Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / ethernet / mellanox / mlx4 / en_tx.c
1 /*
2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33
34 #include <asm/page.h>
35 #include <linux/mlx4/cq.h>
36 #include <linux/slab.h>
37 #include <linux/mlx4/qp.h>
38 #include <linux/skbuff.h>
39 #include <linux/if_vlan.h>
40 #include <linux/prefetch.h>
41 #include <linux/vmalloc.h>
42 #include <linux/tcp.h>
43 #include <linux/ip.h>
44 #include <linux/moduleparam.h>
45
46 #include "mlx4_en.h"
47
48 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
49 struct mlx4_en_tx_ring **pring, u32 size,
50 u16 stride, int node, int queue_index)
51 {
52 struct mlx4_en_dev *mdev = priv->mdev;
53 struct mlx4_en_tx_ring *ring;
54 int tmp;
55 int err;
56
57 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
58 if (!ring) {
59 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
60 if (!ring) {
61 en_err(priv, "Failed allocating TX ring\n");
62 return -ENOMEM;
63 }
64 }
65
66 ring->size = size;
67 ring->size_mask = size - 1;
68 ring->stride = stride;
69
70 tmp = size * sizeof(struct mlx4_en_tx_info);
71 ring->tx_info = kmalloc_node(tmp, GFP_KERNEL | __GFP_NOWARN, node);
72 if (!ring->tx_info) {
73 ring->tx_info = vmalloc(tmp);
74 if (!ring->tx_info) {
75 err = -ENOMEM;
76 goto err_ring;
77 }
78 }
79
80 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
81 ring->tx_info, tmp);
82
83 ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node);
84 if (!ring->bounce_buf) {
85 ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
86 if (!ring->bounce_buf) {
87 err = -ENOMEM;
88 goto err_info;
89 }
90 }
91 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
92
93 /* Allocate HW buffers on provided NUMA node */
94 set_dev_node(&mdev->dev->pdev->dev, node);
95 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
96 2 * PAGE_SIZE);
97 set_dev_node(&mdev->dev->pdev->dev, mdev->dev->numa_node);
98 if (err) {
99 en_err(priv, "Failed allocating hwq resources\n");
100 goto err_bounce;
101 }
102
103 err = mlx4_en_map_buffer(&ring->wqres.buf);
104 if (err) {
105 en_err(priv, "Failed to map TX buffer\n");
106 goto err_hwq_res;
107 }
108
109 ring->buf = ring->wqres.buf.direct.buf;
110
111 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n",
112 ring, ring->buf, ring->size, ring->buf_size,
113 (unsigned long long) ring->wqres.buf.direct.map);
114
115 err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn,
116 MLX4_RESERVE_ETH_BF_QP);
117 if (err) {
118 en_err(priv, "failed reserving qp for TX ring\n");
119 goto err_map;
120 }
121
122 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL);
123 if (err) {
124 en_err(priv, "Failed allocating qp %d\n", ring->qpn);
125 goto err_reserve;
126 }
127 ring->qp.event = mlx4_en_sqp_event;
128
129 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
130 if (err) {
131 en_dbg(DRV, priv, "working without blueflame (%d)\n", err);
132 ring->bf.uar = &mdev->priv_uar;
133 ring->bf.uar->map = mdev->uar_map;
134 ring->bf_enabled = false;
135 ring->bf_alloced = false;
136 priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME;
137 } else {
138 ring->bf_alloced = true;
139 ring->bf_enabled = !!(priv->pflags &
140 MLX4_EN_PRIV_FLAGS_BLUEFLAME);
141 }
142
143 ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type;
144 ring->queue_index = queue_index;
145
146 if (queue_index < priv->num_tx_rings_p_up && cpu_online(queue_index))
147 cpumask_set_cpu(queue_index, &ring->affinity_mask);
148
149 *pring = ring;
150 return 0;
151
152 err_reserve:
153 mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
154 err_map:
155 mlx4_en_unmap_buffer(&ring->wqres.buf);
