4e5385a2a4658c8c5f0dc9ea4ee279d08693351d
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2014 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59
60 /**
61 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62 * control
63 * @hw: pointer to hardware structure
64 *
65 * There are several phys that do not support autoneg flow control. This
66 * function check the device id to see if the associated phy supports
67 * autoneg flow control.
68 **/
69 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70 {
71 bool supported = false;
72 ixgbe_link_speed speed;
73 bool link_up;
74
75 switch (hw->phy.media_type) {
76 case ixgbe_media_type_fiber:
77 hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 /* if link is down, assume supported */
79 if (link_up)
80 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 true : false;
82 else
83 supported = true;
84 break;
85 case ixgbe_media_type_backplane:
86 supported = true;
87 break;
88 case ixgbe_media_type_copper:
89 /* only some copper devices support flow control autoneg */
90 switch (hw->device_id) {
91 case IXGBE_DEV_ID_82599_T3_LOM:
92 case IXGBE_DEV_ID_X540T:
93 case IXGBE_DEV_ID_X540T1:
94 supported = true;
95 break;
96 default:
97 break;
98 }
99 default:
100 break;
101 }
102
103 return supported;
104 }
105
106 /**
107 * ixgbe_setup_fc - Set up flow control
108 * @hw: pointer to hardware structure
109 *
110 * Called at init time to set up flow control.
111 **/
112 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113 {
114 s32 ret_val = 0;
115 u32 reg = 0, reg_bp = 0;
116 u16 reg_cu = 0;
117 bool locked = false;
118
119 /*
120 * Validate the requested mode. Strict IEEE mode does not allow
121 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 */
123 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
126 goto out;
127 }
128
129 /*
130 * 10gig parts do not have a word in the EEPROM to determine the
131 * default flow control setting, so we explicitly set it to full.
132 */
133 if (hw->fc.requested_mode == ixgbe_fc_default)
134 hw->fc.requested_mode = ixgbe_fc_full;
135
136 /*
137 * Set up the 1G and 10G flow control advertisement registers so the
138 * HW will be able to do fc autoneg once the cable is plugged in. If
139 * we link at 10G, the 1G advertisement is harmless and vice versa.
140 */
141 switch (hw->phy.media_type) {
142 case ixgbe_media_type_backplane:
143 /* some MAC's need RMW protection on AUTOC */
144 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
145 if (ret_val)
146 goto out;
147
148 /* only backplane uses autoc so fall though */
149 case ixgbe_media_type_fiber:
150 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
151
152 break;
153 case ixgbe_media_type_copper:
154 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
155 MDIO_MMD_AN, &reg_cu);
156 break;
157 default:
158 break;
159 }
160
161 /*
162 * The possible values of fc.requested_mode are:
163 * 0: Flow control is completely disabled
164 * 1: Rx flow control is enabled (we can receive pause frames,
165 * but not send pause frames).
166 * 2: Tx flow control is enabled (we can send pause frames but
167 * we do not support receiving pause frames).
168 * 3: Both Rx and Tx flow control (symmetric) are enabled.
169 * other: Invalid.
170 */
171 switch (hw->fc.requested_mode) {
172 case ixgbe_fc_none:
173 /* Flow control completely disabled by software override. */
174 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
175 if (hw->phy.media_type == ixgbe_media_type_backplane)
176 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
177 IXGBE_AUTOC_ASM_PAUSE);
178 else if (hw->phy.media_type == ixgbe_media_type_copper)
179 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
180 break;
181 case ixgbe_fc_tx_pause:
182 /*
183 * Tx Flow control is enabled, and Rx Flow control is
184 * disabled by software override.
185 */
186 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
187 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
188 if (hw->phy.media_type == ixgbe_media_type_backplane) {
189 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
190 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
191 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
192 reg_cu |= IXGBE_TAF_ASM_PAUSE;
193 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
194 }
195 break;
196 case ixgbe_fc_rx_pause:
197 /*
198 * Rx Flow control is enabled and Tx Flow control is
199 * disabled by software override. Since there really
200 * isn't a way to advertise that we are capable of RX
201 * Pause ONLY, we will advertise that we support both
202 * symmetric and asymmetric Rx PAUSE, as such we fall
203 * through to the fc_full statement. Later, we will
204 * disable the adapter's ability to send PAUSE frames.
205 */
206 case ixgbe_fc_full:
207 /* Flow control (both Rx and Tx) is enabled by SW override. */
208 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
209 if (hw->phy.media_type == ixgbe_media_type_backplane)
210 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
211 IXGBE_AUTOC_ASM_PAUSE;
212 else if (hw->phy.media_type == ixgbe_media_type_copper)
213 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
214 break;
215 default:
216 hw_dbg(hw, "Flow control param set incorrectly\n");
217 ret_val = IXGBE_ERR_CONFIG;
218 goto out;
219 break;
220 }
221
222 if (hw->mac.type != ixgbe_mac_X540) {
223 /*
224 * Enable auto-negotiation between the MAC & PHY;
225 * the MAC will advertise clause 37 flow control.
226 */
227 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
228 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
229
230 /* Disable AN timeout */
231 if (hw->fc.strict_ieee)
232 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
233
234 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
235 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
236 }
237
238 /*
239 * AUTOC restart handles negotiation of 1G and 10G on backplane
240 * and copper. There is no need to set the PCS1GCTL register.
241 *
242 */
243 if (hw->phy.media_type == ixgbe_media_type_backplane) {
244 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
245 * LESM is on, likewise reset_pipeline requries the lock as
246 * it also writes AUTOC.
247 */
248 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
249 if (ret_val)
250 goto out;
251
252 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
253 ixgbe_device_supports_autoneg_fc(hw)) {
254 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
255 MDIO_MMD_AN, reg_cu);
256 }
257
258 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
259 out:
260 return ret_val;
261 }
262
263 /**
264 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
265 * @hw: pointer to hardware structure
266 *
267 * Starts the hardware by filling the bus info structure and media type, clears
268 * all on chip counters, initializes receive address registers, multicast
269 * table, VLAN filter table, calls routine to set up link and flow control
270 * settings, and leaves transmit and receive units disabled and uninitialized
271 **/
272 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
273 {
274 s32 ret_val;
275 u32 ctrl_ext;
276
277 /* Set the media type */
278 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
279
280 /* Identify the PHY */
281 hw->phy.ops.identify(hw);
282
283 /* Clear the VLAN filter table */
284 hw->mac.ops.clear_vfta(hw);
285
286 /* Clear statistics registers */
287 hw->mac.ops.clear_hw_cntrs(hw);
288
289 /* Set No Snoop Disable */
290 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
291 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
292 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
293 IXGBE_WRITE_FLUSH(hw);
294
295 /* Setup flow control */
296 ret_val = ixgbe_setup_fc(hw);
297 if (!ret_val)
298 goto out;
299
300 /* Clear adapter stopped flag */
301 hw->adapter_stopped = false;
302
303 out:
304 return ret_val;
305 }
306
307 /**
308 * ixgbe_start_hw_gen2 - Init sequence for common device family
309 * @hw: pointer to hw structure
310 *
311 * Performs the init sequence common to the second generation
312 * of 10 GbE devices.
313 * Devices in the second generation:
314 * 82599
315 * X540
316 **/
317 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
318 {
319 u32 i;
320 u32 regval;
321
322 /* Clear the rate limiters */
323 for (i = 0; i < hw->mac.max_tx_queues; i++) {
324 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
325 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
326 }
327 IXGBE_WRITE_FLUSH(hw);
328
329 /* Disable relaxed ordering */
330 for (i = 0; i < hw->mac.max_tx_queues; i++) {
331 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
332 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
333 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
334 }
335
336 for (i = 0; i < hw->mac.max_rx_queues; i++) {
337 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
338 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
339 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
340 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
341 }
342
343 return 0;
344 }
345
346 /**
347 * ixgbe_init_hw_generic - Generic hardware initialization
348 * @hw: pointer to hardware structure
349 *
350 * Initialize the hardware by resetting the hardware, filling the bus info
351 * structure and media type, clears all on chip counters, initializes receive
352 * address registers, multicast table, VLAN filter table, calls routine to set
353 * up link and flow control settings, and leaves transmit and receive units
354 * disabled and uninitialized
355 **/
356 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
357 {
358 s32 status;
359
360 /* Reset the hardware */
361 status = hw->mac.ops.reset_hw(hw);
362
363 if (status == 0) {
364 /* Start the HW */
365 status = hw->mac.ops.start_hw(hw);
366 }
367
368 return status;
369 }
370
371 /**
372 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
373 * @hw: pointer to hardware structure
374 *
375 * Clears all hardware statistics counters by reading them from the hardware
376 * Statistics counters are clear on read.
377 **/
378 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
379 {
380 u16 i = 0;
381
382 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
383 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
384 IXGBE_READ_REG(hw, IXGBE_ERRBC);
385 IXGBE_READ_REG(hw, IXGBE_MSPDC);
386 for (i = 0; i < 8; i++)
387 IXGBE_READ_REG(hw, IXGBE_MPC(i));
388
389 IXGBE_READ_REG(hw, IXGBE_MLFC);
390 IXGBE_READ_REG(hw, IXGBE_MRFC);
391 IXGBE_READ_REG(hw, IXGBE_RLEC);
392 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
393 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
394 if (hw->mac.type >= ixgbe_mac_82599EB) {
395 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
396 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
397 } else {
398 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
399 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
400 }
401
402 for (i = 0; i < 8; i++) {
403 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
404 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
405 if (hw->mac.type >= ixgbe_mac_82599EB) {
406 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
407 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
408 } else {
409 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
410 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
411 }
412 }
413 if (hw->mac.type >= ixgbe_mac_82599EB)
414 for (i = 0; i < 8; i++)
415 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
416 IXGBE_READ_REG(hw, IXGBE_PRC64);
417 IXGBE_READ_REG(hw, IXGBE_PRC127);
418 IXGBE_READ_REG(hw, IXGBE_PRC255);
419 IXGBE_READ_REG(hw, IXGBE_PRC511);
420 IXGBE_READ_REG(hw, IXGBE_PRC1023);
421 IXGBE_READ_REG(hw, IXGBE_PRC1522);
422 IXGBE_READ_REG(hw, IXGBE_GPRC);
423 IXGBE_READ_REG(hw, IXGBE_BPRC);
424 IXGBE_READ_REG(hw, IXGBE_MPRC);
425 IXGBE_READ_REG(hw, IXGBE_GPTC);
426 IXGBE_READ_REG(hw, IXGBE_GORCL);
427 IXGBE_READ_REG(hw, IXGBE_GORCH);
428 IXGBE_READ_REG(hw, IXGBE_GOTCL);
429 IXGBE_READ_REG(hw, IXGBE_GOTCH);
430 if (hw->mac.type == ixgbe_mac_82598EB)
431 for (i = 0; i < 8; i++)
432 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
433 IXGBE_READ_REG(hw, IXGBE_RUC);
434 IXGBE_READ_REG(hw, IXGBE_RFC);
435 IXGBE_READ_REG(hw, IXGBE_ROC);
436 IXGBE_READ_REG(hw, IXGBE_RJC);
437 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
438 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
439 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
440 IXGBE_READ_REG(hw, IXGBE_TORL);
441 IXGBE_READ_REG(hw, IXGBE_TORH);
442 IXGBE_READ_REG(hw, IXGBE_TPR);
443 IXGBE_READ_REG(hw, IXGBE_TPT);
444 IXGBE_READ_REG(hw, IXGBE_PTC64);
445 IXGBE_READ_REG(hw, IXGBE_PTC127);
446 IXGBE_READ_REG(hw, IXGBE_PTC255);
447 IXGBE_READ_REG(hw, IXGBE_PTC511);
448 IXGBE_READ_REG(hw, IXGBE_PTC1023);
449 IXGBE_READ_REG(hw, IXGBE_PTC1522);
450 IXGBE_READ_REG(hw, IXGBE_MPTC);
451 IXGBE_READ_REG(hw, IXGBE_BPTC);
452 for (i = 0; i < 16; i++) {
453 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
454 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
455 if (hw->mac.type >= ixgbe_mac_82599EB) {
456 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
457 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
458 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
459 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
460 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
461 } else {
462 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
463 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
464 }
465 }
466
467 if (hw->mac.type == ixgbe_mac_X540) {
468 if (hw->phy.id == 0)
469 hw->phy.ops.identify(hw);
470 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
471 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
472 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
473 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
474 }
475
476 return 0;
477 }
478
479 /**
480 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
481 * @hw: pointer to hardware structure
482 * @pba_num: stores the part number string from the EEPROM
483 * @pba_num_size: part number string buffer length
484 *
485 * Reads the part number string from the EEPROM.
