qlge: fix dma map leak when the last chunk is not allocated
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/pagemap.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/dmapool.h>
20 #include <linux/mempool.h>
21 #include <linux/spinlock.h>
22 #include <linux/kthread.h>
23 #include <linux/interrupt.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/if_arp.h>
33 #include <linux/if_ether.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_vlan.h>
38 #include <linux/skbuff.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/prefetch.h>
43 #include <net/ip6_checksum.h>
44
45 #include "qlge.h"
46
47 char qlge_driver_name[] = DRV_NAME;
48 const char qlge_driver_version[] = DRV_VERSION;
49
50 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
51 MODULE_DESCRIPTION(DRV_STRING " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg =
56 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
57 /* NETIF_MSG_TIMER | */
58 NETIF_MSG_IFDOWN |
59 NETIF_MSG_IFUP |
60 NETIF_MSG_RX_ERR |
61 NETIF_MSG_TX_ERR |
62 /* NETIF_MSG_TX_QUEUED | */
63 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
64 /* NETIF_MSG_PKTDATA | */
65 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66
67 static int debug = -1; /* defaults above */
68 module_param(debug, int, 0664);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 #define MSIX_IRQ 0
72 #define MSI_IRQ 1
73 #define LEG_IRQ 2
74 static int qlge_irq_type = MSIX_IRQ;
75 module_param(qlge_irq_type, int, 0664);
76 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77
78 static int qlge_mpi_coredump;
79 module_param(qlge_mpi_coredump, int, 0);
80 MODULE_PARM_DESC(qlge_mpi_coredump,
81 "Option to enable MPI firmware dump. "
82 "Default is OFF - Do Not allocate memory. ");
83
84 static int qlge_force_coredump;
85 module_param(qlge_force_coredump, int, 0);
86 MODULE_PARM_DESC(qlge_force_coredump,
87 "Option to allow force of firmware core dump. "
88 "Default is OFF - Do not allow.");
89
90 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
92 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
93 /* required last entry */
94 {0,}
95 };
96
97 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
98
99 static int ql_wol(struct ql_adapter *qdev);
100 static void qlge_set_multicast_list(struct net_device *ndev);
101
102 /* This hardware semaphore causes exclusive access to
103 * resources shared between the NIC driver, MPI firmware,
104 * FCOE firmware and the FC driver.
105 */
106 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
107 {
108 u32 sem_bits = 0;
109
110 switch (sem_mask) {
111 case SEM_XGMAC0_MASK:
112 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
113 break;
114 case SEM_XGMAC1_MASK:
115 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
116 break;
117 case SEM_ICB_MASK:
118 sem_bits = SEM_SET << SEM_ICB_SHIFT;
119 break;
120 case SEM_MAC_ADDR_MASK:
121 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
122 break;
123 case SEM_FLASH_MASK:
124 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
125 break;
126 case SEM_PROBE_MASK:
127 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
128 break;
129 case SEM_RT_IDX_MASK:
130 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
131 break;
132 case SEM_PROC_REG_MASK:
133 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
134 break;
135 default:
136 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
137 return -EINVAL;
138 }
139
140 ql_write32(qdev, SEM, sem_bits | sem_mask);
141 return !(ql_read32(qdev, SEM) & sem_bits);
142 }
143
144 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
145 {
146 unsigned int wait_count = 30;
147 do {
148 if (!ql_sem_trylock(qdev, sem_mask))
149 return 0;
150 udelay(100);
151 } while (--wait_count);
152 return -ETIMEDOUT;
153 }
154
155 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
156 {
157 ql_write32(qdev, SEM, sem_mask);
158 ql_read32(qdev, SEM); /* flush */
159 }
160
161 /* This function waits for a specific bit to come ready
162 * in a given register. It is used mostly by the initialize
163 * process, but is also used in kernel thread API such as
164 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
165 */
166 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
167 {
168 u32 temp;
169 int count = UDELAY_COUNT;
170
171 while (count) {
172 temp = ql_read32(qdev, reg);
173
174 /* check for errors */
175 if (temp & err_bit) {
176 netif_alert(qdev, probe, qdev->ndev,
177 "register 0x%.08x access error, value = 0x%.08x!.\n",
178 reg, temp);
179 return -EIO;
180 } else if (temp & bit)
181 return 0;
182 udelay(UDELAY_DELAY);
183 count--;
184 }
185 netif_alert(qdev, probe, qdev->ndev,
186 "Timed out waiting for reg %x to come ready.\n", reg);
187 return -ETIMEDOUT;
188 }
189
190 /* The CFG register is used to download TX and RX control blocks
191 * to the chip. This function waits for an operation to complete.
192 */
193 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
194 {
195 int count = UDELAY_COUNT;
196 u32 temp;
197
198 while (count) {
199 temp = ql_read32(qdev, CFG);
200 if (temp & CFG_LE)
201 return -EIO;
202 if (!(temp & bit))
203 return 0;
204 udelay(UDELAY_DELAY);
205 count--;
206 }
207 return -ETIMEDOUT;
208 }
209
210
211 /* Used to issue init control blocks to hw. Maps control block,
212 * sets address, triggers download, waits for completion.
213 */
214 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
215 u16 q_id)
216 {
217 u64 map;
218 int status = 0;
219 int direction;
220 u32 mask;
221 u32 value;
222
223 direction =
224 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
225 PCI_DMA_FROMDEVICE;
226
227 map = pci_map_single(qdev->pdev, ptr, size, direction);
228 if (pci_dma_mapping_error(qdev->pdev, map)) {
229 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
230 return -ENOMEM;
231 }
232
233 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
234 if (status)
235 return status;
236
237 status = ql_wait_cfg(qdev, bit);
238 if (status) {
239 netif_err(qdev, ifup, qdev->ndev,
240 "Timed out waiting for CFG to come ready.\n");
241 goto exit;
242 }
243
244 ql_write32(qdev, ICB_L, (u32) map);
245 ql_write32(qdev, ICB_H, (u32) (map >> 32));
246
247 mask = CFG_Q_MASK | (bit << 16);
248 value = bit | (q_id << CFG_Q_SHIFT);
249 ql_write32(qdev, CFG, (mask | value));
250
251 /*
252 * Wait for the bit to clear after signaling hw.
253 */
254 status = ql_wait_cfg(qdev, bit);
255 exit:
256 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
257 pci_unmap_single(qdev->pdev, map, size, direction);
258 return status;
259 }
260
261 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
262 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
263 u32 *value)
264 {
265 u32 offset = 0;
266 int status;
267
268 switch (type) {
269 case MAC_ADDR_TYPE_MULTI_MAC:
270 case MAC_ADDR_TYPE_CAM_MAC:
271 {
272 status =
273 ql_wait_reg_rdy(qdev,
274 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
282 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 status =
287 ql_wait_reg_rdy(qdev,
288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289 if (status)
290 goto exit;
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294 status =
295 ql_wait_reg_rdy(qdev,
296 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
297 if (status)
298 goto exit;
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 if (type == MAC_ADDR_TYPE_CAM_MAC) {
301 status =
302 ql_wait_reg_rdy(qdev,
303 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
304 if (status)
305 goto exit;
306 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
307 (index << MAC_ADDR_IDX_SHIFT) | /* index */
308 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
309 status =
310 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
311 MAC_ADDR_MR, 0);
312 if (status)
313 goto exit;
314 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
315 }
316 break;
317 }
318 case MAC_ADDR_TYPE_VLAN:
319 case MAC_ADDR_TYPE_MULTI_FLTR:
320 default:
321 netif_crit(qdev, ifup, qdev->ndev,
322 "Address type %d not yet supported.\n", type);
323 status = -EPERM;
324 }
325 exit:
326 return status;
327 }
328
329 /* Set up a MAC, multicast or VLAN address for the
330 * inbound frame matching.
331 */
332 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
333 u16 index)
334 {
335 u32 offset = 0;
336 int status = 0;
337
338 switch (type) {
339 case MAC_ADDR_TYPE_MULTI_MAC:
340 {
341 u32 upper = (addr[0] << 8) | addr[1];
342 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
343 (addr[4] << 8) | (addr[5]);
344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
351 (index << MAC_ADDR_IDX_SHIFT) |
352 type | MAC_ADDR_E);
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
360 (index << MAC_ADDR_IDX_SHIFT) |
361 type | MAC_ADDR_E);
362
363 ql_write32(qdev, MAC_ADDR_DATA, upper);
364 status =
365 ql_wait_reg_rdy(qdev,
366 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 if (status)
368 goto exit;
369 break;
370 }
371 case MAC_ADDR_TYPE_CAM_MAC:
372 {
373 u32 cam_output;
374 u32 upper = (addr[0] << 8) | addr[1];
375 u32 lower =
376 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
377 (addr[5]);
378 status =
379 ql_wait_reg_rdy(qdev,
380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, lower);
387 status =
388 ql_wait_reg_rdy(qdev,
389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 ql_write32(qdev, MAC_ADDR_DATA, upper);
396 status =
397 ql_wait_reg_rdy(qdev,
398 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
399 if (status)
400 goto exit;
401 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
402 (index << MAC_ADDR_IDX_SHIFT) | /* index */
403 type); /* type */
404 /* This field should also include the queue id
405 and possibly the function id. Right now we hardcode
406 the route field to NIC core.
407 */
408 cam_output = (CAM_OUT_ROUTE_NIC |
409 (qdev->
410 func << CAM_OUT_FUNC_SHIFT) |
411 (0 << CAM_OUT_CQ_ID_SHIFT));
412 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
413 cam_output |= CAM_OUT_RV;
414 /* route to NIC core */
415 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
416 break;
417 }
418 case MAC_ADDR_TYPE_VLAN:
419 {
420 u32 enable_bit = *((u32 *) &addr[0]);
421 /* For VLAN, the addr actually holds a bit that
422 * either enables or disables the vlan id we are
423 * addressing. It's either MAC_ADDR_E on or off.
424 * That's bit-27 we're talking about.
425 */
426 status =
427 ql_wait_reg_rdy(qdev,
428 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
429 if (status)
430 goto exit;
431 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
432 (index << MAC_ADDR_IDX_SHIFT) | /* index */
433 type | /* type */
434 enable_bit); /* enable/disable */
435 break;
436 }
437 case MAC_ADDR_TYPE_MULTI_FLTR:
438 default:
439 netif_crit(qdev, ifup, qdev->ndev,
440 "Address type %d not yet supported.\n", type);
441 status = -EPERM;
442 }
443 exit:
444 return status;
445 }
446
447 /* Set or clear MAC address in hardware. We sometimes
448 * have to clear it to prevent wrong frame routing
449 * especially in a bonding environment.
450 */
451 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
452 {
453 int status;
454 char zero_mac_addr[ETH_ALEN];
455 char *addr;
456
457 if (set) {
458 addr = &qdev->current_mac_addr[0];
459 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
460 "Set Mac addr %pM\n", addr);
461 } else {
462 memset(zero_mac_addr, 0, ETH_ALEN);
463 addr = &zero_mac_addr[0];
464 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
465 "Clearing MAC address\n");
466 }
467 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
468 if (status)
469 return status;
470 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
471 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
473 if (status)
474 netif_err(qdev, ifup, qdev->ndev,
475 "Failed to init mac address.\n");
476 return status;
477 }
478
479 void ql_link_on(struct ql_adapter *qdev)
480 {
481 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
482 netif_carrier_on(qdev->ndev);
483 ql_set_mac_addr(qdev, 1);
484 }
485
486 void ql_link_off(struct ql_adapter *qdev)
487 {
488 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498 int status = 0;
499
500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510 exit:
511 return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521 {
522 int status = -EINVAL; /* Return error if no mask match. */
523 u32 value = 0;
524
525 switch (mask) {
526 case RT_IDX_CAM_HIT:
527 {
528 value = RT_IDX_DST_CAM_Q | /* dest */
529 RT_IDX_TYPE_NICQ | /* type */
530 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
531 break;
532 }
533 case RT_IDX_VALID: /* Promiscuous Mode frames. */
534 {
535 value = RT_IDX_DST_DFLT_Q | /* dest */
536 RT_IDX_TYPE_NICQ | /* type */
537 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
538 break;
539 }
540 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
541 {
542 value = RT_IDX_DST_DFLT_Q | /* dest */
543 RT_IDX_TYPE_NICQ | /* type */
544 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
545 break;
546 }
547 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
548 {
549 value = RT_IDX_DST_DFLT_Q | /* dest */
550 RT_IDX_TYPE_NICQ | /* type */
551 (RT_IDX_IP_CSUM_ERR_SLOT <<
552 RT_IDX_IDX_SHIFT); /* index */
553 break;
554 }
555 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
560 RT_IDX_IDX_SHIFT); /* index */
561 break;
562 }
563 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
564 {
565 value = RT_IDX_DST_DFLT_Q | /* dest */
566 RT_IDX_TYPE_NICQ | /* type */
567 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
568 break;
569 }
570 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
571 {
572 value = RT_IDX_DST_DFLT_Q | /* dest */
573 RT_IDX_TYPE_NICQ | /* type */
574 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
575 break;
576 }
577 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
578 {
579 value = RT_IDX_DST_DFLT_Q | /* dest */
580 RT_IDX_TYPE_NICQ | /* type */
581 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
582 break;
583 }
584 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
585 {
586 value = RT_IDX_DST_RSS | /* dest */
587 RT_IDX_TYPE_NICQ | /* type */
588 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
589 break;
590 }
591 case 0: /* Clear the E-bit on an entry. */
592 {
593 value = RT_IDX_DST_DFLT_Q | /* dest */
594 RT_IDX_TYPE_NICQ | /* type */
595 (index << RT_IDX_IDX_SHIFT);/* index */
596 break;
597 }
598 default:
599 netif_err(qdev, ifup, qdev->ndev,
600 "Mask type %d not yet supported.\n", mask);
601 status = -EPERM;
602 goto exit;
603 }
604
605 if (value) {
606 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
607 if (status)
608 goto exit;
609 value |= (enable ? RT_IDX_E : 0);
610 ql_write32(qdev, RT_IDX, value);
611 ql_write32(qdev, RT_DATA, enable ? mask : 0);
612 }
613 exit:
614 return status;
615 }
616
617 static void ql_enable_interrupts(struct ql_adapter *qdev)
618 {
619 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
620 }
621
622 static void ql_disable_interrupts(struct ql_adapter *qdev)
623 {
624 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
625 }
626
627 /* If we're running with multiple MSI-X vectors then we enable on the fly.
628 * Otherwise, we may have multiple outstanding workers and don't want to
629 * enable until the last one finishes. In this case, the irq_cnt gets
630 * incremented every time we queue a worker and decremented every time
631 * a worker finishes. Once it hits zero we enable the interrupt.
632 */
633 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
634 {
635 u32 var = 0;
636 unsigned long hw_flags = 0;
637 struct intr_context *ctx = qdev->intr_context + intr;
638
639 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
640 /* Always enable if we're MSIX multi interrupts and
641 * it's not the default (zeroeth) interrupt.
642 */
643 ql_write32(qdev, INTR_EN,
644 ctx->intr_en_mask);
645 var = ql_read32(qdev, STS);
646 return var;
647 }
648
649 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
650 if (atomic_dec_and_test(&ctx->irq_cnt)) {
651 ql_write32(qdev, INTR_EN,
652 ctx->intr_en_mask);
653 var = ql_read32(qdev, STS);
654 }
655 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
656 return var;
657 }
658
659 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
660 {
661 u32 var = 0;
662 struct intr_context *ctx;
663
664 /* HW disables for us if we're MSIX multi interrupts and
665 * it's not the default (zeroeth) interrupt.
666 */
667 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
668 return 0;
669
670 ctx = qdev->intr_context + intr;
671 spin_lock(&qdev->hw_lock);
672 if (!atomic_read(&ctx->irq_cnt)) {
673 ql_write32(qdev, INTR_EN,
674 ctx->intr_dis_mask);
675 var = ql_read32(qdev, STS);
676 }
677 atomic_inc(&ctx->irq_cnt);
678 spin_unlock(&qdev->hw_lock);
679 return var;
680 }
681
682 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
683 {
684 int i;
685 for (i = 0; i < qdev->intr_count; i++) {
686 /* The enable call does a atomic_dec_and_test
687 * and enables only if the result is zero.
688 * So we precharge it here.
689 */
690 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
691 i == 0))
692 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
693 ql_enable_completion_interrupt(qdev, i);
694 }
695
696 }
697
698 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
699 {
700 int status, i;
701 u16 csum = 0;
702 __le16 *flash = (__le16 *)&qdev->flash;
703
704 status = strncmp((char *)&qdev->flash, str, 4);
705 if (status) {
706 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
707 return status;
708 }
709
710 for (i = 0; i < size; i++)
711 csum += le16_to_cpu(*flash++);
712
713 if (csum)
714 netif_err(qdev, ifup, qdev->ndev,
715 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
716
717 return csum;
718 }
719
720 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
721 {
722 int status = 0;
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
726 if (status)
727 goto exit;
728 /* set up for reg read */
729 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
733 if (status)
734 goto exit;
735 /* This data is stored on flash as an array of
736 * __le32. Since ql_read32() returns cpu endian
737 * we need to swap it back.
738 */
739 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
740 exit:
741 return status;
742 }
743
744 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
745 {
746 u32 i, size;
747 int status;
748 __le32 *p = (__le32 *)&qdev->flash;
749 u32 offset;
750 u8 mac_addr[6];
751
752 /* Get flash offset for function and adjust
753 * for dword access.
754 */
755 if (!qdev->port)
756 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
757 else
758 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
759
760 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
761 return -ETIMEDOUT;
762
763 size = sizeof(struct flash_params_8000) / sizeof(u32);
764 for (i = 0; i < size; i++, p++) {
765 status = ql_read_flash_word(qdev, i+offset, p);
766 if (status) {
767 netif_err(qdev, ifup, qdev->ndev,
768 "Error reading flash.\n");
769 goto exit;
770 }
771 }
772
773 status = ql_validate_flash(qdev,
774 sizeof(struct flash_params_8000) / sizeof(u16),
775 "8000");
776 if (status) {
777 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
778 status = -EINVAL;
779 goto exit;
780 }
781
782 /* Extract either manufacturer or BOFM modified
783 * MAC address.
