ptp: link the phc device to its parent device
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /*
2 * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
3 *
4 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/pci.h>
23
24 #include "igb.h"
25
26 #define INCVALUE_MASK 0x7fffffff
27 #define ISGN 0x80000000
28
29 /*
30 * The 82580 timesync updates the system timer every 8ns by 8ns,
31 * and this update value cannot be reprogrammed.
32 *
33 * Neither the 82576 nor the 82580 offer registers wide enough to hold
34 * nanoseconds time values for very long. For the 82580, SYSTIM always
35 * counts nanoseconds, but the upper 24 bits are not availible. The
36 * frequency is adjusted by changing the 32 bit fractional nanoseconds
37 * register, TIMINCA.
38 *
39 * For the 82576, the SYSTIM register time unit is affect by the
40 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
41 * field are needed to provide the nominal 16 nanosecond period,
42 * leaving 19 bits for fractional nanoseconds.
43 *
44 * We scale the NIC clock cycle by a large factor so that relatively
45 * small clock corrections can be added or subtracted at each clock
46 * tick. The drawbacks of a large factor are a) that the clock
47 * register overflows more quickly (not such a big deal) and b) that
48 * the increment per tick has to fit into 24 bits. As a result we
49 * need to use a shift of 19 so we can fit a value of 16 into the
50 * TIMINCA register.
51 *
52 *
53 * SYSTIMH SYSTIML
54 * +--------------+ +---+---+------+
55 * 82576 | 32 | | 8 | 5 | 19 |
56 * +--------------+ +---+---+------+
57 * \________ 45 bits _______/ fract
58 *
59 * +----------+---+ +--------------+
60 * 82580 | 24 | 8 | | 32 |
61 * +----------+---+ +--------------+
62 * reserved \______ 40 bits _____/
63 *
64 *
65 * The 45 bit 82576 SYSTIM overflows every
66 * 2^45 * 10^-9 / 3600 = 9.77 hours.
67 *
68 * The 40 bit 82580 SYSTIM overflows every
69 * 2^40 * 10^-9 / 60 = 18.3 minutes.
70 */
71
72 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
73 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580 40
77
78 /*
79 * SYSTIM read access for the 82576
80 */
81
82 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
83 {
84 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
85 struct e1000_hw *hw = &igb->hw;
86 u64 val;
87 u32 lo, hi;
88
89 lo = rd32(E1000_SYSTIML);
90 hi = rd32(E1000_SYSTIMH);
91
92 val = ((u64) hi) << 32;
93 val |= lo;
94
95 return val;
96 }
97
98 /*
99 * SYSTIM read access for the 82580
100 */
101
102 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
103 {
104 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
105 struct e1000_hw *hw = &igb->hw;
106 u64 val;
107 u32 lo, hi, jk;
108
109 /*
110 * The timestamp latches on lowest register read. For the 82580
111 * the lowest register is SYSTIMR instead of SYSTIML. However we only
112 * need to provide nanosecond resolution, so we just ignore it.
113 */
114 jk = rd32(E1000_SYSTIMR);
115 lo = rd32(E1000_SYSTIML);
116 hi = rd32(E1000_SYSTIMH);
117
118 val = ((u64) hi) << 32;
119 val |= lo;
120
121 return val;
122 }
123
124 /*
125 * SYSTIM read access for I210/I211
126 */
127
128 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
129 {
130 struct e1000_hw *hw = &adapter->hw;
131 u32 sec, nsec, jk;
132
133 /*
134 * The timestamp latches on lowest register read. For I210/I211, the
135 * lowest register is SYSTIMR. Since we only need to provide nanosecond
136 * resolution, we can ignore it.
137 */
138 jk = rd32(E1000_SYSTIMR);
139 nsec = rd32(E1000_SYSTIML);
140 sec = rd32(E1000_SYSTIMH);
141
142 ts->tv_sec = sec;
143 ts->tv_nsec = nsec;
144 }
145
146 static void igb_ptp_write_i210(struct igb_adapter *adapter,
147 const struct timespec *ts)
148 {
149 struct e1000_hw *hw = &adapter->hw;
150
151 /*
152 * Writing the SYSTIMR register is not necessary as it only provides
153 * sub-nanosecond resolution.
