Merge branch 'fix/rt5645' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV 7
27 enum {
28 EFX_EF10_TEST = 1,
29 EFX_EF10_REFILL,
30 };
31
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38 /* The filter table(s) are managed by firmware and we have write-only
39 * access. When removing filters we must identify them to the
40 * firmware by a 64-bit handle, but this is too wide for Linux kernel
41 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
42 * be able to tell in advance whether a requested insertion will
43 * replace an existing filter. Therefore we maintain a software hash
44 * table, which should be at least as large as the hardware hash
45 * table.
46 *
47 * Huntington has a single 8K filter table shared between all filter
48 * types and both ports.
49 */
50 #define HUNT_FILTER_TBL_ROWS 8192
51
52 struct efx_ef10_filter_table {
53 /* The RX match field masks supported by this fw & hw, in order of priority */
54 enum efx_filter_match_flags rx_match_flags[
55 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
56 unsigned int rx_match_count;
57
58 struct {
59 unsigned long spec; /* pointer to spec plus flag bits */
60 /* BUSY flag indicates that an update is in progress. AUTO_OLD is
61 * used to mark and sweep MAC filters for the device address lists.
62 */
63 #define EFX_EF10_FILTER_FLAG_BUSY 1UL
64 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
65 #define EFX_EF10_FILTER_FLAGS 3UL
66 u64 handle; /* firmware handle */
67 } *entry;
68 wait_queue_head_t waitq;
69 /* Shadow of net_device address lists, guarded by mac_lock */
70 #define EFX_EF10_FILTER_DEV_UC_MAX 32
71 #define EFX_EF10_FILTER_DEV_MC_MAX 256
72 struct {
73 u8 addr[ETH_ALEN];
74 u16 id;
75 } dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
76 dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
77 int dev_uc_count; /* negative for PROMISC */
78 int dev_mc_count; /* negative for PROMISC/ALLMULTI */
79 };
80
81 /* An arbitrary search limit for the software hash table */
82 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
83
84 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
85 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
86
87 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
88 {
89 efx_dword_t reg;
90
91 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
92 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
93 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
94 }
95
96 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
97 {
98 int bar;
99
100 bar = efx->type->mem_bar;
101 return resource_size(&efx->pci_dev->resource[bar]);
102 }
103
104 static bool efx_ef10_is_vf(struct efx_nic *efx)
105 {
106 return efx->type->is_vf;
107 }
108
109 static int efx_ef10_get_pf_index(struct efx_nic *efx)
110 {
111 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
112 struct efx_ef10_nic_data *nic_data = efx->nic_data;
113 size_t outlen;
114 int rc;
115
116 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
117 sizeof(outbuf), &outlen);
118 if (rc)
119 return rc;
120 if (outlen < sizeof(outbuf))
121 return -EIO;
122
123 nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
124 return 0;
125 }
126
127 #ifdef CONFIG_SFC_SRIOV
128 static int efx_ef10_get_vf_index(struct efx_nic *efx)
129 {
130 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
131 struct efx_ef10_nic_data *nic_data = efx->nic_data;
132 size_t outlen;
133 int rc;
134
135 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
136 sizeof(outbuf), &outlen);
137 if (rc)
138 return rc;
139 if (outlen < sizeof(outbuf))
140 return -EIO;
141
142 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
143 return 0;
144 }
145 #endif
146
147 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
148 {
149 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
150 struct efx_ef10_nic_data *nic_data = efx->nic_data;
151 size_t outlen;
152 int rc;
153
154 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
155
156 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
157 outbuf, sizeof(outbuf), &outlen);
158 if (rc)
159 return rc;
160 if (outlen < sizeof(outbuf)) {
161 netif_err(efx, drv, efx->net_dev,
162 "unable to read datapath firmware capabilities\n");
163 return -EIO;
164 }
165
166 nic_data->datapath_caps =
167 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
168
169 /* record the DPCPU firmware IDs to determine VEB vswitching support.
170 */
171 nic_data->rx_dpcpu_fw_id =
172 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
173 nic_data->tx_dpcpu_fw_id =
174 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
175
176 if (!(nic_data->datapath_caps &
177 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
178 netif_err(efx, drv, efx->net_dev,
179 "current firmware does not support TSO\n");
180 return -ENODEV;
181 }
182
183 if (!(nic_data->datapath_caps &
184 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
185 netif_err(efx, probe, efx->net_dev,
186 "current firmware does not support an RX prefix\n");
187 return -ENODEV;
188 }
189
190 return 0;
191 }
192
193 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
194 {
195 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
196 int rc;
197
198 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
199 outbuf, sizeof(outbuf), NULL);
200 if (rc)
201 return rc;
202 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
203 return rc > 0 ? rc : -ERANGE;
204 }
205
206 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
207 {
208 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
209 size_t outlen;
210 int rc;
211
212 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
213
214 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
215 outbuf, sizeof(outbuf), &outlen);
216 if (rc)
217 return rc;
218 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
219 return -EIO;
220
221 ether_addr_copy(mac_address,
222 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
223 return 0;
224 }
225
226 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
227 {
228 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
229 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
230 size_t outlen;
231 int num_addrs, rc;
232
233 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
234 EVB_PORT_ID_ASSIGNED);
235 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
236 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
237
238 if (rc)
239 return rc;
240 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
241 return -EIO;
242
243 num_addrs = MCDI_DWORD(outbuf,
244 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
245
246 WARN_ON(num_addrs != 1);
247
248 ether_addr_copy(mac_address,
249 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
250
251 return 0;
252 }
253
254 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
255 struct device_attribute *attr,
256 char *buf)
257 {
258 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
259
260 return sprintf(buf, "%d\n",
261 ((efx->mcdi->fn_flags) &
262 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
263 ? 1 : 0);
264 }
265
266 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
267 struct device_attribute *attr,
268 char *buf)
269 {
270 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
271
272 return sprintf(buf, "%d\n",
273 ((efx->mcdi->fn_flags) &
274 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
275 ? 1 : 0);
276 }
277
278 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
279 NULL);
280 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
281
282 static int efx_ef10_probe(struct efx_nic *efx)
283 {
284 struct efx_ef10_nic_data *nic_data;
285 struct net_device *net_dev = efx->net_dev;
286 int i, rc;
287
288 /* We can have one VI for each 8K region. However, until we
289 * use TX option descriptors we need two TX queues per channel.
290 */
291 efx->max_channels =
292 min_t(unsigned int,
293 EFX_MAX_CHANNELS,
294 efx_ef10_mem_map_size(efx) /
295 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
296 if (WARN_ON(efx->max_channels == 0))
297 return -EIO;
298
299 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
300 if (!nic_data)
301 return -ENOMEM;
302 efx->nic_data = nic_data;
303
304 /* we assume later that we can copy from this buffer in dwords */
305 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
306
307 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
308 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
309 if (rc)
310 goto fail1;
311
312 /* Get the MC's warm boot count. In case it's rebooting right
313 * now, be prepared to retry.
314 */
315 i = 0;
316 for (;;) {
317 rc = efx_ef10_get_warm_boot_count(efx);
318 if (rc >= 0)
319 break;
320 if (++i == 5)
321 goto fail2;
322 ssleep(1);
323 }
324 nic_data->warm_boot_count = rc;
325
326 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
327
328 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
329
330 /* In case we're recovering from a crash (kexec), we want to
331 * cancel any outstanding request by the previous user of this
332 * function. We send a special message using the least
333 * significant bits of the 'high' (doorbell) register.
334 */
335 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
336
337 rc = efx_mcdi_init(efx);
338 if (rc)
339 goto fail2;
340
341 /* Reset (most) configuration for this function */
342 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
343 if (rc)
344 goto fail3;
345
346 /* Enable event logging */
347 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
348 if (rc)
349 goto fail3;
350
351 rc = device_create_file(&efx->pci_dev->dev,
352 &dev_attr_link_control_flag);
353 if (rc)
354 goto fail3;
355
356 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
357 if (rc)
358 goto fail4;
359
360 rc = efx_ef10_get_pf_index(efx);
361 if (rc)
362 goto fail5;
363
364 rc = efx_ef10_init_datapath_caps(efx);
365 if (rc < 0)
366 goto fail5;
367
368 efx->rx_packet_len_offset =
369 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
370
371 rc = efx_mcdi_port_get_number(efx);
372 if (rc < 0)
373 goto fail5;
374 efx->port_num = rc;
375 net_dev->dev_port = rc;
376
377 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
378 if (rc)
379 goto fail5;
380
381 rc = efx_ef10_get_sysclk_freq(efx);
382 if (rc < 0)
383 goto fail5;
384 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
385
386 /* Check whether firmware supports bug 35388 workaround.
387 * First try to enable it, then if we get EPERM, just
388 * ask if it's already enabled
389 */
390 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
391 if (rc == 0) {
392 nic_data->workaround_35388 = true;
393 } else if (rc == -EPERM) {
394 unsigned int enabled;
395
396 rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
397 if (rc)
398 goto fail3;
399 nic_data->workaround_35388 = enabled &
400 MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
401 } else if (rc != -ENOSYS && rc != -ENOENT) {
402 goto fail5;
403 }
404 netif_dbg(efx, probe, efx->net_dev,
405 "workaround for bug 35388 is %sabled\n",
406 nic_data->workaround_35388 ? "en" : "dis");
407
408 rc = efx_mcdi_mon_probe(efx);
409 if (rc && rc != -EPERM)
410 goto fail5;
411
412 efx_ptp_probe(efx, NULL);
413
414 #ifdef CONFIG_SFC_SRIOV
415 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
416 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
417 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
418
419 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
420 } else
421 #endif
422 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
423
424 return 0;
425
426 fail5:
427 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
428 fail4:
429 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
430 fail3:
431 efx_mcdi_fini(efx);
432 fail2:
433 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
434 fail1:
435 kfree(nic_data);
436 efx->nic_data = NULL;
437 return rc;
438 }
439
440 static int efx_ef10_free_vis(struct efx_nic *efx)
441 {
442 MCDI_DECLARE_BUF_ERR(outbuf);
443 size_t outlen;
444 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
445 outbuf, sizeof(outbuf), &outlen);
446
447 /* -EALREADY means nothing to free, so ignore */
448 if (rc == -EALREADY)
449 rc = 0;
450 if (rc)
451 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
452 rc);
453 return rc;
454 }
455
456 #ifdef EFX_USE_PIO
457
458 static void efx_ef10_free_piobufs(struct efx_nic *efx)
459 {
460 struct efx_ef10_nic_data *nic_data = efx->nic_data;
461 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
462 unsigned int i;
463 int rc;
464
465 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
466
467 for (i = 0; i < nic_data->n_piobufs; i++) {
468 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
469 nic_data->piobuf_handle[i]);
470 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
471 NULL, 0, NULL);
472 WARN_ON(rc);
473 }
474
475 nic_data->n_piobufs = 0;
476 }
477
478 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
479 {
480 struct efx_ef10_nic_data *nic_data = efx->nic_data;
481 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
482 unsigned int i;
483 size_t outlen;
484 int rc = 0;
485
486 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
487
488 for (i = 0; i < n; i++) {
489 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
490 outbuf, sizeof(outbuf), &outlen);
491 if (rc)
492 break;
493 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
494 rc = -EIO;
495 break;
496 }
497 nic_data->piobuf_handle[i] =
498 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
499 netif_dbg(efx, probe, efx->net_dev,
500 "allocated PIO buffer %u handle %x\n", i,
501 nic_data->piobuf_handle[i]);
502 }
503
504 nic_data->n_piobufs = i;
505 if (rc)
506 efx_ef10_free_piobufs(efx);
507 return rc;
508 }
509
510 static int efx_ef10_link_piobufs(struct efx_nic *efx)
511 {
512 struct efx_ef10_nic_data *nic_data = efx->nic_data;
513 _MCDI_DECLARE_BUF(inbuf,
514 max(MC_CMD_LINK_PIOBUF_IN_LEN,
515 MC_CMD_UNLINK_PIOBUF_IN_LEN));
516 struct efx_channel *channel;
517 struct efx_tx_queue *tx_queue;
518 unsigned int offset, index;
519 int rc;
520
521 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
522 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
523
524 memset(inbuf, 0, sizeof(inbuf));
525
526 /* Link a buffer to each VI in the write-combining mapping */
527 for (index = 0; index < nic_data->n_piobufs; ++index) {
528 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
529 nic_data->piobuf_handle[index]);
530 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
531 nic_data->pio_write_vi_base + index);
532 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
533 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
534 NULL, 0, NULL);
535 if (rc) {
536 netif_err(efx, drv, efx->net_dev,
537 "failed to link VI %u to PIO buffer %u (%d)\n",
538 nic_data->pio_write_vi_base + index, index,
539 rc);
540 goto fail;
541 }
542 netif_dbg(efx, probe, efx->net_dev,
543 "linked VI %u to PIO buffer %u\n",
544 nic_data->pio_write_vi_base + index, index);
545 }
546
547 /* Link a buffer to each TX queue */
548 efx_for_each_channel(channel, efx) {
549 efx_for_each_channel_tx_queue(tx_queue, channel) {
550 /* We assign the PIO buffers to queues in
551 * reverse order to allow for the following
552 * special case.
553 */
554 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
555 tx_queue->channel->channel - 1) *
556 efx_piobuf_size);
557 index = offset / ER_DZ_TX_PIOBUF_SIZE;
558 offset = offset % ER_DZ_TX_PIOBUF_SIZE;
559
560 /* When the host page size is 4K, the first
561 * host page in the WC mapping may be within
562 * the same VI page as the last TX queue. We
563 * can only link one buffer to each VI.