784 */
785 if (qdev->flash.flash_params_8000.data_type1 == 2)
786 memcpy(mac_addr,
787 qdev->flash.flash_params_8000.mac_addr1,
788 qdev->ndev->addr_len);
789 else
790 memcpy(mac_addr,
791 qdev->flash.flash_params_8000.mac_addr,
792 qdev->ndev->addr_len);
793
794 if (!is_valid_ether_addr(mac_addr)) {
795 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
796 status = -EINVAL;
797 goto exit;
798 }
799
800 memcpy(qdev->ndev->dev_addr,
801 mac_addr,
802 qdev->ndev->addr_len);
803
804 exit:
805 ql_sem_unlock(qdev, SEM_FLASH_MASK);
806 return status;
807 }
808
809 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
810 {
811 int i;
812 int status;
813 __le32 *p = (__le32 *)&qdev->flash;
814 u32 offset = 0;
815 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
816
817 /* Second function's parameters follow the first
818 * function's.
819 */
820 if (qdev->port)
821 offset = size;
822
823 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
824 return -ETIMEDOUT;
825
826 for (i = 0; i < size; i++, p++) {
827 status = ql_read_flash_word(qdev, i+offset, p);
828 if (status) {
829 netif_err(qdev, ifup, qdev->ndev,
830 "Error reading flash.\n");
831 goto exit;
832 }
833
834 }
835
836 status = ql_validate_flash(qdev,
837 sizeof(struct flash_params_8012) / sizeof(u16),
838 "8012");
839 if (status) {
840 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
841 status = -EINVAL;
842 goto exit;
843 }
844
845 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
846 status = -EINVAL;
847 goto exit;
848 }
849
850 memcpy(qdev->ndev->dev_addr,
851 qdev->flash.flash_params_8012.mac_addr,
852 qdev->ndev->addr_len);
853
854 exit:
855 ql_sem_unlock(qdev, SEM_FLASH_MASK);
856 return status;
857 }
858
859 /* xgmac register are located behind the xgmac_addr and xgmac_data
860 * register pair. Each read/write requires us to wait for the ready
861 * bit before reading/writing the data.
862 */
863 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
864 {
865 int status;
866 /* wait for reg to come ready */
867 status = ql_wait_reg_rdy(qdev,
868 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
869 if (status)
870 return status;
871 /* write the data to the data reg */
872 ql_write32(qdev, XGMAC_DATA, data);
873 /* trigger the write */
874 ql_write32(qdev, XGMAC_ADDR, reg);
875 return status;
876 }
877
878 /* xgmac register are located behind the xgmac_addr and xgmac_data
879 * register pair. Each read/write requires us to wait for the ready
880 * bit before reading/writing the data.
881 */
882 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
883 {
884 int status = 0;
885 /* wait for reg to come ready */
886 status = ql_wait_reg_rdy(qdev,
887 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
888 if (status)
889 goto exit;
890 /* set up for reg read */
891 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
892 /* wait for reg to come ready */
893 status = ql_wait_reg_rdy(qdev,
894 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
895 if (status)
896 goto exit;
897 /* get the data */
898 *data = ql_read32(qdev, XGMAC_DATA);
899 exit:
900 return status;
901 }
902
903 /* This is used for reading the 64-bit statistics regs. */
904 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
905 {
906 int status = 0;
907 u32 hi = 0;
908 u32 lo = 0;
909
910 status = ql_read_xgmac_reg(qdev, reg, &lo);
911 if (status)
912 goto exit;
913
914 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
915 if (status)
916 goto exit;
917
918 *data = (u64) lo | ((u64) hi << 32);
919
920 exit:
921 return status;
922 }
923
924 static int ql_8000_port_initialize(struct ql_adapter *qdev)
925 {
926 int status;
927 /*
928 * Get MPI firmware version for driver banner
929 * and ethool info.
930 */
931 status = ql_mb_about_fw(qdev);
932 if (status)
933 goto exit;
934 status = ql_mb_get_fw_state(qdev);
935 if (status)
936 goto exit;
937 /* Wake up a worker to get/set the TX/RX frame sizes. */
938 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
939 exit:
940 return status;
941 }
942
943 /* Take the MAC Core out of reset.
944 * Enable statistics counting.
945 * Take the transmitter/receiver out of reset.
946 * This functionality may be done in the MPI firmware at a
947 * later date.
948 */
949 static int ql_8012_port_initialize(struct ql_adapter *qdev)
950 {
951 int status = 0;
952 u32 data;
953
954 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
955 /* Another function has the semaphore, so
956 * wait for the port init bit to come ready.
957 */
958 netif_info(qdev, link, qdev->ndev,
959 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
960 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
961 if (status) {
962 netif_crit(qdev, link, qdev->ndev,
963 "Port initialize timed out.\n");
964 }
965 return status;
966 }
967
968 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
969 /* Set the core reset. */
970 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
971 if (status)
972 goto end;
973 data |= GLOBAL_CFG_RESET;
974 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
975 if (status)
976 goto end;
977
978 /* Clear the core reset and turn on jumbo for receiver. */
979 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
980 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
981 data |= GLOBAL_CFG_TX_STAT_EN;
982 data |= GLOBAL_CFG_RX_STAT_EN;
983 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
984 if (status)
985 goto end;
986
987 /* Enable transmitter, and clear it's reset. */
988 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
989 if (status)
990 goto end;
991 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
992 data |= TX_CFG_EN; /* Enable the transmitter. */
993 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
994 if (status)
995 goto end;
996
997 /* Enable receiver and clear it's reset. */
998 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
999 if (status)
1000 goto end;
1001 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1002 data |= RX_CFG_EN; /* Enable the receiver. */
1003 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1004 if (status)
1005 goto end;
1006
1007 /* Turn on jumbo. */
1008 status =
1009 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1010 if (status)
1011 goto end;
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1014 if (status)
1015 goto end;
1016
1017 /* Signal to the world that the port is enabled. */
1018 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1019 end:
1020 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1021 return status;
1022 }
1023
1024 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1025 {
1026 return PAGE_SIZE << qdev->lbq_buf_order;
1027 }
1028
1029 /* Get the next large buffer. */
1030 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1031 {
1032 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1033 rx_ring->lbq_curr_idx++;
1034 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1035 rx_ring->lbq_curr_idx = 0;
1036 rx_ring->lbq_free_cnt++;
1037 return lbq_desc;
1038 }
1039
1040 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1041 struct rx_ring *rx_ring)
1042 {
1043 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1044
1045 pci_dma_sync_single_for_cpu(qdev->pdev,
1046 dma_unmap_addr(lbq_desc, mapaddr),
1047 rx_ring->lbq_buf_size,
1048 PCI_DMA_FROMDEVICE);
1049
1050 /* If it's the last chunk of our master page then
1051 * we unmap it.
1052 */
1053 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1054 == ql_lbq_block_size(qdev))
1055 pci_unmap_page(qdev->pdev,
1056 lbq_desc->p.pg_chunk.map,
1057 ql_lbq_block_size(qdev),
1058 PCI_DMA_FROMDEVICE);
1059 return lbq_desc;
1060 }
1061
1062 /* Get the next small buffer. */
1063 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1064 {
1065 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1066 rx_ring->sbq_curr_idx++;
1067 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1068 rx_ring->sbq_curr_idx = 0;
1069 rx_ring->sbq_free_cnt++;
1070 return sbq_desc;
1071 }
1072
1073 /* Update an rx ring index. */
1074 static void ql_update_cq(struct rx_ring *rx_ring)
1075 {
1076 rx_ring->cnsmr_idx++;
1077 rx_ring->curr_entry++;
1078 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1079 rx_ring->cnsmr_idx = 0;
1080 rx_ring->curr_entry = rx_ring->cq_base;
1081 }
1082 }
1083
1084 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1085 {
1086 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1087 }
1088
1089 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1090 struct bq_desc *lbq_desc)
1091 {
1092 if (!rx_ring->pg_chunk.page) {
1093 u64 map;
1094 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1095 GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
1109 rx_ring->pg_chunk.page = NULL;
1110 netif_err(qdev, drv, qdev->ndev,
1111 "PCI mapping failed.\n");
1112 return -ENOMEM;
1113 }
1114 rx_ring->pg_chunk.map = map;
1115 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1116 }
1117
1118 /* Copy the current master pg_chunk info
1119 * to the current descriptor.
1120 */
1121 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1122
1123 /* Adjust the master page chunk for next
1124 * buffer get.
1125 */
1126 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1127 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1128 rx_ring->pg_chunk.page = NULL;
1129 lbq_desc->p.pg_chunk.last_flag = 1;
1130 } else {
1131 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1132 get_page(rx_ring->pg_chunk.page);
1133 lbq_desc->p.pg_chunk.last_flag = 0;
1134 }
1135 return 0;
1136 }
1137 /* Process (refill) a large buffer queue. */
1138 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1139 {
1140 u32 clean_idx = rx_ring->lbq_clean_idx;
1141 u32 start_idx = clean_idx;
1142 struct bq_desc *lbq_desc;
1143 u64 map;
1144 int i;
1145
1146 while (rx_ring->lbq_free_cnt > 32) {
1147 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1148 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1149 "lbq: try cleaning clean_idx = %d.\n",
1150 clean_idx);
1151 lbq_desc = &rx_ring->lbq[clean_idx];
1152 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1153 rx_ring->lbq_clean_idx = clean_idx;
1154 netif_err(qdev, ifup, qdev->ndev,
1155 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1156 i, clean_idx);
1157 return;
1158 }
1159
1160 map = lbq_desc->p.pg_chunk.map +
1161 lbq_desc->p.pg_chunk.offset;
1162 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1163 dma_unmap_len_set(lbq_desc, maplen,
1164 rx_ring->lbq_buf_size);
1165 *lbq_desc->addr = cpu_to_le64(map);
1166
1167 pci_dma_sync_single_for_device(qdev->pdev, map,
1168 rx_ring->lbq_buf_size,
1169 PCI_DMA_FROMDEVICE);
1170 clean_idx++;
1171 if (clean_idx == rx_ring->lbq_len)
1172 clean_idx = 0;
1173 }
1174
1175 rx_ring->lbq_clean_idx = clean_idx;
1176 rx_ring->lbq_prod_idx += 16;
1177 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1178 rx_ring->lbq_prod_idx = 0;
1179 rx_ring->lbq_free_cnt -= 16;
1180 }
1181
1182 if (start_idx != clean_idx) {
1183 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1184 "lbq: updating prod idx = %d.\n",
1185 rx_ring->lbq_prod_idx);
1186 ql_write_db_reg(rx_ring->lbq_prod_idx,
1187 rx_ring->lbq_prod_idx_db_reg);
1188 }
1189 }
1190
1191 /* Process (refill) a small buffer queue. */
1192 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1193 {
1194 u32 clean_idx = rx_ring->sbq_clean_idx;
1195 u32 start_idx = clean_idx;
1196 struct bq_desc *sbq_desc;
1197 u64 map;
1198 int i;
1199
1200 while (rx_ring->sbq_free_cnt > 16) {
1201 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1202 sbq_desc = &rx_ring->sbq[clean_idx];
1203 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1204 "sbq: try cleaning clean_idx = %d.\n",
1205 clean_idx);
1206 if (sbq_desc->p.skb == NULL) {
1207 netif_printk(qdev, rx_status, KERN_DEBUG,
1208 qdev->ndev,
1209 "sbq: getting new skb for index %d.\n",
1210 sbq_desc->index);
1211 sbq_desc->p.skb =
1212 netdev_alloc_skb(qdev->ndev,
1213 SMALL_BUFFER_SIZE);
1214 if (sbq_desc->p.skb == NULL) {
1215 rx_ring->sbq_clean_idx = clean_idx;
1216 return;
1217 }
1218 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1219 map = pci_map_single(qdev->pdev,
1220 sbq_desc->p.skb->data,
1221 rx_ring->sbq_buf_size,
1222 PCI_DMA_FROMDEVICE);
1223 if (pci_dma_mapping_error(qdev->pdev, map)) {
1224 netif_err(qdev, ifup, qdev->ndev,
1225 "PCI mapping failed.\n");
1226 rx_ring->sbq_clean_idx = clean_idx;
1227 dev_kfree_skb_any(sbq_desc->p.skb);
1228 sbq_desc->p.skb = NULL;
1229 return;
1230 }
1231 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1232 dma_unmap_len_set(sbq_desc, maplen,
1233 rx_ring->sbq_buf_size);
1234 *sbq_desc->addr = cpu_to_le64(map);
1235 }
1236
1237 clean_idx++;
1238 if (clean_idx == rx_ring->sbq_len)
1239 clean_idx = 0;
1240 }
1241 rx_ring->sbq_clean_idx = clean_idx;
1242 rx_ring->sbq_prod_idx += 16;
1243 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1244 rx_ring->sbq_prod_idx = 0;
1245 rx_ring->sbq_free_cnt -= 16;
1246 }
1247
1248 if (start_idx != clean_idx) {
1249 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1250 "sbq: updating prod idx = %d.\n",
1251 rx_ring->sbq_prod_idx);
1252 ql_write_db_reg(rx_ring->sbq_prod_idx,
1253 rx_ring->sbq_prod_idx_db_reg);
1254 }
1255 }
1256
1257 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1258 struct rx_ring *rx_ring)
1259 {
1260 ql_update_sbq(qdev, rx_ring);
1261 ql_update_lbq(qdev, rx_ring);
1262 }
1263
1264 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1265 * fails at some stage, or from the interrupt when a tx completes.
1266 */
1267 static void ql_unmap_send(struct ql_adapter *qdev,
1268 struct tx_ring_desc *tx_ring_desc, int mapped)
1269 {
1270 int i;
1271 for (i = 0; i < mapped; i++) {
1272 if (i == 0 || (i == 7 && mapped > 7)) {
1273 /*
1274 * Unmap the skb->data area, or the
1275 * external sglist (AKA the Outbound
1276 * Address List (OAL)).
1277 * If its the zeroeth element, then it's
1278 * the skb->data area. If it's the 7th
1279 * element and there is more than 6 frags,
1280 * then its an OAL.
1281 */
1282 if (i == 7) {
1283 netif_printk(qdev, tx_done, KERN_DEBUG,
1284 qdev->ndev,
1285 "unmapping OAL area.\n");
1286 }
1287 pci_unmap_single(qdev->pdev,
1288 dma_unmap_addr(&tx_ring_desc->map[i],
1289 mapaddr),
1290 dma_unmap_len(&tx_ring_desc->map[i],
1291 maplen),
1292 PCI_DMA_TODEVICE);
1293 } else {
1294 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1295 "unmapping frag %d.\n", i);
1296 pci_unmap_page(qdev->pdev,
1297 dma_unmap_addr(&tx_ring_desc->map[i],
1298 mapaddr),
1299 dma_unmap_len(&tx_ring_desc->map[i],
1300 maplen), PCI_DMA_TODEVICE);
1301 }
1302 }
1303
1304 }
1305
1306 /* Map the buffers for this transmit. This will return
1307 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1308 */
1309 static int ql_map_send(struct ql_adapter *qdev,
1310 struct ob_mac_iocb_req *mac_iocb_ptr,
1311 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1312 {
1313 int len = skb_headlen(skb);
1314 dma_addr_t map;
1315 int frag_idx, err, map_idx = 0;
1316 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1317 int frag_cnt = skb_shinfo(skb)->nr_frags;
1318
1319 if (frag_cnt) {
1320 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1321 "frag_cnt = %d.\n", frag_cnt);
1322 }
1323 /*
1324 * Map the skb buffer first.
1325 */
1326 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1327
1328 err = pci_dma_mapping_error(qdev->pdev, map);
1329 if (err) {
1330 netif_err(qdev, tx_queued, qdev->ndev,
1331 "PCI mapping failed with error: %d\n", err);
1332
1333 return NETDEV_TX_BUSY;
1334 }
1335
1336 tbd->len = cpu_to_le32(len);
1337 tbd->addr = cpu_to_le64(map);
1338 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1339 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1340 map_idx++;
1341
1342 /*
1343 * This loop fills the remainder of the 8 address descriptors
1344 * in the IOCB. If there are more than 7 fragments, then the
1345 * eighth address desc will point to an external list (OAL).
1346 * When this happens, the remainder of the frags will be stored
1347 * in this list.
1348 */
1349 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1350 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1351 tbd++;
1352 if (frag_idx == 6 && frag_cnt > 7) {
1353 /* Let's tack on an sglist.
1354 * Our control block will now
1355 * look like this:
1356 * iocb->seg[0] = skb->data
1357 * iocb->seg[1] = frag[0]
1358 * iocb->seg[2] = frag[1]
1359 * iocb->seg[3] = frag[2]
1360 * iocb->seg[4] = frag[3]
1361 * iocb->seg[5] = frag[4]
1362 * iocb->seg[6] = frag[5]
1363 * iocb->seg[7] = ptr to OAL (external sglist)
1364 * oal->seg[0] = frag[6]
1365 * oal->seg[1] = frag[7]
1366 * oal->seg[2] = frag[8]
1367 * oal->seg[3] = frag[9]
1368 * oal->seg[4] = frag[10]
1369 * etc...
1370 */
1371 /* Tack on the OAL in the eighth segment of IOCB. */
1372 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1373 sizeof(struct oal),
1374 PCI_DMA_TODEVICE);
1375 err = pci_dma_mapping_error(qdev->pdev, map);
1376 if (err) {
1377 netif_err(qdev, tx_queued, qdev->ndev,
1378 "PCI mapping outbound address list with error: %d\n",
1379 err);
1380 goto map_error;
1381 }
1382
1383 tbd->addr = cpu_to_le64(map);
1384 /*
1385 * The length is the number of fragments
1386 * that remain to be mapped times the length
1387 * of our sglist (OAL).