154 */
155 wr32(E1000_SYSTIML, ts->tv_nsec);
156 wr32(E1000_SYSTIMH, ts->tv_sec);
157 }
158
159 /**
160 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
161 * @adapter: board private structure
162 * @hwtstamps: timestamp structure to update
163 * @systim: unsigned 64bit system time value.
164 *
165 * We need to convert the system time value stored in the RX/TXSTMP registers
166 * into a hwtstamp which can be used by the upper level timestamping functions.
167 *
168 * The 'tmreg_lock' spinlock is used to protect the consistency of the
169 * system time value. This is needed because reading the 64 bit time
170 * value involves reading two (or three) 32 bit registers. The first
171 * read latches the value. Ditto for writing.
172 *
173 * In addition, here have extended the system time with an overflow
174 * counter in software.
175 **/
176 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
177 struct skb_shared_hwtstamps *hwtstamps,
178 u64 systim)
179 {
180 unsigned long flags;
181 u64 ns;
182
183 switch (adapter->hw.mac.type) {
184 case e1000_82576:
185 case e1000_82580:
186 case e1000_i350:
187 spin_lock_irqsave(&adapter->tmreg_lock, flags);
188
189 ns = timecounter_cyc2time(&adapter->tc, systim);
190
191 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
192
193 memset(hwtstamps, 0, sizeof(*hwtstamps));
194 hwtstamps->hwtstamp = ns_to_ktime(ns);
195 break;
196 case e1000_i210:
197 case e1000_i211:
198 memset(hwtstamps, 0, sizeof(*hwtstamps));
199 /* Upper 32 bits contain s, lower 32 bits contain ns. */
200 hwtstamps->hwtstamp = ktime_set(systim >> 32,
201 systim & 0xFFFFFFFF);
202 break;
203 default:
204 break;
205 }
206 }
207
208 /*
209 * PTP clock operations
210 */
211
212 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
213 {
214 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
215 ptp_caps);
216 struct e1000_hw *hw = &igb->hw;
217 int neg_adj = 0;
218 u64 rate;
219 u32 incvalue;
220
221 if (ppb < 0) {
222 neg_adj = 1;
223 ppb = -ppb;
224 }
225 rate = ppb;
226 rate <<= 14;
227 rate = div_u64(rate, 1953125);
228
229 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
230
231 if (neg_adj)
232 incvalue -= rate;
233 else
234 incvalue += rate;
235
236 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
237
238 return 0;
239 }
240
241 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
242 {
243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 ptp_caps);
245 struct e1000_hw *hw = &igb->hw;
246 int neg_adj = 0;
247 u64 rate;
248 u32 inca;
249
250 if (ppb < 0) {
251 neg_adj = 1;
252 ppb = -ppb;
253 }
254 rate = ppb;
255 rate <<= 26;
256 rate = div_u64(rate, 1953125);
257
258 inca = rate & INCVALUE_MASK;
259 if (neg_adj)
260 inca |= ISGN;
261
262 wr32(E1000_TIMINCA, inca);
263
264 return 0;
265 }
266
267 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
268 {
269 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 ptp_caps);
271 unsigned long flags;
272 s64 now;
273
274 spin_lock_irqsave(&igb->tmreg_lock, flags);
275
276 now = timecounter_read(&igb->tc);
277 now += delta;
278 timecounter_init(&igb->tc, &igb->cc, now);
279
280 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
281
282 return 0;
283 }
284
285 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
286 {
287 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
288 ptp_caps);
289 unsigned long flags;
290 struct timespec now, then = ns_to_timespec(delta);
291
292 spin_lock_irqsave(&igb->tmreg_lock, flags);
293
294 igb_ptp_read_i210(igb, &now);
295 now = timespec_add(now, then);
296 igb_ptp_write_i210(igb, (const struct timespec *)&now);
297
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300 return 0;
301 }
302
303 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
304 struct timespec *ts)
305 {
306 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
307 ptp_caps);
308 unsigned long flags;
309 u64 ns;
310 u32 remainder;
311
312 spin_lock_irqsave(&igb->tmreg_lock, flags);
313
314 ns = timecounter_read(&igb->tc);
315
316 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317
318 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
