Merge tag 'usb-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV 7
27 enum {
28 EFX_EF10_TEST = 1,
29 EFX_EF10_REFILL,
30 };
31
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38 /* The filter table(s) are managed by firmware and we have write-only
39 * access. When removing filters we must identify them to the
40 * firmware by a 64-bit handle, but this is too wide for Linux kernel
41 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
42 * be able to tell in advance whether a requested insertion will
43 * replace an existing filter. Therefore we maintain a software hash
44 * table, which should be at least as large as the hardware hash
45 * table.
46 *
47 * Huntington has a single 8K filter table shared between all filter
48 * types and both ports.
49 */
50 #define HUNT_FILTER_TBL_ROWS 8192
51
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53
54 #define EFX_EF10_FILTER_DEV_UC_MAX 32
55 #define EFX_EF10_FILTER_DEV_MC_MAX 256
56
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59 struct list_head list;
60 u16 vid;
61 };
62
63 /* Per-VLAN filters information */
64 struct efx_ef10_filter_vlan {
65 struct list_head list;
66 u16 vid;
67 u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
68 u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
69 u16 ucdef;
70 u16 bcast;
71 u16 mcdef;
72 };
73
74 struct efx_ef10_dev_addr {
75 u8 addr[ETH_ALEN];
76 };
77
78 struct efx_ef10_filter_table {
79 /* The MCDI match masks supported by this fw & hw, in order of priority */
80 u32 rx_match_mcdi_flags[
81 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
82 unsigned int rx_match_count;
83
84 struct {
85 unsigned long spec; /* pointer to spec plus flag bits */
86 /* BUSY flag indicates that an update is in progress. AUTO_OLD is
87 * used to mark and sweep MAC filters for the device address lists.
88 */
89 #define EFX_EF10_FILTER_FLAG_BUSY 1UL
90 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
91 #define EFX_EF10_FILTER_FLAGS 3UL
92 u64 handle; /* firmware handle */
93 } *entry;
94 wait_queue_head_t waitq;
95 /* Shadow of net_device address lists, guarded by mac_lock */
96 struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
97 struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
98 int dev_uc_count;
99 int dev_mc_count;
100 bool uc_promisc;
101 bool mc_promisc;
102 /* Whether in multicast promiscuous mode when last changed */
103 bool mc_promisc_last;
104 bool vlan_filter;
105 struct list_head vlan_list;
106 };
107
108 /* An arbitrary search limit for the software hash table */
109 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
110
111 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
112 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
113 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
114 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
115 struct efx_ef10_filter_vlan *vlan);
116 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
117
118 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
119 {
120 efx_dword_t reg;
121
122 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
123 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
124 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
125 }
126
127 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
128 {
129 int bar;
130
131 bar = efx->type->mem_bar;
132 return resource_size(&efx->pci_dev->resource[bar]);
133 }
134
135 static bool efx_ef10_is_vf(struct efx_nic *efx)
136 {
137 return efx->type->is_vf;
138 }
139
140 static int efx_ef10_get_pf_index(struct efx_nic *efx)
141 {
142 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
143 struct efx_ef10_nic_data *nic_data = efx->nic_data;
144 size_t outlen;
145 int rc;
146
147 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
148 sizeof(outbuf), &outlen);
149 if (rc)
150 return rc;
151 if (outlen < sizeof(outbuf))
152 return -EIO;
153
154 nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
155 return 0;
156 }
157
158 #ifdef CONFIG_SFC_SRIOV
159 static int efx_ef10_get_vf_index(struct efx_nic *efx)
160 {
161 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
162 struct efx_ef10_nic_data *nic_data = efx->nic_data;
163 size_t outlen;
164 int rc;
165
166 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
167 sizeof(outbuf), &outlen);
168 if (rc)
169 return rc;
170 if (outlen < sizeof(outbuf))
171 return -EIO;
172
173 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
174 return 0;
175 }
176 #endif
177
178 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
179 {
180 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
181 struct efx_ef10_nic_data *nic_data = efx->nic_data;
182 size_t outlen;
183 int rc;
184
185 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
186
187 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
188 outbuf, sizeof(outbuf), &outlen);
189 if (rc)
190 return rc;
191 if (outlen < sizeof(outbuf)) {
192 netif_err(efx, drv, efx->net_dev,
193 "unable to read datapath firmware capabilities\n");
194 return -EIO;
195 }
196
197 nic_data->datapath_caps =
198 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
199
200 /* record the DPCPU firmware IDs to determine VEB vswitching support.
201 */
202 nic_data->rx_dpcpu_fw_id =
203 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
204 nic_data->tx_dpcpu_fw_id =
205 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
206
207 if (!(nic_data->datapath_caps &
208 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
209 netif_err(efx, probe, efx->net_dev,
210 "current firmware does not support an RX prefix\n");
211 return -ENODEV;
212 }
213
214 return 0;
215 }
216
217 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
218 {
219 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
220 int rc;
221
222 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
223 outbuf, sizeof(outbuf), NULL);
224 if (rc)
225 return rc;
226 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
227 return rc > 0 ? rc : -ERANGE;
228 }
229
230 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
231 {
232 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
233 size_t outlen;
234 int rc;
235
236 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
237
238 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
239 outbuf, sizeof(outbuf), &outlen);
240 if (rc)
241 return rc;
242 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
243 return -EIO;
244
245 ether_addr_copy(mac_address,
246 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
247 return 0;
248 }
249
250 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
251 {
252 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
253 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
254 size_t outlen;
255 int num_addrs, rc;
256
257 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
258 EVB_PORT_ID_ASSIGNED);
259 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
260 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
261
262 if (rc)
263 return rc;
264 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
265 return -EIO;
266
267 num_addrs = MCDI_DWORD(outbuf,
268 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
269
270 WARN_ON(num_addrs != 1);
271
272 ether_addr_copy(mac_address,
273 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
274
275 return 0;
276 }
277
278 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
279 struct device_attribute *attr,
280 char *buf)
281 {
282 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
283
284 return sprintf(buf, "%d\n",
285 ((efx->mcdi->fn_flags) &
286 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
287 ? 1 : 0);
288 }
289
290 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
291 struct device_attribute *attr,
292 char *buf)
293 {
294 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
295
296 return sprintf(buf, "%d\n",
297 ((efx->mcdi->fn_flags) &
298 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
299 ? 1 : 0);
300 }
301
302 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
303 {
304 struct efx_ef10_nic_data *nic_data = efx->nic_data;
305 struct efx_ef10_vlan *vlan;
306
307 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
308
309 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
310 if (vlan->vid == vid)
311 return vlan;
312 }
313
314 return NULL;
315 }
316
317 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
318 {
319 struct efx_ef10_nic_data *nic_data = efx->nic_data;
320 struct efx_ef10_vlan *vlan;
321 int rc;
322
323 mutex_lock(&nic_data->vlan_lock);
324
325 vlan = efx_ef10_find_vlan(efx, vid);
326 if (vlan) {
327 /* We add VID 0 on init. 8021q adds it on module init
328 * for all interfaces with VLAN filtring feature.
329 */
330 if (vid == 0)
331 goto done_unlock;
332 netif_warn(efx, drv, efx->net_dev,
333 "VLAN %u already added\n", vid);
334 rc = -EALREADY;
335 goto fail_exist;
336 }
337
338 rc = -ENOMEM;
339 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
340 if (!vlan)
341 goto fail_alloc;
342
343 vlan->vid = vid;
344
345 list_add_tail(&vlan->list, &nic_data->vlan_list);
346
347 if (efx->filter_state) {
348 mutex_lock(&efx->mac_lock);
349 down_write(&efx->filter_sem);
350 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
351 up_write(&efx->filter_sem);
352 mutex_unlock(&efx->mac_lock);
353 if (rc)
354 goto fail_filter_add_vlan;
355 }
356
357 done_unlock:
358 mutex_unlock(&nic_data->vlan_lock);
359 return 0;
360
361 fail_filter_add_vlan:
362 list_del(&vlan->list);
363 kfree(vlan);
364 fail_alloc:
365 fail_exist:
366 mutex_unlock(&nic_data->vlan_lock);
367 return rc;
368 }
369
370 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
371 struct efx_ef10_vlan *vlan)
372 {
373 struct efx_ef10_nic_data *nic_data = efx->nic_data;
374
375 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
376
377 if (efx->filter_state) {
378 down_write(&efx->filter_sem);
379 efx_ef10_filter_del_vlan(efx, vlan->vid);
380 up_write(&efx->filter_sem);
381 }
382
383 list_del(&vlan->list);
384 kfree(vlan);
385 }
386
387 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
388 {
389 struct efx_ef10_nic_data *nic_data = efx->nic_data;
390 struct efx_ef10_vlan *vlan;
391 int rc = 0;
392
393 /* 8021q removes VID 0 on module unload for all interfaces
394 * with VLAN filtering feature. We need to keep it to receive
395 * untagged traffic.
396 */
397 if (vid == 0)
398 return 0;
399
400 mutex_lock(&nic_data->vlan_lock);
401
402 vlan = efx_ef10_find_vlan(efx, vid);
403 if (!vlan) {
404 netif_err(efx, drv, efx->net_dev,
405 "VLAN %u to be deleted not found\n", vid);
406 rc = -ENOENT;
407 } else {
408 efx_ef10_del_vlan_internal(efx, vlan);
409 }
410
411 mutex_unlock(&nic_data->vlan_lock);
412
413 return rc;
414 }
415
416 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
417 {
418 struct efx_ef10_nic_data *nic_data = efx->nic_data;
419 struct efx_ef10_vlan *vlan, *next_vlan;
420
421 mutex_lock(&nic_data->vlan_lock);
422 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
423 efx_ef10_del_vlan_internal(efx, vlan);
424 mutex_unlock(&nic_data->vlan_lock);
425 }
426
427 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
428 NULL);
429 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
430
431 static int efx_ef10_probe(struct efx_nic *efx)
432 {
433 struct efx_ef10_nic_data *nic_data;
434 struct net_device *net_dev = efx->net_dev;
435 int i, rc;
436
437 /* We can have one VI for each 8K region. However, until we
438 * use TX option descriptors we need two TX queues per channel.
439 */
440 efx->max_channels = min_t(unsigned int,
441 EFX_MAX_CHANNELS,
442 efx_ef10_mem_map_size(efx) /
443 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
444 efx->max_tx_channels = efx->max_channels;
445 if (WARN_ON(efx->max_channels == 0))
446 return -EIO;
447
448 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
449 if (!nic_data)
450 return -ENOMEM;
451 efx->nic_data = nic_data;
452
453 /* we assume later that we can copy from this buffer in dwords */
454 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
455
456 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
457 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
458 if (rc)
459 goto fail1;
460
461 /* Get the MC's warm boot count. In case it's rebooting right
462 * now, be prepared to retry.
463 */
464 i = 0;
465 for (;;) {
466 rc = efx_ef10_get_warm_boot_count(efx);
467 if (rc >= 0)
468 break;
469 if (++i == 5)
470 goto fail2;
471 ssleep(1);
472 }
473 nic_data->warm_boot_count = rc;
474
475 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
476
477 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
478
479 /* In case we're recovering from a crash (kexec), we want to
480 * cancel any outstanding request by the previous user of this
481 * function. We send a special message using the least
482 * significant bits of the 'high' (doorbell) register.