1388 */
1389 tbd->len =
1390 cpu_to_le32((sizeof(struct tx_buf_desc) *
1391 (frag_cnt - frag_idx)) | TX_DESC_C);
1392 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1393 map);
1394 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1395 sizeof(struct oal));
1396 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1397 map_idx++;
1398 }
1399
1400 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1401 DMA_TO_DEVICE);
1402
1403 err = dma_mapping_error(&qdev->pdev->dev, map);
1404 if (err) {
1405 netif_err(qdev, tx_queued, qdev->ndev,
1406 "PCI mapping frags failed with error: %d.\n",
1407 err);
1408 goto map_error;
1409 }
1410
1411 tbd->addr = cpu_to_le64(map);
1412 tbd->len = cpu_to_le32(skb_frag_size(frag));
1413 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1414 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1415 skb_frag_size(frag));
1416
1417 }
1418 /* Save the number of segments we've mapped. */
1419 tx_ring_desc->map_cnt = map_idx;
1420 /* Terminate the last segment. */
1421 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1422 return NETDEV_TX_OK;
1423
1424 map_error:
1425 /*
1426 * If the first frag mapping failed, then i will be zero.
1427 * This causes the unmap of the skb->data area. Otherwise
1428 * we pass in the number of frags that mapped successfully
1429 * so they can be umapped.
1430 */
1431 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1432 return NETDEV_TX_BUSY;
1433 }
1434
1435 /* Categorizing receive firmware frame errors */
1436 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1437 struct rx_ring *rx_ring)
1438 {
1439 struct nic_stats *stats = &qdev->nic_stats;
1440
1441 stats->rx_err_count++;
1442 rx_ring->rx_errors++;
1443
1444 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1445 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1446 stats->rx_code_err++;
1447 break;
1448 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1449 stats->rx_oversize_err++;
1450 break;
1451 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1452 stats->rx_undersize_err++;
1453 break;
1454 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1455 stats->rx_preamble_err++;
1456 break;
1457 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1458 stats->rx_frame_len_err++;
1459 break;
1460 case IB_MAC_IOCB_RSP_ERR_CRC:
1461 stats->rx_crc_err++;
1462 default:
1463 break;
1464 }
1465 }
1466
1467 /* Process an inbound completion from an rx ring. */
1468 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1469 struct rx_ring *rx_ring,
1470 struct ib_mac_iocb_rsp *ib_mac_rsp,
1471 u32 length,
1472 u16 vlan_id)
1473 {
1474 struct sk_buff *skb;
1475 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1476 struct napi_struct *napi = &rx_ring->napi;
1477
1478 /* Frame error, so drop the packet. */
1479 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1480 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1481 put_page(lbq_desc->p.pg_chunk.page);
1482 return;
1483 }
1484 napi->dev = qdev->ndev;
1485
1486 skb = napi_get_frags(napi);
1487 if (!skb) {
1488 netif_err(qdev, drv, qdev->ndev,
1489 "Couldn't get an skb, exiting.\n");
1490 rx_ring->rx_dropped++;
1491 put_page(lbq_desc->p.pg_chunk.page);
1492 return;
1493 }
1494 prefetch(lbq_desc->p.pg_chunk.va);
1495 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1496 lbq_desc->p.pg_chunk.page,
1497 lbq_desc->p.pg_chunk.offset,
1498 length);
1499
1500 skb->len += length;
1501 skb->data_len += length;
1502 skb->truesize += length;
1503 skb_shinfo(skb)->nr_frags++;
1504
1505 rx_ring->rx_packets++;
1506 rx_ring->rx_bytes += length;
1507 skb->ip_summed = CHECKSUM_UNNECESSARY;
1508 skb_record_rx_queue(skb, rx_ring->cq_id);
1509 if (vlan_id != 0xffff)
1510 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1511 napi_gro_frags(napi);
1512 }
1513
1514 /* Process an inbound completion from an rx ring. */
1515 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1516 struct rx_ring *rx_ring,
1517 struct ib_mac_iocb_rsp *ib_mac_rsp,
1518 u32 length,
1519 u16 vlan_id)
1520 {
1521 struct net_device *ndev = qdev->ndev;
1522 struct sk_buff *skb = NULL;
1523 void *addr;
1524 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1525 struct napi_struct *napi = &rx_ring->napi;
1526
1527 skb = netdev_alloc_skb(ndev, length);
1528 if (!skb) {
1529 rx_ring->rx_dropped++;
1530 put_page(lbq_desc->p.pg_chunk.page);
1531 return;
1532 }
1533
1534 addr = lbq_desc->p.pg_chunk.va;
1535 prefetch(addr);
1536
1537 /* Frame error, so drop the packet. */
1538 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1539 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1540 goto err_out;
1541 }
1542
1543 /* The max framesize filter on this chip is set higher than
1544 * MTU since FCoE uses 2k frames.
1545 */
1546 if (skb->len > ndev->mtu + ETH_HLEN) {
1547 netif_err(qdev, drv, qdev->ndev,
1548 "Segment too small, dropping.\n");
1549 rx_ring->rx_dropped++;
1550 goto err_out;
1551 }
1552 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1553 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1554 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1555 length);
1556 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1557 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1558 length-ETH_HLEN);
1559 skb->len += length-ETH_HLEN;
1560 skb->data_len += length-ETH_HLEN;
1561 skb->truesize += length-ETH_HLEN;
1562
1563 rx_ring->rx_packets++;
1564 rx_ring->rx_bytes += skb->len;
1565 skb->protocol = eth_type_trans(skb, ndev);
1566 skb_checksum_none_assert(skb);
1567
1568 if ((ndev->features & NETIF_F_RXCSUM) &&
1569 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1570 /* TCP frame. */
1571 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1572 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1573 "TCP checksum done!\n");
1574 skb->ip_summed = CHECKSUM_UNNECESSARY;
1575 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1576 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1577 /* Unfragmented ipv4 UDP frame. */
1578 struct iphdr *iph =
1579 (struct iphdr *) ((u8 *)addr + ETH_HLEN);
1580 if (!(iph->frag_off &
1581 htons(IP_MF|IP_OFFSET))) {
1582 skb->ip_summed = CHECKSUM_UNNECESSARY;
1583 netif_printk(qdev, rx_status, KERN_DEBUG,
1584 qdev->ndev,
1585 "UDP checksum done!\n");
1586 }
1587 }
1588 }
1589
1590 skb_record_rx_queue(skb, rx_ring->cq_id);
1591 if (vlan_id != 0xffff)
1592 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1593 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1594 napi_gro_receive(napi, skb);
1595 else
1596 netif_receive_skb(skb);
1597 return;
1598 err_out:
1599 dev_kfree_skb_any(skb);
1600 put_page(lbq_desc->p.pg_chunk.page);
1601 }
1602
1603 /* Process an inbound completion from an rx ring. */
1604 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1605 struct rx_ring *rx_ring,
1606 struct ib_mac_iocb_rsp *ib_mac_rsp,
1607 u32 length,
1608 u16 vlan_id)
1609 {
1610 struct net_device *ndev = qdev->ndev;
1611 struct sk_buff *skb = NULL;
1612 struct sk_buff *new_skb = NULL;
1613 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1614
1615 skb = sbq_desc->p.skb;
1616 /* Allocate new_skb and copy */
1617 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1618 if (new_skb == NULL) {
1619 rx_ring->rx_dropped++;
1620 return;
1621 }
1622 skb_reserve(new_skb, NET_IP_ALIGN);
1623 memcpy(skb_put(new_skb, length), skb->data, length);
1624 skb = new_skb;
1625
1626 /* Frame error, so drop the packet. */
1627 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1628 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1629 dev_kfree_skb_any(skb);
1630 return;
1631 }
1632
1633 /* loopback self test for ethtool */
1634 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1635 ql_check_lb_frame(qdev, skb);
1636 dev_kfree_skb_any(skb);
1637 return;
1638 }
1639
1640 /* The max framesize filter on this chip is set higher than
1641 * MTU since FCoE uses 2k frames.
1642 */
1643 if (skb->len > ndev->mtu + ETH_HLEN) {
1644 dev_kfree_skb_any(skb);
1645 rx_ring->rx_dropped++;
1646 return;
1647 }
1648
1649 prefetch(skb->data);
1650 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1651 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1652 "%s Multicast.\n",
1653 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1654 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1655 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1656 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1657 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1658 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1659 }
1660 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1661 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1662 "Promiscuous Packet.\n");
1663
1664 rx_ring->rx_packets++;
1665 rx_ring->rx_bytes += skb->len;
1666 skb->protocol = eth_type_trans(skb, ndev);
1667 skb_checksum_none_assert(skb);
1668
1669 /* If rx checksum is on, and there are no
1670 * csum or frame errors.
1671 */
1672 if ((ndev->features & NETIF_F_RXCSUM) &&
1673 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1674 /* TCP frame. */
1675 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1676 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1677 "TCP checksum done!\n");
1678 skb->ip_summed = CHECKSUM_UNNECESSARY;
1679 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1680 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1681 /* Unfragmented ipv4 UDP frame. */
1682 struct iphdr *iph = (struct iphdr *) skb->data;
1683 if (!(iph->frag_off &
1684 htons(IP_MF|IP_OFFSET))) {
1685 skb->ip_summed = CHECKSUM_UNNECESSARY;
1686 netif_printk(qdev, rx_status, KERN_DEBUG,
1687 qdev->ndev,
1688 "UDP checksum done!\n");
1689 }
1690 }
1691 }
1692
1693 skb_record_rx_queue(skb, rx_ring->cq_id);
1694 if (vlan_id != 0xffff)
1695 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1696 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1697 napi_gro_receive(&rx_ring->napi, skb);
1698 else
1699 netif_receive_skb(skb);
1700 }
1701
1702 static void ql_realign_skb(struct sk_buff *skb, int len)
1703 {
1704 void *temp_addr = skb->data;
1705
1706 /* Undo the skb_reserve(skb,32) we did before
1707 * giving to hardware, and realign data on
1708 * a 2-byte boundary.
1709 */
1710 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1711 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1712 skb_copy_to_linear_data(skb, temp_addr,
1713 (unsigned int)len);
1714 }
1715
1716 /*
1717 * This function builds an skb for the given inbound
1718 * completion. It will be rewritten for readability in the near
1719 * future, but for not it works well.
1720 */
1721 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1722 struct rx_ring *rx_ring,
1723 struct ib_mac_iocb_rsp *ib_mac_rsp)
1724 {
1725 struct bq_desc *lbq_desc;
1726 struct bq_desc *sbq_desc;
1727 struct sk_buff *skb = NULL;
1728 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1729 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1730
1731 /*
1732 * Handle the header buffer if present.
1733 */
1734 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1735 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1736 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1737 "Header of %d bytes in small buffer.\n", hdr_len);
1738 /*
1739 * Headers fit nicely into a small buffer.
1740 */
1741 sbq_desc = ql_get_curr_sbuf(rx_ring);
1742 pci_unmap_single(qdev->pdev,
1743 dma_unmap_addr(sbq_desc, mapaddr),
1744 dma_unmap_len(sbq_desc, maplen),
1745 PCI_DMA_FROMDEVICE);
1746 skb = sbq_desc->p.skb;
1747 ql_realign_skb(skb, hdr_len);
1748 skb_put(skb, hdr_len);
1749 sbq_desc->p.skb = NULL;
1750 }
1751
1752 /*
1753 * Handle the data buffer(s).
1754 */
1755 if (unlikely(!length)) { /* Is there data too? */
1756 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1757 "No Data buffer in this packet.\n");
1758 return skb;
1759 }
1760
1761 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1762 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1763 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1764 "Headers in small, data of %d bytes in small, combine them.\n",
1765 length);
1766 /*
1767 * Data is less than small buffer size so it's
1768 * stuffed in a small buffer.
1769 * For this case we append the data
1770 * from the "data" small buffer to the "header" small
1771 * buffer.
1772 */
1773 sbq_desc = ql_get_curr_sbuf(rx_ring);
1774 pci_dma_sync_single_for_cpu(qdev->pdev,
1775 dma_unmap_addr
1776 (sbq_desc, mapaddr),
1777 dma_unmap_len
1778 (sbq_desc, maplen),
1779 PCI_DMA_FROMDEVICE);
1780 memcpy(skb_put(skb, length),
1781 sbq_desc->p.skb->data, length);
1782 pci_dma_sync_single_for_device(qdev->pdev,
1783 dma_unmap_addr
1784 (sbq_desc,
1785 mapaddr),
1786 dma_unmap_len
1787 (sbq_desc,
1788 maplen),
1789 PCI_DMA_FROMDEVICE);
1790 } else {
1791 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1792 "%d bytes in a single small buffer.\n",
1793 length);
1794 sbq_desc = ql_get_curr_sbuf(rx_ring);
1795 skb = sbq_desc->p.skb;
1796 ql_realign_skb(skb, length);
1797 skb_put(skb, length);
1798 pci_unmap_single(qdev->pdev,
1799 dma_unmap_addr(sbq_desc,
1800 mapaddr),
1801 dma_unmap_len(sbq_desc,
1802 maplen),
1803 PCI_DMA_FROMDEVICE);
1804 sbq_desc->p.skb = NULL;
1805 }
1806 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1807 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1808 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1809 "Header in small, %d bytes in large. Chain large to small!\n",
1810 length);
1811 /*
1812 * The data is in a single large buffer. We
1813 * chain it to the header buffer's skb and let
1814 * it rip.
1815 */
1816 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1817 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1818 "Chaining page at offset = %d, for %d bytes to skb.\n",
1819 lbq_desc->p.pg_chunk.offset, length);
1820 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1821 lbq_desc->p.pg_chunk.offset,
1822 length);
1823 skb->len += length;
1824 skb->data_len += length;
1825 skb->truesize += length;
1826 } else {
1827 /*
1828 * The headers and data are in a single large buffer. We
1829 * copy it to a new skb and let it go. This can happen with
1830 * jumbo mtu on a non-TCP/UDP frame.
1831 */
1832 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1833 skb = netdev_alloc_skb(qdev->ndev, length);
1834 if (skb == NULL) {
1835 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1836 "No skb available, drop the packet.\n");
1837 return NULL;
1838 }
1839 pci_unmap_page(qdev->pdev,
1840 dma_unmap_addr(lbq_desc,
1841 mapaddr),
1842 dma_unmap_len(lbq_desc, maplen),
1843 PCI_DMA_FROMDEVICE);
1844 skb_reserve(skb, NET_IP_ALIGN);
1845 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1846 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1847 length);
1848 skb_fill_page_desc(skb, 0,
1849 lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1851 length);
1852 skb->len += length;
1853 skb->data_len += length;
1854 skb->truesize += length;
1855 length -= length;
1856 __pskb_pull_tail(skb,
1857 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1858 VLAN_ETH_HLEN : ETH_HLEN);
1859 }
1860 } else {
1861 /*
1862 * The data is in a chain of large buffers
1863 * pointed to by a small buffer. We loop
1864 * thru and chain them to the our small header
1865 * buffer's skb.
1866 * frags: There are 18 max frags and our small
1867 * buffer will hold 32 of them. The thing is,
1868 * we'll use 3 max for our 9000 byte jumbo
1869 * frames. If the MTU goes up we could
1870 * eventually be in trouble.
1871 */
1872 int size, i = 0;
1873 sbq_desc = ql_get_curr_sbuf(rx_ring);
1874 pci_unmap_single(qdev->pdev,
1875 dma_unmap_addr(sbq_desc, mapaddr),
1876 dma_unmap_len(sbq_desc, maplen),
1877 PCI_DMA_FROMDEVICE);
1878 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1879 /*
1880 * This is an non TCP/UDP IP frame, so
1881 * the headers aren't split into a small
1882 * buffer. We have to use the small buffer
1883 * that contains our sg list as our skb to
1884 * send upstairs. Copy the sg list here to
1885 * a local buffer and use it to find the
1886 * pages to chain.
1887 */
1888 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1889 "%d bytes of headers & data in chain of large.\n",
1890 length);
1891 skb = sbq_desc->p.skb;
1892 sbq_desc->p.skb = NULL;
1893 skb_reserve(skb, NET_IP_ALIGN);
1894 }
1895 while (length > 0) {
1896 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1897 size = (length < rx_ring->lbq_buf_size) ? length :
1898 rx_ring->lbq_buf_size;
1899
1900 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1901 "Adding page %d to skb for %d bytes.\n",
1902 i, size);
1903 skb_fill_page_desc(skb, i,
1904 lbq_desc->p.pg_chunk.page,
1905 lbq_desc->p.pg_chunk.offset,
1906 size);
1907 skb->len += size;
1908 skb->data_len += size;
1909 skb->truesize += size;
1910 length -= size;
1911 i++;
1912 }
1913 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1914 VLAN_ETH_HLEN : ETH_HLEN);
1915 }
1916 return skb;
1917 }
1918
1919 /* Process an inbound completion from an rx ring. */
1920 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1921 struct rx_ring *rx_ring,
1922 struct ib_mac_iocb_rsp *ib_mac_rsp,
1923 u16 vlan_id)
1924 {
1925 struct net_device *ndev = qdev->ndev;
1926 struct sk_buff *skb = NULL;
1927
1928 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1929
1930 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1931 if (unlikely(!skb)) {
1932 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1933 "No skb available, drop packet.\n");
1934 rx_ring->rx_dropped++;
1935 return;
1936 }
1937
1938 /* Frame error, so drop the packet. */
1939 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1940 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1941 dev_kfree_skb_any(skb);
1942 return;
1943 }
1944
1945 /* The max framesize filter on this chip is set higher than
1946 * MTU since FCoE uses 2k frames.
1947 */
1948 if (skb->len > ndev->mtu + ETH_HLEN) {
1949 dev_kfree_skb_any(skb);
1950 rx_ring->rx_dropped++;
1951 return;
1952 }
1953
1954 /* loopback self test for ethtool */
1955 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1956 ql_check_lb_frame(qdev, skb);
1957 dev_kfree_skb_any(skb);
1958 return;
1959 }
1960
1961 prefetch(skb->data);
1962 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1964 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1965 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1966 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1967 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1968 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1969 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1970 rx_ring->rx_multicast++;
1971 }
1972 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1973 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1974 "Promiscuous Packet.\n");
1975 }
1976
1977 skb->protocol = eth_type_trans(skb, ndev);
1978 skb_checksum_none_assert(skb);
1979
1980 /* If rx checksum is on, and there are no
1981 * csum or frame errors.