319 ts->tv_nsec = remainder;
320
321 return 0;
322 }
323
324 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
325 struct timespec *ts)
326 {
327 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
328 ptp_caps);
329 unsigned long flags;
330
331 spin_lock_irqsave(&igb->tmreg_lock, flags);
332
333 igb_ptp_read_i210(igb, ts);
334
335 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336
337 return 0;
338 }
339
340 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
341 const struct timespec *ts)
342 {
343 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 ptp_caps);
345 unsigned long flags;
346 u64 ns;
347
348 ns = ts->tv_sec * 1000000000ULL;
349 ns += ts->tv_nsec;
350
351 spin_lock_irqsave(&igb->tmreg_lock, flags);
352
353 timecounter_init(&igb->tc, &igb->cc, ns);
354
355 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
356
357 return 0;
358 }
359
360 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
361 const struct timespec *ts)
362 {
363 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
364 ptp_caps);
365 unsigned long flags;
366
367 spin_lock_irqsave(&igb->tmreg_lock, flags);
368
369 igb_ptp_write_i210(igb, ts);
370
371 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372
373 return 0;
374 }
375
376 static int igb_ptp_enable(struct ptp_clock_info *ptp,
377 struct ptp_clock_request *rq, int on)
378 {
379 return -EOPNOTSUPP;
380 }
381
382 /**
383 * igb_ptp_tx_work
384 * @work: pointer to work struct
385 *
386 * This work function polls the TSYNCTXCTL valid bit to determine when a
387 * timestamp has been taken for the current stored skb.
388 */
389 void igb_ptp_tx_work(struct work_struct *work)
390 {
391 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
392 ptp_tx_work);
393 struct e1000_hw *hw = &adapter->hw;
394 u32 tsynctxctl;
395
396 if (!adapter->ptp_tx_skb)
397 return;
398
399 tsynctxctl = rd32(E1000_TSYNCTXCTL);
400 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
401 igb_ptp_tx_hwtstamp(adapter);
402 else
403 /* reschedule to check later */
404 schedule_work(&adapter->ptp_tx_work);
405 }
406
407 static void igb_ptp_overflow_check(struct work_struct *work)
408 {
409 struct igb_adapter *igb =
410 container_of(work, struct igb_adapter, ptp_overflow_work.work);
411 struct timespec ts;
412
413 igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
414
415 pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
416
417 schedule_delayed_work(&igb->ptp_overflow_work,
418 IGB_SYSTIM_OVERFLOW_PERIOD);
419 }
420
421 /**
422 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
423 * @adapter: Board private structure.
424 *
425 * If we were asked to do hardware stamping and such a time stamp is
426 * available, then it must have been for this skb here because we only
427 * allow only one such packet into the queue.
428 */
429 void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
430 {
431 struct e1000_hw *hw = &adapter->hw;
432 struct skb_shared_hwtstamps shhwtstamps;
433 u64 regval;
434
435 regval = rd32(E1000_TXSTMPL);
436 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
437
438 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
439 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
440 dev_kfree_skb_any(adapter->ptp_tx_skb);
441 adapter->ptp_tx_skb = NULL;
442 }
443
444 void igb_ptp_rx_hwtstamp(struct igb_q_vector *q_vector,
445 union e1000_adv_rx_desc *rx_desc,
446 struct sk_buff *skb)
447 {
448 struct igb_adapter *adapter = q_vector->adapter;
449 struct e1000_hw *hw = &adapter->hw;
450 u64 regval;
451
452 if (!igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP |
453 E1000_RXDADV_STAT_TS))
454 return;
455
456 /*
457 * If this bit is set, then the RX registers contain the time stamp. No
458 * other packet will be time stamped until we read these registers, so
459 * read the registers to make them available again. Because only one
460 * packet can be time stamped at a time, we know that the register
461 * values must belong to this one here and therefore we don't need to
462 * compare any of the additional attributes stored for it.
