Merge remote-tracking branch 'spi/topic/xilinx' into spi-next
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qed / qed_dev.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/etherdevice.h>
21 #include <linux/qed/qed_chain.h>
22 #include <linux/qed/qed_if.h>
23 #include "qed.h"
24 #include "qed_cxt.h"
25 #include "qed_dcbx.h"
26 #include "qed_dev_api.h"
27 #include "qed_hsi.h"
28 #include "qed_hw.h"
29 #include "qed_init_ops.h"
30 #include "qed_int.h"
31 #include "qed_mcp.h"
32 #include "qed_reg_addr.h"
33 #include "qed_sp.h"
34 #include "qed_sriov.h"
35 #include "qed_vf.h"
36
37 static spinlock_t qm_lock;
38 static bool qm_lock_init = false;
39
40 /* API common to all protocols */
41 enum BAR_ID {
42 BAR_ID_0, /* used for GRC */
43 BAR_ID_1 /* Used for doorbells */
44 };
45
46 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
47 enum BAR_ID bar_id)
48 {
49 u32 bar_reg = (bar_id == BAR_ID_0 ?
50 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
51 u32 val;
52
53 if (IS_VF(p_hwfn->cdev))
54 return 1 << 17;
55
56 val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
57 if (val)
58 return 1 << (val + 15);
59
60 /* Old MFW initialized above registered only conditionally */
61 if (p_hwfn->cdev->num_hwfns > 1) {
62 DP_INFO(p_hwfn,
63 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
64 return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
65 } else {
66 DP_INFO(p_hwfn,
67 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
68 return 512 * 1024;
69 }
70 }
71
72 void qed_init_dp(struct qed_dev *cdev,
73 u32 dp_module, u8 dp_level)
74 {
75 u32 i;
76
77 cdev->dp_level = dp_level;
78 cdev->dp_module = dp_module;
79 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
80 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
81
82 p_hwfn->dp_level = dp_level;
83 p_hwfn->dp_module = dp_module;
84 }
85 }
86
87 void qed_init_struct(struct qed_dev *cdev)
88 {
89 u8 i;
90
91 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
92 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
93
94 p_hwfn->cdev = cdev;
95 p_hwfn->my_id = i;
96 p_hwfn->b_active = false;
97
98 mutex_init(&p_hwfn->dmae_info.mutex);
99 }
100
101 /* hwfn 0 is always active */
102 cdev->hwfns[0].b_active = true;
103
104 /* set the default cache alignment to 128 */
105 cdev->cache_shift = 7;
106 }
107
108 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
109 {
110 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
111
112 kfree(qm_info->qm_pq_params);
113 qm_info->qm_pq_params = NULL;
114 kfree(qm_info->qm_vport_params);
115 qm_info->qm_vport_params = NULL;
116 kfree(qm_info->qm_port_params);
117 qm_info->qm_port_params = NULL;
118 kfree(qm_info->wfq_data);
119 qm_info->wfq_data = NULL;
120 }
121
122 void qed_resc_free(struct qed_dev *cdev)
123 {
124 int i;
125
126 if (IS_VF(cdev))
127 return;
128
129 kfree(cdev->fw_data);
130 cdev->fw_data = NULL;
131
132 kfree(cdev->reset_stats);
133
134 for_each_hwfn(cdev, i) {
135 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
136
137 kfree(p_hwfn->p_tx_cids);
138 p_hwfn->p_tx_cids = NULL;
139 kfree(p_hwfn->p_rx_cids);
140 p_hwfn->p_rx_cids = NULL;
141 }
142
143 for_each_hwfn(cdev, i) {
144 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
145
146 qed_cxt_mngr_free(p_hwfn);
147 qed_qm_info_free(p_hwfn);
148 qed_spq_free(p_hwfn);
149 qed_eq_free(p_hwfn, p_hwfn->p_eq);
150 qed_consq_free(p_hwfn, p_hwfn->p_consq);
151 qed_int_free(p_hwfn);
152 qed_iov_free(p_hwfn);
153 qed_dmae_info_free(p_hwfn);
154 qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
155 }
156 }
157
158 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
159 {
160 u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
161 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
162 struct init_qm_port_params *p_qm_port;
163 u16 num_pqs, multi_cos_tcs = 1;
164 u8 pf_wfq = qm_info->pf_wfq;
165 u32 pf_rl = qm_info->pf_rl;
166 u16 num_vfs = 0;
167
168 #ifdef CONFIG_QED_SRIOV
169 if (p_hwfn->cdev->p_iov_info)
170 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
171 #endif
172 memset(qm_info, 0, sizeof(*qm_info));
173
174 num_pqs = multi_cos_tcs + num_vfs + 1; /* The '1' is for pure-LB */
175 num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
176
177 /* Sanity checking that setup requires legal number of resources */
178 if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
179 DP_ERR(p_hwfn,
180 "Need too many Physical queues - 0x%04x when only %04x are available\n",
181 num_pqs, RESC_NUM(p_hwfn, QED_PQ));
182 return -EINVAL;
183 }
184
185 /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
186 */
187 qm_info->qm_pq_params = kcalloc(num_pqs,
188 sizeof(struct init_qm_pq_params),
189 b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
190 if (!qm_info->qm_pq_params)
191 goto alloc_err;
192
193 qm_info->qm_vport_params = kcalloc(num_vports,
194 sizeof(struct init_qm_vport_params),
195 b_sleepable ? GFP_KERNEL
196 : GFP_ATOMIC);
197 if (!qm_info->qm_vport_params)
198 goto alloc_err;
199
200 qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
201 sizeof(struct init_qm_port_params),
202 b_sleepable ? GFP_KERNEL
203 : GFP_ATOMIC);
204 if (!qm_info->qm_port_params)
205 goto alloc_err;
206
207 qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
208 b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
209 if (!qm_info->wfq_data)
210 goto alloc_err;
211
212 vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
213
214 /* First init per-TC PQs */
215 for (i = 0; i < multi_cos_tcs; i++) {
216 struct init_qm_pq_params *params =
217 &qm_info->qm_pq_params[curr_queue++];
218
219 if (p_hwfn->hw_info.personality == QED_PCI_ETH) {
220 params->vport_id = vport_id;
221 params->tc_id = p_hwfn->hw_info.non_offload_tc;
222 params->wrr_group = 1;
223 } else {
224 params->vport_id = vport_id;
225 params->tc_id = p_hwfn->hw_info.offload_tc;
226 params->wrr_group = 1;
227 }
228 }
229
230 /* Then init pure-LB PQ */
231 qm_info->pure_lb_pq = curr_queue;
232 qm_info->qm_pq_params[curr_queue].vport_id =
233 (u8) RESC_START(p_hwfn, QED_VPORT);
234 qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
235 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
236 curr_queue++;
237
238 qm_info->offload_pq = 0;
239 /* Then init per-VF PQs */
240 vf_offset = curr_queue;
241 for (i = 0; i < num_vfs; i++) {
242 /* First vport is used by the PF */
243 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
244 qm_info->qm_pq_params[curr_queue].tc_id =
245 p_hwfn->hw_info.non_offload_tc;
246 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
247 curr_queue++;
248 }
249
250 qm_info->vf_queues_offset = vf_offset;
251 qm_info->num_pqs = num_pqs;
252 qm_info->num_vports = num_vports;
253
254 /* Initialize qm port parameters */
255 num_ports = p_hwfn->cdev->num_ports_in_engines;
256 for (i = 0; i < num_ports; i++) {
257 p_qm_port = &qm_info->qm_port_params[i];
258 p_qm_port->active = 1;
259 p_qm_port->num_active_phys_tcs = 4;
260 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
261 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
262 }
263
264 qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
265
266 qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
267
268 qm_info->num_vf_pqs = num_vfs;
269 qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
270
271 for (i = 0; i < qm_info->num_vports; i++)
272 qm_info->qm_vport_params[i].vport_wfq = 1;
273
274 qm_info->vport_rl_en = 1;
275 qm_info->vport_wfq_en = 1;
276 qm_info->pf_rl = pf_rl;
277 qm_info->pf_wfq = pf_wfq;
278
279 return 0;
280
281 alloc_err:
282 DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
283 qed_qm_info_free(p_hwfn);
284 return -ENOMEM;
285 }
286
287 /* This function reconfigures the QM pf on the fly.