156 err_hwq_res:
157 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
158 err_bounce:
159 kfree(ring->bounce_buf);
160 ring->bounce_buf = NULL;
161 err_info:
162 kvfree(ring->tx_info);
163 ring->tx_info = NULL;
164 err_ring:
165 kfree(ring);
166 *pring = NULL;
167 return err;
168 }
169
170 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
171 struct mlx4_en_tx_ring **pring)
172 {
173 struct mlx4_en_dev *mdev = priv->mdev;
174 struct mlx4_en_tx_ring *ring = *pring;
175 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
176
177 if (ring->bf_alloced)
178 mlx4_bf_free(mdev->dev, &ring->bf);
179 mlx4_qp_remove(mdev->dev, &ring->qp);
180 mlx4_qp_free(mdev->dev, &ring->qp);
181 mlx4_en_unmap_buffer(&ring->wqres.buf);
182 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
183 kfree(ring->bounce_buf);
184 ring->bounce_buf = NULL;
185 kvfree(ring->tx_info);
186 ring->tx_info = NULL;
187 kfree(ring);
188 *pring = NULL;
189 }
190
191 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
192 struct mlx4_en_tx_ring *ring,
193 int cq, int user_prio)
194 {
195 struct mlx4_en_dev *mdev = priv->mdev;
196 int err;
197
198 ring->cqn = cq;
199 ring->prod = 0;
200 ring->cons = 0xffffffff;
201 ring->last_nr_txbb = 1;
202 memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
203 memset(ring->buf, 0, ring->buf_size);
204
205 ring->qp_state = MLX4_QP_STATE_RST;
206 ring->doorbell_qpn = cpu_to_be32(ring->qp.qpn << 8);
207 ring->mr_key = cpu_to_be32(mdev->mr.key);
208
209 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
210 ring->cqn, user_prio, &ring->context);
211 if (ring->bf_alloced)
212 ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
213
214 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
215 &ring->qp, &ring->qp_state);
216 if (!user_prio && cpu_online(ring->queue_index))
217 netif_set_xps_queue(priv->dev, &ring->affinity_mask,
218 ring->queue_index);
219
220 return err;
221 }
222
223 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
224 struct mlx4_en_tx_ring *ring)
225 {
226 struct mlx4_en_dev *mdev = priv->mdev;
227
228 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
229 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
230 }
231
232 static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
233 struct mlx4_en_tx_ring *ring, int index,
234 u8 owner)
235 {
236 __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
237 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
238 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
239 void *end = ring->buf + ring->buf_size;
240 __be32 *ptr = (__be32 *)tx_desc;
241 int i;
242
243 /* Optimize the common case when there are no wraparounds */
244 if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
245 /* Stamp the freed descriptor */
246 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE;
247 i += STAMP_STRIDE) {
248 *ptr = stamp;
249 ptr += STAMP_DWORDS;
250 }
251 } else {
252 /* Stamp the freed descriptor */
253 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE;
254 i += STAMP_STRIDE) {
255 *ptr = stamp;
256 ptr += STAMP_DWORDS;
257 if ((void *)ptr >= end) {
258 ptr = ring->buf;
259 stamp ^= cpu_to_be32(0x80000000);
260 }
261 }
262 }
263 }
264
265
266 static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
267 struct mlx4_en_tx_ring *ring,
268 int index, u8 owner, u64 timestamp)
269 {
270 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
271 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
272 struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
273 void *end = ring->buf + ring->buf_size;
274 struct sk_buff *skb = tx_info->skb;
275 int nr_maps = tx_info->nr_maps;