564 */
565 if (tx_queue->queue == nic_data->pio_write_vi_base) {
566 BUG_ON(index != 0);
567 rc = 0;
568 } else {
569 MCDI_SET_DWORD(inbuf,
570 LINK_PIOBUF_IN_PIOBUF_HANDLE,
571 nic_data->piobuf_handle[index]);
572 MCDI_SET_DWORD(inbuf,
573 LINK_PIOBUF_IN_TXQ_INSTANCE,
574 tx_queue->queue);
575 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
576 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
577 NULL, 0, NULL);
578 }
579
580 if (rc) {
581 /* This is non-fatal; the TX path just
582 * won't use PIO for this queue
583 */
584 netif_err(efx, drv, efx->net_dev,
585 "failed to link VI %u to PIO buffer %u (%d)\n",
586 tx_queue->queue, index, rc);
587 tx_queue->piobuf = NULL;
588 } else {
589 tx_queue->piobuf =
590 nic_data->pio_write_base +
591 index * EFX_VI_PAGE_SIZE + offset;
592 tx_queue->piobuf_offset = offset;
593 netif_dbg(efx, probe, efx->net_dev,
594 "linked VI %u to PIO buffer %u offset %x addr %p\n",
595 tx_queue->queue, index,
596 tx_queue->piobuf_offset,
597 tx_queue->piobuf);
598 }
599 }
600 }
601
602 return 0;
603
604 fail:
605 while (index--) {
606 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
607 nic_data->pio_write_vi_base + index);
608 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
609 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
610 NULL, 0, NULL);
611 }
612 return rc;
613 }
614
615 #else /* !EFX_USE_PIO */
616
617 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
618 {
619 return n == 0 ? 0 : -ENOBUFS;
620 }
621
622 static int efx_ef10_link_piobufs(struct efx_nic *efx)
623 {
624 return 0;
625 }
626
627 static void efx_ef10_free_piobufs(struct efx_nic *efx)
628 {
629 }
630
631 #endif /* EFX_USE_PIO */
632
633 static void efx_ef10_remove(struct efx_nic *efx)
634 {
635 struct efx_ef10_nic_data *nic_data = efx->nic_data;
636 int rc;
637
638 #ifdef CONFIG_SFC_SRIOV
639 struct efx_ef10_nic_data *nic_data_pf;
640 struct pci_dev *pci_dev_pf;
641 struct efx_nic *efx_pf;
642 struct ef10_vf *vf;
643
644 if (efx->pci_dev->is_virtfn) {
645 pci_dev_pf = efx->pci_dev->physfn;
646 if (pci_dev_pf) {
647 efx_pf = pci_get_drvdata(pci_dev_pf);
648 nic_data_pf = efx_pf->nic_data;
649 vf = nic_data_pf->vf + nic_data->vf_index;
650 vf->efx = NULL;
651 } else
652 netif_info(efx, drv, efx->net_dev,
653 "Could not get the PF id from VF\n");
654 }
655 #endif
656
657 efx_ptp_remove(efx);
658
659 efx_mcdi_mon_remove(efx);
660
661 efx_ef10_rx_free_indir_table(efx);
662
663 if (nic_data->wc_membase)
664 iounmap(nic_data->wc_membase);
665
666 rc = efx_ef10_free_vis(efx);
667 WARN_ON(rc != 0);
668
669 if (!nic_data->must_restore_piobufs)
670 efx_ef10_free_piobufs(efx);
671
672 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
673 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
674
675 efx_mcdi_fini(efx);
676 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
677 kfree(nic_data);
678 }
679
680 static int efx_ef10_probe_pf(struct efx_nic *efx)
681 {
682 return efx_ef10_probe(efx);
683 }
684
685 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
686 {
687 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
688
689 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
690 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
691 NULL, 0, NULL);
692 }
693
694 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
695 {
696 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
697
698 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
699 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
700 NULL, 0, NULL);
701 }
702
703 int efx_ef10_vport_add_mac(struct efx_nic *efx,
704 unsigned int port_id, u8 *mac)
705 {
706 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
707
708 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
709 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
710
711 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
712 sizeof(inbuf), NULL, 0, NULL);
713 }
714
715 int efx_ef10_vport_del_mac(struct efx_nic *efx,
716 unsigned int port_id, u8 *mac)
717 {
718 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
719
720 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
721 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
722
723 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
724 sizeof(inbuf), NULL, 0, NULL);
725 }
726
727 #ifdef CONFIG_SFC_SRIOV
728 static int efx_ef10_probe_vf(struct efx_nic *efx)
729 {
730 int rc;
731 struct pci_dev *pci_dev_pf;
732
733 /* If the parent PF has no VF data structure, it doesn't know about this
734 * VF so fail probe. The VF needs to be re-created. This can happen
735 * if the PF driver is unloaded while the VF is assigned to a guest.
736 */
737 pci_dev_pf = efx->pci_dev->physfn;
738 if (pci_dev_pf) {
739 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
740 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
741
742 if (!nic_data_pf->vf) {
743 netif_info(efx, drv, efx->net_dev,
744 "The VF cannot link to its parent PF; "
745 "please destroy and re-create the VF\n");
746 return -EBUSY;
747 }
748 }
749
750 rc = efx_ef10_probe(efx);
751 if (rc)
752 return rc;
753
754 rc = efx_ef10_get_vf_index(efx);
755 if (rc)
756 goto fail;
757
758 if (efx->pci_dev->is_virtfn) {
759 if (efx->pci_dev->physfn) {
760 struct efx_nic *efx_pf =
761 pci_get_drvdata(efx->pci_dev->physfn);
762 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
763 struct efx_ef10_nic_data *nic_data = efx->nic_data;
764
765 nic_data_p->vf[nic_data->vf_index].efx = efx;
766 nic_data_p->vf[nic_data->vf_index].pci_dev =
767 efx->pci_dev;
768 } else
769 netif_info(efx, drv, efx->net_dev,
770 "Could not get the PF id from VF\n");
771 }
772
773 return 0;
774
775 fail:
776 efx_ef10_remove(efx);
777 return rc;
778 }
779 #else
780 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
781 {
782 return 0;
783 }
784 #endif
785
786 static int efx_ef10_alloc_vis(struct efx_nic *efx,
787 unsigned int min_vis, unsigned int max_vis)
788 {
789 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
790 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
791 struct efx_ef10_nic_data *nic_data = efx->nic_data;
792 size_t outlen;
793 int rc;
794
795 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
796 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
797 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
798 outbuf, sizeof(outbuf), &outlen);
799 if (rc != 0)
800 return rc;
801
802 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
803 return -EIO;
804
805 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
806 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
807
808 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
809 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
810 return 0;
811 }
812
813 /* Note that the failure path of this function does not free
814 * resources, as this will be done by efx_ef10_remove().
815 */
816 static int efx_ef10_dimension_resources(struct efx_nic *efx)
817 {
818 struct efx_ef10_nic_data *nic_data = efx->nic_data;
819 unsigned int uc_mem_map_size, wc_mem_map_size;
820 unsigned int min_vis, pio_write_vi_base, max_vis;
821 void __iomem *membase;
822 int rc;
823
824 min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
825
826 #ifdef EFX_USE_PIO
827 /* Try to allocate PIO buffers if wanted and if the full
828 * number of PIO buffers would be sufficient to allocate one
829 * copy-buffer per TX channel. Failure is non-fatal, as there
830 * are only a small number of PIO buffers shared between all
831 * functions of the controller.
832 */
833 if (efx_piobuf_size != 0 &&
834 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
835 efx->n_tx_channels) {
836 unsigned int n_piobufs =
837 DIV_ROUND_UP(efx->n_tx_channels,
838 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
839
840 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
841 if (rc)
842 netif_err(efx, probe, efx->net_dev,
843 "failed to allocate PIO buffers (%d)\n", rc);
844 else
845 netif_dbg(efx, probe, efx->net_dev,
846 "allocated %u PIO buffers\n", n_piobufs);
847 }
848 #else
849 nic_data->n_piobufs = 0;
850 #endif
851
852 /* PIO buffers should be mapped with write-combining enabled,
853 * and we want to make single UC and WC mappings rather than
854 * several of each (in fact that's the only option if host
855 * page size is >4K). So we may allocate some extra VIs just
856 * for writing PIO buffers through.
857 *
858 * The UC mapping contains (min_vis - 1) complete VIs and the
859 * first half of the next VI. Then the WC mapping begins with
860 * the second half of this last VI.
861 */
862 uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
863 ER_DZ_TX_PIOBUF);
864 if (nic_data->n_piobufs) {
865 /* pio_write_vi_base rounds down to give the number of complete
866 * VIs inside the UC mapping.
867 */
868 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
869 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
870 nic_data->n_piobufs) *
871 EFX_VI_PAGE_SIZE) -
872 uc_mem_map_size);
873 max_vis = pio_write_vi_base + nic_data->n_piobufs;
874 } else {
875 pio_write_vi_base = 0;
876 wc_mem_map_size = 0;
877 max_vis = min_vis;
878 }
879
880 /* In case the last attached driver failed to free VIs, do it now */
881 rc = efx_ef10_free_vis(efx);
882 if (rc != 0)
883 return rc;
884
885 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
886 if (rc != 0)
887 return rc;
888
889 /* If we didn't get enough VIs to map all the PIO buffers, free the
890 * PIO buffers
891 */
892 if (nic_data->n_piobufs &&
893 nic_data->n_allocated_vis <
894 pio_write_vi_base + nic_data->n_piobufs) {
895 netif_dbg(efx, probe, efx->net_dev,
896 "%u VIs are not sufficient to map %u PIO buffers\n",
897 nic_data->n_allocated_vis, nic_data->n_piobufs);
898 efx_ef10_free_piobufs(efx);
899 }
900
901 /* Shrink the original UC mapping of the memory BAR */
902 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
903 if (!membase) {
904 netif_err(efx, probe, efx->net_dev,
905 "could not shrink memory BAR to %x\n",
906 uc_mem_map_size);
907 return -ENOMEM;
908 }
909 iounmap(efx->membase);
910 efx->membase = membase;
911
912 /* Set up the WC mapping if needed */
913 if (wc_mem_map_size) {
914 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
915 uc_mem_map_size,
916 wc_mem_map_size);
917 if (!nic_data->wc_membase) {
918 netif_err(efx, probe, efx->net_dev,
919 "could not allocate WC mapping of size %x\n",
920 wc_mem_map_size);
921 return -ENOMEM;
922 }
923 nic_data->pio_write_vi_base = pio_write_vi_base;
924 nic_data->pio_write_base =
925 nic_data->wc_membase +
926 (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
927 uc_mem_map_size);
928
929 rc = efx_ef10_link_piobufs(efx);
930 if (rc)
931 efx_ef10_free_piobufs(efx);
932 }
933
934 netif_dbg(efx, probe, efx->net_dev,
935 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
936 &efx->membase_phys, efx->membase, uc_mem_map_size,
937 nic_data->wc_membase, wc_mem_map_size);
938
939 return 0;
940 }
941
942 static int efx_ef10_init_nic(struct efx_nic *efx)
943 {
944 struct efx_ef10_nic_data *nic_data = efx->nic_data;
945 int rc;
946
947 if (nic_data->must_check_datapath_caps) {
948 rc = efx_ef10_init_datapath_caps(efx);
949 if (rc)
950 return rc;
951 nic_data->must_check_datapath_caps = false;
952 }
953
954 if (nic_data->must_realloc_vis) {
955 /* We cannot let the number of VIs change now */
956 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
957 nic_data->n_allocated_vis);
958 if (rc)
959 return rc;
960 nic_data->must_realloc_vis = false;
961 }
962
963 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
964 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
965 if (rc == 0) {
966 rc = efx_ef10_link_piobufs(efx);
967 if (rc)
968 efx_ef10_free_piobufs(efx);
969 }
970
971 /* Log an error on failure, but this is non-fatal */
972 if (rc)
973 netif_err(efx, drv, efx->net_dev,
974 "failed to restore PIO buffers (%d)\n", rc);
975 nic_data->must_restore_piobufs = false;
976 }
977
978 /* don't fail init if RSS setup doesn't work */
979 efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
980
981 return 0;
982 }
983
984 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
985 {
986 struct efx_ef10_nic_data *nic_data = efx->nic_data;
987
988 /* All our allocations have been reset */
989 nic_data->must_realloc_vis = true;
990 nic_data->must_restore_filters = true;
991 nic_data->must_restore_piobufs = true;
992 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
993 }
994
995 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
996 {
997 if (reason == RESET_TYPE_MC_FAILURE)
998 return RESET_TYPE_DATAPATH;
999
1000 return efx_mcdi_map_reset_reason(reason);
1001 }
1002
1003 static int efx_ef10_map_reset_flags(u32 *flags)
1004 {
1005 enum {
1006 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1007 ETH_RESET_SHARED_SHIFT),
1008 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1009 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1010 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1011 ETH_RESET_SHARED_SHIFT)
1012 };
1013
1014 /* We assume for now that our PCI function is permitted to
1015 * reset everything.
1016 */
1017
1018 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1019 *flags &= ~EF10_RESET_MC;
1020 return RESET_TYPE_WORLD;
1021 }
1022
1023 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1024 *flags &= ~EF10_RESET_PORT;
1025 return RESET_TYPE_ALL;
1026 }
1027
1028 /* no invisible reset implemented */
1029
1030 return -EINVAL;
1031 }
1032
1033 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1034 {
1035 int rc = efx_mcdi_reset(efx, reset_type);
1036
1037 /* If it was a port reset, trigger reallocation of MC resources.
1038 * Note that on an MC reset nothing needs to be done now because we'll
1039 * detect the MC reset later and handle it then.
1040 * For an FLR, we never get an MC reset event, but the MC has reset all
1041 * resources assigned to us, so we have to trigger reallocation now.
1042 */
1043 if ((reset_type == RESET_TYPE_ALL ||
1044 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1045 efx_ef10_reset_mc_allocations(efx);
1046 return rc;
1047 }
1048
1049 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1050 [EF10_STAT_ ## ext_name] = \
1051 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1052 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1053 [EF10_STAT_ ## int_name] = \
1054 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1055 #define EF10_OTHER_STAT(ext_name) \
1056 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1057 #define GENERIC_SW_STAT(ext_name) \
1058 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1059
1060 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1061 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1062 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1063 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1064 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1065 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1066 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1067 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1068 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1069 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1070 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1071 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1072 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1073 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1074 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1075 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1076 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1077 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1078 EF10_OTHER_STAT(port_rx_good_bytes),
1079 EF10_OTHER_STAT(port_rx_bad_bytes),
1080 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1081 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1082 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1083 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1084 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1085 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1086 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1087 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1088 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1089 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1090 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1091 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1092 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1093 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1094 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1095 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1096 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1097 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1098 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1099 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1100 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1101 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1102 GENERIC_SW_STAT(rx_nodesc_trunc),
1103 GENERIC_SW_STAT(rx_noskb_drops),
1104 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1105 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1106 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1107 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1108 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1109 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1110 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1111 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1112 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1113 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1114 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1115 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1116 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1117 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1118 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1119 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1120 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1121 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1122 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1123 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1124 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1125 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1126 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1127 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1128 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1129 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1130 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1131 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1132 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1133 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1134 };
1135
1136 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1137 (1ULL << EF10_STAT_port_tx_packets) | \
1138 (1ULL << EF10_STAT_port_tx_pause) | \
1139 (1ULL << EF10_STAT_port_tx_unicast) | \
1140 (1ULL << EF10_STAT_port_tx_multicast) | \
1141 (1ULL << EF10_STAT_port_tx_broadcast) | \
1142 (1ULL << EF10_STAT_port_rx_bytes) | \
1143 (1ULL << \
1144 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1145 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1146 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1147 (1ULL << EF10_STAT_port_rx_packets) | \
1148 (1ULL << EF10_STAT_port_rx_good) | \
1149 (1ULL << EF10_STAT_port_rx_bad) | \
1150 (1ULL << EF10_STAT_port_rx_pause) | \
1151 (1ULL << EF10_STAT_port_rx_control) | \
1152 (1ULL << EF10_STAT_port_rx_unicast) | \
1153 (1ULL << EF10_STAT_port_rx_multicast) | \
1154 (1ULL << EF10_STAT_port_rx_broadcast) | \
1155 (1ULL << EF10_STAT_port_rx_lt64) | \
1156 (1ULL << EF10_STAT_port_rx_64) | \
1157 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1158 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1159 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1160 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1161 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1162 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1163 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1164 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1165 (1ULL << EF10_STAT_port_rx_overflow) | \
1166 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1167 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1168 (1ULL << GENERIC_STAT_rx_noskb_drops))
1169
1170 /* These statistics are only provided by the 10G MAC. For a 10G/40G
1171 * switchable port we do not expose these because they might not
1172 * include all the packets they should.
1173 */
1174 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1175 (1ULL << EF10_STAT_port_tx_lt64) | \
1176 (1ULL << EF10_STAT_port_tx_64) | \
1177 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1178 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1179 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1180 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1181 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1182 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1183
1184 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1185 * switchable port we do expose these because the errors will otherwise
1186 * be silent.
1187 */
1188 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1189 (1ULL << EF10_STAT_port_rx_length_error))
1190
1191 /* These statistics are only provided if the firmware supports the
1192 * capability PM_AND_RXDP_COUNTERS.