486 **/
487 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
488 u32 pba_num_size)
489 {
490 s32 ret_val;
491 u16 data;
492 u16 pba_ptr;
493 u16 offset;
494 u16 length;
495
496 if (pba_num == NULL) {
497 hw_dbg(hw, "PBA string buffer was null\n");
498 return IXGBE_ERR_INVALID_ARGUMENT;
499 }
500
501 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
502 if (ret_val) {
503 hw_dbg(hw, "NVM Read Error\n");
504 return ret_val;
505 }
506
507 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
508 if (ret_val) {
509 hw_dbg(hw, "NVM Read Error\n");
510 return ret_val;
511 }
512
513 /*
514 * if data is not ptr guard the PBA must be in legacy format which
515 * means pba_ptr is actually our second data word for the PBA number
516 * and we can decode it into an ascii string
517 */
518 if (data != IXGBE_PBANUM_PTR_GUARD) {
519 hw_dbg(hw, "NVM PBA number is not stored as string\n");
520
521 /* we will need 11 characters to store the PBA */
522 if (pba_num_size < 11) {
523 hw_dbg(hw, "PBA string buffer too small\n");
524 return IXGBE_ERR_NO_SPACE;
525 }
526
527 /* extract hex string from data and pba_ptr */
528 pba_num[0] = (data >> 12) & 0xF;
529 pba_num[1] = (data >> 8) & 0xF;
530 pba_num[2] = (data >> 4) & 0xF;
531 pba_num[3] = data & 0xF;
532 pba_num[4] = (pba_ptr >> 12) & 0xF;
533 pba_num[5] = (pba_ptr >> 8) & 0xF;
534 pba_num[6] = '-';
535 pba_num[7] = 0;
536 pba_num[8] = (pba_ptr >> 4) & 0xF;
537 pba_num[9] = pba_ptr & 0xF;
538
539 /* put a null character on the end of our string */
540 pba_num[10] = '\0';
541
542 /* switch all the data but the '-' to hex char */
543 for (offset = 0; offset < 10; offset++) {
544 if (pba_num[offset] < 0xA)
545 pba_num[offset] += '0';
546 else if (pba_num[offset] < 0x10)
547 pba_num[offset] += 'A' - 0xA;
548 }
549
550 return 0;
551 }
552
553 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
554 if (ret_val) {
555 hw_dbg(hw, "NVM Read Error\n");
556 return ret_val;
557 }
558
559 if (length == 0xFFFF || length == 0) {
560 hw_dbg(hw, "NVM PBA number section invalid length\n");
561 return IXGBE_ERR_PBA_SECTION;
562 }
563
564 /* check if pba_num buffer is big enough */
565 if (pba_num_size < (((u32)length * 2) - 1)) {
566 hw_dbg(hw, "PBA string buffer too small\n");
567 return IXGBE_ERR_NO_SPACE;
568 }
569
570 /* trim pba length from start of string */
571 pba_ptr++;
572 length--;
573
574 for (offset = 0; offset < length; offset++) {
575 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
576 if (ret_val) {
577 hw_dbg(hw, "NVM Read Error\n");
578 return ret_val;
579 }
580 pba_num[offset * 2] = (u8)(data >> 8);
581 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
582 }
583 pba_num[offset * 2] = '\0';
584
585 return 0;
586 }
587
588 /**
589 * ixgbe_get_mac_addr_generic - Generic get MAC address
590 * @hw: pointer to hardware structure
591 * @mac_addr: Adapter MAC address
592 *
593 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
594 * A reset of the adapter must be performed prior to calling this function
595 * in order for the MAC address to have been loaded from the EEPROM into RAR0
596 **/
597 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
598 {
599 u32 rar_high;
600 u32 rar_low;
601 u16 i;
602
603 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
604 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
605
606 for (i = 0; i < 4; i++)
607 mac_addr[i] = (u8)(rar_low >> (i*8));
608
609 for (i = 0; i < 2; i++)
610 mac_addr[i+4] = (u8)(rar_high >> (i*8));
611
612 return 0;
613 }
614
615 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
616 {
617 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
618 case IXGBE_PCI_LINK_WIDTH_1:
619 return ixgbe_bus_width_pcie_x1;
620 case IXGBE_PCI_LINK_WIDTH_2:
621 return ixgbe_bus_width_pcie_x2;
622 case IXGBE_PCI_LINK_WIDTH_4:
623 return ixgbe_bus_width_pcie_x4;
624 case IXGBE_PCI_LINK_WIDTH_8:
625 return ixgbe_bus_width_pcie_x8;
626 default:
627 return ixgbe_bus_width_unknown;
628 }
629 }
630
631 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
632 {
633 switch (link_status & IXGBE_PCI_LINK_SPEED) {
634 case IXGBE_PCI_LINK_SPEED_2500:
635 return ixgbe_bus_speed_2500;
636 case IXGBE_PCI_LINK_SPEED_5000:
637 return ixgbe_bus_speed_5000;
638 case IXGBE_PCI_LINK_SPEED_8000:
639 return ixgbe_bus_speed_8000;
640 default:
641 return ixgbe_bus_speed_unknown;
642 }
643 }
644
645 /**
646 * ixgbe_get_bus_info_generic - Generic set PCI bus info
647 * @hw: pointer to hardware structure
648 *
649 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
650 **/
651 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
652 {
653 u16 link_status;
654
655 hw->bus.type = ixgbe_bus_type_pci_express;
656
657 /* Get the negotiated link width and speed from PCI config space */
658 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
659
660 hw->bus.width = ixgbe_convert_bus_width(link_status);
661 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
662
663 hw->mac.ops.set_lan_id(hw);
664
665 return 0;
666 }
667
668 /**
669 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
670 * @hw: pointer to the HW structure
671 *
672 * Determines the LAN function id by reading memory-mapped registers
673 * and swaps the port value if requested.
674 **/
675 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
676 {
677 struct ixgbe_bus_info *bus = &hw->bus;
678 u32 reg;
679
680 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
681 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
682 bus->lan_id = bus->func;
683
684 /* check for a port swap */
685 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
686 if (reg & IXGBE_FACTPS_LFS)
687 bus->func ^= 0x1;
688 }
689
690 /**
691 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
692 * @hw: pointer to hardware structure
693 *
694 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
695 * disables transmit and receive units. The adapter_stopped flag is used by
696 * the shared code and drivers to determine if the adapter is in a stopped
697 * state and should not touch the hardware.
698 **/
699 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
700 {
701 u32 reg_val;
702 u16 i;
703
704 /*
705 * Set the adapter_stopped flag so other driver functions stop touching
706 * the hardware
707 */
708 hw->adapter_stopped = true;
709
710 /* Disable the receive unit */
711 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
712
713 /* Clear interrupt mask to stop interrupts from being generated */
714 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
715
716 /* Clear any pending interrupts, flush previous writes */
717 IXGBE_READ_REG(hw, IXGBE_EICR);
718
719 /* Disable the transmit unit. Each queue must be disabled. */
720 for (i = 0; i < hw->mac.max_tx_queues; i++)
721 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
722
723 /* Disable the receive unit by stopping each queue */
724 for (i = 0; i < hw->mac.max_rx_queues; i++) {
725 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
726 reg_val &= ~IXGBE_RXDCTL_ENABLE;
727 reg_val |= IXGBE_RXDCTL_SWFLSH;
728 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
729 }
730
731 /* flush all queues disables */
732 IXGBE_WRITE_FLUSH(hw);
733 usleep_range(1000, 2000);
734
735 /*
736 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
737 * access and verify no pending requests
738 */
739 return ixgbe_disable_pcie_master(hw);
740 }
741
742 /**
743 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
744 * @hw: pointer to hardware structure
745 * @index: led number to turn on
746 **/
747 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
748 {
749 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
750
751 /* To turn on the LED, set mode to ON. */
752 led_reg &= ~IXGBE_LED_MODE_MASK(index);
753 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
754 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
755 IXGBE_WRITE_FLUSH(hw);
756
757 return 0;
758 }
759
760 /**
761 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
762 * @hw: pointer to hardware structure
763 * @index: led number to turn off
764 **/
765 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
766 {
767 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
768
769 /* To turn off the LED, set mode to OFF. */
770 led_reg &= ~IXGBE_LED_MODE_MASK(index);
771 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
772 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
773 IXGBE_WRITE_FLUSH(hw);
774
775 return 0;
776 }
777
778 /**
779 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
780 * @hw: pointer to hardware structure
781 *
782 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
783 * ixgbe_hw struct in order to set up EEPROM access.
784 **/
785 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
786 {
787 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
788 u32 eec;
789 u16 eeprom_size;
790
791 if (eeprom->type == ixgbe_eeprom_uninitialized) {
792 eeprom->type = ixgbe_eeprom_none;
793 /* Set default semaphore delay to 10ms which is a well
794 * tested value */
795 eeprom->semaphore_delay = 10;
796 /* Clear EEPROM page size, it will be initialized as needed */
797 eeprom->word_page_size = 0;
798
799 /*
800 * Check for EEPROM present first.
801 * If not present leave as none
802 */
803 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
804 if (eec & IXGBE_EEC_PRES) {
805 eeprom->type = ixgbe_eeprom_spi;
806
807 /*
808 * SPI EEPROM is assumed here. This code would need to
809 * change if a future EEPROM is not SPI.
810 */
811 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
812 IXGBE_EEC_SIZE_SHIFT);
813 eeprom->word_size = 1 << (eeprom_size +
814 IXGBE_EEPROM_WORD_SIZE_SHIFT);
815 }
816
817 if (eec & IXGBE_EEC_ADDR_SIZE)
818 eeprom->address_bits = 16;
819 else
820 eeprom->address_bits = 8;
821 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
822 eeprom->type, eeprom->word_size, eeprom->address_bits);
823 }
824
825 return 0;
826 }
827
828 /**
829 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
830 * @hw: pointer to hardware structure
831 * @offset: offset within the EEPROM to write
832 * @words: number of words
833 * @data: 16 bit word(s) to write to EEPROM
834 *
835 * Reads 16 bit word(s) from EEPROM through bit-bang method
836 **/
837 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
838 u16 words, u16 *data)
839 {
840 s32 status = 0;
841 u16 i, count;
842
843 hw->eeprom.ops.init_params(hw);
844
845 if (words == 0) {
846 status = IXGBE_ERR_INVALID_ARGUMENT;
847 goto out;
848 }
849
850 if (offset + words > hw->eeprom.word_size) {
851 status = IXGBE_ERR_EEPROM;
852 goto out;
853 }
854
855 /*
856 * The EEPROM page size cannot be queried from the chip. We do lazy
857 * initialization. It is worth to do that when we write large buffer.
858 */
859 if ((hw->eeprom.word_page_size == 0) &&
860 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
861 ixgbe_detect_eeprom_page_size_generic(hw, offset);
862
863 /*
864 * We cannot hold synchronization semaphores for too long
865 * to avoid other entity starvation. However it is more efficient
866 * to read in bursts than synchronizing access for each word.
867 */
868 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
869 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
870 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
871 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
872 count, &data[i]);
873
874 if (status != 0)
875 break;
876 }
877
878 out:
879 return status;
880 }
881
882 /**
883 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
884 * @hw: pointer to hardware structure
885 * @offset: offset within the EEPROM to be written to
886 * @words: number of word(s)
887 * @data: 16 bit word(s) to be written to the EEPROM
888 *
889 * If ixgbe_eeprom_update_checksum is not called after this function, the
890 * EEPROM will most likely contain an invalid checksum.
891 **/
892 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
893 u16 words, u16 *data)
894 {
895 s32 status;
896 u16 word;
897 u16 page_size;
898 u16 i;
899 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
900
901 /* Prepare the EEPROM for writing */
902 status = ixgbe_acquire_eeprom(hw);
903
904 if (status == 0) {
905 if (ixgbe_ready_eeprom(hw) != 0) {
906 ixgbe_release_eeprom(hw);
907 status = IXGBE_ERR_EEPROM;
908 }
909 }
910
911 if (status == 0) {
912 for (i = 0; i < words; i++) {
913 ixgbe_standby_eeprom(hw);
914
915 /* Send the WRITE ENABLE command (8 bit opcode ) */
916 ixgbe_shift_out_eeprom_bits(hw,
917 IXGBE_EEPROM_WREN_OPCODE_SPI,
918 IXGBE_EEPROM_OPCODE_BITS);
919
920 ixgbe_standby_eeprom(hw);
921
922 /*
923 * Some SPI eeproms use the 8th address bit embedded
924 * in the opcode
925 */
926 if ((hw->eeprom.address_bits == 8) &&
927 ((offset + i) >= 128))
928 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
929
930 /* Send the Write command (8-bit opcode + addr) */
931 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
932 IXGBE_EEPROM_OPCODE_BITS);
933 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
934 hw->eeprom.address_bits);
935
936 page_size = hw->eeprom.word_page_size;
937
938 /* Send the data in burst via SPI*/
939 do {
940 word = data[i];
941 word = (word >> 8) | (word << 8);
942 ixgbe_shift_out_eeprom_bits(hw, word, 16);
943
944 if (page_size == 0)
945 break;
946
947 /* do not wrap around page */
948 if (((offset + i) & (page_size - 1)) ==
949 (page_size - 1))
950 break;
951 } while (++i < words);
952
953 ixgbe_standby_eeprom(hw);
954 usleep_range(10000, 20000);
955 }
956 /* Done with writing - release the EEPROM */
957 ixgbe_release_eeprom(hw);
958 }
959
960 return status;
961 }
962
963 /**
964 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
965 * @hw: pointer to hardware structure
966 * @offset: offset within the EEPROM to be written to
967 * @data: 16 bit word to be written to the EEPROM
968 *
969 * If ixgbe_eeprom_update_checksum is not called after this function, the
970 * EEPROM will most likely contain an invalid checksum.