276 int i;
277
278 /* We do not touch skb here, so prefetch skb->users location
279 * to speedup consume_skb()
280 */
281 prefetchw(&skb->users);
282
283 if (unlikely(timestamp)) {
284 struct skb_shared_hwtstamps hwts;
285
286 mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp);
287 skb_tstamp_tx(skb, &hwts);
288 }
289
290 /* Optimize the common case when there are no wraparounds */
291 if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
292 if (!tx_info->inl) {
293 if (tx_info->linear)
294 dma_unmap_single(priv->ddev,
295 tx_info->map0_dma,
296 tx_info->map0_byte_count,
297 PCI_DMA_TODEVICE);
298 else
299 dma_unmap_page(priv->ddev,
300 tx_info->map0_dma,
301 tx_info->map0_byte_count,
302 PCI_DMA_TODEVICE);
303 for (i = 1; i < nr_maps; i++) {
304 data++;
305 dma_unmap_page(priv->ddev,
306 (dma_addr_t)be64_to_cpu(data->addr),
307 be32_to_cpu(data->byte_count),
308 PCI_DMA_TODEVICE);
309 }
310 }
311 } else {
312 if (!tx_info->inl) {
313 if ((void *) data >= end) {
314 data = ring->buf + ((void *)data - end);
315 }
316
317 if (tx_info->linear)
318 dma_unmap_single(priv->ddev,
319 tx_info->map0_dma,
320 tx_info->map0_byte_count,
321 PCI_DMA_TODEVICE);
322 else
323 dma_unmap_page(priv->ddev,
324 tx_info->map0_dma,
325 tx_info->map0_byte_count,
326 PCI_DMA_TODEVICE);
327 for (i = 1; i < nr_maps; i++) {
328 data++;
329 /* Check for wraparound before unmapping */
330 if ((void *) data >= end)
331 data = ring->buf;
332 dma_unmap_page(priv->ddev,
333 (dma_addr_t)be64_to_cpu(data->addr),
334 be32_to_cpu(data->byte_count),
335 PCI_DMA_TODEVICE);
336 }
337 }
338 }
339 dev_consume_skb_any(skb);
340 return tx_info->nr_txbb;
341 }
342
343
344 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
345 {
346 struct mlx4_en_priv *priv = netdev_priv(dev);
347 int cnt = 0;
348
349 /* Skip last polled descriptor */
350 ring->cons += ring->last_nr_txbb;
351 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
352 ring->cons, ring->prod);
353
354 if ((u32) (ring->prod - ring->cons) > ring->size) {
355 if (netif_msg_tx_err(priv))
356 en_warn(priv, "Tx consumer passed producer!\n");
357 return 0;
358 }
359
360 while (ring->cons != ring->prod) {
361 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
362 ring->cons & ring->size_mask,
363 !!(ring->cons & ring->size), 0);
364 ring->cons += ring->last_nr_txbb;
365 cnt++;
366 }
367
368 netdev_tx_reset_queue(ring->tx_queue);
369
370 if (cnt)
371 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
372
373 return cnt;
374 }
375
376 static bool mlx4_en_process_tx_cq(struct net_device *dev,
377 struct mlx4_en_cq *cq)
378 {
379 struct mlx4_en_priv *priv = netdev_priv(dev);
380 struct mlx4_cq *mcq = &cq->mcq;
381 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
382 struct mlx4_cqe *cqe;
383 u16 index;
384 u16 new_index, ring_index, stamp_index;
385 u32 txbbs_skipped = 0;
386 u32 txbbs_stamp = 0;
387 u32 cons_index = mcq->cons_index;
388 int size = cq->size;
389 u32 size_mask = ring->size_mask;
390 struct mlx4_cqe *buf = cq->buf;
391 u32 packets = 0;
392 u32 bytes = 0;
393 int factor = priv->cqe_factor;
394 u64 timestamp = 0;
395 int done = 0;
396 int budget = priv->tx_work_limit;
397 u32 last_nr_txbb;
398 u32 ring_cons;
399
400 if (!priv->port_up)
401 return true;
402
403 netdev_txq_bql_complete_prefetchw(ring->tx_queue);
404
405 index = cons_index & size_mask;
406 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor;
407 last_nr_txbb = ACCESS_ONCE(ring->last_nr_txbb);
408 ring_cons = ACCESS_ONCE(ring->cons);
409 ring_index = ring_cons & size_mask;
410 stamp_index = ring_index;
411
412 /* Process all completed CQEs */
