Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / net / ethernet / renesas / ravb_main.c
1 /* Renesas Ethernet AVB device driver
2 *
3 * Copyright (C) 2014-2015 Renesas Electronics Corporation
4 * Copyright (C) 2015 Renesas Solutions Corp.
5 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6 *
7 * Based on the SuperH Ethernet driver
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License version 2,
11 * as published by the Free Software Foundation.
12 */
13
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34
35 #include <asm/div64.h>
36
37 #include "ravb.h"
38
39 #define RAVB_DEF_MSG_ENABLE \
40 (NETIF_MSG_LINK | \
41 NETIF_MSG_TIMER | \
42 NETIF_MSG_RX_ERR | \
43 NETIF_MSG_TX_ERR)
44
45 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
46 "ch0", /* RAVB_BE */
47 "ch1", /* RAVB_NC */
48 };
49
50 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
51 "ch18", /* RAVB_BE */
52 "ch19", /* RAVB_NC */
53 };
54
55 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
56 u32 set)
57 {
58 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
59 }
60
61 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
62 {
63 int i;
64
65 for (i = 0; i < 10000; i++) {
66 if ((ravb_read(ndev, reg) & mask) == value)
67 return 0;
68 udelay(10);
69 }
70 return -ETIMEDOUT;
71 }
72
73 static int ravb_config(struct net_device *ndev)
74 {
75 int error;
76
77 /* Set config mode */
78 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
79 /* Check if the operating mode is changed to the config mode */
80 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
81 if (error)
82 netdev_err(ndev, "failed to switch device to config mode\n");
83
84 return error;
85 }
86
87 static void ravb_set_duplex(struct net_device *ndev)
88 {
89 struct ravb_private *priv = netdev_priv(ndev);
90
91 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
92 }
93
94 static void ravb_set_rate(struct net_device *ndev)
95 {
96 struct ravb_private *priv = netdev_priv(ndev);
97
98 switch (priv->speed) {
99 case 100: /* 100BASE */
100 ravb_write(ndev, GECMR_SPEED_100, GECMR);
101 break;
102 case 1000: /* 1000BASE */
103 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
104 break;
105 }
106 }
107
108 static void ravb_set_buffer_align(struct sk_buff *skb)
109 {
110 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
111
112 if (reserve)
113 skb_reserve(skb, RAVB_ALIGN - reserve);
114 }
115
116 /* Get MAC address from the MAC address registers
117 *
118 * Ethernet AVB device doesn't have ROM for MAC address.
119 * This function gets the MAC address that was used by a bootloader.
120 */
121 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
122 {
123 if (mac) {
124 ether_addr_copy(ndev->dev_addr, mac);
125 } else {
126 u32 mahr = ravb_read(ndev, MAHR);
127 u32 malr = ravb_read(ndev, MALR);
128
129 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
130 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
131 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
132 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
133 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
134 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
135 }
136 }
137
138 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
139 {
140 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
141 mdiobb);
142
143 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
144 }
145
146 /* MDC pin control */
147 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
148 {
149 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
150 }
151
152 /* Data I/O pin control */
153 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
154 {
155 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
156 }
157
158 /* Set data bit */
159 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
160 {
161 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
162 }
163
164 /* Get data bit */
165 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
166 {
167 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
168 mdiobb);
169
170 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
171 }
172
173 /* MDIO bus control struct */
174 static struct mdiobb_ops bb_ops = {
175 .owner = THIS_MODULE,
176 .set_mdc = ravb_set_mdc,
177 .set_mdio_dir = ravb_set_mdio_dir,
178 .set_mdio_data = ravb_set_mdio_data,
179 .get_mdio_data = ravb_get_mdio_data,
180 };
181
182 /* Free skb's and DMA buffers for Ethernet AVB */
183 static void ravb_ring_free(struct net_device *ndev, int q)
184 {
185 struct ravb_private *priv = netdev_priv(ndev);
186 int ring_size;
187 int i;
188
189 /* Free RX skb ringbuffer */
190 if (priv->rx_skb[q]) {
191 for (i = 0; i < priv->num_rx_ring[q]; i++)
192 dev_kfree_skb(priv->rx_skb[q][i]);
193 }
194 kfree(priv->rx_skb[q]);
195 priv->rx_skb[q] = NULL;
196
197 /* Free TX skb ringbuffer */
198 if (priv->tx_skb[q]) {
199 for (i = 0; i < priv->num_tx_ring[q]; i++)
200 dev_kfree_skb(priv->tx_skb[q][i]);
201 }
202 kfree(priv->tx_skb[q]);
203 priv->tx_skb[q] = NULL;
204
205 /* Free aligned TX buffers */
206 kfree(priv->tx_align[q]);
207 priv->tx_align[q] = NULL;
208
209 if (priv->rx_ring[q]) {
210 ring_size = sizeof(struct ravb_ex_rx_desc) *
211 (priv->num_rx_ring[q] + 1);
212 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
213 priv->rx_desc_dma[q]);
214 priv->rx_ring[q] = NULL;
215 }
216
217 if (priv->tx_ring[q]) {
218 ring_size = sizeof(struct ravb_tx_desc) *
219 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
220 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
221 priv->tx_desc_dma[q]);
222 priv->tx_ring[q] = NULL;
223 }
224 }
225
226 /* Format skb and descriptor buffer for Ethernet AVB */
227 static void ravb_ring_format(struct net_device *ndev, int q)
228 {
229 struct ravb_private *priv = netdev_priv(ndev);
230 struct ravb_ex_rx_desc *rx_desc;
231 struct ravb_tx_desc *tx_desc;
232 struct ravb_desc *desc;
233 int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
234 int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
235 NUM_TX_DESC;
236 dma_addr_t dma_addr;
237 int i;
238
239 priv->cur_rx[q] = 0;
240 priv->cur_tx[q] = 0;
241 priv->dirty_rx[q] = 0;
242 priv->dirty_tx[q] = 0;
243
244 memset(priv->rx_ring[q], 0, rx_ring_size);
245 /* Build RX ring buffer */
246 for (i = 0; i < priv->num_rx_ring[q]; i++) {
247 /* RX descriptor */
248 rx_desc = &priv->rx_ring[q][i];
249 rx_desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
250 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
251 PKT_BUF_SZ,
252 DMA_FROM_DEVICE);
253 /* We just set the data size to 0 for a failed mapping which
254 * should prevent DMA from happening...