1193 */
1194 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1195 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1196 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1197 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1198 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1199 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1200 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1201 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1202 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1203 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1204 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1205 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1206 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1207
1208 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1209 {
1210 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1211 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1212 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1213
1214 if (!(efx->mcdi->fn_flags &
1215 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1216 return 0;
1217
1218 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1219 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1220 else
1221 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1222
1223 if (nic_data->datapath_caps &
1224 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1225 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1226
1227 return raw_mask;
1228 }
1229
1230 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1231 {
1232 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1233 u64 raw_mask[2];
1234
1235 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1236
1237 /* Only show vadaptor stats when EVB capability is present */
1238 if (nic_data->datapath_caps &
1239 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1240 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1241 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1242 } else {
1243 raw_mask[1] = 0;
1244 }
1245
1246 #if BITS_PER_LONG == 64
1247 mask[0] = raw_mask[0];
1248 mask[1] = raw_mask[1];
1249 #else
1250 mask[0] = raw_mask[0] & 0xffffffff;
1251 mask[1] = raw_mask[0] >> 32;
1252 mask[2] = raw_mask[1] & 0xffffffff;
1253 mask[3] = raw_mask[1] >> 32;
1254 #endif
1255 }
1256
1257 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1258 {
1259 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1260
1261 efx_ef10_get_stat_mask(efx, mask);
1262 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1263 mask, names);
1264 }
1265
1266 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1267 struct rtnl_link_stats64 *core_stats)
1268 {
1269 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1270 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1271 u64 *stats = nic_data->stats;
1272 size_t stats_count = 0, index;
1273
1274 efx_ef10_get_stat_mask(efx, mask);
1275
1276 if (full_stats) {
1277 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1278 if (efx_ef10_stat_desc[index].name) {
1279 *full_stats++ = stats[index];
1280 ++stats_count;
1281 }
1282 }
1283 }
1284
1285 if (core_stats) {
1286 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1287 stats[EF10_STAT_rx_multicast] +
1288 stats[EF10_STAT_rx_broadcast];
1289 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1290 stats[EF10_STAT_tx_multicast] +
1291 stats[EF10_STAT_tx_broadcast];
1292 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1293 stats[EF10_STAT_rx_multicast_bytes] +
1294 stats[EF10_STAT_rx_broadcast_bytes];
1295 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1296 stats[EF10_STAT_tx_multicast_bytes] +
1297 stats[EF10_STAT_tx_broadcast_bytes];
1298 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1299 stats[GENERIC_STAT_rx_noskb_drops];
1300 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1301 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1302 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1303 core_stats->rx_errors = core_stats->rx_crc_errors;
1304 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1305 }
1306
1307 return stats_count;
1308 }
1309
1310 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1311 {
1312 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1313 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1314 __le64 generation_start, generation_end;
1315 u64 *stats = nic_data->stats;
1316 __le64 *dma_stats;
1317
1318 efx_ef10_get_stat_mask(efx, mask);
1319
1320 dma_stats = efx->stats_buffer.addr;
1321 nic_data = efx->nic_data;
1322
1323 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1324 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1325 return 0;
1326 rmb();
1327 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1328 stats, efx->stats_buffer.addr, false);
1329 rmb();
1330 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1331 if (generation_end != generation_start)
1332 return -EAGAIN;
1333
1334 /* Update derived statistics */
1335 efx_nic_fix_nodesc_drop_stat(efx,
1336 &stats[EF10_STAT_port_rx_nodesc_drops]);
1337 stats[EF10_STAT_port_rx_good_bytes] =
1338 stats[EF10_STAT_port_rx_bytes] -
1339 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1340 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1341 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1342 efx_update_sw_stats(efx, stats);
1343 return 0;
1344 }
1345
1346
1347 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1348 struct rtnl_link_stats64 *core_stats)
1349 {
1350 int retry;
1351
1352 /* If we're unlucky enough to read statistics during the DMA, wait
1353 * up to 10ms for it to finish (typically takes <500us)
1354 */
1355 for (retry = 0; retry < 100; ++retry) {
1356 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1357 break;
1358 udelay(100);
1359 }
1360
1361 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1362 }
1363
1364 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1365 {
1366 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1367 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1368 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1369 __le64 generation_start, generation_end;
1370 u64 *stats = nic_data->stats;
1371 u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1372 struct efx_buffer stats_buf;
1373 __le64 *dma_stats;
1374 int rc;
1375
1376 spin_unlock_bh(&efx->stats_lock);
1377
1378 if (in_interrupt()) {
1379 /* If in atomic context, cannot update stats. Just update the
1380 * software stats and return so the caller can continue.
1381 */
1382 spin_lock_bh(&efx->stats_lock);
1383 efx_update_sw_stats(efx, stats);
1384 return 0;
1385 }
1386
1387 efx_ef10_get_stat_mask(efx, mask);
1388
1389 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1390 if (rc) {
1391 spin_lock_bh(&efx->stats_lock);
1392 return rc;
1393 }
1394
1395 dma_stats = stats_buf.addr;
1396 dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1397
1398 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1399 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1400 MAC_STATS_IN_DMA, 1);
1401 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1402 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1403
1404 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1405 NULL, 0, NULL);
1406 spin_lock_bh(&efx->stats_lock);
1407 if (rc) {
1408 /* Expect ENOENT if DMA queues have not been set up */
1409 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1410 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1411 sizeof(inbuf), NULL, 0, rc);
1412 goto out;
1413 }
1414
1415 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1416 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1417 WARN_ON_ONCE(1);
1418 goto out;
1419 }
1420 rmb();
1421 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1422 stats, stats_buf.addr, false);
1423 rmb();
1424 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1425 if (generation_end != generation_start) {
1426 rc = -EAGAIN;
1427 goto out;
1428 }
1429
1430 efx_update_sw_stats(efx, stats);
1431 out:
1432 efx_nic_free_buffer(efx, &stats_buf);
1433 return rc;
1434 }
1435
1436 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1437 struct rtnl_link_stats64 *core_stats)
1438 {
1439 if (efx_ef10_try_update_nic_stats_vf(efx))
1440 return 0;
1441
1442 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1443 }
1444
1445 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1446 {
1447 struct efx_nic *efx = channel->efx;
1448 unsigned int mode, value;
1449 efx_dword_t timer_cmd;
1450
1451 if (channel->irq_moderation) {
1452 mode = 3;
1453 value = channel->irq_moderation - 1;
1454 } else {
1455 mode = 0;
1456 value = 0;
1457 }
1458
1459 if (EFX_EF10_WORKAROUND_35388(efx)) {
1460 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1461 EFE_DD_EVQ_IND_TIMER_FLAGS,
1462 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1463 ERF_DD_EVQ_IND_TIMER_VAL, value);
1464 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1465 channel->channel);
1466 } else {
1467 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1468 ERF_DZ_TC_TIMER_VAL, value);
1469 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1470 channel->channel);
1471 }
1472 }
1473
1474 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1475 struct ethtool_wolinfo *wol) {}
1476
1477 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1478 {
1479 return -EOPNOTSUPP;
1480 }
1481
1482 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1483 {
1484 wol->supported = 0;
1485 wol->wolopts = 0;
1486 memset(&wol->sopass, 0, sizeof(wol->sopass));
1487 }
1488
1489 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1490 {
1491 if (type != 0)
1492 return -EINVAL;
1493 return 0;
1494 }
1495
1496 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1497 const efx_dword_t *hdr, size_t hdr_len,
1498 const efx_dword_t *sdu, size_t sdu_len)
1499 {
1500 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1501 u8 *pdu = nic_data->mcdi_buf.addr;
1502
1503 memcpy(pdu, hdr, hdr_len);
1504 memcpy(pdu + hdr_len, sdu, sdu_len);
1505 wmb();
1506
1507 /* The hardware provides 'low' and 'high' (doorbell) registers
1508 * for passing the 64-bit address of an MCDI request to
1509 * firmware. However the dwords are swapped by firmware. The
1510 * least significant bits of the doorbell are then 0 for all
1511 * MCDI requests due to alignment.
1512 */
1513 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1514 ER_DZ_MC_DB_LWRD);
1515 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1516 ER_DZ_MC_DB_HWRD);
1517 }
1518
1519 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1520 {
1521 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1522 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1523
1524 rmb();
1525 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1526 }
1527
1528 static void
1529 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1530 size_t offset, size_t outlen)
1531 {
1532 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1533 const u8 *pdu = nic_data->mcdi_buf.addr;
1534
1535 memcpy(outbuf, pdu + offset, outlen);
1536 }
1537
1538 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1539 {
1540 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1541 int rc;
1542
1543 rc = efx_ef10_get_warm_boot_count(efx);
1544 if (rc < 0) {
1545 /* The firmware is presumably in the process of
1546 * rebooting. However, we are supposed to report each
1547 * reboot just once, so we must only do that once we
1548 * can read and store the updated warm boot count.
1549 */
1550 return 0;
1551 }
1552
1553 if (rc == nic_data->warm_boot_count)
1554 return 0;
1555
1556 nic_data->warm_boot_count = rc;
1557
1558 /* All our allocations have been reset */
1559 efx_ef10_reset_mc_allocations(efx);
1560
1561 /* Driver-created vswitches and vports must be re-created */
1562 nic_data->must_probe_vswitching = true;
1563 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1564
1565 /* The datapath firmware might have been changed */
1566 nic_data->must_check_datapath_caps = true;
1567
1568 /* MAC statistics have been cleared on the NIC; clear the local
1569 * statistic that we update with efx_update_diff_stat().
1570 */
1571 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1572
1573 return -EIO;
1574 }
1575
1576 /* Handle an MSI interrupt
1577 *
1578 * Handle an MSI hardware interrupt. This routine schedules event
1579 * queue processing. No interrupt acknowledgement cycle is necessary.
1580 * Also, we never need to check that the interrupt is for us, since
1581 * MSI interrupts cannot be shared.
1582 */
1583 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1584 {
1585 struct efx_msi_context *context = dev_id;
1586 struct efx_nic *efx = context->efx;
1587
1588 netif_vdbg(efx, intr, efx->net_dev,
1589 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1590
1591 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1592 /* Note test interrupts */
1593 if (context->index == efx->irq_level)
1594 efx->last_irq_cpu = raw_smp_processor_id();
1595
1596 /* Schedule processing of the channel */
1597 efx_schedule_channel_irq(efx->channel[context->index]);
1598 }
1599
1600 return IRQ_HANDLED;
1601 }
1602
1603 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1604 {
1605 struct efx_nic *efx = dev_id;
1606 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1607 struct efx_channel *channel;
1608 efx_dword_t reg;
1609 u32 queues;
1610
1611 /* Read the ISR which also ACKs the interrupts */
1612 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1613 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1614
1615 if (queues == 0)
1616 return IRQ_NONE;
1617
1618 if (likely(soft_enabled)) {
1619 /* Note test interrupts */
1620 if (queues & (1U << efx->irq_level))
1621 efx->last_irq_cpu = raw_smp_processor_id();
1622
1623 efx_for_each_channel(channel, efx) {
1624 if (queues & 1)
1625 efx_schedule_channel_irq(channel);
1626 queues >>= 1;
1627 }
1628 }
1629
1630 netif_vdbg(efx, intr, efx->net_dev,
1631 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1632 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1633
1634 return IRQ_HANDLED;
1635 }
1636
1637 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1638 {
1639 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1640
1641 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1642
1643 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1644 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1645 inbuf, sizeof(inbuf), NULL, 0, NULL);
1646 }
1647
1648 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1649 {
1650 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1651 (tx_queue->ptr_mask + 1) *
1652 sizeof(efx_qword_t),
1653 GFP_KERNEL);
1654 }
1655
1656 /* This writes to the TX_DESC_WPTR and also pushes data */
1657 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1658 const efx_qword_t *txd)
1659 {
1660 unsigned int write_ptr;
1661 efx_oword_t reg;
1662
1663 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1664 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1665 reg.qword[0] = *txd;
1666 efx_writeo_page(tx_queue->efx, &reg,
1667 ER_DZ_TX_DESC_UPD, tx_queue->queue);
1668 }
1669
1670 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1671 {
1672 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1673 EFX_BUF_SIZE));
1674 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1675 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1676 struct efx_channel *channel = tx_queue->channel;
1677 struct efx_nic *efx = tx_queue->efx;
1678 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1679 size_t inlen;
1680 dma_addr_t dma_addr;
1681 efx_qword_t *txd;
1682 int rc;
1683 int i;
1684 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1685
1686 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1687 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1688 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1689 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1690 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1691 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1692 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1693 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1694 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1695
1696 dma_addr = tx_queue->txd.buf.dma_addr;
1697
1698 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1699 tx_queue->queue, entries, (u64)dma_addr);
1700
1701 for (i = 0; i < entries; ++i) {
1702 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1703 dma_addr += EFX_BUF_SIZE;
1704 }
1705
1706 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1707
1708 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1709 NULL, 0, NULL);
1710 if (rc)
1711 goto fail;
1712
1713 /* A previous user of this TX queue might have set us up the
1714 * bomb by writing a descriptor to the TX push collector but
1715 * not the doorbell. (Each collector belongs to a port, not a
1716 * queue or function, so cannot easily be reset.) We must
1717 * attempt to push a no-op descriptor in its place.
1718 */
1719 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1720 tx_queue->insert_count = 1;
1721 txd = efx_tx_desc(tx_queue, 0);
1722 EFX_POPULATE_QWORD_4(*txd,
1723 ESF_DZ_TX_DESC_IS_OPT, true,
1724 ESF_DZ_TX_OPTION_TYPE,
1725 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1726 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1727 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1728 tx_queue->write_count = 1;
1729 wmb();
1730 efx_ef10_push_tx_desc(tx_queue, txd);
1731
1732 return;
1733
1734 fail:
1735 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1736 tx_queue->queue);
1737 }
1738
1739 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1740 {
1741 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1742 MCDI_DECLARE_BUF_ERR(outbuf);
1743 struct efx_nic *efx = tx_queue->efx;
1744 size_t outlen;
1745 int rc;
1746
1747 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1748 tx_queue->queue);
1749
1750 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1751 outbuf, sizeof(outbuf), &outlen);
1752
1753 if (rc && rc != -EALREADY)
1754 goto fail;
1755
1756 return;
1757
1758 fail:
1759 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1760 outbuf, outlen, rc);
1761 }
1762
1763 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1764 {
1765 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1766 }
1767
1768 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1769 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1770 {
1771 unsigned int write_ptr;
1772 efx_dword_t reg;
1773
1774 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1775 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1776 efx_writed_page(tx_queue->efx, &reg,
1777 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1778 }
1779
1780 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1781 {
1782 unsigned int old_write_count = tx_queue->write_count;
1783 struct efx_tx_buffer *buffer;
1784 unsigned int write_ptr;
1785 efx_qword_t *txd;
1786
1787 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1788
1789 do {
1790 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1791 buffer = &tx_queue->buffer[write_ptr];
1792 txd = efx_tx_desc(tx_queue, write_ptr);
1793 ++tx_queue->write_count;
1794
1795 /* Create TX descriptor ring entry */
1796 if (buffer->flags & EFX_TX_BUF_OPTION) {
1797 *txd = buffer->option;
1798 } else {
1799 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1800 EFX_POPULATE_QWORD_3(
1801 *txd,
1802 ESF_DZ_TX_KER_CONT,
1803 buffer->flags & EFX_TX_BUF_CONT,
1804 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1805 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1806 }
1807 } while (tx_queue->write_count != tx_queue->insert_count);
1808
1809 wmb(); /* Ensure descriptors are written before they are fetched */
1810
1811 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1812 txd = efx_tx_desc(tx_queue,
1813 old_write_count & tx_queue->ptr_mask);
1814 efx_ef10_push_tx_desc(tx_queue, txd);
1815 ++tx_queue->pushes;
1816 } else {
1817 efx_ef10_notify_tx_desc(tx_queue);
1818 }
1819 }
1820
1821 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
1822 bool exclusive, unsigned *context_size)
1823 {
1824 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1825 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1826 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1827 size_t outlen;
1828 int rc;
1829 u32 alloc_type = exclusive ?
