Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / ethernet / mellanox / mlx4 / en_tx.c
1 /*
2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33
34 #include <asm/page.h>
35 #include <linux/mlx4/cq.h>
36 #include <linux/slab.h>
37 #include <linux/mlx4/qp.h>
38 #include <linux/skbuff.h>
39 #include <linux/if_vlan.h>
40 #include <linux/vmalloc.h>
41 #include <linux/tcp.h>
42 #include <linux/moduleparam.h>
43
44 #include "mlx4_en.h"
45
46 enum {
47 MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
48 MAX_BF = 256,
49 };
50
51 static int inline_thold __read_mostly = MAX_INLINE;
52
53 module_param_named(inline_thold, inline_thold, int, 0444);
54 MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
55
56 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
57 struct mlx4_en_tx_ring **pring, int qpn, u32 size,
58 u16 stride, int node)
59 {
60 struct mlx4_en_dev *mdev = priv->mdev;
61 struct mlx4_en_tx_ring *ring;
62 int tmp;
63 int err;
64
65 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
66 if (!ring) {
67 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
68 if (!ring) {
69 en_err(priv, "Failed allocating TX ring\n");
70 return -ENOMEM;
71 }
72 }
73
74 ring->size = size;
75 ring->size_mask = size - 1;
76 ring->stride = stride;
77
78 inline_thold = min(inline_thold, MAX_INLINE);
79
80 tmp = size * sizeof(struct mlx4_en_tx_info);
81 ring->tx_info = vmalloc_node(tmp, node);
82 if (!ring->tx_info) {
83 ring->tx_info = vmalloc(tmp);
84 if (!ring->tx_info) {
85 err = -ENOMEM;
86 goto err_ring;
87 }
88 }
89
90 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
91 ring->tx_info, tmp);
92
93 ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node);
94 if (!ring->bounce_buf) {
95 ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
96 if (!ring->bounce_buf) {
97 err = -ENOMEM;
98 goto err_info;
99 }
100 }
101 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
102
103 /* Allocate HW buffers on provided NUMA node */
104 set_dev_node(&mdev->dev->pdev->dev, node);
105 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
106 2 * PAGE_SIZE);
107 set_dev_node(&mdev->dev->pdev->dev, mdev->dev->numa_node);
108 if (err) {
109 en_err(priv, "Failed allocating hwq resources\n");
110 goto err_bounce;
111 }
112
113 err = mlx4_en_map_buffer(&ring->wqres.buf);
114 if (err) {
115 en_err(priv, "Failed to map TX buffer\n");
116 goto err_hwq_res;
117 }
118
119 ring->buf = ring->wqres.buf.direct.buf;
120
121 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
122 "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
123 ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
124
125 ring->qpn = qpn;
126 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
127 if (err) {
128 en_err(priv, "Failed allocating qp %d\n", ring->qpn);
129 goto err_map;
130 }
131 ring->qp.event = mlx4_en_sqp_event;
132
133 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
134 if (err) {
135 en_dbg(DRV, priv, "working without blueflame (%d)", err);
136 ring->bf.uar = &mdev->priv_uar;
137 ring->bf.uar->map = mdev->uar_map;
138 ring->bf_enabled = false;
139 } else
140 ring->bf_enabled = true;
141
142 ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type;
143
144 *pring = ring;
145 return 0;
146
147 err_map:
148 mlx4_en_unmap_buffer(&ring->wqres.buf);
149 err_hwq_res:
150 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
151 err_bounce:
152 kfree(ring->bounce_buf);
153 ring->bounce_buf = NULL;
154 err_info:
155 vfree(ring->tx_info);
156 ring->tx_info = NULL;
157 err_ring:
158 kfree(ring);
159 *pring = NULL;
160 return err;
161 }
162
163 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
164 struct mlx4_en_tx_ring **pring)
165 {
166 struct mlx4_en_dev *mdev = priv->mdev;
167 struct mlx4_en_tx_ring *ring = *pring;
