval = low_latency;
4802 }
4803 break;
4804 }
4805
4806 /* clear work counters since we have the values we need */
4807 ring_container->total_bytes = 0;
4808 ring_container->total_packets = 0;
4809
4810 /* write updated itr to ring container */
4811 ring_container->itr = itrval;
4812 }
4813
4814 static void igb_set_itr(struct igb_q_vector *q_vector)
4815 {
4816 struct igb_adapter *adapter = q_vector->adapter;
4817 u32 new_itr = q_vector->itr_val;
4818 u8 current_itr = 0;
4819
4820 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4821 if (adapter->link_speed != SPEED_1000) {
4822 current_itr = 0;
4823 new_itr = IGB_4K_ITR;
4824 goto set_itr_now;
4825 }
4826
4827 igb_update_itr(q_vector, &q_vector->tx);
4828 igb_update_itr(q_vector, &q_vector->rx);
4829
4830 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4831
4832 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4833 if (current_itr == lowest_latency &&
4834 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4835 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4836 current_itr = low_latency;
4837
4838 switch (current_itr) {
4839 /* counts and packets in update_itr are dependent on these numbers */
4840 case lowest_latency:
4841 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4842 break;
4843 case low_latency:
4844 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4845 break;
4846 case bulk_latency:
4847 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4848 break;
4849 default:
4850 break;
4851 }
4852
4853 set_itr_now:
4854 if (new_itr != q_vector->itr_val) {
4855 /* this attempts to bias the interrupt rate towards Bulk
4856 * by adding intermediate steps when interrupt rate is
4857 * increasing
4858 */
4859 new_itr = new_itr > q_vector->itr_val ?
4860 max((new_itr * q_vector->itr_val) /
4861 (new_itr + (q_vector->itr_val >> 2)),
4862 new_itr) : new_itr;
4863 /* Don't write the value here; it resets the adapter's
4864 * internal timer, and causes us to delay far longer than
4865 * we should between interrupts. Instead, we write the ITR
4866 * value at the beginning of the next interrupt so the timing
4867 * ends up being correct.
4868 */
4869 q_vector->itr_val = new_itr;
4870 q_vector->set_itr = 1;
4871 }
4872 }
4873
4874 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4875 u32 type_tucmd, u32 mss_l4len_idx)
4876 {
4877 struct e1000_adv_tx_context_desc *context_desc;
4878 u16 i = tx_ring->next_to_use;
4879
4880 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4881
4882 i++;
4883 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4884
4885 /* set bits to identify this as an advanced context descriptor */
4886 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4887
4888 /* For 82575, context index must be unique per ring. */
4889 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4890 mss_l4len_idx |= tx_ring->reg_idx << 4;
4891
4892 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4893 context_desc->seqnum_seed = 0;
4894 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4895 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4896 }
4897
4898 static int igb_tso(struct igb_ring *tx_ring,
4899 struct igb_tx_buffer *first,
4900 u8 *hdr_len)
4901 {
4902 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4903 struct sk_buff *skb = first->skb;
4904 union {
4905 struct iphdr *v4;
4906 struct ipv6hdr *v6;
4907 unsigned char *hdr;
4908 } ip;
4909 union {
4910 struct tcphdr *tcp;
4911 unsigned char *hdr;
4912 } l4;
4913 u32 paylen, l4_offset;
4914 int err;
4915
4916 if (skb->ip_summed != CHECKSUM_PARTIAL)
4917 return 0;
4918
4919 if (!skb_is_gso(skb))
4920 return 0;
4921
4922 err = skb_cow_head(skb, 0);
4923 if (err < 0)
4924 return err;
4925
4926 ip.hdr = skb_network_header(skb);
4927 l4.hdr = skb_checksum_start(skb);
4928
4929 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4930 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4931
4932 /* initialize outer IP header fields */
4933 if (ip.v4->version == 4) {
4934 /* IP header will have to cancel out any data that
4935 * is not a part of the outer IP header
4936 */
4937 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4938 csum_unfold(l4.tcp->check)));
4939 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4940
4941 ip.v4->tot_len = 0;
4942 first->tx_flags |= IGB_TX_FLAGS_TSO |
4943 IGB_TX_FLAGS_CSUM |
4944 IGB_TX_FLAGS_IPV4;
4945 } else {
4946 ip.v6->payload_len = 0;
4947 first->tx_flags |= IGB_TX_FLAGS_TSO |
4948 IGB_TX_FLAGS_CSUM;
4949 }
4950
4951 /* determine offset of inner transport header */
4952 l4_offset = l4.hdr - skb->data;
4953
4954 /* compute length of segmentation header */
4955 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4956
4957 /* remove payload length from inner checksum */
4958 paylen = skb->len - l4_offset;
4959 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4960
4961 /* update gso size and bytecount with header size */
4962 first->gso_segs = skb_shinfo(skb)->gso_segs;
4963 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4964
4965 /* MSS L4LEN IDX */
4966 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4967 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4968
4969 /* VLAN MACLEN IPLEN */
4970 vlan_macip_lens = l4.hdr - ip.hdr;
4971 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4972 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4973
4974 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4975
4976 return 1;
4977 }
4978
4979 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4980 {
4981 unsigned int offset = 0;
4982
4983 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4984
4985 return offset == skb_checksum_start_offset(skb);
4986 }
4987
4988 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4989 {
4990 struct sk_buff *skb = first->skb;
4991 u32 vlan_macip_lens = 0;
4992 u32 type_tucmd = 0;
4993
4994 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4995 csum_failed:
4996 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4997 return;
4998 goto no_csum;
4999 }
5000
5001 switch (skb->csum_offset) {
5002 case offsetof(struct tcphdr, check):
5003 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5004 /* fall through */
5005 case offsetof(struct udphdr, check):
5006 break;
5007 case offsetof(struct sctphdr, checksum):
5008 /* validate that this is actually an SCTP request */
5009 if (((first->protocol == htons(ETH_P_IP)) &&
5010 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5011 ((first->protocol == htons(ETH_P_IPV6)) &&
5012 igb_ipv6_csum_is_sctp(skb))) {
5013 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5014 break;
5015 }
5016 default:
5017 skb_checksum_help(skb);
5018 goto csum_failed;
5019 }
5020
5021 /* update TX checksum flag */
5022 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5023 vlan_macip_lens = skb_checksum_start_offset(skb) -
5024 skb_network_offset(skb);
5025 no_csum:
5026 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5027 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5028
5029 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5030 }
5031
5032 #define IGB_SET_FLAG(_input, _flag, _result) \
5033 ((_flag <= _result) ? \
5034 ((u32)(_input & _flag) * (_result / _flag)) : \
5035 ((u32)(_input & _flag) / (_flag / _result)))
5036
5037 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5038 {
5039 /* set type for advanced descriptor with frame checksum insertion */
5040 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5041 E1000_ADVTXD_DCMD_DEXT |
5042 E1000_ADVTXD_DCMD_IFCS;
5043
5044 /* set HW vlan bit if vlan is present */
5045 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5046 (E1000_ADVTXD_DCMD_VLE));
5047
5048 /* set segmentation bits for TSO */
5049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5050 (E1000_ADVTXD_DCMD_TSE));
5051
5052 /* set timestamp bit if present */
5053 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5054 (E1000_ADVTXD_MAC_TSTAMP));
5055
5056 /* insert frame checksum */
5057 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5058
5059 return cmd_type;
5060 }
5061
5062 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5063 union e1000_adv_tx_desc *tx_desc,
5064 u32 tx_flags, unsigned int paylen)
5065 {
5066 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5067
5068 /* 82575 requires a unique index per ring */
5069 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5070 olinfo_status |= tx_ring->reg_idx << 4;
5071
5072 /* insert L4 checksum */
5073 olinfo_status |= IGB_SET_FLAG(tx_flags,
5074 IGB_TX_FLAGS_CSUM,
5075 (E1000_TXD_POPTS_TXSM << 8));
5076
5077 /* insert IPv4 checksum */
5078 olinfo_status |= IGB_SET_FLAG(tx_flags,
5079 IGB_TX_FLAGS_IPV4,
5080 (E1000_TXD_POPTS_IXSM << 8));
5081
5082 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5083 }
5084
5085 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5086 {
5087 struct net_device *netdev = tx_ring->netdev;
5088
5089 netif_stop_subqueue(netdev, tx_ring->queue_index);
5090
5091 /* Herbert's original patch had:
5092 * smp_mb__after_netif_stop_queue();
5093 * but since that doesn't exist yet, just open code it.
5094 */
5095 smp_mb();
5096
5097 /* We need to check again in a case another CPU has just
5098 * made room available.
5099 */
5100 if (igb_desc_unused(tx_ring) < size)
5101 return -EBUSY;
5102
5103 /* A reprieve! */
5104 netif_wake_subqueue(netdev, tx_ring->queue_index);
5105
5106 u64_stats_update_begin(&tx_ring->tx_syncp2);
5107 tx_ring->tx_stats.restart_queue2++;
5108 u64_stats_update_end(&tx_ring->tx_syncp2);
5109
5110 return 0;
5111 }
5112
5113 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5114 {
5115 if (igb_desc_unused(tx_ring) >= size)
5116 return 0;
5117 return __igb_maybe_stop_tx(tx_ring, size);
5118 }
5119
5120 static void igb_tx_map(struct igb_ring *tx_ring,
5121 struct igb_tx_buffer *first,
5122 const u8 hdr_len)
5123 {
5124 struct sk_buff *skb = first->skb;
5125 struct igb_tx_buffer *tx_buffer;
5126 union e1000_adv_tx_desc *tx_desc;
5127 struct skb_frag_struct *frag;
5128 dma_addr_t dma;
5129 unsigned int data_len, size;
5130 u32 tx_flags = first->tx_flags;
5131 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5132 u16 i = tx_ring->next_to_use;
5133
5134 tx_desc = IGB_TX_DESC(tx_ring, i);
5135
5136 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5137
5138 size = skb_headlen(skb);
5139 data_len = skb->data_len;
5140
5141 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5142
5143 tx_buffer = first;
5144
5145 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5146 if (dma_mapping_error(tx_ring->dev, dma))
5147 goto dma_error;
5148
5149 /* record length, and DMA address */
5150 dma_unmap_len_set(tx_buffer, len, size);
5151 dma_unmap_addr_set(tx_buffer, dma, dma);
5152
5153 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5154
5155 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5156 tx_desc->read.cmd_type_len =
5157 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5158
5159 i++;
5160 tx_desc++;
5161 if (i == tx_ring->count) {
5162 tx_desc = IGB_TX_DESC(tx_ring, 0);
5163 i = 0;
5164 }
5165 tx_desc->read.olinfo_status = 0;
5166
5167 dma += IGB_MAX_DATA_PER_TXD;
5168 size -= IGB_MAX_DATA_PER_TXD;
5169
5170 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5171 }
5172
5173 if (likely(!data_len))
5174 break;
5175
5176 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5177
5178 i++;
5179 tx_desc++;
5180 if (i == tx_ring->count) {
5181 tx_desc = IGB_TX_DESC(tx_ring, 0);
5182 i = 0;
5183 }
5184 tx_desc->read.olinfo_status = 0;
5185
5186 size = skb_frag_size(frag);
5187 data_len -= size;
5188
5189 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5190 size, DMA_TO_DEVICE);
5191
5192 tx_buffer = &tx_ring->tx_buffer_info[i];
5193 }
5194
5195 /* write last descriptor with RS and EOP bits */
5196 cmd_type |= size | IGB_TXD_DCMD;
5197 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5198
5199 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5200
5201 /* set the timestamp */
5202 first->time_stamp = jiffies;
5203
5204 /* Force memory writes to complete before letting h/w know there
5205 * are new descriptors to fetch. (Only applicable for weak-ordered
5206 * memory model archs, such as IA-64).
5207 *
5208 * We also need this memory barrier to make certain all of the
5209 * status bits have been updated before next_to_watch is written.