288 * For this purpose we:
289 * 1. reconfigure the QM database
290 * 2. set new values to runtime arrat
291 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
292 * 4. activate init tool in QM_PF stage
293 * 5. send an sdm_qm_cmd through rbc interface to release the QM
294 */
295 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
296 {
297 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
298 bool b_rc;
299 int rc;
300
301 /* qm_info is allocated in qed_init_qm_info() which is already called
302 * from qed_resc_alloc() or previous call of qed_qm_reconf().
303 * The allocated size may change each init, so we free it before next
304 * allocation.
305 */
306 qed_qm_info_free(p_hwfn);
307
308 /* initialize qed's qm data structure */
309 rc = qed_init_qm_info(p_hwfn, false);
310 if (rc)
311 return rc;
312
313 /* stop PF's qm queues */
314 spin_lock_bh(&qm_lock);
315 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
316 qm_info->start_pq, qm_info->num_pqs);
317 spin_unlock_bh(&qm_lock);
318 if (!b_rc)
319 return -EINVAL;
320
321 /* clear the QM_PF runtime phase leftovers from previous init */
322 qed_init_clear_rt_data(p_hwfn);
323
324 /* prepare QM portion of runtime array */
325 qed_qm_init_pf(p_hwfn);
326
327 /* activate init tool on runtime array */
328 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
329 p_hwfn->hw_info.hw_mode);
330 if (rc)
331 return rc;
332
333 /* start PF's qm queues */
334 spin_lock_bh(&qm_lock);
335 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
336 qm_info->start_pq, qm_info->num_pqs);
337 spin_unlock_bh(&qm_lock);
338 if (!b_rc)
339 return -EINVAL;
340
341 return 0;
342 }
343
344 int qed_resc_alloc(struct qed_dev *cdev)
345 {
346 struct qed_consq *p_consq;
347 struct qed_eq *p_eq;
348 int i, rc = 0;
349
350 if (IS_VF(cdev))
351 return rc;
352
353 cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
354 if (!cdev->fw_data)
355 return -ENOMEM;
356
357 /* Allocate Memory for the Queue->CID mapping */
358 for_each_hwfn(cdev, i) {
359 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
360 int tx_size = sizeof(struct qed_hw_cid_data) *
361 RESC_NUM(p_hwfn, QED_L2_QUEUE);
362 int rx_size = sizeof(struct qed_hw_cid_data) *
363 RESC_NUM(p_hwfn, QED_L2_QUEUE);
364
365 p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
366 if (!p_hwfn->p_tx_cids) {
367 DP_NOTICE(p_hwfn,
368 "Failed to allocate memory for Tx Cids\n");
369 rc = -ENOMEM;
370 goto alloc_err;
371 }
372
373 p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
374 if (!p_hwfn->p_rx_cids) {
375 DP_NOTICE(p_hwfn,
376 "Failed to allocate memory for Rx Cids\n");
377 rc = -ENOMEM;
378 goto alloc_err;
379 }
380 }
381
382 for_each_hwfn(cdev, i) {
383 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
384
385 /* First allocate the context manager structure */
386 rc = qed_cxt_mngr_alloc(p_hwfn);
387 if (rc)
388 goto alloc_err;
389
390 /* Set the HW cid/tid numbers (in the contest manager)
391 * Must be done prior to any further computations.
392 */
393 rc = qed_cxt_set_pf_params(p_hwfn);
394 if (rc)
395 goto alloc_err;
396
397 /* Prepare and process QM requirements */
398 rc = qed_init_qm_info(p_hwfn, true);
399 if (rc)
400 goto alloc_err;
401
402 /* Compute the ILT client partition */
403 rc = qed_cxt_cfg_ilt_compute(p_hwfn);
404 if (rc)
405 goto alloc_err;
406
407 /* CID map / ILT shadow table / T2
408 * The talbes sizes are determined by the computations above
409 */
410 rc = qed_cxt_tables_alloc(p_hwfn);
411 if (rc)
412 goto alloc_err;
413
414 /* SPQ, must follow ILT because initializes SPQ context */
415 rc = qed_spq_alloc(p_hwfn);
416 if (rc)
417 goto alloc_err;
418
419 /* SP status block allocation */
420 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
421 RESERVED_PTT_DPC);
422
423 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
424 if (rc)
425 goto alloc_err;
426
427 rc = qed_iov_alloc(p_hwfn);
428 if (rc)
429 goto alloc_err;
430
431 /* EQ */
432 p_eq = qed_eq_alloc(p_hwfn, 256);
433 if (!p_eq) {
434 rc = -ENOMEM;
435 goto alloc_err;
436 }
437 p_hwfn->p_eq = p_eq;
438
439 p_consq = qed_consq_alloc(p_hwfn);
440 if (!p_consq) {
441 rc = -ENOMEM;
442 goto alloc_err;
443 }
444 p_hwfn->p_consq = p_consq;
445
446 /* DMA info initialization */
447 rc = qed_dmae_info_alloc(p_hwfn);
448 if (rc) {
449 DP_NOTICE(p_hwfn,
450 "Failed to allocate memory for dmae_info structure\n");
451 goto alloc_err;
452 }
453
454 /* DCBX initialization */
455 rc = qed_dcbx_info_alloc(p_hwfn);
456 if (rc) {
457 DP_NOTICE(p_hwfn,
458 "Failed to allocate memory for dcbx structure\n");
459 goto alloc_err;
460 }
461 }
462
463 cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
464 if (!cdev->reset_stats) {
465 DP_NOTICE(cdev, "Failed to allocate reset statistics\n");
466 rc = -ENOMEM;
467 goto alloc_err;
468 }
469
470 return 0;
471
472 alloc_err:
473 qed_resc_free(cdev);
474 return rc;
475 }
476
477 void qed_resc_setup(struct qed_dev *cdev)
478 {
479 int i;
480
481 if (IS_VF(cdev))
482 return;
483
484 for_each_hwfn(cdev, i) {
485 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
486
487 qed_cxt_mngr_setup(p_hwfn);
488 qed_spq_setup(p_hwfn);
489 qed_eq_setup(p_hwfn, p_hwfn->p_eq);
490 qed_consq_setup(p_hwfn, p_hwfn->p_consq);
491
492 /* Read shadow of current MFW mailbox */
493 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
494 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
495 p_hwfn->mcp_info->mfw_mb_cur,
496 p_hwfn->mcp_info->mfw_mb_length);
497
498 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
499
500 qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
501 }
502 }
503
504 #define FINAL_CLEANUP_POLL_CNT (100)
505 #define FINAL_CLEANUP_POLL_TIME (10)
506 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
507 struct qed_ptt *p_ptt, u16 id, bool is_vf)
508 {
509 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
510 int rc = -EBUSY;
511
512 addr = GTT_BAR0_MAP_REG_USDM_RAM +
513 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
514
515 if (is_vf)
516 id += 0x10;
517
518 command |= X_FINAL_CLEANUP_AGG_INT <<
519 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
520 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
521 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
522 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
523
524 /* Make sure notification is not set before initiating final cleanup */
525 if (REG_RD(p_hwfn, addr)) {
526 DP_NOTICE(
527 p_hwfn,
528 "Unexpected; Found final cleanup notification before initiating final cleanup\n");
529 REG_WR(p_hwfn, addr, 0);
530 }
531
532 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
533 "Sending final cleanup for PFVF[%d] [Command %08x\n]",
534 id, command);
535
536 qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
537
538 /* Poll until completion */
539 while (!REG_RD(p_hwfn, addr) && count--)
540 msleep(FINAL_CLEANUP_POLL_TIME);
541
542 if (REG_RD(p_hwfn, addr))
543 rc = 0;
544 else
545 DP_NOTICE(p_hwfn,
546 "Failed to receive FW final cleanup notification\n");
547
548 /* Cleanup afterwards */
549 REG_WR(p_hwfn, addr, 0);
550
551 return rc;
552 }
553
554 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
555 {
556 int hw_mode = 0;
557
558 hw_mode = (1 << MODE_BB_B0);
559
560 switch (p_hwfn->cdev->num_ports_in_engines) {
561 case 1:
562 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
563 break;
564 case 2:
565 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
566 break;
567 case 4:
568 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
569 break;
570 default:
571 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
572 p_hwfn->cdev->num_ports_in_engines);
573 return;
574 }
575
576 switch (p_hwfn->cdev->mf_mode) {
577 case QED_MF_DEFAULT:
578 case QED_MF_NPAR:
579 hw_mode |= 1 << MODE_MF_SI;
580 break;
581 case QED_MF_OVLAN:
582 hw_mode |= 1 << MODE_MF_SD;
583 break;
584 default:
585 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
586 hw_mode |= 1 << MODE_MF_SI;
587 }
588
589 hw_mode |= 1 << MODE_ASIC;
590
591 if (p_hwfn->cdev->num_hwfns > 1)
592 hw_mode |= 1 << MODE_100G;
593
594 p_hwfn->hw_info.hw_mode = hw_mode;
595
596 DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
597 "Configuring function for hw_mode: 0x%08x\n",
598 p_hwfn->hw_info.hw_mode);
599 }
600
601 /* Init run time data for all PFs on an engine. */
602 static void qed_init_cau_rt_data(struct qed_dev *cdev)
603 {
604 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
605 int i, sb_id;
606
607 for_each_hwfn(cdev, i) {
608 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
609 struct qed_igu_info *p_igu_info;
610 struct qed_igu_block *p_block;
611 struct cau_sb_entry sb_entry;
612