483 */
484 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
485
486 rc = efx_mcdi_init(efx);
487 if (rc)
488 goto fail2;
489
490 /* Reset (most) configuration for this function */
491 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
492 if (rc)
493 goto fail3;
494
495 /* Enable event logging */
496 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
497 if (rc)
498 goto fail3;
499
500 rc = device_create_file(&efx->pci_dev->dev,
501 &dev_attr_link_control_flag);
502 if (rc)
503 goto fail3;
504
505 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
506 if (rc)
507 goto fail4;
508
509 rc = efx_ef10_get_pf_index(efx);
510 if (rc)
511 goto fail5;
512
513 rc = efx_ef10_init_datapath_caps(efx);
514 if (rc < 0)
515 goto fail5;
516
517 efx->rx_packet_len_offset =
518 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
519
520 rc = efx_mcdi_port_get_number(efx);
521 if (rc < 0)
522 goto fail5;
523 efx->port_num = rc;
524 net_dev->dev_port = rc;
525
526 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
527 if (rc)
528 goto fail5;
529
530 rc = efx_ef10_get_sysclk_freq(efx);
531 if (rc < 0)
532 goto fail5;
533 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
534
535 /* Check whether firmware supports bug 35388 workaround.
536 * First try to enable it, then if we get EPERM, just
537 * ask if it's already enabled
538 */
539 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL);
540 if (rc == 0) {
541 nic_data->workaround_35388 = true;
542 } else if (rc == -EPERM) {
543 unsigned int enabled;
544
545 rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
546 if (rc)
547 goto fail3;
548 nic_data->workaround_35388 = enabled &
549 MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
550 } else if (rc != -ENOSYS && rc != -ENOENT) {
551 goto fail5;
552 }
553 netif_dbg(efx, probe, efx->net_dev,
554 "workaround for bug 35388 is %sabled\n",
555 nic_data->workaround_35388 ? "en" : "dis");
556
557 rc = efx_mcdi_mon_probe(efx);
558 if (rc && rc != -EPERM)
559 goto fail5;
560
561 efx_ptp_probe(efx, NULL);
562
563 #ifdef CONFIG_SFC_SRIOV
564 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
565 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
566 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
567
568 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
569 } else
570 #endif
571 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
572
573 INIT_LIST_HEAD(&nic_data->vlan_list);
574 mutex_init(&nic_data->vlan_lock);
575
576 /* Add unspecified VID to support VLAN filtering being disabled */
577 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
578 if (rc)
579 goto fail_add_vid_unspec;
580
581 /* If VLAN filtering is enabled, we need VID 0 to get untagged
582 * traffic. It is added automatically if 8021q module is loaded,
583 * but we can't rely on it since module may be not loaded.
584 */
585 rc = efx_ef10_add_vlan(efx, 0);
586 if (rc)
587 goto fail_add_vid_0;
588
589 return 0;
590
591 fail_add_vid_0:
592 efx_ef10_cleanup_vlans(efx);
593 fail_add_vid_unspec:
594 mutex_destroy(&nic_data->vlan_lock);
595 efx_ptp_remove(efx);
596 efx_mcdi_mon_remove(efx);
597 fail5:
598 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
599 fail4:
600 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
601 fail3:
602 efx_mcdi_fini(efx);
603 fail2:
604 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
605 fail1:
606 kfree(nic_data);
607 efx->nic_data = NULL;
608 return rc;
609 }
610
611 static int efx_ef10_free_vis(struct efx_nic *efx)
612 {
613 MCDI_DECLARE_BUF_ERR(outbuf);
614 size_t outlen;
615 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
616 outbuf, sizeof(outbuf), &outlen);
617
618 /* -EALREADY means nothing to free, so ignore */
619 if (rc == -EALREADY)
620 rc = 0;
621 if (rc)
622 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
623 rc);
624 return rc;
625 }
626
627 #ifdef EFX_USE_PIO
628
629 static void efx_ef10_free_piobufs(struct efx_nic *efx)
630 {
631 struct efx_ef10_nic_data *nic_data = efx->nic_data;
632 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
633 unsigned int i;
634 int rc;
635
636 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
637
638 for (i = 0; i < nic_data->n_piobufs; i++) {
639 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
640 nic_data->piobuf_handle[i]);
641 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
642 NULL, 0, NULL);
643 WARN_ON(rc);
644 }
645
646 nic_data->n_piobufs = 0;
647 }
648
649 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
650 {
651 struct efx_ef10_nic_data *nic_data = efx->nic_data;
652 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
653 unsigned int i;
654 size_t outlen;
655 int rc = 0;
656
657 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
658
659 for (i = 0; i < n; i++) {
660 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
661 outbuf, sizeof(outbuf), &outlen);
662 if (rc) {
663 /* Don't display the MC error if we didn't have space
664 * for a VF.
665 */
666 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
667 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
668 0, outbuf, outlen, rc);
669 break;
670 }
671 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
672 rc = -EIO;
673 break;
674 }
675 nic_data->piobuf_handle[i] =
676 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
677 netif_dbg(efx, probe, efx->net_dev,
678 "allocated PIO buffer %u handle %x\n", i,
679 nic_data->piobuf_handle[i]);
680 }
681
682 nic_data->n_piobufs = i;
683 if (rc)
684 efx_ef10_free_piobufs(efx);
685 return rc;
686 }
687
688 static int efx_ef10_link_piobufs(struct efx_nic *efx)
689 {
690 struct efx_ef10_nic_data *nic_data = efx->nic_data;
691 _MCDI_DECLARE_BUF(inbuf,
692 max(MC_CMD_LINK_PIOBUF_IN_LEN,
693 MC_CMD_UNLINK_PIOBUF_IN_LEN));
694 struct efx_channel *channel;
695 struct efx_tx_queue *tx_queue;
696 unsigned int offset, index;
697 int rc;
698
699 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
700 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
701
702 memset(inbuf, 0, sizeof(inbuf));
703
704 /* Link a buffer to each VI in the write-combining mapping */
705 for (index = 0; index < nic_data->n_piobufs; ++index) {
706 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
707 nic_data->piobuf_handle[index]);
708 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
709 nic_data->pio_write_vi_base + index);
710 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
711 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
712 NULL, 0, NULL);
713 if (rc) {
714 netif_err(efx, drv, efx->net_dev,
715 "failed to link VI %u to PIO buffer %u (%d)\n",
716 nic_data->pio_write_vi_base + index, index,
717 rc);
718 goto fail;
719 }
720 netif_dbg(efx, probe, efx->net_dev,
721 "linked VI %u to PIO buffer %u\n",
722 nic_data->pio_write_vi_base + index, index);
723 }
724
725 /* Link a buffer to each TX queue */
726 efx_for_each_channel(channel, efx) {
727 efx_for_each_channel_tx_queue(tx_queue, channel) {
728 /* We assign the PIO buffers to queues in
729 * reverse order to allow for the following
730 * special case.
731 */
732 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
733 tx_queue->channel->channel - 1) *
734 efx_piobuf_size);
735 index = offset / ER_DZ_TX_PIOBUF_SIZE;
736 offset = offset % ER_DZ_TX_PIOBUF_SIZE;
737
738 /* When the host page size is 4K, the first
739 * host page in the WC mapping may be within
740 * the same VI page as the last TX queue. We
741 * can only link one buffer to each VI.
742 */
743 if (tx_queue->queue == nic_data->pio_write_vi_base) {
744 BUG_ON(index != 0);
745 rc = 0;
746 } else {
747 MCDI_SET_DWORD(inbuf,
748 LINK_PIOBUF_IN_PIOBUF_HANDLE,
749 nic_data->piobuf_handle[index]);
750 MCDI_SET_DWORD(inbuf,
751 LINK_PIOBUF_IN_TXQ_INSTANCE,
752 tx_queue->queue);
753 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
754 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
755 NULL, 0, NULL);
756 }
757
758 if (rc) {
759 /* This is non-fatal; the TX path just
760 * won't use PIO for this queue
761 */
762 netif_err(efx, drv, efx->net_dev,
763 "failed to link VI %u to PIO buffer %u (%d)\n",
764 tx_queue->queue, index, rc);
765 tx_queue->piobuf = NULL;
766 } else {
767 tx_queue->piobuf =
768 nic_data->pio_write_base +
769 index * EFX_VI_PAGE_SIZE + offset;
770 tx_queue->piobuf_offset = offset;
771 netif_dbg(efx, probe, efx->net_dev,
772 "linked VI %u to PIO buffer %u offset %x addr %p\n",
773 tx_queue->queue, index,
774 tx_queue->piobuf_offset,
775 tx_queue->piobuf);
776 }
777 }
778 }
779
780 return 0;
781
782 fail:
783 while (index--) {
784 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
785 nic_data->pio_write_vi_base + index);
786 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
787 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
788 NULL, 0, NULL);
789 }
790 return rc;
791 }
792
793 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
794 {
795 struct efx_channel *channel;
796 struct efx_tx_queue *tx_queue;
797
798 /* All our existing PIO buffers went away */
799 efx_for_each_channel(channel, efx)
800 efx_for_each_channel_tx_queue(tx_queue, channel)
801 tx_queue->piobuf = NULL;
802 }
803
804 #else /* !EFX_USE_PIO */
805
806 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
807 {
808 return n == 0 ? 0 : -ENOBUFS;
809 }
810
811 static int efx_ef10_link_piobufs(struct efx_nic *efx)
812 {
813 return 0;
814 }
815
816 static void efx_ef10_free_piobufs(struct efx_nic *efx)
817 {
818 }
819
820 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
821 {
822 }
823
824 #endif /* EFX_USE_PIO */
825
826 static void efx_ef10_remove(struct efx_nic *efx)
827 {
828 struct efx_ef10_nic_data *nic_data = efx->nic_data;
829 int rc;
830
831 #ifdef CONFIG_SFC_SRIOV
832 struct efx_ef10_nic_data *nic_data_pf;
833 struct pci_dev *pci_dev_pf;
834 struct efx_nic *efx_pf;
835 struct ef10_vf *vf;
836
837 if (efx->pci_dev->is_virtfn) {
838 pci_dev_pf = efx->pci_dev->physfn;
839 if (pci_dev_pf) {
840 efx_pf = pci_get_drvdata(pci_dev_pf);
841 nic_data_pf = efx_pf->nic_data;
842 vf = nic_data_pf->vf + nic_data->vf_index;
843 vf->efx = NULL;
844 } else
845 netif_info(efx, drv, efx->net_dev,
846 "Could not get the PF id from VF\n");
847 }
848 #endif
849
850 efx_ef10_cleanup_vlans(efx);
851 mutex_destroy(&nic_data->vlan_lock);
852
853 efx_ptp_remove(efx);
854
855 efx_mcdi_mon_remove(efx);
856
857 efx_ef10_rx_free_indir_table(efx);
858
859 if (nic_data->wc_membase)
860 iounmap(nic_data->wc_membase);
861
862 rc = efx_ef10_free_vis(efx);
863 WARN_ON(rc != 0);
864
865 if (!nic_data->must_restore_piobufs)
866 efx_ef10_free_piobufs(efx);
867
868 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
869 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
870
871 efx_mcdi_fini(efx);
872 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
873 kfree(nic_data);
874 }
875
876 static int efx_ef10_probe_pf(struct efx_nic *efx)
877 {
878 return efx_ef10_probe(efx);
879 }
880
881 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
882 u32 *port_flags, u32 *vadaptor_flags,
883 unsigned int *vlan_tags)
884 {
885 struct efx_ef10_nic_data *nic_data = efx->nic_data;
886 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
887 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
888 size_t outlen;
889 int rc;
890
891 if (nic_data->datapath_caps &
892 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
893 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
894 port_id);
895
896 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
897 outbuf, sizeof(outbuf), &outlen);
898 if (rc)
899 return rc;
900
901 if (outlen < sizeof(outbuf)) {
902 rc = -EIO;
903 return rc;
904 }
905 }
906
907 if (port_flags)
908 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
909 if (vadaptor_flags)
910 *vadaptor_flags =
911 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
912 if (vlan_tags)
913 *vlan_tags =
914 MCDI_DWORD(outbuf,
915 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
916
917 return 0;
918 }
919
920 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
921 {
922 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
923
924 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
925 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
926 NULL, 0, NULL);
927 }
928
929 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
930 {
931 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
932
933 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
934 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
935 NULL, 0, NULL);
936 }
937
938 int efx_ef10_vport_add_mac(struct efx_nic *efx,
939 unsigned int port_id, u8 *mac)
940 {
941 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
942
943 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
944 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
945
946 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
947 sizeof(inbuf), NULL, 0, NULL);
948 }
949
950 int efx_ef10_vport_del_mac(struct efx_nic *efx,
951 unsigned int port_id, u8 *mac)
952 {
953 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
954
955 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
956 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
957
958 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
959 sizeof(inbuf), NULL, 0, NULL);
960 }
961
962 #ifdef CONFIG_SFC_SRIOV
963 static int efx_ef10_probe_vf(struct efx_nic *efx)
964 {
965 int rc;
966 struct pci_dev *pci_dev_pf;
967
968 /* If the parent PF has no VF data structure, it doesn't know about this
969 * VF so fail probe. The VF needs to be re-created. This can happen
970 * if the PF driver is unloaded while the VF is assigned to a guest.