5210 */
5211 wmb();
5212
5213 /* set next_to_watch value indicating a packet is present */
5214 first->next_to_watch = tx_desc;
5215
5216 i++;
5217 if (i == tx_ring->count)
5218 i = 0;
5219
5220 tx_ring->next_to_use = i;
5221
5222 /* Make sure there is space in the ring for the next send. */
5223 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5224
5225 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5226 writel(i, tx_ring->tail);
5227
5228 /* we need this if more than one processor can write to our tail
5229 * at a time, it synchronizes IO on IA64/Altix systems
5230 */
5231 mmiowb();
5232 }
5233 return;
5234
5235 dma_error:
5236 dev_err(tx_ring->dev, "TX DMA map failed\n");
5237
5238 /* clear dma mappings for failed tx_buffer_info map */
5239 for (;;) {
5240 tx_buffer = &tx_ring->tx_buffer_info[i];
5241 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5242 if (tx_buffer == first)
5243 break;
5244 if (i == 0)
5245 i = tx_ring->count;
5246 i--;
5247 }
5248
5249 tx_ring->next_to_use = i;
5250 }
5251
5252 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5253 struct igb_ring *tx_ring)
5254 {
5255 struct igb_tx_buffer *first;
5256 int tso;
5257 u32 tx_flags = 0;
5258 unsigned short f;
5259 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5260 __be16 protocol = vlan_get_protocol(skb);
5261 u8 hdr_len = 0;
5262
5263 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5264 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5265 * + 2 desc gap to keep tail from touching head,
5266 * + 1 desc for context descriptor,
5267 * otherwise try next time
5268 */
5269 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5270 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5271
5272 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5273 /* this is a hard error */
5274 return NETDEV_TX_BUSY;
5275 }
5276
5277 /* record the location of the first descriptor for this packet */
5278 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5279 first->skb = skb;
5280 first->bytecount = skb->len;
5281 first->gso_segs = 1;
5282
5283 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5284 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5285
5286 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5287 &adapter->state)) {
5288 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5289 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5290
5291 adapter->ptp_tx_skb = skb_get(skb);
5292 adapter->ptp_tx_start = jiffies;
5293 if (adapter->hw.mac.type == e1000_82576)
5294 schedule_work(&adapter->ptp_tx_work);
5295 }
5296 }
5297
5298 skb_tx_timestamp(skb);
5299
5300 if (skb_vlan_tag_present(skb)) {
5301 tx_flags |= IGB_TX_FLAGS_VLAN;
5302 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5303 }
5304
5305 /* record initial flags and protocol */
5306 first->tx_flags = tx_flags;
5307 first->protocol = protocol;
5308
5309 tso = igb_tso(tx_ring, first, &hdr_len);
5310 if (tso < 0)
5311 goto out_drop;
5312 else if (!tso)
5313 igb_tx_csum(tx_ring, first);
5314
5315 igb_tx_map(tx_ring, first, hdr_len);
5316
5317 return NETDEV_TX_OK;
5318
5319 out_drop:
5320 igb_unmap_and_free_tx_resource(tx_ring, first);
5321
5322 return NETDEV_TX_OK;
5323 }
5324
5325 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5326 struct sk_buff *skb)
5327 {
5328 unsigned int r_idx = skb->queue_mapping;
5329
5330 if (r_idx >= adapter->num_tx_queues)
5331 r_idx = r_idx % adapter->num_tx_queues;
5332
5333 return adapter->tx_ring[r_idx];
5334 }
5335
5336 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5337 struct net_device *netdev)
5338 {
5339 struct igb_adapter *adapter = netdev_priv(netdev);
5340
5341 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5342 * in order to meet this minimum size requirement.
5343 */
5344 if (skb_put_padto(skb, 17))
5345 return NETDEV_TX_OK;
5346
5347 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5348 }
5349
5350 /**
5351 * igb_tx_timeout - Respond to a Tx Hang
5352 * @netdev: network interface device structure
5353 **/
5354 static void igb_tx_timeout(struct net_device *netdev)
5355 {
5356 struct igb_adapter *adapter = netdev_priv(netdev);
5357 struct e1000_hw *hw = &adapter->hw;
5358
5359 /* Do the reset outside of interrupt context */
5360 adapter->tx_timeout_count++;
5361
5362 if (hw->mac.type >= e1000_82580)
5363 hw->dev_spec._82575.global_device_reset = true;
5364
5365 schedule_work(&adapter->reset_task);
5366 wr32(E1000_EICS,
5367 (adapter->eims_enable_mask & ~adapter->eims_other));
5368 }
5369
5370 static void igb_reset_task(struct work_struct *work)
5371 {
5372 struct igb_adapter *adapter;
5373 adapter = container_of(work, struct igb_adapter, reset_task);
5374
5375 igb_dump(adapter);
5376 netdev_err(adapter->netdev, "Reset adapter\n");
5377 igb_reinit_locked(adapter);
5378 }
5379
5380 /**
5381 * igb_get_stats64 - Get System Network Statistics
5382 * @netdev: network interface device structure
5383 * @stats: rtnl_link_stats64 pointer
5384 **/
5385 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5386 struct rtnl_link_stats64 *stats)
5387 {
5388 struct igb_adapter *adapter = netdev_priv(netdev);
5389
5390 spin_lock(&adapter->stats64_lock);
5391 igb_update_stats(adapter, &adapter->stats64);
5392 memcpy(stats, &adapter->stats64, sizeof(*stats));
5393 spin_unlock(&adapter->stats64_lock);
5394
5395 return stats;
5396 }
5397
5398 /**
5399 * igb_change_mtu - Change the Maximum Transfer Unit
5400 * @netdev: network interface device structure
5401 * @new_mtu: new value for maximum frame size
5402 *
5403 * Returns 0 on success, negative on failure
5404 **/
5405 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5406 {
5407 struct igb_adapter *adapter = netdev_priv(netdev);
5408 struct pci_dev *pdev = adapter->pdev;
5409 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5410
5411 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5412 dev_err(&pdev->dev, "Invalid MTU setting\n");
5413 return -EINVAL;
5414 }
5415
5416 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5417 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5418 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5419 return -EINVAL;
5420 }
5421
5422 /* adjust max frame to be at least the size of a standard frame */
5423 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5424 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5425
5426 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5427 usleep_range(1000, 2000);
5428
5429 /* igb_down has a dependency on max_frame_size */
5430 adapter->max_frame_size = max_frame;
5431
5432 if (netif_running(netdev))
5433 igb_down(adapter);
5434
5435 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5436 netdev->mtu, new_mtu);
5437 netdev->mtu = new_mtu;
5438
5439 if (netif_running(netdev))
5440 igb_up(adapter);
5441 else
5442 igb_reset(adapter);
5443
5444 clear_bit(__IGB_RESETTING, &adapter->state);
5445
5446 return 0;
5447 }
5448
5449 /**
5450 * igb_update_stats - Update the board statistics counters
5451 * @adapter: board private structure
5452 **/
5453 void igb_update_stats(struct igb_adapter *adapter,
5454 struct rtnl_link_stats64 *net_stats)
5455 {
5456 struct e1000_hw *hw = &adapter->hw;
5457 struct pci_dev *pdev = adapter->pdev;
5458 u32 reg, mpc;
5459 int i;
5460 u64 bytes, packets;
5461 unsigned int start;
5462 u64 _bytes, _packets;
5463
5464 /* Prevent stats update while adapter is being reset, or if the pci
5465 * connection is down.
5466 */
5467 if (adapter->link_speed == 0)
5468 return;
5469 if (pci_channel_offline(pdev))
5470 return;
5471
5472 bytes = 0;
5473 packets = 0;
5474
5475 rcu_read_lock();
5476 for (i = 0; i < adapter->num_rx_queues; i++) {
5477 struct igb_ring *ring = adapter->rx_ring[i];
5478 u32 rqdpc = rd32(E1000_RQDPC(i));
5479 if (hw->mac.type >= e1000_i210)
5480 wr32(E1000_RQDPC(i), 0);
5481
5482 if (rqdpc) {
5483 ring->rx_stats.drops += rqdpc;
5484 net_stats->rx_fifo_errors += rqdpc;
5485 }
5486
5487 do {
5488 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5489 _bytes = ring->rx_stats.bytes;
5490 _packets = ring->rx_stats.packets;
5491 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5492 bytes += _bytes;
5493 packets += _packets;
5494 }
5495
5496 net_stats->rx_bytes = bytes;
5497 net_stats->rx_packets = packets;
5498
5499 bytes = 0;
5500 packets = 0;
5501 for (i = 0; i < adapter->num_tx_queues; i++) {
5502 struct igb_ring *ring = adapter->tx_ring[i];
5503 do {
5504 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5505 _bytes = ring->tx_stats.bytes;
5506 _packets = ring->tx_stats.packets;
5507 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5508 bytes += _bytes;
5509 packets += _packets;
5510 }
5511 net_stats->tx_bytes = bytes;
5512 net_stats->tx_packets = packets;
5513 rcu_read_unlock();
5514
5515 /* read stats registers */
5516 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5517 adapter->stats.gprc += rd32(E1000_GPRC);
5518 adapter->stats.gorc += rd32(E1000_GORCL);
5519 rd32(E1000_GORCH); /* clear GORCL */
5520 adapter->stats.bprc += rd32(E1000_BPRC);
5521 adapter->stats.mprc += rd32(E1000_MPRC);
5522 adapter->stats.roc += rd32(E1000_ROC);
5523
5524 adapter->stats.prc64 += rd32(E1000_PRC64);
5525 adapter->stats.prc127 += rd32(E1000_PRC127);
5526 adapter->stats.prc255 += rd32(E1000_PRC255);
5527 adapter->stats.prc511 += rd32(E1000_PRC511);
5528 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5529 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5530 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5531 adapter->stats.sec += rd32(E1000_SEC);
5532
5533 mpc = rd32(E1000_MPC);
5534 adapter->stats.mpc += mpc;
5535 net_stats->rx_fifo_errors += mpc;
5536 adapter->stats.scc += rd32(E1000_SCC);
5537 adapter->stats.ecol += rd32(E1000_ECOL);
5538 adapter->stats.mcc += rd32(E1000_MCC);
5539 adapter->stats.latecol += rd32(E1000_LATECOL);
5540 adapter->stats.dc += rd32(E1000_DC);
5541 adapter->stats.rlec += rd32(E1000_RLEC);
5542 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5543 adapter->stats.xontxc += rd32(E1000_XONTXC);
5544 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5545 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5546 adapter->stats.fcruc += rd32(E1000_FCRUC);
5547 adapter->stats.gptc += rd32(E1000_GPTC);
5548 adapter->stats.gotc += rd32(E1000_GOTCL);
5549 rd32(E1000_GOTCH); /* clear GOTCL */
5550 adapter->stats.rnbc += rd32(E1000_RNBC);
5551 adapter->stats.ruc += rd32(E1000_RUC);
5552 adapter->stats.rfc += rd32(E1000_RFC);
5553 adapter->stats.rjc += rd32(E1000_RJC);
5554 adapter->stats.tor += rd32(E1000_TORH);
5555 adapter->stats.tot += rd32(E1000_TOTH);
5556 adapter->stats.tpr += rd32(E1000_TPR);
5557
5558 adapter->stats.ptc64 += rd32(E1000_PTC64);
5559 adapter->stats.ptc127 += rd32(E1000_PTC127);
5560 adapter->stats.ptc255 += rd32(E1000_PTC255);
5561 adapter->stats.ptc511 += rd32(E1000_PTC511);
5562 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5563 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5564
5565 adapter->stats.mptc += rd32(E1000_MPTC);
5566 adapter->stats.bptc += rd32(E1000_BPTC);
5567
5568 adapter->stats.tpt += rd32(E1000_TPT);
5569 adapter->stats.colc += rd32(E1000_COLC);
5570
5571 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5572 /* read internal phy specific stats */
5573 reg = rd32(E1000_CTRL_EXT);
5574 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5575 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5576
5577 /* this stat has invalid values on i210/i211 */
5578 if ((hw->mac.type != e1000_i210) &&
5579 (hw->mac.type != e1000_i211))
5580 adapter->stats.tncrs += rd32(E1000_TNCRS);
5581 }
5582
5583 adapter->stats.tsctc += rd32(E1000_TSCTC);
5584 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5585
5586 adapter->stats.iac += rd32(E1000_IAC);
5587 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5588 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5589 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5590 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5591 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5592 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5593 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5594 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5595
5596 /* Fill out the OS statistics structure */
5597 net_stats->multicast = adapter->stats.mprc;
5598 net_stats->collisions = adapter->stats.colc;
5599
5600 /* Rx Errors */
5601
5602 /* RLEC on some newer hardware can be incorrect so build
5603 * our own version based on RUC and ROC
5604 */
5605 net_stats->rx_errors = adapter->stats.rxerrc +
5606 adapter->stats.crcerrs + adapter->stats.algnerrc +
5607 adapter->stats.ruc + adapter->stats.roc +
5608 adapter->stats.cexterr;
5609 net_stats->rx_length_errors = adapter->stats.ruc +
5610 adapter->stats.roc;
5611 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5612 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5613 net_stats->rx_missed_errors = adapter->stats.mpc;
5614
5615 /* Tx Errors */
5616 net_stats->tx_errors = adapter->stats.ecol +
5617 adapter->stats.latecol;
5618 net_stats->tx_aborted_errors = adapter->stats.ecol;
5619 net_stats->tx_window_errors = adapter->stats.latecol;
5620 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5621
5622 /* Tx Dropped needs to be maintained elsewhere */
5623
5624 /* Management Stats */
5625 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5626 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5627 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5628
5629 /* OS2BMC Stats */
5630 reg = rd32(E1000_MANC);
5631 if (reg & E1000_MANC_EN_BMC2OS) {
5632 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5633 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5634 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5635 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5636 }
5637 }
5638
5639 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5640 {
5641 struct e1000_hw *hw = &adapter->hw;
5642 struct ptp_clock_event event;
5643 struct timespec64 ts;
5644 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5645
5646 if (tsicr & TSINTR_SYS_WRAP) {
5647 event.type = PTP_CLOCK_PPS;
5648 if (adapter->ptp_caps.pps)
5649 ptp_clock_event(adapter->ptp_clock, &event);
5650 else
5651 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5652 ack |= TSINTR_SYS_WRAP;
5653 }
5654
5655 if (tsicr & E1000_TSICR_TXTS) {
5656 /* retrieve hardware timestamp */
5657 schedule_work(&adapter->ptp_tx_work);
5658 ack |= E1000_TSICR_TXTS;
5659 }
5660
5661 if (tsicr & TSINTR_TT0) {
5662 spin_lock(&adapter->tmreg_lock);
5663 ts = timespec64_add(adapter->perout[0].start,
5664 adapter->perout[0].period);
5665 /* u32 conversion of tv_sec is safe until y2106 */
5666 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5667 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5668 tsauxc = rd32(E1000_TSAUXC);
5669 tsauxc |= TSAUXC_EN_TT0;
5670 wr32(E1000_TSAUXC, tsauxc);
5671 adapter->perout[0].start = ts;
5672 spin_unlock(&adapter->tmreg_lock);
5673 ack |= TSINTR_TT0;
5674 }
5675
5676 if (tsicr & TSINTR_TT1) {
5677 spin_lock(&adapter->tmreg_lock);
5678 ts = timespec64_add(adapter->perout[1].start,
5679 adapter->perout[1].period);
5680 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5681 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5682 tsauxc = rd32(E1000_TSAUXC);
5683 tsauxc |= TSAUXC_EN_TT1;
5684 wr32(E1000_TSAUXC, tsauxc);
5685 adapter->perout[1].start = ts;
5686 spin_unlock(&adapter->tmreg_lock);
5687 ack |= TSINTR_TT1;
5688 }
5689
5690 if (tsicr & TSINTR_AUTT0) {
5691 nsec = rd32(E1000_AUXSTMPL0);
5692 sec = rd32(E1000_AUXSTMPH0);
5693 event.type = PTP_CLOCK_EXTTS;
5694 event.index = 0;
5695 event.timestamp = sec * 1000000000ULL + nsec;
5696 ptp_clock_event(adapter->ptp_clock, &event);
5697 ack |= TSINTR_AUTT0;
5698 }
5699
5700 if (tsicr & TSINTR_AUTT1) {
5701 nsec = rd32(E1000_AUXSTMPL1);
5702 sec = rd32(E1000_AUXSTMPH1);
5703 event.type = PTP_CLOCK_EXTTS;
5704 event.index = 1;
5705 event.timestamp = sec * 1000000000ULL + nsec;
5706 ptp_clock_event(adapter->ptp_clock, &event);
5707 ack |= TSINTR_AUTT1;
5708 }
5709
5710 /* acknowledge the interrupts */
5711 wr32(E1000_TSICR, ack);
5712 }
5713
5714 static irqreturn_t igb_msix_other(int irq, void *data)
5715 {
5716 struct igb_adapter *adapter = data;
5717 struct e1000_hw *hw = &adapter->hw;
5718 u32 icr = rd32(E1000_ICR);
5719 /* reading ICR causes bit 31 of EICR to be cleared */
5720
5721 if (icr & E1000_ICR_DRSTA)
5722 schedule_work(&adapter->reset_task);
5723
5724 if (icr & E1000_ICR_DOUTSYNC) {
5725 /* HW is reporting DMA is out of sync */
5726 adapter->stats.doosync++;
5727 /* The DMA Out of Sync is also indication of a spoof event
5728 * in IOV mode. Check the Wrong VM Behavior register to
5729 * see if it is really a spoof event.