613 p_igu_info = p_hwfn->hw_info.p_igu_info;
614
615 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
616 sb_id++) {
617 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
618 if (!p_block->is_pf)
619 continue;
620
621 qed_init_cau_sb_entry(p_hwfn, &sb_entry,
622 p_block->function_id,
623 0, 0);
624 STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2,
625 sb_entry);
626 }
627 }
628 }
629
630 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
631 struct qed_ptt *p_ptt,
632 int hw_mode)
633 {
634 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
635 struct qed_qm_common_rt_init_params params;
636 struct qed_dev *cdev = p_hwfn->cdev;
637 u32 concrete_fid;
638 int rc = 0;
639 u8 vf_id;
640
641 qed_init_cau_rt_data(cdev);
642
643 /* Program GTT windows */
644 qed_gtt_init(p_hwfn);
645
646 if (p_hwfn->mcp_info) {
647 if (p_hwfn->mcp_info->func_info.bandwidth_max)
648 qm_info->pf_rl_en = 1;
649 if (p_hwfn->mcp_info->func_info.bandwidth_min)
650 qm_info->pf_wfq_en = 1;
651 }
652
653 memset(&params, 0, sizeof(params));
654 params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
655 params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
656 params.pf_rl_en = qm_info->pf_rl_en;
657 params.pf_wfq_en = qm_info->pf_wfq_en;
658 params.vport_rl_en = qm_info->vport_rl_en;
659 params.vport_wfq_en = qm_info->vport_wfq_en;
660 params.port_params = qm_info->qm_port_params;
661
662 qed_qm_common_rt_init(p_hwfn, &params);
663
664 qed_cxt_hw_init_common(p_hwfn);
665
666 /* Close gate from NIG to BRB/Storm; By default they are open, but
667 * we close them to prevent NIG from passing data to reset blocks.
668 * Should have been done in the ENGINE phase, but init-tool lacks
669 * proper port-pretend capabilities.
670 */
671 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
672 qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
673 qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
674 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
675 qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
676 qed_port_unpretend(p_hwfn, p_ptt);
677
678 rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
679 if (rc != 0)
680 return rc;
681
682 qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
683 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
684
685 /* Disable relaxed ordering in the PCI config space */
686 qed_wr(p_hwfn, p_ptt, 0x20b4,
687 qed_rd(p_hwfn, p_ptt, 0x20b4) & ~0x10);
688
689 for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
690 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
691 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
692 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
693 }
694 /* pretend to original PF */
695 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
696
697 return rc;
698 }
699
700 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
701 struct qed_ptt *p_ptt,
702 int hw_mode)
703 {
704 int rc = 0;
705
706 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
707 hw_mode);
708 return rc;
709 }
710
711 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
712 struct qed_ptt *p_ptt,
713 struct qed_tunn_start_params *p_tunn,
714 int hw_mode,
715 bool b_hw_start,
716 enum qed_int_mode int_mode,
717 bool allow_npar_tx_switch)
718 {
719 u8 rel_pf_id = p_hwfn->rel_pf_id;
720 int rc = 0;
721
722 if (p_hwfn->mcp_info) {
723 struct qed_mcp_function_info *p_info;
724
725 p_info = &p_hwfn->mcp_info->func_info;
726 if (p_info->bandwidth_min)
727 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
728
729 /* Update rate limit once we'll actually have a link */
730 p_hwfn->qm_info.pf_rl = 100000;
731 }
732
733 qed_cxt_hw_init_pf(p_hwfn);
734
735 qed_int_igu_init_rt(p_hwfn);
736
737 /* Set VLAN in NIG if needed */
738 if (hw_mode & (1 << MODE_MF_SD)) {
739 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
740 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
741 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
742 p_hwfn->hw_info.ovlan);
743 }
744
745 /* Enable classification by MAC if needed */
746 if (hw_mode & (1 << MODE_MF_SI)) {
747 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
748 "Configuring TAGMAC_CLS_TYPE\n");
749 STORE_RT_REG(p_hwfn,
750 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
751 }
752
753 /* Protocl Configuration */
754 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 0);
755 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
756 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
757
758 /* Cleanup chip from previous driver if such remains exist */
759 rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
760 if (rc != 0)
761 return rc;
762
763 /* PF Init sequence */
764 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
765 if (rc)
766 return rc;
767
768 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
769 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
770 if (rc)
771 return rc;
772
773 /* Pure runtime initializations - directly to the HW */
774 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
775
776 if (b_hw_start) {
777 /* enable interrupts */
778 qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
779
780 /* send function start command */
781 rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
782 allow_npar_tx_switch);
783 if (rc)
784 DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
785 }
786 return rc;
787 }
788
789 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
790 struct qed_ptt *p_ptt,
791 u8 enable)
792 {
793 u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
794
795 /* Change PF in PXP */
796 qed_wr(p_hwfn, p_ptt,
797 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
798
799 /* wait until value is set - try for 1 second every 50us */
800 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
801 val = qed_rd(p_hwfn, p_ptt,
802 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
803 if (val == set_val)
804 break;
805
806 usleep_range(50, 60);
807 }
808
809 if (val != set_val) {
810 DP_NOTICE(p_hwfn,
811 "PFID_ENABLE_MASTER wasn't changed after a second\n");
812 return -EAGAIN;
813 }
814
815 return 0;
816 }
817
818 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
819 struct qed_ptt *p_main_ptt)
820 {
821 /* Read shadow of current MFW mailbox */
822 qed_mcp_read_mb(p_hwfn, p_main_ptt);
823 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
824 p_hwfn->mcp_info->mfw_mb_cur,
825 p_hwfn->mcp_info->mfw_mb_length);
826 }
827
828 int qed_hw_init(struct qed_dev *cdev,
829 struct qed_tunn_start_params *p_tunn,
830 bool b_hw_start,
831 enum qed_int_mode int_mode,
832 bool allow_npar_tx_switch,
833 const u8 *bin_fw_data)
834 {
835 u32 load_code, param;
836 int rc, mfw_rc, i;
837
838 if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
839 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
840 return -EINVAL;
841 }
842
843 if (IS_PF(cdev)) {
844 rc = qed_init_fw_data(cdev, bin_fw_data);
845 if (rc != 0)
846 return rc;
847 }
848
849 for_each_hwfn(cdev, i) {
850 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
851
852 if (IS_VF(cdev)) {
853 p_hwfn->b_int_enabled = 1;
854 continue;
855 }
856
857 /* Enable DMAE in PXP */
858 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
859
860 qed_calc_hw_mode(p_hwfn);
861
862 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
863 &load_code);
864 if (rc) {
865 DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
866 return rc;
867 }
868
869 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
870
871 DP_VERBOSE(p_hwfn, QED_MSG_SP,
872 "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
873 rc, load_code);
874
875 p_hwfn->first_on_engine = (load_code ==
876 FW_MSG_CODE_DRV_LOAD_ENGINE);
877
878 if (!qm_lock_init) {
879 spin_lock_init(&qm_lock);
880 qm_lock_init = true;
881 }
882
883 switch (load_code) {
884 case FW_MSG_CODE_DRV_LOAD_ENGINE:
885 rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
886 p_hwfn->hw_info.hw_mode);
887 if (rc)
888 break;
889 /* Fall into */
890 case FW_MSG_CODE_DRV_LOAD_PORT:
891 rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
892 p_hwfn->hw_info.hw_mode);
893 if (rc)
894 break;
895
896 /* Fall into */
897 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
898 rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
899 p_tunn, p_hwfn->hw_info.hw_mode,
900 b_hw_start, int_mode,
901 allow_npar_tx_switch);
902 break;
903 default:
904 rc = -EINVAL;
905 break;
906 }
907
908 if (rc)
909 DP_NOTICE(p_hwfn,
910 "init phase failed for loadcode 0x%x (rc %d)\n",
911 load_code, rc);
912
913 /* ACK mfw regardless of success or failure of initialization */
914 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