971 */
972 pci_dev_pf = efx->pci_dev->physfn;
973 if (pci_dev_pf) {
974 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
975 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
976
977 if (!nic_data_pf->vf) {
978 netif_info(efx, drv, efx->net_dev,
979 "The VF cannot link to its parent PF; "
980 "please destroy and re-create the VF\n");
981 return -EBUSY;
982 }
983 }
984
985 rc = efx_ef10_probe(efx);
986 if (rc)
987 return rc;
988
989 rc = efx_ef10_get_vf_index(efx);
990 if (rc)
991 goto fail;
992
993 if (efx->pci_dev->is_virtfn) {
994 if (efx->pci_dev->physfn) {
995 struct efx_nic *efx_pf =
996 pci_get_drvdata(efx->pci_dev->physfn);
997 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
998 struct efx_ef10_nic_data *nic_data = efx->nic_data;
999
1000 nic_data_p->vf[nic_data->vf_index].efx = efx;
1001 nic_data_p->vf[nic_data->vf_index].pci_dev =
1002 efx->pci_dev;
1003 } else
1004 netif_info(efx, drv, efx->net_dev,
1005 "Could not get the PF id from VF\n");
1006 }
1007
1008 return 0;
1009
1010 fail:
1011 efx_ef10_remove(efx);
1012 return rc;
1013 }
1014 #else
1015 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1016 {
1017 return 0;
1018 }
1019 #endif
1020
1021 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1022 unsigned int min_vis, unsigned int max_vis)
1023 {
1024 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1025 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1026 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1027 size_t outlen;
1028 int rc;
1029
1030 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1031 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1032 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1033 outbuf, sizeof(outbuf), &outlen);
1034 if (rc != 0)
1035 return rc;
1036
1037 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1038 return -EIO;
1039
1040 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1041 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1042
1043 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1044 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1045 return 0;
1046 }
1047
1048 /* Note that the failure path of this function does not free
1049 * resources, as this will be done by efx_ef10_remove().
1050 */
1051 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1052 {
1053 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1054 unsigned int uc_mem_map_size, wc_mem_map_size;
1055 unsigned int min_vis = max(EFX_TXQ_TYPES,
1056 efx_separate_tx_channels ? 2 : 1);
1057 unsigned int channel_vis, pio_write_vi_base, max_vis;
1058 void __iomem *membase;
1059 int rc;
1060
1061 channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1062
1063 #ifdef EFX_USE_PIO
1064 /* Try to allocate PIO buffers if wanted and if the full
1065 * number of PIO buffers would be sufficient to allocate one
1066 * copy-buffer per TX channel. Failure is non-fatal, as there
1067 * are only a small number of PIO buffers shared between all
1068 * functions of the controller.
1069 */
1070 if (efx_piobuf_size != 0 &&
1071 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1072 efx->n_tx_channels) {
1073 unsigned int n_piobufs =
1074 DIV_ROUND_UP(efx->n_tx_channels,
1075 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
1076
1077 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1078 if (rc)
1079 netif_err(efx, probe, efx->net_dev,
1080 "failed to allocate PIO buffers (%d)\n", rc);
1081 else
1082 netif_dbg(efx, probe, efx->net_dev,
1083 "allocated %u PIO buffers\n", n_piobufs);
1084 }
1085 #else
1086 nic_data->n_piobufs = 0;
1087 #endif
1088
1089 /* PIO buffers should be mapped with write-combining enabled,
1090 * and we want to make single UC and WC mappings rather than
1091 * several of each (in fact that's the only option if host
1092 * page size is >4K). So we may allocate some extra VIs just
1093 * for writing PIO buffers through.
1094 *
1095 * The UC mapping contains (channel_vis - 1) complete VIs and the
1096 * first half of the next VI. Then the WC mapping begins with
1097 * the second half of this last VI.
1098 */
1099 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1100 ER_DZ_TX_PIOBUF);
1101 if (nic_data->n_piobufs) {
1102 /* pio_write_vi_base rounds down to give the number of complete
1103 * VIs inside the UC mapping.
1104 */
1105 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1106 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1107 nic_data->n_piobufs) *
1108 EFX_VI_PAGE_SIZE) -
1109 uc_mem_map_size);
1110 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1111 } else {
1112 pio_write_vi_base = 0;
1113 wc_mem_map_size = 0;
1114 max_vis = channel_vis;
1115 }
1116
1117 /* In case the last attached driver failed to free VIs, do it now */
1118 rc = efx_ef10_free_vis(efx);
1119 if (rc != 0)
1120 return rc;
1121
1122 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1123 if (rc != 0)
1124 return rc;
1125
1126 if (nic_data->n_allocated_vis < channel_vis) {
1127 netif_info(efx, drv, efx->net_dev,
1128 "Could not allocate enough VIs to satisfy RSS"
1129 " requirements. Performance may not be optimal.\n");
1130 /* We didn't get the VIs to populate our channels.
1131 * We could keep what we got but then we'd have more
1132 * interrupts than we need.
1133 * Instead calculate new max_channels and restart
1134 */
1135 efx->max_channels = nic_data->n_allocated_vis;
1136 efx->max_tx_channels =
1137 nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1138
1139 efx_ef10_free_vis(efx);
1140 return -EAGAIN;
1141 }
1142
1143 /* If we didn't get enough VIs to map all the PIO buffers, free the
1144 * PIO buffers
1145 */
1146 if (nic_data->n_piobufs &&
1147 nic_data->n_allocated_vis <
1148 pio_write_vi_base + nic_data->n_piobufs) {
1149 netif_dbg(efx, probe, efx->net_dev,
1150 "%u VIs are not sufficient to map %u PIO buffers\n",
1151 nic_data->n_allocated_vis, nic_data->n_piobufs);
1152 efx_ef10_free_piobufs(efx);
1153 }
1154
1155 /* Shrink the original UC mapping of the memory BAR */
1156 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1157 if (!membase) {
1158 netif_err(efx, probe, efx->net_dev,
1159 "could not shrink memory BAR to %x\n",
1160 uc_mem_map_size);
1161 return -ENOMEM;
1162 }
1163 iounmap(efx->membase);
1164 efx->membase = membase;
1165
1166 /* Set up the WC mapping if needed */
1167 if (wc_mem_map_size) {
1168 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1169 uc_mem_map_size,
1170 wc_mem_map_size);
1171 if (!nic_data->wc_membase) {
1172 netif_err(efx, probe, efx->net_dev,
1173 "could not allocate WC mapping of size %x\n",
1174 wc_mem_map_size);
1175 return -ENOMEM;
1176 }
1177 nic_data->pio_write_vi_base = pio_write_vi_base;
1178 nic_data->pio_write_base =
1179 nic_data->wc_membase +
1180 (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1181 uc_mem_map_size);
1182
1183 rc = efx_ef10_link_piobufs(efx);
1184 if (rc)
1185 efx_ef10_free_piobufs(efx);
1186 }
1187
1188 netif_dbg(efx, probe, efx->net_dev,
1189 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1190 &efx->membase_phys, efx->membase, uc_mem_map_size,
1191 nic_data->wc_membase, wc_mem_map_size);
1192
1193 return 0;
1194 }
1195
1196 static int efx_ef10_init_nic(struct efx_nic *efx)
1197 {
1198 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1199 int rc;
1200
1201 if (nic_data->must_check_datapath_caps) {
1202 rc = efx_ef10_init_datapath_caps(efx);
1203 if (rc)
1204 return rc;
1205 nic_data->must_check_datapath_caps = false;
1206 }
1207
1208 if (nic_data->must_realloc_vis) {
1209 /* We cannot let the number of VIs change now */
1210 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1211 nic_data->n_allocated_vis);
1212 if (rc)
1213 return rc;
1214 nic_data->must_realloc_vis = false;
1215 }
1216
1217 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1218 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1219 if (rc == 0) {
1220 rc = efx_ef10_link_piobufs(efx);
1221 if (rc)
1222 efx_ef10_free_piobufs(efx);
1223 }
1224
1225 /* Log an error on failure, but this is non-fatal */
1226 if (rc)
1227 netif_err(efx, drv, efx->net_dev,
1228 "failed to restore PIO buffers (%d)\n", rc);
1229 nic_data->must_restore_piobufs = false;
1230 }
1231
1232 /* don't fail init if RSS setup doesn't work */
1233 efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
1234
1235 return 0;
1236 }
1237
1238 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1239 {
1240 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1241 #ifdef CONFIG_SFC_SRIOV
1242 unsigned int i;
1243 #endif
1244
1245 /* All our allocations have been reset */
1246 nic_data->must_realloc_vis = true;
1247 nic_data->must_restore_filters = true;
1248 nic_data->must_restore_piobufs = true;
1249 efx_ef10_forget_old_piobufs(efx);
1250 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1251
1252 /* Driver-created vswitches and vports must be re-created */
1253 nic_data->must_probe_vswitching = true;
1254 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1255 #ifdef CONFIG_SFC_SRIOV
1256 if (nic_data->vf)
1257 for (i = 0; i < efx->vf_count; i++)
1258 nic_data->vf[i].vport_id = 0;
1259 #endif
1260 }
1261
1262 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1263 {
1264 if (reason == RESET_TYPE_MC_FAILURE)
1265 return RESET_TYPE_DATAPATH;
1266
1267 return efx_mcdi_map_reset_reason(reason);
1268 }
1269
1270 static int efx_ef10_map_reset_flags(u32 *flags)
1271 {
1272 enum {
1273 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1274 ETH_RESET_SHARED_SHIFT),
1275 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1276 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1277 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1278 ETH_RESET_SHARED_SHIFT)
1279 };
1280
1281 /* We assume for now that our PCI function is permitted to
1282 * reset everything.
