Merge tag 'kvm-s390-20140130' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms39...
[deliverable/linux.git] / drivers / net / ethernet / marvell / pxa168_eth.c
1 /*
2 * PXA168 ethernet driver.
3 * Most of the code is derived from mv643xx ethernet driver.
4 *
5 * Copyright (C) 2010 Marvell International Ltd.
6 * Sachin Sanap <ssanap@marvell.com>
7 * Zhangfei Gao <zgao6@marvell.com>
8 * Philip Rakity <prakity@marvell.com>
9 * Mark Brown <markb@marvell.com>
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version 2
14 * of the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/udp.h>
30 #include <linux/etherdevice.h>
31 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <linux/ethtool.h>
34 #include <linux/platform_device.h>
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/workqueue.h>
38 #include <linux/clk.h>
39 #include <linux/phy.h>
40 #include <linux/io.h>
41 #include <linux/interrupt.h>
42 #include <linux/types.h>
43 #include <asm/pgtable.h>
44 #include <asm/cacheflush.h>
45 #include <linux/pxa168_eth.h>
46
47 #define DRIVER_NAME "pxa168-eth"
48 #define DRIVER_VERSION "0.3"
49
50 /*
51 * Registers
52 */
53
54 #define PHY_ADDRESS 0x0000
55 #define SMI 0x0010
56 #define PORT_CONFIG 0x0400
57 #define PORT_CONFIG_EXT 0x0408
58 #define PORT_COMMAND 0x0410
59 #define PORT_STATUS 0x0418
60 #define HTPR 0x0428
61 #define SDMA_CONFIG 0x0440
62 #define SDMA_CMD 0x0448
63 #define INT_CAUSE 0x0450
64 #define INT_W_CLEAR 0x0454
65 #define INT_MASK 0x0458
66 #define ETH_F_RX_DESC_0 0x0480
67 #define ETH_C_RX_DESC_0 0x04A0
68 #define ETH_C_TX_DESC_1 0x04E4
69
70 /* smi register */
71 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
72 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
73 #define SMI_OP_W (0 << 26) /* Write operation */
74 #define SMI_OP_R (1 << 26) /* Read operation */
75
76 #define PHY_WAIT_ITERATIONS 10
77
78 #define PXA168_ETH_PHY_ADDR_DEFAULT 0
79 /* RX & TX descriptor command */
80 #define BUF_OWNED_BY_DMA (1 << 31)
81
82 /* RX descriptor status */
83 #define RX_EN_INT (1 << 23)
84 #define RX_FIRST_DESC (1 << 17)
85 #define RX_LAST_DESC (1 << 16)
86 #define RX_ERROR (1 << 15)
87
88 /* TX descriptor command */
89 #define TX_EN_INT (1 << 23)
90 #define TX_GEN_CRC (1 << 22)
91 #define TX_ZERO_PADDING (1 << 18)
92 #define TX_FIRST_DESC (1 << 17)
93 #define TX_LAST_DESC (1 << 16)
94 #define TX_ERROR (1 << 15)
95
96 /* SDMA_CMD */
97 #define SDMA_CMD_AT (1 << 31)
98 #define SDMA_CMD_TXDL (1 << 24)
99 #define SDMA_CMD_TXDH (1 << 23)
100 #define SDMA_CMD_AR (1 << 15)
101 #define SDMA_CMD_ERD (1 << 7)
102
103 /* Bit definitions of the Port Config Reg */
104 #define PCR_HS (1 << 12)
105 #define PCR_EN (1 << 7)
106 #define PCR_PM (1 << 0)
107
108 /* Bit definitions of the Port Config Extend Reg */
109 #define PCXR_2BSM (1 << 28)
110 #define PCXR_DSCP_EN (1 << 21)
111 #define PCXR_MFL_1518 (0 << 14)
112 #define PCXR_MFL_1536 (1 << 14)
113 #define PCXR_MFL_2048 (2 << 14)
114 #define PCXR_MFL_64K (3 << 14)
115 #define PCXR_FLP (1 << 11)
116 #define PCXR_PRIO_TX_OFF 3
117 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
118
119 /* Bit definitions of the SDMA Config Reg */
120 #define SDCR_BSZ_OFF 12
121 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
122 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
123 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
124 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
125 #define SDCR_BLMR (1 << 6)
126 #define SDCR_BLMT (1 << 7)
127 #define SDCR_RIFB (1 << 9)
128 #define SDCR_RC_OFF 2
129 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
130
131 /*
132 * Bit definitions of the Interrupt Cause Reg
133 * and Interrupt MASK Reg is the same
134 */
135 #define ICR_RXBUF (1 << 0)
136 #define ICR_TXBUF_H (1 << 2)
137 #define ICR_TXBUF_L (1 << 3)
138 #define ICR_TXEND_H (1 << 6)
139 #define ICR_TXEND_L (1 << 7)
140 #define ICR_RXERR (1 << 8)
141 #define ICR_TXERR_H (1 << 10)
142 #define ICR_TXERR_L (1 << 11)
143 #define ICR_TX_UDR (1 << 13)
144 #define ICR_MII_CH (1 << 28)
145
146 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
147 ICR_TXERR_H | ICR_TXERR_L |\
148 ICR_TXEND_H | ICR_TXEND_L |\
149 ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
150
151 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
152
153 #define NUM_RX_DESCS 64
154 #define NUM_TX_DESCS 64
155
156 #define HASH_ADD 0
157 #define HASH_DELETE 1
158 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
159 #define HOP_NUMBER 12
160
161 /* Bit definitions for Port status */
162 #define PORT_SPEED_100 (1 << 0)
163 #define FULL_DUPLEX (1 << 1)
164 #define FLOW_CONTROL_ENABLED (1 << 2)
165 #define LINK_UP (1 << 3)
166
167 /* Bit definitions for work to be done */
168 #define WORK_LINK (1 << 0)
169 #define WORK_TX_DONE (1 << 1)
170
171 /*
172 * Misc definitions.