168 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
169
170 if (ring->bf_enabled)
171 mlx4_bf_free(mdev->dev, &ring->bf);
172 mlx4_qp_remove(mdev->dev, &ring->qp);
173 mlx4_qp_free(mdev->dev, &ring->qp);
174 mlx4_en_unmap_buffer(&ring->wqres.buf);
175 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
176 kfree(ring->bounce_buf);
177 ring->bounce_buf = NULL;
178 vfree(ring->tx_info);
179 ring->tx_info = NULL;
180 kfree(ring);
181 *pring = NULL;
182 }
183
184 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
185 struct mlx4_en_tx_ring *ring,
186 int cq, int user_prio)
187 {
188 struct mlx4_en_dev *mdev = priv->mdev;
189 int err;
190
191 ring->cqn = cq;
192 ring->prod = 0;
193 ring->cons = 0xffffffff;
194 ring->last_nr_txbb = 1;
195 ring->poll_cnt = 0;
196 memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
197 memset(ring->buf, 0, ring->buf_size);
198
199 ring->qp_state = MLX4_QP_STATE_RST;
200 ring->doorbell_qpn = ring->qp.qpn << 8;
201
202 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
203 ring->cqn, user_prio, &ring->context);
204 if (ring->bf_enabled)
205 ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
206
207 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
208 &ring->qp, &ring->qp_state);
209
210 return err;
211 }
212
213 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
214 struct mlx4_en_tx_ring *ring)
215 {
216 struct mlx4_en_dev *mdev = priv->mdev;
217
218 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
219 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
220 }
221
222 static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
223 struct mlx4_en_tx_ring *ring, int index,
224 u8 owner)
225 {
226 __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
227 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
228 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
229 void *end = ring->buf + ring->buf_size;
230 __be32 *ptr = (__be32 *)tx_desc;
231 int i;
232
233 /* Optimize the common case when there are no wraparounds */
234 if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
235 /* Stamp the freed descriptor */
236 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE;
237 i += STAMP_STRIDE) {
238 *ptr = stamp;
239 ptr += STAMP_DWORDS;
240 }
241 } else {
242 /* Stamp the freed descriptor */
243 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE;
244 i += STAMP_STRIDE) {
245 *ptr = stamp;
246 ptr += STAMP_DWORDS;
247 if ((void *)ptr >= end) {
248 ptr = ring->buf;
249 stamp ^= cpu_to_be32(0x80000000);
250 }
251 }
252 }
253 }
254
255
256 static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
257 struct mlx4_en_tx_ring *ring,
258 int index, u8 owner, u64 timestamp)
259 {
260 struct mlx4_en_dev *mdev = priv->mdev;
261 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
262 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
263 struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
264 struct sk_buff *skb = tx_info->skb;
265 struct skb_frag_struct *frag;
266 void *end = ring->buf + ring->buf_size;
267 int frags = skb_shinfo(skb)->nr_frags;
268 int i;
269 struct skb_shared_hwtstamps hwts;
270
271 if (timestamp) {
272 mlx4_en_fill_hwtstamps(mdev, &hwts, timestamp);
273 skb_tstamp_tx(skb, &hwts);
274 }
275
276 /* Optimize the common case when there are no wraparounds */
277 if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
278 if (!tx_info->inl) {
279 if (tx_info->linear) {
280 dma_unmap_single(priv->ddev,
281 (dma_addr_t) be64_to_cpu(data->addr),
282 be32_to_cpu(data->byte_count),
283 PCI_DMA_TODEVICE);
284 ++data;
285 }
286
287 for (i = 0; i < frags; i++) {
288 frag = &skb_shinfo(skb)->frags[i];
289 dma_unmap_page(priv->ddev,
290 (dma_addr_t) be64_to_cpu(data[i].addr),
291 skb_frag_size(frag), PCI_DMA_TODEVICE);
292 }
293 }
294 } else {
295 if (!tx_info->inl) {