971 **/
972 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
973 {
974 s32 status;
975
976 hw->eeprom.ops.init_params(hw);
977
978 if (offset >= hw->eeprom.word_size) {
979 status = IXGBE_ERR_EEPROM;
980 goto out;
981 }
982
983 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
984
985 out:
986 return status;
987 }
988
989 /**
990 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
991 * @hw: pointer to hardware structure
992 * @offset: offset within the EEPROM to be read
993 * @words: number of word(s)
994 * @data: read 16 bit words(s) from EEPROM
995 *
996 * Reads 16 bit word(s) from EEPROM through bit-bang method
997 **/
998 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
999 u16 words, u16 *data)
1000 {
1001 s32 status = 0;
1002 u16 i, count;
1003
1004 hw->eeprom.ops.init_params(hw);
1005
1006 if (words == 0) {
1007 status = IXGBE_ERR_INVALID_ARGUMENT;
1008 goto out;
1009 }
1010
1011 if (offset + words > hw->eeprom.word_size) {
1012 status = IXGBE_ERR_EEPROM;
1013 goto out;
1014 }
1015
1016 /*
1017 * We cannot hold synchronization semaphores for too long
1018 * to avoid other entity starvation. However it is more efficient
1019 * to read in bursts than synchronizing access for each word.
1020 */
1021 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1022 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1023 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1024
1025 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1026 count, &data[i]);
1027
1028 if (status != 0)
1029 break;
1030 }
1031
1032 out:
1033 return status;
1034 }
1035
1036 /**
1037 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1038 * @hw: pointer to hardware structure
1039 * @offset: offset within the EEPROM to be read
1040 * @words: number of word(s)
1041 * @data: read 16 bit word(s) from EEPROM
1042 *
1043 * Reads 16 bit word(s) from EEPROM through bit-bang method
1044 **/
1045 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1046 u16 words, u16 *data)
1047 {
1048 s32 status;
1049 u16 word_in;
1050 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1051 u16 i;
1052
1053 /* Prepare the EEPROM for reading */
1054 status = ixgbe_acquire_eeprom(hw);
1055
1056 if (status == 0) {
1057 if (ixgbe_ready_eeprom(hw) != 0) {
1058 ixgbe_release_eeprom(hw);
1059 status = IXGBE_ERR_EEPROM;
1060 }
1061 }
1062
1063 if (status == 0) {
1064 for (i = 0; i < words; i++) {
1065 ixgbe_standby_eeprom(hw);
1066 /*
1067 * Some SPI eeproms use the 8th address bit embedded
1068 * in the opcode
1069 */
1070 if ((hw->eeprom.address_bits == 8) &&
1071 ((offset + i) >= 128))
1072 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1073
1074 /* Send the READ command (opcode + addr) */
1075 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1076 IXGBE_EEPROM_OPCODE_BITS);
1077 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1078 hw->eeprom.address_bits);
1079
1080 /* Read the data. */
1081 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1082 data[i] = (word_in >> 8) | (word_in << 8);
1083 }
1084
1085 /* End this read operation */
1086 ixgbe_release_eeprom(hw);
1087 }
1088
1089 return status;
1090 }
1091
1092 /**
1093 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1094 * @hw: pointer to hardware structure
1095 * @offset: offset within the EEPROM to be read
1096 * @data: read 16 bit value from EEPROM
1097 *
1098 * Reads 16 bit value from EEPROM through bit-bang method
1099 **/
1100 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1101 u16 *data)
1102 {
1103 s32 status;
1104
1105 hw->eeprom.ops.init_params(hw);
1106
1107 if (offset >= hw->eeprom.word_size) {
1108 status = IXGBE_ERR_EEPROM;
1109 goto out;
1110 }
1111
1112 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1113
1114 out:
1115 return status;
1116 }
1117
1118 /**
1119 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1120 * @hw: pointer to hardware structure
1121 * @offset: offset of word in the EEPROM to read
1122 * @words: number of word(s)
1123 * @data: 16 bit word(s) from the EEPROM
1124 *
1125 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1126 **/
1127 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1128 u16 words, u16 *data)
1129 {
1130 u32 eerd;
1131 s32 status = 0;
1132 u32 i;
1133
1134 hw->eeprom.ops.init_params(hw);
1135
1136 if (words == 0) {
1137 status = IXGBE_ERR_INVALID_ARGUMENT;
1138 goto out;
1139 }
1140
1141 if (offset >= hw->eeprom.word_size) {
1142 status = IXGBE_ERR_EEPROM;
1143 goto out;
1144 }
1145
1146 for (i = 0; i < words; i++) {
1147 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1148 IXGBE_EEPROM_RW_REG_START;
1149
1150 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1151 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1152
1153 if (status == 0) {
1154 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1155 IXGBE_EEPROM_RW_REG_DATA);
1156 } else {
1157 hw_dbg(hw, "Eeprom read timed out\n");
1158 goto out;
1159 }
1160 }
1161 out:
1162 return status;
1163 }
1164
1165 /**
1166 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1167 * @hw: pointer to hardware structure
1168 * @offset: offset within the EEPROM to be used as a scratch pad
1169 *
1170 * Discover EEPROM page size by writing marching data at given offset.
1171 * This function is called only when we are writing a new large buffer
1172 * at given offset so the data would be overwritten anyway.
1173 **/
1174 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1175 u16 offset)
1176 {
1177 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1178 s32 status = 0;
1179 u16 i;
1180
1181 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1182 data[i] = i;
1183
1184 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1185 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1186 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1187 hw->eeprom.word_page_size = 0;
1188 if (status != 0)
1189 goto out;
1190
1191 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1192 if (status != 0)
1193 goto out;
1194
1195 /*
1196 * When writing in burst more than the actual page size
1197 * EEPROM address wraps around current page.
1198 */
1199 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1200
1201 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1202 hw->eeprom.word_page_size);
1203 out:
1204 return status;
1205 }
1206
1207 /**
1208 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1209 * @hw: pointer to hardware structure
1210 * @offset: offset of word in the EEPROM to read
1211 * @data: word read from the EEPROM
1212 *
1213 * Reads a 16 bit word from the EEPROM using the EERD register.
1214 **/
1215 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1216 {
1217 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1218 }
1219
1220 /**
1221 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1222 * @hw: pointer to hardware structure
1223 * @offset: offset of word in the EEPROM to write
1224 * @words: number of words
1225 * @data: word(s) write to the EEPROM
1226 *
1227 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1228 **/
1229 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1230 u16 words, u16 *data)
1231 {
1232 u32 eewr;
1233 s32 status = 0;
1234 u16 i;
1235
1236 hw->eeprom.ops.init_params(hw);
1237
1238 if (words == 0) {
1239 status = IXGBE_ERR_INVALID_ARGUMENT;
1240 goto out;
1241 }
1242
1243 if (offset >= hw->eeprom.word_size) {
1244 status = IXGBE_ERR_EEPROM;
1245 goto out;
1246 }
1247
1248 for (i = 0; i < words; i++) {
1249 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1250 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1251 IXGBE_EEPROM_RW_REG_START;
1252
1253 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1254 if (status != 0) {
1255 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1256 goto out;
1257 }
1258
1259 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1260
1261 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1262 if (status != 0) {
1263 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1264 goto out;
1265 }
1266 }
1267
1268 out:
1269 return status;
1270 }
1271
1272 /**
1273 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1274 * @hw: pointer to hardware structure
1275 * @offset: offset of word in the EEPROM to write
1276 * @data: word write to the EEPROM
1277 *
1278 * Write a 16 bit word to the EEPROM using the EEWR register.
1279 **/
1280 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1281 {
1282 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1283 }
1284
1285 /**
1286 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1287 * @hw: pointer to hardware structure
1288 * @ee_reg: EEPROM flag for polling
1289 *
1290 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1291 * read or write is done respectively.
1292 **/
1293 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1294 {
1295 u32 i;
1296 u32 reg;
1297 s32 status = IXGBE_ERR_EEPROM;
1298
1299 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1300 if (ee_reg == IXGBE_NVM_POLL_READ)
1301 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1302 else
1303 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1304
1305 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1306 status = 0;
1307 break;
1308 }
1309 udelay(5);
1310 }
1311 return status;
1312 }
1313
1314 /**
1315 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1316 * @hw: pointer to hardware structure
1317 *
1318 * Prepares EEPROM for access using bit-bang method. This function should
1319 * be called before issuing a command to the EEPROM.
1320 **/
1321 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1322 {
1323 s32 status = 0;
1324 u32 eec;
1325 u32 i;
1326
1327 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1328 status = IXGBE_ERR_SWFW_SYNC;
1329
1330 if (status == 0) {
1331 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1332
1333 /* Request EEPROM Access */
1334 eec |= IXGBE_EEC_REQ;
1335 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1336
1337 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1338 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1339 if (eec & IXGBE_EEC_GNT)
1340 break;
1341 udelay(5);
1342 }
1343
1344 /* Release if grant not acquired */
1345 if (!(eec & IXGBE_EEC_GNT)) {
1346 eec &= ~IXGBE_EEC_REQ;
1347 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1348 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1349
1350 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1351 status = IXGBE_ERR_EEPROM;
1352 }
1353
1354 /* Setup EEPROM for Read/Write */
1355 if (status == 0) {
1356 /* Clear CS and SK */
1357 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1358 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1359 IXGBE_WRITE_FLUSH(hw);
1360 udelay(1);
1361 }
1362 }
1363 return status;
1364 }
1365
1366 /**
1367 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1368 * @hw: pointer to hardware structure
1369 *
1370 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1371 **/
1372 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1373 {
1374 s32 status = IXGBE_ERR_EEPROM;
1375 u32 timeout = 2000;
1376 u32 i;
1377 u32 swsm;
1378
1379 /* Get SMBI software semaphore between device drivers first */
1380 for (i = 0; i < timeout; i++) {
1381 /*
1382 * If the SMBI bit is 0 when we read it, then the bit will be
1383 * set and we have the semaphore
1384 */
1385 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1386 if (!(swsm & IXGBE_SWSM_SMBI)) {
1387 status = 0;
1388 break;
1389 }
1390 udelay(50);
1391 }
1392
1393 if (i == timeout) {
1394 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1395 /*
1396 * this release is particularly important because our attempts
1397 * above to get the semaphore may have succeeded, and if there
1398 * was a timeout, we should unconditionally clear the semaphore
1399 * bits to free the driver to make progress
1400 */
1401 ixgbe_release_eeprom_semaphore(hw);
1402
1403 udelay(50);
1404 /*
1405 * one last try
1406 * If the SMBI bit is 0 when we read it, then the bit will be
1407 * set and we have the semaphore
1408 */
1409 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1410 if (!(swsm & IXGBE_SWSM_SMBI))
1411 status = 0;
1412 }
1413
1414 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1415 if (status == 0) {
1416 for (i = 0; i < timeout; i++) {
1417 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1418
1419 /* Set the SW EEPROM semaphore bit to request access */
1420 swsm |= IXGBE_SWSM_SWESMBI;
1421 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1422
1423 /*
1424 * If we set the bit successfully then we got the
1425 * semaphore.
1426 */
1427 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1428 if (swsm & IXGBE_SWSM_SWESMBI)
1429 break;
1430
1431 udelay(50);
1432 }
1433
1434 /*
1435 * Release semaphores and return error if SW EEPROM semaphore
1436 * was not granted because we don't have access to the EEPROM
1437 */
1438 if (i >= timeout) {
1439 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1440 ixgbe_release_eeprom_semaphore(hw);
1441 status = IXGBE_ERR_EEPROM;
1442 }
1443 } else {
1444 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1445 }
1446
1447 return status;
1448 }
1449
1450 /**
1451 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1452 * @hw: pointer to hardware structure
1453 *
1454 * This function clears hardware semaphore bits.
1455 **/
1456 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1457 {
1458 u32 swsm;
1459
1460 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1461
1462 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1463 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1464 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1465 IXGBE_WRITE_FLUSH(hw);
1466 }
1467
1468 /**
1469 * ixgbe_ready_eeprom - Polls for EEPROM ready
1470 * @hw: pointer to hardware structure
1471 **/
1472 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1473 {
1474 s32 status = 0;
1475 u16 i;
1476 u8 spi_stat_reg;
1477
1478 /*
1479 * Read "Status Register" repeatedly until the LSB is cleared. The
1480 * EEPROM will signal that the command has been completed by clearing
1481 * bit 0 of the internal status register. If it's not cleared within
1482 * 5 milliseconds, then error out.