173 */
174 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
175
176 struct rx_desc {
177 u32 cmd_sts; /* Descriptor command status */
178 u16 byte_cnt; /* Descriptor buffer byte count */
179 u16 buf_size; /* Buffer size */
180 u32 buf_ptr; /* Descriptor buffer pointer */
181 u32 next_desc_ptr; /* Next descriptor pointer */
182 };
183
184 struct tx_desc {
185 u32 cmd_sts; /* Command/status field */
186 u16 reserved;
187 u16 byte_cnt; /* buffer byte count */
188 u32 buf_ptr; /* pointer to buffer for this descriptor */
189 u32 next_desc_ptr; /* Pointer to next descriptor */
190 };
191
192 struct pxa168_eth_private {
193 int port_num; /* User Ethernet port number */
194
195 int rx_resource_err; /* Rx ring resource error flag */
196
197 /* Next available and first returning Rx resource */
198 int rx_curr_desc_q, rx_used_desc_q;
199
200 /* Next available and first returning Tx resource */
201 int tx_curr_desc_q, tx_used_desc_q;
202
203 struct rx_desc *p_rx_desc_area;
204 dma_addr_t rx_desc_dma;
205 int rx_desc_area_size;
206 struct sk_buff **rx_skb;
207
208 struct tx_desc *p_tx_desc_area;
209 dma_addr_t tx_desc_dma;
210 int tx_desc_area_size;
211 struct sk_buff **tx_skb;
212
213 struct work_struct tx_timeout_task;
214
215 struct net_device *dev;
216 struct napi_struct napi;
217 u8 work_todo;
218 int skb_size;
219
220 /* Size of Tx Ring per queue */
221 int tx_ring_size;
222 /* Number of tx descriptors in use */
223 int tx_desc_count;
224 /* Size of Rx Ring per queue */
225 int rx_ring_size;
226 /* Number of rx descriptors in use */
227 int rx_desc_count;
228
229 /*
230 * Used in case RX Ring is empty, which can occur when
231 * system does not have resources (skb's)
232 */
233 struct timer_list timeout;
234 struct mii_bus *smi_bus;
235 struct phy_device *phy;
236
237 /* clock */
238 struct clk *clk;
239 struct pxa168_eth_platform_data *pd;
240 /*
241 * Ethernet controller base address.
242 */
243 void __iomem *base;
244
245 /* Pointer to the hardware address filter table */
246 void *htpr;
247 dma_addr_t htpr_dma;
248 };
249
250 struct addr_table_entry {
251 __le32 lo;
252 __le32 hi;
253 };
254
255 /* Bit fields of a Hash Table Entry */
256 enum hash_table_entry {
257 HASH_ENTRY_VALID = 1,
258 SKIP = 2,
259 HASH_ENTRY_RECEIVE_DISCARD = 4,
260 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
261 };
262
263 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
264 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
265 static int pxa168_init_hw(struct pxa168_eth_private *pep);
266 static void eth_port_reset(struct net_device *dev);
267 static void eth_port_start(struct net_device *dev);
268 static int pxa168_eth_open(struct net_device *dev);
269 static int pxa168_eth_stop(struct net_device *dev);
270 static int ethernet_phy_setup(struct net_device *dev);
271
272 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
273 {
274 return readl(pep->base + offset);
275 }
276
277 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
278 {
279 writel(data, pep->base + offset);
280 }
281
282 static void abort_dma(struct pxa168_eth_private *pep)
283 {
284 int delay;
285 int max_retries = 40;
286
287 do {
288 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
289 udelay(100);
290
291 delay = 10;
292 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
293 && delay-- > 0) {
294 udelay(10);
295 }
296 } while (max_retries-- > 0 && delay <= 0);
297
298 if (max_retries <= 0)
299 printk(KERN_ERR "%s : DMA Stuck\n", __func__);
300 }
301
302 static int ethernet_phy_get(struct pxa168_eth_private *pep)
303 {
304 unsigned int reg_data;
305
306 reg_data = rdl(pep, PHY_ADDRESS);
307
308 return (reg_data >> (5 * pep->port_num)) & 0x1f;
309 }
310
311 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
312 {
313 u32 reg_data;
314 int addr_shift = 5 * pep->port_num;
315
316 reg_data = rdl(pep, PHY_ADDRESS);
317 reg_data &= ~(0x1f << addr_shift);
318 reg_data |= (phy_addr & 0x1f) << addr_shift;
319 wrl(pep, PHY_ADDRESS, reg_data);
320 }
321
322 static void rxq_refill(struct net_device *dev)
323 {
324 struct pxa168_eth_private *pep = netdev_priv(dev);
325 struct sk_buff *skb;
326 struct rx_desc *p_used_rx_desc;
327 int used_rx_desc;
328
329 while (pep->rx_desc_count < pep->rx_ring_size) {
330 int size;
331
332 skb = netdev_alloc_skb(dev, pep->skb_size);
333 if (!skb)
334 break;
335 if (SKB_DMA_REALIGN)
336 skb_reserve(skb, SKB_DMA_REALIGN);
337 pep->rx_desc_count++;
338 /* Get 'used' Rx descriptor */
339 used_rx_desc = pep->rx_used_desc_q;
340 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
341 size = skb_end_pointer(skb) - skb->data;
342 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
343 skb->data,
344 size,
345 DMA_FROM_DEVICE);
346 p_used_rx_desc->buf_size = size;
347 pep->rx_skb[used_rx_desc] = skb;
348
349 /* Return the descriptor to DMA ownership */
350 wmb();
351 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
352 wmb();
353
354 /* Move the used descriptor pointer to the next descriptor */
355 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
356
357 /* Any Rx return cancels the Rx resource error status */
358 pep->rx_resource_err = 0;
359
360 skb_reserve(skb, ETH_HW_IP_ALIGN);
361 }
362
363 /*
364 * If RX ring is empty of SKB, set a timer to try allocating
365 * again at a later time.
366 */
367 if (pep->rx_desc_count == 0) {
368 pep->timeout.expires = jiffies + (HZ / 10);
369 add_timer(&pep->timeout);
370 }
371 }
372
373 static inline void rxq_refill_timer_wrapper(unsigned long data)
374 {
375 struct pxa168_eth_private *pep = (void *)data;
376 napi_schedule(&pep->napi);
377 }
378
379 static inline u8 flip_8_bits(u8 x)
380 {
381 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
382 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
383 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
384 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
385 }
386
387 static void nibble_swap_every_byte(unsigned char *mac_addr)
388 {
389 int i;
390 for (i = 0; i < ETH_ALEN; i++) {
391 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
392 ((mac_addr[i] & 0xf0) >> 4);
393 }
394 }
395
396 static void inverse_every_nibble(unsigned char *mac_addr)
397 {
398 int i;
399 for (i = 0; i < ETH_ALEN; i++)
400 mac_addr[i] = flip_8_bits(mac_addr[i]);
401 }
402
403 /*
404 * ----------------------------------------------------------------------------
405 * This function will calculate the hash function of the address.