296 if ((void *) data >= end) {
297 data = ring->buf + ((void *)data - end);
298 }
299
300 if (tx_info->linear) {
301 dma_unmap_single(priv->ddev,
302 (dma_addr_t) be64_to_cpu(data->addr),
303 be32_to_cpu(data->byte_count),
304 PCI_DMA_TODEVICE);
305 ++data;
306 }
307
308 for (i = 0; i < frags; i++) {
309 /* Check for wraparound before unmapping */
310 if ((void *) data >= end)
311 data = ring->buf;
312 frag = &skb_shinfo(skb)->frags[i];
313 dma_unmap_page(priv->ddev,
314 (dma_addr_t) be64_to_cpu(data->addr),
315 skb_frag_size(frag), PCI_DMA_TODEVICE);
316 ++data;
317 }
318 }
319 }
320 dev_kfree_skb_any(skb);
321 return tx_info->nr_txbb;
322 }
323
324
325 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
326 {
327 struct mlx4_en_priv *priv = netdev_priv(dev);
328 int cnt = 0;
329
330 /* Skip last polled descriptor */
331 ring->cons += ring->last_nr_txbb;
332 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
333 ring->cons, ring->prod);
334
335 if ((u32) (ring->prod - ring->cons) > ring->size) {
336 if (netif_msg_tx_err(priv))
337 en_warn(priv, "Tx consumer passed producer!\n");
338 return 0;
339 }
340
341 while (ring->cons != ring->prod) {
342 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
343 ring->cons & ring->size_mask,
344 !!(ring->cons & ring->size), 0);
345 ring->cons += ring->last_nr_txbb;
346 cnt++;
347 }
348
349 netdev_tx_reset_queue(ring->tx_queue);
350
351 if (cnt)
352 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
353
354 return cnt;
355 }
356
357 static void mlx4_en_process_tx_cq(struct net_device *dev, struct mlx4_en_cq *cq)
358 {
359 struct mlx4_en_priv *priv = netdev_priv(dev);
360 struct mlx4_cq *mcq = &cq->mcq;
361 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
362 struct mlx4_cqe *cqe;
363 u16 index;
364 u16 new_index, ring_index, stamp_index;
365 u32 txbbs_skipped = 0;
366 u32 txbbs_stamp = 0;
367 u32 cons_index = mcq->cons_index;
368 int size = cq->size;
369 u32 size_mask = ring->size_mask;
370 struct mlx4_cqe *buf = cq->buf;
371 u32 packets = 0;
372 u32 bytes = 0;
373 int factor = priv->cqe_factor;
374 u64 timestamp = 0;
375
376 if (!priv->port_up)
377 return;
378
379 index = cons_index & size_mask;
380 cqe = &buf[(index << factor) + factor];
381 ring_index = ring->cons & size_mask;
382 stamp_index = ring_index;
383
384 /* Process all completed CQEs */
385 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
386 cons_index & size)) {
387 /*
388 * make sure we read the CQE after we read the
389 * ownership bit
390 */
391 rmb();
392
393 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
394 MLX4_CQE_OPCODE_ERROR)) {
395 struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe;
396
397 en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n",
398 cqe_err->vendor_err_syndrome,
399 cqe_err->syndrome);
400 }
401
402 /* Skip over last polled CQE */
403 new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
404
405 do {
406 txbbs_skipped += ring->last_nr_txbb;
407 ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
408 if (ring->tx_info[ring_index].ts_requested)
409 timestamp = mlx4_en_get_cqe_ts(cqe);
410
411 /* free next descriptor */
412 ring->last_nr_txbb = mlx4_en_free_tx_desc(
413 priv, ring, ring_index,
414 !!((ring->cons + txbbs_skipped) &
415 ring->size), timestamp);
416
417 mlx4_en_stamp_wqe(priv, ring, stamp_index,
418 !!((ring->cons + txbbs_stamp) &
419 ring->size));
420 stamp_index = ring_index;
421 txbbs_stamp = txbbs_skipped;
422 packets++;
423 bytes += ring->tx_info[ring_index].nr_bytes;
424 } while (ring_index != new_index);
425
426 ++cons_index;
427 index = cons_index & size_mask;
428 cqe = &buf[(index << factor) + factor];
429 }
430
431
432 /*
433 * To prevent CQ overflow we first update CQ consumer and only then
434 * the ring consumer.