5730 */
5731 igb_check_wvbr(adapter);
5732 }
5733
5734 /* Check for a mailbox event */
5735 if (icr & E1000_ICR_VMMB)
5736 igb_msg_task(adapter);
5737
5738 if (icr & E1000_ICR_LSC) {
5739 hw->mac.get_link_status = 1;
5740 /* guard against interrupt when we're going down */
5741 if (!test_bit(__IGB_DOWN, &adapter->state))
5742 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5743 }
5744
5745 if (icr & E1000_ICR_TS)
5746 igb_tsync_interrupt(adapter);
5747
5748 wr32(E1000_EIMS, adapter->eims_other);
5749
5750 return IRQ_HANDLED;
5751 }
5752
5753 static void igb_write_itr(struct igb_q_vector *q_vector)
5754 {
5755 struct igb_adapter *adapter = q_vector->adapter;
5756 u32 itr_val = q_vector->itr_val & 0x7FFC;
5757
5758 if (!q_vector->set_itr)
5759 return;
5760
5761 if (!itr_val)
5762 itr_val = 0x4;
5763
5764 if (adapter->hw.mac.type == e1000_82575)
5765 itr_val |= itr_val << 16;
5766 else
5767 itr_val |= E1000_EITR_CNT_IGNR;
5768
5769 writel(itr_val, q_vector->itr_register);
5770 q_vector->set_itr = 0;
5771 }
5772
5773 static irqreturn_t igb_msix_ring(int irq, void *data)
5774 {
5775 struct igb_q_vector *q_vector = data;
5776
5777 /* Write the ITR value calculated from the previous interrupt. */
5778 igb_write_itr(q_vector);
5779
5780 napi_schedule(&q_vector->napi);
5781
5782 return IRQ_HANDLED;
5783 }
5784
5785 #ifdef CONFIG_IGB_DCA
5786 static void igb_update_tx_dca(struct igb_adapter *adapter,
5787 struct igb_ring *tx_ring,
5788 int cpu)
5789 {
5790 struct e1000_hw *hw = &adapter->hw;
5791 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5792
5793 if (hw->mac.type != e1000_82575)
5794 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5795
5796 /* We can enable relaxed ordering for reads, but not writes when
5797 * DCA is enabled. This is due to a known issue in some chipsets
5798 * which will cause the DCA tag to be cleared.
5799 */
5800 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5801 E1000_DCA_TXCTRL_DATA_RRO_EN |
5802 E1000_DCA_TXCTRL_DESC_DCA_EN;
5803
5804 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5805 }
5806
5807 static void igb_update_rx_dca(struct igb_adapter *adapter,
5808 struct igb_ring *rx_ring,
5809 int cpu)
5810 {
5811 struct e1000_hw *hw = &adapter->hw;
5812 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5813
5814 if (hw->mac.type != e1000_82575)
5815 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5816
5817 /* We can enable relaxed ordering for reads, but not writes when
5818 * DCA is enabled. This is due to a known issue in some chipsets
5819 * which will cause the DCA tag to be cleared.
5820 */
5821 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5822 E1000_DCA_RXCTRL_DESC_DCA_EN;
5823
5824 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5825 }
5826
5827 static void igb_update_dca(struct igb_q_vector *q_vector)
5828 {
5829 struct igb_adapter *adapter = q_vector->adapter;
5830 int cpu = get_cpu();
5831
5832 if (q_vector->cpu == cpu)
5833 goto out_no_update;
5834
5835 if (q_vector->tx.ring)
5836 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5837
5838 if (q_vector->rx.ring)
5839 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5840
5841 q_vector->cpu = cpu;
5842 out_no_update:
5843 put_cpu();
5844 }
5845
5846 static void igb_setup_dca(struct igb_adapter *adapter)
5847 {
5848 struct e1000_hw *hw = &adapter->hw;
5849 int i;
5850
5851 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5852 return;
5853
5854 /* Always use CB2 mode, difference is masked in the CB driver. */
5855 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5856
5857 for (i = 0; i < adapter->num_q_vectors; i++) {
5858 adapter->q_vector[i]->cpu = -1;
5859 igb_update_dca(adapter->q_vector[i]);
5860 }
5861 }
5862
5863 static int __igb_notify_dca(struct device *dev, void *data)
5864 {
5865 struct net_device *netdev = dev_get_drvdata(dev);
5866 struct igb_adapter *adapter = netdev_priv(netdev);
5867 struct pci_dev *pdev = adapter->pdev;
5868 struct e1000_hw *hw = &adapter->hw;
5869 unsigned long event = *(unsigned long *)data;
5870
5871 switch (event) {
5872 case DCA_PROVIDER_ADD:
5873 /* if already enabled, don't do it again */
5874 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5875 break;
5876 if (dca_add_requester(dev) == 0) {
5877 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5878 dev_info(&pdev->dev, "DCA enabled\n");
5879 igb_setup_dca(adapter);
5880 break;
5881 }
5882 /* Fall Through since DCA is disabled. */
5883 case DCA_PROVIDER_REMOVE:
5884 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5885 /* without this a class_device is left
5886 * hanging around in the sysfs model
5887 */
5888 dca_remove_requester(dev);
5889 dev_info(&pdev->dev, "DCA disabled\n");
5890 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5891 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5892 }
5893 break;
5894 }
5895
5896 return 0;
5897 }
5898
5899 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5900 void *p)
5901 {
5902 int ret_val;
5903
5904 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5905 __igb_notify_dca);
5906
5907 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5908 }
5909 #endif /* CONFIG_IGB_DCA */
5910
5911 #ifdef CONFIG_PCI_IOV
5912 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5913 {
5914 unsigned char mac_addr[ETH_ALEN];
5915
5916 eth_zero_addr(mac_addr);
5917 igb_set_vf_mac(adapter, vf, mac_addr);
5918
5919 /* By default spoof check is enabled for all VFs */
5920 adapter->vf_data[vf].spoofchk_enabled = true;
5921
5922 return 0;
5923 }
5924
5925 #endif
5926 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5927 {
5928 struct e1000_hw *hw = &adapter->hw;
5929 u32 ping;
5930 int i;
5931
5932 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5933 ping = E1000_PF_CONTROL_MSG;
5934 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5935 ping |= E1000_VT_MSGTYPE_CTS;
5936 igb_write_mbx(hw, &ping, 1, i);
5937 }
5938 }
5939
5940 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5941 {
5942 struct e1000_hw *hw = &adapter->hw;
5943 u32 vmolr = rd32(E1000_VMOLR(vf));
5944 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5945
5946 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5947 IGB_VF_FLAG_MULTI_PROMISC);
5948 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5949
5950 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5951 vmolr |= E1000_VMOLR_MPME;
5952 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5953 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5954 } else {
5955 /* if we have hashes and we are clearing a multicast promisc
5956 * flag we need to write the hashes to the MTA as this step
5957 * was previously skipped
5958 */
5959 if (vf_data->num_vf_mc_hashes > 30) {
5960 vmolr |= E1000_VMOLR_MPME;
5961 } else if (vf_data->num_vf_mc_hashes) {
5962 int j;
5963
5964 vmolr |= E1000_VMOLR_ROMPE;
5965 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5966 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5967 }
5968 }
5969
5970 wr32(E1000_VMOLR(vf), vmolr);
5971
5972 /* there are flags left unprocessed, likely not supported */
5973 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5974 return -EINVAL;
5975
5976 return 0;
5977 }
5978
5979 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5980 u32 *msgbuf, u32 vf)
5981 {
5982 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5983 u16 *hash_list = (u16 *)&msgbuf[1];
5984 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5985 int i;
5986
5987 /* salt away the number of multicast addresses assigned
5988 * to this VF for later use to restore when the PF multi cast
5989 * list changes
5990 */
5991 vf_data->num_vf_mc_hashes = n;
5992
5993 /* only up to 30 hash values supported */
5994 if (n > 30)
5995 n = 30;
5996
5997 /* store the hashes for later use */
5998 for (i = 0; i < n; i++)
5999 vf_data->vf_mc_hashes[i] = hash_list[i];
6000
6001 /* Flush and reset the mta with the new values */
6002 igb_set_rx_mode(adapter->netdev);
6003
6004 return 0;
6005 }
6006
6007 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6008 {
6009 struct e1000_hw *hw = &adapter->hw;
6010 struct vf_data_storage *vf_data;
6011 int i, j;
6012
6013 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6014 u32 vmolr = rd32(E1000_VMOLR(i));
6015
6016 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6017
6018 vf_data = &adapter->vf_data[i];
6019
6020 if ((vf_data->num_vf_mc_hashes > 30) ||
6021 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6022 vmolr |= E1000_VMOLR_MPME;
6023 } else if (vf_data->num_vf_mc_hashes) {
6024 vmolr |= E1000_VMOLR_ROMPE;
6025 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6026 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6027 }
6028 wr32(E1000_VMOLR(i), vmolr);
6029 }
6030 }
6031
6032 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6033 {
6034 struct e1000_hw *hw = &adapter->hw;
6035 u32 pool_mask, vlvf_mask, i;
6036
6037 /* create mask for VF and other pools */
6038 pool_mask = E1000_VLVF_POOLSEL_MASK;
6039 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6040
6041 /* drop PF from pool bits */
6042 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6043 adapter->vfs_allocated_count);
6044
6045 /* Find the vlan filter for this id */
6046 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6047 u32 vlvf = rd32(E1000_VLVF(i));
6048 u32 vfta_mask, vid, vfta;
6049
6050 /* remove the vf from the pool */
6051 if (!(vlvf & vlvf_mask))
6052 continue;
6053
6054 /* clear out bit from VLVF */
6055 vlvf ^= vlvf_mask;
6056
6057 /* if other pools are present, just remove ourselves */
6058 if (vlvf & pool_mask)
6059 goto update_vlvfb;
6060
6061 /* if PF is present, leave VFTA */
6062 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6063 goto update_vlvf;
6064
6065 vid = vlvf & E1000_VLVF_VLANID_MASK;
6066 vfta_mask = BIT(vid % 32);
6067
6068 /* clear bit from VFTA */
6069 vfta = adapter->shadow_vfta[vid / 32];
6070 if (vfta & vfta_mask)
6071 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6072 update_vlvf:
6073 /* clear pool selection enable */
6074 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6075 vlvf &= E1000_VLVF_POOLSEL_MASK;
6076 else
6077 vlvf = 0;
6078 update_vlvfb:
6079 /* clear pool bits */
6080 wr32(E1000_VLVF(i), vlvf);
6081 }
6082 }
6083
6084 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6085 {
6086 u32 vlvf;
6087 int idx;
6088
6089 /* short cut the special case */
6090 if (vlan == 0)
6091 return 0;
6092
6093 /* Search for the VLAN id in the VLVF entries */
6094 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6095 vlvf = rd32(E1000_VLVF(idx));
6096 if ((vlvf & VLAN_VID_MASK) == vlan)
6097 break;
6098 }
6099
6100 return idx;
6101 }
6102
6103 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6104 {
6105 struct e1000_hw *hw = &adapter->hw;
6106 u32 bits, pf_id;
6107 int idx;
6108
6109 idx = igb_find_vlvf_entry(hw, vid);
6110 if (!idx)
6111 return;
6112
6113 /* See if any other pools are set for this VLAN filter
6114 * entry other than the PF.