406 * Inputs
407 * mac_addr_orig - MAC address.
408 * Outputs
409 * return the calculated entry.
410 */
411 static u32 hash_function(unsigned char *mac_addr_orig)
412 {
413 u32 hash_result;
414 u32 addr0;
415 u32 addr1;
416 u32 addr2;
417 u32 addr3;
418 unsigned char mac_addr[ETH_ALEN];
419
420 /* Make a copy of MAC address since we are going to performe bit
421 * operations on it
422 */
423 memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
424
425 nibble_swap_every_byte(mac_addr);
426 inverse_every_nibble(mac_addr);
427
428 addr0 = (mac_addr[5] >> 2) & 0x3f;
429 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
430 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
431 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
432
433 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
434 hash_result = hash_result & 0x07ff;
435 return hash_result;
436 }
437
438 /*
439 * ----------------------------------------------------------------------------
440 * This function will add/del an entry to the address table.
441 * Inputs
442 * pep - ETHERNET .
443 * mac_addr - MAC address.
444 * skip - if 1, skip this address.Used in case of deleting an entry which is a
445 * part of chain in the hash table.We can't just delete the entry since
446 * that will break the chain.We need to defragment the tables time to
447 * time.
448 * rd - 0 Discard packet upon match.
449 * - 1 Receive packet upon match.
450 * Outputs
451 * address table entry is added/deleted.
452 * 0 if success.
453 * -ENOSPC if table full
454 */
455 static int add_del_hash_entry(struct pxa168_eth_private *pep,
456 unsigned char *mac_addr,
457 u32 rd, u32 skip, int del)
458 {
459 struct addr_table_entry *entry, *start;
460 u32 new_high;
461 u32 new_low;
462 u32 i;
463
464 new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
465 | (((mac_addr[1] >> 0) & 0xf) << 11)
466 | (((mac_addr[0] >> 4) & 0xf) << 7)
467 | (((mac_addr[0] >> 0) & 0xf) << 3)
468 | (((mac_addr[3] >> 4) & 0x1) << 31)
469 | (((mac_addr[3] >> 0) & 0xf) << 27)
470 | (((mac_addr[2] >> 4) & 0xf) << 23)
471 | (((mac_addr[2] >> 0) & 0xf) << 19)
472 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
473 | HASH_ENTRY_VALID;
474
475 new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
476 | (((mac_addr[5] >> 0) & 0xf) << 11)
477 | (((mac_addr[4] >> 4) & 0xf) << 7)
478 | (((mac_addr[4] >> 0) & 0xf) << 3)
479 | (((mac_addr[3] >> 5) & 0x7) << 0);
480
481 /*
482 * Pick the appropriate table, start scanning for free/reusable
483 * entries at the index obtained by hashing the specified MAC address
484 */
485 start = pep->htpr;
486 entry = start + hash_function(mac_addr);
487 for (i = 0; i < HOP_NUMBER; i++) {
488 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
489 break;
490 } else {
491 /* if same address put in same position */
492 if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
493 (new_low & 0xfffffff8)) &&
494 (le32_to_cpu(entry->hi) == new_high)) {
495 break;
496 }
497 }
498 if (entry == start + 0x7ff)
499 entry = start;
500 else
501 entry++;
502 }
503
504 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
505 (le32_to_cpu(entry->hi) != new_high) && del)
506 return 0;
507
508 if (i == HOP_NUMBER) {
509 if (!del) {
510 printk(KERN_INFO "%s: table section is full, need to "
511 "move to 16kB implementation?\n",
512 __FILE__);
513 return -ENOSPC;
514 } else
515 return 0;
516 }
517
518 /*
519 * Update the selected entry
520 */
521 if (del) {
522 entry->hi = 0;
523 entry->lo = 0;
524 } else {
525 entry->hi = cpu_to_le32(new_high);
526 entry->lo = cpu_to_le32(new_low);
527 }
528
529 return 0;
530 }
531
532 /*
533 * ----------------------------------------------------------------------------
534 * Create an addressTable entry from MAC address info
535 * found in the specifed net_device struct
536 *
537 * Input : pointer to ethernet interface network device structure
538 * Output : N/A
539 */
540 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
541 unsigned char *oaddr,
542 unsigned char *addr)
543 {
544 /* Delete old entry */
545 if (oaddr)
546 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
547 /* Add new entry */
548 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
549 }
550
551 static int init_hash_table(struct pxa168_eth_private *pep)
552 {
553 /*
554 * Hardware expects CPU to build a hash table based on a predefined
555 * hash function and populate it based on hardware address. The
556 * location of the hash table is identified by 32-bit pointer stored
557 * in HTPR internal register. Two possible sizes exists for the hash
558 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
559 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
560 * 1/2kB.
561 */
562 /* TODO: Add support for 8kB hash table and alternative hash
563 * function.Driver can dynamically switch to them if the 1/2kB hash
564 * table is full.
565 */
566 if (pep->htpr == NULL) {
567 pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
568 HASH_ADDR_TABLE_SIZE,
569 &pep->htpr_dma, GFP_KERNEL);
570 if (pep->htpr == NULL)
571 return -ENOMEM;
572 } else {
573 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
574 }
575 wrl(pep, HTPR, pep->htpr_dma);
576 return 0;
577 }
578
579 static void pxa168_eth_set_rx_mode(struct net_device *dev)
580 {
581 struct pxa168_eth_private *pep = netdev_priv(dev);
582 struct netdev_hw_addr *ha;
583 u32 val;
584
585 val = rdl(pep, PORT_CONFIG);
586 if (dev->flags & IFF_PROMISC)
587 val |= PCR_PM;
588 else
589 val &= ~PCR_PM;
590 wrl(pep, PORT_CONFIG, val);
591
592 /*
593 * Remove the old list of MAC address and add dev->addr
594 * and multicast address.