915 DRV_MSG_CODE_LOAD_DONE,
916 0, &load_code, &param);
917 if (rc)
918 return rc;
919 if (mfw_rc) {
920 DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
921 return mfw_rc;
922 }
923
924 /* send DCBX attention request command */
925 DP_VERBOSE(p_hwfn,
926 QED_MSG_DCB,
927 "sending phony dcbx set command to trigger DCBx attention handling\n");
928 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
929 DRV_MSG_CODE_SET_DCBX,
930 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
931 &load_code, &param);
932 if (mfw_rc) {
933 DP_NOTICE(p_hwfn,
934 "Failed to send DCBX attention request\n");
935 return mfw_rc;
936 }
937
938 p_hwfn->hw_init_done = true;
939 }
940
941 return 0;
942 }
943
944 #define QED_HW_STOP_RETRY_LIMIT (10)
945 static inline void qed_hw_timers_stop(struct qed_dev *cdev,
946 struct qed_hwfn *p_hwfn,
947 struct qed_ptt *p_ptt)
948 {
949 int i;
950
951 /* close timers */
952 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
953 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
954
955 for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
956 if ((!qed_rd(p_hwfn, p_ptt,
957 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
958 (!qed_rd(p_hwfn, p_ptt,
959 TM_REG_PF_SCAN_ACTIVE_TASK)))
960 break;
961
962 /* Dependent on number of connection/tasks, possibly
963 * 1ms sleep is required between polls
964 */
965 usleep_range(1000, 2000);
966 }
967
968 if (i < QED_HW_STOP_RETRY_LIMIT)
969 return;
970
971 DP_NOTICE(p_hwfn,
972 "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
973 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
974 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
975 }
976
977 void qed_hw_timers_stop_all(struct qed_dev *cdev)
978 {
979 int j;
980
981 for_each_hwfn(cdev, j) {
982 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
983 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
984
985 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
986 }
987 }
988
989 int qed_hw_stop(struct qed_dev *cdev)
990 {
991 int rc = 0, t_rc;
992 int j;
993
994 for_each_hwfn(cdev, j) {
995 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
996 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
997
998 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
999
1000 if (IS_VF(cdev)) {
1001 qed_vf_pf_int_cleanup(p_hwfn);
1002 continue;
1003 }
1004
1005 /* mark the hw as uninitialized... */
1006 p_hwfn->hw_init_done = false;
1007
1008 rc = qed_sp_pf_stop(p_hwfn);
1009 if (rc)
1010 DP_NOTICE(p_hwfn,
1011 "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
1012
1013 qed_wr(p_hwfn, p_ptt,
1014 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1015
1016 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1017 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1018 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1019 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1020 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1021
1022 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1023
1024 /* Disable Attention Generation */
1025 qed_int_igu_disable_int(p_hwfn, p_ptt);
1026
1027 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1028 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1029
1030 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1031
1032 /* Need to wait 1ms to guarantee SBs are cleared */
1033 usleep_range(1000, 2000);
1034 }
1035
1036 if (IS_PF(cdev)) {
1037 /* Disable DMAE in PXP - in CMT, this should only be done for
1038 * first hw-function, and only after all transactions have
1039 * stopped for all active hw-functions.
1040 */
1041 t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1042 cdev->hwfns[0].p_main_ptt, false);
1043 if (t_rc != 0)
1044 rc = t_rc;
1045 }
1046
1047 return rc;
1048 }
1049
1050 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1051 {
1052 int j;
1053
1054 for_each_hwfn(cdev, j) {
1055 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1056 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1057
1058 if (IS_VF(cdev)) {
1059 qed_vf_pf_int_cleanup(p_hwfn);
1060 continue;
1061 }
1062
1063 DP_VERBOSE(p_hwfn,
1064 NETIF_MSG_IFDOWN,
1065 "Shutting down the fastpath\n");
1066
1067 qed_wr(p_hwfn, p_ptt,
1068 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1069
1070 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1071 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1072 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1073 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1074 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1075
1076 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1077
1078 /* Need to wait 1ms to guarantee SBs are cleared */
1079 usleep_range(1000, 2000);
1080 }
1081 }
1082
1083 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1084 {
1085 if (IS_VF(p_hwfn->cdev))
1086 return;
1087
1088 /* Re-open incoming traffic */
1089 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1090 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1091 }
1092
1093 static int qed_reg_assert(struct qed_hwfn *hwfn,
1094 struct qed_ptt *ptt, u32 reg,
1095 bool expected)
1096 {
1097 u32 assert_val = qed_rd(hwfn, ptt, reg);
1098
1099 if (assert_val != expected) {
1100 DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n",
1101 reg, expected);
1102 return -EINVAL;
1103 }
1104
1105 return 0;
1106 }
1107
1108 int qed_hw_reset(struct qed_dev *cdev)
1109 {
1110 int rc = 0;
1111 u32 unload_resp, unload_param;
1112 int i;
1113
1114 for_each_hwfn(cdev, i) {
1115 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1116
1117 if (IS_VF(cdev)) {
1118 rc = qed_vf_pf_reset(p_hwfn);
1119 if (rc)
1120 return rc;
1121 continue;
1122 }
1123
1124 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1125
1126 /* Check for incorrect states */
1127 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1128 QM_REG_USG_CNT_PF_TX, 0);
1129 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1130 QM_REG_USG_CNT_PF_OTHER, 0);
1131
1132 /* Disable PF in HW blocks */
1133 qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1134 qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1135 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1136 TCFC_REG_STRONG_ENABLE_PF, 0);
1137 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1138 CCFC_REG_STRONG_ENABLE_PF, 0);
1139
1140 /* Send unload command to MCP */
1141 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1142 DRV_MSG_CODE_UNLOAD_REQ,
1143 DRV_MB_PARAM_UNLOAD_WOL_MCP,
1144 &unload_resp, &unload_param);
1145 if (rc) {
1146 DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1147 unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1148 }
1149
1150 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1151 DRV_MSG_CODE_UNLOAD_DONE,
1152 0, &unload_resp, &unload_param);
1153 if (rc) {
1154 DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1155 return rc;
1156 }
1157 }
1158
1159 return rc;
1160 }
1161
1162 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1163 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1164 {
1165 qed_ptt_pool_free(p_hwfn);
1166 kfree(p_hwfn->hw_info.p_igu_info);
1167 }
1168
1169 /* Setup bar access */
1170 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1171 {
1172 /* clear indirect access */
1173 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1174 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1175 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1176 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1177
1178 /* Clean Previous errors if such exist */
1179 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1180 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
1181 1 << p_hwfn->abs_pf_id);
1182
1183 /* enable internal target-read */
1184 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1185 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1186 }
1187
1188 static void get_function_id(struct qed_hwfn *p_hwfn)
1189 {
1190 /* ME Register */
1191 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR);
1192
1193 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1194
1195 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1196 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1197 PXP_CONCRETE_FID_PFID);
1198 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1199 PXP_CONCRETE_FID_PORT);
1200 }
1201
1202 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1203 {
1204 u32 *feat_num = p_hwfn->hw_info.feat_num;
1205 int num_features = 1;
1206
1207 feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1208 num_features,
1209 RESC_NUM(p_hwfn, QED_L2_QUEUE));
1210 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1211 "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