435 */
436 mcq->cons_index = cons_index;
437 mlx4_cq_set_ci(mcq);
438 wmb();
439 ring->cons += txbbs_skipped;
440 netdev_tx_completed_queue(ring->tx_queue, packets, bytes);
441
442 /*
443 * Wakeup Tx queue if this stopped, and at least 1 packet
444 * was completed
445 */
446 if (netif_tx_queue_stopped(ring->tx_queue) && txbbs_skipped > 0) {
447 netif_tx_wake_queue(ring->tx_queue);
448 priv->port_stats.wake_queue++;
449 }
450 }
451
452 void mlx4_en_tx_irq(struct mlx4_cq *mcq)
453 {
454 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
455 struct mlx4_en_priv *priv = netdev_priv(cq->dev);
456
457 mlx4_en_process_tx_cq(cq->dev, cq);
458 mlx4_en_arm_cq(priv, cq);
459 }
460
461
462 static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
463 struct mlx4_en_tx_ring *ring,
464 u32 index,
465 unsigned int desc_size)
466 {
467 u32 copy = (ring->size - index) * TXBB_SIZE;
468 int i;
469
470 for (i = desc_size - copy - 4; i >= 0; i -= 4) {
471 if ((i & (TXBB_SIZE - 1)) == 0)
472 wmb();
473
474 *((u32 *) (ring->buf + i)) =
475 *((u32 *) (ring->bounce_buf + copy + i));
476 }
477
478 for (i = copy - 4; i >= 4 ; i -= 4) {
479 if ((i & (TXBB_SIZE - 1)) == 0)
480 wmb();
481
482 *((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
483 *((u32 *) (ring->bounce_buf + i));
484 }
485
486 /* Return real descriptor location */
487 return ring->buf + index * TXBB_SIZE;
488 }
489
490 static int is_inline(struct sk_buff *skb, void **pfrag)
491 {
492 void *ptr;
493
494 if (inline_thold && !skb_is_gso(skb) && skb->len <= inline_thold) {
495 if (skb_shinfo(skb)->nr_frags == 1) {
496 ptr = skb_frag_address_safe(&skb_shinfo(skb)->frags[0]);
497 if (unlikely(!ptr))
498 return 0;
499
500 if (pfrag)
501 *pfrag = ptr;
502
503 return 1;
504 } else if (unlikely(skb_shinfo(skb)->nr_frags))
505 return 0;
506 else
507 return 1;
508 }
509
510 return 0;
511 }
512
513 static int inline_size(struct sk_buff *skb)
514 {
515 if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
516 <= MLX4_INLINE_ALIGN)
517 return ALIGN(skb->len + CTRL_SIZE +
518 sizeof(struct mlx4_wqe_inline_seg), 16);
519 else
520 return ALIGN(skb->len + CTRL_SIZE + 2 *
521 sizeof(struct mlx4_wqe_inline_seg), 16);
522 }
523
524 static int get_real_size(struct sk_buff *skb, struct net_device *dev,
525 int *lso_header_size)
526 {
527 struct mlx4_en_priv *priv = netdev_priv(dev);
528 int real_size;
529
530 if (skb_is_gso(skb)) {
531 *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb);
532 real_size = CTRL_SIZE + skb_shinfo(skb)->nr_frags * DS_SIZE +
533 ALIGN(*lso_header_size + 4, DS_SIZE);
534 if (unlikely(*lso_header_size != skb_headlen(skb))) {
535 /* We add a segment for the skb linear buffer only if
536 * it contains data */
537 if (*lso_header_size < skb_headlen(skb))
538 real_size += DS_SIZE;
539 else {
540 if (netif_msg_tx_err(priv))
541 en_warn(priv, "Non-linear headers\n");
542 return 0;
543 }
544 }
545 } else {
546 *lso_header_size = 0;
547 if (!is_inline(skb, NULL))
548 real_size = CTRL_SIZE + (skb_shinfo(skb)->nr_frags + 1) * DS_SIZE;
549 else
550 real_size = inline_size(skb);
551 }
552
553 return real_size;
554 }
555
556 static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, struct sk_buff *skb,
557 int real_size, u16 *vlan_tag, int tx_ind, void *fragptr)
558 {
559 struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