1483 */
1484 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1485 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1486 IXGBE_EEPROM_OPCODE_BITS);
1487 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1488 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1489 break;
1490
1491 udelay(5);
1492 ixgbe_standby_eeprom(hw);
1493 }
1494
1495 /*
1496 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1497 * devices (and only 0-5mSec on 5V devices)
1498 */
1499 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1500 hw_dbg(hw, "SPI EEPROM Status error\n");
1501 status = IXGBE_ERR_EEPROM;
1502 }
1503
1504 return status;
1505 }
1506
1507 /**
1508 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1509 * @hw: pointer to hardware structure
1510 **/
1511 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1512 {
1513 u32 eec;
1514
1515 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1516
1517 /* Toggle CS to flush commands */
1518 eec |= IXGBE_EEC_CS;
1519 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1520 IXGBE_WRITE_FLUSH(hw);
1521 udelay(1);
1522 eec &= ~IXGBE_EEC_CS;
1523 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1524 IXGBE_WRITE_FLUSH(hw);
1525 udelay(1);
1526 }
1527
1528 /**
1529 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1530 * @hw: pointer to hardware structure
1531 * @data: data to send to the EEPROM
1532 * @count: number of bits to shift out
1533 **/
1534 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1535 u16 count)
1536 {
1537 u32 eec;
1538 u32 mask;
1539 u32 i;
1540
1541 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1542
1543 /*
1544 * Mask is used to shift "count" bits of "data" out to the EEPROM
1545 * one bit at a time. Determine the starting bit based on count
1546 */
1547 mask = 0x01 << (count - 1);
1548
1549 for (i = 0; i < count; i++) {
1550 /*
1551 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1552 * "1", and then raising and then lowering the clock (the SK
1553 * bit controls the clock input to the EEPROM). A "0" is
1554 * shifted out to the EEPROM by setting "DI" to "0" and then
1555 * raising and then lowering the clock.
1556 */
1557 if (data & mask)
1558 eec |= IXGBE_EEC_DI;
1559 else
1560 eec &= ~IXGBE_EEC_DI;
1561
1562 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1563 IXGBE_WRITE_FLUSH(hw);
1564
1565 udelay(1);
1566
1567 ixgbe_raise_eeprom_clk(hw, &eec);
1568 ixgbe_lower_eeprom_clk(hw, &eec);
1569
1570 /*
1571 * Shift mask to signify next bit of data to shift in to the
1572 * EEPROM
1573 */
1574 mask = mask >> 1;
1575 }
1576
1577 /* We leave the "DI" bit set to "0" when we leave this routine. */
1578 eec &= ~IXGBE_EEC_DI;
1579 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1580 IXGBE_WRITE_FLUSH(hw);
1581 }
1582
1583 /**
1584 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1585 * @hw: pointer to hardware structure
1586 **/
1587 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1588 {
1589 u32 eec;
1590 u32 i;
1591 u16 data = 0;
1592
1593 /*
1594 * In order to read a register from the EEPROM, we need to shift
1595 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1596 * the clock input to the EEPROM (setting the SK bit), and then reading
1597 * the value of the "DO" bit. During this "shifting in" process the
1598 * "DI" bit should always be clear.
1599 */
1600 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601
1602 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1603
1604 for (i = 0; i < count; i++) {
1605 data = data << 1;
1606 ixgbe_raise_eeprom_clk(hw, &eec);
1607
1608 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1609
1610 eec &= ~(IXGBE_EEC_DI);
1611 if (eec & IXGBE_EEC_DO)
1612 data |= 1;
1613
1614 ixgbe_lower_eeprom_clk(hw, &eec);
1615 }
1616
1617 return data;
1618 }
1619
1620 /**
1621 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1622 * @hw: pointer to hardware structure
1623 * @eec: EEC register's current value
1624 **/
1625 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1626 {
1627 /*
1628 * Raise the clock input to the EEPROM
1629 * (setting the SK bit), then delay
1630 */
1631 *eec = *eec | IXGBE_EEC_SK;
1632 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1633 IXGBE_WRITE_FLUSH(hw);
1634 udelay(1);
1635 }
1636
1637 /**
1638 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1639 * @hw: pointer to hardware structure
1640 * @eecd: EECD's current value
1641 **/
1642 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1643 {
1644 /*
1645 * Lower the clock input to the EEPROM (clearing the SK bit), then
1646 * delay
1647 */
1648 *eec = *eec & ~IXGBE_EEC_SK;
1649 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1650 IXGBE_WRITE_FLUSH(hw);
1651 udelay(1);
1652 }
1653
1654 /**
1655 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1656 * @hw: pointer to hardware structure
1657 **/
1658 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1659 {
1660 u32 eec;
1661
1662 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1663
1664 eec |= IXGBE_EEC_CS; /* Pull CS high */
1665 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1666
1667 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1668 IXGBE_WRITE_FLUSH(hw);
1669
1670 udelay(1);
1671
1672 /* Stop requesting EEPROM access */
1673 eec &= ~IXGBE_EEC_REQ;
1674 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1675
1676 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1677
1678 /*
1679 * Delay before attempt to obtain semaphore again to allow FW
1680 * access. semaphore_delay is in ms we need us for usleep_range
1681 */
1682 usleep_range(hw->eeprom.semaphore_delay * 1000,
1683 hw->eeprom.semaphore_delay * 2000);
1684 }
1685
1686 /**
1687 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1688 * @hw: pointer to hardware structure
1689 **/
1690 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1691 {
1692 u16 i;
1693 u16 j;
1694 u16 checksum = 0;
1695 u16 length = 0;
1696 u16 pointer = 0;
1697 u16 word = 0;
1698
1699 /* Include 0x0-0x3F in the checksum */
1700 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1701 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1702 hw_dbg(hw, "EEPROM read failed\n");
1703 break;
1704 }
1705 checksum += word;
1706 }
1707
1708 /* Include all data from pointers except for the fw pointer */
1709 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1710 hw->eeprom.ops.read(hw, i, &pointer);
1711
1712 /* Make sure the pointer seems valid */
1713 if (pointer != 0xFFFF && pointer != 0) {
1714 hw->eeprom.ops.read(hw, pointer, &length);
1715
1716 if (length != 0xFFFF && length != 0) {
1717 for (j = pointer+1; j <= pointer+length; j++) {
1718 hw->eeprom.ops.read(hw, j, &word);
1719 checksum += word;
1720 }
1721 }
1722 }
1723 }
1724
1725 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1726
1727 return checksum;
1728 }
1729
1730 /**
1731 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1732 * @hw: pointer to hardware structure
1733 * @checksum_val: calculated checksum
1734 *
1735 * Performs checksum calculation and validates the EEPROM checksum. If the
1736 * caller does not need checksum_val, the value can be NULL.
1737 **/
1738 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1739 u16 *checksum_val)
1740 {
1741 s32 status;
1742 u16 checksum;
1743 u16 read_checksum = 0;
1744
1745 /*
1746 * Read the first word from the EEPROM. If this times out or fails, do
1747 * not continue or we could be in for a very long wait while every
1748 * EEPROM read fails
1749 */
1750 status = hw->eeprom.ops.read(hw, 0, &checksum);
1751
1752 if (status == 0) {
1753 checksum = hw->eeprom.ops.calc_checksum(hw);
1754
1755 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1756
1757 /*
1758 * Verify read checksum from EEPROM is the same as
1759 * calculated checksum
1760 */
1761 if (read_checksum != checksum)
1762 status = IXGBE_ERR_EEPROM_CHECKSUM;
1763
1764 /* If the user cares, return the calculated checksum */
1765 if (checksum_val)
1766 *checksum_val = checksum;
1767 } else {
1768 hw_dbg(hw, "EEPROM read failed\n");
1769 }
1770
1771 return status;
1772 }
1773
1774 /**
1775 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1776 * @hw: pointer to hardware structure
1777 **/
1778 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1779 {
1780 s32 status;
1781 u16 checksum;
1782
1783 /*
1784 * Read the first word from the EEPROM. If this times out or fails, do
1785 * not continue or we could be in for a very long wait while every
1786 * EEPROM read fails
1787 */
1788 status = hw->eeprom.ops.read(hw, 0, &checksum);
1789
1790 if (status == 0) {
1791 checksum = hw->eeprom.ops.calc_checksum(hw);
1792 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1793 checksum);
1794 } else {
1795 hw_dbg(hw, "EEPROM read failed\n");
1796 }
1797
1798 return status;
1799 }
1800
1801 /**
1802 * ixgbe_set_rar_generic - Set Rx address register
1803 * @hw: pointer to hardware structure
1804 * @index: Receive address register to write
1805 * @addr: Address to put into receive address register
1806 * @vmdq: VMDq "set" or "pool" index
1807 * @enable_addr: set flag that address is active
1808 *
1809 * Puts an ethernet address into a receive address register.
1810 **/
1811 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1812 u32 enable_addr)
1813 {
1814 u32 rar_low, rar_high;
1815 u32 rar_entries = hw->mac.num_rar_entries;
1816
1817 /* Make sure we are using a valid rar index range */
1818 if (index >= rar_entries) {
1819 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1820 return IXGBE_ERR_INVALID_ARGUMENT;
1821 }
1822
1823 /* setup VMDq pool selection before this RAR gets enabled */
1824 hw->mac.ops.set_vmdq(hw, index, vmdq);
1825
1826 /*
1827 * HW expects these in little endian so we reverse the byte
1828 * order from network order (big endian) to little endian
1829 */
1830 rar_low = ((u32)addr[0] |
1831 ((u32)addr[1] << 8) |
1832 ((u32)addr[2] << 16) |
1833 ((u32)addr[3] << 24));
1834 /*
1835 * Some parts put the VMDq setting in the extra RAH bits,
1836 * so save everything except the lower 16 bits that hold part
1837 * of the address and the address valid bit.
1838 */
1839 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1840 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1841 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1842
1843 if (enable_addr != 0)
1844 rar_high |= IXGBE_RAH_AV;
1845
1846 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1847 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1848
1849 return 0;
1850 }
1851
1852 /**
1853 * ixgbe_clear_rar_generic - Remove Rx address register
1854 * @hw: pointer to hardware structure
1855 * @index: Receive address register to write
1856 *
1857 * Clears an ethernet address from a receive address register.
1858 **/
1859 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1860 {
1861 u32 rar_high;
1862 u32 rar_entries = hw->mac.num_rar_entries;
1863
1864 /* Make sure we are using a valid rar index range */
1865 if (index >= rar_entries) {
1866 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1867 return IXGBE_ERR_INVALID_ARGUMENT;
1868 }
1869
1870 /*
1871 * Some parts put the VMDq setting in the extra RAH bits,
1872 * so save everything except the lower 16 bits that hold part
1873 * of the address and the address valid bit.
1874 */
1875 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1876 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1877
1878 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1879 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1880
1881 /* clear VMDq pool/queue selection for this RAR */
1882 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1883
1884 return 0;
1885 }
1886
1887 /**
1888 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1889 * @hw: pointer to hardware structure
1890 *
1891 * Places the MAC address in receive address register 0 and clears the rest
1892 * of the receive address registers. Clears the multicast table. Assumes
1893 * the receiver is in reset when the routine is called.
1894 **/
1895 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1896 {
1897 u32 i;
1898 u32 rar_entries = hw->mac.num_rar_entries;
1899
1900 /*
1901 * If the current mac address is valid, assume it is a software override
1902 * to the permanent address.
1903 * Otherwise, use the permanent address from the eeprom.
1904 */
1905 if (!is_valid_ether_addr(hw->mac.addr)) {
1906 /* Get the MAC address from the RAR0 for later reference */
1907 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1908
1909 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1910 } else {
1911 /* Setup the receive address. */
1912 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1913 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1914
1915 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1916
1917 /* clear VMDq pool/queue selection for RAR 0 */
1918 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1919 }
1920 hw->addr_ctrl.overflow_promisc = 0;
1921
1922 hw->addr_ctrl.rar_used_count = 1;
1923
1924 /* Zero out the other receive addresses. */
1925 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1926 for (i = 1; i < rar_entries; i++) {
1927 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1928 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1929 }
1930
1931 /* Clear the MTA */
1932 hw->addr_ctrl.mta_in_use = 0;
1933 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1934
1935 hw_dbg(hw, " Clearing MTA\n");
1936 for (i = 0; i < hw->mac.mcft_size; i++)
1937 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1938
1939 if (hw->mac.ops.init_uta_tables)
1940 hw->mac.ops.init_uta_tables(hw);
1941
1942 return 0;
1943 }
1944
1945 /**
1946 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1947 * @hw: pointer to hardware structure
1948 * @mc_addr: the multicast address
1949 *
1950 * Extracts the 12 bits, from a multicast address, to determine which
1951 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1952 * incoming rx multicast addresses, to determine the bit-vector to check in
1953 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1954 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1955 * to mc_filter_type.