595 */
596 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
597 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
598
599 netdev_for_each_mc_addr(ha, dev)
600 update_hash_table_mac_address(pep, NULL, ha->addr);
601 }
602
603 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
604 {
605 struct sockaddr *sa = addr;
606 struct pxa168_eth_private *pep = netdev_priv(dev);
607 unsigned char oldMac[ETH_ALEN];
608
609 if (!is_valid_ether_addr(sa->sa_data))
610 return -EADDRNOTAVAIL;
611 memcpy(oldMac, dev->dev_addr, ETH_ALEN);
612 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
613 netif_addr_lock_bh(dev);
614 update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
615 netif_addr_unlock_bh(dev);
616 return 0;
617 }
618
619 static void eth_port_start(struct net_device *dev)
620 {
621 unsigned int val = 0;
622 struct pxa168_eth_private *pep = netdev_priv(dev);
623 int tx_curr_desc, rx_curr_desc;
624
625 /* Perform PHY reset, if there is a PHY. */
626 if (pep->phy != NULL) {
627 struct ethtool_cmd cmd;
628
629 pxa168_get_settings(pep->dev, &cmd);
630 phy_init_hw(pep->phy);
631 pxa168_set_settings(pep->dev, &cmd);
632 }
633
634 /* Assignment of Tx CTRP of given queue */
635 tx_curr_desc = pep->tx_curr_desc_q;
636 wrl(pep, ETH_C_TX_DESC_1,
637 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
638
639 /* Assignment of Rx CRDP of given queue */
640 rx_curr_desc = pep->rx_curr_desc_q;
641 wrl(pep, ETH_C_RX_DESC_0,
642 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
643
644 wrl(pep, ETH_F_RX_DESC_0,
645 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
646
647 /* Clear all interrupts */
648 wrl(pep, INT_CAUSE, 0);
649
650 /* Enable all interrupts for receive, transmit and error. */
651 wrl(pep, INT_MASK, ALL_INTS);
652
653 val = rdl(pep, PORT_CONFIG);
654 val |= PCR_EN;
655 wrl(pep, PORT_CONFIG, val);
656
657 /* Start RX DMA engine */
658 val = rdl(pep, SDMA_CMD);
659 val |= SDMA_CMD_ERD;
660 wrl(pep, SDMA_CMD, val);
661 }
662
663 static void eth_port_reset(struct net_device *dev)
664 {
665 struct pxa168_eth_private *pep = netdev_priv(dev);
666 unsigned int val = 0;
667
668 /* Stop all interrupts for receive, transmit and error. */
669 wrl(pep, INT_MASK, 0);
670
671 /* Clear all interrupts */
672 wrl(pep, INT_CAUSE, 0);
673
674 /* Stop RX DMA */
675 val = rdl(pep, SDMA_CMD);
676 val &= ~SDMA_CMD_ERD; /* abort dma command */
677
678 /* Abort any transmit and receive operations and put DMA
679 * in idle state.
680 */
681 abort_dma(pep);
682
683 /* Disable port */
684 val = rdl(pep, PORT_CONFIG);
685 val &= ~PCR_EN;
686 wrl(pep, PORT_CONFIG, val);
687 }
688
689 /*
690 * txq_reclaim - Free the tx desc data for completed descriptors
691 * If force is non-zero, frees uncompleted descriptors as well
692 */
693 static int txq_reclaim(struct net_device *dev, int force)
694 {
695 struct pxa168_eth_private *pep = netdev_priv(dev);
696 struct tx_desc *desc;
697 u32 cmd_sts;
698 struct sk_buff *skb;
699 int tx_index;
700 dma_addr_t addr;
701 int count;
702 int released = 0;
703
704 netif_tx_lock(dev);
705
706 pep->work_todo &= ~WORK_TX_DONE;
707 while (pep->tx_desc_count > 0) {
708 tx_index = pep->tx_used_desc_q;
709 desc = &pep->p_tx_desc_area[tx_index];
710 cmd_sts = desc->cmd_sts;
711 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
712 if (released > 0) {
713 goto txq_reclaim_end;
714 } else {
715 released = -1;
716 goto txq_reclaim_end;
717 }
718 }
719 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
720 pep->tx_desc_count--;
721 addr = desc->buf_ptr;
722 count = desc->byte_cnt;
723 skb = pep->tx_skb[tx_index];
724 if (skb)
725 pep->tx_skb[tx_index] = NULL;
726
727 if (cmd_sts & TX_ERROR) {
728 if (net_ratelimit())
729 printk(KERN_ERR "%s: Error in TX\n", dev->name);
730 dev->stats.tx_errors++;
731 }
732 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
733 if (skb)
734 dev_kfree_skb_irq(skb);
735 released++;
736 }
737 txq_reclaim_end:
738 netif_tx_unlock(dev);
739 return released;
740 }
741
742 static void pxa168_eth_tx_timeout(struct net_device *dev)
743 {
744 struct pxa168_eth_private *pep = netdev_priv(dev);
745
746 printk(KERN_INFO "%s: TX timeout desc_count %d\n",
747 dev->name, pep->tx_desc_count);
748
749 schedule_work(&pep->tx_timeout_task);
750 }
751
752 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
753 {
754 struct pxa168_eth_private *pep = container_of(work,
755 struct pxa168_eth_private,
756 tx_timeout_task);
757 struct net_device *dev = pep->dev;
758 pxa168_eth_stop(dev);
759 pxa168_eth_open(dev);
760 }
761
762 static int rxq_process(struct net_device *dev, int budget)
763 {
764 struct pxa168_eth_private *pep = netdev_priv(dev);
765 struct net_device_stats *stats = &dev->stats;
766 unsigned int received_packets = 0;
767 struct sk_buff *skb;
768
769 while (budget-- > 0) {
770 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
771 struct rx_desc *rx_desc;
772 unsigned int cmd_sts;
773
774 /* Do not process Rx ring in case of Rx ring resource error */
775 if (pep->rx_resource_err)
776 break;
777 rx_curr_desc = pep->rx_curr_desc_q;
778 rx_used_desc = pep->rx_used_desc_q;
779 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
780 cmd_sts = rx_desc->cmd_sts;
781 rmb();
782 if (cmd_sts & (BUF_OWNED_BY_DMA))
783 break;
784 skb = pep->rx_skb[rx_curr_desc];
785 pep->rx_skb[rx_curr_desc] = NULL;
786
787 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
788 pep->rx_curr_desc_q = rx_next_curr_desc;
789
790 /* Rx descriptors exhausted. */
791 /* Set the Rx ring resource error flag */
792 if (rx_next_curr_desc == rx_used_desc)
793 pep->rx_resource_err = 1;
794 pep->rx_desc_count--;
795 dma_unmap_single(NULL, rx_desc->buf_ptr,
796 rx_desc->buf_size,
797 DMA_FROM_DEVICE);
798 received_packets++;
799 /*
800 * Update statistics.
801 * Note byte count includes 4 byte CRC count
802 */
803 stats->rx_packets++;
804 stats->rx_bytes += rx_desc->byte_cnt;
805 /*
806 * In case received a packet without first / last bits on OR
807 * the error summary bit is on, the packets needs to be droped.