1982 */
1983 if ((ndev->features & NETIF_F_RXCSUM) &&
1984 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1985 /* TCP frame. */
1986 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1987 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1988 "TCP checksum done!\n");
1989 skb->ip_summed = CHECKSUM_UNNECESSARY;
1990 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1991 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1992 /* Unfragmented ipv4 UDP frame. */
1993 struct iphdr *iph = (struct iphdr *) skb->data;
1994 if (!(iph->frag_off &
1995 htons(IP_MF|IP_OFFSET))) {
1996 skb->ip_summed = CHECKSUM_UNNECESSARY;
1997 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1998 "TCP checksum done!\n");
1999 }
2000 }
2001 }
2002
2003 rx_ring->rx_packets++;
2004 rx_ring->rx_bytes += skb->len;
2005 skb_record_rx_queue(skb, rx_ring->cq_id);
2006 if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
2007 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2008 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2009 napi_gro_receive(&rx_ring->napi, skb);
2010 else
2011 netif_receive_skb(skb);
2012 }
2013
2014 /* Process an inbound completion from an rx ring. */
2015 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2016 struct rx_ring *rx_ring,
2017 struct ib_mac_iocb_rsp *ib_mac_rsp)
2018 {
2019 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2020 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
2021 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2022 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2023
2024 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2025
2026 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2027 /* The data and headers are split into
2028 * separate buffers.
2029 */
2030 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2031 vlan_id);
2032 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2033 /* The data fit in a single small buffer.
2034 * Allocate a new skb, copy the data and
2035 * return the buffer to the free pool.
2036 */
2037 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2038 length, vlan_id);
2039 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2040 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2041 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2042 /* TCP packet in a page chunk that's been checksummed.
2043 * Tack it on to our GRO skb and let it go.
2044 */
2045 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2046 length, vlan_id);
2047 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2048 /* Non-TCP packet in a page chunk. Allocate an
2049 * skb, tack it on frags, and send it up.
2050 */
2051 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2052 length, vlan_id);
2053 } else {
2054 /* Non-TCP/UDP large frames that span multiple buffers
2055 * can be processed corrrectly by the split frame logic.
2056 */
2057 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2058 vlan_id);
2059 }
2060
2061 return (unsigned long)length;
2062 }
2063
2064 /* Process an outbound completion from an rx ring. */
2065 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2066 struct ob_mac_iocb_rsp *mac_rsp)
2067 {
2068 struct tx_ring *tx_ring;
2069 struct tx_ring_desc *tx_ring_desc;
2070
2071 QL_DUMP_OB_MAC_RSP(mac_rsp);
2072 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2073 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2074 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2075 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2076 tx_ring->tx_packets++;
2077 dev_kfree_skb(tx_ring_desc->skb);
2078 tx_ring_desc->skb = NULL;
2079
2080 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2081 OB_MAC_IOCB_RSP_S |
2082 OB_MAC_IOCB_RSP_L |
2083 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2084 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2085 netif_warn(qdev, tx_done, qdev->ndev,
2086 "Total descriptor length did not match transfer length.\n");
2087 }
2088 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2089 netif_warn(qdev, tx_done, qdev->ndev,
2090 "Frame too short to be valid, not sent.\n");
2091 }
2092 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2093 netif_warn(qdev, tx_done, qdev->ndev,
2094 "Frame too long, but sent anyway.\n");
2095 }
2096 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2097 netif_warn(qdev, tx_done, qdev->ndev,
2098 "PCI backplane error. Frame not sent.\n");
2099 }
2100 }
2101 atomic_inc(&tx_ring->tx_count);
2102 }
2103
2104 /* Fire up a handler to reset the MPI processor. */
2105 void ql_queue_fw_error(struct ql_adapter *qdev)
2106 {
2107 ql_link_off(qdev);
2108 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2109 }
2110
2111 void ql_queue_asic_error(struct ql_adapter *qdev)
2112 {
2113 ql_link_off(qdev);
2114 ql_disable_interrupts(qdev);
2115 /* Clear adapter up bit to signal the recovery
2116 * process that it shouldn't kill the reset worker
2117 * thread
2118 */
2119 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2120 /* Set asic recovery bit to indicate reset process that we are
2121 * in fatal error recovery process rather than normal close
2122 */
2123 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2124 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2125 }
2126
2127 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2128 struct ib_ae_iocb_rsp *ib_ae_rsp)
2129 {
2130 switch (ib_ae_rsp->event) {
2131 case MGMT_ERR_EVENT:
2132 netif_err(qdev, rx_err, qdev->ndev,
2133 "Management Processor Fatal Error.\n");
2134 ql_queue_fw_error(qdev);
2135 return;
2136
2137 case CAM_LOOKUP_ERR_EVENT:
2138 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2139 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2140 ql_queue_asic_error(qdev);
2141 return;
2142
2143 case SOFT_ECC_ERROR_EVENT:
2144 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2145 ql_queue_asic_error(qdev);
2146 break;
2147
2148 case PCI_ERR_ANON_BUF_RD:
2149 netdev_err(qdev->ndev, "PCI error occurred when reading "
2150 "anonymous buffers from rx_ring %d.\n",
2151 ib_ae_rsp->q_id);
2152 ql_queue_asic_error(qdev);
2153 break;
2154
2155 default:
2156 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2157 ib_ae_rsp->event);
2158 ql_queue_asic_error(qdev);
2159 break;
2160 }
2161 }
2162
2163 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2164 {
2165 struct ql_adapter *qdev = rx_ring->qdev;
2166 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2167 struct ob_mac_iocb_rsp *net_rsp = NULL;
2168 int count = 0;
2169
2170 struct tx_ring *tx_ring;
2171 /* While there are entries in the completion queue. */
2172 while (prod != rx_ring->cnsmr_idx) {
2173
2174 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2175 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2176 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2177
2178 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2179 rmb();
2180 switch (net_rsp->opcode) {
2181
2182 case OPCODE_OB_MAC_TSO_IOCB:
2183 case OPCODE_OB_MAC_IOCB:
2184 ql_process_mac_tx_intr(qdev, net_rsp);
2185 break;
2186 default:
2187 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2188 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2189 net_rsp->opcode);
2190 }
2191 count++;
2192 ql_update_cq(rx_ring);
2193 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2194 }
2195 if (!net_rsp)
2196 return 0;
2197 ql_write_cq_idx(rx_ring);
2198 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2199 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2200 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2201 /*
2202 * The queue got stopped because the tx_ring was full.
2203 * Wake it up, because it's now at least 25% empty.
2204 */
2205 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2206 }
2207
2208 return count;
2209 }
2210
2211 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2212 {
2213 struct ql_adapter *qdev = rx_ring->qdev;
2214 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2215 struct ql_net_rsp_iocb *net_rsp;
2216 int count = 0;
2217
2218 /* While there are entries in the completion queue. */
2219 while (prod != rx_ring->cnsmr_idx) {
2220
2221 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2222 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2223 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2224
2225 net_rsp = rx_ring->curr_entry;
2226 rmb();
2227 switch (net_rsp->opcode) {
2228 case OPCODE_IB_MAC_IOCB:
2229 ql_process_mac_rx_intr(qdev, rx_ring,
2230 (struct ib_mac_iocb_rsp *)
2231 net_rsp);
2232 break;
2233
2234 case OPCODE_IB_AE_IOCB:
2235 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2236 net_rsp);
2237 break;
2238 default:
2239 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2240 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2241 net_rsp->opcode);
2242 break;
2243 }
2244 count++;
2245 ql_update_cq(rx_ring);
2246 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2247 if (count == budget)
2248 break;
2249 }
2250 ql_update_buffer_queues(qdev, rx_ring);
2251 ql_write_cq_idx(rx_ring);
2252 return count;
2253 }
2254
2255 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2256 {
2257 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2258 struct ql_adapter *qdev = rx_ring->qdev;
2259 struct rx_ring *trx_ring;
2260 int i, work_done = 0;
2261 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2262
2263 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2264 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2265
2266 /* Service the TX rings first. They start
2267 * right after the RSS rings. */
2268 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2269 trx_ring = &qdev->rx_ring[i];
2270 /* If this TX completion ring belongs to this vector and
2271 * it's not empty then service it.
2272 */
2273 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2274 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2275 trx_ring->cnsmr_idx)) {
2276 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2277 "%s: Servicing TX completion ring %d.\n",
2278 __func__, trx_ring->cq_id);
2279 ql_clean_outbound_rx_ring(trx_ring);
2280 }
2281 }
2282
2283 /*
2284 * Now service the RSS ring if it's active.
2285 */
2286 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2287 rx_ring->cnsmr_idx) {
2288 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2289 "%s: Servicing RX completion ring %d.\n",
2290 __func__, rx_ring->cq_id);
2291 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2292 }
2293
2294 if (work_done < budget) {
2295 napi_complete(napi);
2296 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2297 }
2298 return work_done;
2299 }
2300
2301 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2302 {
2303 struct ql_adapter *qdev = netdev_priv(ndev);
2304
2305 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2306 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2307 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2308 } else {
2309 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2310 }
2311 }
2312
2313 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2314 netdev_features_t features)
2315 {
2316 /*
2317 * Since there is no support for separate rx/tx vlan accel
2318 * enable/disable make sure tx flag is always in same state as rx.
2319 */
2320 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2321 features |= NETIF_F_HW_VLAN_CTAG_TX;
2322 else
2323 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2324
2325 return features;
2326 }
2327
2328 static int qlge_set_features(struct net_device *ndev,
2329 netdev_features_t features)
2330 {
2331 netdev_features_t changed = ndev->features ^ features;
2332
2333 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2334 qlge_vlan_mode(ndev, features);
2335
2336 return 0;
2337 }
2338
2339 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2340 {
2341 u32 enable_bit = MAC_ADDR_E;
2342 int err;
2343
2344 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2345 MAC_ADDR_TYPE_VLAN, vid);
2346 if (err)
2347 netif_err(qdev, ifup, qdev->ndev,
2348 "Failed to init vlan address.\n");
2349 return err;
2350 }
2351
2352 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2353 {
2354 struct ql_adapter *qdev = netdev_priv(ndev);
2355 int status;
2356 int err;
2357
2358 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2359 if (status)
2360 return status;
2361
2362 err = __qlge_vlan_rx_add_vid(qdev, vid);
2363 set_bit(vid, qdev->active_vlans);
2364
2365 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2366
2367 return err;
2368 }
2369
2370 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2371 {
2372 u32 enable_bit = 0;
2373 int err;
2374
2375 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2376 MAC_ADDR_TYPE_VLAN, vid);
2377 if (err)
2378 netif_err(qdev, ifup, qdev->ndev,
2379 "Failed to clear vlan address.\n");
2380 return err;
2381 }
2382
2383 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2384 {
2385 struct ql_adapter *qdev = netdev_priv(ndev);
2386 int status;
2387 int err;
2388
2389 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2390 if (status)
2391 return status;
2392
2393 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2394 clear_bit(vid, qdev->active_vlans);
2395
2396 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2397
2398 return err;
2399 }
2400
2401 static void qlge_restore_vlan(struct ql_adapter *qdev)
2402 {
2403 int status;
2404 u16 vid;
2405
2406 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2407 if (status)
2408 return;
2409
2410 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2411 __qlge_vlan_rx_add_vid(qdev, vid);
2412
2413 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2414 }
2415
2416 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2417 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2418 {
2419 struct rx_ring *rx_ring = dev_id;
2420 napi_schedule(&rx_ring->napi);
2421 return IRQ_HANDLED;
2422 }
2423
2424 /* This handles a fatal error, MPI activity, and the default
2425 * rx_ring in an MSI-X multiple vector environment.
2426 * In MSI/Legacy environment it also process the rest of
2427 * the rx_rings.
2428 */
2429 static irqreturn_t qlge_isr(int irq, void *dev_id)
2430 {
2431 struct rx_ring *rx_ring = dev_id;
2432 struct ql_adapter *qdev = rx_ring->qdev;
2433 struct intr_context *intr_context = &qdev->intr_context[0];
2434 u32 var;
2435 int work_done = 0;
2436
2437 spin_lock(&qdev->hw_lock);
2438 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2439 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2440 "Shared Interrupt, Not ours!\n");
2441 spin_unlock(&qdev->hw_lock);
2442 return IRQ_NONE;
2443 }
2444 spin_unlock(&qdev->hw_lock);
2445
2446 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2447
2448 /*
2449 * Check for fatal error.
2450 */
2451 if (var & STS_FE) {
2452 ql_queue_asic_error(qdev);
2453 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2454 var = ql_read32(qdev, ERR_STS);
2455 netdev_err(qdev->ndev, "Resetting chip. "
2456 "Error Status Register = 0x%x\n", var);
2457 return IRQ_HANDLED;
2458 }
2459
2460 /*
2461 * Check MPI processor activity.
2462 */
2463 if ((var & STS_PI) &&
2464 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2465 /*
2466 * We've got an async event or mailbox completion.
2467 * Handle it and clear the source of the interrupt.
2468 */
2469 netif_err(qdev, intr, qdev->ndev,
2470 "Got MPI processor interrupt.\n");
2471 ql_disable_completion_interrupt(qdev, intr_context->intr);
2472 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2473 queue_delayed_work_on(smp_processor_id(),
2474 qdev->workqueue, &qdev->mpi_work, 0);
2475 work_done++;
2476 }
2477
2478 /*
2479 * Get the bit-mask that shows the active queues for this
2480 * pass. Compare it to the queues that this irq services
2481 * and call napi if there's a match.
2482 */
2483 var = ql_read32(qdev, ISR1);
2484 if (var & intr_context->irq_mask) {
2485 netif_info(qdev, intr, qdev->ndev,
2486 "Waking handler for rx_ring[0].\n");
2487 ql_disable_completion_interrupt(qdev, intr_context->intr);
2488 napi_schedule(&rx_ring->napi);
2489 work_done++;
2490 }
2491 ql_enable_completion_interrupt(qdev, intr_context->intr);
2492 return work_done ? IRQ_HANDLED : IRQ_NONE;
2493 }
2494
2495 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2496 {
2497
2498 if (skb_is_gso(skb)) {
2499 int err;
2500 if (skb_header_cloned(skb)) {
2501 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2502 if (err)
2503 return err;
2504 }
2505
2506 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2507 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2508 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2509 mac_iocb_ptr->total_hdrs_len =
2510 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2511 mac_iocb_ptr->net_trans_offset =
2512 cpu_to_le16(skb_network_offset(skb) |
2513 skb_transport_offset(skb)
2514 << OB_MAC_TRANSPORT_HDR_SHIFT);
2515 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2516 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2517 if (likely(skb->protocol == htons(ETH_P_IP))) {
2518 struct iphdr *iph = ip_hdr(skb);
2519 iph->check = 0;
2520 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2521 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2522 iph->daddr, 0,
2523 IPPROTO_TCP,
2524 0);
2525 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2526 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2527 tcp_hdr(skb)->check =
2528 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2529 &ipv6_hdr(skb)->daddr,
2530 0, IPPROTO_TCP, 0);
2531 }
2532 return 1;
2533 }
2534 return 0;
2535 }
2536
2537 static void ql_hw_csum_setup(struct sk_buff *skb,
2538 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2539 {
2540 int len;
2541 struct iphdr *iph = ip_hdr(skb);
2542 __sum16 *check;
2543 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2544 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2545 mac_iocb_ptr->net_trans_offset =
2546 cpu_to_le16(skb_network_offset(skb) |
2547 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2548
2549 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2550 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2551 if (likely(iph->protocol == IPPROTO_TCP)) {
2552 check = &(tcp_hdr(skb)->check);
2553 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2554 mac_iocb_ptr->total_hdrs_len =
2555 cpu_to_le16(skb_transport_offset(skb) +
2556 (tcp_hdr(skb)->doff << 2));
2557 } else {
2558 check = &(udp_hdr(skb)->check);
2559 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2560 mac_iocb_ptr->total_hdrs_len =
2561 cpu_to_le16(skb_transport_offset(skb) +
2562 sizeof(struct udphdr));
2563 }
2564 *check = ~csum_tcpudp_magic(iph->saddr,
2565 iph->daddr, len, iph->protocol, 0);
2566 }
2567
2568 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2569 {
2570 struct tx_ring_desc *tx_ring_desc;
2571 struct ob_mac_iocb_req *mac_iocb_ptr;
2572 struct ql_adapter *qdev = netdev_priv(ndev);
2573 int tso;
2574 struct tx_ring *tx_ring;
2575 u32 tx_ring_idx = (u32) skb->queue_mapping;
2576
2577 tx_ring = &qdev->tx_ring[tx_ring_idx];
2578
2579 if (skb_padto(skb, ETH_ZLEN))
2580 return NETDEV_TX_OK;
2581
2582 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2583 netif_info(qdev, tx_queued, qdev->ndev,
2584 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2585 __func__, tx_ring_idx);
2586 netif_stop_subqueue(ndev, tx_ring->wq_id);
2587 tx_ring->tx_errors++;
2588 return NETDEV_TX_BUSY;
2589 }
2590 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2591 mac_iocb_ptr = tx_ring_desc->queue_entry;
2592 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2593
2594 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2595 mac_iocb_ptr->tid = tx_ring_desc->index;
2596 /* We use the upper 32-bits to store the tx queue for this IO.
2597 * When we get the completion we can use it to establish the context.