1830 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
1831 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
1832 unsigned rss_spread = exclusive ?
1833 efx->rss_spread :
1834 min(rounddown_pow_of_two(efx->rss_spread),
1835 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
1836
1837 if (!exclusive && rss_spread == 1) {
1838 *context = EFX_EF10_RSS_CONTEXT_INVALID;
1839 if (context_size)
1840 *context_size = 1;
1841 return 0;
1842 }
1843
1844 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1845 nic_data->vport_id);
1846 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
1847 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
1848
1849 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1850 outbuf, sizeof(outbuf), &outlen);
1851 if (rc != 0)
1852 return rc;
1853
1854 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1855 return -EIO;
1856
1857 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1858
1859 if (context_size)
1860 *context_size = rss_spread;
1861
1862 return 0;
1863 }
1864
1865 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1866 {
1867 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1868 int rc;
1869
1870 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1871 context);
1872
1873 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1874 NULL, 0, NULL);
1875 WARN_ON(rc != 0);
1876 }
1877
1878 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
1879 const u32 *rx_indir_table)
1880 {
1881 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1882 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1883 int i, rc;
1884
1885 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1886 context);
1887 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1888 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1889
1890 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1891 MCDI_PTR(tablebuf,
1892 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1893 (u8) rx_indir_table[i];
1894
1895 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1896 sizeof(tablebuf), NULL, 0, NULL);
1897 if (rc != 0)
1898 return rc;
1899
1900 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1901 context);
1902 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1903 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1904 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1905 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1906 efx->rx_hash_key[i];
1907
1908 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1909 sizeof(keybuf), NULL, 0, NULL);
1910 }
1911
1912 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1913 {
1914 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1915
1916 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1917 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1918 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1919 }
1920
1921 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
1922 unsigned *context_size)
1923 {
1924 u32 new_rx_rss_context;
1925 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1926 int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
1927 false, context_size);
1928
1929 if (rc != 0)
1930 return rc;
1931
1932 nic_data->rx_rss_context = new_rx_rss_context;
1933 nic_data->rx_rss_context_exclusive = false;
1934 efx_set_default_rx_indir_table(efx);
1935 return 0;
1936 }
1937
1938 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
1939 const u32 *rx_indir_table)
1940 {
1941 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1942 int rc;
1943 u32 new_rx_rss_context;
1944
1945 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
1946 !nic_data->rx_rss_context_exclusive) {
1947 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
1948 true, NULL);
1949 if (rc == -EOPNOTSUPP)
1950 return rc;
1951 else if (rc != 0)
1952 goto fail1;
1953 } else {
1954 new_rx_rss_context = nic_data->rx_rss_context;
1955 }
1956
1957 rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
1958 rx_indir_table);
1959 if (rc != 0)
1960 goto fail2;
1961
1962 if (nic_data->rx_rss_context != new_rx_rss_context)
1963 efx_ef10_rx_free_indir_table(efx);
1964 nic_data->rx_rss_context = new_rx_rss_context;
1965 nic_data->rx_rss_context_exclusive = true;
1966 if (rx_indir_table != efx->rx_indir_table)
1967 memcpy(efx->rx_indir_table, rx_indir_table,
1968 sizeof(efx->rx_indir_table));
1969 return 0;
1970
1971 fail2:
1972 if (new_rx_rss_context != nic_data->rx_rss_context)
1973 efx_ef10_free_rss_context(efx, new_rx_rss_context);
1974 fail1:
1975 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1976 return rc;
1977 }
1978
1979 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
1980 const u32 *rx_indir_table)
1981 {
1982 int rc;
1983
1984 if (efx->rss_spread == 1)
1985 return 0;
1986
1987 rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
1988
1989 if (rc == -ENOBUFS && !user) {
1990 unsigned context_size;
1991 bool mismatch = false;
1992 size_t i;
1993
1994 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
1995 i++)
1996 mismatch = rx_indir_table[i] !=
1997 ethtool_rxfh_indir_default(i, efx->rss_spread);
1998
1999 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2000 if (rc == 0) {
2001 if (context_size != efx->rss_spread)
2002 netif_warn(efx, probe, efx->net_dev,
2003 "Could not allocate an exclusive RSS"
2004 " context; allocated a shared one of"
2005 " different size."
2006 " Wanted %u, got %u.\n",
2007 efx->rss_spread, context_size);
2008 else if (mismatch)
2009 netif_warn(efx, probe, efx->net_dev,
2010 "Could not allocate an exclusive RSS"
2011 " context; allocated a shared one but"
2012 " could not apply custom"
2013 " indirection.\n");
2014 else
2015 netif_info(efx, probe, efx->net_dev,
2016 "Could not allocate an exclusive RSS"
2017 " context; allocated a shared one.\n");
2018 }
2019 }
2020 return rc;
2021 }
2022
2023 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2024 const u32 *rx_indir_table
2025 __attribute__ ((unused)))
2026 {
2027 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2028
2029 if (user)
2030 return -EOPNOTSUPP;
2031 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2032 return 0;
2033 return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2034 }
2035
2036 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2037 {
2038 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2039 (rx_queue->ptr_mask + 1) *
2040 sizeof(efx_qword_t),
2041 GFP_KERNEL);
2042 }
2043
2044 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2045 {
2046 MCDI_DECLARE_BUF(inbuf,
2047 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2048 EFX_BUF_SIZE));
2049 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2050 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2051 struct efx_nic *efx = rx_queue->efx;
2052 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2053 size_t inlen;
2054 dma_addr_t dma_addr;
2055 int rc;
2056 int i;
2057 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2058
2059 rx_queue->scatter_n = 0;
2060 rx_queue->scatter_len = 0;
2061
2062 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2063 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2064 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2065 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2066 efx_rx_queue_index(rx_queue));
2067 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2068 INIT_RXQ_IN_FLAG_PREFIX, 1,
2069 INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2070 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2071 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2072
2073 dma_addr = rx_queue->rxd.buf.dma_addr;
2074
2075 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2076 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2077
2078 for (i = 0; i < entries; ++i) {
2079 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2080 dma_addr += EFX_BUF_SIZE;
2081 }
2082
2083 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2084
2085 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2086 NULL, 0, NULL);
2087 if (rc)
2088 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2089 efx_rx_queue_index(rx_queue));
2090 }
2091
2092 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2093 {
2094 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2095 MCDI_DECLARE_BUF_ERR(outbuf);
2096 struct efx_nic *efx = rx_queue->efx;
2097 size_t outlen;
2098 int rc;
2099
2100 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2101 efx_rx_queue_index(rx_queue));
2102
2103 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2104 outbuf, sizeof(outbuf), &outlen);
2105
2106 if (rc && rc != -EALREADY)
2107 goto fail;
2108
2109 return;
2110
2111 fail:
2112 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2113 outbuf, outlen, rc);
2114 }
2115
2116 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2117 {
2118 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2119 }
2120
2121 /* This creates an entry in the RX descriptor queue */
2122 static inline void
2123 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2124 {
2125 struct efx_rx_buffer *rx_buf;
2126 efx_qword_t *rxd;
2127
2128 rxd = efx_rx_desc(rx_queue, index);
2129 rx_buf = efx_rx_buffer(rx_queue, index);
2130 EFX_POPULATE_QWORD_2(*rxd,
2131 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2132 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2133 }
2134
2135 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2136 {
2137 struct efx_nic *efx = rx_queue->efx;
2138 unsigned int write_count;
2139 efx_dword_t reg;
2140
2141 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2142 write_count = rx_queue->added_count & ~7;
2143 if (rx_queue->notified_count == write_count)
2144 return;
2145
2146 do
2147 efx_ef10_build_rx_desc(
2148 rx_queue,
2149 rx_queue->notified_count & rx_queue->ptr_mask);
2150 while (++rx_queue->notified_count != write_count);
2151
2152 wmb();
2153 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2154 write_count & rx_queue->ptr_mask);
2155 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2156 efx_rx_queue_index(rx_queue));
2157 }
2158
2159 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2160
2161 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2162 {
2163 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2164 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2165 efx_qword_t event;
2166
2167 EFX_POPULATE_QWORD_2(event,
2168 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2169 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2170
2171 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2172
2173 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2174 * already swapped the data to little-endian order.
2175 */
2176 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2177 sizeof(efx_qword_t));
2178
2179 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2180 inbuf, sizeof(inbuf), 0,
2181 efx_ef10_rx_defer_refill_complete, 0);
2182 }
2183
2184 static void
2185 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2186 int rc, efx_dword_t *outbuf,
2187 size_t outlen_actual)
2188 {
2189 /* nothing to do */
2190 }
2191
2192 static int efx_ef10_ev_probe(struct efx_channel *channel)
2193 {
2194 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2195 (channel->eventq_mask + 1) *
2196 sizeof(efx_qword_t),
2197 GFP_KERNEL);
2198 }
2199
2200 static int efx_ef10_ev_init(struct efx_channel *channel)
2201 {
2202 MCDI_DECLARE_BUF(inbuf,
2203 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2204 EFX_BUF_SIZE));
2205 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
2206 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2207 struct efx_nic *efx = channel->efx;
2208 struct efx_ef10_nic_data *nic_data;
2209 bool supports_rx_merge;
2210 size_t inlen, outlen;
2211 dma_addr_t dma_addr;
2212 int rc;
2213 int i;
2214
2215 nic_data = efx->nic_data;
2216 supports_rx_merge =
2217 !!(nic_data->datapath_caps &
2218 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2219
2220 /* Fill event queue with all ones (i.e. empty events) */
2221 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2222
2223 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2224 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2225 /* INIT_EVQ expects index in vector table, not absolute */
2226 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2227 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2228 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2229 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2230 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2231 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
2232 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2233 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2234 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2235 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2236 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2237 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2238 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2239
2240 dma_addr = channel->eventq.buf.dma_addr;
2241 for (i = 0; i < entries; ++i) {
2242 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2243 dma_addr += EFX_BUF_SIZE;
2244 }
2245
2246 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2247
2248 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2249 outbuf, sizeof(outbuf), &outlen);
2250 /* IRQ return is ignored */
2251 return rc;
2252 }
2253
2254 static void efx_ef10_ev_fini(struct efx_channel *channel)
2255 {
2256 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2257 MCDI_DECLARE_BUF_ERR(outbuf);
2258 struct efx_nic *efx = channel->efx;
2259 size_t outlen;
2260 int rc;
2261
2262 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2263
2264 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2265 outbuf, sizeof(outbuf), &outlen);
2266
2267 if (rc && rc != -EALREADY)
2268 goto fail;
2269
2270 return;
2271
2272 fail:
2273 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2274 outbuf, outlen, rc);
2275 }
2276
2277 static void efx_ef10_ev_remove(struct efx_channel *channel)
2278 {
2279 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2280 }
2281
2282 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2283 unsigned int rx_queue_label)
2284 {
2285 struct efx_nic *efx = rx_queue->efx;
2286
2287 netif_info(efx, hw, efx->net_dev,
2288 "rx event arrived on queue %d labeled as queue %u\n",
2289 efx_rx_queue_index(rx_queue), rx_queue_label);
2290
2291 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2292 }
2293
2294 static void
2295 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2296 unsigned int actual, unsigned int expected)
2297 {
2298 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2299 struct efx_nic *efx = rx_queue->efx;
2300
2301 netif_info(efx, hw, efx->net_dev,
2302 "dropped %d events (index=%d expected=%d)\n",
2303 dropped, actual, expected);
2304
2305 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2306 }
2307
2308 /* partially received RX was aborted. clean up. */
2309 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2310 {
2311 unsigned int rx_desc_ptr;
2312
2313 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2314 "scattered RX aborted (dropping %u buffers)\n",
2315 rx_queue->scatter_n);
2316
2317 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2318
2319 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2320 0, EFX_RX_PKT_DISCARD);
2321
2322 rx_queue->removed_count += rx_queue->scatter_n;
2323 rx_queue->scatter_n = 0;
2324 rx_queue->scatter_len = 0;
2325 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2326 }
2327
2328 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2329 const efx_qword_t *event)
2330 {
2331 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2332 unsigned int n_descs, n_packets, i;
2333 struct efx_nic *efx = channel->efx;
2334 struct efx_rx_queue *rx_queue;
2335 bool rx_cont;
2336 u16 flags = 0;
2337
2338 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2339 return 0;
2340
2341 /* Basic packet information */
2342 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2343 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2344 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2345 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2346 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2347
2348 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2349 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2350 EFX_QWORD_FMT "\n",
2351 EFX_QWORD_VAL(*event));
2352
2353 rx_queue = efx_channel_get_rx_queue(channel);
2354
2355 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2356 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2357
2358 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2359 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2360
2361 if (n_descs != rx_queue->scatter_n + 1) {
2362 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2363
2364 /* detect rx abort */
2365 if (unlikely(n_descs == rx_queue->scatter_n)) {
2366 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2367 netdev_WARN(efx->net_dev,
2368 "invalid RX abort: scatter_n=%u event="
2369 EFX_QWORD_FMT "\n",
2370 rx_queue->scatter_n,
2371 EFX_QWORD_VAL(*event));
2372 efx_ef10_handle_rx_abort(rx_queue);
2373 return 0;
2374 }
2375
2376 /* Check that RX completion merging is valid, i.e.
2377 * the current firmware supports it and this is a
2378 * non-scattered packet.