808 */
809 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
810 (RX_FIRST_DESC | RX_LAST_DESC))
811 || (cmd_sts & RX_ERROR)) {
812
813 stats->rx_dropped++;
814 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
815 (RX_FIRST_DESC | RX_LAST_DESC)) {
816 if (net_ratelimit())
817 printk(KERN_ERR
818 "%s: Rx pkt on multiple desc\n",
819 dev->name);
820 }
821 if (cmd_sts & RX_ERROR)
822 stats->rx_errors++;
823 dev_kfree_skb_irq(skb);
824 } else {
825 /*
826 * The -4 is for the CRC in the trailer of the
827 * received packet
828 */
829 skb_put(skb, rx_desc->byte_cnt - 4);
830 skb->protocol = eth_type_trans(skb, dev);
831 netif_receive_skb(skb);
832 }
833 }
834 /* Fill RX ring with skb's */
835 rxq_refill(dev);
836 return received_packets;
837 }
838
839 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
840 struct net_device *dev)
841 {
842 u32 icr;
843 int ret = 0;
844
845 icr = rdl(pep, INT_CAUSE);
846 if (icr == 0)
847 return IRQ_NONE;
848
849 wrl(pep, INT_CAUSE, ~icr);
850 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
851 pep->work_todo |= WORK_TX_DONE;
852 ret = 1;
853 }
854 if (icr & ICR_RXBUF)
855 ret = 1;
856 if (icr & ICR_MII_CH) {
857 pep->work_todo |= WORK_LINK;
858 ret = 1;
859 }
860 return ret;
861 }
862
863 static void handle_link_event(struct pxa168_eth_private *pep)
864 {
865 struct net_device *dev = pep->dev;
866 u32 port_status;
867 int speed;
868 int duplex;
869 int fc;
870
871 port_status = rdl(pep, PORT_STATUS);
872 if (!(port_status & LINK_UP)) {
873 if (netif_carrier_ok(dev)) {
874 printk(KERN_INFO "%s: link down\n", dev->name);
875 netif_carrier_off(dev);
876 txq_reclaim(dev, 1);
877 }
878 return;
879 }
880 if (port_status & PORT_SPEED_100)
881 speed = 100;
882 else
883 speed = 10;
884
885 duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
886 fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
887 printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
888 "flow control %sabled\n", dev->name,
889 speed, duplex ? "full" : "half", fc ? "en" : "dis");
890 if (!netif_carrier_ok(dev))
891 netif_carrier_on(dev);
892 }
893
894 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
895 {
896 struct net_device *dev = (struct net_device *)dev_id;
897 struct pxa168_eth_private *pep = netdev_priv(dev);
898
899 if (unlikely(!pxa168_eth_collect_events(pep, dev)))
900 return IRQ_NONE;
901 /* Disable interrupts */
902 wrl(pep, INT_MASK, 0);
903 napi_schedule(&pep->napi);
904 return IRQ_HANDLED;
905 }
906
907 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
908 {
909 int skb_size;
910
911 /*
912 * Reserve 2+14 bytes for an ethernet header (the hardware
913 * automatically prepends 2 bytes of dummy data to each
914 * received packet), 16 bytes for up to four VLAN tags, and
915 * 4 bytes for the trailing FCS -- 36 bytes total.
916 */
917 skb_size = pep->dev->mtu + 36;
918
919 /*
920 * Make sure that the skb size is a multiple of 8 bytes, as
921 * the lower three bits of the receive descriptor's buffer
922 * size field are ignored by the hardware.
923 */
924 pep->skb_size = (skb_size + 7) & ~7;
925
926 /*
927 * If NET_SKB_PAD is smaller than a cache line,
928 * netdev_alloc_skb() will cause skb->data to be misaligned
929 * to a cache line boundary. If this is the case, include
930 * some extra space to allow re-aligning the data area.
931 */
932 pep->skb_size += SKB_DMA_REALIGN;
933
934 }
935
936 static int set_port_config_ext(struct pxa168_eth_private *pep)
937 {
938 int skb_size;
939
940 pxa168_eth_recalc_skb_size(pep);
941 if (pep->skb_size <= 1518)
942 skb_size = PCXR_MFL_1518;
943 else if (pep->skb_size <= 1536)
944 skb_size = PCXR_MFL_1536;
945 else if (pep->skb_size <= 2048)
946 skb_size = PCXR_MFL_2048;
947 else
948 skb_size = PCXR_MFL_64K;
949
950 /* Extended Port Configuration */
951 wrl(pep,
952 PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
953 PCXR_DSCP_EN | /* Enable DSCP in IP */
954 skb_size | PCXR_FLP | /* do not force link pass */
955 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
956
957 return 0;
958 }
959
960 static int pxa168_init_hw(struct pxa168_eth_private *pep)
961 {
962 int err = 0;
963
964 /* Disable interrupts */
965 wrl(pep, INT_MASK, 0);
966 wrl(pep, INT_CAUSE, 0);
967 /* Write to ICR to clear interrupts. */
968 wrl(pep, INT_W_CLEAR, 0);
969 /* Abort any transmit and receive operations and put DMA
970 * in idle state.