2598 */
2599 mac_iocb_ptr->txq_idx = tx_ring_idx;
2600 tx_ring_desc->skb = skb;
2601
2602 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2603
2604 if (vlan_tx_tag_present(skb)) {
2605 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2606 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2607 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2608 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2609 }
2610 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2611 if (tso < 0) {
2612 dev_kfree_skb_any(skb);
2613 return NETDEV_TX_OK;
2614 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2615 ql_hw_csum_setup(skb,
2616 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2617 }
2618 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2619 NETDEV_TX_OK) {
2620 netif_err(qdev, tx_queued, qdev->ndev,
2621 "Could not map the segments.\n");
2622 tx_ring->tx_errors++;
2623 return NETDEV_TX_BUSY;
2624 }
2625 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2626 tx_ring->prod_idx++;
2627 if (tx_ring->prod_idx == tx_ring->wq_len)
2628 tx_ring->prod_idx = 0;
2629 wmb();
2630
2631 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2632 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2633 "tx queued, slot %d, len %d\n",
2634 tx_ring->prod_idx, skb->len);
2635
2636 atomic_dec(&tx_ring->tx_count);
2637
2638 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2639 netif_stop_subqueue(ndev, tx_ring->wq_id);
2640 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2641 /*
2642 * The queue got stopped because the tx_ring was full.
2643 * Wake it up, because it's now at least 25% empty.
2644 */
2645 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2646 }
2647 return NETDEV_TX_OK;
2648 }
2649
2650
2651 static void ql_free_shadow_space(struct ql_adapter *qdev)
2652 {
2653 if (qdev->rx_ring_shadow_reg_area) {
2654 pci_free_consistent(qdev->pdev,
2655 PAGE_SIZE,
2656 qdev->rx_ring_shadow_reg_area,
2657 qdev->rx_ring_shadow_reg_dma);
2658 qdev->rx_ring_shadow_reg_area = NULL;
2659 }
2660 if (qdev->tx_ring_shadow_reg_area) {
2661 pci_free_consistent(qdev->pdev,
2662 PAGE_SIZE,
2663 qdev->tx_ring_shadow_reg_area,
2664 qdev->tx_ring_shadow_reg_dma);
2665 qdev->tx_ring_shadow_reg_area = NULL;
2666 }
2667 }
2668
2669 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2670 {
2671 qdev->rx_ring_shadow_reg_area =
2672 pci_alloc_consistent(qdev->pdev,
2673 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2674 if (qdev->rx_ring_shadow_reg_area == NULL) {
2675 netif_err(qdev, ifup, qdev->ndev,
2676 "Allocation of RX shadow space failed.\n");
2677 return -ENOMEM;
2678 }
2679 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2680 qdev->tx_ring_shadow_reg_area =
2681 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2682 &qdev->tx_ring_shadow_reg_dma);
2683 if (qdev->tx_ring_shadow_reg_area == NULL) {
2684 netif_err(qdev, ifup, qdev->ndev,
2685 "Allocation of TX shadow space failed.\n");
2686 goto err_wqp_sh_area;
2687 }
2688 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2689 return 0;
2690
2691 err_wqp_sh_area:
2692 pci_free_consistent(qdev->pdev,
2693 PAGE_SIZE,
2694 qdev->rx_ring_shadow_reg_area,
2695 qdev->rx_ring_shadow_reg_dma);
2696 return -ENOMEM;
2697 }
2698
2699 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2700 {
2701 struct tx_ring_desc *tx_ring_desc;
2702 int i;
2703 struct ob_mac_iocb_req *mac_iocb_ptr;
2704
2705 mac_iocb_ptr = tx_ring->wq_base;
2706 tx_ring_desc = tx_ring->q;
2707 for (i = 0; i < tx_ring->wq_len; i++) {
2708 tx_ring_desc->index = i;
2709 tx_ring_desc->skb = NULL;
2710 tx_ring_desc->queue_entry = mac_iocb_ptr;
2711 mac_iocb_ptr++;
2712 tx_ring_desc++;
2713 }
2714 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2715 }
2716
2717 static void ql_free_tx_resources(struct ql_adapter *qdev,
2718 struct tx_ring *tx_ring)
2719 {
2720 if (tx_ring->wq_base) {
2721 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2722 tx_ring->wq_base, tx_ring->wq_base_dma);
2723 tx_ring->wq_base = NULL;
2724 }
2725 kfree(tx_ring->q);
2726 tx_ring->q = NULL;
2727 }
2728
2729 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2730 struct tx_ring *tx_ring)
2731 {
2732 tx_ring->wq_base =
2733 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2734 &tx_ring->wq_base_dma);
2735
2736 if ((tx_ring->wq_base == NULL) ||
2737 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2738 goto pci_alloc_err;
2739
2740 tx_ring->q =
2741 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2742 if (tx_ring->q == NULL)
2743 goto err;
2744
2745 return 0;
2746 err:
2747 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2748 tx_ring->wq_base, tx_ring->wq_base_dma);
2749 tx_ring->wq_base = NULL;
2750 pci_alloc_err:
2751 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2752 return -ENOMEM;
2753 }
2754
2755 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2756 {
2757 struct bq_desc *lbq_desc;
2758
2759 uint32_t curr_idx, clean_idx;
2760
2761 curr_idx = rx_ring->lbq_curr_idx;
2762 clean_idx = rx_ring->lbq_clean_idx;
2763 while (curr_idx != clean_idx) {
2764 lbq_desc = &rx_ring->lbq[curr_idx];
2765
2766 if (lbq_desc->p.pg_chunk.last_flag) {
2767 pci_unmap_page(qdev->pdev,
2768 lbq_desc->p.pg_chunk.map,
2769 ql_lbq_block_size(qdev),
2770 PCI_DMA_FROMDEVICE);
2771 lbq_desc->p.pg_chunk.last_flag = 0;
2772 }
2773
2774 put_page(lbq_desc->p.pg_chunk.page);
2775 lbq_desc->p.pg_chunk.page = NULL;
2776
2777 if (++curr_idx == rx_ring->lbq_len)
2778 curr_idx = 0;
2779
2780 }
2781 if (rx_ring->pg_chunk.page) {
2782 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2783 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2784 put_page(rx_ring->pg_chunk.page);
2785 rx_ring->pg_chunk.page = NULL;
2786 }
2787 }
2788
2789 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2790 {
2791 int i;
2792 struct bq_desc *sbq_desc;
2793
2794 for (i = 0; i < rx_ring->sbq_len; i++) {
2795 sbq_desc = &rx_ring->sbq[i];
2796 if (sbq_desc == NULL) {
2797 netif_err(qdev, ifup, qdev->ndev,
2798 "sbq_desc %d is NULL.\n", i);
2799 return;
2800 }
2801 if (sbq_desc->p.skb) {
2802 pci_unmap_single(qdev->pdev,
2803 dma_unmap_addr(sbq_desc, mapaddr),
2804 dma_unmap_len(sbq_desc, maplen),
2805 PCI_DMA_FROMDEVICE);
2806 dev_kfree_skb(sbq_desc->p.skb);
2807 sbq_desc->p.skb = NULL;
2808 }
2809 }
2810 }
2811
2812 /* Free all large and small rx buffers associated
2813 * with the completion queues for this device.
2814 */
2815 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2816 {
2817 int i;
2818 struct rx_ring *rx_ring;
2819
2820 for (i = 0; i < qdev->rx_ring_count; i++) {
2821 rx_ring = &qdev->rx_ring[i];
2822 if (rx_ring->lbq)
2823 ql_free_lbq_buffers(qdev, rx_ring);
2824 if (rx_ring->sbq)
2825 ql_free_sbq_buffers(qdev, rx_ring);
2826 }
2827 }
2828
2829 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2830 {
2831 struct rx_ring *rx_ring;
2832 int i;
2833
2834 for (i = 0; i < qdev->rx_ring_count; i++) {
2835 rx_ring = &qdev->rx_ring[i];
2836 if (rx_ring->type != TX_Q)
2837 ql_update_buffer_queues(qdev, rx_ring);
2838 }
2839 }
2840
2841 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2842 struct rx_ring *rx_ring)
2843 {
2844 int i;
2845 struct bq_desc *lbq_desc;
2846 __le64 *bq = rx_ring->lbq_base;
2847
2848 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2849 for (i = 0; i < rx_ring->lbq_len; i++) {
2850 lbq_desc = &rx_ring->lbq[i];
2851 memset(lbq_desc, 0, sizeof(*lbq_desc));
2852 lbq_desc->index = i;
2853 lbq_desc->addr = bq;
2854 bq++;
2855 }
2856 }
2857
2858 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2859 struct rx_ring *rx_ring)
2860 {
2861 int i;
2862 struct bq_desc *sbq_desc;
2863 __le64 *bq = rx_ring->sbq_base;
2864
2865 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2866 for (i = 0; i < rx_ring->sbq_len; i++) {
2867 sbq_desc = &rx_ring->sbq[i];
2868 memset(sbq_desc, 0, sizeof(*sbq_desc));
2869 sbq_desc->index = i;
2870 sbq_desc->addr = bq;
2871 bq++;
2872 }
2873 }
2874
2875 static void ql_free_rx_resources(struct ql_adapter *qdev,
2876 struct rx_ring *rx_ring)
2877 {
2878 /* Free the small buffer queue. */
2879 if (rx_ring->sbq_base) {
2880 pci_free_consistent(qdev->pdev,
2881 rx_ring->sbq_size,
2882 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2883 rx_ring->sbq_base = NULL;
2884 }
2885
2886 /* Free the small buffer queue control blocks. */
2887 kfree(rx_ring->sbq);
2888 rx_ring->sbq = NULL;
2889
2890 /* Free the large buffer queue. */
2891 if (rx_ring->lbq_base) {
2892 pci_free_consistent(qdev->pdev,
2893 rx_ring->lbq_size,
2894 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2895 rx_ring->lbq_base = NULL;
2896 }
2897
2898 /* Free the large buffer queue control blocks. */
2899 kfree(rx_ring->lbq);
2900 rx_ring->lbq = NULL;
2901
2902 /* Free the rx queue. */
2903 if (rx_ring->cq_base) {
2904 pci_free_consistent(qdev->pdev,
2905 rx_ring->cq_size,
2906 rx_ring->cq_base, rx_ring->cq_base_dma);
2907 rx_ring->cq_base = NULL;
2908 }
2909 }
2910
2911 /* Allocate queues and buffers for this completions queue based
2912 * on the values in the parameter structure. */
2913 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2914 struct rx_ring *rx_ring)
2915 {
2916
2917 /*
2918 * Allocate the completion queue for this rx_ring.
2919 */
2920 rx_ring->cq_base =
2921 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2922 &rx_ring->cq_base_dma);
2923
2924 if (rx_ring->cq_base == NULL) {
2925 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2926 return -ENOMEM;
2927 }
2928
2929 if (rx_ring->sbq_len) {
2930 /*
2931 * Allocate small buffer queue.
2932 */
2933 rx_ring->sbq_base =
2934 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2935 &rx_ring->sbq_base_dma);
2936
2937 if (rx_ring->sbq_base == NULL) {
2938 netif_err(qdev, ifup, qdev->ndev,
2939 "Small buffer queue allocation failed.\n");
2940 goto err_mem;
2941 }
2942
2943 /*
2944 * Allocate small buffer queue control blocks.
2945 */
2946 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
2947 sizeof(struct bq_desc),
2948 GFP_KERNEL);
2949 if (rx_ring->sbq == NULL)
2950 goto err_mem;
2951
2952 ql_init_sbq_ring(qdev, rx_ring);
2953 }
2954
2955 if (rx_ring->lbq_len) {
2956 /*
2957 * Allocate large buffer queue.
2958 */
2959 rx_ring->lbq_base =
2960 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2961 &rx_ring->lbq_base_dma);
2962
2963 if (rx_ring->lbq_base == NULL) {
2964 netif_err(qdev, ifup, qdev->ndev,
2965 "Large buffer queue allocation failed.\n");
2966 goto err_mem;
2967 }
2968 /*
2969 * Allocate large buffer queue control blocks.
2970 */
2971 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
2972 sizeof(struct bq_desc),
2973 GFP_KERNEL);
2974 if (rx_ring->lbq == NULL)
2975 goto err_mem;
2976
2977 ql_init_lbq_ring(qdev, rx_ring);
2978 }
2979
2980 return 0;
2981
2982 err_mem:
2983 ql_free_rx_resources(qdev, rx_ring);
2984 return -ENOMEM;
2985 }
2986
2987 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2988 {
2989 struct tx_ring *tx_ring;
2990 struct tx_ring_desc *tx_ring_desc;
2991 int i, j;
2992
2993 /*
2994 * Loop through all queues and free
2995 * any resources.
2996 */
2997 for (j = 0; j < qdev->tx_ring_count; j++) {
2998 tx_ring = &qdev->tx_ring[j];
2999 for (i = 0; i < tx_ring->wq_len; i++) {
3000 tx_ring_desc = &tx_ring->q[i];
3001 if (tx_ring_desc && tx_ring_desc->skb) {
3002 netif_err(qdev, ifdown, qdev->ndev,
3003 "Freeing lost SKB %p, from queue %d, index %d.\n",
3004 tx_ring_desc->skb, j,
3005 tx_ring_desc->index);
3006 ql_unmap_send(qdev, tx_ring_desc,
3007 tx_ring_desc->map_cnt);
3008 dev_kfree_skb(tx_ring_desc->skb);
3009 tx_ring_desc->skb = NULL;
3010 }
3011 }
3012 }
3013 }
3014
3015 static void ql_free_mem_resources(struct ql_adapter *qdev)
3016 {
3017 int i;
3018
3019 for (i = 0; i < qdev->tx_ring_count; i++)
3020 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3021 for (i = 0; i < qdev->rx_ring_count; i++)
3022 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3023 ql_free_shadow_space(qdev);
3024 }
3025
3026 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3027 {
3028 int i;
3029
3030 /* Allocate space for our shadow registers and such. */
3031 if (ql_alloc_shadow_space(qdev))
3032 return -ENOMEM;
3033
3034 for (i = 0; i < qdev->rx_ring_count; i++) {
3035 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3036 netif_err(qdev, ifup, qdev->ndev,
3037 "RX resource allocation failed.\n");
3038 goto err_mem;
3039 }
3040 }
3041 /* Allocate tx queue resources */
3042 for (i = 0; i < qdev->tx_ring_count; i++) {
3043 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3044 netif_err(qdev, ifup, qdev->ndev,
3045 "TX resource allocation failed.\n");
3046 goto err_mem;
3047 }
3048 }
3049 return 0;
3050
3051 err_mem:
3052 ql_free_mem_resources(qdev);
3053 return -ENOMEM;
3054 }
3055
3056 /* Set up the rx ring control block and pass it to the chip.
3057 * The control block is defined as
3058 * "Completion Queue Initialization Control Block", or cqicb.
3059 */
3060 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3061 {
3062 struct cqicb *cqicb = &rx_ring->cqicb;
3063 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3064 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3065 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3066 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3067 void __iomem *doorbell_area =
3068 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3069 int err = 0;
3070 u16 bq_len;
3071 u64 tmp;
3072 __le64 *base_indirect_ptr;
3073 int page_entries;
3074
3075 /* Set up the shadow registers for this ring. */
3076 rx_ring->prod_idx_sh_reg = shadow_reg;
3077 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3078 *rx_ring->prod_idx_sh_reg = 0;
3079 shadow_reg += sizeof(u64);
3080 shadow_reg_dma += sizeof(u64);
3081 rx_ring->lbq_base_indirect = shadow_reg;
3082 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3083 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3084 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3085 rx_ring->sbq_base_indirect = shadow_reg;
3086 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3087
3088 /* PCI doorbell mem area + 0x00 for consumer index register */
3089 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3090 rx_ring->cnsmr_idx = 0;
3091 rx_ring->curr_entry = rx_ring->cq_base;
3092
3093 /* PCI doorbell mem area + 0x04 for valid register */
3094 rx_ring->valid_db_reg = doorbell_area + 0x04;
3095
3096 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3097 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3098
3099 /* PCI doorbell mem area + 0x1c */
3100 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3101
3102 memset((void *)cqicb, 0, sizeof(struct cqicb));
3103 cqicb->msix_vect = rx_ring->irq;
3104
3105 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3106 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3107
3108 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3109
3110 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3111
3112 /*
3113 * Set up the control block load flags.
3114 */
3115 cqicb->flags = FLAGS_LC | /* Load queue base address */
3116 FLAGS_LV | /* Load MSI-X vector */
3117 FLAGS_LI; /* Load irq delay values */
3118 if (rx_ring->lbq_len) {
3119 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3120 tmp = (u64)rx_ring->lbq_base_dma;
3121 base_indirect_ptr = rx_ring->lbq_base_indirect;
3122 page_entries = 0;
3123 do {
3124 *base_indirect_ptr = cpu_to_le64(tmp);
3125 tmp += DB_PAGE_SIZE;
3126 base_indirect_ptr++;
3127 page_entries++;
3128 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3129 cqicb->lbq_addr =
3130 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3131 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3132 (u16) rx_ring->lbq_buf_size;
3133 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3134 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3135 (u16) rx_ring->lbq_len;
3136 cqicb->lbq_len = cpu_to_le16(bq_len);
3137 rx_ring->lbq_prod_idx = 0;
3138 rx_ring->lbq_curr_idx = 0;
3139 rx_ring->lbq_clean_idx = 0;
3140 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3141 }
3142 if (rx_ring->sbq_len) {
3143 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3144 tmp = (u64)rx_ring->sbq_base_dma;
3145 base_indirect_ptr = rx_ring->sbq_base_indirect;
3146 page_entries = 0;
3147 do {
3148 *base_indirect_ptr = cpu_to_le64(tmp);
3149 tmp += DB_PAGE_SIZE;
3150 base_indirect_ptr++;
3151 page_entries++;
3152 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3153 cqicb->sbq_addr =
3154 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3155 cqicb->sbq_buf_size =
3156 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3157 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3158 (u16) rx_ring->sbq_len;
3159 cqicb->sbq_len = cpu_to_le16(bq_len);
3160 rx_ring->sbq_prod_idx = 0;
3161 rx_ring->sbq_curr_idx = 0;
3162 rx_ring->sbq_clean_idx = 0;
3163 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3164 }
3165 switch (rx_ring->type) {
3166 case TX_Q:
3167 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3168 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3169 break;
3170 case RX_Q:
3171 /* Inbound completion handling rx_rings run in
3172 * separate NAPI contexts.