1283 */
1284
1285 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1286 *flags &= ~EF10_RESET_MC;
1287 return RESET_TYPE_WORLD;
1288 }
1289
1290 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1291 *flags &= ~EF10_RESET_PORT;
1292 return RESET_TYPE_ALL;
1293 }
1294
1295 /* no invisible reset implemented */
1296
1297 return -EINVAL;
1298 }
1299
1300 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1301 {
1302 int rc = efx_mcdi_reset(efx, reset_type);
1303
1304 /* Unprivileged functions return -EPERM, but need to return success
1305 * here so that the datapath is brought back up.
1306 */
1307 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1308 rc = 0;
1309
1310 /* If it was a port reset, trigger reallocation of MC resources.
1311 * Note that on an MC reset nothing needs to be done now because we'll
1312 * detect the MC reset later and handle it then.
1313 * For an FLR, we never get an MC reset event, but the MC has reset all
1314 * resources assigned to us, so we have to trigger reallocation now.
1315 */
1316 if ((reset_type == RESET_TYPE_ALL ||
1317 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1318 efx_ef10_reset_mc_allocations(efx);
1319 return rc;
1320 }
1321
1322 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1323 [EF10_STAT_ ## ext_name] = \
1324 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1325 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1326 [EF10_STAT_ ## int_name] = \
1327 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1328 #define EF10_OTHER_STAT(ext_name) \
1329 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1330 #define GENERIC_SW_STAT(ext_name) \
1331 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1332
1333 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1334 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1335 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1336 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1337 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1338 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1339 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1340 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1341 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1342 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1343 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1344 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1345 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1346 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1347 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1348 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1349 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1350 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1351 EF10_OTHER_STAT(port_rx_good_bytes),
1352 EF10_OTHER_STAT(port_rx_bad_bytes),
1353 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1354 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1355 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1356 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1357 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1358 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1359 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1360 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1361 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1362 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1363 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1364 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1365 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1366 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1367 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1368 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1369 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1370 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1371 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1372 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1373 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1374 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1375 GENERIC_SW_STAT(rx_nodesc_trunc),
1376 GENERIC_SW_STAT(rx_noskb_drops),
1377 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1378 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1379 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1380 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1381 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1382 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1383 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1384 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1385 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1386 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1387 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1388 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1389 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1390 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1391 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1392 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1393 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1394 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1395 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1396 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1397 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1398 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1399 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1400 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1401 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1402 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1403 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1404 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1405 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1406 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1407 };
1408
1409 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1410 (1ULL << EF10_STAT_port_tx_packets) | \
1411 (1ULL << EF10_STAT_port_tx_pause) | \
1412 (1ULL << EF10_STAT_port_tx_unicast) | \
1413 (1ULL << EF10_STAT_port_tx_multicast) | \
1414 (1ULL << EF10_STAT_port_tx_broadcast) | \
1415 (1ULL << EF10_STAT_port_rx_bytes) | \
1416 (1ULL << \
1417 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1418 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1419 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1420 (1ULL << EF10_STAT_port_rx_packets) | \
1421 (1ULL << EF10_STAT_port_rx_good) | \
1422 (1ULL << EF10_STAT_port_rx_bad) | \
1423 (1ULL << EF10_STAT_port_rx_pause) | \
1424 (1ULL << EF10_STAT_port_rx_control) | \
1425 (1ULL << EF10_STAT_port_rx_unicast) | \
1426 (1ULL << EF10_STAT_port_rx_multicast) | \
1427 (1ULL << EF10_STAT_port_rx_broadcast) | \
1428 (1ULL << EF10_STAT_port_rx_lt64) | \
1429 (1ULL << EF10_STAT_port_rx_64) | \
1430 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1431 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1432 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1433 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1434 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1435 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1436 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1437 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1438 (1ULL << EF10_STAT_port_rx_overflow) | \
1439 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1440 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1441 (1ULL << GENERIC_STAT_rx_noskb_drops))
1442
1443 /* These statistics are only provided by the 10G MAC. For a 10G/40G
1444 * switchable port we do not expose these because they might not
1445 * include all the packets they should.
1446 */
1447 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1448 (1ULL << EF10_STAT_port_tx_lt64) | \
1449 (1ULL << EF10_STAT_port_tx_64) | \
1450 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1451 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1452 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1453 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1454 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1455 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1456
1457 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1458 * switchable port we do expose these because the errors will otherwise
1459 * be silent.
1460 */
1461 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1462 (1ULL << EF10_STAT_port_rx_length_error))
1463
1464 /* These statistics are only provided if the firmware supports the
1465 * capability PM_AND_RXDP_COUNTERS.
1466 */
1467 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1468 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1469 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1470 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1471 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1472 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1473 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1474 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1475 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1476 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1477 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1478 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1479 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1480
1481 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1482 {
1483 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1484 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1485 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1486
1487 if (!(efx->mcdi->fn_flags &
1488 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1489 return 0;
1490
1491 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1492 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1493 else
1494 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1495
1496 if (nic_data->datapath_caps &
1497 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1498 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1499
1500 return raw_mask;
1501 }
1502
1503 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1504 {
1505 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1506 u64 raw_mask[2];
1507
1508 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1509
1510 /* Only show vadaptor stats when EVB capability is present */
1511 if (nic_data->datapath_caps &
1512 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1513 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1514 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1515 } else {
1516 raw_mask[1] = 0;
1517 }
1518
1519 #if BITS_PER_LONG == 64
1520 mask[0] = raw_mask[0];
1521 mask[1] = raw_mask[1];
1522 #else
1523 mask[0] = raw_mask[0] & 0xffffffff;
1524 mask[1] = raw_mask[0] >> 32;
1525 mask[2] = raw_mask[1] & 0xffffffff;
1526 mask[3] = raw_mask[1] >> 32;
1527 #endif
1528 }
1529
1530 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1531 {
1532 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1533
1534 efx_ef10_get_stat_mask(efx, mask);
1535 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1536 mask, names);
1537 }
1538
1539 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1540 struct rtnl_link_stats64 *core_stats)
1541 {
1542 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1543 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1544 u64 *stats = nic_data->stats;
1545 size_t stats_count = 0, index;
1546
1547 efx_ef10_get_stat_mask(efx, mask);
1548
1549 if (full_stats) {
1550 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1551 if (efx_ef10_stat_desc[index].name) {
1552 *full_stats++ = stats[index];
1553 ++stats_count;
1554 }
1555 }
1556 }
1557
1558 if (!core_stats)
1559 return stats_count;
1560
1561 if (nic_data->datapath_caps &
1562 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1563 /* Use vadaptor stats. */
1564 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1565 stats[EF10_STAT_rx_multicast] +
1566 stats[EF10_STAT_rx_broadcast];
1567 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1568 stats[EF10_STAT_tx_multicast] +
1569 stats[EF10_STAT_tx_broadcast];
1570 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1571 stats[EF10_STAT_rx_multicast_bytes] +
1572 stats[EF10_STAT_rx_broadcast_bytes];
1573 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1574 stats[EF10_STAT_tx_multicast_bytes] +
1575 stats[EF10_STAT_tx_broadcast_bytes];
1576 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1577 stats[GENERIC_STAT_rx_noskb_drops];
1578 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1579 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1580 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1581 core_stats->rx_errors = core_stats->rx_crc_errors;
1582 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1583 } else {
1584 /* Use port stats. */
1585 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1586 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1587 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1588 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1589 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1590 stats[GENERIC_STAT_rx_nodesc_trunc] +
1591 stats[GENERIC_STAT_rx_noskb_drops];
1592 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1593 core_stats->rx_length_errors =
1594 stats[EF10_STAT_port_rx_gtjumbo] +
1595 stats[EF10_STAT_port_rx_length_error];
1596 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1597 core_stats->rx_frame_errors =
1598 stats[EF10_STAT_port_rx_align_error];
1599 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1600 core_stats->rx_errors = (core_stats->rx_length_errors +
1601 core_stats->rx_crc_errors +
1602 core_stats->rx_frame_errors);
1603 }
1604
1605 return stats_count;
1606 }
1607
1608 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1609 {
1610 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1611 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1612 __le64 generation_start, generation_end;
1613 u64 *stats = nic_data->stats;
1614 __le64 *dma_stats;
1615
1616 efx_ef10_get_stat_mask(efx, mask);
1617
1618 dma_stats = efx->stats_buffer.addr;
1619 nic_data = efx->nic_data;
1620
1621 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1622 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1623 return 0;
1624 rmb();
1625 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1626 stats, efx->stats_buffer.addr, false);
1627 rmb();
1628 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1629 if (generation_end != generation_start)
1630 return -EAGAIN;
1631
1632 /* Update derived statistics */
1633 efx_nic_fix_nodesc_drop_stat(efx,
1634 &stats[EF10_STAT_port_rx_nodesc_drops]);
1635 stats[EF10_STAT_port_rx_good_bytes] =
1636 stats[EF10_STAT_port_rx_bytes] -
1637 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1638 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1639 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1640 efx_update_sw_stats(efx, stats);
1641 return 0;
1642 }
1643
1644
1645 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1646 struct rtnl_link_stats64 *core_stats)
1647 {
1648 int retry;
1649
1650 /* If we're unlucky enough to read statistics during the DMA, wait
1651 * up to 10ms for it to finish (typically takes <500us)
1652 */
1653 for (retry = 0; retry < 100; ++retry) {
1654 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1655 break;
1656 udelay(100);
1657 }
1658
1659 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1660 }
1661
1662 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1663 {
1664 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1665 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1666 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1667 __le64 generation_start, generation_end;
1668 u64 *stats = nic_data->stats;
1669 u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1670 struct efx_buffer stats_buf;
1671 __le64 *dma_stats;
1672 int rc;
1673
1674 spin_unlock_bh(&efx->stats_lock);
1675
1676 if (in_interrupt()) {
1677 /* If in atomic context, cannot update stats. Just update the
1678 * software stats and return so the caller can continue.