971 */
972 abort_dma(pep);
973 /* Initialize address hash table */
974 err = init_hash_table(pep);
975 if (err)
976 return err;
977 /* SDMA configuration */
978 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
979 SDCR_RIFB | /* Rx interrupt on frame */
980 SDCR_BLMT | /* Little endian transmit */
981 SDCR_BLMR | /* Little endian receive */
982 SDCR_RC_MAX_RETRANS); /* Max retransmit count */
983 /* Port Configuration */
984 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
985 set_port_config_ext(pep);
986
987 return err;
988 }
989
990 static int rxq_init(struct net_device *dev)
991 {
992 struct pxa168_eth_private *pep = netdev_priv(dev);
993 struct rx_desc *p_rx_desc;
994 int size = 0, i = 0;
995 int rx_desc_num = pep->rx_ring_size;
996
997 /* Allocate RX skb rings */
998 pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
999 GFP_KERNEL);
1000 if (!pep->rx_skb)
1001 return -ENOMEM;
1002
1003 /* Allocate RX ring */
1004 pep->rx_desc_count = 0;
1005 size = pep->rx_ring_size * sizeof(struct rx_desc);
1006 pep->rx_desc_area_size = size;
1007 pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1008 &pep->rx_desc_dma,
1009 GFP_KERNEL);
1010 if (!pep->p_rx_desc_area)
1011 goto out;
1012
1013 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1014 p_rx_desc = pep->p_rx_desc_area;
1015 for (i = 0; i < rx_desc_num; i++) {
1016 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1017 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1018 }
1019 /* Save Rx desc pointer to driver struct. */
1020 pep->rx_curr_desc_q = 0;
1021 pep->rx_used_desc_q = 0;
1022 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1023 return 0;
1024 out:
1025 kfree(pep->rx_skb);
1026 return -ENOMEM;
1027 }
1028
1029 static void rxq_deinit(struct net_device *dev)
1030 {
1031 struct pxa168_eth_private *pep = netdev_priv(dev);
1032 int curr;
1033
1034 /* Free preallocated skb's on RX rings */
1035 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1036 if (pep->rx_skb[curr]) {
1037 dev_kfree_skb(pep->rx_skb[curr]);
1038 pep->rx_desc_count--;
1039 }
1040 }
1041 if (pep->rx_desc_count)
1042 printk(KERN_ERR
1043 "Error in freeing Rx Ring. %d skb's still\n",
1044 pep->rx_desc_count);
1045 /* Free RX ring */
1046 if (pep->p_rx_desc_area)
1047 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1048 pep->p_rx_desc_area, pep->rx_desc_dma);
1049 kfree(pep->rx_skb);
1050 }
1051
1052 static int txq_init(struct net_device *dev)
1053 {
1054 struct pxa168_eth_private *pep = netdev_priv(dev);
1055 struct tx_desc *p_tx_desc;
1056 int size = 0, i = 0;
1057 int tx_desc_num = pep->tx_ring_size;
1058
1059 pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1060 GFP_KERNEL);
1061 if (!pep->tx_skb)
1062 return -ENOMEM;
1063
1064 /* Allocate TX ring */
1065 pep->tx_desc_count = 0;
1066 size = pep->tx_ring_size * sizeof(struct tx_desc);
1067 pep->tx_desc_area_size = size;
1068 pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1069 &pep->tx_desc_dma,
1070 GFP_KERNEL);
1071 if (!pep->p_tx_desc_area)
1072 goto out;
1073 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1074 p_tx_desc = pep->p_tx_desc_area;
1075 for (i = 0; i < tx_desc_num; i++) {
1076 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1077 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1078 }
1079 pep->tx_curr_desc_q = 0;
1080 pep->tx_used_desc_q = 0;
1081 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1082 return 0;
1083 out:
1084 kfree(pep->tx_skb);
1085 return -ENOMEM;
1086 }
1087
1088 static void txq_deinit(struct net_device *dev)
1089 {
1090 struct pxa168_eth_private *pep = netdev_priv(dev);
1091
1092 /* Free outstanding skb's on TX ring */
1093 txq_reclaim(dev, 1);
1094 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1095 /* Free TX ring */
1096 if (pep->p_tx_desc_area)
1097 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1098 pep->p_tx_desc_area, pep->tx_desc_dma);
1099 kfree(pep->tx_skb);
1100 }
1101
1102 static int pxa168_eth_open(struct net_device *dev)
1103 {
1104 struct pxa168_eth_private *pep = netdev_priv(dev);
1105 int err;
1106
1107 err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1108 if (err) {
1109 dev_err(&dev->dev, "can't assign irq\n");
1110 return -EAGAIN;
1111 }
1112 pep->rx_resource_err = 0;
1113 err = rxq_init(dev);
1114 if (err != 0)
1115 goto out_free_irq;
1116 err = txq_init(dev);
1117 if (err != 0)
1118 goto out_free_rx_skb;
1119 pep->rx_used_desc_q = 0;
1120 pep->rx_curr_desc_q = 0;
1121
1122 /* Fill RX ring with skb's */
1123 rxq_refill(dev);
1124 pep->rx_used_desc_q = 0;
1125 pep->rx_curr_desc_q = 0;
1126 netif_carrier_off(dev);
1127 eth_port_start(dev);
1128 napi_enable(&pep->napi);
1129 return 0;
1130 out_free_rx_skb:
1131 rxq_deinit(dev);
1132 out_free_irq:
1133 free_irq(dev->irq, dev);
1134 return err;
1135 }
1136
1137 static int pxa168_eth_stop(struct net_device *dev)
1138 {
1139 struct pxa168_eth_private *pep = netdev_priv(dev);
1140 eth_port_reset(dev);
1141
1142 /* Disable interrupts */
1143 wrl(pep, INT_MASK, 0);
1144 wrl(pep, INT_CAUSE, 0);
1145 /* Write to ICR to clear interrupts. */
1146 wrl(pep, INT_W_CLEAR, 0);
1147 napi_disable(&pep->napi);
1148 del_timer_sync(&pep->timeout);
1149 netif_carrier_off(dev);
1150 free_irq(dev->irq, dev);
1151 rxq_deinit(dev);
1152 txq_deinit(dev);
1153
1154 return 0;
1155 }
1156
1157 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1158 {
1159 int retval;
1160 struct pxa168_eth_private *pep = netdev_priv(dev);
1161
1162 if ((mtu > 9500) || (mtu < 68))
1163 return -EINVAL;
1164
1165 dev->mtu = mtu;
1166 retval = set_port_config_ext(pep);
1167
1168 if (!netif_running(dev))
1169 return 0;
1170
1171 /*
1172 * Stop and then re-open the interface. This will allocate RX
1173 * skbs of the new MTU.
1174 * There is a possible danger that the open will not succeed,
1175 * due to memory being full.
1176 */
1177 pxa168_eth_stop(dev);
1178 if (pxa168_eth_open(dev)) {
1179 dev_err(&dev->dev,
1180 "fatal error on re-opening device after MTU change\n");
1181 }
1182
1183 return 0;
1184 }
1185
1186 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1187 {
1188 int tx_desc_curr;
1189
1190 tx_desc_curr = pep->tx_curr_desc_q;
1191 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1192 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1193 pep->tx_desc_count++;
1194
1195 return tx_desc_curr;
1196 }
1197
1198 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1199 {
1200 struct pxa168_eth_private *pep =
1201 container_of(napi, struct pxa168_eth_private, napi);
1202 struct net_device *dev = pep->dev;
1203 int work_done = 0;
1204
1205 if (unlikely(pep->work_todo & WORK_LINK)) {
1206 pep->work_todo &= ~(WORK_LINK);
1207 handle_link_event(pep);
1208 }
1209 /*
1210 * We call txq_reclaim every time since in NAPI interupts are disabled
1211 * and due to this we miss the TX_DONE interrupt,which is not updated in
1212 * interrupt status register.