255 */
256 if (dma_mapping_error(ndev->dev.parent, dma_addr))
257 rx_desc->ds_cc = cpu_to_le16(0);
258 rx_desc->dptr = cpu_to_le32(dma_addr);
259 rx_desc->die_dt = DT_FEMPTY;
260 }
261 rx_desc = &priv->rx_ring[q][i];
262 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
263 rx_desc->die_dt = DT_LINKFIX; /* type */
264
265 memset(priv->tx_ring[q], 0, tx_ring_size);
266 /* Build TX ring buffer */
267 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
268 i++, tx_desc++) {
269 tx_desc->die_dt = DT_EEMPTY;
270 tx_desc++;
271 tx_desc->die_dt = DT_EEMPTY;
272 }
273 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
274 tx_desc->die_dt = DT_LINKFIX; /* type */
275
276 /* RX descriptor base address for best effort */
277 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
278 desc->die_dt = DT_LINKFIX; /* type */
279 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
280
281 /* TX descriptor base address for best effort */
282 desc = &priv->desc_bat[q];
283 desc->die_dt = DT_LINKFIX; /* type */
284 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
285 }
286
287 /* Init skb and descriptor buffer for Ethernet AVB */
288 static int ravb_ring_init(struct net_device *ndev, int q)
289 {
290 struct ravb_private *priv = netdev_priv(ndev);
291 struct sk_buff *skb;
292 int ring_size;
293 int i;
294
295 /* Allocate RX and TX skb rings */
296 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
297 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
298 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
299 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
300 if (!priv->rx_skb[q] || !priv->tx_skb[q])
301 goto error;
302
303 for (i = 0; i < priv->num_rx_ring[q]; i++) {
304 skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
305 if (!skb)
306 goto error;
307 ravb_set_buffer_align(skb);
308 priv->rx_skb[q][i] = skb;
309 }
310
311 /* Allocate rings for the aligned buffers */
312 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
313 DPTR_ALIGN - 1, GFP_KERNEL);
314 if (!priv->tx_align[q])
315 goto error;
316
317 /* Allocate all RX descriptors. */
318 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
319 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
320 &priv->rx_desc_dma[q],
321 GFP_KERNEL);
322 if (!priv->rx_ring[q])
323 goto error;
324
325 priv->dirty_rx[q] = 0;
326
327 /* Allocate all TX descriptors. */
328 ring_size = sizeof(struct ravb_tx_desc) *
329 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
330 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
331 &priv->tx_desc_dma[q],
332 GFP_KERNEL);
333 if (!priv->tx_ring[q])
334 goto error;
335
336 return 0;
337
338 error:
339 ravb_ring_free(ndev, q);
340
341 return -ENOMEM;
342 }
343
344 /* E-MAC init function */
345 static void ravb_emac_init(struct net_device *ndev)
346 {
347 struct ravb_private *priv = netdev_priv(ndev);
348
349 /* Receive frame limit set register */
350 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
351
352 /* PAUSE prohibition */
353 ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
354 ECMR_TE | ECMR_RE, ECMR);
355
356 ravb_set_rate(ndev);
357
358 /* Set MAC address */
359 ravb_write(ndev,
360 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
361 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
362 ravb_write(ndev,
363 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
364
365 /* E-MAC status register clear */
366 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
367
368 /* E-MAC interrupt enable register */
369 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
370 }
371
372 /* Device init function for Ethernet AVB */
373 static int ravb_dmac_init(struct net_device *ndev)
374 {
375 struct ravb_private *priv = netdev_priv(ndev);
376 int error;
377
378 /* Set CONFIG mode */
379 error = ravb_config(ndev);
380 if (error)
381 return error;
382
383 error = ravb_ring_init(ndev, RAVB_BE);
384 if (error)
385 return error;
386 error = ravb_ring_init(ndev, RAVB_NC);
387 if (error) {
388 ravb_ring_free(ndev, RAVB_BE);
389 return error;
390 }
391
392 /* Descriptor format */
393 ravb_ring_format(ndev, RAVB_BE);
394 ravb_ring_format(ndev, RAVB_NC);
395
396 #if defined(__LITTLE_ENDIAN)
397 ravb_modify(ndev, CCC, CCC_BOC, 0);
398 #else
399 ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
400 #endif
401
402 /* Set AVB RX */
403 ravb_write(ndev,
404 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
405
406 /* Set FIFO size */
407 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
408
409 /* Timestamp enable */
410 ravb_write(ndev, TCCR_TFEN, TCCR);
411
412 /* Interrupt init: */
413 if (priv->chip_id == RCAR_GEN3) {
414 /* Clear DIL.DPLx */
415 ravb_write(ndev, 0, DIL);
416 /* Set queue specific interrupt */
417 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
418 }
419 /* Frame receive */
420 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
421 /* Disable FIFO full warning */
422 ravb_write(ndev, 0, RIC1);
423 /* Receive FIFO full error, descriptor empty */
424 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
425 /* Frame transmitted, timestamp FIFO updated */
426 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
427
428 /* Setting the control will start the AVB-DMAC process. */
429 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
430
431 return 0;
432 }
433
434 /* Free TX skb function for AVB-IP */
435 static int ravb_tx_free(struct net_device *ndev, int q)
436 {
437 struct ravb_private *priv = netdev_priv(ndev);
438 struct net_device_stats *stats = &priv->stats[q];
439 struct ravb_tx_desc *desc;
440 int free_num = 0;
441 int entry;
442 u32 size;
443
444 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
445 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
446 NUM_TX_DESC);
447 desc = &priv->tx_ring[q][entry];
448 if (desc->die_dt != DT_FEMPTY)
449 break;
450 /* Descriptor type must be checked before all other reads */
451 dma_rmb();
452 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
453 /* Free the original skb. */
454 if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
455 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
456 size, DMA_TO_DEVICE);
457 /* Last packet descriptor? */
458 if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
459 entry /= NUM_TX_DESC;
460 dev_kfree_skb_any(priv->tx_skb[q][entry]);
461 priv->tx_skb[q][entry] = NULL;
462 stats->tx_packets++;
463 }
464 free_num++;
465 }
466 stats->tx_bytes += size;
467 desc->die_dt = DT_EEMPTY;
468 }
469 return free_num;
470 }
471
472 static void ravb_get_tx_tstamp(struct net_device *ndev)
473 {
474 struct ravb_private *priv = netdev_priv(ndev);
475 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
476 struct skb_shared_hwtstamps shhwtstamps;
477 struct sk_buff *skb;
478 struct timespec64 ts;
479 u16 tag, tfa_tag;
480 int count;
481 u32 tfa2;
482
483 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
484 while (count--) {
485 tfa2 = ravb_read(ndev, TFA2);
486 tfa_tag = (tfa2 & TFA2_TST) >> 16;
487 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
488 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
489 ravb_read(ndev, TFA1);
490 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
491 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
492 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
493 list) {
494 skb = ts_skb->skb;
495 tag = ts_skb->tag;
496 list_del(&ts_skb->list);
497 kfree(ts_skb);
498 if (tag == tfa_tag) {
499 skb_tstamp_tx(skb, &shhwtstamps);
500 break;
501 }
502 }
503 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
504 }
505 }
506
507 /* Packet receive function for Ethernet AVB */
508 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
509 {
510 struct ravb_private *priv = netdev_priv(ndev);
511 int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
512 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
513 priv->cur_rx[q];
514 struct net_device_stats *stats = &priv->stats[q];
515 struct ravb_ex_rx_desc *desc;
516 struct sk_buff *skb;
517 dma_addr_t dma_addr;
518 struct timespec64 ts;
519 u8 desc_status;
520 u16 pkt_len;
521 int limit;
522
523 boguscnt = min(boguscnt, *quota);
524 limit = boguscnt;
525 desc = &priv->rx_ring[q][entry];
526 while (desc->die_dt != DT_FEMPTY) {
527 /* Descriptor type must be checked before all other reads */
528 dma_rmb();
529 desc_status = desc->msc;
530 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
531
532 if (--boguscnt < 0)
533 break;
534
535 /* We use 0-byte descriptors to mark the DMA mapping errors */
536 if (!pkt_len)
537 continue;
538
539 if (desc_status & MSC_MC)
540 stats->multicast++;
541
542 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
543 MSC_CEEF)) {
544 stats->rx_errors++;
545 if (desc_status & MSC_CRC)
546 stats->rx_crc_errors++;
547 if (desc_status & MSC_RFE)
548 stats->rx_frame_errors++;
549 if (desc_status & (MSC_RTLF | MSC_RTSF))
550 stats->rx_length_errors++;
551 if (desc_status & MSC_CEEF)
552 stats->rx_missed_errors++;
553 } else {
554 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
555
556 skb = priv->rx_skb[q][entry];
557 priv->rx_skb[q][entry] = NULL;
558 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
559 PKT_BUF_SZ,
560 DMA_FROM_DEVICE);
561 get_ts &= (q == RAVB_NC) ?
562 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
563 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
564 if (get_ts) {
565 struct skb_shared_hwtstamps *shhwtstamps;
566
567 shhwtstamps = skb_hwtstamps(skb);
568 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
569 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
570 32) | le32_to_cpu(desc->ts_sl);
571 ts.tv_nsec = le32_to_cpu(desc->ts_n);
572 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
573 }
574 skb_put(skb, pkt_len);
575 skb->protocol = eth_type_trans(skb, ndev);
576 napi_gro_receive(&priv->napi[q], skb);
577 stats->rx_packets++;
578 stats->rx_bytes += pkt_len;
579 }
580
581 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
582 desc = &priv->rx_ring[q][entry];
583 }
584
585 /* Refill the RX ring buffers. */
586 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
587 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
588 desc = &priv->rx_ring[q][entry];
589 desc->ds_cc = cpu_to_le16(PKT_BUF_SZ);
590
591 if (!priv->rx_skb[q][entry]) {
592 skb = netdev_alloc_skb(ndev,
593 PKT_BUF_SZ + RAVB_ALIGN - 1);
594 if (!skb)
595 break; /* Better luck next round. */
596 ravb_set_buffer_align(skb);
597 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
598 le16_to_cpu(desc->ds_cc),
599 DMA_FROM_DEVICE);
600 skb_checksum_none_assert(skb);
601 /* We just set the data size to 0 for a failed mapping
602 * which should prevent DMA from happening...