2379 */
2380 if (!(nic_data->datapath_caps &
2381 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2382 rx_queue->scatter_n != 0 || rx_cont) {
2383 efx_ef10_handle_rx_bad_lbits(
2384 rx_queue, next_ptr_lbits,
2385 (rx_queue->removed_count +
2386 rx_queue->scatter_n + 1) &
2387 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2388 return 0;
2389 }
2390
2391 /* Merged completion for multiple non-scattered packets */
2392 rx_queue->scatter_n = 1;
2393 rx_queue->scatter_len = 0;
2394 n_packets = n_descs;
2395 ++channel->n_rx_merge_events;
2396 channel->n_rx_merge_packets += n_packets;
2397 flags |= EFX_RX_PKT_PREFIX_LEN;
2398 } else {
2399 ++rx_queue->scatter_n;
2400 rx_queue->scatter_len += rx_bytes;
2401 if (rx_cont)
2402 return 0;
2403 n_packets = 1;
2404 }
2405
2406 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2407 flags |= EFX_RX_PKT_DISCARD;
2408
2409 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2410 channel->n_rx_ip_hdr_chksum_err += n_packets;
2411 } else if (unlikely(EFX_QWORD_FIELD(*event,
2412 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2413 channel->n_rx_tcp_udp_chksum_err += n_packets;
2414 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2415 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2416 flags |= EFX_RX_PKT_CSUMMED;
2417 }
2418
2419 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2420 flags |= EFX_RX_PKT_TCP;
2421
2422 channel->irq_mod_score += 2 * n_packets;
2423
2424 /* Handle received packet(s) */
2425 for (i = 0; i < n_packets; i++) {
2426 efx_rx_packet(rx_queue,
2427 rx_queue->removed_count & rx_queue->ptr_mask,
2428 rx_queue->scatter_n, rx_queue->scatter_len,
2429 flags);
2430 rx_queue->removed_count += rx_queue->scatter_n;
2431 }
2432
2433 rx_queue->scatter_n = 0;
2434 rx_queue->scatter_len = 0;
2435
2436 return n_packets;
2437 }
2438
2439 static int
2440 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2441 {
2442 struct efx_nic *efx = channel->efx;
2443 struct efx_tx_queue *tx_queue;
2444 unsigned int tx_ev_desc_ptr;
2445 unsigned int tx_ev_q_label;
2446 int tx_descs = 0;
2447
2448 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2449 return 0;
2450
2451 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2452 return 0;
2453
2454 /* Transmit completion */
2455 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2456 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2457 tx_queue = efx_channel_get_tx_queue(channel,
2458 tx_ev_q_label % EFX_TXQ_TYPES);
2459 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2460 tx_queue->ptr_mask);
2461 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2462
2463 return tx_descs;
2464 }
2465
2466 static void
2467 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2468 {
2469 struct efx_nic *efx = channel->efx;
2470 int subcode;
2471
2472 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2473
2474 switch (subcode) {
2475 case ESE_DZ_DRV_TIMER_EV:
2476 case ESE_DZ_DRV_WAKE_UP_EV:
2477 break;
2478 case ESE_DZ_DRV_START_UP_EV:
2479 /* event queue init complete. ok. */
2480 break;
2481 default:
2482 netif_err(efx, hw, efx->net_dev,
2483 "channel %d unknown driver event type %d"
2484 " (data " EFX_QWORD_FMT ")\n",
2485 channel->channel, subcode,
2486 EFX_QWORD_VAL(*event));
2487
2488 }
2489 }
2490
2491 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2492 efx_qword_t *event)
2493 {
2494 struct efx_nic *efx = channel->efx;
2495 u32 subcode;
2496
2497 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2498
2499 switch (subcode) {
2500 case EFX_EF10_TEST:
2501 channel->event_test_cpu = raw_smp_processor_id();
2502 break;
2503 case EFX_EF10_REFILL:
2504 /* The queue must be empty, so we won't receive any rx
2505 * events, so efx_process_channel() won't refill the
2506 * queue. Refill it here
2507 */
2508 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2509 break;
2510 default:
2511 netif_err(efx, hw, efx->net_dev,
2512 "channel %d unknown driver event type %u"
2513 " (data " EFX_QWORD_FMT ")\n",
2514 channel->channel, (unsigned) subcode,
2515 EFX_QWORD_VAL(*event));
2516 }
2517 }
2518
2519 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2520 {
2521 struct efx_nic *efx = channel->efx;
2522 efx_qword_t event, *p_event;
2523 unsigned int read_ptr;
2524 int ev_code;
2525 int tx_descs = 0;
2526 int spent = 0;
2527
2528 if (quota <= 0)
2529 return spent;
2530
2531 read_ptr = channel->eventq_read_ptr;
2532
2533 for (;;) {
2534 p_event = efx_event(channel, read_ptr);
2535 event = *p_event;
2536
2537 if (!efx_event_present(&event))
2538 break;
2539
2540 EFX_SET_QWORD(*p_event);
2541
2542 ++read_ptr;
2543
2544 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2545
2546 netif_vdbg(efx, drv, efx->net_dev,
2547 "processing event on %d " EFX_QWORD_FMT "\n",
2548 channel->channel, EFX_QWORD_VAL(event));
2549
2550 switch (ev_code) {
2551 case ESE_DZ_EV_CODE_MCDI_EV:
2552 efx_mcdi_process_event(channel, &event);
2553 break;
2554 case ESE_DZ_EV_CODE_RX_EV:
2555 spent += efx_ef10_handle_rx_event(channel, &event);
2556 if (spent >= quota) {
2557 /* XXX can we split a merged event to
2558 * avoid going over-quota?
2559 */
2560 spent = quota;
2561 goto out;
2562 }
2563 break;
2564 case ESE_DZ_EV_CODE_TX_EV:
2565 tx_descs += efx_ef10_handle_tx_event(channel, &event);
2566 if (tx_descs > efx->txq_entries) {
2567 spent = quota;
2568 goto out;
2569 } else if (++spent == quota) {
2570 goto out;
2571 }
2572 break;
2573 case ESE_DZ_EV_CODE_DRIVER_EV:
2574 efx_ef10_handle_driver_event(channel, &event);
2575 if (++spent == quota)
2576 goto out;
2577 break;
2578 case EFX_EF10_DRVGEN_EV:
2579 efx_ef10_handle_driver_generated_event(channel, &event);
2580 break;
2581 default:
2582 netif_err(efx, hw, efx->net_dev,
2583 "channel %d unknown event type %d"
2584 " (data " EFX_QWORD_FMT ")\n",
2585 channel->channel, ev_code,
2586 EFX_QWORD_VAL(event));
2587 }
2588 }
2589
2590 out:
2591 channel->eventq_read_ptr = read_ptr;
2592 return spent;
2593 }
2594
2595 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2596 {
2597 struct efx_nic *efx = channel->efx;
2598 efx_dword_t rptr;
2599
2600 if (EFX_EF10_WORKAROUND_35388(efx)) {
2601 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2602 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2603 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2604 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2605
2606 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2607 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2608 ERF_DD_EVQ_IND_RPTR,
2609 (channel->eventq_read_ptr &
2610 channel->eventq_mask) >>
2611 ERF_DD_EVQ_IND_RPTR_WIDTH);
2612 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2613 channel->channel);
2614 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2615 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2616 ERF_DD_EVQ_IND_RPTR,
2617 channel->eventq_read_ptr &
2618 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2619 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2620 channel->channel);
2621 } else {
2622 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2623 channel->eventq_read_ptr &
2624 channel->eventq_mask);
2625 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2626 }
2627 }
2628
2629 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2630 {
2631 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2632 struct efx_nic *efx = channel->efx;
2633 efx_qword_t event;
2634 int rc;
2635
2636 EFX_POPULATE_QWORD_2(event,
2637 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2638 ESF_DZ_EV_DATA, EFX_EF10_TEST);
2639
2640 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2641
2642 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2643 * already swapped the data to little-endian order.
2644 */
2645 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2646 sizeof(efx_qword_t));
2647
2648 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2649 NULL, 0, NULL);
2650 if (rc != 0)
2651 goto fail;
2652
2653 return;
2654
2655 fail:
2656 WARN_ON(true);
2657 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2658 }
2659
2660 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2661 {
2662 if (atomic_dec_and_test(&efx->active_queues))
2663 wake_up(&efx->flush_wq);
2664
2665 WARN_ON(atomic_read(&efx->active_queues) < 0);
2666 }
2667
2668 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2669 {
2670 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2671 struct efx_channel *channel;
2672 struct efx_tx_queue *tx_queue;
2673 struct efx_rx_queue *rx_queue;
2674 int pending;
2675
2676 /* If the MC has just rebooted, the TX/RX queues will have already been
2677 * torn down, but efx->active_queues needs to be set to zero.
2678 */
2679 if (nic_data->must_realloc_vis) {
2680 atomic_set(&efx->active_queues, 0);
2681 return 0;
2682 }
2683
2684 /* Do not attempt to write to the NIC during EEH recovery */
2685 if (efx->state != STATE_RECOVERY) {
2686 efx_for_each_channel(channel, efx) {
2687 efx_for_each_channel_rx_queue(rx_queue, channel)
2688 efx_ef10_rx_fini(rx_queue);
2689 efx_for_each_channel_tx_queue(tx_queue, channel)
2690 efx_ef10_tx_fini(tx_queue);
2691 }
2692
2693 wait_event_timeout(efx->flush_wq,
2694 atomic_read(&efx->active_queues) == 0,
2695 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2696 pending = atomic_read(&efx->active_queues);
2697 if (pending) {
2698 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2699 pending);
2700 return -ETIMEDOUT;
2701 }
2702 }
2703
2704 return 0;
2705 }
2706
2707 static void efx_ef10_prepare_flr(struct efx_nic *efx)
2708 {
2709 atomic_set(&efx->active_queues, 0);
2710 }
2711
2712 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2713 const struct efx_filter_spec *right)
2714 {
2715 if ((left->match_flags ^ right->match_flags) |
2716 ((left->flags ^ right->flags) &
2717 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2718 return false;
2719
2720 return memcmp(&left->outer_vid, &right->outer_vid,
2721 sizeof(struct efx_filter_spec) -
2722 offsetof(struct efx_filter_spec, outer_vid)) == 0;
2723 }
2724
2725 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2726 {
2727 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2728 return jhash2((const u32 *)&spec->outer_vid,
2729 (sizeof(struct efx_filter_spec) -
2730 offsetof(struct efx_filter_spec, outer_vid)) / 4,
2731 0);
2732 /* XXX should we randomise the initval? */
2733 }
2734
2735 /* Decide whether a filter should be exclusive or else should allow
2736 * delivery to additional recipients. Currently we decide that
2737 * filters for specific local unicast MAC and IP addresses are
2738 * exclusive.
2739 */
2740 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2741 {
2742 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2743 !is_multicast_ether_addr(spec->loc_mac))
2744 return true;
2745
2746 if ((spec->match_flags &
2747 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2748 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2749 if (spec->ether_type == htons(ETH_P_IP) &&
2750 !ipv4_is_multicast(spec->loc_host[0]))
2751 return true;
2752 if (spec->ether_type == htons(ETH_P_IPV6) &&
2753 ((const u8 *)spec->loc_host)[0] != 0xff)
2754 return true;
2755 }
2756
2757 return false;
2758 }
2759
2760 static struct efx_filter_spec *
2761 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2762 unsigned int filter_idx)
2763 {
2764 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2765 ~EFX_EF10_FILTER_FLAGS);
2766 }
2767
2768 static unsigned int
2769 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2770 unsigned int filter_idx)
2771 {
2772 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2773 }
2774
2775 static void
2776 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2777 unsigned int filter_idx,
2778 const struct efx_filter_spec *spec,
2779 unsigned int flags)
2780 {
2781 table->entry[filter_idx].spec = (unsigned long)spec | flags;
2782 }
2783
2784 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2785 const struct efx_filter_spec *spec,
2786 efx_dword_t *inbuf, u64 handle,
2787 bool replacing)
2788 {
2789 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2790
2791 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2792
2793 if (replacing) {
2794 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2795 MC_CMD_FILTER_OP_IN_OP_REPLACE);
2796 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2797 } else {
2798 u32 match_fields = 0;
2799
2800 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2801 efx_ef10_filter_is_exclusive(spec) ?
2802 MC_CMD_FILTER_OP_IN_OP_INSERT :
2803 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2804
2805 /* Convert match flags and values. Unlike almost
2806 * everything else in MCDI, these fields are in
2807 * network byte order.
2808 */
2809 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2810 match_fields |=
2811 is_multicast_ether_addr(spec->loc_mac) ?
2812 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2813 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2814 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2815 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2816 match_fields |= \
2817 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2818 mcdi_field ## _LBN; \
2819 BUILD_BUG_ON( \
2820 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2821 sizeof(spec->gen_field)); \
2822 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2823 &spec->gen_field, sizeof(spec->gen_field)); \
2824 }
2825 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2826 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2827 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2828 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2829 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2830 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2831 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2832 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2833 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2834 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2835 #undef COPY_FIELD
2836 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2837 match_fields);
2838 }
2839
2840 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
2841 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2842 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2843 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2844 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2845 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
2846 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2847 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2848 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2849 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2850 0 : spec->dmaq_id);
2851 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2852 (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2853 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2854 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2855 if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2856 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2857 spec->rss_context !=
2858 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2859 spec->rss_context : nic_data->rx_rss_context);
2860 }
2861
2862 static int efx_ef10_filter_push(struct efx_nic *efx,
2863 const struct efx_filter_spec *spec,
2864 u64 *handle, bool replacing)
2865 {
2866 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2867 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2868 int rc;
2869
2870 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2871 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2872 outbuf, sizeof(outbuf), NULL);
2873 if (rc == 0)
2874 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2875 if (rc == -ENOSPC)
2876 rc = -EBUSY; /* to match efx_farch_filter_insert() */
2877 return rc;
2878 }
2879
2880 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2881 enum efx_filter_match_flags match_flags)
2882 {
2883 unsigned int match_pri;
2884
2885 for (match_pri = 0;
2886 match_pri < table->rx_match_count;
2887 match_pri++)
2888 if (table->rx_match_flags[match_pri] == match_flags)
2889 return match_pri;
2890
2891 return -EPROTONOSUPPORT;
2892 }
2893
2894 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2895 struct efx_filter_spec *spec,
2896 bool replace_equal)
2897 {
2898 struct efx_ef10_filter_table *table = efx->filter_state;
2899 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2900 struct efx_filter_spec *saved_spec;
2901 unsigned int match_pri, hash;
2902 unsigned int priv_flags;
2903 bool replacing = false;
2904 int ins_index = -1;
2905 DEFINE_WAIT(wait);
2906 bool is_mc_recip;
2907 s32 rc;
2908
2909 /* For now, only support RX filters */
2910 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2911 EFX_FILTER_FLAG_RX)
2912 return -EINVAL;
2913
2914 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2915 if (rc < 0)
2916 return rc;
2917 match_pri = rc;
2918
2919 hash = efx_ef10_filter_hash(spec);
2920 is_mc_recip = efx_filter_is_mc_recipient(spec);
2921 if (is_mc_recip)
2922 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2923
2924 /* Find any existing filters with the same match tuple or
2925 * else a free slot to insert at. If any of them are busy,
2926 * we have to wait and retry.
2927 */
2928 for (;;) {
2929 unsigned int depth = 1;
2930 unsigned int i;
2931
2932 spin_lock_bh(&efx->filter_lock);
2933
2934 for (;;) {
2935 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2936 saved_spec = efx_ef10_filter_entry_spec(table, i);
2937
2938 if (!saved_spec) {
2939 if (ins_index < 0)
2940 ins_index = i;
2941 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2942 if (table->entry[i].spec &
2943 EFX_EF10_FILTER_FLAG_BUSY)
2944 break;
2945 if (spec->priority < saved_spec->priority &&
2946 spec->priority != EFX_FILTER_PRI_AUTO) {
2947 rc = -EPERM;
2948 goto out_unlock;
2949 }
2950 if (!is_mc_recip) {
2951 /* This is the only one */
2952 if (spec->priority ==
2953 saved_spec->priority &&
2954 !replace_equal) {
2955 rc = -EEXIST;
2956 goto out_unlock;
2957 }
2958 ins_index = i;
2959 goto found;
2960 } else if (spec->priority >
2961 saved_spec->priority ||
2962 (spec->priority ==
2963 saved_spec->priority &&
2964 replace_equal)) {
2965 if (ins_index < 0)
2966 ins_index = i;
2967 else
2968 __set_bit(depth, mc_rem_map);
2969 }
2970 }
2971
2972 /* Once we reach the maximum search depth, use
2973 * the first suitable slot or return -EBUSY if
2974 * there was none
2975 */
2976 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2977 if (ins_index < 0) {
2978 rc = -EBUSY;
2979 goto out_unlock;
2980 }
2981 goto found;
2982 }
2983
2984 ++depth;
2985 }
2986
2987 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2988 spin_unlock_bh(&efx->filter_lock);
2989 schedule();
2990 }
2991
2992 found:
2993 /* Create a software table entry if necessary, and mark it
2994 * busy. We might yet fail to insert, but any attempt to
2995 * insert a conflicting filter while we're waiting for the
2996 * firmware must find the busy entry.