413 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
414 cons_index & size) && (done < budget)) {
415 /*
416 * make sure we read the CQE after we read the
417 * ownership bit
418 */
419 rmb();
420
421 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
422 MLX4_CQE_OPCODE_ERROR)) {
423 struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe;
424
425 en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n",
426 cqe_err->vendor_err_syndrome,
427 cqe_err->syndrome);
428 }
429
430 /* Skip over last polled CQE */
431 new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
432
433 do {
434 txbbs_skipped += last_nr_txbb;
435 ring_index = (ring_index + last_nr_txbb) & size_mask;
436 if (ring->tx_info[ring_index].ts_requested)
437 timestamp = mlx4_en_get_cqe_ts(cqe);
438
439 /* free next descriptor */
440 last_nr_txbb = mlx4_en_free_tx_desc(
441 priv, ring, ring_index,
442 !!((ring_cons + txbbs_skipped) &
443 ring->size), timestamp);
444
445 mlx4_en_stamp_wqe(priv, ring, stamp_index,
446 !!((ring_cons + txbbs_stamp) &
447 ring->size));
448 stamp_index = ring_index;
449 txbbs_stamp = txbbs_skipped;
450 packets++;
451 bytes += ring->tx_info[ring_index].nr_bytes;
452 } while ((++done < budget) && (ring_index != new_index));
453
454 ++cons_index;
455 index = cons_index & size_mask;
456 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor;
457 }
458
459
460 /*
461 * To prevent CQ overflow we first update CQ consumer and only then
462 * the ring consumer.
463 */
464 mcq->cons_index = cons_index;
465 mlx4_cq_set_ci(mcq);
466 wmb();
467
468 /* we want to dirty this cache line once */
469 ACCESS_ONCE(ring->last_nr_txbb) = last_nr_txbb;
470 ACCESS_ONCE(ring->cons) = ring_cons + txbbs_skipped;
471
472 netdev_tx_completed_queue(ring->tx_queue, packets, bytes);
473
474 /*
475 * Wakeup Tx queue if this stopped, and at least 1 packet
476 * was completed
477 */
478 if (netif_tx_queue_stopped(ring->tx_queue) && txbbs_skipped > 0) {
479 netif_tx_wake_queue(ring->tx_queue);
480 ring->wake_queue++;
481 }
482 return done < budget;
483 }
484
485 void mlx4_en_tx_irq(struct mlx4_cq *mcq)
486 {
487 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
488 struct mlx4_en_priv *priv = netdev_priv(cq->dev);
489
490 if (likely(priv->port_up))
491 napi_schedule_irqoff(&cq->napi);
492 else
493 mlx4_en_arm_cq(priv, cq);
494 }
495
496 /* TX CQ polling - called by NAPI */
497 int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget)
498 {
499 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
500 struct net_device *dev = cq->dev;
501 struct mlx4_en_priv *priv = netdev_priv(dev);
502 int clean_complete;
503
504 clean_complete = mlx4_en_process_tx_cq(dev, cq);
505 if (!clean_complete)
506 return budget;
507
508 napi_complete(napi);
509 mlx4_en_arm_cq(priv, cq);
510
511 return 0;
512 }
513
514 static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
515 struct mlx4_en_tx_ring *ring,
516 u32 index,
517 unsigned int desc_size)
518 {
519 u32 copy = (ring->size - index) * TXBB_SIZE;
520 int i;
521
522 for (i = desc_size - copy - 4; i >= 0; i -= 4) {
523 if ((i & (TXBB_SIZE - 1)) == 0)
524 wmb();
525
526 *((u32 *) (ring->buf + i)) =
527 *((u32 *) (ring->bounce_buf + copy + i));
528 }
529
530 for (i = copy - 4; i >= 4 ; i -= 4) {
531 if ((i & (TXBB_SIZE - 1)) == 0)
532 wmb();
533
534 *((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
535 *((u32 *) (ring->bounce_buf + i));
536 }
537
538 /* Return real descriptor location */
539 return ring->buf + index * TXBB_SIZE;
540 }
541
542 /* Decide if skb can be inlined in tx descriptor to avoid dma mapping
543 *
544 * It seems strange we do not simply use skb_copy_bits().