1956 **/
1957 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1958 {
1959 u32 vector = 0;
1960
1961 switch (hw->mac.mc_filter_type) {
1962 case 0: /* use bits [47:36] of the address */
1963 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1964 break;
1965 case 1: /* use bits [46:35] of the address */
1966 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1967 break;
1968 case 2: /* use bits [45:34] of the address */
1969 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1970 break;
1971 case 3: /* use bits [43:32] of the address */
1972 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1973 break;
1974 default: /* Invalid mc_filter_type */
1975 hw_dbg(hw, "MC filter type param set incorrectly\n");
1976 break;
1977 }
1978
1979 /* vector can only be 12-bits or boundary will be exceeded */
1980 vector &= 0xFFF;
1981 return vector;
1982 }
1983
1984 /**
1985 * ixgbe_set_mta - Set bit-vector in multicast table
1986 * @hw: pointer to hardware structure
1987 * @hash_value: Multicast address hash value
1988 *
1989 * Sets the bit-vector in the multicast table.
1990 **/
1991 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1992 {
1993 u32 vector;
1994 u32 vector_bit;
1995 u32 vector_reg;
1996
1997 hw->addr_ctrl.mta_in_use++;
1998
1999 vector = ixgbe_mta_vector(hw, mc_addr);
2000 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2001
2002 /*
2003 * The MTA is a register array of 128 32-bit registers. It is treated
2004 * like an array of 4096 bits. We want to set bit
2005 * BitArray[vector_value]. So we figure out what register the bit is
2006 * in, read it, OR in the new bit, then write back the new value. The
2007 * register is determined by the upper 7 bits of the vector value and
2008 * the bit within that register are determined by the lower 5 bits of
2009 * the value.
2010 */
2011 vector_reg = (vector >> 5) & 0x7F;
2012 vector_bit = vector & 0x1F;
2013 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2014 }
2015
2016 /**
2017 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2018 * @hw: pointer to hardware structure
2019 * @netdev: pointer to net device structure
2020 *
2021 * The given list replaces any existing list. Clears the MC addrs from receive
2022 * address registers and the multicast table. Uses unused receive address
2023 * registers for the first multicast addresses, and hashes the rest into the
2024 * multicast table.
2025 **/
2026 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2027 struct net_device *netdev)
2028 {
2029 struct netdev_hw_addr *ha;
2030 u32 i;
2031
2032 /*
2033 * Set the new number of MC addresses that we are being requested to
2034 * use.
2035 */
2036 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2037 hw->addr_ctrl.mta_in_use = 0;
2038
2039 /* Clear mta_shadow */
2040 hw_dbg(hw, " Clearing MTA\n");
2041 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2042
2043 /* Update mta shadow */
2044 netdev_for_each_mc_addr(ha, netdev) {
2045 hw_dbg(hw, " Adding the multicast addresses:\n");
2046 ixgbe_set_mta(hw, ha->addr);
2047 }
2048
2049 /* Enable mta */
2050 for (i = 0; i < hw->mac.mcft_size; i++)
2051 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2052 hw->mac.mta_shadow[i]);
2053
2054 if (hw->addr_ctrl.mta_in_use > 0)
2055 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2056 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2057
2058 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2059 return 0;
2060 }
2061
2062 /**
2063 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2064 * @hw: pointer to hardware structure
2065 *
2066 * Enables multicast address in RAR and the use of the multicast hash table.
2067 **/
2068 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2069 {
2070 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2071
2072 if (a->mta_in_use > 0)
2073 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2074 hw->mac.mc_filter_type);
2075
2076 return 0;
2077 }
2078
2079 /**
2080 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2081 * @hw: pointer to hardware structure
2082 *
2083 * Disables multicast address in RAR and the use of the multicast hash table.
2084 **/
2085 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2086 {
2087 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2088
2089 if (a->mta_in_use > 0)
2090 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2091
2092 return 0;
2093 }
2094
2095 /**
2096 * ixgbe_fc_enable_generic - Enable flow control
2097 * @hw: pointer to hardware structure
2098 *
2099 * Enable flow control according to the current settings.
2100 **/
2101 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2102 {
2103 s32 ret_val = 0;
2104 u32 mflcn_reg, fccfg_reg;
2105 u32 reg;
2106 u32 fcrtl, fcrth;
2107 int i;
2108
2109 /* Validate the water mark configuration. */
2110 if (!hw->fc.pause_time) {
2111 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2112 goto out;
2113 }
2114
2115 /* Low water mark of zero causes XOFF floods */
2116 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2117 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2118 hw->fc.high_water[i]) {
2119 if (!hw->fc.low_water[i] ||
2120 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2121 hw_dbg(hw, "Invalid water mark configuration\n");
2122 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2123 goto out;
2124 }
2125 }
2126 }
2127
2128 /* Negotiate the fc mode to use */
2129 ixgbe_fc_autoneg(hw);
2130
2131 /* Disable any previous flow control settings */
2132 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2133 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2134
2135 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2136 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2137
2138 /*
2139 * The possible values of fc.current_mode are:
2140 * 0: Flow control is completely disabled
2141 * 1: Rx flow control is enabled (we can receive pause frames,
2142 * but not send pause frames).
2143 * 2: Tx flow control is enabled (we can send pause frames but
2144 * we do not support receiving pause frames).
2145 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2146 * other: Invalid.
2147 */
2148 switch (hw->fc.current_mode) {
2149 case ixgbe_fc_none:
2150 /*
2151 * Flow control is disabled by software override or autoneg.
2152 * The code below will actually disable it in the HW.
2153 */
2154 break;
2155 case ixgbe_fc_rx_pause:
2156 /*
2157 * Rx Flow control is enabled and Tx Flow control is
2158 * disabled by software override. Since there really
2159 * isn't a way to advertise that we are capable of RX
2160 * Pause ONLY, we will advertise that we support both
2161 * symmetric and asymmetric Rx PAUSE. Later, we will
2162 * disable the adapter's ability to send PAUSE frames.
2163 */
2164 mflcn_reg |= IXGBE_MFLCN_RFCE;
2165 break;
2166 case ixgbe_fc_tx_pause:
2167 /*
2168 * Tx Flow control is enabled, and Rx Flow control is
2169 * disabled by software override.
2170 */
2171 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2172 break;
2173 case ixgbe_fc_full:
2174 /* Flow control (both Rx and Tx) is enabled by SW override. */
2175 mflcn_reg |= IXGBE_MFLCN_RFCE;
2176 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2177 break;
2178 default:
2179 hw_dbg(hw, "Flow control param set incorrectly\n");
2180 ret_val = IXGBE_ERR_CONFIG;
2181 goto out;
2182 break;
2183 }
2184
2185 /* Set 802.3x based flow control settings. */
2186 mflcn_reg |= IXGBE_MFLCN_DPF;
2187 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2188 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2189
2190 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2191 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2192 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2193 hw->fc.high_water[i]) {
2194 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2195 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2196 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2197 } else {
2198 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2199 /*
2200 * In order to prevent Tx hangs when the internal Tx
2201 * switch is enabled we must set the high water mark
2202 * to the maximum FCRTH value. This allows the Tx
2203 * switch to function even under heavy Rx workloads.
2204 */
2205 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2206 }
2207
2208 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2209 }
2210
2211 /* Configure pause time (2 TCs per register) */
2212 reg = hw->fc.pause_time * 0x00010001;
2213 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2214 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2215
2216 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2217
2218 out:
2219 return ret_val;
2220 }
2221
2222 /**
2223 * ixgbe_negotiate_fc - Negotiate flow control
2224 * @hw: pointer to hardware structure
2225 * @adv_reg: flow control advertised settings
2226 * @lp_reg: link partner's flow control settings
2227 * @adv_sym: symmetric pause bit in advertisement
2228 * @adv_asm: asymmetric pause bit in advertisement
2229 * @lp_sym: symmetric pause bit in link partner advertisement
2230 * @lp_asm: asymmetric pause bit in link partner advertisement
2231 *
2232 * Find the intersection between advertised settings and link partner's
2233 * advertised settings
2234 **/
2235 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2236 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2237 {
2238 if ((!(adv_reg)) || (!(lp_reg)))
2239 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2240
2241 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2242 /*
2243 * Now we need to check if the user selected Rx ONLY
2244 * of pause frames. In this case, we had to advertise
2245 * FULL flow control because we could not advertise RX
2246 * ONLY. Hence, we must now check to see if we need to
2247 * turn OFF the TRANSMISSION of PAUSE frames.
2248 */
2249 if (hw->fc.requested_mode == ixgbe_fc_full) {
2250 hw->fc.current_mode = ixgbe_fc_full;
2251 hw_dbg(hw, "Flow Control = FULL.\n");
2252 } else {
2253 hw->fc.current_mode = ixgbe_fc_rx_pause;
2254 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2255 }
2256 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2257 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2258 hw->fc.current_mode = ixgbe_fc_tx_pause;
2259 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2260 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2261 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2262 hw->fc.current_mode = ixgbe_fc_rx_pause;
2263 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2264 } else {
2265 hw->fc.current_mode = ixgbe_fc_none;
2266 hw_dbg(hw, "Flow Control = NONE.\n");
2267 }
2268 return 0;
2269 }
2270
2271 /**
2272 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2273 * @hw: pointer to hardware structure
2274 *
2275 * Enable flow control according on 1 gig fiber.
2276 **/
2277 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2278 {
2279 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2280 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2281
2282 /*
2283 * On multispeed fiber at 1g, bail out if
2284 * - link is up but AN did not complete, or if
2285 * - link is up and AN completed but timed out
2286 */
2287
2288 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2289 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2290 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2291 goto out;
2292
2293 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2294 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2295
2296 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2297 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2298 IXGBE_PCS1GANA_ASM_PAUSE,
2299 IXGBE_PCS1GANA_SYM_PAUSE,
2300 IXGBE_PCS1GANA_ASM_PAUSE);
2301
2302 out:
2303 return ret_val;
2304 }
2305
2306 /**
2307 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2308 * @hw: pointer to hardware structure
2309 *
2310 * Enable flow control according to IEEE clause 37.
2311 **/
2312 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2313 {
2314 u32 links2, anlp1_reg, autoc_reg, links;
2315 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2316
2317 /*
2318 * On backplane, bail out if
2319 * - backplane autoneg was not completed, or if
2320 * - we are 82599 and link partner is not AN enabled
2321 */
2322 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2323 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2324 goto out;
2325
2326 if (hw->mac.type == ixgbe_mac_82599EB) {
2327 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2328 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2329 goto out;
2330 }
2331 /*
2332 * Read the 10g AN autoc and LP ability registers and resolve
2333 * local flow control settings accordingly
2334 */
2335 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2336 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2337
2338 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2339 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2340 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2341
2342 out:
2343 return ret_val;
2344 }
2345
2346 /**
2347 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2348 * @hw: pointer to hardware structure
2349 *
2350 * Enable flow control according to IEEE clause 37.
2351 **/
2352 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2353 {
2354 u16 technology_ability_reg = 0;
2355 u16 lp_technology_ability_reg = 0;
2356
2357 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2358 MDIO_MMD_AN,
2359 &technology_ability_reg);
2360 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2361 MDIO_MMD_AN,
2362 &lp_technology_ability_reg);
2363
2364 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2365 (u32)lp_technology_ability_reg,
2366 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2367 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2368 }
2369
2370 /**
2371 * ixgbe_fc_autoneg - Configure flow control
2372 * @hw: pointer to hardware structure
2373 *
2374 * Compares our advertised flow control capabilities to those advertised by
2375 * our link partner, and determines the proper flow control mode to use.
2376 **/
2377 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2378 {
2379 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2380 ixgbe_link_speed speed;
2381 bool link_up;
2382
2383 /*
2384 * AN should have completed when the cable was plugged in.
2385 * Look for reasons to bail out. Bail out if:
2386 * - FC autoneg is disabled, or if
2387 * - link is not up.
2388 *
2389 * Since we're being called from an LSC, link is already known to be up.
2390 * So use link_up_wait_to_complete=false.
2391 */
2392 if (hw->fc.disable_fc_autoneg)
2393 goto out;
2394
2395 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2396 if (!link_up)
2397 goto out;
2398
2399 switch (hw->phy.media_type) {
2400 /* Autoneg flow control on fiber adapters */
2401 case ixgbe_media_type_fiber:
2402 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2403 ret_val = ixgbe_fc_autoneg_fiber(hw);
2404 break;
2405
2406 /* Autoneg flow control on backplane adapters */
2407 case ixgbe_media_type_backplane:
2408 ret_val = ixgbe_fc_autoneg_backplane(hw);
2409 break;
2410
2411 /* Autoneg flow control on copper adapters */
2412 case ixgbe_media_type_copper:
2413 if (ixgbe_device_supports_autoneg_fc(hw))
2414 ret_val = ixgbe_fc_autoneg_copper(hw);
2415 break;
2416
2417 default:
2418 break;
2419 }
2420
2421 out:
2422 if (ret_val == 0) {
2423 hw->fc.fc_was_autonegged = true;
2424 } else {
2425 hw->fc.fc_was_autonegged = false;
2426 hw->fc.current_mode = hw->fc.requested_mode;
2427 }
2428 }
2429
2430 /**
2431 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2432 * @hw: pointer to hardware structure
2433 *
2434 * System-wide timeout range is encoded in PCIe Device Control2 register.