1213 */
1214 txq_reclaim(dev, 0);
1215 if (netif_queue_stopped(dev)
1216 && pep->tx_ring_size - pep->tx_desc_count > 1) {
1217 netif_wake_queue(dev);
1218 }
1219 work_done = rxq_process(dev, budget);
1220 if (work_done < budget) {
1221 napi_complete(napi);
1222 wrl(pep, INT_MASK, ALL_INTS);
1223 }
1224
1225 return work_done;
1226 }
1227
1228 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1229 {
1230 struct pxa168_eth_private *pep = netdev_priv(dev);
1231 struct net_device_stats *stats = &dev->stats;
1232 struct tx_desc *desc;
1233 int tx_index;
1234 int length;
1235
1236 tx_index = eth_alloc_tx_desc_index(pep);
1237 desc = &pep->p_tx_desc_area[tx_index];
1238 length = skb->len;
1239 pep->tx_skb[tx_index] = skb;
1240 desc->byte_cnt = length;
1241 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1242
1243 skb_tx_timestamp(skb);
1244
1245 wmb();
1246 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1247 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1248 wmb();
1249 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1250
1251 stats->tx_bytes += length;
1252 stats->tx_packets++;
1253 dev->trans_start = jiffies;
1254 if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1255 /* We handled the current skb, but now we are out of space.*/
1256 netif_stop_queue(dev);
1257 }
1258
1259 return NETDEV_TX_OK;
1260 }
1261
1262 static int smi_wait_ready(struct pxa168_eth_private *pep)
1263 {
1264 int i = 0;
1265
1266 /* wait for the SMI register to become available */
1267 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1268 if (i == PHY_WAIT_ITERATIONS)
1269 return -ETIMEDOUT;
1270 msleep(10);
1271 }
1272
1273 return 0;
1274 }
1275
1276 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1277 {
1278 struct pxa168_eth_private *pep = bus->priv;
1279 int i = 0;
1280 int val;
1281
1282 if (smi_wait_ready(pep)) {
1283 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1284 return -ETIMEDOUT;
1285 }
1286 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1287 /* now wait for the data to be valid */
1288 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1289 if (i == PHY_WAIT_ITERATIONS) {
1290 printk(KERN_WARNING
1291 "pxa168_eth: SMI bus read not valid\n");
1292 return -ENODEV;
1293 }
1294 msleep(10);
1295 }
1296
1297 return val & 0xffff;
1298 }
1299
1300 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1301 u16 value)
1302 {
1303 struct pxa168_eth_private *pep = bus->priv;
1304
1305 if (smi_wait_ready(pep)) {
1306 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1307 return -ETIMEDOUT;
1308 }
1309
1310 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1311 SMI_OP_W | (value & 0xffff));
1312
1313 if (smi_wait_ready(pep)) {
1314 printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1315 return -ETIMEDOUT;
1316 }
1317
1318 return 0;
1319 }
1320
1321 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1322 int cmd)
1323 {
1324 struct pxa168_eth_private *pep = netdev_priv(dev);
1325 if (pep->phy != NULL)
1326 return phy_mii_ioctl(pep->phy, ifr, cmd);
1327
1328 return -EOPNOTSUPP;
1329 }
1330
1331 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1332 {
1333 struct mii_bus *bus = pep->smi_bus;
1334 struct phy_device *phydev;
1335 int start;
1336 int num;
1337 int i;
1338
1339 if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1340 /* Scan entire range */
1341 start = ethernet_phy_get(pep);
1342 num = 32;
1343 } else {
1344 /* Use phy addr specific to platform */
1345 start = phy_addr & 0x1f;
1346 num = 1;
1347 }
1348 phydev = NULL;
1349 for (i = 0; i < num; i++) {
1350 int addr = (start + i) & 0x1f;
1351 if (bus->phy_map[addr] == NULL)
1352 mdiobus_scan(bus, addr);
1353
1354 if (phydev == NULL) {
1355 phydev = bus->phy_map[addr];
1356 if (phydev != NULL)
1357 ethernet_phy_set_addr(pep, addr);
1358 }
1359 }
1360
1361 return phydev;
1362 }
1363
1364 static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1365 {
1366 struct phy_device *phy = pep->phy;
1367
1368 phy_attach(pep->dev, dev_name(&phy->dev), PHY_INTERFACE_MODE_MII);
1369
1370 if (speed == 0) {
1371 phy->autoneg = AUTONEG_ENABLE;
1372 phy->speed = 0;
1373 phy->duplex = 0;
1374 phy->supported &= PHY_BASIC_FEATURES;
1375 phy->advertising = phy->supported | ADVERTISED_Autoneg;
1376 } else {
1377 phy->autoneg = AUTONEG_DISABLE;
1378 phy->advertising = 0;
1379 phy->speed = speed;
1380 phy->duplex = duplex;
1381 }
1382 phy_start_aneg(phy);
1383 }
1384
1385 static int ethernet_phy_setup(struct net_device *dev)
1386 {
1387 struct pxa168_eth_private *pep = netdev_priv(dev);
1388
1389 if (pep->pd->init)
1390 pep->pd->init();
1391 pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1392 if (pep->phy != NULL)
1393 phy_init(pep, pep->pd->speed, pep->pd->duplex);
1394 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1395
1396 return 0;
1397 }
1398
1399 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1400 {
1401 struct pxa168_eth_private *pep = netdev_priv(dev);
1402 int err;
1403
1404 err = phy_read_status(pep->phy);
1405 if (err == 0)
1406 err = phy_ethtool_gset(pep->phy, cmd);
1407
1408 return err;
1409 }
1410
1411 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1412 {
1413 struct pxa168_eth_private *pep = netdev_priv(dev);
1414
1415 return phy_ethtool_sset(pep->phy, cmd);
1416 }
1417
1418 static void pxa168_get_drvinfo(struct net_device *dev,
1419 struct ethtool_drvinfo *info)
1420 {
1421 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1422 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1423 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1424 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1425 }
1426