2997 */
2998 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2999 if (saved_spec) {
3000 if (spec->priority == EFX_FILTER_PRI_AUTO &&
3001 saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3002 /* Just make sure it won't be removed */
3003 if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3004 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3005 table->entry[ins_index].spec &=
3006 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3007 rc = ins_index;
3008 goto out_unlock;
3009 }
3010 replacing = true;
3011 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3012 } else {
3013 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3014 if (!saved_spec) {
3015 rc = -ENOMEM;
3016 goto out_unlock;
3017 }
3018 *saved_spec = *spec;
3019 priv_flags = 0;
3020 }
3021 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3022 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3023
3024 /* Mark lower-priority multicast recipients busy prior to removal */
3025 if (is_mc_recip) {
3026 unsigned int depth, i;
3027
3028 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3029 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3030 if (test_bit(depth, mc_rem_map))
3031 table->entry[i].spec |=
3032 EFX_EF10_FILTER_FLAG_BUSY;
3033 }
3034 }
3035
3036 spin_unlock_bh(&efx->filter_lock);
3037
3038 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3039 replacing);
3040
3041 /* Finalise the software table entry */
3042 spin_lock_bh(&efx->filter_lock);
3043 if (rc == 0) {
3044 if (replacing) {
3045 /* Update the fields that may differ */
3046 if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3047 saved_spec->flags |=
3048 EFX_FILTER_FLAG_RX_OVER_AUTO;
3049 saved_spec->priority = spec->priority;
3050 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3051 saved_spec->flags |= spec->flags;
3052 saved_spec->rss_context = spec->rss_context;
3053 saved_spec->dmaq_id = spec->dmaq_id;
3054 }
3055 } else if (!replacing) {
3056 kfree(saved_spec);
3057 saved_spec = NULL;
3058 }
3059 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3060
3061 /* Remove and finalise entries for lower-priority multicast
3062 * recipients
3063 */
3064 if (is_mc_recip) {
3065 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3066 unsigned int depth, i;
3067
3068 memset(inbuf, 0, sizeof(inbuf));
3069
3070 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3071 if (!test_bit(depth, mc_rem_map))
3072 continue;
3073
3074 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3075 saved_spec = efx_ef10_filter_entry_spec(table, i);
3076 priv_flags = efx_ef10_filter_entry_flags(table, i);
3077
3078 if (rc == 0) {
3079 spin_unlock_bh(&efx->filter_lock);
3080 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3081 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3082 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3083 table->entry[i].handle);
3084 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3085 inbuf, sizeof(inbuf),
3086 NULL, 0, NULL);
3087 spin_lock_bh(&efx->filter_lock);
3088 }
3089
3090 if (rc == 0) {
3091 kfree(saved_spec);
3092 saved_spec = NULL;
3093 priv_flags = 0;
3094 } else {
3095 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3096 }
3097 efx_ef10_filter_set_entry(table, i, saved_spec,
3098 priv_flags);
3099 }
3100 }
3101
3102 /* If successful, return the inserted filter ID */
3103 if (rc == 0)
3104 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3105
3106 wake_up_all(&table->waitq);
3107 out_unlock:
3108 spin_unlock_bh(&efx->filter_lock);
3109 finish_wait(&table->waitq, &wait);
3110 return rc;
3111 }
3112
3113 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3114 {
3115 /* no need to do anything here on EF10 */
3116 }
3117
3118 /* Remove a filter.
3119 * If !by_index, remove by ID
3120 * If by_index, remove by index
3121 * Filter ID may come from userland and must be range-checked.
3122 */
3123 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3124 unsigned int priority_mask,
3125 u32 filter_id, bool by_index)
3126 {
3127 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3128 struct efx_ef10_filter_table *table = efx->filter_state;
3129 MCDI_DECLARE_BUF(inbuf,
3130 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3131 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3132 struct efx_filter_spec *spec;
3133 DEFINE_WAIT(wait);
3134 int rc;
3135
3136 /* Find the software table entry and mark it busy. Don't
3137 * remove it yet; any attempt to update while we're waiting
3138 * for the firmware must find the busy entry.
3139 */
3140 for (;;) {
3141 spin_lock_bh(&efx->filter_lock);
3142 if (!(table->entry[filter_idx].spec &
3143 EFX_EF10_FILTER_FLAG_BUSY))
3144 break;
3145 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3146 spin_unlock_bh(&efx->filter_lock);
3147 schedule();
3148 }
3149
3150 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3151 if (!spec ||
3152 (!by_index &&
3153 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
3154 filter_id / HUNT_FILTER_TBL_ROWS)) {
3155 rc = -ENOENT;
3156 goto out_unlock;
3157 }
3158
3159 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3160 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3161 /* Just remove flags */
3162 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3163 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3164 rc = 0;
3165 goto out_unlock;
3166 }
3167
3168 if (!(priority_mask & (1U << spec->priority))) {
3169 rc = -ENOENT;
3170 goto out_unlock;
3171 }
3172
3173 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3174 spin_unlock_bh(&efx->filter_lock);
3175
3176 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3177 /* Reset to an automatic filter */
3178
3179 struct efx_filter_spec new_spec = *spec;
3180
3181 new_spec.priority = EFX_FILTER_PRI_AUTO;
3182 new_spec.flags = (EFX_FILTER_FLAG_RX |
3183 EFX_FILTER_FLAG_RX_RSS);
3184 new_spec.dmaq_id = 0;
3185 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3186 rc = efx_ef10_filter_push(efx, &new_spec,
3187 &table->entry[filter_idx].handle,
3188 true);
3189
3190 spin_lock_bh(&efx->filter_lock);
3191 if (rc == 0)
3192 *spec = new_spec;
3193 } else {
3194 /* Really remove the filter */
3195
3196 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3197 efx_ef10_filter_is_exclusive(spec) ?
3198 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3199 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3200 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3201 table->entry[filter_idx].handle);
3202 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3203 inbuf, sizeof(inbuf), NULL, 0, NULL);
3204
3205 spin_lock_bh(&efx->filter_lock);
3206 if (rc == 0) {
3207 kfree(spec);
3208 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3209 }
3210 }
3211
3212 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3213 wake_up_all(&table->waitq);
3214 out_unlock:
3215 spin_unlock_bh(&efx->filter_lock);
3216 finish_wait(&table->waitq, &wait);
3217 return rc;
3218 }
3219
3220 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3221 enum efx_filter_priority priority,
3222 u32 filter_id)
3223 {
3224 return efx_ef10_filter_remove_internal(efx, 1U << priority,
3225 filter_id, false);
3226 }
3227
3228 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3229 enum efx_filter_priority priority,
3230 u32 filter_id, struct efx_filter_spec *spec)
3231 {
3232 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3233 struct efx_ef10_filter_table *table = efx->filter_state;
3234 const struct efx_filter_spec *saved_spec;
3235 int rc;
3236
3237 spin_lock_bh(&efx->filter_lock);
3238 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3239 if (saved_spec && saved_spec->priority == priority &&
3240 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
3241 filter_id / HUNT_FILTER_TBL_ROWS) {
3242 *spec = *saved_spec;
3243 rc = 0;
3244 } else {
3245 rc = -ENOENT;
3246 }
3247 spin_unlock_bh(&efx->filter_lock);
3248 return rc;
3249 }
3250
3251 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3252 enum efx_filter_priority priority)
3253 {
3254 unsigned int priority_mask;
3255 unsigned int i;
3256 int rc;
3257
3258 priority_mask = (((1U << (priority + 1)) - 1) &
3259 ~(1U << EFX_FILTER_PRI_AUTO));
3260
3261 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3262 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3263 i, true);
3264 if (rc && rc != -ENOENT)
3265 return rc;
3266 }
3267
3268 return 0;
3269 }
3270
3271 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3272 enum efx_filter_priority priority)
3273 {
3274 struct efx_ef10_filter_table *table = efx->filter_state;
3275 unsigned int filter_idx;
3276 s32 count = 0;
3277
3278 spin_lock_bh(&efx->filter_lock);
3279 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3280 if (table->entry[filter_idx].spec &&
3281 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3282 priority)
3283 ++count;
3284 }
3285 spin_unlock_bh(&efx->filter_lock);
3286 return count;
3287 }
3288
3289 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3290 {
3291 struct efx_ef10_filter_table *table = efx->filter_state;
3292
3293 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3294 }
3295
3296 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3297 enum efx_filter_priority priority,
3298 u32 *buf, u32 size)
3299 {
3300 struct efx_ef10_filter_table *table = efx->filter_state;
3301 struct efx_filter_spec *spec;
3302 unsigned int filter_idx;
3303 s32 count = 0;
3304
3305 spin_lock_bh(&efx->filter_lock);
3306 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3307 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3308 if (spec && spec->priority == priority) {
3309 if (count == size) {
3310 count = -EMSGSIZE;
3311 break;
3312 }
3313 buf[count++] = (efx_ef10_filter_rx_match_pri(
3314 table, spec->match_flags) *
3315 HUNT_FILTER_TBL_ROWS +
3316 filter_idx);
3317 }
3318 }
3319 spin_unlock_bh(&efx->filter_lock);
3320 return count;
3321 }
3322
3323 #ifdef CONFIG_RFS_ACCEL
3324
3325 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3326
3327 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3328 struct efx_filter_spec *spec)
3329 {
3330 struct efx_ef10_filter_table *table = efx->filter_state;
3331 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3332 struct efx_filter_spec *saved_spec;
3333 unsigned int hash, i, depth = 1;
3334 bool replacing = false;
3335 int ins_index = -1;
3336 u64 cookie;
3337 s32 rc;
3338
3339 /* Must be an RX filter without RSS and not for a multicast
3340 * destination address (RFS only works for connected sockets).
3341 * These restrictions allow us to pass only a tiny amount of
3342 * data through to the completion function.
3343 */
3344 EFX_WARN_ON_PARANOID(spec->flags !=
3345 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3346 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3347 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3348
3349 hash = efx_ef10_filter_hash(spec);
3350
3351 spin_lock_bh(&efx->filter_lock);
3352
3353 /* Find any existing filter with the same match tuple or else
3354 * a free slot to insert at. If an existing filter is busy,
3355 * we have to give up.
3356 */
3357 for (;;) {
3358 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3359 saved_spec = efx_ef10_filter_entry_spec(table, i);
3360
3361 if (!saved_spec) {
3362 if (ins_index < 0)
3363 ins_index = i;
3364 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3365 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3366 rc = -EBUSY;
3367 goto fail_unlock;
3368 }
3369 if (spec->priority < saved_spec->priority) {
3370 rc = -EPERM;
3371 goto fail_unlock;
3372 }
3373 ins_index = i;
3374 break;
3375 }
3376
3377 /* Once we reach the maximum search depth, use the
3378 * first suitable slot or return -EBUSY if there was
3379 * none
3380 */
3381 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3382 if (ins_index < 0) {
3383 rc = -EBUSY;
3384 goto fail_unlock;
3385 }
3386 break;
3387 }
3388
3389 ++depth;
3390 }
3391
3392 /* Create a software table entry if necessary, and mark it
3393 * busy. We might yet fail to insert, but any attempt to
3394 * insert a conflicting filter while we're waiting for the
3395 * firmware must find the busy entry.
3396 */
3397 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3398 if (saved_spec) {
3399 replacing = true;
3400 } else {
3401 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3402 if (!saved_spec) {
3403 rc = -ENOMEM;
3404 goto fail_unlock;
3405 }
3406 *saved_spec = *spec;
3407 }
3408 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3409 EFX_EF10_FILTER_FLAG_BUSY);
3410
3411 spin_unlock_bh(&efx->filter_lock);
3412
3413 /* Pack up the variables needed on completion */
3414 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3415
3416 efx_ef10_filter_push_prep(efx, spec, inbuf,
3417 table->entry[ins_index].handle, replacing);
3418 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3419 MC_CMD_FILTER_OP_OUT_LEN,
3420 efx_ef10_filter_rfs_insert_complete, cookie);
3421
3422 return ins_index;
3423
3424 fail_unlock:
3425 spin_unlock_bh(&efx->filter_lock);
3426 return rc;
3427 }
3428
3429 static void
3430 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3431 int rc, efx_dword_t *outbuf,
3432 size_t outlen_actual)
3433 {
3434 struct efx_ef10_filter_table *table = efx->filter_state;
3435 unsigned int ins_index, dmaq_id;
3436 struct efx_filter_spec *spec;
3437 bool replacing;
3438
3439 /* Unpack the cookie */
3440 replacing = cookie >> 31;
3441 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
3442 dmaq_id = cookie & 0xffff;
3443
3444 spin_lock_bh(&efx->filter_lock);
3445 spec = efx_ef10_filter_entry_spec(table, ins_index);
3446 if (rc == 0) {
3447 table->entry[ins_index].handle =
3448 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3449 if (replacing)
3450 spec->dmaq_id = dmaq_id;
3451 } else if (!replacing) {
3452 kfree(spec);
3453 spec = NULL;
3454 }
3455 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
3456 spin_unlock_bh(&efx->filter_lock);
3457
3458 wake_up_all(&table->waitq);
3459 }
3460
3461 static void
3462 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3463 unsigned long filter_idx,
3464 int rc, efx_dword_t *outbuf,
3465 size_t outlen_actual);
3466
3467 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
3468 unsigned int filter_idx)
3469 {
3470 struct efx_ef10_filter_table *table = efx->filter_state;
3471 struct efx_filter_spec *spec =
3472 efx_ef10_filter_entry_spec(table, filter_idx);
3473 MCDI_DECLARE_BUF(inbuf,
3474 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3475 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3476
3477 if (!spec ||
3478 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
3479 spec->priority != EFX_FILTER_PRI_HINT ||
3480 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
3481 flow_id, filter_idx))
3482 return false;
3483
3484 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3485 MC_CMD_FILTER_OP_IN_OP_REMOVE);
3486 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3487 table->entry[filter_idx].handle);
3488 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
3489 efx_ef10_filter_rfs_expire_complete, filter_idx))
3490 return false;
3491
3492 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3493 return true;
3494 }
3495
3496 static void
3497 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3498 unsigned long filter_idx,
3499 int rc, efx_dword_t *outbuf,
3500 size_t outlen_actual)
3501 {
3502 struct efx_ef10_filter_table *table = efx->filter_state;
3503 struct efx_filter_spec *spec =
3504 efx_ef10_filter_entry_spec(table, filter_idx);
3505
3506 spin_lock_bh(&efx->filter_lock);
3507 if (rc == 0) {
3508 kfree(spec);
3509 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3510 }
3511 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3512 wake_up_all(&table->waitq);
3513 spin_unlock_bh(&efx->filter_lock);
3514 }
3515
3516 #endif /* CONFIG_RFS_ACCEL */
3517
3518 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
3519 {
3520 int match_flags = 0;
3521
3522 #define MAP_FLAG(gen_flag, mcdi_field) { \
3523 u32 old_mcdi_flags = mcdi_flags; \
3524 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
3525 mcdi_field ## _LBN); \
3526 if (mcdi_flags != old_mcdi_flags) \
3527 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
3528 }
3529 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
3530 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
3531 MAP_FLAG(REM_HOST, SRC_IP);
3532 MAP_FLAG(LOC_HOST, DST_IP);
3533 MAP_FLAG(REM_MAC, SRC_MAC);
3534 MAP_FLAG(REM_PORT, SRC_PORT);
3535 MAP_FLAG(LOC_MAC, DST_MAC);
3536 MAP_FLAG(LOC_PORT, DST_PORT);
3537 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
3538 MAP_FLAG(INNER_VID, INNER_VLAN);
3539 MAP_FLAG(OUTER_VID, OUTER_VLAN);
3540 MAP_FLAG(IP_PROTO, IP_PROTO);
3541 #undef MAP_FLAG
3542
3543 /* Did we map them all? */
3544 if (mcdi_flags)
3545 return -EINVAL;
3546
3547 return match_flags;
3548 }
3549
3550 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3551 {
3552 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3553 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3554 unsigned int pd_match_pri, pd_match_count;
3555 struct efx_ef10_filter_table *table;
3556 size_t outlen;
3557 int rc;
3558
3559 table = kzalloc(sizeof(*table), GFP_KERNEL);
3560 if (!table)
3561 return -ENOMEM;
3562
3563 /* Find out which RX filter types are supported, and their priorities */
3564 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3565 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3566 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3567 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3568 &outlen);
3569 if (rc)
3570 goto fail;
3571 pd_match_count = MCDI_VAR_ARRAY_LEN(
3572 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3573 table->rx_match_count = 0;
3574
3575 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3576 u32 mcdi_flags =
3577 MCDI_ARRAY_DWORD(
3578 outbuf,
3579 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3580 pd_match_pri);
3581 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3582 if (rc < 0) {
3583 netif_dbg(efx, probe, efx->net_dev,
3584 "%s: fw flags %#x pri %u not supported in driver\n",
3585 __func__, mcdi_flags, pd_match_pri);
3586 } else {
3587 netif_dbg(efx, probe, efx->net_dev,
3588 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3589 __func__, mcdi_flags, pd_match_pri,
3590 rc, table->rx_match_count);
3591 table->rx_match_flags[table->rx_match_count++] = rc;
3592 }
3593 }
3594
3595 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3596 if (!table->entry) {
3597 rc = -ENOMEM;
3598 goto fail;
3599 }
3600
3601 efx->filter_state = table;
3602 init_waitqueue_head(&table->waitq);
3603 return 0;
3604
3605 fail:
3606 kfree(table);
3607 return rc;
3608 }
3609
3610 /* Caller must hold efx->filter_sem for read if race against
3611 * efx_ef10_filter_table_remove() is possible
3612 */
3613 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3614 {
3615 struct efx_ef10_filter_table *table = efx->filter_state;
3616 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3617 struct efx_filter_spec *spec;
3618 unsigned int filter_idx;
3619 bool failed = false;
3620 int rc;
3621
3622 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
3623
3624 if (!nic_data->must_restore_filters)
3625 return;
3626
3627 if (!table)
3628 return;
3629
3630 spin_lock_bh(&efx->filter_lock);
3631
3632 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3633 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3634 if (!spec)
3635 continue;
3636
3637 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3638 spin_unlock_bh(&efx->filter_lock);
3639
3640 rc = efx_ef10_filter_push(efx, spec,
3641 &table->entry[filter_idx].handle,
3642 false);
3643 if (rc)
3644 failed = true;
3645
3646 spin_lock_bh(&efx->filter_lock);
3647 if (rc) {
3648 kfree(spec);
3649 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3650 } else {
3651 table->entry[filter_idx].spec &=
3652 ~EFX_EF10_FILTER_FLAG_BUSY;
3653 }
3654 }
3655
3656 spin_unlock_bh(&efx->filter_lock);
3657
3658 if (failed)
3659 netif_err(efx, hw, efx->net_dev,
3660 "unable to restore all filters\n");
3661 else
3662 nic_data->must_restore_filters = false;
3663 }
3664
3665 /* Caller must hold efx->filter_sem for write */
3666 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3667 {
3668 struct efx_ef10_filter_table *table = efx->filter_state;
3669 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3670 struct efx_filter_spec *spec;
3671 unsigned int filter_idx;
3672 int rc;
3673
3674 efx->filter_state = NULL;
3675 if (!table)
3676 return;
3677
3678 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3679 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3680 if (!spec)
3681 continue;
3682
3683 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3684 efx_ef10_filter_is_exclusive(spec) ?