603 */
604 if (dma_mapping_error(ndev->dev.parent, dma_addr))
605 desc->ds_cc = cpu_to_le16(0);
606 desc->dptr = cpu_to_le32(dma_addr);
607 priv->rx_skb[q][entry] = skb;
608 }
609 /* Descriptor type must be set after all the above writes */
610 dma_wmb();
611 desc->die_dt = DT_FEMPTY;
612 }
613
614 *quota -= limit - (++boguscnt);
615
616 return boguscnt <= 0;
617 }
618
619 static void ravb_rcv_snd_disable(struct net_device *ndev)
620 {
621 /* Disable TX and RX */
622 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
623 }
624
625 static void ravb_rcv_snd_enable(struct net_device *ndev)
626 {
627 /* Enable TX and RX */
628 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
629 }
630
631 /* function for waiting dma process finished */
632 static int ravb_stop_dma(struct net_device *ndev)
633 {
634 int error;
635
636 /* Wait for stopping the hardware TX process */
637 error = ravb_wait(ndev, TCCR,
638 TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
639 if (error)
640 return error;
641
642 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
643 0);
644 if (error)
645 return error;
646
647 /* Stop the E-MAC's RX/TX processes. */
648 ravb_rcv_snd_disable(ndev);
649
650 /* Wait for stopping the RX DMA process */
651 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
652 if (error)
653 return error;
654
655 /* Stop AVB-DMAC process */
656 return ravb_config(ndev);
657 }
658
659 /* E-MAC interrupt handler */
660 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
661 {
662 struct ravb_private *priv = netdev_priv(ndev);
663 u32 ecsr, psr;
664
665 ecsr = ravb_read(ndev, ECSR);
666 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
667 if (ecsr & ECSR_ICD)
668 ndev->stats.tx_carrier_errors++;
669 if (ecsr & ECSR_LCHNG) {
670 /* Link changed */
671 if (priv->no_avb_link)
672 return;
673 psr = ravb_read(ndev, PSR);
674 if (priv->avb_link_active_low)
675 psr ^= PSR_LMON;
676 if (!(psr & PSR_LMON)) {
677 /* DIsable RX and TX */
678 ravb_rcv_snd_disable(ndev);
679 } else {
680 /* Enable RX and TX */
681 ravb_rcv_snd_enable(ndev);
682 }
683 }
684 }
685
686 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
687 {
688 struct net_device *ndev = dev_id;
689 struct ravb_private *priv = netdev_priv(ndev);
690
691 spin_lock(&priv->lock);
692 ravb_emac_interrupt_unlocked(ndev);
693 mmiowb();
694 spin_unlock(&priv->lock);
695 return IRQ_HANDLED;
696 }
697
698 /* Error interrupt handler */
699 static void ravb_error_interrupt(struct net_device *ndev)
700 {
701 struct ravb_private *priv = netdev_priv(ndev);
702 u32 eis, ris2;
703
704 eis = ravb_read(ndev, EIS);
705 ravb_write(ndev, ~EIS_QFS, EIS);
706 if (eis & EIS_QFS) {
707 ris2 = ravb_read(ndev, RIS2);
708 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
709
710 /* Receive Descriptor Empty int */
711 if (ris2 & RIS2_QFF0)
712 priv->stats[RAVB_BE].rx_over_errors++;
713
714 /* Receive Descriptor Empty int */
715 if (ris2 & RIS2_QFF1)
716 priv->stats[RAVB_NC].rx_over_errors++;
717
718 /* Receive FIFO Overflow int */
719 if (ris2 & RIS2_RFFF)
720 priv->rx_fifo_errors++;
721 }
722 }
723
724 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
725 {
726 struct ravb_private *priv = netdev_priv(ndev);
727 u32 ris0 = ravb_read(ndev, RIS0);
728 u32 ric0 = ravb_read(ndev, RIC0);
729 u32 tis = ravb_read(ndev, TIS);
730 u32 tic = ravb_read(ndev, TIC);
731
732 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
733 if (napi_schedule_prep(&priv->napi[q])) {
734 /* Mask RX and TX interrupts */
735 if (priv->chip_id == RCAR_GEN2) {
736 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
737 ravb_write(ndev, tic & ~BIT(q), TIC);
738 } else {
739 ravb_write(ndev, BIT(q), RID0);
740 ravb_write(ndev, BIT(q), TID);
741 }
742 __napi_schedule(&priv->napi[q]);
743 } else {
744 netdev_warn(ndev,
745 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
746 ris0, ric0);
747 netdev_warn(ndev,
748 " tx status 0x%08x, tx mask 0x%08x.\n",
749 tis, tic);
750 }
751 return true;
752 }
753 return false;
754 }
755
756 static bool ravb_timestamp_interrupt(struct net_device *ndev)
757 {
758 u32 tis = ravb_read(ndev, TIS);
759
760 if (tis & TIS_TFUF) {
761 ravb_write(ndev, ~TIS_TFUF, TIS);
762 ravb_get_tx_tstamp(ndev);
763 return true;
764 }
765 return false;
766 }
767
768 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
769 {
770 struct net_device *ndev = dev_id;
771 struct ravb_private *priv = netdev_priv(ndev);
772 irqreturn_t result = IRQ_NONE;
773 u32 iss;
774
775 spin_lock(&priv->lock);
776 /* Get interrupt status */
777 iss = ravb_read(ndev, ISS);
778
779 /* Received and transmitted interrupts */
780 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
781 int q;
782
783 /* Timestamp updated */
784 if (ravb_timestamp_interrupt(ndev))
785 result = IRQ_HANDLED;
786
787 /* Network control and best effort queue RX/TX */
788 for (q = RAVB_NC; q >= RAVB_BE; q--) {
789 if (ravb_queue_interrupt(ndev, q))
790 result = IRQ_HANDLED;
791 }
792 }
793
794 /* E-MAC status summary */
795 if (iss & ISS_MS) {
796 ravb_emac_interrupt_unlocked(ndev);
797 result = IRQ_HANDLED;
798 }
799
800 /* Error status summary */
801 if (iss & ISS_ES) {
802 ravb_error_interrupt(ndev);
803 result = IRQ_HANDLED;
804 }
805
806 /* gPTP interrupt status summary */
807 if (iss & ISS_CGIS) {
808 ravb_ptp_interrupt(ndev);
809 result = IRQ_HANDLED;
810 }
811
812 mmiowb();
813 spin_unlock(&priv->lock);
814 return result;
815 }
816
817 /* Timestamp/Error/gPTP interrupt handler */
818 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
819 {
820 struct net_device *ndev = dev_id;
821 struct ravb_private *priv = netdev_priv(ndev);
822 irqreturn_t result = IRQ_NONE;
823 u32 iss;
824
825 spin_lock(&priv->lock);
826 /* Get interrupt status */
827 iss = ravb_read(ndev, ISS);
828
829 /* Timestamp updated */
830 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
831 result = IRQ_HANDLED;
832
833 /* Error status summary */
834 if (iss & ISS_ES) {
835 ravb_error_interrupt(ndev);
836 result = IRQ_HANDLED;
837 }
838
839 /* gPTP interrupt status summary */
840 if (iss & ISS_CGIS) {
841 ravb_ptp_interrupt(ndev);
842 result = IRQ_HANDLED;
843 }
844
845 mmiowb();
846 spin_unlock(&priv->lock);
847 return result;
848 }
849
850 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
851 {
852 struct net_device *ndev = dev_id;
853 struct ravb_private *priv = netdev_priv(ndev);
854 irqreturn_t result = IRQ_NONE;
855
856 spin_lock(&priv->lock);
857
858 /* Network control/Best effort queue RX/TX */
859 if (ravb_queue_interrupt(ndev, q))
860 result = IRQ_HANDLED;
861
862 mmiowb();
863 spin_unlock(&priv->lock);
864 return result;
865 }
866
867 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
868 {
869 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
870 }
871
872 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
873 {
874 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
875 }
876
877 static int ravb_poll(struct napi_struct *napi, int budget)
878 {
879 struct net_device *ndev = napi->dev;
880 struct ravb_private *priv = netdev_priv(ndev);
881 unsigned long flags;
882 int q = napi - priv->napi;
883 int mask = BIT(q);
884 int quota = budget;
885 u32 ris0, tis;
886
887 for (;;) {
888 tis = ravb_read(ndev, TIS);
889 ris0 = ravb_read(ndev, RIS0);
890 if (!((ris0 & mask) || (tis & mask)))
891 break;
892
893 /* Processing RX Descriptor Ring */