545 * This would allow to inline all skbs iff skb->len <= inline_thold
546 *
547 * Note that caller already checked skb was not a gso packet
548 */
549 static bool is_inline(int inline_thold, const struct sk_buff *skb,
550 const struct skb_shared_info *shinfo,
551 void **pfrag)
552 {
553 void *ptr;
554
555 if (skb->len > inline_thold || !inline_thold)
556 return false;
557
558 if (shinfo->nr_frags == 1) {
559 ptr = skb_frag_address_safe(&shinfo->frags[0]);
560 if (unlikely(!ptr))
561 return false;
562 *pfrag = ptr;
563 return true;
564 }
565 if (shinfo->nr_frags)
566 return false;
567 return true;
568 }
569
570 static int inline_size(const struct sk_buff *skb)
571 {
572 if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
573 <= MLX4_INLINE_ALIGN)
574 return ALIGN(skb->len + CTRL_SIZE +
575 sizeof(struct mlx4_wqe_inline_seg), 16);
576 else
577 return ALIGN(skb->len + CTRL_SIZE + 2 *
578 sizeof(struct mlx4_wqe_inline_seg), 16);
579 }
580
581 static int get_real_size(const struct sk_buff *skb,
582 const struct skb_shared_info *shinfo,
583 struct net_device *dev,
584 int *lso_header_size,
585 bool *inline_ok,
586 void **pfrag)
587 {
588 struct mlx4_en_priv *priv = netdev_priv(dev);
589 int real_size;
590
591 if (shinfo->gso_size) {
592 *inline_ok = false;
593 if (skb->encapsulation)
594 *lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb);
595 else
596 *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb);
597 real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE +
598 ALIGN(*lso_header_size + 4, DS_SIZE);
599 if (unlikely(*lso_header_size != skb_headlen(skb))) {
600 /* We add a segment for the skb linear buffer only if
601 * it contains data */
602 if (*lso_header_size < skb_headlen(skb))
603 real_size += DS_SIZE;
604 else {
605 if (netif_msg_tx_err(priv))
606 en_warn(priv, "Non-linear headers\n");
607 return 0;
608 }
609 }
610 } else {
611 *lso_header_size = 0;
612 *inline_ok = is_inline(priv->prof->inline_thold, skb,
613 shinfo, pfrag);
614
615 if (*inline_ok)
616 real_size = inline_size(skb);
617 else
618 real_size = CTRL_SIZE +
619 (shinfo->nr_frags + 1) * DS_SIZE;
620 }
621
622 return real_size;
623 }
624
625 static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc,
626 const struct sk_buff *skb,
627 const struct skb_shared_info *shinfo,
628 int real_size, u16 *vlan_tag,
629 int tx_ind, void *fragptr)
630 {
631 struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
632 int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
633 unsigned int hlen = skb_headlen(skb);
634
635 if (skb->len <= spc) {
636 if (likely(skb->len >= MIN_PKT_LEN)) {
637 inl->byte_count = cpu_to_be32(1 << 31 | skb->len);
638 } else {
639 inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN);
640 memset(((void *)(inl + 1)) + skb->len, 0,
641 MIN_PKT_LEN - skb->len);
642 }
643 skb_copy_from_linear_data(skb, inl + 1, hlen);
644 if (shinfo->nr_frags)
645 memcpy(((void *)(inl + 1)) + hlen, fragptr,
646 skb_frag_size(&shinfo->frags[0]));
647
648 } else {
649 inl->byte_count = cpu_to_be32(1 << 31 | spc);
650 if (hlen <= spc) {
651 skb_copy_from_linear_data(skb, inl + 1, hlen);
652 if (hlen < spc) {
653 memcpy(((void *)(inl + 1)) + hlen,
654 fragptr, spc - hlen);
655 fragptr += spc - hlen;
656 }
657 inl = (void *) (inl + 1) + spc;
658 memcpy(((void *)(inl + 1)), fragptr, skb->len - spc);
659 } else {
660 skb_copy_from_linear_data(skb, inl + 1, spc);
661 inl = (void *) (inl + 1) + spc;