1212 feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
1213 num_features);
1214 }
1215
1216 static void qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1217 {
1218 u32 *resc_start = p_hwfn->hw_info.resc_start;
1219 u8 num_funcs = p_hwfn->num_funcs_on_engine;
1220 u32 *resc_num = p_hwfn->hw_info.resc_num;
1221 struct qed_sb_cnt_info sb_cnt_info;
1222 int i, max_vf_vlan_filters;
1223
1224 memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1225
1226 #ifdef CONFIG_QED_SRIOV
1227 max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1228 #else
1229 max_vf_vlan_filters = 0;
1230 #endif
1231
1232 qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1233
1234 resc_num[QED_SB] = min_t(u32,
1235 (MAX_SB_PER_PATH_BB / num_funcs),
1236 sb_cnt_info.sb_cnt);
1237 resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1238 resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1239 resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1240 resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1241 resc_num[QED_RL] = 8;
1242 resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1243 resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1244 num_funcs;
1245 resc_num[QED_ILT] = 950;
1246
1247 for (i = 0; i < QED_MAX_RESC; i++)
1248 resc_start[i] = resc_num[i] * p_hwfn->rel_pf_id;
1249
1250 qed_hw_set_feat(p_hwfn);
1251
1252 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1253 "The numbers for each resource are:\n"
1254 "SB = %d start = %d\n"
1255 "L2_QUEUE = %d start = %d\n"
1256 "VPORT = %d start = %d\n"
1257 "PQ = %d start = %d\n"
1258 "RL = %d start = %d\n"
1259 "MAC = %d start = %d\n"
1260 "VLAN = %d start = %d\n"
1261 "ILT = %d start = %d\n",
1262 p_hwfn->hw_info.resc_num[QED_SB],
1263 p_hwfn->hw_info.resc_start[QED_SB],
1264 p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1265 p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1266 p_hwfn->hw_info.resc_num[QED_VPORT],
1267 p_hwfn->hw_info.resc_start[QED_VPORT],
1268 p_hwfn->hw_info.resc_num[QED_PQ],
1269 p_hwfn->hw_info.resc_start[QED_PQ],
1270 p_hwfn->hw_info.resc_num[QED_RL],
1271 p_hwfn->hw_info.resc_start[QED_RL],
1272 p_hwfn->hw_info.resc_num[QED_MAC],
1273 p_hwfn->hw_info.resc_start[QED_MAC],
1274 p_hwfn->hw_info.resc_num[QED_VLAN],
1275 p_hwfn->hw_info.resc_start[QED_VLAN],
1276 p_hwfn->hw_info.resc_num[QED_ILT],
1277 p_hwfn->hw_info.resc_start[QED_ILT]);
1278 }
1279
1280 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn,
1281 struct qed_ptt *p_ptt)
1282 {
1283 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1284 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1285 struct qed_mcp_link_params *link;
1286
1287 /* Read global nvm_cfg address */
1288 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1289
1290 /* Verify MCP has initialized it */
1291 if (!nvm_cfg_addr) {
1292 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1293 return -EINVAL;
1294 }
1295
1296 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
1297 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1298
1299 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1300 offsetof(struct nvm_cfg1, glob) +
1301 offsetof(struct nvm_cfg1_glob, core_cfg);
1302
1303 core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1304
1305 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1306 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1307 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X40G:
1308 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1309 break;
1310 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X50G:
1311 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1312 break;
1313 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X100G:
1314 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1315 break;
1316 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_F:
1317 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1318 break;
1319 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_E:
1320 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1321 break;
1322 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X20G:
1323 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1324 break;
1325 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X40G:
1326 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1327 break;
1328 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X25G:
1329 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1330 break;
1331 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X25G:
1332 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1333 break;
1334 default:
1335 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n",
1336 core_cfg);
1337 break;
1338 }
1339
1340 /* Read default link configuration */
1341 link = &p_hwfn->mcp_info->link_input;
1342 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1343 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1344 link_temp = qed_rd(p_hwfn, p_ptt,
1345 port_cfg_addr +
1346 offsetof(struct nvm_cfg1_port, speed_cap_mask));
1347 link->speed.advertised_speeds =
1348 link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1349
1350 p_hwfn->mcp_info->link_capabilities.speed_capabilities =
1351 link->speed.advertised_speeds;
1352
1353 link_temp = qed_rd(p_hwfn, p_ptt,
1354 port_cfg_addr +
1355 offsetof(struct nvm_cfg1_port, link_settings));
1356 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1357 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1358 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1359 link->speed.autoneg = true;
1360 break;
1361 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1362 link->speed.forced_speed = 1000;
1363 break;
1364 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1365 link->speed.forced_speed = 10000;
1366 break;
1367 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1368 link->speed.forced_speed = 25000;
1369 break;
1370 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1371 link->speed.forced_speed = 40000;
1372 break;
1373 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1374 link->speed.forced_speed = 50000;
1375 break;
1376 case NVM_CFG1_PORT_DRV_LINK_SPEED_100G:
1377 link->speed.forced_speed = 100000;
1378 break;
1379 default:
1380 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n",
1381 link_temp);
1382 }
1383
1384 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1385 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1386 link->pause.autoneg = !!(link_temp &
1387 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1388 link->pause.forced_rx = !!(link_temp &
1389 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1390 link->pause.forced_tx = !!(link_temp &
1391 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1392 link->loopback_mode = 0;
1393
1394 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1395 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1396 link->speed.forced_speed, link->speed.advertised_speeds,
1397 link->speed.autoneg, link->pause.autoneg);
1398
1399 /* Read Multi-function information from shmem */
1400 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1401 offsetof(struct nvm_cfg1, glob) +
1402 offsetof(struct nvm_cfg1_glob, generic_cont0);
1403
1404 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1405
1406 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1407 NVM_CFG1_GLOB_MF_MODE_OFFSET;
1408
1409 switch (mf_mode) {
1410 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1411 p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1412 break;
1413 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1414 p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1415 break;
1416 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1417 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1418 break;
1419 }
1420 DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1421 p_hwfn->cdev->mf_mode);
1422
1423 /* Read Multi-function information from shmem */
1424 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1425 offsetof(struct nvm_cfg1, glob) +
1426 offsetof(struct nvm_cfg1_glob, device_capabilities);
1427
1428 device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1429 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1430 __set_bit(QED_DEV_CAP_ETH,
1431 &p_hwfn->hw_info.device_capabilities);
1432
1433 return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1434 }
1435
1436 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1437 {
1438 u32 reg_function_hide, tmp, eng_mask;
1439 u8 num_funcs;
1440
1441 num_funcs = MAX_NUM_PFS_BB;
1442
1443 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1444 * in the other bits are selected.