894 if (ris0 & mask) {
895 /* Clear RX interrupt */
896 ravb_write(ndev, ~mask, RIS0);
897 if (ravb_rx(ndev, &quota, q))
898 goto out;
899 }
900 /* Processing TX Descriptor Ring */
901 if (tis & mask) {
902 spin_lock_irqsave(&priv->lock, flags);
903 /* Clear TX interrupt */
904 ravb_write(ndev, ~mask, TIS);
905 ravb_tx_free(ndev, q);
906 netif_wake_subqueue(ndev, q);
907 mmiowb();
908 spin_unlock_irqrestore(&priv->lock, flags);
909 }
910 }
911
912 napi_complete(napi);
913
914 /* Re-enable RX/TX interrupts */
915 spin_lock_irqsave(&priv->lock, flags);
916 if (priv->chip_id == RCAR_GEN2) {
917 ravb_modify(ndev, RIC0, mask, mask);
918 ravb_modify(ndev, TIC, mask, mask);
919 } else {
920 ravb_write(ndev, mask, RIE0);
921 ravb_write(ndev, mask, TIE);
922 }
923 mmiowb();
924 spin_unlock_irqrestore(&priv->lock, flags);
925
926 /* Receive error message handling */
927 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
928 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
929 if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
930 ndev->stats.rx_over_errors = priv->rx_over_errors;
931 netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
932 }
933 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
934 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
935 netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
936 }
937 out:
938 return budget - quota;
939 }
940
941 /* PHY state control function */
942 static void ravb_adjust_link(struct net_device *ndev)
943 {
944 struct ravb_private *priv = netdev_priv(ndev);
945 struct phy_device *phydev = ndev->phydev;
946 bool new_state = false;
947
948 if (phydev->link) {
949 if (phydev->duplex != priv->duplex) {
950 new_state = true;
951 priv->duplex = phydev->duplex;
952 ravb_set_duplex(ndev);
953 }
954
955 if (phydev->speed != priv->speed) {
956 new_state = true;
957 priv->speed = phydev->speed;
958 ravb_set_rate(ndev);
959 }
960 if (!priv->link) {
961 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
962 new_state = true;
963 priv->link = phydev->link;
964 if (priv->no_avb_link)
965 ravb_rcv_snd_enable(ndev);
966 }
967 } else if (priv->link) {
968 new_state = true;
969 priv->link = 0;
970 priv->speed = 0;
971 priv->duplex = -1;
972 if (priv->no_avb_link)
973 ravb_rcv_snd_disable(ndev);
974 }
975
976 if (new_state && netif_msg_link(priv))
977 phy_print_status(phydev);
978 }
979
980 /* PHY init function */
981 static int ravb_phy_init(struct net_device *ndev)
982 {
983 struct device_node *np = ndev->dev.parent->of_node;
984 struct ravb_private *priv = netdev_priv(ndev);
985 struct phy_device *phydev;
986 struct device_node *pn;
987 int err;
988
989 priv->link = 0;
990 priv->speed = 0;
991 priv->duplex = -1;
992
993 /* Try connecting to PHY */
994 pn = of_parse_phandle(np, "phy-handle", 0);
995 if (!pn) {
996 /* In the case of a fixed PHY, the DT node associated
997 * to the PHY is the Ethernet MAC DT node.
998 */
999 if (of_phy_is_fixed_link(np)) {
1000 err = of_phy_register_fixed_link(np);
1001 if (err)
1002 return err;
1003 }
1004 pn = of_node_get(np);
1005 }
1006 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1007 priv->phy_interface);
1008 of_node_put(pn);
1009 if (!phydev) {
1010 netdev_err(ndev, "failed to connect PHY\n");
1011 return -ENOENT;
1012 }
1013
1014 /* This driver only support 10/100Mbit speeds on Gen3
1015 * at this time.
1016 */
1017 if (priv->chip_id == RCAR_GEN3) {
1018 int err;
1019
1020 err = phy_set_max_speed(phydev, SPEED_100);
1021 if (err) {
1022 netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1023 phy_disconnect(phydev);
1024 return err;
1025 }
1026
1027 netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1028 }
1029
1030 /* 10BASE is not supported */
1031 phydev->supported &= ~PHY_10BT_FEATURES;
1032
1033 phy_attached_info(phydev);
1034
1035 return 0;
1036 }
1037
1038 /* PHY control start function */
1039 static int ravb_phy_start(struct net_device *ndev)
1040 {
1041 int error;
1042
1043 error = ravb_phy_init(ndev);
1044 if (error)
1045 return error;
1046
1047 phy_start(ndev->phydev);
1048
1049 return 0;
1050 }
1051
1052 static int ravb_get_link_ksettings(struct net_device *ndev,
1053 struct ethtool_link_ksettings *cmd)
1054 {
1055 struct ravb_private *priv = netdev_priv(ndev);
1056 int error = -ENODEV;
1057 unsigned long flags;
1058
1059 if (ndev->phydev) {
1060 spin_lock_irqsave(&priv->lock, flags);
1061 error = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1062 spin_unlock_irqrestore(&priv->lock, flags);
1063 }
1064
1065 return error;
1066 }
1067
1068 static int ravb_set_link_ksettings(struct net_device *ndev,
1069 const struct ethtool_link_ksettings *cmd)
1070 {
1071 struct ravb_private *priv = netdev_priv(ndev);
1072 unsigned long flags;
1073 int error;
1074
1075 if (!ndev->phydev)
1076 return -ENODEV;
1077
1078 spin_lock_irqsave(&priv->lock, flags);
1079
1080 /* Disable TX and RX */
1081 ravb_rcv_snd_disable(ndev);
1082
1083 error = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1084 if (error)
1085 goto error_exit;
1086
1087 if (cmd->base.duplex == DUPLEX_FULL)
1088 priv->duplex = 1;
1089 else
1090 priv->duplex = 0;
1091
1092 ravb_set_duplex(ndev);
1093
1094 error_exit:
1095 mdelay(1);
1096
1097 /* Enable TX and RX */
1098 ravb_rcv_snd_enable(ndev);
1099
1100 mmiowb();
1101 spin_unlock_irqrestore(&priv->lock, flags);
1102
1103 return error;
1104 }
1105
1106 static int ravb_nway_reset(struct net_device *ndev)
1107 {
1108 struct ravb_private *priv = netdev_priv(ndev);
1109 int error = -ENODEV;
1110 unsigned long flags;
1111
1112 if (ndev->phydev) {
1113 spin_lock_irqsave(&priv->lock, flags);
1114 error = phy_start_aneg(ndev->phydev);
1115 spin_unlock_irqrestore(&priv->lock, flags);
1116 }
1117
1118 return error;
1119 }
1120
1121 static u32 ravb_get_msglevel(struct net_device *ndev)
1122 {
1123 struct ravb_private *priv = netdev_priv(ndev);
1124
1125 return priv->msg_enable;
1126 }
1127
1128 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1129 {
1130 struct ravb_private *priv = netdev_priv(ndev);
1131
1132 priv->msg_enable = value;
1133 }
1134
1135 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1136 "rx_queue_0_current",
1137 "tx_queue_0_current",
1138 "rx_queue_0_dirty",
1139 "tx_queue_0_dirty",
1140 "rx_queue_0_packets",
1141 "tx_queue_0_packets",
1142 "rx_queue_0_bytes",
1143 "tx_queue_0_bytes",
1144 "rx_queue_0_mcast_packets",
1145 "rx_queue_0_errors",
1146 "rx_queue_0_crc_errors",
1147 "rx_queue_0_frame_errors",
1148 "rx_queue_0_length_errors",
1149 "rx_queue_0_missed_errors",
1150 "rx_queue_0_over_errors",
1151
1152 "rx_queue_1_current",
1153 "tx_queue_1_current",
1154 "rx_queue_1_dirty",
1155 "tx_queue_1_dirty",
1156 "rx_queue_1_packets",
1157 "tx_queue_1_packets",
1158 "rx_queue_1_bytes",
1159 "tx_queue_1_bytes",
1160 "rx_queue_1_mcast_packets",
1161 "rx_queue_1_errors",
1162 "rx_queue_1_crc_errors",
1163 "rx_queue_1_frame_errors",
1164 "rx_queue_1_length_errors",
1165 "rx_queue_1_missed_errors",
1166 "rx_queue_1_over_errors",
1167 };
1168
1169 #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
1170
1171 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1172 {
1173 switch (sset) {
1174 case ETH_SS_STATS:
1175 return RAVB_STATS_LEN;
1176 default:
1177 return -EOPNOTSUPP;
1178 }
1179 }
1180
1181 static void ravb_get_ethtool_stats(struct net_device *ndev,
1182 struct ethtool_stats *stats, u64 *data)