662 skb_copy_from_linear_data_offset(skb, spc, inl + 1,
663 hlen - spc);
664 if (shinfo->nr_frags)
665 memcpy(((void *)(inl + 1)) + hlen - spc,
666 fragptr,
667 skb_frag_size(&shinfo->frags[0]));
668 }
669
670 wmb();
671 inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc));
672 }
673 }
674
675 u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb,
676 void *accel_priv, select_queue_fallback_t fallback)
677 {
678 struct mlx4_en_priv *priv = netdev_priv(dev);
679 u16 rings_p_up = priv->num_tx_rings_p_up;
680 u8 up = 0;
681
682 if (dev->num_tc)
683 return skb_tx_hash(dev, skb);
684
685 if (vlan_tx_tag_present(skb))
686 up = vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT;
687
688 return fallback(dev, skb) % rings_p_up + up * rings_p_up;
689 }
690
691 static void mlx4_bf_copy(void __iomem *dst, const void *src,
692 unsigned int bytecnt)
693 {
694 __iowrite64_copy(dst, src, bytecnt / 8);
695 }
696
697 netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev)
698 {
699 struct skb_shared_info *shinfo = skb_shinfo(skb);
700 struct mlx4_en_priv *priv = netdev_priv(dev);
701 struct device *ddev = priv->ddev;
702 struct mlx4_en_tx_ring *ring;
703 struct mlx4_en_tx_desc *tx_desc;
704 struct mlx4_wqe_data_seg *data;
705 struct mlx4_en_tx_info *tx_info;
706 int tx_ind = 0;
707 int nr_txbb;
708 int desc_size;
709 int real_size;
710 u32 index, bf_index;
711 __be32 op_own;
712 u16 vlan_tag = 0;
713 int i_frag;
714 int lso_header_size;
715 void *fragptr = NULL;
716 bool bounce = false;
717 bool send_doorbell;
718 bool stop_queue;
719 bool inline_ok;
720 u32 ring_cons;
721
722 if (!priv->port_up)
723 goto tx_drop;
724
725 tx_ind = skb_get_queue_mapping(skb);
726 ring = priv->tx_ring[tx_ind];
727
728 /* fetch ring->cons far ahead before needing it to avoid stall */
729 ring_cons = ACCESS_ONCE(ring->cons);
730
731 real_size = get_real_size(skb, shinfo, dev, &lso_header_size,
732 &inline_ok, &fragptr);
733 if (unlikely(!real_size))
734 goto tx_drop;
735
736 /* Align descriptor to TXBB size */
737 desc_size = ALIGN(real_size, TXBB_SIZE);
738 nr_txbb = desc_size / TXBB_SIZE;
739 if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
740 if (netif_msg_tx_err(priv))
741 en_warn(priv, "Oversized header or SG list\n");
742 goto tx_drop;
743 }
744
745 if (vlan_tx_tag_present(skb))
746 vlan_tag = vlan_tx_tag_get(skb);
747
748
749 netdev_txq_bql_enqueue_prefetchw(ring->tx_queue);
750
751 /* Track current inflight packets for performance analysis */
752 AVG_PERF_COUNTER(priv->pstats.inflight_avg,
753 (u32)(ring->prod - ring_cons - 1));
754
755 /* Packet is good - grab an index and transmit it */
756 index = ring->prod & ring->size_mask;
757 bf_index = ring->prod;
758
759 /* See if we have enough space for whole descriptor TXBB for setting
760 * SW ownership on next descriptor; if not, use a bounce buffer. */
761 if (likely(index + nr_txbb <= ring->size))
762 tx_desc = ring->buf + index * TXBB_SIZE;
763 else {
764 tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
765 bounce = true;
766 }
767
768 /* Save skb in tx_info ring */
769 tx_info = &ring->tx_info[index];
770 tx_info->skb = skb;
771 tx_info->nr_txbb = nr_txbb;
772
773 data = &tx_desc->data;
774 if (lso_header_size)
775 data = ((void *)&tx_desc->lso + ALIGN(lso_header_size + 4,
776 DS_SIZE));
777
778 /* valid only for none inline segments */
779 tx_info->data_offset = (void *)data - (void *)tx_desc;
780