1679 */
1680 spin_lock_bh(&efx->stats_lock);
1681 efx_update_sw_stats(efx, stats);
1682 return 0;
1683 }
1684
1685 efx_ef10_get_stat_mask(efx, mask);
1686
1687 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1688 if (rc) {
1689 spin_lock_bh(&efx->stats_lock);
1690 return rc;
1691 }
1692
1693 dma_stats = stats_buf.addr;
1694 dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1695
1696 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1697 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1698 MAC_STATS_IN_DMA, 1);
1699 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1700 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1701
1702 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1703 NULL, 0, NULL);
1704 spin_lock_bh(&efx->stats_lock);
1705 if (rc) {
1706 /* Expect ENOENT if DMA queues have not been set up */
1707 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1708 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1709 sizeof(inbuf), NULL, 0, rc);
1710 goto out;
1711 }
1712
1713 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1714 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1715 WARN_ON_ONCE(1);
1716 goto out;
1717 }
1718 rmb();
1719 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1720 stats, stats_buf.addr, false);
1721 rmb();
1722 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1723 if (generation_end != generation_start) {
1724 rc = -EAGAIN;
1725 goto out;
1726 }
1727
1728 efx_update_sw_stats(efx, stats);
1729 out:
1730 efx_nic_free_buffer(efx, &stats_buf);
1731 return rc;
1732 }
1733
1734 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1735 struct rtnl_link_stats64 *core_stats)
1736 {
1737 if (efx_ef10_try_update_nic_stats_vf(efx))
1738 return 0;
1739
1740 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1741 }
1742
1743 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1744 {
1745 struct efx_nic *efx = channel->efx;
1746 unsigned int mode, value;
1747 efx_dword_t timer_cmd;
1748
1749 if (channel->irq_moderation) {
1750 mode = 3;
1751 value = channel->irq_moderation - 1;
1752 } else {
1753 mode = 0;
1754 value = 0;
1755 }
1756
1757 if (EFX_EF10_WORKAROUND_35388(efx)) {
1758 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1759 EFE_DD_EVQ_IND_TIMER_FLAGS,
1760 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1761 ERF_DD_EVQ_IND_TIMER_VAL, value);
1762 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1763 channel->channel);
1764 } else {
1765 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1766 ERF_DZ_TC_TIMER_VAL, value);
1767 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1768 channel->channel);
1769 }
1770 }
1771
1772 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1773 struct ethtool_wolinfo *wol) {}
1774
1775 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1776 {
1777 return -EOPNOTSUPP;
1778 }
1779
1780 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1781 {
1782 wol->supported = 0;
1783 wol->wolopts = 0;
1784 memset(&wol->sopass, 0, sizeof(wol->sopass));
1785 }
1786
1787 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1788 {
1789 if (type != 0)
1790 return -EINVAL;
1791 return 0;
1792 }
1793
1794 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1795 const efx_dword_t *hdr, size_t hdr_len,
1796 const efx_dword_t *sdu, size_t sdu_len)
1797 {
1798 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1799 u8 *pdu = nic_data->mcdi_buf.addr;
1800
1801 memcpy(pdu, hdr, hdr_len);
1802 memcpy(pdu + hdr_len, sdu, sdu_len);
1803 wmb();
1804
1805 /* The hardware provides 'low' and 'high' (doorbell) registers
1806 * for passing the 64-bit address of an MCDI request to
1807 * firmware. However the dwords are swapped by firmware. The
1808 * least significant bits of the doorbell are then 0 for all
1809 * MCDI requests due to alignment.
1810 */
1811 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1812 ER_DZ_MC_DB_LWRD);
1813 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1814 ER_DZ_MC_DB_HWRD);
1815 }
1816
1817 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1818 {
1819 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1820 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1821
1822 rmb();
1823 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1824 }
1825
1826 static void
1827 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1828 size_t offset, size_t outlen)
1829 {
1830 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1831 const u8 *pdu = nic_data->mcdi_buf.addr;
1832
1833 memcpy(outbuf, pdu + offset, outlen);
1834 }
1835
1836 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
1837 {
1838 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1839
1840 /* All our allocations have been reset */
1841 efx_ef10_reset_mc_allocations(efx);
1842
1843 /* The datapath firmware might have been changed */
1844 nic_data->must_check_datapath_caps = true;
1845
1846 /* MAC statistics have been cleared on the NIC; clear the local
1847 * statistic that we update with efx_update_diff_stat().
1848 */
1849 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1850 }
1851
1852 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1853 {
1854 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1855 int rc;
1856
1857 rc = efx_ef10_get_warm_boot_count(efx);
1858 if (rc < 0) {
1859 /* The firmware is presumably in the process of
1860 * rebooting. However, we are supposed to report each
1861 * reboot just once, so we must only do that once we
1862 * can read and store the updated warm boot count.
1863 */
1864 return 0;
1865 }
1866
1867 if (rc == nic_data->warm_boot_count)
1868 return 0;
1869
1870 nic_data->warm_boot_count = rc;
1871 efx_ef10_mcdi_reboot_detected(efx);
1872
1873 return -EIO;
1874 }
1875
1876 /* Handle an MSI interrupt
1877 *
1878 * Handle an MSI hardware interrupt. This routine schedules event
1879 * queue processing. No interrupt acknowledgement cycle is necessary.
1880 * Also, we never need to check that the interrupt is for us, since
1881 * MSI interrupts cannot be shared.
1882 */
1883 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1884 {
1885 struct efx_msi_context *context = dev_id;
1886 struct efx_nic *efx = context->efx;
1887
1888 netif_vdbg(efx, intr, efx->net_dev,
1889 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1890
1891 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1892 /* Note test interrupts */
1893 if (context->index == efx->irq_level)
1894 efx->last_irq_cpu = raw_smp_processor_id();
1895
1896 /* Schedule processing of the channel */
1897 efx_schedule_channel_irq(efx->channel[context->index]);
1898 }
1899
1900 return IRQ_HANDLED;
1901 }
1902
1903 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1904 {
1905 struct efx_nic *efx = dev_id;
1906 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1907 struct efx_channel *channel;
1908 efx_dword_t reg;
1909 u32 queues;
1910
1911 /* Read the ISR which also ACKs the interrupts */
1912 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1913 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1914
1915 if (queues == 0)
1916 return IRQ_NONE;
1917
1918 if (likely(soft_enabled)) {
1919 /* Note test interrupts */
1920 if (queues & (1U << efx->irq_level))
1921 efx->last_irq_cpu = raw_smp_processor_id();
1922
1923 efx_for_each_channel(channel, efx) {
1924 if (queues & 1)
1925 efx_schedule_channel_irq(channel);
1926 queues >>= 1;
1927 }
1928 }
1929
1930 netif_vdbg(efx, intr, efx->net_dev,
1931 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1932 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1933
1934 return IRQ_HANDLED;
1935 }
1936
1937 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1938 {
1939 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1940
1941 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1942
1943 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1944 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1945 inbuf, sizeof(inbuf), NULL, 0, NULL);
1946 }
1947
1948 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1949 {
1950 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1951 (tx_queue->ptr_mask + 1) *
1952 sizeof(efx_qword_t),
1953 GFP_KERNEL);
1954 }
1955
1956 /* This writes to the TX_DESC_WPTR and also pushes data */
1957 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1958 const efx_qword_t *txd)
1959 {
1960 unsigned int write_ptr;
1961 efx_oword_t reg;
1962
1963 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1964 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1965 reg.qword[0] = *txd;
1966 efx_writeo_page(tx_queue->efx, &reg,
1967 ER_DZ_TX_DESC_UPD, tx_queue->queue);
1968 }
1969
1970 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1971 {
1972 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1973 EFX_BUF_SIZE));
1974 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1975 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1976 struct efx_channel *channel = tx_queue->channel;
1977 struct efx_nic *efx = tx_queue->efx;
1978 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1979 size_t inlen;
1980 dma_addr_t dma_addr;
1981 efx_qword_t *txd;
1982 int rc;
1983 int i;
1984 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1985
1986 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1987 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1988 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1989 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1990 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1991 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1992 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1993 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1994 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1995
1996 dma_addr = tx_queue->txd.buf.dma_addr;
1997
1998 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1999 tx_queue->queue, entries, (u64)dma_addr);
2000
2001 for (i = 0; i < entries; ++i) {
2002 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2003 dma_addr += EFX_BUF_SIZE;
2004 }
2005
2006 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2007
2008 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2009 NULL, 0, NULL);
2010 if (rc)
2011 goto fail;
2012
2013 /* A previous user of this TX queue might have set us up the
2014 * bomb by writing a descriptor to the TX push collector but
2015 * not the doorbell. (Each collector belongs to a port, not a
2016 * queue or function, so cannot easily be reset.) We must
2017 * attempt to push a no-op descriptor in its place.
2018 */
2019 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2020 tx_queue->insert_count = 1;
2021 txd = efx_tx_desc(tx_queue, 0);
2022 EFX_POPULATE_QWORD_4(*txd,
2023 ESF_DZ_TX_DESC_IS_OPT, true,
2024 ESF_DZ_TX_OPTION_TYPE,
2025 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2026 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2027 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
2028 tx_queue->write_count = 1;
2029
2030 if (nic_data->datapath_caps &
2031 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2032 tx_queue->tso_version = 1;
2033 }
2034
2035 wmb();
2036 efx_ef10_push_tx_desc(tx_queue, txd);
2037
2038 return;
2039
2040 fail:
2041 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2042 tx_queue->queue);
2043 }
2044
2045 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2046 {
2047 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2048 MCDI_DECLARE_BUF_ERR(outbuf);
2049 struct efx_nic *efx = tx_queue->efx;
2050 size_t outlen;
2051 int rc;
2052
2053 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2054 tx_queue->queue);
2055
2056 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2057 outbuf, sizeof(outbuf), &outlen);
2058
2059 if (rc && rc != -EALREADY)
2060 goto fail;
2061
2062 return;
2063
2064 fail:
2065 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2066 outbuf, outlen, rc);
2067 }
2068
2069 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2070 {
2071 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2072 }
2073
2074 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2075 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2076 {
2077 unsigned int write_ptr;
2078 efx_dword_t reg;
2079
2080 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2081 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2082 efx_writed_page(tx_queue->efx, &reg,
2083 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2084 }
2085
2086 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2087 {
2088 unsigned int old_write_count = tx_queue->write_count;
2089 struct efx_tx_buffer *buffer;
2090 unsigned int write_ptr;
2091 efx_qword_t *txd;
2092
2093 tx_queue->xmit_more_available = false;
2094 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2095 return;
2096
2097 do {
2098 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2099 buffer = &tx_queue->buffer[write_ptr];
2100 txd = efx_tx_desc(tx_queue, write_ptr);
2101 ++tx_queue->write_count;
2102
2103 /* Create TX descriptor ring entry */
2104 if (buffer->flags & EFX_TX_BUF_OPTION) {
2105 *txd = buffer->option;
2106 } else {
2107 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2108 EFX_POPULATE_QWORD_3(
2109 *txd,
2110 ESF_DZ_TX_KER_CONT,
2111 buffer->flags & EFX_TX_BUF_CONT,
2112 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2113 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2114 }
2115 } while (tx_queue->write_count != tx_queue->insert_count);
2116
2117 wmb(); /* Ensure descriptors are written before they are fetched */
2118
2119 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2120 txd = efx_tx_desc(tx_queue,
2121 old_write_count & tx_queue->ptr_mask);
2122 efx_ef10_push_tx_desc(tx_queue, txd);
2123 ++tx_queue->pushes;
2124 } else {
2125 efx_ef10_notify_tx_desc(tx_queue);
2126 }
2127 }
2128
2129 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2130 bool exclusive, unsigned *context_size)
2131 {
2132 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2133 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2134 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2135 size_t outlen;
2136 int rc;
2137 u32 alloc_type = exclusive ?