1183 {
1184 struct ravb_private *priv = netdev_priv(ndev);
1185 int i = 0;
1186 int q;
1187
1188 /* Device-specific stats */
1189 for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1190 struct net_device_stats *stats = &priv->stats[q];
1191
1192 data[i++] = priv->cur_rx[q];
1193 data[i++] = priv->cur_tx[q];
1194 data[i++] = priv->dirty_rx[q];
1195 data[i++] = priv->dirty_tx[q];
1196 data[i++] = stats->rx_packets;
1197 data[i++] = stats->tx_packets;
1198 data[i++] = stats->rx_bytes;
1199 data[i++] = stats->tx_bytes;
1200 data[i++] = stats->multicast;
1201 data[i++] = stats->rx_errors;
1202 data[i++] = stats->rx_crc_errors;
1203 data[i++] = stats->rx_frame_errors;
1204 data[i++] = stats->rx_length_errors;
1205 data[i++] = stats->rx_missed_errors;
1206 data[i++] = stats->rx_over_errors;
1207 }
1208 }
1209
1210 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1211 {
1212 switch (stringset) {
1213 case ETH_SS_STATS:
1214 memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1215 break;
1216 }
1217 }
1218
1219 static void ravb_get_ringparam(struct net_device *ndev,
1220 struct ethtool_ringparam *ring)
1221 {
1222 struct ravb_private *priv = netdev_priv(ndev);
1223
1224 ring->rx_max_pending = BE_RX_RING_MAX;
1225 ring->tx_max_pending = BE_TX_RING_MAX;
1226 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1227 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1228 }
1229
1230 static int ravb_set_ringparam(struct net_device *ndev,
1231 struct ethtool_ringparam *ring)
1232 {
1233 struct ravb_private *priv = netdev_priv(ndev);
1234 int error;
1235
1236 if (ring->tx_pending > BE_TX_RING_MAX ||
1237 ring->rx_pending > BE_RX_RING_MAX ||
1238 ring->tx_pending < BE_TX_RING_MIN ||
1239 ring->rx_pending < BE_RX_RING_MIN)
1240 return -EINVAL;
1241 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1242 return -EINVAL;
1243
1244 if (netif_running(ndev)) {
1245 netif_device_detach(ndev);
1246 /* Stop PTP Clock driver */
1247 if (priv->chip_id == RCAR_GEN2)
1248 ravb_ptp_stop(ndev);
1249 /* Wait for DMA stopping */
1250 error = ravb_stop_dma(ndev);
1251 if (error) {
1252 netdev_err(ndev,
1253 "cannot set ringparam! Any AVB processes are still running?\n");
1254 return error;
1255 }
1256 synchronize_irq(ndev->irq);
1257
1258 /* Free all the skb's in the RX queue and the DMA buffers. */
1259 ravb_ring_free(ndev, RAVB_BE);
1260 ravb_ring_free(ndev, RAVB_NC);
1261 }
1262
1263 /* Set new parameters */
1264 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1265 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1266
1267 if (netif_running(ndev)) {
1268 error = ravb_dmac_init(ndev);
1269 if (error) {
1270 netdev_err(ndev,
1271 "%s: ravb_dmac_init() failed, error %d\n",
1272 __func__, error);
1273 return error;
1274 }
1275
1276 ravb_emac_init(ndev);
1277
1278 /* Initialise PTP Clock driver */
1279 if (priv->chip_id == RCAR_GEN2)
1280 ravb_ptp_init(ndev, priv->pdev);
1281
1282 netif_device_attach(ndev);
1283 }
1284
1285 return 0;
1286 }
1287
1288 static int ravb_get_ts_info(struct net_device *ndev,
1289 struct ethtool_ts_info *info)
1290 {
1291 struct ravb_private *priv = netdev_priv(ndev);
1292
1293 info->so_timestamping =
1294 SOF_TIMESTAMPING_TX_SOFTWARE |
1295 SOF_TIMESTAMPING_RX_SOFTWARE |
1296 SOF_TIMESTAMPING_SOFTWARE |
1297 SOF_TIMESTAMPING_TX_HARDWARE |
1298 SOF_TIMESTAMPING_RX_HARDWARE |
1299 SOF_TIMESTAMPING_RAW_HARDWARE;
1300 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1301 info->rx_filters =
1302 (1 << HWTSTAMP_FILTER_NONE) |
1303 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1304 (1 << HWTSTAMP_FILTER_ALL);
1305 info->phc_index = ptp_clock_index(priv->ptp.clock);
1306
1307 return 0;
1308 }
1309
1310 static const struct ethtool_ops ravb_ethtool_ops = {
1311 .nway_reset = ravb_nway_reset,
1312 .get_msglevel = ravb_get_msglevel,
1313 .set_msglevel = ravb_set_msglevel,
1314 .get_link = ethtool_op_get_link,
1315 .get_strings = ravb_get_strings,
1316 .get_ethtool_stats = ravb_get_ethtool_stats,
1317 .get_sset_count = ravb_get_sset_count,
1318 .get_ringparam = ravb_get_ringparam,
1319 .set_ringparam = ravb_set_ringparam,
1320 .get_ts_info = ravb_get_ts_info,
1321 .get_link_ksettings = ravb_get_link_ksettings,
1322 .set_link_ksettings = ravb_set_link_ksettings,
1323 };
1324
1325 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1326 struct net_device *ndev, struct device *dev,
1327 const char *ch)
1328 {
1329 char *name;
1330 int error;
1331
1332 name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1333 if (!name)
1334 return -ENOMEM;
1335 error = request_irq(irq, handler, 0, name, ndev);
1336 if (error)
1337 netdev_err(ndev, "cannot request IRQ %s\n", name);
1338
1339 return error;
1340 }
1341
1342 /* Network device open function for Ethernet AVB */
1343 static int ravb_open(struct net_device *ndev)
1344 {
1345 struct ravb_private *priv = netdev_priv(ndev);
1346 struct platform_device *pdev = priv->pdev;
1347 struct device *dev = &pdev->dev;
1348 int error;
1349
1350 napi_enable(&priv->napi[RAVB_BE]);
1351 napi_enable(&priv->napi[RAVB_NC]);
1352
1353 if (priv->chip_id == RCAR_GEN2) {
1354 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1355 ndev->name, ndev);
1356 if (error) {
1357 netdev_err(ndev, "cannot request IRQ\n");
1358 goto out_napi_off;
1359 }
1360 } else {
1361 error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1362 dev, "ch22:multi");
1363 if (error)
1364 goto out_napi_off;
1365 error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1366 dev, "ch24:emac");
1367 if (error)
1368 goto out_free_irq;
1369 error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1370 ndev, dev, "ch0:rx_be");
1371 if (error)
1372 goto out_free_irq_emac;
1373 error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1374 ndev, dev, "ch18:tx_be");
1375 if (error)
1376 goto out_free_irq_be_rx;
1377 error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1378 ndev, dev, "ch1:rx_nc");
1379 if (error)
1380 goto out_free_irq_be_tx;
1381 error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1382 ndev, dev, "ch19:tx_nc");
1383 if (error)
1384 goto out_free_irq_nc_rx;
1385 }
1386
1387 /* Device init */
1388 error = ravb_dmac_init(ndev);
1389 if (error)
1390 goto out_free_irq_nc_tx;
1391 ravb_emac_init(ndev);
1392
1393 /* Initialise PTP Clock driver */
1394 if (priv->chip_id == RCAR_GEN2)
1395 ravb_ptp_init(ndev, priv->pdev);
1396
1397 netif_tx_start_all_queues(ndev);
1398
1399 /* PHY control start */
1400 error = ravb_phy_start(ndev);
1401 if (error)
1402 goto out_ptp_stop;
1403
1404 return 0;
1405
1406 out_ptp_stop:
1407 /* Stop PTP Clock driver */
1408 if (priv->chip_id == RCAR_GEN2)
1409 ravb_ptp_stop(ndev);
1410 out_free_irq_nc_tx:
1411 if (priv->chip_id == RCAR_GEN2)
1412 goto out_free_irq;
1413 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1414 out_free_irq_nc_rx:
1415 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1416 out_free_irq_be_tx:
1417 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1418 out_free_irq_be_rx:
1419 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1420 out_free_irq_emac:
1421 free_irq(priv->emac_irq, ndev);
1422 out_free_irq:
1423 free_irq(ndev->irq, ndev);
1424 out_napi_off:
1425 napi_disable(&priv->napi[RAVB_NC]);
1426 napi_disable(&priv->napi[RAVB_BE]);
1427 return error;
1428 }
1429
1430 /* Timeout function for Ethernet AVB */