2435 *
2436 * Add 10% to specified maximum and return the number of times to poll for
2437 * completion timeout, in units of 100 microsec. Never return less than
2438 * 800 = 80 millisec.
2439 **/
2440 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2441 {
2442 s16 devctl2;
2443 u32 pollcnt;
2444
2445 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2446 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2447
2448 switch (devctl2) {
2449 case IXGBE_PCIDEVCTRL2_65_130ms:
2450 pollcnt = 1300; /* 130 millisec */
2451 break;
2452 case IXGBE_PCIDEVCTRL2_260_520ms:
2453 pollcnt = 5200; /* 520 millisec */
2454 break;
2455 case IXGBE_PCIDEVCTRL2_1_2s:
2456 pollcnt = 20000; /* 2 sec */
2457 break;
2458 case IXGBE_PCIDEVCTRL2_4_8s:
2459 pollcnt = 80000; /* 8 sec */
2460 break;
2461 case IXGBE_PCIDEVCTRL2_17_34s:
2462 pollcnt = 34000; /* 34 sec */
2463 break;
2464 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2465 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2466 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2467 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2468 default:
2469 pollcnt = 800; /* 80 millisec minimum */
2470 break;
2471 }
2472
2473 /* add 10% to spec maximum */
2474 return (pollcnt * 11) / 10;
2475 }
2476
2477 /**
2478 * ixgbe_disable_pcie_master - Disable PCI-express master access
2479 * @hw: pointer to hardware structure
2480 *
2481 * Disables PCI-Express master access and verifies there are no pending
2482 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2483 * bit hasn't caused the master requests to be disabled, else 0
2484 * is returned signifying master requests disabled.
2485 **/
2486 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2487 {
2488 s32 status = 0;
2489 u32 i, poll;
2490 u16 value;
2491
2492 /* Always set this bit to ensure any future transactions are blocked */
2493 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2494
2495 /* Exit if master requests are blocked */
2496 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2497 ixgbe_removed(hw->hw_addr))
2498 goto out;
2499
2500 /* Poll for master request bit to clear */
2501 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2502 udelay(100);
2503 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2504 goto out;
2505 }
2506
2507 /*
2508 * Two consecutive resets are required via CTRL.RST per datasheet
2509 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2510 * of this need. The first reset prevents new master requests from
2511 * being issued by our device. We then must wait 1usec or more for any
2512 * remaining completions from the PCIe bus to trickle in, and then reset
2513 * again to clear out any effects they may have had on our device.
2514 */
2515 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2516 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2517
2518 /*
2519 * Before proceeding, make sure that the PCIe block does not have
2520 * transactions pending.
2521 */
2522 poll = ixgbe_pcie_timeout_poll(hw);
2523 for (i = 0; i < poll; i++) {
2524 udelay(100);
2525 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2526 if (ixgbe_removed(hw->hw_addr))
2527 goto out;
2528 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2529 goto out;
2530 }
2531
2532 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2533 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2534
2535 out:
2536 return status;
2537 }
2538
2539 /**
2540 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2541 * @hw: pointer to hardware structure
2542 * @mask: Mask to specify which semaphore to acquire
2543 *
2544 * Acquires the SWFW semaphore through the GSSR register for the specified
2545 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2546 **/
2547 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2548 {
2549 u32 gssr = 0;
2550 u32 swmask = mask;
2551 u32 fwmask = mask << 5;
2552 u32 timeout = 200;
2553 u32 i;
2554
2555 for (i = 0; i < timeout; i++) {
2556 /*
2557 * SW NVM semaphore bit is used for access to all
2558 * SW_FW_SYNC bits (not just NVM)
2559 */
2560 if (ixgbe_get_eeprom_semaphore(hw))
2561 return IXGBE_ERR_SWFW_SYNC;
2562
2563 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2564 if (!(gssr & (fwmask | swmask))) {
2565 gssr |= swmask;
2566 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2567 ixgbe_release_eeprom_semaphore(hw);
2568 return 0;
2569 } else {
2570 /* Resource is currently in use by FW or SW */
2571 ixgbe_release_eeprom_semaphore(hw);
2572 usleep_range(5000, 10000);
2573 }
2574 }
2575
2576 /* If time expired clear the bits holding the lock and retry */
2577 if (gssr & (fwmask | swmask))
2578 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2579
2580 usleep_range(5000, 10000);
2581 return IXGBE_ERR_SWFW_SYNC;
2582 }
2583
2584 /**
2585 * ixgbe_release_swfw_sync - Release SWFW semaphore
2586 * @hw: pointer to hardware structure
2587 * @mask: Mask to specify which semaphore to release
2588 *
2589 * Releases the SWFW semaphore through the GSSR register for the specified
2590 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2591 **/
2592 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2593 {
2594 u32 gssr;
2595 u32 swmask = mask;
2596
2597 ixgbe_get_eeprom_semaphore(hw);
2598
2599 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2600 gssr &= ~swmask;
2601 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2602
2603 ixgbe_release_eeprom_semaphore(hw);
2604 }
2605
2606 /**
2607 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2608 * @hw: pointer to hardware structure
2609 * @reg_val: Value we read from AUTOC
2610 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2611 * true in this the generic case.
2612 *
2613 * The default case requires no protection so just to the register read.
2614 **/
2615 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2616 {
2617 *locked = false;
2618 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2619 return 0;
2620 }
2621
2622 /**
2623 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2624 * @hw: pointer to hardware structure
2625 * @reg_val: value to write to AUTOC
2626 * @locked: bool to indicate whether the SW/FW lock was already taken by
2627 * previous read.
2628 **/
2629 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2630 {
2631 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2632 return 0;
2633 }
2634
2635 /**
2636 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2637 * @hw: pointer to hardware structure
2638 *
2639 * Stops the receive data path and waits for the HW to internally
2640 * empty the Rx security block.
2641 **/
2642 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2643 {
2644 #define IXGBE_MAX_SECRX_POLL 40
2645 int i;
2646 int secrxreg;
2647
2648 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2649 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2650 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2651 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2652 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2653 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2654 break;
2655 else
2656 /* Use interrupt-safe sleep just in case */
2657 udelay(1000);
2658 }
2659
2660 /* For informational purposes only */
2661 if (i >= IXGBE_MAX_SECRX_POLL)
2662 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2663
2664 return 0;
2665
2666 }
2667
2668 /**
2669 * ixgbe_enable_rx_buff - Enables the receive data path
2670 * @hw: pointer to hardware structure
2671 *
2672 * Enables the receive data path
2673 **/
2674 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2675 {
2676 int secrxreg;
2677
2678 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2679 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2680 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2681 IXGBE_WRITE_FLUSH(hw);
2682
2683 return 0;
2684 }
2685
2686 /**
2687 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2688 * @hw: pointer to hardware structure
2689 * @regval: register value to write to RXCTRL
2690 *
2691 * Enables the Rx DMA unit
2692 **/
2693 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2694 {
2695 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2696
2697 return 0;
2698 }
2699
2700 /**
2701 * ixgbe_blink_led_start_generic - Blink LED based on index.
2702 * @hw: pointer to hardware structure
2703 * @index: led number to blink
2704 **/
2705 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2706 {
2707 ixgbe_link_speed speed = 0;
2708 bool link_up = false;
2709 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2710 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2711 s32 ret_val = 0;
2712 bool locked = false;
2713
2714 /*
2715 * Link must be up to auto-blink the LEDs;
2716 * Force it if link is down.
2717 */
2718 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2719
2720 if (!link_up) {
2721 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2722 if (ret_val)
2723 goto out;
2724
2725 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2726 autoc_reg |= IXGBE_AUTOC_FLU;
2727
2728 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2729 if (ret_val)
2730 goto out;
2731
2732 IXGBE_WRITE_FLUSH(hw);
2733
2734 usleep_range(10000, 20000);
2735 }
2736
2737 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2738 led_reg |= IXGBE_LED_BLINK(index);
2739 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2740 IXGBE_WRITE_FLUSH(hw);
2741
2742 out:
2743 return ret_val;
2744 }
2745
2746 /**
2747 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2748 * @hw: pointer to hardware structure
2749 * @index: led number to stop blinking
2750 **/
2751 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2752 {
2753 u32 autoc_reg = 0;
2754 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2755 s32 ret_val = 0;
2756 bool locked = false;
2757
2758 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2759 if (ret_val)
2760 goto out;
2761
2762 autoc_reg &= ~IXGBE_AUTOC_FLU;
2763 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2764
2765 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2766 if (ret_val)
2767 goto out;
2768
2769 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2770 led_reg &= ~IXGBE_LED_BLINK(index);
2771 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2772 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2773 IXGBE_WRITE_FLUSH(hw);
2774
2775 out:
2776 return ret_val;
2777 }
2778
2779 /**
2780 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2781 * @hw: pointer to hardware structure
2782 * @san_mac_offset: SAN MAC address offset
2783 *
2784 * This function will read the EEPROM location for the SAN MAC address
2785 * pointer, and returns the value at that location. This is used in both
2786 * get and set mac_addr routines.
2787 **/
2788 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2789 u16 *san_mac_offset)
2790 {
2791 s32 ret_val;
2792
2793 /*
2794 * First read the EEPROM pointer to see if the MAC addresses are
2795 * available.
2796 */
2797 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2798 san_mac_offset);
2799 if (ret_val)
2800 hw_err(hw, "eeprom read at offset %d failed\n",
2801 IXGBE_SAN_MAC_ADDR_PTR);
2802
2803 return ret_val;
2804 }
2805
2806 /**
2807 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2808 * @hw: pointer to hardware structure
2809 * @san_mac_addr: SAN MAC address
2810 *
2811 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2812 * per-port, so set_lan_id() must be called before reading the addresses.
2813 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2814 * upon for non-SFP connections, so we must call it here.
2815 **/
2816 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2817 {
2818 u16 san_mac_data, san_mac_offset;
2819 u8 i;
2820 s32 ret_val;
2821
2822 /*
2823 * First read the EEPROM pointer to see if the MAC addresses are
2824 * available. If they're not, no point in calling set_lan_id() here.
2825 */
2826 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2827 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2828
2829 goto san_mac_addr_clr;
2830
2831 /* make sure we know which port we need to program */
2832 hw->mac.ops.set_lan_id(hw);
2833 /* apply the port offset to the address offset */
2834 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2835 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2836 for (i = 0; i < 3; i++) {
2837 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2838 &san_mac_data);
2839 if (ret_val) {
2840 hw_err(hw, "eeprom read at offset %d failed\n",
2841 san_mac_offset);
2842 goto san_mac_addr_clr;
2843 }
2844 san_mac_addr[i * 2] = (u8)(san_mac_data);
2845 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2846 san_mac_offset++;
2847 }
2848 return 0;
2849
2850 san_mac_addr_clr:
2851 /* No addresses available in this EEPROM. It's not necessarily an
2852 * error though, so just wipe the local address and return.
2853 */
2854 for (i = 0; i < 6; i++)
2855 san_mac_addr[i] = 0xFF;
2856 return ret_val;
2857 }
2858
2859 /**
2860 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2861 * @hw: pointer to hardware structure
2862 *
2863 * Read PCIe configuration space, and get the MSI-X vector count from
2864 * the capabilities table.
2865 **/
2866 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2867 {
2868 u16 msix_count = 1;
2869 u16 max_msix_count;
2870 u16 pcie_offset;
2871
2872 switch (hw->mac.type) {
2873 case ixgbe_mac_82598EB:
2874 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2875 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2876 break;
2877 case ixgbe_mac_82599EB:
2878 case ixgbe_mac_X540:
2879 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2880 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2881 break;
2882 default:
2883 return msix_count;
2884 }
2885
2886 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2887 if (ixgbe_removed(hw->hw_addr))
2888 msix_count = 0;
2889 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2890
2891 /* MSI-X count is zero-based in HW */
2892 msix_count++;
2893
2894 if (msix_count > max_msix_count)
2895 msix_count = max_msix_count;
2896
2897 return msix_count;
2898 }
2899
2900 /**
2901 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2902 * @hw: pointer to hardware struct
2903 * @rar: receive address register index to disassociate
2904 * @vmdq: VMDq pool index to remove from the rar
2905 **/
2906 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2907 {
2908 u32 mpsar_lo, mpsar_hi;
2909 u32 rar_entries = hw->mac.num_rar_entries;
2910
2911 /* Make sure we are using a valid rar index range */
2912 if (rar >= rar_entries) {
2913 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2914 return IXGBE_ERR_INVALID_ARGUMENT;
2915 }
2916
2917 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2918 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2919
2920 if (ixgbe_removed(hw->hw_addr))
2921 goto done;
2922
2923 if (!mpsar_lo && !mpsar_hi)
2924 goto done;
2925
2926 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2927 if (mpsar_lo) {
2928 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2929 mpsar_lo = 0;
2930 }
2931 if (mpsar_hi) {
2932 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2933 mpsar_hi = 0;
2934 }
2935 } else if (vmdq < 32) {
2936 mpsar_lo &= ~(1 << vmdq);
2937 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2938 } else {
2939 mpsar_hi &= ~(1 << (vmdq - 32));
2940 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2941 }
2942
2943 /* was that the last pool using this rar? */
2944 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2945 hw->mac.ops.clear_rar(hw, rar);
2946 done:
2947 return 0;
2948 }
2949
2950 /**
2951 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2952 * @hw: pointer to hardware struct
2953 * @rar: receive address register index to associate with a VMDq index
2954 * @vmdq: VMDq pool index
2955 **/
2956 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2957 {
2958 u32 mpsar;
2959 u32 rar_entries = hw->mac.num_rar_entries;
2960
2961 /* Make sure we are using a valid rar index range */
2962 if (rar >= rar_entries) {
2963 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2964 return IXGBE_ERR_INVALID_ARGUMENT;
2965 }
2966
2967 if (vmdq < 32) {
2968 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2969 mpsar |= 1 << vmdq;
2970 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2971 } else {
2972 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2973 mpsar |= 1 << (vmdq - 32);
2974 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2975 }
2976 return 0;
2977 }
2978
2979 /**
2980 * This function should only be involved in the IOV mode.