6115 */
6116 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6117 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6118 bits &= rd32(E1000_VLVF(idx));
6119
6120 /* Disable the filter so this falls into the default pool. */
6121 if (!bits) {
6122 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6123 wr32(E1000_VLVF(idx), BIT(pf_id));
6124 else
6125 wr32(E1000_VLVF(idx), 0);
6126 }
6127 }
6128
6129 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6130 bool add, u32 vf)
6131 {
6132 int pf_id = adapter->vfs_allocated_count;
6133 struct e1000_hw *hw = &adapter->hw;
6134 int err;
6135
6136 /* If VLAN overlaps with one the PF is currently monitoring make
6137 * sure that we are able to allocate a VLVF entry. This may be
6138 * redundant but it guarantees PF will maintain visibility to
6139 * the VLAN.
6140 */
6141 if (add && test_bit(vid, adapter->active_vlans)) {
6142 err = igb_vfta_set(hw, vid, pf_id, true, false);
6143 if (err)
6144 return err;
6145 }
6146
6147 err = igb_vfta_set(hw, vid, vf, add, false);
6148
6149 if (add && !err)
6150 return err;
6151
6152 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6153 * we may need to drop the PF pool bit in order to allow us to free
6154 * up the VLVF resources.
6155 */
6156 if (test_bit(vid, adapter->active_vlans) ||
6157 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6158 igb_update_pf_vlvf(adapter, vid);
6159
6160 return err;
6161 }
6162
6163 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6164 {
6165 struct e1000_hw *hw = &adapter->hw;
6166
6167 if (vid)
6168 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6169 else
6170 wr32(E1000_VMVIR(vf), 0);
6171 }
6172
6173 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6174 u16 vlan, u8 qos)
6175 {
6176 int err;
6177
6178 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6179 if (err)
6180 return err;
6181
6182 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6183 igb_set_vmolr(adapter, vf, !vlan);
6184
6185 /* revoke access to previous VLAN */
6186 if (vlan != adapter->vf_data[vf].pf_vlan)
6187 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6188 false, vf);
6189
6190 adapter->vf_data[vf].pf_vlan = vlan;
6191 adapter->vf_data[vf].pf_qos = qos;
6192 igb_set_vf_vlan_strip(adapter, vf, true);
6193 dev_info(&adapter->pdev->dev,
6194 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6195 if (test_bit(__IGB_DOWN, &adapter->state)) {
6196 dev_warn(&adapter->pdev->dev,
6197 "The VF VLAN has been set, but the PF device is not up.\n");
6198 dev_warn(&adapter->pdev->dev,
6199 "Bring the PF device up before attempting to use the VF device.\n");
6200 }
6201
6202 return err;
6203 }
6204
6205 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6206 {
6207 /* Restore tagless access via VLAN 0 */
6208 igb_set_vf_vlan(adapter, 0, true, vf);
6209
6210 igb_set_vmvir(adapter, 0, vf);
6211 igb_set_vmolr(adapter, vf, true);
6212
6213 /* Remove any PF assigned VLAN */
6214 if (adapter->vf_data[vf].pf_vlan)
6215 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6216 false, vf);
6217
6218 adapter->vf_data[vf].pf_vlan = 0;
6219 adapter->vf_data[vf].pf_qos = 0;
6220 igb_set_vf_vlan_strip(adapter, vf, false);
6221
6222 return 0;
6223 }
6224
6225 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6226 int vf, u16 vlan, u8 qos)
6227 {
6228 struct igb_adapter *adapter = netdev_priv(netdev);
6229
6230 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6231 return -EINVAL;
6232
6233 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6234 igb_disable_port_vlan(adapter, vf);
6235 }
6236
6237 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6238 {
6239 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6240 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6241 int ret;
6242
6243 if (adapter->vf_data[vf].pf_vlan)
6244 return -1;
6245
6246 /* VLAN 0 is a special case, don't allow it to be removed */
6247 if (!vid && !add)
6248 return 0;
6249
6250 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6251 if (!ret)
6252 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6253 return ret;
6254 }
6255
6256 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6257 {
6258 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6259
6260 /* clear flags - except flag that indicates PF has set the MAC */
6261 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6262 vf_data->last_nack = jiffies;
6263
6264 /* reset vlans for device */
6265 igb_clear_vf_vfta(adapter, vf);
6266 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6267 igb_set_vmvir(adapter, vf_data->pf_vlan |
6268 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6269 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6270 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6271
6272 /* reset multicast table array for vf */
6273 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6274
6275 /* Flush and reset the mta with the new values */
6276 igb_set_rx_mode(adapter->netdev);
6277 }
6278
6279 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6280 {
6281 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6282
6283 /* clear mac address as we were hotplug removed/added */
6284 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6285 eth_zero_addr(vf_mac);
6286
6287 /* process remaining reset events */
6288 igb_vf_reset(adapter, vf);
6289 }
6290
6291 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6292 {
6293 struct e1000_hw *hw = &adapter->hw;
6294 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6295 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6296 u32 reg, msgbuf[3];
6297 u8 *addr = (u8 *)(&msgbuf[1]);
6298
6299 /* process all the same items cleared in a function level reset */
6300 igb_vf_reset(adapter, vf);
6301
6302 /* set vf mac address */
6303 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6304
6305 /* enable transmit and receive for vf */
6306 reg = rd32(E1000_VFTE);
6307 wr32(E1000_VFTE, reg | BIT(vf));
6308 reg = rd32(E1000_VFRE);
6309 wr32(E1000_VFRE, reg | BIT(vf));
6310
6311 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6312
6313 /* reply to reset with ack and vf mac address */
6314 if (!is_zero_ether_addr(vf_mac)) {
6315 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6316 memcpy(addr, vf_mac, ETH_ALEN);
6317 } else {
6318 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6319 }
6320 igb_write_mbx(hw, msgbuf, 3, vf);
6321 }
6322
6323 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6324 {
6325 /* The VF MAC Address is stored in a packed array of bytes
6326 * starting at the second 32 bit word of the msg array
6327 */
6328 unsigned char *addr = (char *)&msg[1];
6329 int err = -1;
6330
6331 if (is_valid_ether_addr(addr))
6332 err = igb_set_vf_mac(adapter, vf, addr);
6333
6334 return err;
6335 }
6336
6337 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6338 {
6339 struct e1000_hw *hw = &adapter->hw;
6340 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6341 u32 msg = E1000_VT_MSGTYPE_NACK;
6342
6343 /* if device isn't clear to send it shouldn't be reading either */
6344 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6345 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6346 igb_write_mbx(hw, &msg, 1, vf);
6347 vf_data->last_nack = jiffies;
6348 }
6349 }
6350
6351 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6352 {
6353 struct pci_dev *pdev = adapter->pdev;
6354 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6355 struct e1000_hw *hw = &adapter->hw;
6356 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6357 s32 retval;
6358
6359 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6360
6361 if (retval) {
6362 /* if receive failed revoke VF CTS stats and restart init */
6363 dev_err(&pdev->dev, "Error receiving message from VF\n");
6364 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6365 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6366 return;
6367 goto out;
6368 }
6369
6370 /* this is a message we already processed, do nothing */
6371 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6372 return;
6373
6374 /* until the vf completes a reset it should not be
6375 * allowed to start any configuration.
6376 */
6377 if (msgbuf[0] == E1000_VF_RESET) {
6378 igb_vf_reset_msg(adapter, vf);
6379 return;
6380 }
6381
6382 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6383 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6384 return;
6385 retval = -1;
6386 goto out;
6387 }
6388
6389 switch ((msgbuf[0] & 0xFFFF)) {
6390 case E1000_VF_SET_MAC_ADDR:
6391 retval = -EINVAL;
6392 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6393 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6394 else
6395 dev_warn(&pdev->dev,
6396 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6397 vf);
6398 break;
6399 case E1000_VF_SET_PROMISC:
6400 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6401 break;
6402 case E1000_VF_SET_MULTICAST:
6403 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6404 break;
6405 case E1000_VF_SET_LPE:
6406 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6407 break;
6408 case E1000_VF_SET_VLAN:
6409 retval = -1;
6410 if (vf_data->pf_vlan)
6411 dev_warn(&pdev->dev,
6412 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6413 vf);
6414 else
6415 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6416 break;
6417 default:
6418 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6419 retval = -1;
6420 break;
6421 }
6422
6423 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6424 out:
6425 /* notify the VF of the results of what it sent us */
6426 if (retval)
6427 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6428 else
6429 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6430
6431 igb_write_mbx(hw, msgbuf, 1, vf);
6432 }
6433
6434 static void igb_msg_task(struct igb_adapter *adapter)
6435 {
6436 struct e1000_hw *hw = &adapter->hw;
6437 u32 vf;
6438
6439 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6440 /* process any reset requests */
6441 if (!igb_check_for_rst(hw, vf))
6442 igb_vf_reset_event(adapter, vf);
6443
6444 /* process any messages pending */
6445 if (!igb_check_for_msg(hw, vf))
6446 igb_rcv_msg_from_vf(adapter, vf);
6447
6448 /* process any acks */
6449 if (!igb_check_for_ack(hw, vf))
6450 igb_rcv_ack_from_vf(adapter, vf);
6451 }
6452 }
6453
6454 /**
6455 * igb_set_uta - Set unicast filter table address
6456 * @adapter: board private structure
6457 * @set: boolean indicating if we are setting or clearing bits
6458 *
6459 * The unicast table address is a register array of 32-bit registers.
6460 * The table is meant to be used in a way similar to how the MTA is used
6461 * however due to certain limitations in the hardware it is necessary to
6462 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6463 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6464 **/
6465 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6466 {
6467 struct e1000_hw *hw = &adapter->hw;
6468 u32 uta = set ? ~0 : 0;
6469 int i;
6470
6471 /* we only need to do this if VMDq is enabled */
6472 if (!adapter->vfs_allocated_count)
6473 return;
6474
6475 for (i = hw->mac.uta_reg_count; i--;)
6476 array_wr32(E1000_UTA, i, uta);
6477 }
6478
6479 /**
6480 * igb_intr_msi - Interrupt Handler
6481 * @irq: interrupt number
6482 * @data: pointer to a network interface device structure
6483 **/
6484 static irqreturn_t igb_intr_msi(int irq, void *data)
6485 {
6486 struct igb_adapter *adapter = data;
6487 struct igb_q_vector *q_vector = adapter->q_vector[0];
6488 struct e1000_hw *hw = &adapter->hw;
6489 /* read ICR disables interrupts using IAM */
6490 u32 icr = rd32(E1000_ICR);
6491
6492 igb_write_itr(q_vector);
6493
6494 if (icr & E1000_ICR_DRSTA)
6495 schedule_work(&adapter->reset_task);
6496
6497 if (icr & E1000_ICR_DOUTSYNC) {
6498 /* HW is reporting DMA is out of sync */
6499 adapter->stats.doosync++;
6500 }
6501
6502 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6503 hw->mac.get_link_status = 1;
6504 if (!test_bit(__IGB_DOWN, &adapter->state))
6505 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6506 }
6507
6508 if (icr & E1000_ICR_TS)
6509 igb_tsync_interrupt(adapter);
6510
6511 napi_schedule(&q_vector->napi);
6512
6513 return IRQ_HANDLED;
6514 }
6515
6516 /**
6517 * igb_intr - Legacy Interrupt Handler
6518 * @irq: interrupt number
6519 * @data: pointer to a network interface device structure
6520 **/
6521 static irqreturn_t igb_intr(int irq, void *data)
6522 {
6523 struct igb_adapter *adapter = data;
6524 struct igb_q_vector *q_vector = adapter->q_vector[0];
6525 struct e1000_hw *hw = &adapter->hw;
6526 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6527 * need for the IMC write
6528 */
6529 u32 icr = rd32(E1000_ICR);
6530
6531 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6532 * not set, then the adapter didn't send an interrupt
6533 */
6534 if (!(icr & E1000_ICR_INT_ASSERTED))
6535 return IRQ_NONE;
6536
6537 igb_write_itr(q_vector);
6538
6539 if (icr & E1000_ICR_DRSTA)
6540 schedule_work(&adapter->reset_task);
6541
6542 if (icr & E1000_ICR_DOUTSYNC) {
6543 /* HW is reporting DMA is out of sync */
6544 adapter->stats.doosync++;
6545 }
6546
6547 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6548 hw->mac.get_link_status = 1;
6549 /* guard against interrupt when we're going down */
6550 if (!test_bit(__IGB_DOWN, &adapter->state))
6551 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6552 }
6553
6554 if (icr & E1000_ICR_TS)
6555 igb_tsync_interrupt(adapter);
6556
6557 napi_schedule(&q_vector->napi);
6558
6559 return IRQ_HANDLED;
6560 }
6561
6562 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6563 {
6564 struct igb_adapter *adapter = q_vector->adapter;
6565 struct e1000_hw *hw = &adapter->hw;
6566
6567 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6568 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6569 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6570 igb_set_itr(q_vector);
6571 else
6572 igb_update_ring_itr(q_vector);
6573 }
6574
6575 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6576 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6577 wr32(E1000_EIMS, q_vector->eims_value);
6578 else
6579 igb_irq_enable(adapter);
6580 }
6581 }
6582
6583 /**
6584 * igb_poll - NAPI Rx polling callback
6585 * @napi: napi polling structure
6586 * @budget: count of how many packets we should handle