1431 static void ravb_tx_timeout(struct net_device *ndev)
1432 {
1433 struct ravb_private *priv = netdev_priv(ndev);
1434
1435 netif_err(priv, tx_err, ndev,
1436 "transmit timed out, status %08x, resetting...\n",
1437 ravb_read(ndev, ISS));
1438
1439 /* tx_errors count up */
1440 ndev->stats.tx_errors++;
1441
1442 schedule_work(&priv->work);
1443 }
1444
1445 static void ravb_tx_timeout_work(struct work_struct *work)
1446 {
1447 struct ravb_private *priv = container_of(work, struct ravb_private,
1448 work);
1449 struct net_device *ndev = priv->ndev;
1450
1451 netif_tx_stop_all_queues(ndev);
1452
1453 /* Stop PTP Clock driver */
1454 if (priv->chip_id == RCAR_GEN2)
1455 ravb_ptp_stop(ndev);
1456
1457 /* Wait for DMA stopping */
1458 ravb_stop_dma(ndev);
1459
1460 ravb_ring_free(ndev, RAVB_BE);
1461 ravb_ring_free(ndev, RAVB_NC);
1462
1463 /* Device init */
1464 ravb_dmac_init(ndev);
1465 ravb_emac_init(ndev);
1466
1467 /* Initialise PTP Clock driver */
1468 if (priv->chip_id == RCAR_GEN2)
1469 ravb_ptp_init(ndev, priv->pdev);
1470
1471 netif_tx_start_all_queues(ndev);
1472 }
1473
1474 /* Packet transmit function for Ethernet AVB */
1475 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1476 {
1477 struct ravb_private *priv = netdev_priv(ndev);
1478 u16 q = skb_get_queue_mapping(skb);
1479 struct ravb_tstamp_skb *ts_skb;
1480 struct ravb_tx_desc *desc;
1481 unsigned long flags;
1482 u32 dma_addr;
1483 void *buffer;
1484 u32 entry;
1485 u32 len;
1486
1487 spin_lock_irqsave(&priv->lock, flags);
1488 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1489 NUM_TX_DESC) {
1490 netif_err(priv, tx_queued, ndev,
1491 "still transmitting with the full ring!\n");
1492 netif_stop_subqueue(ndev, q);
1493 spin_unlock_irqrestore(&priv->lock, flags);
1494 return NETDEV_TX_BUSY;
1495 }
1496 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1497 priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1498
1499 if (skb_put_padto(skb, ETH_ZLEN))
1500 goto drop;
1501
1502 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1503 entry / NUM_TX_DESC * DPTR_ALIGN;
1504 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1505 memcpy(buffer, skb->data, len);
1506 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1507 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1508 goto drop;
1509
1510 desc = &priv->tx_ring[q][entry];
1511 desc->ds_tagl = cpu_to_le16(len);
1512 desc->dptr = cpu_to_le32(dma_addr);
1513
1514 buffer = skb->data + len;
1515 len = skb->len - len;
1516 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1517 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1518 goto unmap;
1519
1520 desc++;
1521 desc->ds_tagl = cpu_to_le16(len);
1522 desc->dptr = cpu_to_le32(dma_addr);
1523
1524 /* TX timestamp required */
1525 if (q == RAVB_NC) {
1526 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1527 if (!ts_skb) {
1528 desc--;
1529 dma_unmap_single(ndev->dev.parent, dma_addr, len,
1530 DMA_TO_DEVICE);
1531 goto unmap;
1532 }
1533 ts_skb->skb = skb;
1534 ts_skb->tag = priv->ts_skb_tag++;
1535 priv->ts_skb_tag &= 0x3ff;
1536 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1537
1538 /* TAG and timestamp required flag */
1539 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1540 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1541 desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1542 }
1543
1544 skb_tx_timestamp(skb);
1545 /* Descriptor type must be set after all the above writes */
1546 dma_wmb();
1547 desc->die_dt = DT_FEND;
1548 desc--;
1549 desc->die_dt = DT_FSTART;
1550
1551 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1552
1553 priv->cur_tx[q] += NUM_TX_DESC;
1554 if (priv->cur_tx[q] - priv->dirty_tx[q] >
1555 (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1556 netif_stop_subqueue(ndev, q);
1557
1558 exit:
1559 mmiowb();
1560 spin_unlock_irqrestore(&priv->lock, flags);
1561 return NETDEV_TX_OK;
1562
1563 unmap:
1564 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1565 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1566 drop:
1567 dev_kfree_skb_any(skb);
1568 priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1569 goto exit;
1570 }
1571
1572 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1573 void *accel_priv, select_queue_fallback_t fallback)
1574 {
1575 /* If skb needs TX timestamp, it is handled in network control queue */
1576 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1577 RAVB_BE;
1578
1579 }
1580
1581 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1582 {
1583 struct ravb_private *priv = netdev_priv(ndev);
1584 struct net_device_stats *nstats, *stats0, *stats1;
1585
1586 nstats = &ndev->stats;
1587 stats0 = &priv->stats[RAVB_BE];
1588 stats1 = &priv->stats[RAVB_NC];
1589
1590 nstats->tx_dropped += ravb_read(ndev, TROCR);
1591 ravb_write(ndev, 0, TROCR); /* (write clear) */
1592 nstats->collisions += ravb_read(ndev, CDCR);
1593 ravb_write(ndev, 0, CDCR); /* (write clear) */
1594 nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1595 ravb_write(ndev, 0, LCCR); /* (write clear) */
1596
1597 nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1598 ravb_write(ndev, 0, CERCR); /* (write clear) */
1599 nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1600 ravb_write(ndev, 0, CEECR); /* (write clear) */
1601
1602 nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1603 nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1604 nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1605 nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1606 nstats->multicast = stats0->multicast + stats1->multicast;
1607 nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1608 nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1609 nstats->rx_frame_errors =
1610 stats0->rx_frame_errors + stats1->rx_frame_errors;
1611 nstats->rx_length_errors =
1612 stats0->rx_length_errors + stats1->rx_length_errors;
1613 nstats->rx_missed_errors =
1614 stats0->rx_missed_errors + stats1->rx_missed_errors;
1615 nstats->rx_over_errors =
1616 stats0->rx_over_errors + stats1->rx_over_errors;
1617
1618 return nstats;
1619 }
1620
1621 /* Update promiscuous bit */
1622 static void ravb_set_rx_mode(struct net_device *ndev)
1623 {
1624 struct ravb_private *priv = netdev_priv(ndev);
1625 unsigned long flags;
1626
1627 spin_lock_irqsave(&priv->lock, flags);
1628 ravb_modify(ndev, ECMR, ECMR_PRM,
1629 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1630 mmiowb();
1631 spin_unlock_irqrestore(&priv->lock, flags);
1632 }
1633
1634 /* Device close function for Ethernet AVB */
1635 static int ravb_close(struct net_device *ndev)
1636 {
1637 struct ravb_private *priv = netdev_priv(ndev);
1638 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1639
1640 netif_tx_stop_all_queues(ndev);
1641
1642 /* Disable interrupts by clearing the interrupt masks. */
1643 ravb_write(ndev, 0, RIC0);
1644 ravb_write(ndev, 0, RIC2);
1645 ravb_write(ndev, 0, TIC);
1646
1647 /* Stop PTP Clock driver */
1648 if (priv->chip_id == RCAR_GEN2)
1649 ravb_ptp_stop(ndev);
1650
1651 /* Set the config mode to stop the AVB-DMAC's processes */
1652 if (ravb_stop_dma(ndev) < 0)
1653 netdev_err(ndev,
1654 "device will be stopped after h/w processes are done.\n");
1655
1656 /* Clear the timestamp list */
1657 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1658 list_del(&ts_skb->list);
1659 kfree(ts_skb);