2138 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2139 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2140 unsigned rss_spread = exclusive ?
2141 efx->rss_spread :
2142 min(rounddown_pow_of_two(efx->rss_spread),
2143 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2144
2145 if (!exclusive && rss_spread == 1) {
2146 *context = EFX_EF10_RSS_CONTEXT_INVALID;
2147 if (context_size)
2148 *context_size = 1;
2149 return 0;
2150 }
2151
2152 if (nic_data->datapath_caps &
2153 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2154 return -EOPNOTSUPP;
2155
2156 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2157 nic_data->vport_id);
2158 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2159 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2160
2161 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2162 outbuf, sizeof(outbuf), &outlen);
2163 if (rc != 0)
2164 return rc;
2165
2166 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2167 return -EIO;
2168
2169 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2170
2171 if (context_size)
2172 *context_size = rss_spread;
2173
2174 return 0;
2175 }
2176
2177 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2178 {
2179 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2180 int rc;
2181
2182 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2183 context);
2184
2185 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2186 NULL, 0, NULL);
2187 WARN_ON(rc != 0);
2188 }
2189
2190 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2191 const u32 *rx_indir_table)
2192 {
2193 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2194 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2195 int i, rc;
2196
2197 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2198 context);
2199 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2200 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2201
2202 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2203 MCDI_PTR(tablebuf,
2204 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2205 (u8) rx_indir_table[i];
2206
2207 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2208 sizeof(tablebuf), NULL, 0, NULL);
2209 if (rc != 0)
2210 return rc;
2211
2212 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2213 context);
2214 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2215 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2216 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2217 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
2218 efx->rx_hash_key[i];
2219
2220 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2221 sizeof(keybuf), NULL, 0, NULL);
2222 }
2223
2224 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2225 {
2226 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2227
2228 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2229 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2230 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2231 }
2232
2233 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2234 unsigned *context_size)
2235 {
2236 u32 new_rx_rss_context;
2237 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2238 int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2239 false, context_size);
2240
2241 if (rc != 0)
2242 return rc;
2243
2244 nic_data->rx_rss_context = new_rx_rss_context;
2245 nic_data->rx_rss_context_exclusive = false;
2246 efx_set_default_rx_indir_table(efx);
2247 return 0;
2248 }
2249
2250 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2251 const u32 *rx_indir_table)
2252 {
2253 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2254 int rc;
2255 u32 new_rx_rss_context;
2256
2257 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2258 !nic_data->rx_rss_context_exclusive) {
2259 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2260 true, NULL);
2261 if (rc == -EOPNOTSUPP)
2262 return rc;
2263 else if (rc != 0)
2264 goto fail1;
2265 } else {
2266 new_rx_rss_context = nic_data->rx_rss_context;
2267 }
2268
2269 rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2270 rx_indir_table);
2271 if (rc != 0)
2272 goto fail2;
2273
2274 if (nic_data->rx_rss_context != new_rx_rss_context)
2275 efx_ef10_rx_free_indir_table(efx);
2276 nic_data->rx_rss_context = new_rx_rss_context;
2277 nic_data->rx_rss_context_exclusive = true;
2278 if (rx_indir_table != efx->rx_indir_table)
2279 memcpy(efx->rx_indir_table, rx_indir_table,
2280 sizeof(efx->rx_indir_table));
2281 return 0;
2282
2283 fail2:
2284 if (new_rx_rss_context != nic_data->rx_rss_context)
2285 efx_ef10_free_rss_context(efx, new_rx_rss_context);
2286 fail1:
2287 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2288 return rc;
2289 }
2290
2291 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2292 const u32 *rx_indir_table)
2293 {
2294 int rc;
2295
2296 if (efx->rss_spread == 1)
2297 return 0;
2298
2299 rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2300
2301 if (rc == -ENOBUFS && !user) {
2302 unsigned context_size;
2303 bool mismatch = false;
2304 size_t i;
2305
2306 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2307 i++)
2308 mismatch = rx_indir_table[i] !=
2309 ethtool_rxfh_indir_default(i, efx->rss_spread);
2310
2311 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2312 if (rc == 0) {
2313 if (context_size != efx->rss_spread)
2314 netif_warn(efx, probe, efx->net_dev,
2315 "Could not allocate an exclusive RSS"
2316 " context; allocated a shared one of"
2317 " different size."
2318 " Wanted %u, got %u.\n",
2319 efx->rss_spread, context_size);
2320 else if (mismatch)
2321 netif_warn(efx, probe, efx->net_dev,
2322 "Could not allocate an exclusive RSS"
2323 " context; allocated a shared one but"
2324 " could not apply custom"
2325 " indirection.\n");
2326 else
2327 netif_info(efx, probe, efx->net_dev,
2328 "Could not allocate an exclusive RSS"
2329 " context; allocated a shared one.\n");
2330 }
2331 }
2332 return rc;
2333 }
2334
2335 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2336 const u32 *rx_indir_table
2337 __attribute__ ((unused)))
2338 {
2339 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2340
2341 if (user)
2342 return -EOPNOTSUPP;
2343 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2344 return 0;
2345 return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2346 }
2347
2348 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2349 {
2350 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2351 (rx_queue->ptr_mask + 1) *
2352 sizeof(efx_qword_t),
2353 GFP_KERNEL);
2354 }
2355
2356 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2357 {
2358 MCDI_DECLARE_BUF(inbuf,
2359 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2360 EFX_BUF_SIZE));
2361 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2362 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2363 struct efx_nic *efx = rx_queue->efx;
2364 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2365 size_t inlen;
2366 dma_addr_t dma_addr;
2367 int rc;
2368 int i;
2369 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2370
2371 rx_queue->scatter_n = 0;
2372 rx_queue->scatter_len = 0;
2373
2374 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2375 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2376 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2377 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2378 efx_rx_queue_index(rx_queue));
2379 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2380 INIT_RXQ_IN_FLAG_PREFIX, 1,
2381 INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2382 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2383 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2384
2385 dma_addr = rx_queue->rxd.buf.dma_addr;
2386
2387 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2388 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2389
2390 for (i = 0; i < entries; ++i) {
2391 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2392 dma_addr += EFX_BUF_SIZE;
2393 }
2394
2395 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2396
2397 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2398 NULL, 0, NULL);
2399 if (rc)
2400 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2401 efx_rx_queue_index(rx_queue));
2402 }
2403
2404 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2405 {
2406 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2407 MCDI_DECLARE_BUF_ERR(outbuf);
2408 struct efx_nic *efx = rx_queue->efx;
2409 size_t outlen;
2410 int rc;
2411
2412 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2413 efx_rx_queue_index(rx_queue));
2414
2415 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2416 outbuf, sizeof(outbuf), &outlen);
2417
2418 if (rc && rc != -EALREADY)
2419 goto fail;
2420
2421 return;
2422
2423 fail:
2424 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2425 outbuf, outlen, rc);
2426 }
2427
2428 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2429 {
2430 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2431 }
2432
2433 /* This creates an entry in the RX descriptor queue */
2434 static inline void
2435 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2436 {
2437 struct efx_rx_buffer *rx_buf;
2438 efx_qword_t *rxd;
2439
2440 rxd = efx_rx_desc(rx_queue, index);
2441 rx_buf = efx_rx_buffer(rx_queue, index);
2442 EFX_POPULATE_QWORD_2(*rxd,
2443 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2444 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2445 }
2446
2447 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2448 {
2449 struct efx_nic *efx = rx_queue->efx;
2450 unsigned int write_count;
2451 efx_dword_t reg;
2452
2453 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2454 write_count = rx_queue->added_count & ~7;
2455 if (rx_queue->notified_count == write_count)
2456 return;
2457
2458 do
2459 efx_ef10_build_rx_desc(
2460 rx_queue,
2461 rx_queue->notified_count & rx_queue->ptr_mask);
2462 while (++rx_queue->notified_count != write_count);
2463
2464 wmb();
2465 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2466 write_count & rx_queue->ptr_mask);
2467 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2468 efx_rx_queue_index(rx_queue));
2469 }
2470
2471 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2472
2473 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2474 {
2475 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2476 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2477 efx_qword_t event;
2478
2479 EFX_POPULATE_QWORD_2(event,
2480 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2481 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2482
2483 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2484
2485 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2486 * already swapped the data to little-endian order.
2487 */
2488 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2489 sizeof(efx_qword_t));
2490
2491 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2492 inbuf, sizeof(inbuf), 0,
2493 efx_ef10_rx_defer_refill_complete, 0);
2494 }
2495
2496 static void
2497 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2498 int rc, efx_dword_t *outbuf,
2499 size_t outlen_actual)
2500 {
2501 /* nothing to do */
2502 }
2503
2504 static int efx_ef10_ev_probe(struct efx_channel *channel)
2505 {
2506 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2507 (channel->eventq_mask + 1) *
2508 sizeof(efx_qword_t),
2509 GFP_KERNEL);
2510 }
2511
2512 static void efx_ef10_ev_fini(struct efx_channel *channel)
2513 {
2514 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2515 MCDI_DECLARE_BUF_ERR(outbuf);
2516 struct efx_nic *efx = channel->efx;
2517 size_t outlen;
2518 int rc;
2519
2520 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2521
2522 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2523 outbuf, sizeof(outbuf), &outlen);
2524
2525 if (rc && rc != -EALREADY)
2526 goto fail;
2527
2528 return;
2529
2530 fail:
2531 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2532 outbuf, outlen, rc);
2533 }
2534
2535 static int efx_ef10_ev_init(struct efx_channel *channel)
2536 {
2537 MCDI_DECLARE_BUF(inbuf,
2538 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2539 EFX_BUF_SIZE));
2540 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
2541 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2542 struct efx_nic *efx = channel->efx;
2543 struct efx_ef10_nic_data *nic_data;
2544 bool supports_rx_merge;
2545 size_t inlen, outlen;
2546 unsigned int enabled, implemented;
2547 dma_addr_t dma_addr;
2548 int rc;
2549 int i;
2550
2551 nic_data = efx->nic_data;
2552 supports_rx_merge =
2553 !!(nic_data->datapath_caps &
2554 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2555
2556 /* Fill event queue with all ones (i.e. empty events) */
2557 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2558
2559 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2560 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2561 /* INIT_EVQ expects index in vector table, not absolute */
2562 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2563 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2564 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2565 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2566 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2567 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
2568 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2569 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2570 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2571 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2572 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2573 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2574 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2575
2576 dma_addr = channel->eventq.buf.dma_addr;
2577 for (i = 0; i < entries; ++i) {
2578 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2579 dma_addr += EFX_BUF_SIZE;
2580 }
2581
2582 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2583
2584 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2585 outbuf, sizeof(outbuf), &outlen);
2586 /* IRQ return is ignored */
2587 if (channel->channel || rc)
2588 return rc;
2589
2590 /* Successfully created event queue on channel 0 */
2591 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2592 if (rc == -ENOSYS) {
2593 /* GET_WORKAROUNDS was implemented before the bug26807
2594 * workaround, thus the latter must be unavailable in this fw
2595 */
2596 nic_data->workaround_26807 = false;
2597 rc = 0;
2598 } else if (rc) {
2599 goto fail;
2600 } else {
2601 nic_data->workaround_26807 =
2602 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2603
2604 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2605 !nic_data->workaround_26807) {
2606 unsigned int flags;
2607
2608 rc = efx_mcdi_set_workaround(efx,
2609 MC_CMD_WORKAROUND_BUG26807,
2610 true, &flags);
2611
2612 if (!rc) {
2613 if (flags &
2614 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2615 netif_info(efx, drv, efx->net_dev,
2616 "other functions on NIC have been reset\n");
2617
2618 /* With MCFW v4.6.x and earlier, the
2619 * boot count will have incremented,
2620 * so re-read the warm_boot_count
2621 * value now to ensure this function
2622 * doesn't think it has changed next
2623 * time it checks.