1445 * Bits 1-15 are for functions 1-15, respectively, and their value is
1446 * '0' only for enabled functions (function 0 always exists and
1447 * enabled).
1448 * In case of CMT, only the "even" functions are enabled, and thus the
1449 * number of functions for both hwfns is learnt from the same bits.
1450 */
1451 reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1452
1453 if (reg_function_hide & 0x1) {
1454 if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1455 num_funcs = 0;
1456 eng_mask = 0xaaaa;
1457 } else {
1458 num_funcs = 1;
1459 eng_mask = 0x5554;
1460 }
1461
1462 /* Get the number of the enabled functions on the engine */
1463 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1464 while (tmp) {
1465 if (tmp & 0x1)
1466 num_funcs++;
1467 tmp >>= 0x1;
1468 }
1469 }
1470
1471 p_hwfn->num_funcs_on_engine = num_funcs;
1472
1473 DP_VERBOSE(p_hwfn,
1474 NETIF_MSG_PROBE,
1475 "PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n",
1476 p_hwfn->rel_pf_id,
1477 p_hwfn->abs_pf_id,
1478 p_hwfn->num_funcs_on_engine);
1479 }
1480
1481 static int
1482 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1483 struct qed_ptt *p_ptt,
1484 enum qed_pci_personality personality)
1485 {
1486 u32 port_mode;
1487 int rc;
1488
1489 /* Since all information is common, only first hwfns should do this */
1490 if (IS_LEAD_HWFN(p_hwfn)) {
1491 rc = qed_iov_hw_info(p_hwfn);
1492 if (rc)
1493 return rc;
1494 }
1495
1496 /* Read the port mode */
1497 port_mode = qed_rd(p_hwfn, p_ptt,
1498 CNIG_REG_NW_PORT_MODE_BB_B0);
1499
1500 if (port_mode < 3) {
1501 p_hwfn->cdev->num_ports_in_engines = 1;
1502 } else if (port_mode <= 5) {
1503 p_hwfn->cdev->num_ports_in_engines = 2;
1504 } else {
1505 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1506 p_hwfn->cdev->num_ports_in_engines);
1507
1508 /* Default num_ports_in_engines to something */
1509 p_hwfn->cdev->num_ports_in_engines = 1;
1510 }
1511
1512 qed_hw_get_nvm_info(p_hwfn, p_ptt);
1513
1514 rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1515 if (rc)
1516 return rc;
1517
1518 if (qed_mcp_is_init(p_hwfn))
1519 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1520 p_hwfn->mcp_info->func_info.mac);
1521 else
1522 eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1523
1524 if (qed_mcp_is_init(p_hwfn)) {
1525 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1526 p_hwfn->hw_info.ovlan =
1527 p_hwfn->mcp_info->func_info.ovlan;
1528
1529 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1530 }
1531
1532 if (qed_mcp_is_init(p_hwfn)) {
1533 enum qed_pci_personality protocol;
1534
1535 protocol = p_hwfn->mcp_info->func_info.protocol;
1536 p_hwfn->hw_info.personality = protocol;
1537 }
1538
1539 qed_get_num_funcs(p_hwfn, p_ptt);
1540
1541 qed_hw_get_resc(p_hwfn);
1542
1543 return rc;
1544 }
1545
1546 static int qed_get_dev_info(struct qed_dev *cdev)
1547 {
1548 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1549 u32 tmp;
1550
1551 /* Read Vendor Id / Device Id */
1552 pci_read_config_word(cdev->pdev, PCI_VENDOR_ID,
1553 &cdev->vendor_id);
1554 pci_read_config_word(cdev->pdev, PCI_DEVICE_ID,
1555 &cdev->device_id);
1556 cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1557 MISCS_REG_CHIP_NUM);
1558 cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1559 MISCS_REG_CHIP_REV);
1560 MASK_FIELD(CHIP_REV, cdev->chip_rev);
1561
1562 cdev->type = QED_DEV_TYPE_BB;
1563 /* Learn number of HW-functions */
1564 tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1565 MISCS_REG_CMT_ENABLED_FOR_PAIR);
1566
1567 if (tmp & (1 << p_hwfn->rel_pf_id)) {
1568 DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1569 cdev->num_hwfns = 2;
1570 } else {
1571 cdev->num_hwfns = 1;
1572 }
1573
1574 cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1575 MISCS_REG_CHIP_TEST_REG) >> 4;
1576 MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1577 cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1578 MISCS_REG_CHIP_METAL);
1579 MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1580
1581 DP_INFO(cdev->hwfns,
1582 "Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1583 cdev->chip_num, cdev->chip_rev,
1584 cdev->chip_bond_id, cdev->chip_metal);
1585
1586 if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1587 DP_NOTICE(cdev->hwfns,
1588 "The chip type/rev (BB A0) is not supported!\n");
1589 return -EINVAL;
1590 }
1591
1592 return 0;
1593 }
1594
1595 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1596 void __iomem *p_regview,
1597 void __iomem *p_doorbells,
1598 enum qed_pci_personality personality)
1599 {
1600 int rc = 0;
1601
1602 /* Split PCI bars evenly between hwfns */
1603 p_hwfn->regview = p_regview;
1604 p_hwfn->doorbells = p_doorbells;
1605
1606 if (IS_VF(p_hwfn->cdev))
1607 return qed_vf_hw_prepare(p_hwfn);
1608
1609 /* Validate that chip access is feasible */
1610 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1611 DP_ERR(p_hwfn,
1612 "Reading the ME register returns all Fs; Preventing further chip access\n");
1613 return -EINVAL;
1614 }
1615
1616 get_function_id(p_hwfn);
1617
1618 /* Allocate PTT pool */
1619 rc = qed_ptt_pool_alloc(p_hwfn);
1620 if (rc) {
1621 DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n");
1622 goto err0;
1623 }
1624
1625 /* Allocate the main PTT */
1626 p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1627
1628 /* First hwfn learns basic information, e.g., number of hwfns */
1629 if (!p_hwfn->my_id) {
1630 rc = qed_get_dev_info(p_hwfn->cdev);
1631 if (rc != 0)
1632 goto err1;
1633 }
1634
1635 qed_hw_hwfn_prepare(p_hwfn);
1636
1637 /* Initialize MCP structure */
1638 rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1639 if (rc) {
1640 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1641 goto err1;
1642 }
1643
1644 /* Read the device configuration information from the HW and SHMEM */
1645 rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1646 if (rc) {
1647 DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1648 goto err2;
1649 }
1650
1651 /* Allocate the init RT array and initialize the init-ops engine */
1652 rc = qed_init_alloc(p_hwfn);
1653 if (rc) {
1654 DP_NOTICE(p_hwfn, "Failed to allocate the init array\n");
1655 goto err2;
1656 }
1657
1658 return rc;
1659 err2:
1660 if (IS_LEAD_HWFN(p_hwfn))
1661 qed_iov_free_hw_info(p_hwfn->cdev);
1662 qed_mcp_free(p_hwfn);
1663 err1:
1664 qed_hw_hwfn_free(p_hwfn);
1665 err0:
1666 return rc;
1667 }
1668
1669 int qed_hw_prepare(struct qed_dev *cdev,
1670 int personality)
1671 {
1672 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1673 int rc;
1674
1675 /* Store the precompiled init data ptrs */
1676 if (IS_PF(cdev))
1677 qed_init_iro_array(cdev);
1678
1679 /* Initialize the first hwfn - will learn number of hwfns */
1680 rc = qed_hw_prepare_single(p_hwfn,
1681 cdev->regview,
1682 cdev->doorbells, personality);
1683 if (rc)
1684 return rc;
1685
1686 personality = p_hwfn->hw_info.personality;
1687
1688 /* Initialize the rest of the hwfns */
1689 if (cdev->num_hwfns > 1) {
1690 void __iomem *p_regview, *p_doorbell;
1691 u8 __iomem *addr;
1692
1693 /* adjust bar offset for second engine */
1694 addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
1695 p_regview = addr;
1696
1697 /* adjust doorbell bar offset for second engine */
1698 addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
1699 p_doorbell = addr;
1700
1701 /* prepare second hw function */
1702 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
1703 p_doorbell, personality);
1704
1705 /* in case of error, need to free the previously
1706 * initiliazed hwfn 0.