781 tx_info->inl = inline_ok;
782
783 tx_info->linear = (lso_header_size < skb_headlen(skb) &&
784 !inline_ok) ? 1 : 0;
785
786 tx_info->nr_maps = shinfo->nr_frags + tx_info->linear;
787 data += tx_info->nr_maps - 1;
788
789 if (!tx_info->inl) {
790 dma_addr_t dma = 0;
791 u32 byte_count = 0;
792
793 /* Map fragments if any */
794 for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) {
795 const struct skb_frag_struct *frag;
796
797 frag = &shinfo->frags[i_frag];
798 byte_count = skb_frag_size(frag);
799 dma = skb_frag_dma_map(ddev, frag,
800 0, byte_count,
801 DMA_TO_DEVICE);
802 if (dma_mapping_error(ddev, dma))
803 goto tx_drop_unmap;
804
805 data->addr = cpu_to_be64(dma);
806 data->lkey = ring->mr_key;
807 wmb();
808 data->byte_count = cpu_to_be32(byte_count);
809 --data;
810 }
811
812 /* Map linear part if needed */
813 if (tx_info->linear) {
814 byte_count = skb_headlen(skb) - lso_header_size;
815
816 dma = dma_map_single(ddev, skb->data +
817 lso_header_size, byte_count,
818 PCI_DMA_TODEVICE);
819 if (dma_mapping_error(ddev, dma))
820 goto tx_drop_unmap;
821
822 data->addr = cpu_to_be64(dma);
823 data->lkey = ring->mr_key;
824 wmb();
825 data->byte_count = cpu_to_be32(byte_count);
826 }
827 /* tx completion can avoid cache line miss for common cases */
828 tx_info->map0_dma = dma;
829 tx_info->map0_byte_count = byte_count;
830 }
831
832 /*
833 * For timestamping add flag to skb_shinfo and
834 * set flag for further reference
835 */
836 tx_info->ts_requested = 0;
837 if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON &&
838 shinfo->tx_flags & SKBTX_HW_TSTAMP)) {
839 shinfo->tx_flags |= SKBTX_IN_PROGRESS;
840 tx_info->ts_requested = 1;
841 }
842
843 /* Prepare ctrl segement apart opcode+ownership, which depends on
844 * whether LSO is used */
845 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
846 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
847 if (!skb->encapsulation)
848 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
849 MLX4_WQE_CTRL_TCP_UDP_CSUM);
850 else
851 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
852 ring->tx_csum++;
853 }
854
855 if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) {
856 struct ethhdr *ethh;
857
858 /* Copy dst mac address to wqe. This allows loopback in eSwitch,
859 * so that VFs and PF can communicate with each other
860 */
861 ethh = (struct ethhdr *)skb->data;
862 tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest);
863 tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2));
864 }
865
866 /* Handle LSO (TSO) packets */
867 if (lso_header_size) {
868 int i;
869
870 /* Mark opcode as LSO */
871 op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
872 ((ring->prod & ring->size) ?
873 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
874
875 /* Fill in the LSO prefix */
876 tx_desc->lso.mss_hdr_size = cpu_to_be32(
877 shinfo->gso_size << 16 | lso_header_size);
878
879 /* Copy headers;
880 * note that we already verified that it is linear */
881 memcpy(tx_desc->lso.header, skb->data, lso_header_size);
882
883 ring->tso_packets++;
884
885 i = ((skb->len - lso_header_size) / shinfo->gso_size) +
886 !!((skb->len - lso_header_size) % shinfo->gso_size);
887 tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size;
888 ring->packets += i;
889 } else {
890 /* Normal (Non LSO) packet */
891 op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
892 ((ring->prod & ring->size) ?