463 *
464 * If nothing went wrong, then it should have a shared tx_flags that we
465 * can turn into a skb_shared_hwtstamps.
466 */
467 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
468 u32 *stamp = (u32 *)skb->data;
469 regval = le32_to_cpu(*(stamp + 2));
470 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
471 skb_pull(skb, IGB_TS_HDR_LEN);
472 } else {
473 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
474 return;
475
476 regval = rd32(E1000_RXSTMPL);
477 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
478 }
479
480 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
481 }
482
483 /**
484 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
485 * @netdev:
486 * @ifreq:
487 * @cmd:
488 *
489 * Outgoing time stamping can be enabled and disabled. Play nice and
490 * disable it when requested, although it shouldn't case any overhead
491 * when no packet needs it. At most one packet in the queue may be
492 * marked for time stamping, otherwise it would be impossible to tell
493 * for sure to which packet the hardware time stamp belongs.
494 *
495 * Incoming time stamping has to be configured via the hardware
496 * filters. Not all combinations are supported, in particular event
497 * type has to be specified. Matching the kind of event packet is
498 * not supported, with the exception of "all V2 events regardless of
499 * level 2 or 4".
500 *
501 **/
502 int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
503 struct ifreq *ifr, int cmd)
504 {
505 struct igb_adapter *adapter = netdev_priv(netdev);
506 struct e1000_hw *hw = &adapter->hw;
507 struct hwtstamp_config config;
508 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
509 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
510 u32 tsync_rx_cfg = 0;
511 bool is_l4 = false;
512 bool is_l2 = false;
513 u32 regval;
514
515 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
516 return -EFAULT;
517
518 /* reserved for future extensions */
519 if (config.flags)
520 return -EINVAL;
521
522 switch (config.tx_type) {
523 case HWTSTAMP_TX_OFF:
524 tsync_tx_ctl = 0;
525 case HWTSTAMP_TX_ON:
526 break;
527 default:
528 return -ERANGE;
529 }
530
531 switch (config.rx_filter) {
532 case HWTSTAMP_FILTER_NONE:
533 tsync_rx_ctl = 0;
534 break;
535 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
536 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
537 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
538 case HWTSTAMP_FILTER_ALL:
539 /*
540 * register TSYNCRXCFG must be set, therefore it is not
541 * possible to time stamp both Sync and Delay_Req messages
542 * => fall back to time stamping all packets
543 */
544 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
545 config.rx_filter = HWTSTAMP_FILTER_ALL;
546 break;
547 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
548 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
549 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
550 is_l4 = true;
551 break;
552 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
553 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
554 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
555 is_l4 = true;
556 break;
557 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
558 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
559 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
560 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
561 is_l2 = true;
562 is_l4 = true;
563 config.rx_filter = HWTSTAMP_FILTER_SOME;
564 break;
565 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
566 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
567 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
568 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
569 is_l2 = true;
570 is_l4 = true;
571 config.rx_filter = HWTSTAMP_FILTER_SOME;
572 break;
573 case HWTSTAMP_FILTER_PTP_V2_EVENT:
574 case HWTSTAMP_FILTER_PTP_V2_SYNC:
575 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
576 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
577 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
578 is_l2 = true;
579 is_l4 = true;
580 break;
581 default:
582 return -ERANGE;
583 }
584
585 if (hw->mac.type == e1000_82575) {
586 if (tsync_rx_ctl | tsync_tx_ctl)
587 return -EINVAL;
588 return 0;
589 }
590
591 /*
592 * Per-packet timestamping only works if all packets are
593 * timestamped, so enable timestamping in all packets as
594 * long as one rx filter was configured.