3685 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3686 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3687 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3688 table->entry[filter_idx].handle);
3689 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3690 NULL, 0, NULL);
3691 if (rc)
3692 netdev_WARN(efx->net_dev,
3693 "filter_idx=%#x handle=%#llx\n",
3694 filter_idx,
3695 table->entry[filter_idx].handle);
3696 kfree(spec);
3697 }
3698
3699 vfree(table->entry);
3700 kfree(table);
3701 }
3702
3703 /* Caller must hold efx->filter_sem for read if race against
3704 * efx_ef10_filter_table_remove() is possible
3705 */
3706 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3707 {
3708 struct efx_ef10_filter_table *table = efx->filter_state;
3709 struct net_device *net_dev = efx->net_dev;
3710 struct efx_filter_spec spec;
3711 bool remove_failed = false;
3712 struct netdev_hw_addr *uc;
3713 struct netdev_hw_addr *mc;
3714 unsigned int filter_idx;
3715 int i, n, rc;
3716
3717 if (!efx_dev_registered(efx))
3718 return;
3719
3720 if (!table)
3721 return;
3722
3723 /* Mark old filters that may need to be removed */
3724 spin_lock_bh(&efx->filter_lock);
3725 n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3726 for (i = 0; i < n; i++) {
3727 filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3728 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3729 }
3730 n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3731 for (i = 0; i < n; i++) {
3732 filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3733 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3734 }
3735 spin_unlock_bh(&efx->filter_lock);
3736
3737 /* Copy/convert the address lists; add the primary station
3738 * address and broadcast address
3739 */
3740 netif_addr_lock_bh(net_dev);
3741 if (net_dev->flags & IFF_PROMISC ||
3742 netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3743 table->dev_uc_count = -1;
3744 } else {
3745 table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3746 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3747 i = 1;
3748 netdev_for_each_uc_addr(uc, net_dev) {
3749 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3750 i++;
3751 }
3752 }
3753 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3754 netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3755 table->dev_mc_count = -1;
3756 } else {
3757 table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3758 eth_broadcast_addr(table->dev_mc_list[0].addr);
3759 i = 1;
3760 netdev_for_each_mc_addr(mc, net_dev) {
3761 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3762 i++;
3763 }
3764 }
3765 netif_addr_unlock_bh(net_dev);
3766
3767 /* Insert/renew unicast filters */
3768 if (table->dev_uc_count >= 0) {
3769 for (i = 0; i < table->dev_uc_count; i++) {
3770 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3771 EFX_FILTER_FLAG_RX_RSS,
3772 0);
3773 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3774 table->dev_uc_list[i].addr);
3775 rc = efx_ef10_filter_insert(efx, &spec, true);
3776 if (rc < 0) {
3777 /* Fall back to unicast-promisc */
3778 while (i--)
3779 efx_ef10_filter_remove_safe(
3780 efx, EFX_FILTER_PRI_AUTO,
3781 table->dev_uc_list[i].id);
3782 table->dev_uc_count = -1;
3783 break;
3784 }
3785 table->dev_uc_list[i].id = rc;
3786 }
3787 }
3788 if (table->dev_uc_count < 0) {
3789 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3790 EFX_FILTER_FLAG_RX_RSS,
3791 0);
3792 efx_filter_set_uc_def(&spec);
3793 rc = efx_ef10_filter_insert(efx, &spec, true);
3794 if (rc < 0) {
3795 WARN_ON(1);
3796 table->dev_uc_count = 0;
3797 } else {
3798 table->dev_uc_list[0].id = rc;
3799 }
3800 }
3801
3802 /* Insert/renew multicast filters */
3803 if (table->dev_mc_count >= 0) {
3804 for (i = 0; i < table->dev_mc_count; i++) {
3805 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3806 EFX_FILTER_FLAG_RX_RSS,
3807 0);
3808 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3809 table->dev_mc_list[i].addr);
3810 rc = efx_ef10_filter_insert(efx, &spec, true);
3811 if (rc < 0) {
3812 /* Fall back to multicast-promisc */
3813 while (i--)
3814 efx_ef10_filter_remove_safe(
3815 efx, EFX_FILTER_PRI_AUTO,
3816 table->dev_mc_list[i].id);
3817 table->dev_mc_count = -1;
3818 break;
3819 }
3820 table->dev_mc_list[i].id = rc;
3821 }
3822 }
3823 if (table->dev_mc_count < 0) {
3824 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3825 EFX_FILTER_FLAG_RX_RSS,
3826 0);
3827 efx_filter_set_mc_def(&spec);
3828 rc = efx_ef10_filter_insert(efx, &spec, true);
3829 if (rc < 0) {
3830 WARN_ON(1);
3831 table->dev_mc_count = 0;
3832 } else {
3833 table->dev_mc_list[0].id = rc;
3834 }
3835 }
3836
3837 /* Remove filters that weren't renewed. Since nothing else
3838 * changes the AUTO_OLD flag or removes these filters, we
3839 * don't need to hold the filter_lock while scanning for
3840 * these filters.
3841 */
3842 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3843 if (ACCESS_ONCE(table->entry[i].spec) &
3844 EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3845 if (efx_ef10_filter_remove_internal(
3846 efx, 1U << EFX_FILTER_PRI_AUTO,
3847 i, true) < 0)
3848 remove_failed = true;
3849 }
3850 }
3851 WARN_ON(remove_failed);
3852 }
3853
3854 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3855 {
3856 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3857 u8 mac_old[ETH_ALEN];
3858 int rc, rc2;
3859
3860 /* Only reconfigure a PF-created vport */
3861 if (is_zero_ether_addr(nic_data->vport_mac))
3862 return 0;
3863
3864 efx_device_detach_sync(efx);
3865 efx_net_stop(efx->net_dev);
3866 down_write(&efx->filter_sem);
3867 efx_ef10_filter_table_remove(efx);
3868 up_write(&efx->filter_sem);
3869
3870 rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
3871 if (rc)
3872 goto restore_filters;
3873
3874 ether_addr_copy(mac_old, nic_data->vport_mac);
3875 rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
3876 nic_data->vport_mac);
3877 if (rc)
3878 goto restore_vadaptor;
3879
3880 rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
3881 efx->net_dev->dev_addr);
3882 if (!rc) {
3883 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3884 } else {
3885 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
3886 if (rc2) {
3887 /* Failed to add original MAC, so clear vport_mac */
3888 eth_zero_addr(nic_data->vport_mac);
3889 goto reset_nic;
3890 }
3891 }
3892
3893 restore_vadaptor:
3894 rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
3895 if (rc2)
3896 goto reset_nic;
3897 restore_filters:
3898 down_write(&efx->filter_sem);
3899 rc2 = efx_ef10_filter_table_probe(efx);
3900 up_write(&efx->filter_sem);
3901 if (rc2)
3902 goto reset_nic;
3903
3904 rc2 = efx_net_open(efx->net_dev);
3905 if (rc2)
3906 goto reset_nic;
3907
3908 netif_device_attach(efx->net_dev);
3909
3910 return rc;
3911
3912 reset_nic:
3913 netif_err(efx, drv, efx->net_dev,
3914 "Failed to restore when changing MAC address - scheduling reset\n");
3915 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3916
3917 return rc ? rc : rc2;
3918 }
3919
3920 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3921 {
3922 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3923 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3924 bool was_enabled = efx->port_enabled;
3925 int rc;
3926
3927 efx_device_detach_sync(efx);
3928 efx_net_stop(efx->net_dev);
3929 down_write(&efx->filter_sem);
3930 efx_ef10_filter_table_remove(efx);
3931
3932 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3933 efx->net_dev->dev_addr);
3934 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3935 nic_data->vport_id);
3936 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3937 sizeof(inbuf), NULL, 0, NULL);
3938
3939 efx_ef10_filter_table_probe(efx);
3940 up_write(&efx->filter_sem);
3941 if (was_enabled)
3942 efx_net_open(efx->net_dev);
3943 netif_device_attach(efx->net_dev);
3944
3945 #ifdef CONFIG_SFC_SRIOV
3946 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3947 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3948
3949 if (rc == -EPERM) {
3950 struct efx_nic *efx_pf;
3951
3952 /* Switch to PF and change MAC address on vport */
3953 efx_pf = pci_get_drvdata(pci_dev_pf);
3954
3955 rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3956 nic_data->vf_index,
3957 efx->net_dev->dev_addr);
3958 } else if (!rc) {
3959 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3960 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3961 unsigned int i;
3962
3963 /* MAC address successfully changed by VF (with MAC
3964 * spoofing) so update the parent PF if possible.
3965 */
3966 for (i = 0; i < efx_pf->vf_count; ++i) {
3967 struct ef10_vf *vf = nic_data->vf + i;
3968
3969 if (vf->efx == efx) {
3970 ether_addr_copy(vf->mac,
3971 efx->net_dev->dev_addr);
3972 return 0;
3973 }
3974 }
3975 }
3976 } else
3977 #endif
3978 if (rc == -EPERM) {
3979 netif_err(efx, drv, efx->net_dev,
3980 "Cannot change MAC address; use sfboot to enable"
3981 " mac-spoofing on this interface\n");
3982 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3983 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3984 * fall-back to the method of changing the MAC address on the
3985 * vport. This only applies to PFs because such versions of
3986 * MCFW do not support VFs.
3987 */
3988 rc = efx_ef10_vport_set_mac_address(efx);
3989 } else {
3990 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3991 sizeof(inbuf), NULL, 0, rc);
3992 }
3993
3994 return rc;
3995 }
3996
3997 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3998 {
3999 efx_ef10_filter_sync_rx_mode(efx);
4000
4001 return efx_mcdi_set_mac(efx);
4002 }
4003
4004 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4005 {
4006 efx_ef10_filter_sync_rx_mode(efx);
4007
4008 return 0;
4009 }
4010
4011 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4012 {
4013 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4014
4015 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4016 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4017 NULL, 0, NULL);
4018 }
4019
4020 /* MC BISTs follow a different poll mechanism to phy BISTs.
4021 * The BIST is done in the poll handler on the MC, and the MCDI command
4022 * will block until the BIST is done.