1660 }
1661
1662 /* PHY disconnect */
1663 if (ndev->phydev) {
1664 phy_stop(ndev->phydev);
1665 phy_disconnect(ndev->phydev);
1666 }
1667
1668 if (priv->chip_id != RCAR_GEN2) {
1669 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1670 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1671 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1672 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1673 free_irq(priv->emac_irq, ndev);
1674 }
1675 free_irq(ndev->irq, ndev);
1676
1677 napi_disable(&priv->napi[RAVB_NC]);
1678 napi_disable(&priv->napi[RAVB_BE]);
1679
1680 /* Free all the skb's in the RX queue and the DMA buffers. */
1681 ravb_ring_free(ndev, RAVB_BE);
1682 ravb_ring_free(ndev, RAVB_NC);
1683
1684 return 0;
1685 }
1686
1687 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1688 {
1689 struct ravb_private *priv = netdev_priv(ndev);
1690 struct hwtstamp_config config;
1691
1692 config.flags = 0;
1693 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1694 HWTSTAMP_TX_OFF;
1695 if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1696 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1697 else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1698 config.rx_filter = HWTSTAMP_FILTER_ALL;
1699 else
1700 config.rx_filter = HWTSTAMP_FILTER_NONE;
1701
1702 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1703 -EFAULT : 0;
1704 }
1705
1706 /* Control hardware time stamping */
1707 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1708 {
1709 struct ravb_private *priv = netdev_priv(ndev);
1710 struct hwtstamp_config config;
1711 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1712 u32 tstamp_tx_ctrl;
1713
1714 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1715 return -EFAULT;
1716
1717 /* Reserved for future extensions */
1718 if (config.flags)
1719 return -EINVAL;
1720
1721 switch (config.tx_type) {
1722 case HWTSTAMP_TX_OFF:
1723 tstamp_tx_ctrl = 0;
1724 break;
1725 case HWTSTAMP_TX_ON:
1726 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1727 break;
1728 default:
1729 return -ERANGE;
1730 }
1731
1732 switch (config.rx_filter) {
1733 case HWTSTAMP_FILTER_NONE:
1734 tstamp_rx_ctrl = 0;
1735 break;
1736 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1737 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1738 break;
1739 default:
1740 config.rx_filter = HWTSTAMP_FILTER_ALL;
1741 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1742 }
1743
1744 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1745 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1746
1747 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1748 -EFAULT : 0;
1749 }
1750
1751 /* ioctl to device function */
1752 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1753 {
1754 struct phy_device *phydev = ndev->phydev;
1755
1756 if (!netif_running(ndev))
1757 return -EINVAL;
1758
1759 if (!phydev)
1760 return -ENODEV;
1761
1762 switch (cmd) {
1763 case SIOCGHWTSTAMP:
1764 return ravb_hwtstamp_get(ndev, req);
1765 case SIOCSHWTSTAMP:
1766 return ravb_hwtstamp_set(ndev, req);
1767 }
1768
1769 return phy_mii_ioctl(phydev, req, cmd);
1770 }
1771
1772 static const struct net_device_ops ravb_netdev_ops = {
1773 .ndo_open = ravb_open,
1774 .ndo_stop = ravb_close,
1775 .ndo_start_xmit = ravb_start_xmit,
1776 .ndo_select_queue = ravb_select_queue,
1777 .ndo_get_stats = ravb_get_stats,
1778 .ndo_set_rx_mode = ravb_set_rx_mode,
1779 .ndo_tx_timeout = ravb_tx_timeout,
1780 .ndo_do_ioctl = ravb_do_ioctl,
1781 .ndo_validate_addr = eth_validate_addr,
1782 .ndo_set_mac_address = eth_mac_addr,
1783 .ndo_change_mtu = eth_change_mtu,
1784 };
1785
1786 /* MDIO bus init function */
1787 static int ravb_mdio_init(struct ravb_private *priv)
1788 {
1789 struct platform_device *pdev = priv->pdev;
1790 struct device *dev = &pdev->dev;
1791 int error;
1792
1793 /* Bitbang init */
1794 priv->mdiobb.ops = &bb_ops;
1795
1796 /* MII controller setting */
1797 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1798 if (!priv->mii_bus)
1799 return -ENOMEM;
1800
1801 /* Hook up MII support for ethtool */
1802 priv->mii_bus->name = "ravb_mii";
1803 priv->mii_bus->parent = dev;
1804 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1805 pdev->name, pdev->id);
1806
1807 /* Register MDIO bus */
1808 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1809 if (error)
1810 goto out_free_bus;
1811
1812 return 0;
1813
1814 out_free_bus:
1815 free_mdio_bitbang(priv->mii_bus);
1816 return error;
1817 }
1818
1819 /* MDIO bus release function */
1820 static int ravb_mdio_release(struct ravb_private *priv)
1821 {
1822 /* Unregister mdio bus */
1823 mdiobus_unregister(priv->mii_bus);
1824
1825 /* Free bitbang info */
1826 free_mdio_bitbang(priv->mii_bus);
1827
1828 return 0;
1829 }
1830
1831 static const struct of_device_id ravb_match_table[] = {
1832 { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1833 { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1834 { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1835 { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1836 { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1837 { }
1838 };
1839 MODULE_DEVICE_TABLE(of, ravb_match_table);
1840
1841 static int ravb_set_gti(struct net_device *ndev)
1842 {
1843
1844 struct device *dev = ndev->dev.parent;
1845 struct device_node *np = dev->of_node;
1846 unsigned long rate;
1847 struct clk *clk;
1848 uint64_t inc;
1849
1850 clk = of_clk_get(np, 0);
1851 if (IS_ERR(clk)) {
1852 dev_err(dev, "could not get clock\n");
1853 return PTR_ERR(clk);
1854 }
1855
1856 rate = clk_get_rate(clk);
1857 clk_put(clk);
1858
1859 if (!rate)
1860 return -EINVAL;
1861
1862 inc = 1000000000ULL << 20;
1863 do_div(inc, rate);
1864
1865 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1866 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1867 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1868 return -EINVAL;
1869 }
1870
1871 ravb_write(ndev, inc, GTI);
1872
1873 return 0;
1874 }
1875
1876 static void ravb_set_config_mode(struct net_device *ndev)
1877 {
1878 struct ravb_private *priv = netdev_priv(ndev);
1879
1880 if (priv->chip_id == RCAR_GEN2) {
1881 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1882 /* Set CSEL value */
1883 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1884 } else {
1885 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1886 CCC_GAC | CCC_CSEL_HPB);
1887 }
1888 }
1889
1890 static int ravb_probe(struct platform_device *pdev)
1891 {
1892 struct device_node *np = pdev->dev.of_node;
1893 struct ravb_private *priv;
1894 enum ravb_chip_id chip_id;
1895 struct net_device *ndev;
1896 int error, irq, q;
1897 struct resource *res;
1898 int i;
1899
1900 if (!np) {
1901 dev_err(&pdev->dev,
1902 "this driver is required to be instantiated from device tree\n");
1903 return -EINVAL;
1904 }
1905
1906 /* Get base address */
1907 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1908 if (!res) {
1909 dev_err(&pdev->dev, "invalid resource\n");
1910 return -EINVAL;
1911 }
1912
1913 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1914 NUM_TX_QUEUE, NUM_RX_QUEUE);
1915 if (!ndev)
1916 return -ENOMEM;
1917
1918 pm_runtime_enable(&pdev->dev);
1919 pm_runtime_get_sync(&pdev->dev);
1920
1921 /* The Ether-specific entries in the device structure. */
1922 ndev->base_addr = res->start;
1923
1924 chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