2624 */
2625 rc = efx_ef10_get_warm_boot_count(efx);
2626 if (rc >= 0) {
2627 nic_data->warm_boot_count = rc;
2628 rc = 0;
2629 }
2630 }
2631 nic_data->workaround_26807 = true;
2632 } else if (rc == -EPERM) {
2633 rc = 0;
2634 }
2635 }
2636 }
2637
2638 if (!rc)
2639 return 0;
2640
2641 fail:
2642 efx_ef10_ev_fini(channel);
2643 return rc;
2644 }
2645
2646 static void efx_ef10_ev_remove(struct efx_channel *channel)
2647 {
2648 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2649 }
2650
2651 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2652 unsigned int rx_queue_label)
2653 {
2654 struct efx_nic *efx = rx_queue->efx;
2655
2656 netif_info(efx, hw, efx->net_dev,
2657 "rx event arrived on queue %d labeled as queue %u\n",
2658 efx_rx_queue_index(rx_queue), rx_queue_label);
2659
2660 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2661 }
2662
2663 static void
2664 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2665 unsigned int actual, unsigned int expected)
2666 {
2667 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2668 struct efx_nic *efx = rx_queue->efx;
2669
2670 netif_info(efx, hw, efx->net_dev,
2671 "dropped %d events (index=%d expected=%d)\n",
2672 dropped, actual, expected);
2673
2674 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2675 }
2676
2677 /* partially received RX was aborted. clean up. */
2678 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2679 {
2680 unsigned int rx_desc_ptr;
2681
2682 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2683 "scattered RX aborted (dropping %u buffers)\n",
2684 rx_queue->scatter_n);
2685
2686 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2687
2688 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2689 0, EFX_RX_PKT_DISCARD);
2690
2691 rx_queue->removed_count += rx_queue->scatter_n;
2692 rx_queue->scatter_n = 0;
2693 rx_queue->scatter_len = 0;
2694 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2695 }
2696
2697 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2698 const efx_qword_t *event)
2699 {
2700 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2701 unsigned int n_descs, n_packets, i;
2702 struct efx_nic *efx = channel->efx;
2703 struct efx_rx_queue *rx_queue;
2704 bool rx_cont;
2705 u16 flags = 0;
2706
2707 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2708 return 0;
2709
2710 /* Basic packet information */
2711 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2712 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2713 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2714 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2715 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2716
2717 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2718 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2719 EFX_QWORD_FMT "\n",
2720 EFX_QWORD_VAL(*event));
2721
2722 rx_queue = efx_channel_get_rx_queue(channel);
2723
2724 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2725 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2726
2727 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2728 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2729
2730 if (n_descs != rx_queue->scatter_n + 1) {
2731 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2732
2733 /* detect rx abort */
2734 if (unlikely(n_descs == rx_queue->scatter_n)) {
2735 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2736 netdev_WARN(efx->net_dev,
2737 "invalid RX abort: scatter_n=%u event="
2738 EFX_QWORD_FMT "\n",
2739 rx_queue->scatter_n,
2740 EFX_QWORD_VAL(*event));
2741 efx_ef10_handle_rx_abort(rx_queue);
2742 return 0;
2743 }
2744
2745 /* Check that RX completion merging is valid, i.e.
2746 * the current firmware supports it and this is a
2747 * non-scattered packet.
2748 */
2749 if (!(nic_data->datapath_caps &
2750 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2751 rx_queue->scatter_n != 0 || rx_cont) {
2752 efx_ef10_handle_rx_bad_lbits(
2753 rx_queue, next_ptr_lbits,
2754 (rx_queue->removed_count +
2755 rx_queue->scatter_n + 1) &
2756 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2757 return 0;
2758 }
2759
2760 /* Merged completion for multiple non-scattered packets */
2761 rx_queue->scatter_n = 1;
2762 rx_queue->scatter_len = 0;
2763 n_packets = n_descs;
2764 ++channel->n_rx_merge_events;
2765 channel->n_rx_merge_packets += n_packets;
2766 flags |= EFX_RX_PKT_PREFIX_LEN;
2767 } else {
2768 ++rx_queue->scatter_n;
2769 rx_queue->scatter_len += rx_bytes;
2770 if (rx_cont)
2771 return 0;
2772 n_packets = 1;
2773 }
2774
2775 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2776 flags |= EFX_RX_PKT_DISCARD;
2777
2778 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2779 channel->n_rx_ip_hdr_chksum_err += n_packets;
2780 } else if (unlikely(EFX_QWORD_FIELD(*event,
2781 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2782 channel->n_rx_tcp_udp_chksum_err += n_packets;
2783 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2784 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2785 flags |= EFX_RX_PKT_CSUMMED;
2786 }
2787
2788 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2789 flags |= EFX_RX_PKT_TCP;
2790
2791 channel->irq_mod_score += 2 * n_packets;
2792
2793 /* Handle received packet(s) */
2794 for (i = 0; i < n_packets; i++) {
2795 efx_rx_packet(rx_queue,
2796 rx_queue->removed_count & rx_queue->ptr_mask,
2797 rx_queue->scatter_n, rx_queue->scatter_len,
2798 flags);
2799 rx_queue->removed_count += rx_queue->scatter_n;
2800 }
2801
2802 rx_queue->scatter_n = 0;
2803 rx_queue->scatter_len = 0;
2804
2805 return n_packets;
2806 }
2807
2808 static int
2809 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2810 {
2811 struct efx_nic *efx = channel->efx;
2812 struct efx_tx_queue *tx_queue;
2813 unsigned int tx_ev_desc_ptr;
2814 unsigned int tx_ev_q_label;
2815 int tx_descs = 0;
2816
2817 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2818 return 0;
2819
2820 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2821 return 0;
2822
2823 /* Transmit completion */
2824 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2825 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2826 tx_queue = efx_channel_get_tx_queue(channel,
2827 tx_ev_q_label % EFX_TXQ_TYPES);
2828 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2829 tx_queue->ptr_mask);
2830 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2831
2832 return tx_descs;
2833 }
2834
2835 static void
2836 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2837 {
2838 struct efx_nic *efx = channel->efx;
2839 int subcode;
2840
2841 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2842
2843 switch (subcode) {
2844 case ESE_DZ_DRV_TIMER_EV:
2845 case ESE_DZ_DRV_WAKE_UP_EV:
2846 break;
2847 case ESE_DZ_DRV_START_UP_EV:
2848 /* event queue init complete. ok. */
2849 break;
2850 default:
2851 netif_err(efx, hw, efx->net_dev,
2852 "channel %d unknown driver event type %d"
2853 " (data " EFX_QWORD_FMT ")\n",
2854 channel->channel, subcode,
2855 EFX_QWORD_VAL(*event));
2856
2857 }
2858 }
2859
2860 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2861 efx_qword_t *event)
2862 {
2863 struct efx_nic *efx = channel->efx;
2864 u32 subcode;
2865
2866 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2867
2868 switch (subcode) {
2869 case EFX_EF10_TEST:
2870 channel->event_test_cpu = raw_smp_processor_id();
2871 break;
2872 case EFX_EF10_REFILL:
2873 /* The queue must be empty, so we won't receive any rx
2874 * events, so efx_process_channel() won't refill the
2875 * queue. Refill it here
2876 */
2877 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2878 break;
2879 default:
2880 netif_err(efx, hw, efx->net_dev,
2881 "channel %d unknown driver event type %u"
2882 " (data " EFX_QWORD_FMT ")\n",
2883 channel->channel, (unsigned) subcode,
2884 EFX_QWORD_VAL(*event));
2885 }
2886 }
2887
2888 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2889 {
2890 struct efx_nic *efx = channel->efx;
2891 efx_qword_t event, *p_event;
2892 unsigned int read_ptr;
2893 int ev_code;
2894 int tx_descs = 0;
2895 int spent = 0;
2896
2897 if (quota <= 0)
2898 return spent;
2899
2900 read_ptr = channel->eventq_read_ptr;
2901
2902 for (;;) {
2903 p_event = efx_event(channel, read_ptr);
2904 event = *p_event;
2905
2906 if (!efx_event_present(&event))
2907 break;
2908
2909 EFX_SET_QWORD(*p_event);
2910
2911 ++read_ptr;
2912
2913 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2914
2915 netif_vdbg(efx, drv, efx->net_dev,
2916 "processing event on %d " EFX_QWORD_FMT "\n",
2917 channel->channel, EFX_QWORD_VAL(event));
2918
2919 switch (ev_code) {
2920 case ESE_DZ_EV_CODE_MCDI_EV:
2921 efx_mcdi_process_event(channel, &event);
2922 break;
2923 case ESE_DZ_EV_CODE_RX_EV:
2924 spent += efx_ef10_handle_rx_event(channel, &event);
2925 if (spent >= quota) {
2926 /* XXX can we split a merged event to
2927 * avoid going over-quota?
2928 */
2929 spent = quota;
2930 goto out;
2931 }
2932 break;
2933 case ESE_DZ_EV_CODE_TX_EV:
2934 tx_descs += efx_ef10_handle_tx_event(channel, &event);
2935 if (tx_descs > efx->txq_entries) {
2936 spent = quota;
2937 goto out;
2938 } else if (++spent == quota) {
2939 goto out;
2940 }
2941 break;
2942 case ESE_DZ_EV_CODE_DRIVER_EV:
2943 efx_ef10_handle_driver_event(channel, &event);
2944 if (++spent == quota)
2945 goto out;
2946 break;
2947 case EFX_EF10_DRVGEN_EV:
2948 efx_ef10_handle_driver_generated_event(channel, &event);
2949 break;
2950 default:
2951 netif_err(efx, hw, efx->net_dev,
2952 "channel %d unknown event type %d"
2953 " (data " EFX_QWORD_FMT ")\n",
2954 channel->channel, ev_code,
2955 EFX_QWORD_VAL(event));
2956 }
2957 }
2958
2959 out:
2960 channel->eventq_read_ptr = read_ptr;
2961 return spent;
2962 }
2963
2964 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2965 {
2966 struct efx_nic *efx = channel->efx;
2967 efx_dword_t rptr;
2968
2969 if (EFX_EF10_WORKAROUND_35388(efx)) {
2970 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2971 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2972 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2973 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2974
2975 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2976 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2977 ERF_DD_EVQ_IND_RPTR,
2978 (channel->eventq_read_ptr &
2979 channel->eventq_mask) >>
2980 ERF_DD_EVQ_IND_RPTR_WIDTH);
2981 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2982 channel->channel);
2983 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2984 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2985 ERF_DD_EVQ_IND_RPTR,
2986 channel->eventq_read_ptr &
2987 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2988 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2989 channel->channel);
2990 } else {
2991 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2992 channel->eventq_read_ptr &
2993 channel->eventq_mask);
2994 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2995 }
2996 }
2997
2998 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2999 {
3000 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3001 struct efx_nic *efx = channel->efx;
3002 efx_qword_t event;
3003 int rc;
3004
3005 EFX_POPULATE_QWORD_2(event,
3006 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3007 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3008
3009 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3010
3011 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3012 * already swapped the data to little-endian order.