4023 */
4024 static int efx_ef10_poll_bist(struct efx_nic *efx)
4025 {
4026 int rc;
4027 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
4028 size_t outlen;
4029 u32 result;
4030
4031 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
4032 outbuf, sizeof(outbuf), &outlen);
4033 if (rc != 0)
4034 return rc;
4035
4036 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
4037 return -EIO;
4038
4039 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
4040 switch (result) {
4041 case MC_CMD_POLL_BIST_PASSED:
4042 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
4043 return 0;
4044 case MC_CMD_POLL_BIST_TIMEOUT:
4045 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
4046 return -EIO;
4047 case MC_CMD_POLL_BIST_FAILED:
4048 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
4049 return -EIO;
4050 default:
4051 netif_err(efx, hw, efx->net_dev,
4052 "BIST returned unknown result %u", result);
4053 return -EIO;
4054 }
4055 }
4056
4057 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
4058 {
4059 int rc;
4060
4061 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
4062
4063 rc = efx_ef10_start_bist(efx, bist_type);
4064 if (rc != 0)
4065 return rc;
4066
4067 return efx_ef10_poll_bist(efx);
4068 }
4069
4070 static int
4071 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
4072 {
4073 int rc, rc2;
4074
4075 efx_reset_down(efx, RESET_TYPE_WORLD);
4076
4077 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
4078 NULL, 0, NULL, 0, NULL);
4079 if (rc != 0)
4080 goto out;
4081
4082 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
4083 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
4084
4085 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
4086
4087 out:
4088 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
4089 return rc ? rc : rc2;
4090 }
4091
4092 #ifdef CONFIG_SFC_MTD
4093
4094 struct efx_ef10_nvram_type_info {
4095 u16 type, type_mask;
4096 u8 port;
4097 const char *name;
4098 };
4099
4100 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
4101 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
4102 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
4103 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
4104 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
4105 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
4106 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
4107 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
4108 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
4109 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
4110 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
4111 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
4112 };
4113
4114 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
4115 struct efx_mcdi_mtd_partition *part,
4116 unsigned int type)
4117 {
4118 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
4119 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
4120 const struct efx_ef10_nvram_type_info *info;
4121 size_t size, erase_size, outlen;
4122 bool protected;
4123 int rc;
4124
4125 for (info = efx_ef10_nvram_types; ; info++) {
4126 if (info ==
4127 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
4128 return -ENODEV;
4129 if ((type & ~info->type_mask) == info->type)
4130 break;
4131 }
4132 if (info->port != efx_port_num(efx))
4133 return -ENODEV;
4134
4135 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
4136 if (rc)
4137 return rc;
4138 if (protected)
4139 return -ENODEV; /* hide it */
4140
4141 part->nvram_type = type;
4142
4143 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
4144 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
4145 outbuf, sizeof(outbuf), &outlen);
4146 if (rc)
4147 return rc;
4148 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
4149 return -EIO;
4150 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
4151 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
4152 part->fw_subtype = MCDI_DWORD(outbuf,
4153 NVRAM_METADATA_OUT_SUBTYPE);
4154
4155 part->common.dev_type_name = "EF10 NVRAM manager";
4156 part->common.type_name = info->name;
4157
4158 part->common.mtd.type = MTD_NORFLASH;
4159 part->common.mtd.flags = MTD_CAP_NORFLASH;
4160 part->common.mtd.size = size;
4161 part->common.mtd.erasesize = erase_size;
4162
4163 return 0;
4164 }
4165
4166 static int efx_ef10_mtd_probe(struct efx_nic *efx)
4167 {
4168 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
4169 struct efx_mcdi_mtd_partition *parts;
4170 size_t outlen, n_parts_total, i, n_parts;
4171 unsigned int type;
4172 int rc;
4173
4174 ASSERT_RTNL();
4175
4176 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
4177 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
4178 outbuf, sizeof(outbuf), &outlen);
4179 if (rc)
4180 return rc;
4181 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
4182 return -EIO;
4183
4184 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
4185 if (n_parts_total >
4186 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
4187 return -EIO;
4188
4189 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
4190 if (!parts)
4191 return -ENOMEM;
4192
4193 n_parts = 0;
4194 for (i = 0; i < n_parts_total; i++) {
4195 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
4196 i);
4197 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
4198 if (rc == 0)
4199 n_parts++;
4200 else if (rc != -ENODEV)
4201 goto fail;
4202 }
4203
4204 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
4205 fail:
4206 if (rc)
4207 kfree(parts);
4208 return rc;
4209 }
4210
4211 #endif /* CONFIG_SFC_MTD */
4212
4213 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
4214 {
4215 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
4216 }
4217
4218 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
4219 u32 host_time) {}
4220
4221 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
4222 bool temp)
4223 {
4224 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
4225 int rc;
4226
4227 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
4228 channel->sync_events_state == SYNC_EVENTS_VALID ||
4229 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
4230 return 0;
4231 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
4232
4233 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
4234 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4235 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
4236 channel->channel);
4237
4238 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4239 inbuf, sizeof(inbuf), NULL, 0, NULL);
4240
4241 if (rc != 0)
4242 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4243 SYNC_EVENTS_DISABLED;
4244
4245 return rc;
4246 }
4247
4248 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
4249 bool temp)
4250 {
4251 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
4252 int rc;
4253
4254 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
4255 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
4256 return 0;
4257 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
4258 channel->sync_events_state = SYNC_EVENTS_DISABLED;
4259 return 0;
4260 }
4261 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4262 SYNC_EVENTS_DISABLED;
4263
4264 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
4265 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4266 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
4267 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
4268 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
4269 channel->channel);
4270
4271 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4272 inbuf, sizeof(inbuf), NULL, 0, NULL);
4273
4274 return rc;
4275 }
4276
4277 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
4278 bool temp)
4279 {
4280 int (*set)(struct efx_channel *channel, bool temp);
4281 struct efx_channel *channel;
4282
4283 set = en ?
4284 efx_ef10_rx_enable_timestamping :
4285 efx_ef10_rx_disable_timestamping;
4286
4287 efx_for_each_channel(channel, efx) {
4288 int rc = set(channel, temp);
4289 if (en && rc != 0) {
4290 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
4291 return rc;
4292 }
4293 }
4294
4295 return 0;
4296 }
4297
4298 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
4299 struct hwtstamp_config *init)
4300 {
4301 return -EOPNOTSUPP;
4302 }
4303
4304 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
4305 struct hwtstamp_config *init)
4306 {
4307 int rc;
4308
4309 switch (init->rx_filter) {
4310 case HWTSTAMP_FILTER_NONE:
4311 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
4312 /* if TX timestamping is still requested then leave PTP on */
4313 return efx_ptp_change_mode(efx,
4314 init->tx_type != HWTSTAMP_TX_OFF, 0);
4315 case HWTSTAMP_FILTER_ALL:
4316 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4317 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4318 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4319 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4320 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4321 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4322 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4323 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4324 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4325 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4326 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4327 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4328 init->rx_filter = HWTSTAMP_FILTER_ALL;
4329 rc = efx_ptp_change_mode(efx, true, 0);
4330 if (!rc)
4331 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
4332 if (rc)
4333 efx_ptp_change_mode(efx, false, 0);
4334 return rc;
4335 default:
4336 return -ERANGE;
4337 }
4338 }
4339
4340 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4341 .is_vf = true,
4342 .mem_bar = EFX_MEM_VF_BAR,
4343 .mem_map_size = efx_ef10_mem_map_size,
4344 .probe = efx_ef10_probe_vf,
4345 .remove = efx_ef10_remove,
4346 .dimension_resources = efx_ef10_dimension_resources,
4347 .init = efx_ef10_init_nic,
4348 .fini = efx_port_dummy_op_void,
4349 .map_reset_reason = efx_ef10_map_reset_reason,
4350 .map_reset_flags = efx_ef10_map_reset_flags,
4351 .reset = efx_ef10_reset,
4352 .probe_port = efx_mcdi_port_probe,
4353 .remove_port = efx_mcdi_port_remove,
4354 .fini_dmaq = efx_ef10_fini_dmaq,
4355 .prepare_flr = efx_ef10_prepare_flr,
4356 .finish_flr = efx_port_dummy_op_void,
4357 .describe_stats = efx_ef10_describe_stats,
4358 .update_stats = efx_ef10_update_stats_vf,
4359 .start_stats = efx_port_dummy_op_void,
4360 .pull_stats = efx_port_dummy_op_void,
4361 .stop_stats = efx_port_dummy_op_void,
4362 .set_id_led = efx_mcdi_set_id_led,
4363 .push_irq_moderation = efx_ef10_push_irq_moderation,
4364 .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
4365 .check_mac_fault = efx_mcdi_mac_check_fault,
4366 .reconfigure_port = efx_mcdi_port_reconfigure,
4367 .get_wol = efx_ef10_get_wol_vf,
4368 .set_wol = efx_ef10_set_wol_vf,
4369 .resume_wol = efx_port_dummy_op_void,
4370 .mcdi_request = efx_ef10_mcdi_request,
4371 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4372 .mcdi_read_response = efx_ef10_mcdi_read_response,
4373 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4374 .irq_enable_master = efx_port_dummy_op_void,
4375 .irq_test_generate = efx_ef10_irq_test_generate,
4376 .irq_disable_non_ev = efx_port_dummy_op_void,
4377 .irq_handle_msi = efx_ef10_msi_interrupt,
4378 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4379 .tx_probe = efx_ef10_tx_probe,
4380 .tx_init = efx_ef10_tx_init,
4381 .tx_remove = efx_ef10_tx_remove,
4382 .tx_write = efx_ef10_tx_write,
4383 .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
4384 .rx_probe = efx_ef10_rx_probe,
4385 .rx_init = efx_ef10_rx_init,
4386 .rx_remove = efx_ef10_rx_remove,
4387 .rx_write = efx_ef10_rx_write,
4388 .rx_defer_refill = efx_ef10_rx_defer_refill,
4389 .ev_probe = efx_ef10_ev_probe,
4390 .ev_init = efx_ef10_ev_init,
4391 .ev_fini = efx_ef10_ev_fini,
4392 .ev_remove = efx_ef10_ev_remove,
4393 .ev_process = efx_ef10_ev_process,
4394 .ev_read_ack = efx_ef10_ev_read_ack,
4395 .ev_test_generate = efx_ef10_ev_test_generate,
4396 .filter_table_probe = efx_ef10_filter_table_probe,
4397 .filter_table_restore = efx_ef10_filter_table_restore,
4398 .filter_table_remove = efx_ef10_filter_table_remove,
4399 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4400 .filter_insert = efx_ef10_filter_insert,
4401 .filter_remove_safe = efx_ef10_filter_remove_safe,
4402 .filter_get_safe = efx_ef10_filter_get_safe,
4403 .filter_clear_rx = efx_ef10_filter_clear_rx,
4404 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
4405 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4406 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4407 #ifdef CONFIG_RFS_ACCEL
4408 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
4409 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4410 #endif
4411 #ifdef CONFIG_SFC_MTD
4412 .mtd_probe = efx_port_dummy_op_int,
4413 #endif
4414 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4415 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4416 #ifdef CONFIG_SFC_SRIOV
4417 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4418 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4419 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4420 .sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
4421 #endif
4422 .get_mac_address = efx_ef10_get_mac_address_vf,
4423 .set_mac_address = efx_ef10_set_mac_address,
4424
4425 .revision = EFX_REV_HUNT_A0,
4426 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4427 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4428 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4429 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4430 .can_rx_scatter = true,
4431 .always_rx_scatter = true,
4432 .max_interrupt_mode = EFX_INT_MODE_MSIX,
4433 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4434 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4435 NETIF_F_RXHASH | NETIF_F_NTUPLE),
4436 .mcdi_max_ver = 2,
4437 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4438 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4439 1 << HWTSTAMP_FILTER_ALL,
4440 };
4441
4442 const struct efx_nic_type efx_hunt_a0_nic_type = {
4443 .is_vf = false,
4444 .mem_bar = EFX_MEM_BAR,
4445 .mem_map_size = efx_ef10_mem_map_size,
4446 .probe = efx_ef10_probe_pf,
4447 .remove = efx_ef10_remove,
4448 .dimension_resources = efx_ef10_dimension_resources,
4449 .init = efx_ef10_init_nic,
4450 .fini = efx_port_dummy_op_void,
4451 .map_reset_reason = efx_ef10_map_reset_reason,
4452 .map_reset_flags = efx_ef10_map_reset_flags,
4453 .reset = efx_ef10_reset,
4454 .probe_port = efx_mcdi_port_probe,
4455 .remove_port = efx_mcdi_port_remove,
4456 .fini_dmaq = efx_ef10_fini_dmaq,
4457 .prepare_flr = efx_ef10_prepare_flr,
4458 .finish_flr = efx_port_dummy_op_void,
4459 .describe_stats = efx_ef10_describe_stats,
4460 .update_stats = efx_ef10_update_stats_pf,
4461 .start_stats = efx_mcdi_mac_start_stats,
4462 .pull_stats = efx_mcdi_mac_pull_stats,
4463 .stop_stats = efx_mcdi_mac_stop_stats,
4464 .set_id_led = efx_mcdi_set_id_led,
4465 .push_irq_moderation = efx_ef10_push_irq_moderation,
4466 .reconfigure_mac = efx_ef10_mac_reconfigure,
4467 .check_mac_fault = efx_mcdi_mac_check_fault,
4468 .reconfigure_port = efx_mcdi_port_reconfigure,
4469 .get_wol = efx_ef10_get_wol,
4470 .set_wol = efx_ef10_set_wol,
4471 .resume_wol = efx_port_dummy_op_void,
4472 .test_chip = efx_ef10_test_chip,
4473 .test_nvram = efx_mcdi_nvram_test_all,
4474 .mcdi_request = efx_ef10_mcdi_request,
4475 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4476 .mcdi_read_response = efx_ef10_mcdi_read_response,
4477 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4478 .irq_enable_master = efx_port_dummy_op_void,
4479 .irq_test_generate = efx_ef10_irq_test_generate,
4480 .irq_disable_non_ev = efx_port_dummy_op_void,
4481 .irq_handle_msi = efx_ef10_msi_interrupt,
4482 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4483 .tx_probe = efx_ef10_tx_probe,
4484 .tx_init = efx_ef10_tx_init,
4485 .tx_remove = efx_ef10_tx_remove,
4486 .tx_write = efx_ef10_tx_write,
4487 .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
4488 .rx_probe = efx_ef10_rx_probe,
4489 .rx_init = efx_ef10_rx_init,
4490 .rx_remove = efx_ef10_rx_remove,
4491 .rx_write = efx_ef10_rx_write,
4492 .rx_defer_refill = efx_ef10_rx_defer_refill,
4493 .ev_probe = efx_ef10_ev_probe,
4494 .ev_init = efx_ef10_ev_init,
4495 .ev_fini = efx_ef10_ev_fini,
4496 .ev_remove = efx_ef10_ev_remove,
4497 .ev_process = efx_ef10_ev_process,
4498 .ev_read_ack = efx_ef10_ev_read_ack,
4499 .ev_test_generate = efx_ef10_ev_test_generate,
4500 .filter_table_probe = efx_ef10_filter_table_probe,
4501 .filter_table_restore = efx_ef10_filter_table_restore,
4502 .filter_table_remove = efx_ef10_filter_table_remove,
4503 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4504 .filter_insert = efx_ef10_filter_insert,
4505 .filter_remove_safe = efx_ef10_filter_remove_safe,
4506 .filter_get_safe = efx_ef10_filter_get_safe,
4507 .filter_clear_rx = efx_ef10_filter_clear_rx,
4508 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
4509 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4510 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4511 #ifdef CONFIG_RFS_ACCEL
4512 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
4513 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4514 #endif
4515 #ifdef CONFIG_SFC_MTD
4516 .mtd_probe = efx_ef10_mtd_probe,
4517 .mtd_rename = efx_mcdi_mtd_rename,
4518 .mtd_read = efx_mcdi_mtd_read,
4519 .mtd_erase = efx_mcdi_mtd_erase,
4520 .mtd_write = efx_mcdi_mtd_write,
4521 .mtd_sync = efx_mcdi_mtd_sync,
4522 #endif
4523 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4524 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4525 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4526 #ifdef CONFIG_SFC_SRIOV
4527 .sriov_configure = efx_ef10_sriov_configure,
4528 .sriov_init = efx_ef10_sriov_init,
4529 .sriov_fini = efx_ef10_sriov_fini,
4530 .sriov_wanted = efx_ef10_sriov_wanted,
4531 .sriov_reset = efx_ef10_sriov_reset,
4532 .sriov_flr = efx_ef10_sriov_flr,
4533 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4534 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4535 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4536 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4537 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4538 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4539 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4540 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4541 #endif
4542 .get_mac_address = efx_ef10_get_mac_address_pf,
4543 .set_mac_address = efx_ef10_set_mac_address,
4544
4545 .revision = EFX_REV_HUNT_A0,
4546 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4547 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4548 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4549 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4550 .can_rx_scatter = true,
4551 .always_rx_scatter = true,
4552 .max_interrupt_mode = EFX_INT_MODE_MSIX,
4553 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4554 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4555 NETIF_F_RXHASH | NETIF_F_NTUPLE),
4556 .mcdi_max_ver = 2,
4557 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4558 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4559 1 << HWTSTAMP_FILTER_ALL,
4560 };
This page took 0.127639 seconds and 5 git commands to generate.