560 int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
561
562 if (skb->len <= spc) {
563 inl->byte_count = cpu_to_be32(1 << 31 | skb->len);
564 skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb));
565 if (skb_shinfo(skb)->nr_frags)
566 memcpy(((void *)(inl + 1)) + skb_headlen(skb), fragptr,
567 skb_frag_size(&skb_shinfo(skb)->frags[0]));
568
569 } else {
570 inl->byte_count = cpu_to_be32(1 << 31 | spc);
571 if (skb_headlen(skb) <= spc) {
572 skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb));
573 if (skb_headlen(skb) < spc) {
574 memcpy(((void *)(inl + 1)) + skb_headlen(skb),
575 fragptr, spc - skb_headlen(skb));
576 fragptr += spc - skb_headlen(skb);
577 }
578 inl = (void *) (inl + 1) + spc;
579 memcpy(((void *)(inl + 1)), fragptr, skb->len - spc);
580 } else {
581 skb_copy_from_linear_data(skb, inl + 1, spc);
582 inl = (void *) (inl + 1) + spc;
583 skb_copy_from_linear_data_offset(skb, spc, inl + 1,
584 skb_headlen(skb) - spc);
585 if (skb_shinfo(skb)->nr_frags)
586 memcpy(((void *)(inl + 1)) + skb_headlen(skb) - spc,
587 fragptr, skb_frag_size(&skb_shinfo(skb)->frags[0]));
588 }
589
590 wmb();
591 inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc));
592 }
593 }
594
595 u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb)
596 {
597 struct mlx4_en_priv *priv = netdev_priv(dev);
598 u16 rings_p_up = priv->num_tx_rings_p_up;
599 u8 up = 0;
600
601 if (dev->num_tc)
602 return skb_tx_hash(dev, skb);
603
604 if (vlan_tx_tag_present(skb))
605 up = vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT;
606
607 return __netdev_pick_tx(dev, skb) % rings_p_up + up * rings_p_up;
608 }
609
610 static void mlx4_bf_copy(void __iomem *dst, unsigned long *src, unsigned bytecnt)
611 {
612 __iowrite64_copy(dst, src, bytecnt / 8);
613 }
614
615 netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev)
616 {
617 struct mlx4_en_priv *priv = netdev_priv(dev);
618 struct mlx4_en_dev *mdev = priv->mdev;
619 struct device *ddev = priv->ddev;
620 struct mlx4_en_tx_ring *ring;
621 struct mlx4_en_tx_desc *tx_desc;
622 struct mlx4_wqe_data_seg *data;
623 struct mlx4_en_tx_info *tx_info;
624 int tx_ind = 0;
625 int nr_txbb;
626 int desc_size;
627 int real_size;
628 u32 index, bf_index;
629 __be32 op_own;
630 u16 vlan_tag = 0;
631 int i;
632 int lso_header_size;
633 void *fragptr;
634 bool bounce = false;
635
636 if (!priv->port_up)
637 goto tx_drop;
638
639 real_size = get_real_size(skb, dev, &lso_header_size);
640 if (unlikely(!real_size))
641 goto tx_drop;
642
643 /* Align descriptor to TXBB size */
644 desc_size = ALIGN(real_size, TXBB_SIZE);
645 nr_txbb = desc_size / TXBB_SIZE;
646 if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
647 if (netif_msg_tx_err(priv))
648 en_warn(priv, "Oversized header or SG list\n");
649 goto tx_drop;
650 }
651
652 tx_ind = skb->queue_mapping;
653 ring = priv->tx_ring[tx_ind];
654 if (vlan_tx_tag_present(skb))
655 vlan_tag = vlan_tx_tag_get(skb);
656
657 /* Check available TXBBs And 2K spare for prefetch */
658 if (unlikely(((int)(ring->prod - ring->cons)) >
659 ring->size - HEADROOM - MAX_DESC_TXBBS)) {
660 /* every full Tx ring stops queue */
661 netif_tx_stop_queue(ring->tx_queue);
662 priv->port_stats.queue_stopped++;
663
664 /* If queue was emptied after the if, and before the
665 * stop_queue - need to wake the queue, or else it will remain
666 * stopped forever.