893 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
894 tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
895 ring->packets++;
896 }
897 ring->bytes += tx_info->nr_bytes;
898 netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes);
899 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len);
900
901 if (tx_info->inl)
902 build_inline_wqe(tx_desc, skb, shinfo, real_size, &vlan_tag,
903 tx_ind, fragptr);
904
905 if (skb->encapsulation) {
906 struct iphdr *ipv4 = (struct iphdr *)skb_inner_network_header(skb);
907 if (ipv4->protocol == IPPROTO_TCP || ipv4->protocol == IPPROTO_UDP)
908 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP);
909 else
910 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP);
911 }
912
913 ring->prod += nr_txbb;
914
915 /* If we used a bounce buffer then copy descriptor back into place */
916 if (unlikely(bounce))
917 tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
918
919 skb_tx_timestamp(skb);
920
921 /* Check available TXBBs And 2K spare for prefetch */
922 stop_queue = (int)(ring->prod - ring_cons) >
923 ring->size - HEADROOM - MAX_DESC_TXBBS;
924 if (unlikely(stop_queue)) {
925 netif_tx_stop_queue(ring->tx_queue);
926 ring->queue_stopped++;
927 }
928 send_doorbell = !skb->xmit_more || netif_xmit_stopped(ring->tx_queue);
929
930 real_size = (real_size / 16) & 0x3f;
931
932 if (ring->bf_enabled && desc_size <= MAX_BF && !bounce &&
933 !vlan_tx_tag_present(skb) && send_doorbell) {
934 tx_desc->ctrl.bf_qpn = ring->doorbell_qpn |
935 cpu_to_be32(real_size);
936
937 op_own |= htonl((bf_index & 0xffff) << 8);
938 /* Ensure new descriptor hits memory
939 * before setting ownership of this descriptor to HW
940 */
941 wmb();
942 tx_desc->ctrl.owner_opcode = op_own;
943
944 wmb();
945
946 mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl,
947 desc_size);
948
949 wmb();
950
951 ring->bf.offset ^= ring->bf.buf_size;
952 } else {
953 tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
954 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN *
955 !!vlan_tx_tag_present(skb);
956 tx_desc->ctrl.fence_size = real_size;
957
958 /* Ensure new descriptor hits memory
959 * before setting ownership of this descriptor to HW
960 */
961 wmb();
962 tx_desc->ctrl.owner_opcode = op_own;
963 if (send_doorbell) {
964 wmb();
965 /* Since there is no iowrite*_native() that writes the
966 * value as is, without byteswapping - using the one
967 * the doesn't do byteswapping in the relevant arch
968 * endianness.
969 */
970 #if defined(__LITTLE_ENDIAN)
971 iowrite32(
972 #else
973 iowrite32be(
974 #endif
975 ring->doorbell_qpn,
976 ring->bf.uar->map + MLX4_SEND_DOORBELL);
977 } else {
978 ring->xmit_more++;
979 }
980 }
981
982 if (unlikely(stop_queue)) {
983 /* If queue was emptied after the if (stop_queue) , and before
984 * the netif_tx_stop_queue() - need to wake the queue,
985 * or else it will remain stopped forever.
986 * Need a memory barrier to make sure ring->cons was not
987 * updated before queue was stopped.
988 */
989 smp_rmb();
990
991 ring_cons = ACCESS_ONCE(ring->cons);
992 if (unlikely(((int)(ring->prod - ring_cons)) <=
993 ring->size - HEADROOM - MAX_DESC_TXBBS)) {
994 netif_tx_wake_queue(ring->tx_queue);
995 ring->wake_queue++;
996 }
997 }
998 return NETDEV_TX_OK;
999
1000 tx_drop_unmap:
1001 en_err(priv, "DMA mapping error\n");
1002
1003 while (++i_frag < shinfo->nr_frags) {
1004 ++data;
1005 dma_unmap_page(ddev, (dma_addr_t) be64_to_cpu(data->addr),
1006 be32_to_cpu(data->byte_count),
1007 PCI_DMA_TODEVICE);
1008 }
1009
1010 tx_drop:
1011 dev_kfree_skb_any(skb);
1012 priv->stats.tx_dropped++;
1013 return NETDEV_TX_OK;
1014 }
1015
This page took 0.076634 seconds and 5 git commands to generate.