3173 */
3174 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3175 64);
3176 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3177 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3178 break;
3179 default:
3180 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3181 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3182 }
3183 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3184 CFG_LCQ, rx_ring->cq_id);
3185 if (err) {
3186 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3187 return err;
3188 }
3189 return err;
3190 }
3191
3192 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3193 {
3194 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3195 void __iomem *doorbell_area =
3196 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3197 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3198 (tx_ring->wq_id * sizeof(u64));
3199 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3200 (tx_ring->wq_id * sizeof(u64));
3201 int err = 0;
3202
3203 /*
3204 * Assign doorbell registers for this tx_ring.
3205 */
3206 /* TX PCI doorbell mem area for tx producer index */
3207 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3208 tx_ring->prod_idx = 0;
3209 /* TX PCI doorbell mem area + 0x04 */
3210 tx_ring->valid_db_reg = doorbell_area + 0x04;
3211
3212 /*
3213 * Assign shadow registers for this tx_ring.
3214 */
3215 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3216 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3217
3218 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3219 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3220 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3221 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3222 wqicb->rid = 0;
3223 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3224
3225 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3226
3227 ql_init_tx_ring(qdev, tx_ring);
3228
3229 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3230 (u16) tx_ring->wq_id);
3231 if (err) {
3232 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3233 return err;
3234 }
3235 return err;
3236 }
3237
3238 static void ql_disable_msix(struct ql_adapter *qdev)
3239 {
3240 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3241 pci_disable_msix(qdev->pdev);
3242 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3243 kfree(qdev->msi_x_entry);
3244 qdev->msi_x_entry = NULL;
3245 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3246 pci_disable_msi(qdev->pdev);
3247 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3248 }
3249 }
3250
3251 /* We start by trying to get the number of vectors
3252 * stored in qdev->intr_count. If we don't get that
3253 * many then we reduce the count and try again.
3254 */
3255 static void ql_enable_msix(struct ql_adapter *qdev)
3256 {
3257 int i, err;
3258
3259 /* Get the MSIX vectors. */
3260 if (qlge_irq_type == MSIX_IRQ) {
3261 /* Try to alloc space for the msix struct,
3262 * if it fails then go to MSI/legacy.
3263 */
3264 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3265 sizeof(struct msix_entry),
3266 GFP_KERNEL);
3267 if (!qdev->msi_x_entry) {
3268 qlge_irq_type = MSI_IRQ;
3269 goto msi;
3270 }
3271
3272 for (i = 0; i < qdev->intr_count; i++)
3273 qdev->msi_x_entry[i].entry = i;
3274
3275 /* Loop to get our vectors. We start with
3276 * what we want and settle for what we get.
3277 */
3278 do {
3279 err = pci_enable_msix(qdev->pdev,
3280 qdev->msi_x_entry, qdev->intr_count);
3281 if (err > 0)
3282 qdev->intr_count = err;
3283 } while (err > 0);
3284
3285 if (err < 0) {
3286 kfree(qdev->msi_x_entry);
3287 qdev->msi_x_entry = NULL;
3288 netif_warn(qdev, ifup, qdev->ndev,
3289 "MSI-X Enable failed, trying MSI.\n");
3290 qdev->intr_count = 1;
3291 qlge_irq_type = MSI_IRQ;
3292 } else if (err == 0) {
3293 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3294 netif_info(qdev, ifup, qdev->ndev,
3295 "MSI-X Enabled, got %d vectors.\n",
3296 qdev->intr_count);
3297 return;
3298 }
3299 }
3300 msi:
3301 qdev->intr_count = 1;
3302 if (qlge_irq_type == MSI_IRQ) {
3303 if (!pci_enable_msi(qdev->pdev)) {
3304 set_bit(QL_MSI_ENABLED, &qdev->flags);
3305 netif_info(qdev, ifup, qdev->ndev,
3306 "Running with MSI interrupts.\n");
3307 return;
3308 }
3309 }
3310 qlge_irq_type = LEG_IRQ;
3311 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3312 "Running with legacy interrupts.\n");
3313 }
3314
3315 /* Each vector services 1 RSS ring and and 1 or more
3316 * TX completion rings. This function loops through
3317 * the TX completion rings and assigns the vector that
3318 * will service it. An example would be if there are
3319 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3320 * This would mean that vector 0 would service RSS ring 0
3321 * and TX completion rings 0,1,2 and 3. Vector 1 would
3322 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3323 */
3324 static void ql_set_tx_vect(struct ql_adapter *qdev)
3325 {
3326 int i, j, vect;
3327 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3328
3329 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3330 /* Assign irq vectors to TX rx_rings.*/
3331 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3332 i < qdev->rx_ring_count; i++) {
3333 if (j == tx_rings_per_vector) {
3334 vect++;
3335 j = 0;
3336 }
3337 qdev->rx_ring[i].irq = vect;
3338 j++;
3339 }
3340 } else {
3341 /* For single vector all rings have an irq
3342 * of zero.
3343 */
3344 for (i = 0; i < qdev->rx_ring_count; i++)
3345 qdev->rx_ring[i].irq = 0;
3346 }
3347 }
3348
3349 /* Set the interrupt mask for this vector. Each vector
3350 * will service 1 RSS ring and 1 or more TX completion
3351 * rings. This function sets up a bit mask per vector
3352 * that indicates which rings it services.
3353 */
3354 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3355 {
3356 int j, vect = ctx->intr;
3357 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3358
3359 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3360 /* Add the RSS ring serviced by this vector
3361 * to the mask.
3362 */
3363 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3364 /* Add the TX ring(s) serviced by this vector
3365 * to the mask. */
3366 for (j = 0; j < tx_rings_per_vector; j++) {
3367 ctx->irq_mask |=
3368 (1 << qdev->rx_ring[qdev->rss_ring_count +
3369 (vect * tx_rings_per_vector) + j].cq_id);
3370 }
3371 } else {
3372 /* For single vector we just shift each queue's
3373 * ID into the mask.
3374 */
3375 for (j = 0; j < qdev->rx_ring_count; j++)
3376 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3377 }
3378 }
3379
3380 /*
3381 * Here we build the intr_context structures based on
3382 * our rx_ring count and intr vector count.
3383 * The intr_context structure is used to hook each vector
3384 * to possibly different handlers.
3385 */
3386 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3387 {
3388 int i = 0;
3389 struct intr_context *intr_context = &qdev->intr_context[0];
3390
3391 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3392 /* Each rx_ring has it's
3393 * own intr_context since we have separate
3394 * vectors for each queue.
3395 */
3396 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3397 qdev->rx_ring[i].irq = i;
3398 intr_context->intr = i;
3399 intr_context->qdev = qdev;
3400 /* Set up this vector's bit-mask that indicates
3401 * which queues it services.
3402 */
3403 ql_set_irq_mask(qdev, intr_context);
3404 /*
3405 * We set up each vectors enable/disable/read bits so
3406 * there's no bit/mask calculations in the critical path.
3407 */
3408 intr_context->intr_en_mask =
3409 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3410 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3411 | i;
3412 intr_context->intr_dis_mask =
3413 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3414 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3415 INTR_EN_IHD | i;
3416 intr_context->intr_read_mask =
3417 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3418 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3419 i;
3420 if (i == 0) {
3421 /* The first vector/queue handles
3422 * broadcast/multicast, fatal errors,
3423 * and firmware events. This in addition
3424 * to normal inbound NAPI processing.
3425 */
3426 intr_context->handler = qlge_isr;
3427 sprintf(intr_context->name, "%s-rx-%d",
3428 qdev->ndev->name, i);
3429 } else {
3430 /*
3431 * Inbound queues handle unicast frames only.
3432 */
3433 intr_context->handler = qlge_msix_rx_isr;
3434 sprintf(intr_context->name, "%s-rx-%d",
3435 qdev->ndev->name, i);
3436 }
3437 }
3438 } else {
3439 /*
3440 * All rx_rings use the same intr_context since
3441 * there is only one vector.
3442 */
3443 intr_context->intr = 0;
3444 intr_context->qdev = qdev;
3445 /*
3446 * We set up each vectors enable/disable/read bits so
3447 * there's no bit/mask calculations in the critical path.
3448 */
3449 intr_context->intr_en_mask =
3450 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3451 intr_context->intr_dis_mask =
3452 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3453 INTR_EN_TYPE_DISABLE;
3454 intr_context->intr_read_mask =
3455 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3456 /*
3457 * Single interrupt means one handler for all rings.
3458 */
3459 intr_context->handler = qlge_isr;
3460 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3461 /* Set up this vector's bit-mask that indicates
3462 * which queues it services. In this case there is
3463 * a single vector so it will service all RSS and
3464 * TX completion rings.
3465 */
3466 ql_set_irq_mask(qdev, intr_context);
3467 }
3468 /* Tell the TX completion rings which MSIx vector
3469 * they will be using.
3470 */
3471 ql_set_tx_vect(qdev);
3472 }
3473
3474 static void ql_free_irq(struct ql_adapter *qdev)
3475 {
3476 int i;
3477 struct intr_context *intr_context = &qdev->intr_context[0];
3478
3479 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3480 if (intr_context->hooked) {
3481 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3482 free_irq(qdev->msi_x_entry[i].vector,
3483 &qdev->rx_ring[i]);
3484 } else {
3485 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3486 }
3487 }
3488 }
3489 ql_disable_msix(qdev);
3490 }
3491
3492 static int ql_request_irq(struct ql_adapter *qdev)
3493 {
3494 int i;
3495 int status = 0;
3496 struct pci_dev *pdev = qdev->pdev;
3497 struct intr_context *intr_context = &qdev->intr_context[0];
3498
3499 ql_resolve_queues_to_irqs(qdev);
3500
3501 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3502 atomic_set(&intr_context->irq_cnt, 0);
3503 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3504 status = request_irq(qdev->msi_x_entry[i].vector,
3505 intr_context->handler,
3506 0,
3507 intr_context->name,
3508 &qdev->rx_ring[i]);
3509 if (status) {
3510 netif_err(qdev, ifup, qdev->ndev,
3511 "Failed request for MSIX interrupt %d.\n",
3512 i);
3513 goto err_irq;
3514 }
3515 } else {
3516 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3517 "trying msi or legacy interrupts.\n");
3518 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3519 "%s: irq = %d.\n", __func__, pdev->irq);
3520 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3521 "%s: context->name = %s.\n", __func__,
3522 intr_context->name);
3523 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3524 "%s: dev_id = 0x%p.\n", __func__,
3525 &qdev->rx_ring[0]);
3526 status =
3527 request_irq(pdev->irq, qlge_isr,
3528 test_bit(QL_MSI_ENABLED,
3529 &qdev->
3530 flags) ? 0 : IRQF_SHARED,
3531 intr_context->name, &qdev->rx_ring[0]);
3532 if (status)
3533 goto err_irq;
3534
3535 netif_err(qdev, ifup, qdev->ndev,
3536 "Hooked intr %d, queue type %s, with name %s.\n",
3537 i,
3538 qdev->rx_ring[0].type == DEFAULT_Q ?
3539 "DEFAULT_Q" :
3540 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3541 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3542 intr_context->name);
3543 }
3544 intr_context->hooked = 1;
3545 }
3546 return status;
3547 err_irq:
3548 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3549 ql_free_irq(qdev);
3550 return status;
3551 }
3552
3553 static int ql_start_rss(struct ql_adapter *qdev)
3554 {
3555 static const u8 init_hash_seed[] = {
3556 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3557 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3558 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3559 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3560 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3561 };
3562 struct ricb *ricb = &qdev->ricb;
3563 int status = 0;
3564 int i;
3565 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3566
3567 memset((void *)ricb, 0, sizeof(*ricb));
3568
3569 ricb->base_cq = RSS_L4K;
3570 ricb->flags =
3571 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3572 ricb->mask = cpu_to_le16((u16)(0x3ff));
3573
3574 /*
3575 * Fill out the Indirection Table.
3576 */
3577 for (i = 0; i < 1024; i++)
3578 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3579
3580 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3581 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3582
3583 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3584 if (status) {
3585 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3586 return status;
3587 }
3588 return status;
3589 }
3590
3591 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3592 {
3593 int i, status = 0;
3594
3595 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3596 if (status)
3597 return status;
3598 /* Clear all the entries in the routing table. */
3599 for (i = 0; i < 16; i++) {
3600 status = ql_set_routing_reg(qdev, i, 0, 0);
3601 if (status) {
3602 netif_err(qdev, ifup, qdev->ndev,
3603 "Failed to init routing register for CAM packets.\n");
3604 break;
3605 }
3606 }
3607 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3608 return status;
3609 }
3610
3611 /* Initialize the frame-to-queue routing. */
3612 static int ql_route_initialize(struct ql_adapter *qdev)
3613 {
3614 int status = 0;
3615
3616 /* Clear all the entries in the routing table. */
3617 status = ql_clear_routing_entries(qdev);
3618 if (status)
3619 return status;
3620
3621 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3622 if (status)
3623 return status;
3624
3625 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3626 RT_IDX_IP_CSUM_ERR, 1);
3627 if (status) {
3628 netif_err(qdev, ifup, qdev->ndev,
3629 "Failed to init routing register "
3630 "for IP CSUM error packets.\n");
3631 goto exit;
3632 }
3633 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3634 RT_IDX_TU_CSUM_ERR, 1);
3635 if (status) {
3636 netif_err(qdev, ifup, qdev->ndev,
3637 "Failed to init routing register "
3638 "for TCP/UDP CSUM error packets.\n");
3639 goto exit;
3640 }
3641 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3642 if (status) {
3643 netif_err(qdev, ifup, qdev->ndev,
3644 "Failed to init routing register for broadcast packets.\n");
3645 goto exit;
3646 }
3647 /* If we have more than one inbound queue, then turn on RSS in the
3648 * routing block.
3649 */
3650 if (qdev->rss_ring_count > 1) {
3651 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3652 RT_IDX_RSS_MATCH, 1);
3653 if (status) {
3654 netif_err(qdev, ifup, qdev->ndev,
3655 "Failed to init routing register for MATCH RSS packets.\n");
3656 goto exit;
3657 }
3658 }
3659
3660 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3661 RT_IDX_CAM_HIT, 1);
3662 if (status)
3663 netif_err(qdev, ifup, qdev->ndev,
3664 "Failed to init routing register for CAM packets.\n");
3665 exit:
3666 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3667 return status;
3668 }
3669
3670 int ql_cam_route_initialize(struct ql_adapter *qdev)
3671 {
3672 int status, set;
3673
3674 /* If check if the link is up and use to
3675 * determine if we are setting or clearing
3676 * the MAC address in the CAM.
3677 */
3678 set = ql_read32(qdev, STS);
3679 set &= qdev->port_link_up;
3680 status = ql_set_mac_addr(qdev, set);
3681 if (status) {
3682 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3683 return status;
3684 }
3685
3686 status = ql_route_initialize(qdev);
3687 if (status)
3688 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3689
3690 return status;
3691 }
3692
3693 static int ql_adapter_initialize(struct ql_adapter *qdev)
3694 {
3695 u32 value, mask;
3696 int i;
3697 int status = 0;
3698
3699 /*
3700 * Set up the System register to halt on errors.
3701 */
3702 value = SYS_EFE | SYS_FAE;
3703 mask = value << 16;
3704 ql_write32(qdev, SYS, mask | value);
3705
3706 /* Set the default queue, and VLAN behavior. */
3707 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3708 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3709 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3710
3711 /* Set the MPI interrupt to enabled. */
3712 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3713
3714 /* Enable the function, set pagesize, enable error checking. */
3715 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3716 FSC_EC | FSC_VM_PAGE_4K;
3717 value |= SPLT_SETTING;
3718
3719 /* Set/clear header splitting. */
3720 mask = FSC_VM_PAGESIZE_MASK |
3721 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3722 ql_write32(qdev, FSC, mask | value);
3723
3724 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3725
3726 /* Set RX packet routing to use port/pci function on which the
3727 * packet arrived on in addition to usual frame routing.
3728 * This is helpful on bonding where both interfaces can have
3729 * the same MAC address.
3730 */
3731 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3732 /* Reroute all packets to our Interface.
3733 * They may have been routed to MPI firmware
3734 * due to WOL.
3735 */
3736 value = ql_read32(qdev, MGMT_RCV_CFG);
3737 value &= ~MGMT_RCV_CFG_RM;
3738 mask = 0xffff0000;
3739
3740 /* Sticky reg needs clearing due to WOL. */
3741 ql_write32(qdev, MGMT_RCV_CFG, mask);
3742 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3743
3744 /* Default WOL is enable on Mezz cards */
3745 if (qdev->pdev->subsystem_device == 0x0068 ||
3746 qdev->pdev->subsystem_device == 0x0180)
3747 qdev->wol = WAKE_MAGIC;
3748
3749 /* Start up the rx queues. */
3750 for (i = 0; i < qdev->rx_ring_count; i++) {
3751 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3752 if (status) {
3753 netif_err(qdev, ifup, qdev->ndev,
3754 "Failed to start rx ring[%d].\n", i);
3755 return status;
3756 }
3757 }
3758
3759 /* If there is more than one inbound completion queue
3760 * then download a RICB to configure RSS.
3761 */
3762 if (qdev->rss_ring_count > 1) {
3763 status = ql_start_rss(qdev);
3764 if (status) {
3765 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3766 return status;
3767 }
3768 }
3769
3770 /* Start up the tx queues. */
3771 for (i = 0; i < qdev->tx_ring_count; i++) {
3772 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3773 if (status) {
3774 netif_err(qdev, ifup, qdev->ndev,
3775 "Failed to start tx ring[%d].\n", i);
3776 return status;
3777 }
3778 }
3779
3780 /* Initialize the port and set the max framesize. */
3781 status = qdev->nic_ops->port_initialize(qdev);
3782 if (status)
3783 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3784
3785 /* Set up the MAC address and frame routing filter. */
3786 status = ql_cam_route_initialize(qdev);
3787 if (status) {
3788 netif_err(qdev, ifup, qdev->ndev,
3789 "Failed to init CAM/Routing tables.\n");
3790 return status;
3791 }
3792
3793 /* Start NAPI for the RSS queues. */
3794 for (i = 0; i < qdev->rss_ring_count; i++)
3795 napi_enable(&qdev->rx_ring[i].napi);
3796
3797 return status;
3798 }
3799
3800 /* Issue soft reset to chip. */
3801 static int ql_adapter_reset(struct ql_adapter *qdev)
3802 {
3803 u32 value;
3804 int status = 0;
3805 unsigned long end_jiffies;
3806
3807 /* Clear all the entries in the routing table. */
3808 status = ql_clear_routing_entries(qdev);
3809 if (status) {
3810 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3811 return status;
3812 }
3813
3814 end_jiffies = jiffies +
3815 max((unsigned long)1, usecs_to_jiffies(30));
3816
3817 /* Check if bit is set then skip the mailbox command and
3818 * clear the bit, else we are in normal reset process.