667 * Need a memory barrier to make sure ring->cons was not
668 * updated before queue was stopped.
669 */
670 wmb();
671
672 if (unlikely(((int)(ring->prod - ring->cons)) <=
673 ring->size - HEADROOM - MAX_DESC_TXBBS)) {
674 netif_tx_wake_queue(ring->tx_queue);
675 priv->port_stats.wake_queue++;
676 } else {
677 return NETDEV_TX_BUSY;
678 }
679 }
680
681 /* Track current inflight packets for performance analysis */
682 AVG_PERF_COUNTER(priv->pstats.inflight_avg,
683 (u32) (ring->prod - ring->cons - 1));
684
685 /* Packet is good - grab an index and transmit it */
686 index = ring->prod & ring->size_mask;
687 bf_index = ring->prod;
688
689 /* See if we have enough space for whole descriptor TXBB for setting
690 * SW ownership on next descriptor; if not, use a bounce buffer. */
691 if (likely(index + nr_txbb <= ring->size))
692 tx_desc = ring->buf + index * TXBB_SIZE;
693 else {
694 tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
695 bounce = true;
696 }
697
698 /* Save skb in tx_info ring */
699 tx_info = &ring->tx_info[index];
700 tx_info->skb = skb;
701 tx_info->nr_txbb = nr_txbb;
702
703 if (lso_header_size)
704 data = ((void *)&tx_desc->lso + ALIGN(lso_header_size + 4,
705 DS_SIZE));
706 else
707 data = &tx_desc->data;
708
709 /* valid only for none inline segments */
710 tx_info->data_offset = (void *)data - (void *)tx_desc;
711
712 tx_info->linear = (lso_header_size < skb_headlen(skb) &&
713 !is_inline(skb, NULL)) ? 1 : 0;
714
715 data += skb_shinfo(skb)->nr_frags + tx_info->linear - 1;
716
717 if (is_inline(skb, &fragptr)) {
718 tx_info->inl = 1;
719 } else {
720 /* Map fragments */
721 for (i = skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) {
722 struct skb_frag_struct *frag;
723 dma_addr_t dma;
724
725 frag = &skb_shinfo(skb)->frags[i];
726 dma = skb_frag_dma_map(ddev, frag,
727 0, skb_frag_size(frag),
728 DMA_TO_DEVICE);
729 if (dma_mapping_error(ddev, dma))
730 goto tx_drop_unmap;
731
732 data->addr = cpu_to_be64(dma);
733 data->lkey = cpu_to_be32(mdev->mr.key);
734 wmb();
735 data->byte_count = cpu_to_be32(skb_frag_size(frag));
736 --data;
737 }
738
739 /* Map linear part */
740 if (tx_info->linear) {
741 u32 byte_count = skb_headlen(skb) - lso_header_size;
742 dma_addr_t dma;
743
744 dma = dma_map_single(ddev, skb->data +
745 lso_header_size, byte_count,
746 PCI_DMA_TODEVICE);
747 if (dma_mapping_error(ddev, dma))
748 goto tx_drop_unmap;
749
750 data->addr = cpu_to_be64(dma);
751 data->lkey = cpu_to_be32(mdev->mr.key);
752 wmb();
753 data->byte_count = cpu_to_be32(byte_count);
754 }
755 tx_info->inl = 0;
756 }
757
758 /*
759 * For timestamping add flag to skb_shinfo and
760 * set flag for further reference
761 */
762 if (ring->hwtstamp_tx_type == HWTSTAMP_TX_ON &&
763 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
764 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
765 tx_info->ts_requested = 1;
766 }
767
768 /* Prepare ctrl segement apart opcode+ownership, which depends on
769 * whether LSO is used */
770 tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
771 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN *
772 !!vlan_tx_tag_present(skb);
773 tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f;
774 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
775 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
776 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
777 MLX4_WQE_CTRL_TCP_UDP_CSUM);
778 ring->tx_csum++;
779 }
780
781 if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) {
782 struct ethhdr *ethh;
783
784 /* Copy dst mac address to wqe. This allows loopback in eSwitch,
785 * so that VFs and PF can communicate with each other
786 */
787 ethh = (struct ethhdr *)skb->data;
788 tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest);
789 tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2));
790 }
791
792 /* Handle LSO (TSO) packets */
793 if (lso_header_size) {
794 /* Mark opcode as LSO */
795 op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
796 ((ring->prod & ring->size) ?