2981 * In IOV mode, Default pool is next pool after the number of
2982 * VFs advertized and not 0.
2983 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2984 *
2985 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2986 * @hw: pointer to hardware struct
2987 * @vmdq: VMDq pool index
2988 **/
2989 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2990 {
2991 u32 rar = hw->mac.san_mac_rar_index;
2992
2993 if (vmdq < 32) {
2994 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2995 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2996 } else {
2997 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2998 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2999 }
3000
3001 return 0;
3002 }
3003
3004 /**
3005 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3006 * @hw: pointer to hardware structure
3007 **/
3008 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3009 {
3010 int i;
3011
3012 for (i = 0; i < 128; i++)
3013 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3014
3015 return 0;
3016 }
3017
3018 /**
3019 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3020 * @hw: pointer to hardware structure
3021 * @vlan: VLAN id to write to VLAN filter
3022 *
3023 * return the VLVF index where this VLAN id should be placed
3024 *
3025 **/
3026 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3027 {
3028 u32 bits = 0;
3029 u32 first_empty_slot = 0;
3030 s32 regindex;
3031
3032 /* short cut the special case */
3033 if (vlan == 0)
3034 return 0;
3035
3036 /*
3037 * Search for the vlan id in the VLVF entries. Save off the first empty
3038 * slot found along the way
3039 */
3040 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3041 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3042 if (!bits && !(first_empty_slot))
3043 first_empty_slot = regindex;
3044 else if ((bits & 0x0FFF) == vlan)
3045 break;
3046 }
3047
3048 /*
3049 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3050 * in the VLVF. Else use the first empty VLVF register for this
3051 * vlan id.
3052 */
3053 if (regindex >= IXGBE_VLVF_ENTRIES) {
3054 if (first_empty_slot)
3055 regindex = first_empty_slot;
3056 else {
3057 hw_dbg(hw, "No space in VLVF.\n");
3058 regindex = IXGBE_ERR_NO_SPACE;
3059 }
3060 }
3061
3062 return regindex;
3063 }
3064
3065 /**
3066 * ixgbe_set_vfta_generic - Set VLAN filter table
3067 * @hw: pointer to hardware structure
3068 * @vlan: VLAN id to write to VLAN filter
3069 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3070 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3071 *
3072 * Turn on/off specified VLAN in the VLAN filter table.
3073 **/
3074 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3075 bool vlan_on)
3076 {
3077 s32 regindex;
3078 u32 bitindex;
3079 u32 vfta;
3080 u32 bits;
3081 u32 vt;
3082 u32 targetbit;
3083 bool vfta_changed = false;
3084
3085 if (vlan > 4095)
3086 return IXGBE_ERR_PARAM;
3087
3088 /*
3089 * this is a 2 part operation - first the VFTA, then the
3090 * VLVF and VLVFB if VT Mode is set
3091 * We don't write the VFTA until we know the VLVF part succeeded.
3092 */
3093
3094 /* Part 1
3095 * The VFTA is a bitstring made up of 128 32-bit registers
3096 * that enable the particular VLAN id, much like the MTA:
3097 * bits[11-5]: which register
3098 * bits[4-0]: which bit in the register
3099 */
3100 regindex = (vlan >> 5) & 0x7F;
3101 bitindex = vlan & 0x1F;
3102 targetbit = (1 << bitindex);
3103 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3104
3105 if (vlan_on) {
3106 if (!(vfta & targetbit)) {
3107 vfta |= targetbit;
3108 vfta_changed = true;
3109 }
3110 } else {
3111 if ((vfta & targetbit)) {
3112 vfta &= ~targetbit;
3113 vfta_changed = true;
3114 }
3115 }
3116
3117 /* Part 2
3118 * If VT Mode is set
3119 * Either vlan_on
3120 * make sure the vlan is in VLVF
3121 * set the vind bit in the matching VLVFB
3122 * Or !vlan_on
3123 * clear the pool bit and possibly the vind
3124 */
3125 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3126 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3127 s32 vlvf_index;
3128
3129 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3130 if (vlvf_index < 0)
3131 return vlvf_index;
3132
3133 if (vlan_on) {
3134 /* set the pool bit */
3135 if (vind < 32) {
3136 bits = IXGBE_READ_REG(hw,
3137 IXGBE_VLVFB(vlvf_index*2));
3138 bits |= (1 << vind);
3139 IXGBE_WRITE_REG(hw,
3140 IXGBE_VLVFB(vlvf_index*2),
3141 bits);
3142 } else {
3143 bits = IXGBE_READ_REG(hw,
3144 IXGBE_VLVFB((vlvf_index*2)+1));
3145 bits |= (1 << (vind-32));
3146 IXGBE_WRITE_REG(hw,
3147 IXGBE_VLVFB((vlvf_index*2)+1),
3148 bits);
3149 }
3150 } else {
3151 /* clear the pool bit */
3152 if (vind < 32) {
3153 bits = IXGBE_READ_REG(hw,
3154 IXGBE_VLVFB(vlvf_index*2));
3155 bits &= ~(1 << vind);
3156 IXGBE_WRITE_REG(hw,
3157 IXGBE_VLVFB(vlvf_index*2),
3158 bits);
3159 bits |= IXGBE_READ_REG(hw,
3160 IXGBE_VLVFB((vlvf_index*2)+1));
3161 } else {
3162 bits = IXGBE_READ_REG(hw,
3163 IXGBE_VLVFB((vlvf_index*2)+1));
3164 bits &= ~(1 << (vind-32));
3165 IXGBE_WRITE_REG(hw,
3166 IXGBE_VLVFB((vlvf_index*2)+1),
3167 bits);
3168 bits |= IXGBE_READ_REG(hw,
3169 IXGBE_VLVFB(vlvf_index*2));
3170 }
3171 }
3172
3173 /*
3174 * If there are still bits set in the VLVFB registers
3175 * for the VLAN ID indicated we need to see if the
3176 * caller is requesting that we clear the VFTA entry bit.
3177 * If the caller has requested that we clear the VFTA
3178 * entry bit but there are still pools/VFs using this VLAN
3179 * ID entry then ignore the request. We're not worried
3180 * about the case where we're turning the VFTA VLAN ID
3181 * entry bit on, only when requested to turn it off as
3182 * there may be multiple pools and/or VFs using the
3183 * VLAN ID entry. In that case we cannot clear the
3184 * VFTA bit until all pools/VFs using that VLAN ID have also
3185 * been cleared. This will be indicated by "bits" being
3186 * zero.
3187 */
3188 if (bits) {
3189 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3190 (IXGBE_VLVF_VIEN | vlan));
3191 if (!vlan_on) {
3192 /* someone wants to clear the vfta entry
3193 * but some pools/VFs are still using it.
3194 * Ignore it. */
3195 vfta_changed = false;
3196 }
3197 } else {
3198 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3199 }
3200 }
3201
3202 if (vfta_changed)
3203 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3204
3205 return 0;
3206 }
3207
3208 /**
3209 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3210 * @hw: pointer to hardware structure
3211 *
3212 * Clears the VLAN filer table, and the VMDq index associated with the filter
3213 **/
3214 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3215 {
3216 u32 offset;
3217
3218 for (offset = 0; offset < hw->mac.vft_size; offset++)
3219 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3220
3221 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3222 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3223 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3224 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3225 }
3226
3227 return 0;
3228 }
3229
3230 /**
3231 * ixgbe_check_mac_link_generic - Determine link and speed status
3232 * @hw: pointer to hardware structure
3233 * @speed: pointer to link speed
3234 * @link_up: true when link is up
3235 * @link_up_wait_to_complete: bool used to wait for link up or not
3236 *
3237 * Reads the links register to determine if link is up and the current speed
3238 **/
3239 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3240 bool *link_up, bool link_up_wait_to_complete)
3241 {
3242 u32 links_reg, links_orig;
3243 u32 i;
3244
3245 /* clear the old state */
3246 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3247
3248 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3249
3250 if (links_orig != links_reg) {
3251 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3252 links_orig, links_reg);
3253 }
3254
3255 if (link_up_wait_to_complete) {
3256 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3257 if (links_reg & IXGBE_LINKS_UP) {
3258 *link_up = true;
3259 break;
3260 } else {
3261 *link_up = false;
3262 }
3263 msleep(100);
3264 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3265 }
3266 } else {
3267 if (links_reg & IXGBE_LINKS_UP)
3268 *link_up = true;
3269 else
3270 *link_up = false;
3271 }
3272
3273 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3274 IXGBE_LINKS_SPEED_10G_82599)
3275 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3276 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3277 IXGBE_LINKS_SPEED_1G_82599)
3278 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3279 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3280 IXGBE_LINKS_SPEED_100_82599)
3281 *speed = IXGBE_LINK_SPEED_100_FULL;
3282 else
3283 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3284
3285 return 0;
3286 }
3287
3288 /**
3289 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3290 * the EEPROM
3291 * @hw: pointer to hardware structure
3292 * @wwnn_prefix: the alternative WWNN prefix
3293 * @wwpn_prefix: the alternative WWPN prefix
3294 *
3295 * This function will read the EEPROM from the alternative SAN MAC address
3296 * block to check the support for the alternative WWNN/WWPN prefix support.
3297 **/
3298 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3299 u16 *wwpn_prefix)
3300 {
3301 u16 offset, caps;
3302 u16 alt_san_mac_blk_offset;
3303
3304 /* clear output first */
3305 *wwnn_prefix = 0xFFFF;
3306 *wwpn_prefix = 0xFFFF;
3307
3308 /* check if alternative SAN MAC is supported */
3309 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3310 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3311 goto wwn_prefix_err;
3312
3313 if ((alt_san_mac_blk_offset == 0) ||
3314 (alt_san_mac_blk_offset == 0xFFFF))
3315 goto wwn_prefix_out;
3316
3317 /* check capability in alternative san mac address block */
3318 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3319 if (hw->eeprom.ops.read(hw, offset, &caps))
3320 goto wwn_prefix_err;
3321 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3322 goto wwn_prefix_out;
3323
3324 /* get the corresponding prefix for WWNN/WWPN */
3325 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3326 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3327 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3328
3329 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3330 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3331 goto wwn_prefix_err;
3332
3333 wwn_prefix_out:
3334 return 0;
3335
3336 wwn_prefix_err:
3337 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3338 return 0;
3339 }
3340
3341 /**
3342 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3343 * @hw: pointer to hardware structure
3344 * @enable: enable or disable switch for anti-spoofing
3345 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3346 *
3347 **/
3348 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3349 {
3350 int j;
3351 int pf_target_reg = pf >> 3;
3352 int pf_target_shift = pf % 8;
3353 u32 pfvfspoof = 0;
3354
3355 if (hw->mac.type == ixgbe_mac_82598EB)
3356 return;
3357
3358 if (enable)
3359 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3360
3361 /*
3362 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3363 * MAC anti-spoof enables in each register array element.
3364 */
3365 for (j = 0; j < pf_target_reg; j++)
3366 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3367
3368 /*
3369 * The PF should be allowed to spoof so that it can support
3370 * emulation mode NICs. Do not set the bits assigned to the PF
3371 */
3372 pfvfspoof &= (1 << pf_target_shift) - 1;
3373 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3374
3375 /*
3376 * Remaining pools belong to the PF so they do not need to have
3377 * anti-spoofing enabled.