3819 */
3820 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3821 /* Stop management traffic. */
3822 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3823
3824 /* Wait for the NIC and MGMNT FIFOs to empty. */
3825 ql_wait_fifo_empty(qdev);
3826 } else
3827 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3828
3829 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3830
3831 do {
3832 value = ql_read32(qdev, RST_FO);
3833 if ((value & RST_FO_FR) == 0)
3834 break;
3835 cpu_relax();
3836 } while (time_before(jiffies, end_jiffies));
3837
3838 if (value & RST_FO_FR) {
3839 netif_err(qdev, ifdown, qdev->ndev,
3840 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3841 status = -ETIMEDOUT;
3842 }
3843
3844 /* Resume management traffic. */
3845 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3846 return status;
3847 }
3848
3849 static void ql_display_dev_info(struct net_device *ndev)
3850 {
3851 struct ql_adapter *qdev = netdev_priv(ndev);
3852
3853 netif_info(qdev, probe, qdev->ndev,
3854 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3855 "XG Roll = %d, XG Rev = %d.\n",
3856 qdev->func,
3857 qdev->port,
3858 qdev->chip_rev_id & 0x0000000f,
3859 qdev->chip_rev_id >> 4 & 0x0000000f,
3860 qdev->chip_rev_id >> 8 & 0x0000000f,
3861 qdev->chip_rev_id >> 12 & 0x0000000f);
3862 netif_info(qdev, probe, qdev->ndev,
3863 "MAC address %pM\n", ndev->dev_addr);
3864 }
3865
3866 static int ql_wol(struct ql_adapter *qdev)
3867 {
3868 int status = 0;
3869 u32 wol = MB_WOL_DISABLE;
3870
3871 /* The CAM is still intact after a reset, but if we
3872 * are doing WOL, then we may need to program the
3873 * routing regs. We would also need to issue the mailbox
3874 * commands to instruct the MPI what to do per the ethtool
3875 * settings.
3876 */
3877
3878 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3879 WAKE_MCAST | WAKE_BCAST)) {
3880 netif_err(qdev, ifdown, qdev->ndev,
3881 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3882 qdev->wol);
3883 return -EINVAL;
3884 }
3885
3886 if (qdev->wol & WAKE_MAGIC) {
3887 status = ql_mb_wol_set_magic(qdev, 1);
3888 if (status) {
3889 netif_err(qdev, ifdown, qdev->ndev,
3890 "Failed to set magic packet on %s.\n",
3891 qdev->ndev->name);
3892 return status;
3893 } else
3894 netif_info(qdev, drv, qdev->ndev,
3895 "Enabled magic packet successfully on %s.\n",
3896 qdev->ndev->name);
3897
3898 wol |= MB_WOL_MAGIC_PKT;
3899 }
3900
3901 if (qdev->wol) {
3902 wol |= MB_WOL_MODE_ON;
3903 status = ql_mb_wol_mode(qdev, wol);
3904 netif_err(qdev, drv, qdev->ndev,
3905 "WOL %s (wol code 0x%x) on %s\n",
3906 (status == 0) ? "Successfully set" : "Failed",
3907 wol, qdev->ndev->name);
3908 }
3909
3910 return status;
3911 }
3912
3913 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3914 {
3915
3916 /* Don't kill the reset worker thread if we
3917 * are in the process of recovery.
3918 */
3919 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3920 cancel_delayed_work_sync(&qdev->asic_reset_work);
3921 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3922 cancel_delayed_work_sync(&qdev->mpi_work);
3923 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3924 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3925 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3926 }
3927
3928 static int ql_adapter_down(struct ql_adapter *qdev)
3929 {
3930 int i, status = 0;
3931
3932 ql_link_off(qdev);
3933
3934 ql_cancel_all_work_sync(qdev);
3935
3936 for (i = 0; i < qdev->rss_ring_count; i++)
3937 napi_disable(&qdev->rx_ring[i].napi);
3938
3939 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3940
3941 ql_disable_interrupts(qdev);
3942
3943 ql_tx_ring_clean(qdev);
3944
3945 /* Call netif_napi_del() from common point.
3946 */
3947 for (i = 0; i < qdev->rss_ring_count; i++)
3948 netif_napi_del(&qdev->rx_ring[i].napi);
3949
3950 status = ql_adapter_reset(qdev);
3951 if (status)
3952 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3953 qdev->func);
3954 ql_free_rx_buffers(qdev);
3955
3956 return status;
3957 }
3958
3959 static int ql_adapter_up(struct ql_adapter *qdev)
3960 {
3961 int err = 0;
3962
3963 err = ql_adapter_initialize(qdev);
3964 if (err) {
3965 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3966 goto err_init;
3967 }
3968 set_bit(QL_ADAPTER_UP, &qdev->flags);
3969 ql_alloc_rx_buffers(qdev);
3970 /* If the port is initialized and the
3971 * link is up the turn on the carrier.
3972 */
3973 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3974 (ql_read32(qdev, STS) & qdev->port_link_up))
3975 ql_link_on(qdev);
3976 /* Restore rx mode. */
3977 clear_bit(QL_ALLMULTI, &qdev->flags);
3978 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3979 qlge_set_multicast_list(qdev->ndev);
3980
3981 /* Restore vlan setting. */
3982 qlge_restore_vlan(qdev);
3983
3984 ql_enable_interrupts(qdev);
3985 ql_enable_all_completion_interrupts(qdev);
3986 netif_tx_start_all_queues(qdev->ndev);
3987
3988 return 0;
3989 err_init:
3990 ql_adapter_reset(qdev);
3991 return err;
3992 }
3993
3994 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3995 {
3996 ql_free_mem_resources(qdev);
3997 ql_free_irq(qdev);
3998 }
3999
4000 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4001 {
4002 int status = 0;
4003
4004 if (ql_alloc_mem_resources(qdev)) {
4005 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4006 return -ENOMEM;
4007 }
4008 status = ql_request_irq(qdev);
4009 return status;
4010 }
4011
4012 static int qlge_close(struct net_device *ndev)
4013 {
4014 struct ql_adapter *qdev = netdev_priv(ndev);
4015
4016 /* If we hit pci_channel_io_perm_failure
4017 * failure condition, then we already
4018 * brought the adapter down.
4019 */
4020 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4021 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4022 clear_bit(QL_EEH_FATAL, &qdev->flags);
4023 return 0;
4024 }
4025
4026 /*
4027 * Wait for device to recover from a reset.
4028 * (Rarely happens, but possible.)
4029 */
4030 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4031 msleep(1);
4032 ql_adapter_down(qdev);
4033 ql_release_adapter_resources(qdev);
4034 return 0;
4035 }
4036
4037 static int ql_configure_rings(struct ql_adapter *qdev)
4038 {
4039 int i;
4040 struct rx_ring *rx_ring;
4041 struct tx_ring *tx_ring;
4042 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4043 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4044 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4045
4046 qdev->lbq_buf_order = get_order(lbq_buf_len);
4047
4048 /* In a perfect world we have one RSS ring for each CPU
4049 * and each has it's own vector. To do that we ask for
4050 * cpu_cnt vectors. ql_enable_msix() will adjust the
4051 * vector count to what we actually get. We then
4052 * allocate an RSS ring for each.
4053 * Essentially, we are doing min(cpu_count, msix_vector_count).
4054 */
4055 qdev->intr_count = cpu_cnt;
4056 ql_enable_msix(qdev);
4057 /* Adjust the RSS ring count to the actual vector count. */
4058 qdev->rss_ring_count = qdev->intr_count;
4059 qdev->tx_ring_count = cpu_cnt;
4060 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4061
4062 for (i = 0; i < qdev->tx_ring_count; i++) {
4063 tx_ring = &qdev->tx_ring[i];
4064 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4065 tx_ring->qdev = qdev;
4066 tx_ring->wq_id = i;
4067 tx_ring->wq_len = qdev->tx_ring_size;
4068 tx_ring->wq_size =
4069 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4070
4071 /*
4072 * The completion queue ID for the tx rings start
4073 * immediately after the rss rings.
4074 */
4075 tx_ring->cq_id = qdev->rss_ring_count + i;
4076 }
4077
4078 for (i = 0; i < qdev->rx_ring_count; i++) {
4079 rx_ring = &qdev->rx_ring[i];
4080 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4081 rx_ring->qdev = qdev;
4082 rx_ring->cq_id = i;
4083 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4084 if (i < qdev->rss_ring_count) {
4085 /*
4086 * Inbound (RSS) queues.
4087 */
4088 rx_ring->cq_len = qdev->rx_ring_size;
4089 rx_ring->cq_size =
4090 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4091 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4092 rx_ring->lbq_size =
4093 rx_ring->lbq_len * sizeof(__le64);
4094 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4095 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4096 rx_ring->sbq_size =
4097 rx_ring->sbq_len * sizeof(__le64);
4098 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4099 rx_ring->type = RX_Q;
4100 } else {
4101 /*
4102 * Outbound queue handles outbound completions only.
4103 */
4104 /* outbound cq is same size as tx_ring it services. */
4105 rx_ring->cq_len = qdev->tx_ring_size;
4106 rx_ring->cq_size =
4107 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4108 rx_ring->lbq_len = 0;
4109 rx_ring->lbq_size = 0;
4110 rx_ring->lbq_buf_size = 0;
4111 rx_ring->sbq_len = 0;
4112 rx_ring->sbq_size = 0;
4113 rx_ring->sbq_buf_size = 0;
4114 rx_ring->type = TX_Q;
4115 }
4116 }
4117 return 0;
4118 }
4119
4120 static int qlge_open(struct net_device *ndev)
4121 {
4122 int err = 0;
4123 struct ql_adapter *qdev = netdev_priv(ndev);
4124
4125 err = ql_adapter_reset(qdev);
4126 if (err)
4127 return err;
4128
4129 err = ql_configure_rings(qdev);
4130 if (err)
4131 return err;
4132
4133 err = ql_get_adapter_resources(qdev);
4134 if (err)
4135 goto error_up;
4136
4137 err = ql_adapter_up(qdev);
4138 if (err)
4139 goto error_up;
4140
4141 return err;
4142
4143 error_up:
4144 ql_release_adapter_resources(qdev);
4145 return err;
4146 }
4147
4148 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4149 {
4150 struct rx_ring *rx_ring;
4151 int i, status;
4152 u32 lbq_buf_len;
4153
4154 /* Wait for an outstanding reset to complete. */
4155 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4156 int i = 3;
4157 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4158 netif_err(qdev, ifup, qdev->ndev,
4159 "Waiting for adapter UP...\n");
4160 ssleep(1);
4161 }
4162
4163 if (!i) {
4164 netif_err(qdev, ifup, qdev->ndev,
4165 "Timed out waiting for adapter UP\n");
4166 return -ETIMEDOUT;
4167 }
4168 }
4169
4170 status = ql_adapter_down(qdev);
4171 if (status)
4172 goto error;
4173
4174 /* Get the new rx buffer size. */
4175 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4176 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4177 qdev->lbq_buf_order = get_order(lbq_buf_len);
4178
4179 for (i = 0; i < qdev->rss_ring_count; i++) {
4180 rx_ring = &qdev->rx_ring[i];
4181 /* Set the new size. */
4182 rx_ring->lbq_buf_size = lbq_buf_len;
4183 }
4184
4185 status = ql_adapter_up(qdev);
4186 if (status)
4187 goto error;
4188
4189 return status;
4190 error:
4191 netif_alert(qdev, ifup, qdev->ndev,
4192 "Driver up/down cycle failed, closing device.\n");
4193 set_bit(QL_ADAPTER_UP, &qdev->flags);
4194 dev_close(qdev->ndev);
4195 return status;
4196 }
4197
4198 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4199 {
4200 struct ql_adapter *qdev = netdev_priv(ndev);
4201 int status;
4202
4203 if (ndev->mtu == 1500 && new_mtu == 9000) {
4204 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4205 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4206 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4207 } else
4208 return -EINVAL;
4209
4210 queue_delayed_work(qdev->workqueue,
4211 &qdev->mpi_port_cfg_work, 3*HZ);
4212
4213 ndev->mtu = new_mtu;
4214
4215 if (!netif_running(qdev->ndev)) {
4216 return 0;
4217 }
4218
4219 status = ql_change_rx_buffers(qdev);
4220 if (status) {
4221 netif_err(qdev, ifup, qdev->ndev,
4222 "Changing MTU failed.\n");
4223 }
4224
4225 return status;
4226 }
4227
4228 static struct net_device_stats *qlge_get_stats(struct net_device
4229 *ndev)
4230 {
4231 struct ql_adapter *qdev = netdev_priv(ndev);
4232 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4233 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4234 unsigned long pkts, mcast, dropped, errors, bytes;
4235 int i;
4236
4237 /* Get RX stats. */
4238 pkts = mcast = dropped = errors = bytes = 0;
4239 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4240 pkts += rx_ring->rx_packets;
4241 bytes += rx_ring->rx_bytes;
4242 dropped += rx_ring->rx_dropped;
4243 errors += rx_ring->rx_errors;
4244 mcast += rx_ring->rx_multicast;
4245 }
4246 ndev->stats.rx_packets = pkts;
4247 ndev->stats.rx_bytes = bytes;
4248 ndev->stats.rx_dropped = dropped;
4249 ndev->stats.rx_errors = errors;
4250 ndev->stats.multicast = mcast;
4251
4252 /* Get TX stats. */
4253 pkts = errors = bytes = 0;
4254 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4255 pkts += tx_ring->tx_packets;
4256 bytes += tx_ring->tx_bytes;
4257 errors += tx_ring->tx_errors;
4258 }
4259 ndev->stats.tx_packets = pkts;
4260 ndev->stats.tx_bytes = bytes;
4261 ndev->stats.tx_errors = errors;
4262 return &ndev->stats;
4263 }
4264
4265 static void qlge_set_multicast_list(struct net_device *ndev)
4266 {
4267 struct ql_adapter *qdev = netdev_priv(ndev);
4268 struct netdev_hw_addr *ha;
4269 int i, status;
4270
4271 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4272 if (status)
4273 return;
4274 /*
4275 * Set or clear promiscuous mode if a
4276 * transition is taking place.
4277 */
4278 if (ndev->flags & IFF_PROMISC) {
4279 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4280 if (ql_set_routing_reg
4281 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4282 netif_err(qdev, hw, qdev->ndev,
4283 "Failed to set promiscuous mode.\n");
4284 } else {
4285 set_bit(QL_PROMISCUOUS, &qdev->flags);
4286 }
4287 }
4288 } else {
4289 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4290 if (ql_set_routing_reg
4291 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4292 netif_err(qdev, hw, qdev->ndev,
4293 "Failed to clear promiscuous mode.\n");
4294 } else {
4295 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4296 }
4297 }
4298 }
4299
4300 /*
4301 * Set or clear all multicast mode if a
4302 * transition is taking place.
4303 */
4304 if ((ndev->flags & IFF_ALLMULTI) ||
4305 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4306 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4307 if (ql_set_routing_reg
4308 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4309 netif_err(qdev, hw, qdev->ndev,
4310 "Failed to set all-multi mode.\n");
4311 } else {
4312 set_bit(QL_ALLMULTI, &qdev->flags);
4313 }
4314 }
4315 } else {
4316 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4317 if (ql_set_routing_reg
4318 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4319 netif_err(qdev, hw, qdev->ndev,
4320 "Failed to clear all-multi mode.\n");
4321 } else {
4322 clear_bit(QL_ALLMULTI, &qdev->flags);
4323 }
4324 }
4325 }
4326
4327 if (!netdev_mc_empty(ndev)) {
4328 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4329 if (status)
4330 goto exit;
4331 i = 0;
4332 netdev_for_each_mc_addr(ha, ndev) {
4333 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4334 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4335 netif_err(qdev, hw, qdev->ndev,
4336 "Failed to loadmulticast address.\n");
4337 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4338 goto exit;
4339 }
4340 i++;
4341 }
4342 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4343 if (ql_set_routing_reg
4344 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4345 netif_err(qdev, hw, qdev->ndev,
4346 "Failed to set multicast match mode.\n");
4347 } else {
4348 set_bit(QL_ALLMULTI, &qdev->flags);
4349 }
4350 }
4351 exit:
4352 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4353 }
4354
4355 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4356 {
4357 struct ql_adapter *qdev = netdev_priv(ndev);
4358 struct sockaddr *addr = p;
4359 int status;
4360
4361 if (!is_valid_ether_addr(addr->sa_data))
4362 return -EADDRNOTAVAIL;
4363 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4364 /* Update local copy of current mac address. */
4365 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4366
4367 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4368 if (status)
4369 return status;
4370 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4371 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4372 if (status)
4373 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4374 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4375 return status;
4376 }
4377
4378 static void qlge_tx_timeout(struct net_device *ndev)
4379 {
4380 struct ql_adapter *qdev = netdev_priv(ndev);
4381 ql_queue_asic_error(qdev);
4382 }
4383
4384 static void ql_asic_reset_work(struct work_struct *work)
4385 {
4386 struct ql_adapter *qdev =
4387 container_of(work, struct ql_adapter, asic_reset_work.work);
4388 int status;
4389 rtnl_lock();
4390 status = ql_adapter_down(qdev);
4391 if (status)
4392 goto error;
4393
4394 status = ql_adapter_up(qdev);
4395 if (status)
4396 goto error;
4397
4398 /* Restore rx mode. */
4399 clear_bit(QL_ALLMULTI, &qdev->flags);
4400 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4401 qlge_set_multicast_list(qdev->ndev);
4402
4403 rtnl_unlock();
4404 return;
4405 error:
4406 netif_alert(qdev, ifup, qdev->ndev,
4407 "Driver up/down cycle failed, closing device\n");
4408
4409 set_bit(QL_ADAPTER_UP, &qdev->flags);
4410 dev_close(qdev->ndev);
4411 rtnl_unlock();
4412 }
4413
4414 static const struct nic_operations qla8012_nic_ops = {
4415 .get_flash = ql_get_8012_flash_params,
4416 .port_initialize = ql_8012_port_initialize,
4417 };
4418
4419 static const struct nic_operations qla8000_nic_ops = {
4420 .get_flash = ql_get_8000_flash_params,
4421 .port_initialize = ql_8000_port_initialize,
4422 };
4423
4424 /* Find the pcie function number for the other NIC
4425 * on this chip. Since both NIC functions share a
4426 * common firmware we have the lowest enabled function
4427 * do any common work. Examples would be resetting
4428 * after a fatal firmware error, or doing a firmware
4429 * coredump.