797 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
798
799 /* Fill in the LSO prefix */
800 tx_desc->lso.mss_hdr_size = cpu_to_be32(
801 skb_shinfo(skb)->gso_size << 16 | lso_header_size);
802
803 /* Copy headers;
804 * note that we already verified that it is linear */
805 memcpy(tx_desc->lso.header, skb->data, lso_header_size);
806
807 priv->port_stats.tso_packets++;
808 i = ((skb->len - lso_header_size) / skb_shinfo(skb)->gso_size) +
809 !!((skb->len - lso_header_size) % skb_shinfo(skb)->gso_size);
810 tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size;
811 ring->packets += i;
812 } else {
813 /* Normal (Non LSO) packet */
814 op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
815 ((ring->prod & ring->size) ?
816 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
817 tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
818 ring->packets++;
819
820 }
821 ring->bytes += tx_info->nr_bytes;
822 netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes);
823 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len);
824
825 if (tx_info->inl) {
826 build_inline_wqe(tx_desc, skb, real_size, &vlan_tag, tx_ind, fragptr);
827 tx_info->inl = 1;
828 }
829
830 ring->prod += nr_txbb;
831
832 /* If we used a bounce buffer then copy descriptor back into place */
833 if (bounce)
834 tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
835
836 skb_tx_timestamp(skb);
837
838 if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && !vlan_tx_tag_present(skb)) {
839 *(__be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
840 op_own |= htonl((bf_index & 0xffff) << 8);
841 /* Ensure new descirptor hits memory
842 * before setting ownership of this descriptor to HW */
843 wmb();
844 tx_desc->ctrl.owner_opcode = op_own;
845
846 wmb();
847
848 mlx4_bf_copy(ring->bf.reg + ring->bf.offset, (unsigned long *) &tx_desc->ctrl,
849 desc_size);
850
851 wmb();
852
853 ring->bf.offset ^= ring->bf.buf_size;
854 } else {
855 /* Ensure new descirptor hits memory
856 * before setting ownership of this descriptor to HW */
857 wmb();
858 tx_desc->ctrl.owner_opcode = op_own;
859 wmb();
860 iowrite32be(ring->doorbell_qpn, ring->bf.uar->map + MLX4_SEND_DOORBELL);
861 }
862
863 return NETDEV_TX_OK;
864
865 tx_drop_unmap:
866 en_err(priv, "DMA mapping error\n");
867
868 for (i++; i < skb_shinfo(skb)->nr_frags; i++) {
869 data++;
870 dma_unmap_page(ddev, (dma_addr_t) be64_to_cpu(data->addr),
871 be32_to_cpu(data->byte_count),
872 PCI_DMA_TODEVICE);
873 }
874
875 tx_drop:
876 dev_kfree_skb_any(skb);
877 priv->stats.tx_dropped++;
878 return NETDEV_TX_OK;
879 }
880
This page took 0.049503 seconds and 6 git commands to generate.