1707 */
1708 if (rc) {
1709 if (IS_PF(cdev)) {
1710 qed_init_free(p_hwfn);
1711 qed_mcp_free(p_hwfn);
1712 qed_hw_hwfn_free(p_hwfn);
1713 }
1714 }
1715 }
1716
1717 return rc;
1718 }
1719
1720 void qed_hw_remove(struct qed_dev *cdev)
1721 {
1722 int i;
1723
1724 for_each_hwfn(cdev, i) {
1725 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1726
1727 if (IS_VF(cdev)) {
1728 qed_vf_pf_release(p_hwfn);
1729 continue;
1730 }
1731
1732 qed_init_free(p_hwfn);
1733 qed_hw_hwfn_free(p_hwfn);
1734 qed_mcp_free(p_hwfn);
1735 }
1736
1737 qed_iov_free_hw_info(cdev);
1738 }
1739
1740 int qed_chain_alloc(struct qed_dev *cdev,
1741 enum qed_chain_use_mode intended_use,
1742 enum qed_chain_mode mode,
1743 u16 num_elems,
1744 size_t elem_size,
1745 struct qed_chain *p_chain)
1746 {
1747 dma_addr_t p_pbl_phys = 0;
1748 void *p_pbl_virt = NULL;
1749 dma_addr_t p_phys = 0;
1750 void *p_virt = NULL;
1751 u16 page_cnt = 0;
1752 size_t size;
1753
1754 if (mode == QED_CHAIN_MODE_SINGLE)
1755 page_cnt = 1;
1756 else
1757 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
1758
1759 size = page_cnt * QED_CHAIN_PAGE_SIZE;
1760 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1761 size, &p_phys, GFP_KERNEL);
1762 if (!p_virt) {
1763 DP_NOTICE(cdev, "Failed to allocate chain mem\n");
1764 goto nomem;
1765 }
1766
1767 if (mode == QED_CHAIN_MODE_PBL) {
1768 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1769 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
1770 size, &p_pbl_phys,
1771 GFP_KERNEL);
1772 if (!p_pbl_virt) {
1773 DP_NOTICE(cdev, "Failed to allocate chain pbl mem\n");
1774 goto nomem;
1775 }
1776
1777 qed_chain_pbl_init(p_chain, p_virt, p_phys, page_cnt,
1778 (u8)elem_size, intended_use,
1779 p_pbl_phys, p_pbl_virt);
1780 } else {
1781 qed_chain_init(p_chain, p_virt, p_phys, page_cnt,
1782 (u8)elem_size, intended_use, mode);
1783 }
1784
1785 return 0;
1786
1787 nomem:
1788 dma_free_coherent(&cdev->pdev->dev,
1789 page_cnt * QED_CHAIN_PAGE_SIZE,
1790 p_virt, p_phys);
1791 dma_free_coherent(&cdev->pdev->dev,
1792 page_cnt * QED_CHAIN_PBL_ENTRY_SIZE,
1793 p_pbl_virt, p_pbl_phys);
1794
1795 return -ENOMEM;
1796 }
1797
1798 void qed_chain_free(struct qed_dev *cdev,
1799 struct qed_chain *p_chain)
1800 {
1801 size_t size;
1802
1803 if (!p_chain->p_virt_addr)
1804 return;
1805
1806 if (p_chain->mode == QED_CHAIN_MODE_PBL) {
1807 size = p_chain->page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1808 dma_free_coherent(&cdev->pdev->dev, size,
1809 p_chain->pbl.p_virt_table,
1810 p_chain->pbl.p_phys_table);
1811 }
1812
1813 size = p_chain->page_cnt * QED_CHAIN_PAGE_SIZE;
1814 dma_free_coherent(&cdev->pdev->dev, size,
1815 p_chain->p_virt_addr,
1816 p_chain->p_phys_addr);
1817 }
1818
1819 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn,
1820 u16 src_id, u16 *dst_id)
1821 {
1822 if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
1823 u16 min, max;
1824
1825 min = (u16)RESC_START(p_hwfn, QED_L2_QUEUE);
1826 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
1827 DP_NOTICE(p_hwfn,
1828 "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
1829 src_id, min, max);
1830
1831 return -EINVAL;
1832 }
1833
1834 *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
1835
1836 return 0;
1837 }
1838
1839 int qed_fw_vport(struct qed_hwfn *p_hwfn,
1840 u8 src_id, u8 *dst_id)
1841 {
1842 if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
1843 u8 min, max;
1844
1845 min = (u8)RESC_START(p_hwfn, QED_VPORT);
1846 max = min + RESC_NUM(p_hwfn, QED_VPORT);
1847 DP_NOTICE(p_hwfn,
1848 "vport id [%d] is not valid, available indices [%d - %d]\n",
1849 src_id, min, max);
1850
1851 return -EINVAL;
1852 }
1853
1854 *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
1855
1856 return 0;
1857 }
1858
1859 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
1860 u8 src_id, u8 *dst_id)
1861 {
1862 if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
1863 u8 min, max;
1864
1865 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
1866 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
1867 DP_NOTICE(p_hwfn,
1868 "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
1869 src_id, min, max);
1870
1871 return -EINVAL;
1872 }
1873
1874 *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
1875
1876 return 0;
1877 }
1878
1879 /* Calculate final WFQ values for all vports and configure them.
1880 * After this configuration each vport will have
1881 * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
1882 */
1883 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
1884 struct qed_ptt *p_ptt,
1885 u32 min_pf_rate)
1886 {
1887 struct init_qm_vport_params *vport_params;
1888 int i;
1889
1890 vport_params = p_hwfn->qm_info.qm_vport_params;
1891
1892 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
1893 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
1894
1895 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
1896 min_pf_rate;
1897 qed_init_vport_wfq(p_hwfn, p_ptt,
1898 vport_params[i].first_tx_pq_id,
1899 vport_params[i].vport_wfq);
1900 }
1901 }
1902
1903 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
1904 u32 min_pf_rate)
1905
1906 {
1907 int i;
1908
1909 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
1910 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
1911 }
1912
1913 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
1914 struct qed_ptt *p_ptt,
1915 u32 min_pf_rate)
1916 {
1917 struct init_qm_vport_params *vport_params;
1918 int i;
1919
1920 vport_params = p_hwfn->qm_info.qm_vport_params;
1921
1922 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
1923 qed_init_wfq_default_param(p_hwfn, min_pf_rate);
1924 qed_init_vport_wfq(p_hwfn, p_ptt,
1925 vport_params[i].first_tx_pq_id,
1926 vport_params[i].vport_wfq);
1927 }
1928 }
1929
1930 /* This function performs several validations for WFQ
1931 * configuration and required min rate for a given vport
1932 * 1. req_rate must be greater than one percent of min_pf_rate.
1933 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
1934 * rates to get less than one percent of min_pf_rate.