595 */
596 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
597 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
598 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
599
600 if ((hw->mac.type == e1000_i210) ||
601 (hw->mac.type == e1000_i211)) {
602 regval = rd32(E1000_RXPBS);
603 regval |= E1000_RXPBS_CFG_TS_EN;
604 wr32(E1000_RXPBS, regval);
605 }
606 }
607
608 /* enable/disable TX */
609 regval = rd32(E1000_TSYNCTXCTL);
610 regval &= ~E1000_TSYNCTXCTL_ENABLED;
611 regval |= tsync_tx_ctl;
612 wr32(E1000_TSYNCTXCTL, regval);
613
614 /* enable/disable RX */
615 regval = rd32(E1000_TSYNCRXCTL);
616 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
617 regval |= tsync_rx_ctl;
618 wr32(E1000_TSYNCRXCTL, regval);
619
620 /* define which PTP packets are time stamped */
621 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
622
623 /* define ethertype filter for timestamped packets */
624 if (is_l2)
625 wr32(E1000_ETQF(3),
626 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
627 E1000_ETQF_1588 | /* enable timestamping */
628 ETH_P_1588)); /* 1588 eth protocol type */
629 else
630 wr32(E1000_ETQF(3), 0);
631
632 #define PTP_PORT 319
633 /* L4 Queue Filter[3]: filter by destination port and protocol */
634 if (is_l4) {
635 u32 ftqf = (IPPROTO_UDP /* UDP */
636 | E1000_FTQF_VF_BP /* VF not compared */
637 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
638 | E1000_FTQF_MASK); /* mask all inputs */
639 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
640
641 wr32(E1000_IMIR(3), htons(PTP_PORT));
642 wr32(E1000_IMIREXT(3),
643 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
644 if (hw->mac.type == e1000_82576) {
645 /* enable source port check */
646 wr32(E1000_SPQF(3), htons(PTP_PORT));
647 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
648 }
649 wr32(E1000_FTQF(3), ftqf);
650 } else {
651 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
652 }
653 wrfl();
654
655 /* clear TX/RX time stamp registers, just to be sure */
656 regval = rd32(E1000_TXSTMPL);
657 regval = rd32(E1000_TXSTMPH);
658 regval = rd32(E1000_RXSTMPL);
659 regval = rd32(E1000_RXSTMPH);
660
661 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
662 -EFAULT : 0;
663 }
664
665 void igb_ptp_init(struct igb_adapter *adapter)
666 {
667 struct e1000_hw *hw = &adapter->hw;
668 struct net_device *netdev = adapter->netdev;
669
670 switch (hw->mac.type) {
671 case e1000_82576:
672 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
673 adapter->ptp_caps.owner = THIS_MODULE;
674 adapter->ptp_caps.max_adj = 1000000000;
675 adapter->ptp_caps.n_ext_ts = 0;
676 adapter->ptp_caps.pps = 0;
677 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
678 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
679 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
680 adapter->ptp_caps.settime = igb_ptp_settime_82576;
681 adapter->ptp_caps.enable = igb_ptp_enable;
682 adapter->cc.read = igb_ptp_read_82576;
683 adapter->cc.mask = CLOCKSOURCE_MASK(64);
684 adapter->cc.mult = 1;
685 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
686 /* Dial the nominal frequency. */
687 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
688 break;
689 case e1000_82580:
690 case e1000_i350:
691 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
692 adapter->ptp_caps.owner = THIS_MODULE;
693 adapter->ptp_caps.max_adj = 62499999;
694 adapter->ptp_caps.n_ext_ts = 0;
695 adapter->ptp_caps.pps = 0;
696 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
697 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
698 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
699 adapter->ptp_caps.settime = igb_ptp_settime_82576;
700 adapter->ptp_caps.enable = igb_ptp_enable;
701 adapter->cc.read = igb_ptp_read_82580;
702 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
703 adapter->cc.mult = 1;
704 adapter->cc.shift = 0;
705 /* Enable the timer functions by clearing bit 31. */
706 wr32(E1000_TSAUXC, 0x0);
707 break;