6587 **/
6588 static int igb_poll(struct napi_struct *napi, int budget)
6589 {
6590 struct igb_q_vector *q_vector = container_of(napi,
6591 struct igb_q_vector,
6592 napi);
6593 bool clean_complete = true;
6594 int work_done = 0;
6595
6596 #ifdef CONFIG_IGB_DCA
6597 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6598 igb_update_dca(q_vector);
6599 #endif
6600 if (q_vector->tx.ring)
6601 clean_complete = igb_clean_tx_irq(q_vector, budget);
6602
6603 if (q_vector->rx.ring) {
6604 int cleaned = igb_clean_rx_irq(q_vector, budget);
6605
6606 work_done += cleaned;
6607 if (cleaned >= budget)
6608 clean_complete = false;
6609 }
6610
6611 /* If all work not completed, return budget and keep polling */
6612 if (!clean_complete)
6613 return budget;
6614
6615 /* If not enough Rx work done, exit the polling mode */
6616 napi_complete_done(napi, work_done);
6617 igb_ring_irq_enable(q_vector);
6618
6619 return 0;
6620 }
6621
6622 /**
6623 * igb_clean_tx_irq - Reclaim resources after transmit completes
6624 * @q_vector: pointer to q_vector containing needed info
6625 * @napi_budget: Used to determine if we are in netpoll
6626 *
6627 * returns true if ring is completely cleaned
6628 **/
6629 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6630 {
6631 struct igb_adapter *adapter = q_vector->adapter;
6632 struct igb_ring *tx_ring = q_vector->tx.ring;
6633 struct igb_tx_buffer *tx_buffer;
6634 union e1000_adv_tx_desc *tx_desc;
6635 unsigned int total_bytes = 0, total_packets = 0;
6636 unsigned int budget = q_vector->tx.work_limit;
6637 unsigned int i = tx_ring->next_to_clean;
6638
6639 if (test_bit(__IGB_DOWN, &adapter->state))
6640 return true;
6641
6642 tx_buffer = &tx_ring->tx_buffer_info[i];
6643 tx_desc = IGB_TX_DESC(tx_ring, i);
6644 i -= tx_ring->count;
6645
6646 do {
6647 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6648
6649 /* if next_to_watch is not set then there is no work pending */
6650 if (!eop_desc)
6651 break;
6652
6653 /* prevent any other reads prior to eop_desc */
6654 read_barrier_depends();
6655
6656 /* if DD is not set pending work has not been completed */
6657 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6658 break;
6659
6660 /* clear next_to_watch to prevent false hangs */
6661 tx_buffer->next_to_watch = NULL;
6662
6663 /* update the statistics for this packet */
6664 total_bytes += tx_buffer->bytecount;
6665 total_packets += tx_buffer->gso_segs;
6666
6667 /* free the skb */
6668 napi_consume_skb(tx_buffer->skb, napi_budget);
6669
6670 /* unmap skb header data */
6671 dma_unmap_single(tx_ring->dev,
6672 dma_unmap_addr(tx_buffer, dma),
6673 dma_unmap_len(tx_buffer, len),
6674 DMA_TO_DEVICE);
6675
6676 /* clear tx_buffer data */
6677 tx_buffer->skb = NULL;
6678 dma_unmap_len_set(tx_buffer, len, 0);
6679
6680 /* clear last DMA location and unmap remaining buffers */
6681 while (tx_desc != eop_desc) {
6682 tx_buffer++;
6683 tx_desc++;
6684 i++;
6685 if (unlikely(!i)) {
6686 i -= tx_ring->count;
6687 tx_buffer = tx_ring->tx_buffer_info;
6688 tx_desc = IGB_TX_DESC(tx_ring, 0);
6689 }
6690
6691 /* unmap any remaining paged data */
6692 if (dma_unmap_len(tx_buffer, len)) {
6693 dma_unmap_page(tx_ring->dev,
6694 dma_unmap_addr(tx_buffer, dma),
6695 dma_unmap_len(tx_buffer, len),
6696 DMA_TO_DEVICE);
6697 dma_unmap_len_set(tx_buffer, len, 0);
6698 }
6699 }
6700
6701 /* move us one more past the eop_desc for start of next pkt */
6702 tx_buffer++;
6703 tx_desc++;
6704 i++;
6705 if (unlikely(!i)) {
6706 i -= tx_ring->count;
6707 tx_buffer = tx_ring->tx_buffer_info;
6708 tx_desc = IGB_TX_DESC(tx_ring, 0);
6709 }
6710
6711 /* issue prefetch for next Tx descriptor */
6712 prefetch(tx_desc);
6713
6714 /* update budget accounting */
6715 budget--;
6716 } while (likely(budget));
6717
6718 netdev_tx_completed_queue(txring_txq(tx_ring),
6719 total_packets, total_bytes);
6720 i += tx_ring->count;
6721 tx_ring->next_to_clean = i;
6722 u64_stats_update_begin(&tx_ring->tx_syncp);
6723 tx_ring->tx_stats.bytes += total_bytes;
6724 tx_ring->tx_stats.packets += total_packets;
6725 u64_stats_update_end(&tx_ring->tx_syncp);
6726 q_vector->tx.total_bytes += total_bytes;
6727 q_vector->tx.total_packets += total_packets;
6728
6729 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6730 struct e1000_hw *hw = &adapter->hw;
6731
6732 /* Detect a transmit hang in hardware, this serializes the
6733 * check with the clearing of time_stamp and movement of i
6734 */
6735 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6736 if (tx_buffer->next_to_watch &&
6737 time_after(jiffies, tx_buffer->time_stamp +
6738 (adapter->tx_timeout_factor * HZ)) &&
6739 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6740
6741 /* detected Tx unit hang */
6742 dev_err(tx_ring->dev,
6743 "Detected Tx Unit Hang\n"
6744 " Tx Queue <%d>\n"
6745 " TDH <%x>\n"
6746 " TDT <%x>\n"
6747 " next_to_use <%x>\n"
6748 " next_to_clean <%x>\n"
6749 "buffer_info[next_to_clean]\n"
6750 " time_stamp <%lx>\n"
6751 " next_to_watch <%p>\n"
6752 " jiffies <%lx>\n"
6753 " desc.status <%x>\n",
6754 tx_ring->queue_index,
6755 rd32(E1000_TDH(tx_ring->reg_idx)),
6756 readl(tx_ring->tail),
6757 tx_ring->next_to_use,
6758 tx_ring->next_to_clean,
6759 tx_buffer->time_stamp,
6760 tx_buffer->next_to_watch,
6761 jiffies,
6762 tx_buffer->next_to_watch->wb.status);
6763 netif_stop_subqueue(tx_ring->netdev,
6764 tx_ring->queue_index);
6765
6766 /* we are about to reset, no point in enabling stuff */
6767 return true;
6768 }
6769 }
6770
6771 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6772 if (unlikely(total_packets &&
6773 netif_carrier_ok(tx_ring->netdev) &&
6774 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6775 /* Make sure that anybody stopping the queue after this
6776 * sees the new next_to_clean.
6777 */
6778 smp_mb();
6779 if (__netif_subqueue_stopped(tx_ring->netdev,
6780 tx_ring->queue_index) &&
6781 !(test_bit(__IGB_DOWN, &adapter->state))) {
6782 netif_wake_subqueue(tx_ring->netdev,
6783 tx_ring->queue_index);
6784
6785 u64_stats_update_begin(&tx_ring->tx_syncp);
6786 tx_ring->tx_stats.restart_queue++;
6787 u64_stats_update_end(&tx_ring->tx_syncp);
6788 }
6789 }
6790
6791 return !!budget;
6792 }
6793
6794 /**
6795 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6796 * @rx_ring: rx descriptor ring to store buffers on
6797 * @old_buff: donor buffer to have page reused
6798 *
6799 * Synchronizes page for reuse by the adapter
6800 **/
6801 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6802 struct igb_rx_buffer *old_buff)
6803 {
6804 struct igb_rx_buffer *new_buff;
6805 u16 nta = rx_ring->next_to_alloc;
6806
6807 new_buff = &rx_ring->rx_buffer_info[nta];
6808
6809 /* update, and store next to alloc */
6810 nta++;
6811 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6812
6813 /* transfer page from old buffer to new buffer */
6814 *new_buff = *old_buff;
6815
6816 /* sync the buffer for use by the device */
6817 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6818 old_buff->page_offset,
6819 IGB_RX_BUFSZ,
6820 DMA_FROM_DEVICE);
6821 }
6822
6823 static inline bool igb_page_is_reserved(struct page *page)
6824 {
6825 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6826 }
6827
6828 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6829 struct page *page,
6830 unsigned int truesize)
6831 {
6832 /* avoid re-using remote pages */
6833 if (unlikely(igb_page_is_reserved(page)))
6834 return false;
6835
6836 #if (PAGE_SIZE < 8192)
6837 /* if we are only owner of page we can reuse it */
6838 if (unlikely(page_count(page) != 1))
6839 return false;
6840
6841 /* flip page offset to other buffer */
6842 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6843 #else
6844 /* move offset up to the next cache line */
6845 rx_buffer->page_offset += truesize;
6846
6847 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6848 return false;
6849 #endif
6850
6851 /* Even if we own the page, we are not allowed to use atomic_set()
6852 * This would break get_page_unless_zero() users.
6853 */
6854 page_ref_inc(page);
6855
6856 return true;
6857 }
6858
6859 /**
6860 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6861 * @rx_ring: rx descriptor ring to transact packets on
6862 * @rx_buffer: buffer containing page to add
6863 * @rx_desc: descriptor containing length of buffer written by hardware
6864 * @skb: sk_buff to place the data into
6865 *
6866 * This function will add the data contained in rx_buffer->page to the skb.
6867 * This is done either through a direct copy if the data in the buffer is
6868 * less than the skb header size, otherwise it will just attach the page as
6869 * a frag to the skb.
6870 *
6871 * The function will then update the page offset if necessary and return
6872 * true if the buffer can be reused by the adapter.
6873 **/
6874 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6875 struct igb_rx_buffer *rx_buffer,
6876 unsigned int size,
6877 union e1000_adv_rx_desc *rx_desc,
6878 struct sk_buff *skb)
6879 {
6880 struct page *page = rx_buffer->page;
6881 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6882 #if (PAGE_SIZE < 8192)
6883 unsigned int truesize = IGB_RX_BUFSZ;
6884 #else
6885 unsigned int truesize = SKB_DATA_ALIGN(size);
6886 #endif
6887 unsigned int pull_len;
6888
6889 if (unlikely(skb_is_nonlinear(skb)))
6890 goto add_tail_frag;
6891
6892 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6893 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6894 va += IGB_TS_HDR_LEN;
6895 size -= IGB_TS_HDR_LEN;
6896 }
6897
6898 if (likely(size <= IGB_RX_HDR_LEN)) {
6899 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6900
6901 /* page is not reserved, we can reuse buffer as-is */
6902 if (likely(!igb_page_is_reserved(page)))
6903 return true;
6904
6905 /* this page cannot be reused so discard it */
6906 __free_page(page);
6907 return false;
6908 }
6909
6910 /* we need the header to contain the greater of either ETH_HLEN or
6911 * 60 bytes if the skb->len is less than 60 for skb_pad.
6912 */
6913 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6914
6915 /* align pull length to size of long to optimize memcpy performance */
6916 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6917
6918 /* update all of the pointers */
6919 va += pull_len;
6920 size -= pull_len;
6921
6922 add_tail_frag:
6923 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6924 (unsigned long)va & ~PAGE_MASK, size, truesize);
6925
6926 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6927 }
6928
6929 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6930 union e1000_adv_rx_desc *rx_desc,
6931 struct sk_buff *skb)
6932 {
6933 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6934 struct igb_rx_buffer *rx_buffer;
6935 struct page *page;
6936
6937 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6938 page = rx_buffer->page;
6939 prefetchw(page);
6940
6941 if (likely(!skb)) {
6942 void *page_addr = page_address(page) +
6943 rx_buffer->page_offset;
6944
6945 /* prefetch first cache line of first page */
6946 prefetch(page_addr);
6947 #if L1_CACHE_BYTES < 128
6948 prefetch(page_addr + L1_CACHE_BYTES);
6949 #endif
6950
6951 /* allocate a skb to store the frags */
6952 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6953 if (unlikely(!skb)) {
6954 rx_ring->rx_stats.alloc_failed++;
6955 return NULL;
6956 }
6957
6958 /* we will be copying header into skb->data in
6959 * pskb_may_pull so it is in our interest to prefetch
6960 * it now to avoid a possible cache miss
6961 */
6962 prefetchw(skb->data);
6963 }
6964
6965 /* we are reusing so sync this buffer for CPU use */
6966 dma_sync_single_range_for_cpu(rx_ring->dev,
6967 rx_buffer->dma,
6968 rx_buffer->page_offset,
6969 size,
6970 DMA_FROM_DEVICE);
6971
6972 /* pull page into skb */
6973 if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
6974 /* hand second half of page back to the ring */
6975 igb_reuse_rx_page(rx_ring, rx_buffer);
6976 } else {
6977 /* we are not reusing the buffer so unmap it */
6978 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6979 PAGE_SIZE, DMA_FROM_DEVICE);
6980 }
6981
6982 /* clear contents of rx_buffer */
6983 rx_buffer->page = NULL;
6984
6985 return skb;
6986 }
6987
6988 static inline void igb_rx_checksum(struct igb_ring *ring,
6989 union e1000_adv_rx_desc *rx_desc,
6990 struct sk_buff *skb)
6991 {
6992 skb_checksum_none_assert(skb);
6993
6994 /* Ignore Checksum bit is set */
6995 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6996 return;
6997
6998 /* Rx checksum disabled via ethtool */
6999 if (!(ring->netdev->features & NETIF_F_RXCSUM))
7000 return;
7001
7002 /* TCP/UDP checksum error bit is set */
7003 if (igb_test_staterr(rx_desc,
7004 E1000_RXDEXT_STATERR_TCPE |
7005 E1000_RXDEXT_STATERR_IPE)) {
7006 /* work around errata with sctp packets where the TCPE aka
7007 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7008 * packets, (aka let the stack check the crc32c)
7009 */
7010 if (!((skb->len == 60) &&
7011 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7012 u64_stats_update_begin(&ring->rx_syncp);
7013 ring->rx_stats.csum_err++;
7014 u64_stats_update_end(&ring->rx_syncp);
7015 }
7016 /* let the stack verify checksum errors */
7017 return;
7018 }
7019 /* It must be a TCP or UDP packet with a valid checksum */
7020 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7021 E1000_RXD_STAT_UDPCS))
7022 skb->ip_summed = CHECKSUM_UNNECESSARY;
7023
7024 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7025 le32_to_cpu(rx_desc->wb.upper.status_error));
7026 }
7027
7028 static inline void igb_rx_hash(struct igb_ring *ring,
7029 union e1000_adv_rx_desc *rx_desc,
7030 struct sk_buff *skb)
7031 {
7032 if (ring->netdev->features & NETIF_F_RXHASH)
7033 skb_set_hash(skb,
7034 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7035 PKT_HASH_TYPE_L3);
7036 }
7037
7038 /**
7039 * igb_is_non_eop - process handling of non-EOP buffers
7040 * @rx_ring: Rx ring being processed
7041 * @rx_desc: Rx descriptor for current buffer
7042 * @skb: current socket buffer containing buffer in progress
7043 *
7044 * This function updates next to clean. If the buffer is an EOP buffer
7045 * this function exits returning false, otherwise it will place the
7046 * sk_buff in the next buffer to be chained and return true indicating
7047 * that this is in fact a non-EOP buffer.