1925
1926 if (chip_id == RCAR_GEN3)
1927 irq = platform_get_irq_byname(pdev, "ch22");
1928 else
1929 irq = platform_get_irq(pdev, 0);
1930 if (irq < 0) {
1931 error = irq;
1932 goto out_release;
1933 }
1934 ndev->irq = irq;
1935
1936 SET_NETDEV_DEV(ndev, &pdev->dev);
1937
1938 priv = netdev_priv(ndev);
1939 priv->ndev = ndev;
1940 priv->pdev = pdev;
1941 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1942 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1943 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1944 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1945 priv->addr = devm_ioremap_resource(&pdev->dev, res);
1946 if (IS_ERR(priv->addr)) {
1947 error = PTR_ERR(priv->addr);
1948 goto out_release;
1949 }
1950
1951 spin_lock_init(&priv->lock);
1952 INIT_WORK(&priv->work, ravb_tx_timeout_work);
1953
1954 priv->phy_interface = of_get_phy_mode(np);
1955
1956 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1957 priv->avb_link_active_low =
1958 of_property_read_bool(np, "renesas,ether-link-active-low");
1959
1960 if (chip_id == RCAR_GEN3) {
1961 irq = platform_get_irq_byname(pdev, "ch24");
1962 if (irq < 0) {
1963 error = irq;
1964 goto out_release;
1965 }
1966 priv->emac_irq = irq;
1967 for (i = 0; i < NUM_RX_QUEUE; i++) {
1968 irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
1969 if (irq < 0) {
1970 error = irq;
1971 goto out_release;
1972 }
1973 priv->rx_irqs[i] = irq;
1974 }
1975 for (i = 0; i < NUM_TX_QUEUE; i++) {
1976 irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
1977 if (irq < 0) {
1978 error = irq;
1979 goto out_release;
1980 }
1981 priv->tx_irqs[i] = irq;
1982 }
1983 }
1984
1985 priv->chip_id = chip_id;
1986
1987 /* Set function */
1988 ndev->netdev_ops = &ravb_netdev_ops;
1989 ndev->ethtool_ops = &ravb_ethtool_ops;
1990
1991 /* Set AVB config mode */
1992 ravb_set_config_mode(ndev);
1993
1994 /* Set GTI value */
1995 error = ravb_set_gti(ndev);
1996 if (error)
1997 goto out_release;
1998
1999 /* Request GTI loading */
2000 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2001
2002 /* Allocate descriptor base address table */
2003 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2004 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2005 &priv->desc_bat_dma, GFP_KERNEL);
2006 if (!priv->desc_bat) {
2007 dev_err(&pdev->dev,
2008 "Cannot allocate desc base address table (size %d bytes)\n",
2009 priv->desc_bat_size);
2010 error = -ENOMEM;
2011 goto out_release;
2012 }
2013 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2014 priv->desc_bat[q].die_dt = DT_EOS;
2015 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2016
2017 /* Initialise HW timestamp list */
2018 INIT_LIST_HEAD(&priv->ts_skb_list);
2019
2020 /* Initialise PTP Clock driver */
2021 if (chip_id != RCAR_GEN2)
2022 ravb_ptp_init(ndev, pdev);
2023
2024 /* Debug message level */
2025 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2026
2027 /* Read and set MAC address */
2028 ravb_read_mac_address(ndev, of_get_mac_address(np));
2029 if (!is_valid_ether_addr(ndev->dev_addr)) {
2030 dev_warn(&pdev->dev,
2031 "no valid MAC address supplied, using a random one\n");
2032 eth_hw_addr_random(ndev);
2033 }
2034
2035 /* MDIO bus init */
2036 error = ravb_mdio_init(priv);
2037 if (error) {
2038 dev_err(&pdev->dev, "failed to initialize MDIO\n");
2039 goto out_dma_free;
2040 }
2041
2042 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2043 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2044
2045 /* Network device register */
2046 error = register_netdev(ndev);
2047 if (error)
2048 goto out_napi_del;
2049
2050 /* Print device information */
2051 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2052 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2053
2054 platform_set_drvdata(pdev, ndev);
2055
2056 return 0;
2057
2058 out_napi_del:
2059 netif_napi_del(&priv->napi[RAVB_NC]);
2060 netif_napi_del(&priv->napi[RAVB_BE]);
2061 ravb_mdio_release(priv);
2062 out_dma_free:
2063 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2064 priv->desc_bat_dma);
2065
2066 /* Stop PTP Clock driver */
2067 if (chip_id != RCAR_GEN2)
2068 ravb_ptp_stop(ndev);
2069 out_release:
2070 if (ndev)
2071 free_netdev(ndev);
2072
2073 pm_runtime_put(&pdev->dev);
2074 pm_runtime_disable(&pdev->dev);
2075 return error;
2076 }
2077
2078 static int ravb_remove(struct platform_device *pdev)
2079 {
2080 struct net_device *ndev = platform_get_drvdata(pdev);
2081 struct ravb_private *priv = netdev_priv(ndev);
2082
2083 /* Stop PTP Clock driver */
2084 if (priv->chip_id != RCAR_GEN2)
2085 ravb_ptp_stop(ndev);
2086
2087 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2088 priv->desc_bat_dma);
2089 /* Set reset mode */
2090 ravb_write(ndev, CCC_OPC_RESET, CCC);
2091 pm_runtime_put_sync(&pdev->dev);
2092 unregister_netdev(ndev);
2093 netif_napi_del(&priv->napi[RAVB_NC]);
2094 netif_napi_del(&priv->napi[RAVB_BE]);
2095 ravb_mdio_release(priv);
2096 pm_runtime_disable(&pdev->dev);
2097 free_netdev(ndev);
2098 platform_set_drvdata(pdev, NULL);
2099
2100 return 0;
2101 }
2102
2103 static int __maybe_unused ravb_suspend(struct device *dev)
2104 {
2105 struct net_device *ndev = dev_get_drvdata(dev);
2106 int ret = 0;
2107
2108 if (netif_running(ndev)) {
2109 netif_device_detach(ndev);
2110 ret = ravb_close(ndev);
2111 }
2112
2113 return ret;
2114 }
2115
2116 static int __maybe_unused ravb_resume(struct device *dev)
2117 {
2118 struct net_device *ndev = dev_get_drvdata(dev);
2119 struct ravb_private *priv = netdev_priv(ndev);
2120 int ret = 0;
2121
2122 /* All register have been reset to default values.
2123 * Restore all registers which where setup at probe time and
2124 * reopen device if it was running before system suspended.
2125 */
2126
2127 /* Set AVB config mode */
2128 ravb_set_config_mode(ndev);
2129
2130 /* Set GTI value */
2131 ret = ravb_set_gti(ndev);
2132 if (ret)
2133 return ret;
2134
2135 /* Request GTI loading */
2136 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2137
2138 /* Restore descriptor base address table */
2139 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2140
2141 if (netif_running(ndev)) {
2142 ret = ravb_open(ndev);
2143 if (ret < 0)
2144 return ret;
2145 netif_device_attach(ndev);
2146 }
2147
2148 return ret;
2149 }
2150
2151 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2152 {
2153 /* Runtime PM callback shared between ->runtime_suspend()
2154 * and ->runtime_resume(). Simply returns success.
2155 *
2156 * This driver re-initializes all registers after
2157 * pm_runtime_get_sync() anyway so there is no need
2158 * to save and restore registers here.
2159 */
2160 return 0;
2161 }
2162
2163 static const struct dev_pm_ops ravb_dev_pm_ops = {
2164 SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2165 SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2166 };
2167
2168 static struct platform_driver ravb_driver = {
2169 .probe = ravb_probe,
2170 .remove = ravb_remove,
2171 .driver = {
2172 .name = "ravb",
2173 .pm = &ravb_dev_pm_ops,
2174 .of_match_table = ravb_match_table,
2175 },
2176 };
2177
2178 module_platform_driver(ravb_driver);
2179
2180 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2181 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2182 MODULE_LICENSE("GPL v2");
This page took 0.083169 seconds and 6 git commands to generate.