708 case e1000_i210:
709 case e1000_i211:
710 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
711 adapter->ptp_caps.owner = THIS_MODULE;
712 adapter->ptp_caps.max_adj = 62499999;
713 adapter->ptp_caps.n_ext_ts = 0;
714 adapter->ptp_caps.pps = 0;
715 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
716 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
717 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
718 adapter->ptp_caps.settime = igb_ptp_settime_i210;
719 adapter->ptp_caps.enable = igb_ptp_enable;
720 /* Enable the timer functions by clearing bit 31. */
721 wr32(E1000_TSAUXC, 0x0);
722 break;
723 default:
724 adapter->ptp_clock = NULL;
725 return;
726 }
727
728 wrfl();
729
730 spin_lock_init(&adapter->tmreg_lock);
731 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
732
733 /* Initialize the clock and overflow work for devices that need it. */
734 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
735 struct timespec ts = ktime_to_timespec(ktime_get_real());
736
737 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
738 } else {
739 timecounter_init(&adapter->tc, &adapter->cc,
740 ktime_to_ns(ktime_get_real()));
741
742 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
743 igb_ptp_overflow_check);
744
745 schedule_delayed_work(&adapter->ptp_overflow_work,
746 IGB_SYSTIM_OVERFLOW_PERIOD);
747 }
748
749 /* Initialize the time sync interrupts for devices that support it. */
750 if (hw->mac.type >= e1000_82580) {
751 wr32(E1000_TSIM, E1000_TSIM_TXTS);
752 wr32(E1000_IMS, E1000_IMS_TS);
753 }
754
755 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
756 &adapter->pdev->dev);
757 if (IS_ERR(adapter->ptp_clock)) {
758 adapter->ptp_clock = NULL;
759 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
760 } else {
761 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
762 adapter->netdev->name);
763 adapter->flags |= IGB_FLAG_PTP;
764 }
765 }
766
767 /**
768 * igb_ptp_stop - Disable PTP device and stop the overflow check.
769 * @adapter: Board private structure.
770 *
771 * This function stops the PTP support and cancels the delayed work.
772 **/
773 void igb_ptp_stop(struct igb_adapter *adapter)
774 {
775 switch (adapter->hw.mac.type) {
776 case e1000_82576:
777 case e1000_82580:
778 case e1000_i350:
779 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
780 break;
781 case e1000_i210:
782 case e1000_i211:
783 /* No delayed work to cancel. */
784 break;
785 default:
786 return;
787 }
788
789 cancel_work_sync(&adapter->ptp_tx_work);
790
791 if (adapter->ptp_clock) {
792 ptp_clock_unregister(adapter->ptp_clock);
793 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
794 adapter->netdev->name);
795 adapter->flags &= ~IGB_FLAG_PTP;
796 }
797 }
798
799 /**
800 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
801 * @adapter: Board private structure.
802 *
803 * This function handles the reset work required to re-enable the PTP device.
804 **/
805 void igb_ptp_reset(struct igb_adapter *adapter)
806 {
807 struct e1000_hw *hw = &adapter->hw;
808
809 if (!(adapter->flags & IGB_FLAG_PTP))
810 return;
811
812 switch (adapter->hw.mac.type) {
813 case e1000_82576:
814 /* Dial the nominal frequency. */
815 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
816 break;
817 case e1000_82580:
818 case e1000_i350:
819 case e1000_i210:
820 case e1000_i211:
821 /* Enable the timer functions and interrupts. */
822 wr32(E1000_TSAUXC, 0x0);
823 wr32(E1000_TSIM, E1000_TSIM_TXTS);
824 wr32(E1000_IMS, E1000_IMS_TS);
825 break;
826 default:
827 /* No work to do. */
828 return;
829 }
830
831 /* Re-initialize the timer. */
832 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
833 struct timespec ts = ktime_to_timespec(ktime_get_real());
834
835 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
836 } else {
837 timecounter_init(&adapter->tc, &adapter->cc,
838 ktime_to_ns(ktime_get_real()));
839 }
840 }
This page took 0.049773 seconds and 5 git commands to generate.