3378 */
3379 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3380 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3381 }
3382
3383 /**
3384 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3385 * @hw: pointer to hardware structure
3386 * @enable: enable or disable switch for VLAN anti-spoofing
3387 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3388 *
3389 **/
3390 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3391 {
3392 int vf_target_reg = vf >> 3;
3393 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3394 u32 pfvfspoof;
3395
3396 if (hw->mac.type == ixgbe_mac_82598EB)
3397 return;
3398
3399 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3400 if (enable)
3401 pfvfspoof |= (1 << vf_target_shift);
3402 else
3403 pfvfspoof &= ~(1 << vf_target_shift);
3404 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3405 }
3406
3407 /**
3408 * ixgbe_get_device_caps_generic - Get additional device capabilities
3409 * @hw: pointer to hardware structure
3410 * @device_caps: the EEPROM word with the extra device capabilities
3411 *
3412 * This function will read the EEPROM location for the device capabilities,
3413 * and return the word through device_caps.
3414 **/
3415 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3416 {
3417 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3418
3419 return 0;
3420 }
3421
3422 /**
3423 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3424 * @hw: pointer to hardware structure
3425 * @num_pb: number of packet buffers to allocate
3426 * @headroom: reserve n KB of headroom
3427 * @strategy: packet buffer allocation strategy
3428 **/
3429 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3430 int num_pb,
3431 u32 headroom,
3432 int strategy)
3433 {
3434 u32 pbsize = hw->mac.rx_pb_size;
3435 int i = 0;
3436 u32 rxpktsize, txpktsize, txpbthresh;
3437
3438 /* Reserve headroom */
3439 pbsize -= headroom;
3440
3441 if (!num_pb)
3442 num_pb = 1;
3443
3444 /* Divide remaining packet buffer space amongst the number
3445 * of packet buffers requested using supplied strategy.
3446 */
3447 switch (strategy) {
3448 case (PBA_STRATEGY_WEIGHTED):
3449 /* pba_80_48 strategy weight first half of packet buffer with
3450 * 5/8 of the packet buffer space.
3451 */
3452 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3453 pbsize -= rxpktsize * (num_pb / 2);
3454 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3455 for (; i < (num_pb / 2); i++)
3456 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3457 /* Fall through to configure remaining packet buffers */
3458 case (PBA_STRATEGY_EQUAL):
3459 /* Divide the remaining Rx packet buffer evenly among the TCs */
3460 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3461 for (; i < num_pb; i++)
3462 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3463 break;
3464 default:
3465 break;
3466 }
3467
3468 /*
3469 * Setup Tx packet buffer and threshold equally for all TCs
3470 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3471 * 10 since the largest packet we support is just over 9K.
3472 */
3473 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3474 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3475 for (i = 0; i < num_pb; i++) {
3476 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3477 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3478 }
3479
3480 /* Clear unused TCs, if any, to zero buffer size*/
3481 for (; i < IXGBE_MAX_PB; i++) {
3482 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3483 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3484 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3485 }
3486 }
3487
3488 /**
3489 * ixgbe_calculate_checksum - Calculate checksum for buffer
3490 * @buffer: pointer to EEPROM
3491 * @length: size of EEPROM to calculate a checksum for
3492 *
3493 * Calculates the checksum for some buffer on a specified length. The
3494 * checksum calculated is returned.
3495 **/
3496 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3497 {
3498 u32 i;
3499 u8 sum = 0;
3500
3501 if (!buffer)
3502 return 0;
3503
3504 for (i = 0; i < length; i++)
3505 sum += buffer[i];
3506
3507 return (u8) (0 - sum);
3508 }
3509
3510 /**
3511 * ixgbe_host_interface_command - Issue command to manageability block
3512 * @hw: pointer to the HW structure
3513 * @buffer: contains the command to write and where the return status will
3514 * be placed
3515 * @length: length of buffer, must be multiple of 4 bytes
3516 *
3517 * Communicates with the manageability block. On success return 0
3518 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3519 **/
3520 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3521 u32 length)
3522 {
3523 u32 hicr, i, bi;
3524 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3525 u8 buf_len, dword_len;
3526
3527 s32 ret_val = 0;
3528
3529 if (length == 0 || length & 0x3 ||
3530 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3531 hw_dbg(hw, "Buffer length failure.\n");
3532 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3533 goto out;
3534 }
3535
3536 /* Check that the host interface is enabled. */
3537 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3538 if ((hicr & IXGBE_HICR_EN) == 0) {
3539 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3540 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3541 goto out;
3542 }
3543
3544 /* Calculate length in DWORDs */
3545 dword_len = length >> 2;
3546
3547 /*
3548 * The device driver writes the relevant command block
3549 * into the ram area.
3550 */
3551 for (i = 0; i < dword_len; i++)
3552 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3553 i, cpu_to_le32(buffer[i]));
3554
3555 /* Setting this bit tells the ARC that a new command is pending. */
3556 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3557
3558 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3559 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3560 if (!(hicr & IXGBE_HICR_C))
3561 break;
3562 usleep_range(1000, 2000);
3563 }
3564
3565 /* Check command successful completion. */
3566 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3567 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3568 hw_dbg(hw, "Command has failed with no status valid.\n");
3569 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3570 goto out;
3571 }
3572
3573 /* Calculate length in DWORDs */
3574 dword_len = hdr_size >> 2;
3575
3576 /* first pull in the header so we know the buffer length */
3577 for (bi = 0; bi < dword_len; bi++) {
3578 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3579 le32_to_cpus(&buffer[bi]);
3580 }
3581
3582 /* If there is any thing in data position pull it in */
3583 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3584 if (buf_len == 0)
3585 goto out;
3586
3587 if (length < (buf_len + hdr_size)) {
3588 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3589 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3590 goto out;
3591 }
3592
3593 /* Calculate length in DWORDs, add 3 for odd lengths */
3594 dword_len = (buf_len + 3) >> 2;
3595
3596 /* Pull in the rest of the buffer (bi is where we left off)*/
3597 for (; bi <= dword_len; bi++) {
3598 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3599 le32_to_cpus(&buffer[bi]);
3600 }
3601
3602 out:
3603 return ret_val;
3604 }
3605
3606 /**
3607 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3608 * @hw: pointer to the HW structure
3609 * @maj: driver version major number
3610 * @min: driver version minor number
3611 * @build: driver version build number
3612 * @sub: driver version sub build number
3613 *
3614 * Sends driver version number to firmware through the manageability
3615 * block. On success return 0
3616 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3617 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3618 **/
3619 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3620 u8 build, u8 sub)
3621 {
3622 struct ixgbe_hic_drv_info fw_cmd;
3623 int i;
3624 s32 ret_val = 0;
3625
3626 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3627 ret_val = IXGBE_ERR_SWFW_SYNC;
3628 goto out;
3629 }
3630
3631 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3632 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3633 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3634 fw_cmd.port_num = (u8)hw->bus.func;
3635 fw_cmd.ver_maj = maj;
3636 fw_cmd.ver_min = min;
3637 fw_cmd.ver_build = build;
3638 fw_cmd.ver_sub = sub;
3639 fw_cmd.hdr.checksum = 0;
3640 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3641 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3642 fw_cmd.pad = 0;
3643 fw_cmd.pad2 = 0;
3644
3645 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3646 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3647 sizeof(fw_cmd));
3648 if (ret_val != 0)
3649 continue;
3650
3651 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3652 FW_CEM_RESP_STATUS_SUCCESS)
3653 ret_val = 0;
3654 else
3655 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3656
3657 break;
3658 }
3659
3660 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3661 out:
3662 return ret_val;
3663 }
3664
3665 /**
3666 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3667 * @hw: pointer to the hardware structure
3668 *
3669 * The 82599 and x540 MACs can experience issues if TX work is still pending
3670 * when a reset occurs. This function prevents this by flushing the PCIe
3671 * buffers on the system.
3672 **/
3673 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3674 {
3675 u32 gcr_ext, hlreg0;
3676
3677 /*
3678 * If double reset is not requested then all transactions should
3679 * already be clear and as such there is no work to do
3680 */
3681 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3682 return;
3683
3684 /*
3685 * Set loopback enable to prevent any transmits from being sent
3686 * should the link come up. This assumes that the RXCTRL.RXEN bit
3687 * has already been cleared.
3688 */
3689 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3690 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3691
3692 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3693 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3694 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3695 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3696
3697 /* Flush all writes and allow 20usec for all transactions to clear */
3698 IXGBE_WRITE_FLUSH(hw);
3699 udelay(20);
3700
3701 /* restore previous register values */
3702 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3703 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3704 }
3705
3706 static const u8 ixgbe_emc_temp_data[4] = {
3707 IXGBE_EMC_INTERNAL_DATA,
3708 IXGBE_EMC_DIODE1_DATA,
3709 IXGBE_EMC_DIODE2_DATA,
3710 IXGBE_EMC_DIODE3_DATA
3711 };
3712 static const u8 ixgbe_emc_therm_limit[4] = {
3713 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3714 IXGBE_EMC_DIODE1_THERM_LIMIT,
3715 IXGBE_EMC_DIODE2_THERM_LIMIT,
3716 IXGBE_EMC_DIODE3_THERM_LIMIT
3717 };
3718
3719 /**
3720 * ixgbe_get_ets_data - Extracts the ETS bit data
3721 * @hw: pointer to hardware structure
3722 * @ets_cfg: extected ETS data
3723 * @ets_offset: offset of ETS data
3724 *
3725 * Returns error code.
3726 **/
3727 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3728 u16 *ets_offset)
3729 {
3730 s32 status = 0;
3731
3732 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3733 if (status)
3734 goto out;
3735
3736 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3737 status = IXGBE_NOT_IMPLEMENTED;
3738 goto out;
3739 }
3740
3741 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3742 if (status)
3743 goto out;
3744
3745 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3746 status = IXGBE_NOT_IMPLEMENTED;
3747 goto out;
3748 }
3749
3750 out:
3751 return status;
3752 }
3753
3754 /**
3755 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3756 * @hw: pointer to hardware structure
3757 *
3758 * Returns the thermal sensor data structure
3759 **/
3760 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3761 {
3762 s32 status = 0;
3763 u16 ets_offset;
3764 u16 ets_cfg;
3765 u16 ets_sensor;
3766 u8 num_sensors;
3767 u8 i;
3768 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3769
3770 /* Only support thermal sensors attached to physical port 0 */
3771 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3772 status = IXGBE_NOT_IMPLEMENTED;
3773 goto out;
3774 }
3775
3776 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3777 if (status)
3778 goto out;
3779
3780 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3781 if (num_sensors > IXGBE_MAX_SENSORS)
3782 num_sensors = IXGBE_MAX_SENSORS;
3783
3784 for (i = 0; i < num_sensors; i++) {
3785 u8 sensor_index;
3786 u8 sensor_location;
3787
3788 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3789 &ets_sensor);
3790 if (status)
3791 goto out;
3792
3793 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3794 IXGBE_ETS_DATA_INDEX_SHIFT);
3795 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3796 IXGBE_ETS_DATA_LOC_SHIFT);
3797
3798 if (sensor_location != 0) {
3799 status = hw->phy.ops.read_i2c_byte(hw,
3800 ixgbe_emc_temp_data[sensor_index],
3801 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3802 &data->sensor[i].temp);
3803 if (status)
3804 goto out;
3805 }
3806 }
3807 out:
3808 return status;
3809 }
3810
3811 /**
3812 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3813 * @hw: pointer to hardware structure
3814 *
3815 * Inits the thermal sensor thresholds according to the NVM map
3816 * and save off the threshold and location values into mac.thermal_sensor_data
3817 **/
3818 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3819 {
3820 s32 status = 0;
3821 u16 ets_offset;
3822 u16 ets_cfg;
3823 u16 ets_sensor;
3824 u8 low_thresh_delta;
3825 u8 num_sensors;
3826 u8 therm_limit;
3827 u8 i;
3828 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3829
3830 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3831
3832 /* Only support thermal sensors attached to physical port 0 */
3833 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3834 status = IXGBE_NOT_IMPLEMENTED;
3835 goto out;
3836 }
3837
3838 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3839 if (status)
3840 goto out;
3841
3842 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3843 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3844 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3845 if (num_sensors > IXGBE_MAX_SENSORS)
3846 num_sensors = IXGBE_MAX_SENSORS;
3847
3848 for (i = 0; i < num_sensors; i++) {
3849 u8 sensor_index;
3850 u8 sensor_location;
3851
3852 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3853 hw_err(hw, "eeprom read at offset %d failed\n",
3854 ets_offset + 1 + i);
3855 continue;
3856 }
3857 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3858 IXGBE_ETS_DATA_INDEX_SHIFT);
3859 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3860 IXGBE_ETS_DATA_LOC_SHIFT);
3861 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3862
3863 hw->phy.ops.write_i2c_byte(hw,
3864 ixgbe_emc_therm_limit[sensor_index],
3865 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3866
3867 if (sensor_location == 0)
3868 continue;
3869
3870 data->sensor[i].location = sensor_location;
3871 data->sensor[i].caution_thresh = therm_limit;
3872 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3873 }
3874 out:
3875 return status;
3876 }
3877
This page took 0.184145 seconds and 4 git commands to generate.