1935 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
1936 */
1937 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
1938 u16 vport_id, u32 req_rate,
1939 u32 min_pf_rate)
1940 {
1941 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
1942 int non_requested_count = 0, req_count = 0, i, num_vports;
1943
1944 num_vports = p_hwfn->qm_info.num_vports;
1945
1946 /* Accounting for the vports which are configured for WFQ explicitly */
1947 for (i = 0; i < num_vports; i++) {
1948 u32 tmp_speed;
1949
1950 if ((i != vport_id) &&
1951 p_hwfn->qm_info.wfq_data[i].configured) {
1952 req_count++;
1953 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
1954 total_req_min_rate += tmp_speed;
1955 }
1956 }
1957
1958 /* Include current vport data as well */
1959 req_count++;
1960 total_req_min_rate += req_rate;
1961 non_requested_count = num_vports - req_count;
1962
1963 if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
1964 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1965 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
1966 vport_id, req_rate, min_pf_rate);
1967 return -EINVAL;
1968 }
1969
1970 if (num_vports > QED_WFQ_UNIT) {
1971 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1972 "Number of vports is greater than %d\n",
1973 QED_WFQ_UNIT);
1974 return -EINVAL;
1975 }
1976
1977 if (total_req_min_rate > min_pf_rate) {
1978 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1979 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
1980 total_req_min_rate, min_pf_rate);
1981 return -EINVAL;
1982 }
1983
1984 total_left_rate = min_pf_rate - total_req_min_rate;
1985
1986 left_rate_per_vp = total_left_rate / non_requested_count;
1987 if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) {
1988 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1989 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
1990 left_rate_per_vp, min_pf_rate);
1991 return -EINVAL;
1992 }
1993
1994 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
1995 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
1996
1997 for (i = 0; i < num_vports; i++) {
1998 if (p_hwfn->qm_info.wfq_data[i].configured)
1999 continue;
2000
2001 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
2002 }
2003
2004 return 0;
2005 }
2006
2007 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
2008 struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
2009 {
2010 struct qed_mcp_link_state *p_link;
2011 int rc = 0;
2012
2013 p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
2014
2015 if (!p_link->min_pf_rate) {
2016 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
2017 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
2018 return rc;
2019 }
2020
2021 rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2022
2023 if (rc == 0)
2024 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2025 p_link->min_pf_rate);
2026 else
2027 DP_NOTICE(p_hwfn,
2028 "Validation failed while configuring min rate\n");
2029
2030 return rc;
2031 }
2032
2033 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2034 struct qed_ptt *p_ptt,
2035 u32 min_pf_rate)
2036 {
2037 bool use_wfq = false;
2038 int rc = 0;
2039 u16 i;
2040
2041 /* Validate all pre configured vports for wfq */
2042 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2043 u32 rate;
2044
2045 if (!p_hwfn->qm_info.wfq_data[i].configured)
2046 continue;
2047
2048 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2049 use_wfq = true;
2050
2051 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2052 if (rc) {
2053 DP_NOTICE(p_hwfn,
2054 "WFQ validation failed while configuring min rate\n");
2055 break;
2056 }
2057 }
2058
2059 if (!rc && use_wfq)
2060 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2061 else
2062 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2063
2064 return rc;
2065 }
2066
2067 /* Main API for qed clients to configure vport min rate.
2068 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2069 * rate - Speed in Mbps needs to be assigned to a given vport.
2070 */
2071 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2072 {
2073 int i, rc = -EINVAL;
2074
2075 /* Currently not supported; Might change in future */
2076 if (cdev->num_hwfns > 1) {
2077 DP_NOTICE(cdev,
2078 "WFQ configuration is not supported for this device\n");
2079 return rc;
2080 }
2081
2082 for_each_hwfn(cdev, i) {
2083 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2084 struct qed_ptt *p_ptt;
2085
2086 p_ptt = qed_ptt_acquire(p_hwfn);
2087 if (!p_ptt)
2088 return -EBUSY;
2089
2090 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2091
2092 if (!rc) {
2093 qed_ptt_release(p_hwfn, p_ptt);
2094 return rc;
2095 }
2096
2097 qed_ptt_release(p_hwfn, p_ptt);
2098 }
2099
2100 return rc;
2101 }
2102
2103 /* API to configure WFQ from mcp link change */
2104 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2105 {
2106 int i;
2107
2108 if (cdev->num_hwfns > 1) {
2109 DP_VERBOSE(cdev,
2110 NETIF_MSG_LINK,
2111 "WFQ configuration is not supported for this device\n");
2112 return;
2113 }
2114
2115 for_each_hwfn(cdev, i) {
2116 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2117
2118 __qed_configure_vp_wfq_on_link_change(p_hwfn,
2119 p_hwfn->p_dpc_ptt,
2120 min_pf_rate);
2121 }
2122 }
2123
2124 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2125 struct qed_ptt *p_ptt,
2126 struct qed_mcp_link_state *p_link,
2127 u8 max_bw)
2128 {
2129 int rc = 0;
2130
2131 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2132
2133 if (!p_link->line_speed && (max_bw != 100))
2134 return rc;
2135
2136 p_link->speed = (p_link->line_speed * max_bw) / 100;
2137 p_hwfn->qm_info.pf_rl = p_link->speed;
2138
2139 /* Since the limiter also affects Tx-switched traffic, we don't want it
2140 * to limit such traffic in case there's no actual limit.
2141 * In that case, set limit to imaginary high boundary.
2142 */
2143 if (max_bw == 100)
2144 p_hwfn->qm_info.pf_rl = 100000;
2145
2146 rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2147 p_hwfn->qm_info.pf_rl);
2148
2149 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2150 "Configured MAX bandwidth to be %08x Mb/sec\n",
2151 p_link->speed);
2152
2153 return rc;
2154 }
2155
2156 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2157 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2158 {
2159 int i, rc = -EINVAL;
2160
2161 if (max_bw < 1 || max_bw > 100) {
2162 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2163 return rc;
2164 }
2165
2166 for_each_hwfn(cdev, i) {
2167 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2168 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2169 struct qed_mcp_link_state *p_link;
2170 struct qed_ptt *p_ptt;
2171
2172 p_link = &p_lead->mcp_info->link_output;
2173
2174 p_ptt = qed_ptt_acquire(p_hwfn);
2175 if (!p_ptt)
2176 return -EBUSY;
2177
2178 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2179 p_link, max_bw);
2180
2181 qed_ptt_release(p_hwfn, p_ptt);
2182
2183 if (rc)
2184 break;
2185 }
2186
2187 return rc;
2188 }
2189
2190 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2191 struct qed_ptt *p_ptt,
2192 struct qed_mcp_link_state *p_link,
2193 u8 min_bw)
2194 {
2195 int rc = 0;
2196
2197 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2198 p_hwfn->qm_info.pf_wfq = min_bw;
2199
2200 if (!p_link->line_speed)
2201 return rc;
2202
2203 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2204
2205 rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2206
2207 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2208 "Configured MIN bandwidth to be %d Mb/sec\n",
2209 p_link->min_pf_rate);
2210
2211 return rc;
2212 }
2213
2214 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2215 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2216 {
2217 int i, rc = -EINVAL;
2218
2219 if (min_bw < 1 || min_bw > 100) {
2220 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2221 return rc;
2222 }
2223
2224 for_each_hwfn(cdev, i) {
2225 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2226 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2227 struct qed_mcp_link_state *p_link;
2228 struct qed_ptt *p_ptt;
2229
2230 p_link = &p_lead->mcp_info->link_output;
2231
2232 p_ptt = qed_ptt_acquire(p_hwfn);
2233 if (!p_ptt)
2234 return -EBUSY;
2235
2236 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2237 p_link, min_bw);
2238 if (rc) {
2239 qed_ptt_release(p_hwfn, p_ptt);
2240 return rc;
2241 }
2242
2243 if (p_link->min_pf_rate) {
2244 u32 min_rate = p_link->min_pf_rate;
2245
2246 rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2247 p_ptt,
2248 min_rate);
2249 }
2250
2251 qed_ptt_release(p_hwfn, p_ptt);
2252 }
2253
2254 return rc;
2255 }
2256
2257 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2258 {
2259 struct qed_mcp_link_state *p_link;
2260
2261 p_link = &p_hwfn->mcp_info->link_output;
2262
2263 if (p_link->min_pf_rate)
2264 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2265 p_link->min_pf_rate);
2266
2267 memset(p_hwfn->qm_info.wfq_data, 0,
2268 sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2269 }
This page took 0.076761 seconds and 6 git commands to generate.