4430 */
4431 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4432 {
4433 int status = 0;
4434 u32 temp;
4435 u32 nic_func1, nic_func2;
4436
4437 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4438 &temp);
4439 if (status)
4440 return status;
4441
4442 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4443 MPI_TEST_NIC_FUNC_MASK);
4444 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4445 MPI_TEST_NIC_FUNC_MASK);
4446
4447 if (qdev->func == nic_func1)
4448 qdev->alt_func = nic_func2;
4449 else if (qdev->func == nic_func2)
4450 qdev->alt_func = nic_func1;
4451 else
4452 status = -EIO;
4453
4454 return status;
4455 }
4456
4457 static int ql_get_board_info(struct ql_adapter *qdev)
4458 {
4459 int status;
4460 qdev->func =
4461 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4462 if (qdev->func > 3)
4463 return -EIO;
4464
4465 status = ql_get_alt_pcie_func(qdev);
4466 if (status)
4467 return status;
4468
4469 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4470 if (qdev->port) {
4471 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4472 qdev->port_link_up = STS_PL1;
4473 qdev->port_init = STS_PI1;
4474 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4475 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4476 } else {
4477 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4478 qdev->port_link_up = STS_PL0;
4479 qdev->port_init = STS_PI0;
4480 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4481 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4482 }
4483 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4484 qdev->device_id = qdev->pdev->device;
4485 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4486 qdev->nic_ops = &qla8012_nic_ops;
4487 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4488 qdev->nic_ops = &qla8000_nic_ops;
4489 return status;
4490 }
4491
4492 static void ql_release_all(struct pci_dev *pdev)
4493 {
4494 struct net_device *ndev = pci_get_drvdata(pdev);
4495 struct ql_adapter *qdev = netdev_priv(ndev);
4496
4497 if (qdev->workqueue) {
4498 destroy_workqueue(qdev->workqueue);
4499 qdev->workqueue = NULL;
4500 }
4501
4502 if (qdev->reg_base)
4503 iounmap(qdev->reg_base);
4504 if (qdev->doorbell_area)
4505 iounmap(qdev->doorbell_area);
4506 vfree(qdev->mpi_coredump);
4507 pci_release_regions(pdev);
4508 pci_set_drvdata(pdev, NULL);
4509 }
4510
4511 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4512 int cards_found)
4513 {
4514 struct ql_adapter *qdev = netdev_priv(ndev);
4515 int err = 0;
4516
4517 memset((void *)qdev, 0, sizeof(*qdev));
4518 err = pci_enable_device(pdev);
4519 if (err) {
4520 dev_err(&pdev->dev, "PCI device enable failed.\n");
4521 return err;
4522 }
4523
4524 qdev->ndev = ndev;
4525 qdev->pdev = pdev;
4526 pci_set_drvdata(pdev, ndev);
4527
4528 /* Set PCIe read request size */
4529 err = pcie_set_readrq(pdev, 4096);
4530 if (err) {
4531 dev_err(&pdev->dev, "Set readrq failed.\n");
4532 goto err_out1;
4533 }
4534
4535 err = pci_request_regions(pdev, DRV_NAME);
4536 if (err) {
4537 dev_err(&pdev->dev, "PCI region request failed.\n");
4538 return err;
4539 }
4540
4541 pci_set_master(pdev);
4542 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4543 set_bit(QL_DMA64, &qdev->flags);
4544 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4545 } else {
4546 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4547 if (!err)
4548 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4549 }
4550
4551 if (err) {
4552 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4553 goto err_out2;
4554 }
4555
4556 /* Set PCIe reset type for EEH to fundamental. */
4557 pdev->needs_freset = 1;
4558 pci_save_state(pdev);
4559 qdev->reg_base =
4560 ioremap_nocache(pci_resource_start(pdev, 1),
4561 pci_resource_len(pdev, 1));
4562 if (!qdev->reg_base) {
4563 dev_err(&pdev->dev, "Register mapping failed.\n");
4564 err = -ENOMEM;
4565 goto err_out2;
4566 }
4567
4568 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4569 qdev->doorbell_area =
4570 ioremap_nocache(pci_resource_start(pdev, 3),
4571 pci_resource_len(pdev, 3));
4572 if (!qdev->doorbell_area) {
4573 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4574 err = -ENOMEM;
4575 goto err_out2;
4576 }
4577
4578 err = ql_get_board_info(qdev);
4579 if (err) {
4580 dev_err(&pdev->dev, "Register access failed.\n");
4581 err = -EIO;
4582 goto err_out2;
4583 }
4584 qdev->msg_enable = netif_msg_init(debug, default_msg);
4585 spin_lock_init(&qdev->hw_lock);
4586 spin_lock_init(&qdev->stats_lock);
4587
4588 if (qlge_mpi_coredump) {
4589 qdev->mpi_coredump =
4590 vmalloc(sizeof(struct ql_mpi_coredump));
4591 if (qdev->mpi_coredump == NULL) {
4592 err = -ENOMEM;
4593 goto err_out2;
4594 }
4595 if (qlge_force_coredump)
4596 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4597 }
4598 /* make sure the EEPROM is good */
4599 err = qdev->nic_ops->get_flash(qdev);
4600 if (err) {
4601 dev_err(&pdev->dev, "Invalid FLASH.\n");
4602 goto err_out2;
4603 }
4604
4605 /* Keep local copy of current mac address. */
4606 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4607
4608 /* Set up the default ring sizes. */
4609 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4610 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4611
4612 /* Set up the coalescing parameters. */
4613 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4614 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4615 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4616 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4617
4618 /*
4619 * Set up the operating parameters.
4620 */
4621 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4622 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4623 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4624 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4625 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4626 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4627 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4628 init_completion(&qdev->ide_completion);
4629 mutex_init(&qdev->mpi_mutex);
4630
4631 if (!cards_found) {
4632 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4633 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4634 DRV_NAME, DRV_VERSION);
4635 }
4636 return 0;
4637 err_out2:
4638 ql_release_all(pdev);
4639 err_out1:
4640 pci_disable_device(pdev);
4641 return err;
4642 }
4643
4644 static const struct net_device_ops qlge_netdev_ops = {
4645 .ndo_open = qlge_open,
4646 .ndo_stop = qlge_close,
4647 .ndo_start_xmit = qlge_send,
4648 .ndo_change_mtu = qlge_change_mtu,
4649 .ndo_get_stats = qlge_get_stats,
4650 .ndo_set_rx_mode = qlge_set_multicast_list,
4651 .ndo_set_mac_address = qlge_set_mac_address,
4652 .ndo_validate_addr = eth_validate_addr,
4653 .ndo_tx_timeout = qlge_tx_timeout,
4654 .ndo_fix_features = qlge_fix_features,
4655 .ndo_set_features = qlge_set_features,
4656 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4657 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4658 };
4659
4660 static void ql_timer(unsigned long data)
4661 {
4662 struct ql_adapter *qdev = (struct ql_adapter *)data;
4663 u32 var = 0;
4664
4665 var = ql_read32(qdev, STS);
4666 if (pci_channel_offline(qdev->pdev)) {
4667 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4668 return;
4669 }
4670
4671 mod_timer(&qdev->timer, jiffies + (5*HZ));
4672 }
4673
4674 static int qlge_probe(struct pci_dev *pdev,
4675 const struct pci_device_id *pci_entry)
4676 {
4677 struct net_device *ndev = NULL;
4678 struct ql_adapter *qdev = NULL;
4679 static int cards_found = 0;
4680 int err = 0;
4681
4682 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4683 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4684 if (!ndev)
4685 return -ENOMEM;
4686
4687 err = ql_init_device(pdev, ndev, cards_found);
4688 if (err < 0) {
4689 free_netdev(ndev);
4690 return err;
4691 }
4692
4693 qdev = netdev_priv(ndev);
4694 SET_NETDEV_DEV(ndev, &pdev->dev);
4695 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
4696 NETIF_F_TSO | NETIF_F_TSO_ECN |
4697 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_RXCSUM;
4698 ndev->features = ndev->hw_features |
4699 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
4700 ndev->vlan_features = ndev->hw_features;
4701
4702 if (test_bit(QL_DMA64, &qdev->flags))
4703 ndev->features |= NETIF_F_HIGHDMA;
4704
4705 /*
4706 * Set up net_device structure.
4707 */
4708 ndev->tx_queue_len = qdev->tx_ring_size;
4709 ndev->irq = pdev->irq;
4710
4711 ndev->netdev_ops = &qlge_netdev_ops;
4712 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4713 ndev->watchdog_timeo = 10 * HZ;
4714
4715 err = register_netdev(ndev);
4716 if (err) {
4717 dev_err(&pdev->dev, "net device registration failed.\n");
4718 ql_release_all(pdev);
4719 pci_disable_device(pdev);
4720 return err;
4721 }
4722 /* Start up the timer to trigger EEH if
4723 * the bus goes dead
4724 */
4725 init_timer_deferrable(&qdev->timer);
4726 qdev->timer.data = (unsigned long)qdev;
4727 qdev->timer.function = ql_timer;
4728 qdev->timer.expires = jiffies + (5*HZ);
4729 add_timer(&qdev->timer);
4730 ql_link_off(qdev);
4731 ql_display_dev_info(ndev);
4732 atomic_set(&qdev->lb_count, 0);
4733 cards_found++;
4734 return 0;
4735 }
4736
4737 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4738 {
4739 return qlge_send(skb, ndev);
4740 }
4741
4742 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4743 {
4744 return ql_clean_inbound_rx_ring(rx_ring, budget);
4745 }
4746
4747 static void qlge_remove(struct pci_dev *pdev)
4748 {
4749 struct net_device *ndev = pci_get_drvdata(pdev);
4750 struct ql_adapter *qdev = netdev_priv(ndev);
4751 del_timer_sync(&qdev->timer);
4752 ql_cancel_all_work_sync(qdev);
4753 unregister_netdev(ndev);
4754 ql_release_all(pdev);
4755 pci_disable_device(pdev);
4756 free_netdev(ndev);
4757 }
4758
4759 /* Clean up resources without touching hardware. */
4760 static void ql_eeh_close(struct net_device *ndev)
4761 {
4762 int i;
4763 struct ql_adapter *qdev = netdev_priv(ndev);
4764
4765 if (netif_carrier_ok(ndev)) {
4766 netif_carrier_off(ndev);
4767 netif_stop_queue(ndev);
4768 }
4769
4770 /* Disabling the timer */
4771 del_timer_sync(&qdev->timer);
4772 ql_cancel_all_work_sync(qdev);
4773
4774 for (i = 0; i < qdev->rss_ring_count; i++)
4775 netif_napi_del(&qdev->rx_ring[i].napi);
4776
4777 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4778 ql_tx_ring_clean(qdev);
4779 ql_free_rx_buffers(qdev);
4780 ql_release_adapter_resources(qdev);
4781 }
4782
4783 /*
4784 * This callback is called by the PCI subsystem whenever
4785 * a PCI bus error is detected.
4786 */
4787 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4788 enum pci_channel_state state)
4789 {
4790 struct net_device *ndev = pci_get_drvdata(pdev);
4791 struct ql_adapter *qdev = netdev_priv(ndev);
4792
4793 switch (state) {
4794 case pci_channel_io_normal:
4795 return PCI_ERS_RESULT_CAN_RECOVER;
4796 case pci_channel_io_frozen:
4797 netif_device_detach(ndev);
4798 if (netif_running(ndev))
4799 ql_eeh_close(ndev);
4800 pci_disable_device(pdev);
4801 return PCI_ERS_RESULT_NEED_RESET;
4802 case pci_channel_io_perm_failure:
4803 dev_err(&pdev->dev,
4804 "%s: pci_channel_io_perm_failure.\n", __func__);
4805 ql_eeh_close(ndev);
4806 set_bit(QL_EEH_FATAL, &qdev->flags);
4807 return PCI_ERS_RESULT_DISCONNECT;
4808 }
4809
4810 /* Request a slot reset. */
4811 return PCI_ERS_RESULT_NEED_RESET;
4812 }
4813
4814 /*
4815 * This callback is called after the PCI buss has been reset.
4816 * Basically, this tries to restart the card from scratch.
4817 * This is a shortened version of the device probe/discovery code,
4818 * it resembles the first-half of the () routine.
4819 */
4820 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4821 {
4822 struct net_device *ndev = pci_get_drvdata(pdev);
4823 struct ql_adapter *qdev = netdev_priv(ndev);
4824
4825 pdev->error_state = pci_channel_io_normal;
4826
4827 pci_restore_state(pdev);
4828 if (pci_enable_device(pdev)) {
4829 netif_err(qdev, ifup, qdev->ndev,
4830 "Cannot re-enable PCI device after reset.\n");
4831 return PCI_ERS_RESULT_DISCONNECT;
4832 }
4833 pci_set_master(pdev);
4834
4835 if (ql_adapter_reset(qdev)) {
4836 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4837 set_bit(QL_EEH_FATAL, &qdev->flags);
4838 return PCI_ERS_RESULT_DISCONNECT;
4839 }
4840
4841 return PCI_ERS_RESULT_RECOVERED;
4842 }
4843
4844 static void qlge_io_resume(struct pci_dev *pdev)
4845 {
4846 struct net_device *ndev = pci_get_drvdata(pdev);
4847 struct ql_adapter *qdev = netdev_priv(ndev);
4848 int err = 0;
4849
4850 if (netif_running(ndev)) {
4851 err = qlge_open(ndev);
4852 if (err) {
4853 netif_err(qdev, ifup, qdev->ndev,
4854 "Device initialization failed after reset.\n");
4855 return;
4856 }
4857 } else {
4858 netif_err(qdev, ifup, qdev->ndev,
4859 "Device was not running prior to EEH.\n");
4860 }
4861 mod_timer(&qdev->timer, jiffies + (5*HZ));
4862 netif_device_attach(ndev);
4863 }
4864
4865 static const struct pci_error_handlers qlge_err_handler = {
4866 .error_detected = qlge_io_error_detected,
4867 .slot_reset = qlge_io_slot_reset,
4868 .resume = qlge_io_resume,
4869 };
4870
4871 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4872 {
4873 struct net_device *ndev = pci_get_drvdata(pdev);
4874 struct ql_adapter *qdev = netdev_priv(ndev);
4875 int err;
4876
4877 netif_device_detach(ndev);
4878 del_timer_sync(&qdev->timer);
4879
4880 if (netif_running(ndev)) {
4881 err = ql_adapter_down(qdev);
4882 if (!err)
4883 return err;
4884 }
4885
4886 ql_wol(qdev);
4887 err = pci_save_state(pdev);
4888 if (err)
4889 return err;
4890
4891 pci_disable_device(pdev);
4892
4893 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4894
4895 return 0;
4896 }
4897
4898 #ifdef CONFIG_PM
4899 static int qlge_resume(struct pci_dev *pdev)
4900 {
4901 struct net_device *ndev = pci_get_drvdata(pdev);
4902 struct ql_adapter *qdev = netdev_priv(ndev);
4903 int err;
4904
4905 pci_set_power_state(pdev, PCI_D0);
4906 pci_restore_state(pdev);
4907 err = pci_enable_device(pdev);
4908 if (err) {
4909 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4910 return err;
4911 }
4912 pci_set_master(pdev);
4913
4914 pci_enable_wake(pdev, PCI_D3hot, 0);
4915 pci_enable_wake(pdev, PCI_D3cold, 0);
4916
4917 if (netif_running(ndev)) {
4918 err = ql_adapter_up(qdev);
4919 if (err)
4920 return err;
4921 }
4922
4923 mod_timer(&qdev->timer, jiffies + (5*HZ));
4924 netif_device_attach(ndev);
4925
4926 return 0;
4927 }
4928 #endif /* CONFIG_PM */
4929
4930 static void qlge_shutdown(struct pci_dev *pdev)
4931 {
4932 qlge_suspend(pdev, PMSG_SUSPEND);
4933 }
4934
4935 static struct pci_driver qlge_driver = {
4936 .name = DRV_NAME,
4937 .id_table = qlge_pci_tbl,
4938 .probe = qlge_probe,
4939 .remove = qlge_remove,
4940 #ifdef CONFIG_PM
4941 .suspend = qlge_suspend,
4942 .resume = qlge_resume,
4943 #endif
4944 .shutdown = qlge_shutdown,
4945 .err_handler = &qlge_err_handler
4946 };
4947
4948 static int __init qlge_init_module(void)
4949 {
4950 return pci_register_driver(&qlge_driver);
4951 }
4952
4953 static void __exit qlge_exit(void)
4954 {
4955 pci_unregister_driver(&qlge_driver);
4956 }
4957
4958 module_init(qlge_init_module);
4959 module_exit(qlge_exit);
This page took 0.150555 seconds and 5 git commands to generate.