1427 static const struct ethtool_ops pxa168_ethtool_ops = {
1428 .get_settings = pxa168_get_settings,
1429 .set_settings = pxa168_set_settings,
1430 .get_drvinfo = pxa168_get_drvinfo,
1431 .get_link = ethtool_op_get_link,
1432 .get_ts_info = ethtool_op_get_ts_info,
1433 };
1434
1435 static const struct net_device_ops pxa168_eth_netdev_ops = {
1436 .ndo_open = pxa168_eth_open,
1437 .ndo_stop = pxa168_eth_stop,
1438 .ndo_start_xmit = pxa168_eth_start_xmit,
1439 .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1440 .ndo_set_mac_address = pxa168_eth_set_mac_address,
1441 .ndo_validate_addr = eth_validate_addr,
1442 .ndo_do_ioctl = pxa168_eth_do_ioctl,
1443 .ndo_change_mtu = pxa168_eth_change_mtu,
1444 .ndo_tx_timeout = pxa168_eth_tx_timeout,
1445 };
1446
1447 static int pxa168_eth_probe(struct platform_device *pdev)
1448 {
1449 struct pxa168_eth_private *pep = NULL;
1450 struct net_device *dev = NULL;
1451 struct resource *res;
1452 struct clk *clk;
1453 int err;
1454
1455 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1456
1457 clk = clk_get(&pdev->dev, "MFUCLK");
1458 if (IS_ERR(clk)) {
1459 printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1460 DRIVER_NAME);
1461 return -ENODEV;
1462 }
1463 clk_enable(clk);
1464
1465 dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1466 if (!dev) {
1467 err = -ENOMEM;
1468 goto err_clk;
1469 }
1470
1471 platform_set_drvdata(pdev, dev);
1472 pep = netdev_priv(dev);
1473 pep->dev = dev;
1474 pep->clk = clk;
1475 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1476 if (res == NULL) {
1477 err = -ENODEV;
1478 goto err_netdev;
1479 }
1480 pep->base = ioremap(res->start, resource_size(res));
1481 if (pep->base == NULL) {
1482 err = -ENOMEM;
1483 goto err_netdev;
1484 }
1485 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1486 BUG_ON(!res);
1487 dev->irq = res->start;
1488 dev->netdev_ops = &pxa168_eth_netdev_ops;
1489 dev->watchdog_timeo = 2 * HZ;
1490 dev->base_addr = 0;
1491 SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1492
1493 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1494
1495 printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1496 eth_hw_addr_random(dev);
1497
1498 pep->pd = dev_get_platdata(&pdev->dev);
1499 pep->rx_ring_size = NUM_RX_DESCS;
1500 if (pep->pd->rx_queue_size)
1501 pep->rx_ring_size = pep->pd->rx_queue_size;
1502
1503 pep->tx_ring_size = NUM_TX_DESCS;
1504 if (pep->pd->tx_queue_size)
1505 pep->tx_ring_size = pep->pd->tx_queue_size;
1506
1507 pep->port_num = pep->pd->port_number;
1508 /* Hardware supports only 3 ports */
1509 BUG_ON(pep->port_num > 2);
1510 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1511
1512 memset(&pep->timeout, 0, sizeof(struct timer_list));
1513 init_timer(&pep->timeout);
1514 pep->timeout.function = rxq_refill_timer_wrapper;
1515 pep->timeout.data = (unsigned long)pep;
1516
1517 pep->smi_bus = mdiobus_alloc();
1518 if (pep->smi_bus == NULL) {
1519 err = -ENOMEM;
1520 goto err_base;
1521 }
1522 pep->smi_bus->priv = pep;
1523 pep->smi_bus->name = "pxa168_eth smi";
1524 pep->smi_bus->read = pxa168_smi_read;
1525 pep->smi_bus->write = pxa168_smi_write;
1526 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1527 pdev->name, pdev->id);
1528 pep->smi_bus->parent = &pdev->dev;
1529 pep->smi_bus->phy_mask = 0xffffffff;
1530 err = mdiobus_register(pep->smi_bus);
1531 if (err)
1532 goto err_free_mdio;
1533
1534 pxa168_init_hw(pep);
1535 err = ethernet_phy_setup(dev);
1536 if (err)
1537 goto err_mdiobus;
1538 SET_NETDEV_DEV(dev, &pdev->dev);
1539 err = register_netdev(dev);
1540 if (err)
1541 goto err_mdiobus;
1542 return 0;
1543
1544 err_mdiobus:
1545 mdiobus_unregister(pep->smi_bus);
1546 err_free_mdio:
1547 mdiobus_free(pep->smi_bus);
1548 err_base:
1549 iounmap(pep->base);
1550 err_netdev:
1551 free_netdev(dev);
1552 err_clk:
1553 clk_disable(clk);
1554 clk_put(clk);
1555 return err;
1556 }
1557
1558 static int pxa168_eth_remove(struct platform_device *pdev)
1559 {
1560 struct net_device *dev = platform_get_drvdata(pdev);
1561 struct pxa168_eth_private *pep = netdev_priv(dev);
1562
1563 if (pep->htpr) {
1564 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1565 pep->htpr, pep->htpr_dma);
1566 pep->htpr = NULL;
1567 }
1568 if (pep->clk) {
1569 clk_disable(pep->clk);
1570 clk_put(pep->clk);
1571 pep->clk = NULL;
1572 }
1573 if (pep->phy != NULL)
1574 phy_detach(pep->phy);
1575
1576 iounmap(pep->base);
1577 pep->base = NULL;
1578 mdiobus_unregister(pep->smi_bus);
1579 mdiobus_free(pep->smi_bus);
1580 unregister_netdev(dev);
1581 cancel_work_sync(&pep->tx_timeout_task);
1582 free_netdev(dev);
1583 return 0;
1584 }
1585
1586 static void pxa168_eth_shutdown(struct platform_device *pdev)
1587 {
1588 struct net_device *dev = platform_get_drvdata(pdev);
1589 eth_port_reset(dev);
1590 }
1591
1592 #ifdef CONFIG_PM
1593 static int pxa168_eth_resume(struct platform_device *pdev)
1594 {
1595 return -ENOSYS;
1596 }
1597
1598 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1599 {
1600 return -ENOSYS;
1601 }
1602
1603 #else
1604 #define pxa168_eth_resume NULL
1605 #define pxa168_eth_suspend NULL
1606 #endif
1607
1608 static struct platform_driver pxa168_eth_driver = {
1609 .probe = pxa168_eth_probe,
1610 .remove = pxa168_eth_remove,
1611 .shutdown = pxa168_eth_shutdown,
1612 .resume = pxa168_eth_resume,
1613 .suspend = pxa168_eth_suspend,
1614 .driver = {
1615 .name = DRIVER_NAME,
1616 },
1617 };
1618
1619 module_platform_driver(pxa168_eth_driver);
1620
1621 MODULE_LICENSE("GPL");
1622 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1623 MODULE_ALIAS("platform:pxa168_eth");
This page took 0.061699 seconds and 6 git commands to generate.