7048 **/
7049 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7050 union e1000_adv_rx_desc *rx_desc)
7051 {
7052 u32 ntc = rx_ring->next_to_clean + 1;
7053
7054 /* fetch, update, and store next to clean */
7055 ntc = (ntc < rx_ring->count) ? ntc : 0;
7056 rx_ring->next_to_clean = ntc;
7057
7058 prefetch(IGB_RX_DESC(rx_ring, ntc));
7059
7060 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7061 return false;
7062
7063 return true;
7064 }
7065
7066 /**
7067 * igb_cleanup_headers - Correct corrupted or empty headers
7068 * @rx_ring: rx descriptor ring packet is being transacted on
7069 * @rx_desc: pointer to the EOP Rx descriptor
7070 * @skb: pointer to current skb being fixed
7071 *
7072 * Address the case where we are pulling data in on pages only
7073 * and as such no data is present in the skb header.
7074 *
7075 * In addition if skb is not at least 60 bytes we need to pad it so that
7076 * it is large enough to qualify as a valid Ethernet frame.
7077 *
7078 * Returns true if an error was encountered and skb was freed.
7079 **/
7080 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7081 union e1000_adv_rx_desc *rx_desc,
7082 struct sk_buff *skb)
7083 {
7084 if (unlikely((igb_test_staterr(rx_desc,
7085 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7086 struct net_device *netdev = rx_ring->netdev;
7087 if (!(netdev->features & NETIF_F_RXALL)) {
7088 dev_kfree_skb_any(skb);
7089 return true;
7090 }
7091 }
7092
7093 /* if eth_skb_pad returns an error the skb was freed */
7094 if (eth_skb_pad(skb))
7095 return true;
7096
7097 return false;
7098 }
7099
7100 /**
7101 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7102 * @rx_ring: rx descriptor ring packet is being transacted on
7103 * @rx_desc: pointer to the EOP Rx descriptor
7104 * @skb: pointer to current skb being populated
7105 *
7106 * This function checks the ring, descriptor, and packet information in
7107 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7108 * other fields within the skb.
7109 **/
7110 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7111 union e1000_adv_rx_desc *rx_desc,
7112 struct sk_buff *skb)
7113 {
7114 struct net_device *dev = rx_ring->netdev;
7115
7116 igb_rx_hash(rx_ring, rx_desc, skb);
7117
7118 igb_rx_checksum(rx_ring, rx_desc, skb);
7119
7120 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7121 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7122 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7123
7124 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7125 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7126 u16 vid;
7127
7128 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7129 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7130 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7131 else
7132 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7133
7134 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7135 }
7136
7137 skb_record_rx_queue(skb, rx_ring->queue_index);
7138
7139 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7140 }
7141
7142 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7143 {
7144 struct igb_ring *rx_ring = q_vector->rx.ring;
7145 struct sk_buff *skb = rx_ring->skb;
7146 unsigned int total_bytes = 0, total_packets = 0;
7147 u16 cleaned_count = igb_desc_unused(rx_ring);
7148
7149 while (likely(total_packets < budget)) {
7150 union e1000_adv_rx_desc *rx_desc;
7151
7152 /* return some buffers to hardware, one at a time is too slow */
7153 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7154 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7155 cleaned_count = 0;
7156 }
7157
7158 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7159
7160 if (!rx_desc->wb.upper.status_error)
7161 break;
7162
7163 /* This memory barrier is needed to keep us from reading
7164 * any other fields out of the rx_desc until we know the
7165 * descriptor has been written back
7166 */
7167 dma_rmb();
7168
7169 /* retrieve a buffer from the ring */
7170 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7171
7172 /* exit if we failed to retrieve a buffer */
7173 if (!skb)
7174 break;
7175
7176 cleaned_count++;
7177
7178 /* fetch next buffer in frame if non-eop */
7179 if (igb_is_non_eop(rx_ring, rx_desc))
7180 continue;
7181
7182 /* verify the packet layout is correct */
7183 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7184 skb = NULL;
7185 continue;
7186 }
7187
7188 /* probably a little skewed due to removing CRC */
7189 total_bytes += skb->len;
7190
7191 /* populate checksum, timestamp, VLAN, and protocol */
7192 igb_process_skb_fields(rx_ring, rx_desc, skb);
7193
7194 napi_gro_receive(&q_vector->napi, skb);
7195
7196 /* reset skb pointer */
7197 skb = NULL;
7198
7199 /* update budget accounting */
7200 total_packets++;
7201 }
7202
7203 /* place incomplete frames back on ring for completion */
7204 rx_ring->skb = skb;
7205
7206 u64_stats_update_begin(&rx_ring->rx_syncp);
7207 rx_ring->rx_stats.packets += total_packets;
7208 rx_ring->rx_stats.bytes += total_bytes;
7209 u64_stats_update_end(&rx_ring->rx_syncp);
7210 q_vector->rx.total_packets += total_packets;
7211 q_vector->rx.total_bytes += total_bytes;
7212
7213 if (cleaned_count)
7214 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7215
7216 return total_packets;
7217 }
7218
7219 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7220 struct igb_rx_buffer *bi)
7221 {
7222 struct page *page = bi->page;
7223 dma_addr_t dma;
7224
7225 /* since we are recycling buffers we should seldom need to alloc */
7226 if (likely(page))
7227 return true;
7228
7229 /* alloc new page for storage */
7230 page = dev_alloc_page();
7231 if (unlikely(!page)) {
7232 rx_ring->rx_stats.alloc_failed++;
7233 return false;
7234 }
7235
7236 /* map page for use */
7237 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7238
7239 /* if mapping failed free memory back to system since
7240 * there isn't much point in holding memory we can't use
7241 */
7242 if (dma_mapping_error(rx_ring->dev, dma)) {
7243 __free_page(page);
7244
7245 rx_ring->rx_stats.alloc_failed++;
7246 return false;
7247 }
7248
7249 bi->dma = dma;
7250 bi->page = page;
7251 bi->page_offset = 0;
7252
7253 return true;
7254 }
7255
7256 /**
7257 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7258 * @adapter: address of board private structure
7259 **/
7260 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7261 {
7262 union e1000_adv_rx_desc *rx_desc;
7263 struct igb_rx_buffer *bi;
7264 u16 i = rx_ring->next_to_use;
7265
7266 /* nothing to do */
7267 if (!cleaned_count)
7268 return;
7269
7270 rx_desc = IGB_RX_DESC(rx_ring, i);
7271 bi = &rx_ring->rx_buffer_info[i];
7272 i -= rx_ring->count;
7273
7274 do {
7275 if (!igb_alloc_mapped_page(rx_ring, bi))
7276 break;
7277
7278 /* Refresh the desc even if buffer_addrs didn't change
7279 * because each write-back erases this info.
7280 */
7281 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7282
7283 rx_desc++;
7284 bi++;
7285 i++;
7286 if (unlikely(!i)) {
7287 rx_desc = IGB_RX_DESC(rx_ring, 0);
7288 bi = rx_ring->rx_buffer_info;
7289 i -= rx_ring->count;
7290 }
7291
7292 /* clear the status bits for the next_to_use descriptor */
7293 rx_desc->wb.upper.status_error = 0;
7294
7295 cleaned_count--;
7296 } while (cleaned_count);
7297
7298 i += rx_ring->count;
7299
7300 if (rx_ring->next_to_use != i) {
7301 /* record the next descriptor to use */
7302 rx_ring->next_to_use = i;
7303
7304 /* update next to alloc since we have filled the ring */
7305 rx_ring->next_to_alloc = i;
7306
7307 /* Force memory writes to complete before letting h/w
7308 * know there are new descriptors to fetch. (Only
7309 * applicable for weak-ordered memory model archs,
7310 * such as IA-64).
7311 */
7312 wmb();
7313 writel(i, rx_ring->tail);
7314 }
7315 }
7316
7317 /**
7318 * igb_mii_ioctl -
7319 * @netdev:
7320 * @ifreq:
7321 * @cmd:
7322 **/
7323 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7324 {
7325 struct igb_adapter *adapter = netdev_priv(netdev);
7326 struct mii_ioctl_data *data = if_mii(ifr);
7327
7328 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7329 return -EOPNOTSUPP;
7330
7331 switch (cmd) {
7332 case SIOCGMIIPHY:
7333 data->phy_id = adapter->hw.phy.addr;
7334 break;
7335 case SIOCGMIIREG:
7336 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7337 &data->val_out))
7338 return -EIO;
7339 break;
7340 case SIOCSMIIREG:
7341 default:
7342 return -EOPNOTSUPP;
7343 }
7344 return 0;
7345 }
7346
7347 /**
7348 * igb_ioctl -
7349 * @netdev:
7350 * @ifreq:
7351 * @cmd:
7352 **/
7353 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7354 {
7355 switch (cmd) {
7356 case SIOCGMIIPHY:
7357 case SIOCGMIIREG:
7358 case SIOCSMIIREG:
7359 return igb_mii_ioctl(netdev, ifr, cmd);
7360 case SIOCGHWTSTAMP:
7361 return igb_ptp_get_ts_config(netdev, ifr);
7362 case SIOCSHWTSTAMP:
7363 return igb_ptp_set_ts_config(netdev, ifr);
7364 default:
7365 return -EOPNOTSUPP;
7366 }
7367 }
7368
7369 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7370 {
7371 struct igb_adapter *adapter = hw->back;
7372
7373 pci_read_config_word(adapter->pdev, reg, value);
7374 }
7375
7376 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7377 {
7378 struct igb_adapter *adapter = hw->back;
7379
7380 pci_write_config_word(adapter->pdev, reg, *value);
7381 }
7382
7383 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7384 {
7385 struct igb_adapter *adapter = hw->back;
7386
7387 if (pcie_capability_read_word(adapter->pdev, reg, value))
7388 return -E1000_ERR_CONFIG;
7389
7390 return 0;
7391 }
7392
7393 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7394 {
7395 struct igb_adapter *adapter = hw->back;
7396
7397 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7398 return -E1000_ERR_CONFIG;
7399
7400 return 0;
7401 }
7402
7403 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7404 {
7405 struct igb_adapter *adapter = netdev_priv(netdev);
7406 struct e1000_hw *hw = &adapter->hw;
7407 u32 ctrl, rctl;
7408 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7409
7410 if (enable) {
7411 /* enable VLAN tag insert/strip */
7412 ctrl = rd32(E1000_CTRL);
7413 ctrl |= E1000_CTRL_VME;
7414 wr32(E1000_CTRL, ctrl);
7415
7416 /* Disable CFI check */
7417 rctl = rd32(E1000_RCTL);
7418 rctl &= ~E1000_RCTL_CFIEN;
7419 wr32(E1000_RCTL, rctl);
7420 } else {
7421 /* disable VLAN tag insert/strip */
7422 ctrl = rd32(E1000_CTRL);
7423 ctrl &= ~E1000_CTRL_VME;
7424 wr32(E1000_CTRL, ctrl);
7425 }
7426
7427 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7428 }
7429
7430 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7431 __be16 proto, u16 vid)
7432 {
7433 struct igb_adapter *adapter = netdev_priv(netdev);
7434 struct e1000_hw *hw = &adapter->hw;
7435 int pf_id = adapter->vfs_allocated_count;
7436
7437 /* add the filter since PF can receive vlans w/o entry in vlvf */
7438 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7439 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7440
7441 set_bit(vid, adapter->active_vlans);
7442
7443 return 0;
7444 }
7445
7446 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7447 __be16 proto, u16 vid)
7448 {
7449 struct igb_adapter *adapter = netdev_priv(netdev);
7450 int pf_id = adapter->vfs_allocated_count;
7451 struct e1000_hw *hw = &adapter->hw;
7452
7453 /* remove VID from filter table */
7454 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7455 igb_vfta_set(hw, vid, pf_id, false, true);
7456
7457 clear_bit(vid, adapter->active_vlans);
7458
7459 return 0;
7460 }
7461
7462 static void igb_restore_vlan(struct igb_adapter *adapter)
7463 {
7464 u16 vid = 1;
7465
7466 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7467 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7468
7469 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7470 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7471 }
7472
7473 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7474 {
7475 struct pci_dev *pdev = adapter->pdev;
7476 struct e1000_mac_info *mac = &adapter->hw.mac;
7477
7478 mac->autoneg = 0;
7479
7480 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7481 * for the switch() below to work
7482 */
7483 if ((spd & 1) || (dplx & ~1))
7484 goto err_inval;
7485
7486 /* Fiber NIC's only allow 1000 gbps Full duplex
7487 * and 100Mbps Full duplex for 100baseFx sfp
7488 */
7489 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7490 switch (spd + dplx) {
7491 case SPEED_10 + DUPLEX_HALF:
7492 case SPEED_10 + DUPLEX_FULL:
7493 case SPEED_100 + DUPLEX_HALF:
7494 goto err_inval;
7495 default:
7496 break;
7497 }
7498 }
7499
7500 switch (spd + dplx) {
7501 case SPEED_10 + DUPLEX_HALF:
7502 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7503 break;
7504 case SPEED_10 + DUPLEX_FULL:
7505 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7506 break;
7507 case SPEED_100 + DUPLEX_HALF:
7508 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7509 break;
7510 case SPEED_100 + DUPLEX_FULL:
7511 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7512 break;
7513 case SPEED_1000 + DUPLEX_FULL:
7514 mac->autoneg = 1;
7515 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7516 break;
7517 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7518 default:
7519 goto err_inval;
7520 }
7521
7522 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7523 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7524
7525 return 0;
7526
7527 err_inval:
7528 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7529 return -EINVAL;
7530 }
7531
7532 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7533 bool runtime)
7534 {
7535 struct net_device *netdev = pci_get_drvdata(pdev);
7536 struct igb_adapter *adapter = netdev_priv(netdev);
7537 struct e1000_hw *hw = &adapter->hw;
7538 u32 ctrl, rctl, status;
7539 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7540 #ifdef CONFIG_PM
7541 int retval = 0;
7542 #endif
7543
7544 netif_device_detach(netdev);
7545
7546 if (netif_running(netdev))
7547 __igb_close(netdev, true);
7548
7549 igb_ptp_suspend(adapter);
7550
7551 igb_clear_interrupt_scheme(adapter);
7552
7553 #ifdef CONFIG_PM
7554 retval = pci_save_state(pdev);
7555 if (retval)
7556 return retval;
7557 #endif
7558
7559 status = rd32(E1000_STATUS);
7560 if (status & E1000_STATUS_LU)
7561 wufc &= ~E1000_WUFC_LNKC;
7562
7563 if (wufc) {
7564 igb_setup_rctl(adapter);
7565 igb_set_rx_mode(netdev);
7566
7567 /* turn on all-multi mode if wake on multicast is enabled */
7568 if (wufc & E1000_WUFC_MC) {
7569 rctl = rd32(E1000_RCTL);
7570 rctl |= E1000_RCTL_MPE;
7571 wr32(E1000_RCTL, rctl);
7572 }
7573
7574 ctrl = rd32(E1000_CTRL);
7575 /* advertise wake from D3Cold */
7576 #define E1000_CTRL_ADVD3WUC 0x00100000
7577 /* phy power management enable */
7578 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7579 ctrl |= E1000_CTRL_ADVD3WUC;
7580 wr32(E1000_CTRL, ctrl);
7581
7582 /* Allow time for pending master requests to run */
7583 igb_disable_pcie_master(hw);
7584
7585 wr32(E1000_WUC, E1000_WUC_PME_EN);
7586 wr32(E1000_WUFC, wufc);
7587 } else {
7588 wr32(E1000_WUC, 0);
7589 wr32(E1000_WUFC, 0);
7590 }
7591
7592 *enable_wake = wufc || adapter->en_mng_pt;
7593 if (!*enable_wake)
7594 igb_power_down_link(adapter);
7595 else
7596 igb_power_up_link(adapter);
7597
7598 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7599 * would have already happened in close and is redundant.
7600 */
7601 igb_release_hw_control(adapter);
7602
7603 pci_disable_device(pdev);
7604
7605 return 0;
7606 }
7607
7608 #ifdef CONFIG_PM
7609 #ifdef CONFIG_PM_SLEEP
7610 static int igb_suspend(struct device *dev)
7611 {
7612 int retval;
7613 bool wake;
7614 struct pci_dev *pdev = to_pci_dev(dev);
7615
7616 retval = __igb_shutdown(pdev, &wake, 0);
7617 if (retval)
7618 return retval;
7619
7620 if (wake) {
7621 pci_prepare_to_sleep(pdev);
7622 } else {
7623 pci_wake_from_d3(pdev, false);
7624 pci_set_power_state(pdev, PCI_D3hot);
7625 }
7626
7627 return 0;
7628 }
7629 #endif /* CONFIG_PM_SLEEP */
7630
7631 static int igb_resume(struct device *dev)
7632 {
7633 struct pci_dev *pdev = to_pci_dev(dev);
7634 struct net_device *netdev = pci_get_drvdata(pdev);
7635 struct igb_adapter *adapter = netdev_priv(netdev);
7636 struct e1000_hw *hw = &adapter->hw;
7637 u32 err;
7638
7639 pci_set_power_state(pdev, PCI_D0);
7640 pci_restore_state(pdev);
7641 pci_save_state(pdev);
7642
7643 if (!pci_device_is_present(pdev))
7644 return -ENODEV;
7645 err = pci_enable_device_mem(pdev);
7646 if (err) {
7647 dev_err(&pdev->dev,
7648 "igb: Cannot enable PCI device from suspend\n");
7649 return err;
7650 }
7651 pci_set_master(pdev);
7652
7653 pci_enable_wake(pdev, PCI_D3hot, 0);
7654 pci_enable_wake(pdev, PCI_D3cold, 0);
7655
7656 if (igb_init_interrupt_scheme(adapter, true)) {
7657 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7658 return -ENOMEM;
7659 }
7660
7661 igb_reset(adapter);
7662
7663 /* let the f/w know that the h/w is now under the control of the
7664 * driver.
7665 */
7666 igb_get_hw_control(adapter);
7667
7668 wr32(E1000_WUS, ~0);
7669
7670 if (netdev->flags & IFF_UP) {
7671 rtnl_lock();
7672 err = __igb_open(netdev, true);
7673 rtnl_unlock();
7674 if (err)
7675 return err;
7676 }
7677
7678 netif_device_attach(netdev);
7679 return 0;
7680 }
7681
7682 static int igb_runtime_idle(struct device *dev)
7683 {
7684 struct pci_dev *pdev = to_pci_dev(dev);
7685 struct net_device *netdev = pci_get_drvdata(pdev);
7686 struct igb_adapter *adapter = netdev_priv(netdev);
7687
7688 if (!igb_has_link(adapter))
7689 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7690
7691 return -EBUSY;
7692 }
7693
7694 static int igb_runtime_suspend(struct device *dev)
7695 {
7696 struct pci_dev *pdev = to_pci_dev(dev);
7697 int retval;
7698 bool wake;
7699
7700 retval = __igb_shutdown(pdev, &wake, 1);
7701 if (retval)
7702 return retval;
7703
7704 if (wake) {
7705 pci_prepare_to_sleep(pdev);
7706 } else {
7707 pci_wake_from_d3(pdev, false);
7708 pci_set_power_state(pdev, PCI_D3hot);
7709 }
7710
7711 return 0;
7712 }
7713
7714 static int igb_runtime_resume(struct device *dev)
7715 {
7716 return igb_resume(dev);
7717 }
7718 #endif /* CONFIG_PM */
7719
7720 static void igb_shutdown(struct pci_dev *pdev)
7721 {
7722 bool wake;
7723
7724 __igb_shutdown(pdev, &wake, 0);
7725
7726 if (system_state == SYSTEM_POWER_OFF) {
7727 pci_wake_from_d3(pdev, wake);
7728 pci_set_power_state(pdev, PCI_D3hot);
7729 }
7730 }
7731
7732 #ifdef CONFIG_PCI_IOV
7733 static int igb_sriov_reinit(struct pci_dev *dev)
7734 {
7735 struct net_device *netdev = pci_get_drvdata(dev);
7736 struct igb_adapter *adapter = netdev_priv(netdev);
7737 struct pci_dev *pdev = adapter->pdev;
7738
7739 rtnl_lock();
7740
7741 if (netif_running(netdev))
7742 igb_close(netdev);
7743 else
7744 igb_reset(adapter);
7745
7746 igb_clear_interrupt_scheme(adapter);
7747
7748 igb_init_queue_configuration(adapter);
7749
7750 if (igb_init_interrupt_scheme(adapter, true)) {
7751 rtnl_unlock();
7752 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7753 return -ENOMEM;
7754 }
7755
7756 if (netif_running(netdev))
7757 igb_open(netdev);
7758
7759 rtnl_unlock();
7760
7761 return 0;
7762 }
7763
7764 static int igb_pci_disable_sriov(struct pci_dev *dev)
7765 {
7766 int err = igb_disable_sriov(dev);
7767
7768 if (!err)
7769 err = igb_sriov_reinit(dev);
7770
7771 return err;
7772 }
7773
7774 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7775 {
7776 int err = igb_enable_sriov(dev, num_vfs);
7777
7778 if (err)
7779 goto out;
7780
7781 err = igb_sriov_reinit(dev);
7782 if (!err)
7783 return num_vfs;
7784
7785 out:
7786 return err;
7787 }
7788
7789 #endif
7790 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7791 {
7792 #ifdef CONFIG_PCI_IOV
7793 if (num_vfs == 0)
7794 return igb_pci_disable_sriov(dev);
7795 else
7796 return igb_pci_enable_sriov(dev, num_vfs);
7797 #endif
7798 return 0;
7799 }
7800
7801 #ifdef CONFIG_NET_POLL_CONTROLLER
7802 /* Polling 'interrupt' - used by things like netconsole to send skbs
7803 * without having to re-enable interrupts. It's not called while
7804 * the interrupt routine is executing.
7805 */
7806 static void igb_netpoll(struct net_device *netdev)
7807 {
7808 struct igb_adapter *adapter = netdev_priv(netdev);
7809 struct e1000_hw *hw = &adapter->hw;
7810 struct igb_q_vector *q_vector;
7811 int i;
7812
7813 for (i = 0; i < adapter->num_q_vectors; i++) {
7814 q_vector = adapter->q_vector[i];
7815 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7816 wr32(E1000_EIMC, q_vector->eims_value);
7817 else
7818 igb_irq_disable(adapter);
7819 napi_schedule(&q_vector->napi);
7820 }
7821 }
7822 #endif /* CONFIG_NET_POLL_CONTROLLER */
7823
7824 /**
7825 * igb_io_error_detected - called when PCI error is detected
7826 * @pdev: Pointer to PCI device
7827 * @state: The current pci connection state
7828 *
7829 * This function is called after a PCI bus error affecting
7830 * this device has been detected.
7831 **/
7832 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7833 pci_channel_state_t state)
7834 {
7835 struct net_device *netdev = pci_get_drvdata(pdev);
7836 struct igb_adapter *adapter = netdev_priv(netdev);
7837
7838 netif_device_detach(netdev);
7839
7840 if (state == pci_channel_io_perm_failure)
7841 return PCI_ERS_RESULT_DISCONNECT;
7842
7843 if (netif_running(netdev))
7844 igb_down(adapter);
7845 pci_disable_device(pdev);
7846
7847 /* Request a slot slot reset. */
7848 return PCI_ERS_RESULT_NEED_RESET;
7849 }
7850
7851 /**
7852 * igb_io_slot_reset - called after the pci bus has been reset.
7853 * @pdev: Pointer to PCI device
7854 *
7855 * Restart the card from scratch, as if from a cold-boot. Implementation
7856 * resembles the first-half of the igb_resume routine.
7857 **/
7858 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7859 {
7860 struct net_device *netdev = pci_get_drvdata(pdev);
7861 struct igb_adapter *adapter = netdev_priv(netdev);
7862 struct e1000_hw *hw = &adapter->hw;
7863 pci_ers_result_t result;
7864 int err;
7865
7866 if (pci_enable_device_mem(pdev)) {
7867 dev_err(&pdev->dev,
7868 "Cannot re-enable PCI device after reset.\n");
7869 result = PCI_ERS_RESULT_DISCONNECT;
7870 } else {
7871 pci_set_master(pdev);
7872 pci_restore_state(pdev);
7873 pci_save_state(pdev);
7874
7875 pci_enable_wake(pdev, PCI_D3hot, 0);
7876 pci_enable_wake(pdev, PCI_D3cold, 0);
7877
7878 igb_reset(adapter);
7879 wr32(E1000_WUS, ~0);
7880 result = PCI_ERS_RESULT_RECOVERED;
7881 }
7882
7883 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7884 if (err) {
7885 dev_err(&pdev->dev,
7886 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7887 err);
7888 /* non-fatal, continue */
7889 }
7890
7891 return result;
7892 }
7893
7894 /**
7895 * igb_io_resume - called when traffic can start flowing again.
7896 * @pdev: Pointer to PCI device
7897 *
7898 * This callback is called when the error recovery driver tells us that
7899 * its OK to resume normal operation. Implementation resembles the
7900 * second-half of the igb_resume routine.
7901 */
7902 static void igb_io_resume(struct pci_dev *pdev)
7903 {
7904 struct net_device *netdev = pci_get_drvdata(pdev);
7905 struct igb_adapter *adapter = netdev_priv(netdev);
7906
7907 if (netif_running(netdev)) {
7908 if (igb_up(adapter)) {
7909 dev_err(&pdev->dev, "igb_up failed after reset\n");
7910 return;
7911 }
7912 }
7913
7914 netif_device_attach(netdev);
7915
7916 /* let the f/w know that the h/w is now under the control of the
7917 * driver.
7918 */
7919 igb_get_hw_control(adapter);
7920 }
7921
7922 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7923 u8 qsel)
7924 {
7925 struct e1000_hw *hw = &adapter->hw;
7926 u32 rar_low, rar_high;
7927
7928 /* HW expects these to be in network order when they are plugged
7929 * into the registers which are little endian. In order to guarantee
7930 * that ordering we need to do an leXX_to_cpup here in order to be
7931 * ready for the byteswap that occurs with writel
7932 */
7933 rar_low = le32_to_cpup((__le32 *)(addr));
7934 rar_high = le16_to_cpup((__le16 *)(addr + 4));
7935
7936 /* Indicate to hardware the Address is Valid. */
7937 rar_high |= E1000_RAH_AV;
7938
7939 if (hw->mac.type == e1000_82575)
7940 rar_high |= E1000_RAH_POOL_1 * qsel;
7941 else
7942 rar_high |= E1000_RAH_POOL_1 << qsel;
7943
7944 wr32(E1000_RAL(index), rar_low);
7945 wrfl();
7946 wr32(E1000_RAH(index), rar_high);
7947 wrfl();
7948 }
7949
7950 static int igb_set_vf_mac(struct igb_adapter *adapter,
7951 int vf, unsigned char *mac_addr)
7952 {
7953 struct e1000_hw *hw = &adapter->hw;
7954 /* VF MAC addresses start at end of receive addresses and moves
7955 * towards the first, as a result a collision should not be possible
7956 */
7957 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7958
7959 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7960
7961 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7962
7963 return 0;
7964 }
7965
7966 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7967 {
7968 struct igb_adapter *adapter = netdev_priv(netdev);
7969 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7970 return -EINVAL;
7971 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7972 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7973 dev_info(&adapter->pdev->dev,
7974 "Reload the VF driver to make this change effective.");
7975 if (test_bit(__IGB_DOWN, &adapter->state)) {
7976 dev_warn(&adapter->pdev->dev,
7977 "The VF MAC address has been set, but the PF device is not up.\n");
7978 dev_warn(&adapter->pdev->dev,
7979 "Bring the PF device up before attempting to use the VF device.\n");
7980 }
7981 return igb_set_vf_mac(adapter, vf, mac);
7982 }
7983
7984 static int igb_link_mbps(int internal_link_speed)
7985 {
7986 switch (internal_link_speed) {
7987 case SPEED_100:
7988 return 100;
7989 case SPEED_1000:
7990 return 1000;
7991 default:
7992 return 0;
7993 }
7994 }
7995
7996 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7997 int link_speed)
7998 {
7999 int rf_dec, rf_int;
8000 u32 bcnrc_val;
8001
8002 if (tx_rate != 0) {
8003 /* Calculate the rate factor values to set */
8004 rf_int = link_speed / tx_rate;
8005 rf_dec = (link_speed - (rf_int * tx_rate));
8006 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8007 tx_rate;
8008
8009 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8010 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8011 E1000_RTTBCNRC_RF_INT_MASK);
8012 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8013 } else {
8014 bcnrc_val = 0;
8015 }
8016
8017 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8018 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8019 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8020 */
8021 wr32(E1000_RTTBCNRM, 0x14);
8022 wr32(E1000_RTTBCNRC, bcnrc_val);
8023 }
8024
8025 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8026 {
8027 int actual_link_speed, i;
8028 bool reset_rate = false;
8029
8030 /* VF TX rate limit was not set or not supported */
8031 if ((adapter->vf_rate_link_speed == 0) ||
8032 (adapter->hw.mac.type != e1000_82576))
8033 return;
8034
8035 actual_link_speed = igb_link_mbps(adapter->link_speed);
8036 if (actual_link_speed != adapter->vf_rate_link_speed) {
8037 reset_rate = true;
8038 adapter->vf_rate_link_speed = 0;
8039 dev_info(&adapter->pdev->dev,
8040 "Link speed has been changed. VF Transmit rate is disabled\n");
8041 }
8042
8043 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8044 if (reset_rate)
8045 adapter->vf_data[i].tx_rate = 0;
8046
8047 igb_set_vf_rate_limit(&adapter->hw, i,
8048 adapter->vf_data[i].tx_rate,
8049 actual_link_speed);
8050 }
8051 }
8052
8053 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8054 int min_tx_rate, int max_tx_rate)
8055 {
8056 struct igb_adapter *adapter = netdev_priv(netdev);
8057 struct e1000_hw *hw = &adapter->hw;
8058 int actual_link_speed;
8059
8060 if (hw->mac.type != e1000_82576)
8061 return -EOPNOTSUPP;
8062
8063 if (min_tx_rate)
8064 return -EINVAL;
8065
8066 actual_link_speed = igb_link_mbps(adapter->link_speed);
8067 if ((vf >= adapter->vfs_allocated_count) ||
8068 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8069 (max_tx_rate < 0) ||
8070 (max_tx_rate > actual_link_speed))
8071 return -EINVAL;
8072
8073 adapter->vf_rate_link_speed = actual_link_speed;
8074 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8075 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8076
8077 return 0;
8078 }
8079
8080 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8081 bool setting)
8082 {
8083 struct igb_adapter *adapter = netdev_priv(netdev);
8084 struct e1000_hw *hw = &adapter->hw;
8085 u32 reg_val, reg_offset;
8086
8087 if (!adapter->vfs_allocated_count)
8088 return -EOPNOTSUPP;
8089
8090 if (vf >= adapter->vfs_allocated_count)
8091 return -EINVAL;
8092
8093 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8094 reg_val = rd32(reg_offset);
8095 if (setting)
8096 reg_val |= (BIT(vf) |
8097 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8098 else
8099 reg_val &= ~(BIT(vf) |
8100 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8101 wr32(reg_offset, reg_val);
8102
8103 adapter->vf_data[vf].spoofchk_enabled = setting;
8104 return 0;
8105 }
8106
8107 static int igb_ndo_get_vf_config(struct net_device *netdev,
8108 int vf, struct ifla_vf_info *ivi)
8109 {
8110 struct igb_adapter *adapter = netdev_priv(netdev);
8111 if (vf >= adapter->vfs_allocated_count)
8112 return -EINVAL;
8113 ivi->vf = vf;
8114 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8115 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8116 ivi->min_tx_rate = 0;
8117 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8118 ivi->qos = adapter->vf_data[vf].pf_qos;
8119 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8120 return 0;
8121 }
8122
8123 static void igb_vmm_control(struct igb_adapter *adapter)
8124 {
8125 struct e1000_hw *hw = &adapter->hw;
8126 u32 reg;
8127
8128 switch (hw->mac.type) {
8129 case e1000_82575:
8130 case e1000_i210:
8131 case e1000_i211:
8132 case e1000_i354:
8133 default:
8134 /* replication is not supported for 82575 */
8135 return;
8136 case e1000_82576:
8137 /* notify HW that the MAC is adding vlan tags */
8138 reg = rd32(E1000_DTXCTL);
8139 reg |= E1000_DTXCTL_VLAN_ADDED;
8140 wr32(E1000_DTXCTL, reg);
8141 /* Fall through */
8142 case e1000_82580:
8143 /* enable replication vlan tag stripping */
8144 reg = rd32(E1000_RPLOLR);
8145 reg |= E1000_RPLOLR_STRVLAN;
8146 wr32(E1000_RPLOLR, reg);
8147 /* Fall through */
8148 case e1000_i350:
8149 /* none of the above registers are supported by i350 */
8150 break;
8151 }
8152
8153 if (adapter->vfs_allocated_count) {
8154 igb_vmdq_set_loopback_pf(hw, true);
8155 igb_vmdq_set_replication_pf(hw, true);
8156 igb_vmdq_set_anti_spoofing_pf(hw, true,
8157 adapter->vfs_allocated_count);
8158 } else {
8159 igb_vmdq_set_loopback_pf(hw, false);
8160 igb_vmdq_set_replication_pf(hw, false);
8161 }
8162 }
8163
8164 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8165 {
8166 struct e1000_hw *hw = &adapter->hw;
8167 u32 dmac_thr;
8168 u16 hwm;
8169
8170 if (hw->mac.type > e1000_82580) {
8171 if (adapter->flags & IGB_FLAG_DMAC) {
8172 u32 reg;
8173
8174 /* force threshold to 0. */
8175 wr32(E1000_DMCTXTH, 0);
8176
8177 /* DMA Coalescing high water mark needs to be greater
8178 * than the Rx threshold. Set hwm to PBA - max frame
8179 * size in 16B units, capping it at PBA - 6KB.
8180 */
8181 hwm = 64 * (pba - 6);
8182 reg = rd32(E1000_FCRTC);
8183 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8184 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8185 & E1000_FCRTC_RTH_COAL_MASK);
8186 wr32(E1000_FCRTC, reg);
8187
8188 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8189 * frame size, capping it at PBA - 10KB.
8190 */
8191 dmac_thr = pba - 10;
8192 reg = rd32(E1000_DMACR);
8193 reg &= ~E1000_DMACR_DMACTHR_MASK;
8194 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8195 & E1000_DMACR_DMACTHR_MASK);
8196
8197 /* transition to L0x or L1 if available..*/
8198 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8199
8200 /* watchdog timer= +-1000 usec in 32usec intervals */
8201 reg |= (1000 >> 5);
8202
8203 /* Disable BMC-to-OS Watchdog Enable */
8204 if (hw->mac.type != e1000_i354)
8205 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8206
8207 wr32(E1000_DMACR, reg);
8208
8209 /* no lower threshold to disable
8210 * coalescing(smart fifb)-UTRESH=0
8211 */
8212 wr32(E1000_DMCRTRH, 0);
8213
8214 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8215
8216 wr32(E1000_DMCTLX, reg);
8217
8218 /* free space in tx packet buffer to wake from
8219 * DMA coal
8220 */
8221 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8222 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8223
8224 /* make low power state decision controlled
8225 * by DMA coal
8226 */
8227 reg = rd32(E1000_PCIEMISC);
8228 reg &= ~E1000_PCIEMISC_LX_DECISION;
8229 wr32(E1000_PCIEMISC, reg);
8230 } /* endif adapter->dmac is not disabled */
8231 } else if (hw->mac.type == e1000_82580) {
8232 u32 reg = rd32(E1000_PCIEMISC);
8233
8234 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8235 wr32(E1000_DMACR, 0);
8236 }
8237 }
8238
8239 /**
8240 * igb_read_i2c_byte - Reads 8 bit word over I2C
8241 * @hw: pointer to hardware structure
8242 * @byte_offset: byte offset to read
8243 * @dev_addr: device address
8244 * @data: value read
8245 *
8246 * Performs byte read operation over I2C interface at
8247 * a specified device address.
8248 **/
8249 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8250 u8 dev_addr, u8 *data)
8251 {
8252 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8253 struct i2c_client *this_client = adapter->i2c_client;
8254 s32 status;
8255 u16 swfw_mask = 0;
8256
8257 if (!this_client)
8258 return E1000_ERR_I2C;
8259
8260 swfw_mask = E1000_SWFW_PHY0_SM;
8261
8262 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8263 return E1000_ERR_SWFW_SYNC;
8264
8265 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8266 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8267
8268 if (status < 0)
8269 return E1000_ERR_I2C;
8270 else {
8271 *data = status;
8272 return 0;
8273 }
8274 }
8275
8276 /**
8277 * igb_write_i2c_byte - Writes 8 bit word over I2C
8278 * @hw: pointer to hardware structure
8279 * @byte_offset: byte offset to write
8280 * @dev_addr: device address
8281 * @data: value to write
8282 *
8283 * Performs byte write operation over I2C interface at
8284 * a specified device address.
8285 **/
8286 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8287 u8 dev_addr, u8 data)
8288 {
8289 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8290 struct i2c_client *this_client = adapter->i2c_client;
8291 s32 status;
8292 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8293
8294 if (!this_client)
8295 return E1000_ERR_I2C;
8296
8297 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8298 return E1000_ERR_SWFW_SYNC;
8299 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8300 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8301
8302 if (status)
8303 return E1000_ERR_I2C;
8304 else
8305 return 0;
8306
8307 }
8308
8309 int igb_reinit_queues(struct igb_adapter *adapter)
8310 {
8311 struct net_device *netdev = adapter->netdev;
8312 struct pci_dev *pdev = adapter->pdev;
8313 int err = 0;
8314
8315 if (netif_running(netdev))
8316 igb_close(netdev);
8317
8318 igb_reset_interrupt_capability(adapter);
8319
8320 if (igb_init_interrupt_scheme(adapter, true)) {
8321 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8322 return -ENOMEM;
8323 }
8324
8325 if (netif_running(netdev))
8326 err = igb_open(netdev);
8327
8328 return err;
8329 }
8330
8331 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8332 {
8333 struct igb_nfc_filter *rule;
8334
8335 spin_lock(&adapter->nfc_lock);
8336
8337 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8338 igb_erase_filter(adapter, rule);
8339
8340 spin_unlock(&adapter->nfc_lock);
8341 }
8342
8343 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8344 {
8345 struct igb_nfc_filter *rule;
8346
8347 spin_lock(&adapter->nfc_lock);
8348
8349 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8350 igb_add_filter(adapter, rule);
8351
8352 spin_unlock(&adapter->nfc_lock);
8353 }
8354 /* igb_main.c */
This page took 0.195501 seconds and 6 git commands to generate.