3013 */
3014 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3015 sizeof(efx_qword_t));
3016
3017 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3018 NULL, 0, NULL);
3019 if (rc != 0)
3020 goto fail;
3021
3022 return;
3023
3024 fail:
3025 WARN_ON(true);
3026 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3027 }
3028
3029 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3030 {
3031 if (atomic_dec_and_test(&efx->active_queues))
3032 wake_up(&efx->flush_wq);
3033
3034 WARN_ON(atomic_read(&efx->active_queues) < 0);
3035 }
3036
3037 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3038 {
3039 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3040 struct efx_channel *channel;
3041 struct efx_tx_queue *tx_queue;
3042 struct efx_rx_queue *rx_queue;
3043 int pending;
3044
3045 /* If the MC has just rebooted, the TX/RX queues will have already been
3046 * torn down, but efx->active_queues needs to be set to zero.
3047 */
3048 if (nic_data->must_realloc_vis) {
3049 atomic_set(&efx->active_queues, 0);
3050 return 0;
3051 }
3052
3053 /* Do not attempt to write to the NIC during EEH recovery */
3054 if (efx->state != STATE_RECOVERY) {
3055 efx_for_each_channel(channel, efx) {
3056 efx_for_each_channel_rx_queue(rx_queue, channel)
3057 efx_ef10_rx_fini(rx_queue);
3058 efx_for_each_channel_tx_queue(tx_queue, channel)
3059 efx_ef10_tx_fini(tx_queue);
3060 }
3061
3062 wait_event_timeout(efx->flush_wq,
3063 atomic_read(&efx->active_queues) == 0,
3064 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3065 pending = atomic_read(&efx->active_queues);
3066 if (pending) {
3067 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3068 pending);
3069 return -ETIMEDOUT;
3070 }
3071 }
3072
3073 return 0;
3074 }
3075
3076 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3077 {
3078 atomic_set(&efx->active_queues, 0);
3079 }
3080
3081 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3082 const struct efx_filter_spec *right)
3083 {
3084 if ((left->match_flags ^ right->match_flags) |
3085 ((left->flags ^ right->flags) &
3086 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3087 return false;
3088
3089 return memcmp(&left->outer_vid, &right->outer_vid,
3090 sizeof(struct efx_filter_spec) -
3091 offsetof(struct efx_filter_spec, outer_vid)) == 0;
3092 }
3093
3094 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3095 {
3096 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3097 return jhash2((const u32 *)&spec->outer_vid,
3098 (sizeof(struct efx_filter_spec) -
3099 offsetof(struct efx_filter_spec, outer_vid)) / 4,
3100 0);
3101 /* XXX should we randomise the initval? */
3102 }
3103
3104 /* Decide whether a filter should be exclusive or else should allow
3105 * delivery to additional recipients. Currently we decide that
3106 * filters for specific local unicast MAC and IP addresses are
3107 * exclusive.
3108 */
3109 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3110 {
3111 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3112 !is_multicast_ether_addr(spec->loc_mac))
3113 return true;
3114
3115 if ((spec->match_flags &
3116 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3117 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3118 if (spec->ether_type == htons(ETH_P_IP) &&
3119 !ipv4_is_multicast(spec->loc_host[0]))
3120 return true;
3121 if (spec->ether_type == htons(ETH_P_IPV6) &&
3122 ((const u8 *)spec->loc_host)[0] != 0xff)
3123 return true;
3124 }
3125
3126 return false;
3127 }
3128
3129 static struct efx_filter_spec *
3130 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3131 unsigned int filter_idx)
3132 {
3133 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3134 ~EFX_EF10_FILTER_FLAGS);
3135 }
3136
3137 static unsigned int
3138 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3139 unsigned int filter_idx)
3140 {
3141 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3142 }
3143
3144 static void
3145 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3146 unsigned int filter_idx,
3147 const struct efx_filter_spec *spec,
3148 unsigned int flags)
3149 {
3150 table->entry[filter_idx].spec = (unsigned long)spec | flags;
3151 }
3152
3153 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3154 const struct efx_filter_spec *spec,
3155 efx_dword_t *inbuf, u64 handle,
3156 bool replacing)
3157 {
3158 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3159 u32 flags = spec->flags;
3160
3161 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
3162
3163 /* Remove RSS flag if we don't have an RSS context. */
3164 if (flags & EFX_FILTER_FLAG_RX_RSS &&
3165 spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3166 nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3167 flags &= ~EFX_FILTER_FLAG_RX_RSS;
3168
3169 if (replacing) {
3170 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3171 MC_CMD_FILTER_OP_IN_OP_REPLACE);
3172 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3173 } else {
3174 u32 match_fields = 0;
3175
3176 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3177 efx_ef10_filter_is_exclusive(spec) ?
3178 MC_CMD_FILTER_OP_IN_OP_INSERT :
3179 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3180
3181 /* Convert match flags and values. Unlike almost
3182 * everything else in MCDI, these fields are in
3183 * network byte order.
3184 */
3185 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3186 match_fields |=
3187 is_multicast_ether_addr(spec->loc_mac) ?
3188 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
3189 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3190 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
3191 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
3192 match_fields |= \
3193 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
3194 mcdi_field ## _LBN; \
3195 BUILD_BUG_ON( \
3196 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3197 sizeof(spec->gen_field)); \
3198 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
3199 &spec->gen_field, sizeof(spec->gen_field)); \
3200 }
3201 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3202 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3203 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3204 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3205 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3206 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3207 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3208 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3209 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3210 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3211 #undef COPY_FIELD
3212 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3213 match_fields);
3214 }
3215
3216 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3217 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3218 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3219 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3220 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3221 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3222 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3223 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3224 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3225 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3226 0 : spec->dmaq_id);
3227 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3228 (flags & EFX_FILTER_FLAG_RX_RSS) ?
3229 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3230 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3231 if (flags & EFX_FILTER_FLAG_RX_RSS)
3232 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3233 spec->rss_context !=
3234 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3235 spec->rss_context : nic_data->rx_rss_context);
3236 }
3237
3238 static int efx_ef10_filter_push(struct efx_nic *efx,
3239 const struct efx_filter_spec *spec,
3240 u64 *handle, bool replacing)
3241 {
3242 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3243 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
3244 int rc;
3245
3246 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3247 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3248 outbuf, sizeof(outbuf), NULL);
3249 if (rc == 0)
3250 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3251 if (rc == -ENOSPC)
3252 rc = -EBUSY; /* to match efx_farch_filter_insert() */
3253 return rc;
3254 }
3255
3256 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3257 {
3258 unsigned int match_flags = spec->match_flags;
3259 u32 mcdi_flags = 0;
3260
3261 if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3262 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3263 mcdi_flags |=
3264 is_multicast_ether_addr(spec->loc_mac) ?
3265 (1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) :
3266 (1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN);
3267 }
3268
3269 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field) { \
3270 unsigned int old_match_flags = match_flags; \
3271 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag; \
3272 if (match_flags != old_match_flags) \
3273 mcdi_flags |= \
3274 (1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
3275 mcdi_field ## _LBN); \
3276 }
3277 MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP);
3278 MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP);
3279 MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC);
3280 MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT);
3281 MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC);
3282 MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT);
3283 MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE);
3284 MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN);
3285 MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN);
3286 MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO);
3287 #undef MAP_FILTER_TO_MCDI_FLAG
3288
3289 /* Did we map them all? */
3290 WARN_ON_ONCE(match_flags);
3291
3292 return mcdi_flags;
3293 }
3294
3295 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3296 const struct efx_filter_spec *spec)
3297 {
3298 u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3299 unsigned int match_pri;
3300
3301 for (match_pri = 0;
3302 match_pri < table->rx_match_count;
3303 match_pri++)
3304 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3305 return match_pri;
3306
3307 return -EPROTONOSUPPORT;
3308 }
3309
3310 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
3311 struct efx_filter_spec *spec,
3312 bool replace_equal)
3313 {
3314 struct efx_ef10_filter_table *table = efx->filter_state;
3315 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3316 struct efx_filter_spec *saved_spec;
3317 unsigned int match_pri, hash;
3318 unsigned int priv_flags;
3319 bool replacing = false;
3320 int ins_index = -1;
3321 DEFINE_WAIT(wait);
3322 bool is_mc_recip;
3323 s32 rc;
3324
3325 /* For now, only support RX filters */
3326 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3327 EFX_FILTER_FLAG_RX)
3328 return -EINVAL;
3329
3330 rc = efx_ef10_filter_pri(table, spec);
3331 if (rc < 0)
3332 return rc;
3333 match_pri = rc;
3334
3335 hash = efx_ef10_filter_hash(spec);
3336 is_mc_recip = efx_filter_is_mc_recipient(spec);
3337 if (is_mc_recip)
3338 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3339
3340 /* Find any existing filters with the same match tuple or
3341 * else a free slot to insert at. If any of them are busy,
3342 * we have to wait and retry.
3343 */
3344 for (;;) {
3345 unsigned int depth = 1;
3346 unsigned int i;
3347
3348 spin_lock_bh(&efx->filter_lock);
3349
3350 for (;;) {
3351 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3352 saved_spec = efx_ef10_filter_entry_spec(table, i);
3353
3354 if (!saved_spec) {
3355 if (ins_index < 0)
3356 ins_index = i;
3357 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3358 if (table->entry[i].spec &
3359 EFX_EF10_FILTER_FLAG_BUSY)
3360 break;
3361 if (spec->priority < saved_spec->priority &&
3362 spec->priority != EFX_FILTER_PRI_AUTO) {
3363 rc = -EPERM;
3364 goto out_unlock;
3365 }
3366 if (!is_mc_recip) {
3367 /* This is the only one */
3368 if (spec->priority ==
3369 saved_spec->priority &&
3370 !replace_equal) {
3371 rc = -EEXIST;
3372 goto out_unlock;
3373 }
3374 ins_index = i;
3375 goto found;
3376 } else if (spec->priority >
3377 saved_spec->priority ||
3378 (spec->priority ==
3379 saved_spec->priority &&
3380 replace_equal)) {
3381 if (ins_index < 0)
3382 ins_index = i;
3383 else
3384 __set_bit(depth, mc_rem_map);
3385 }
3386 }
3387
3388 /* Once we reach the maximum search depth, use
3389 * the first suitable slot or return -EBUSY if
3390 * there was none
3391 */
3392 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3393 if (ins_index < 0) {
3394 rc = -EBUSY;
3395 goto out_unlock;
3396 }
3397 goto found;
3398 }
3399
3400 ++depth;
3401 }
3402
3403 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3404 spin_unlock_bh(&efx->filter_lock);
3405 schedule();
3406 }
3407
3408 found:
3409 /* Create a software table entry if necessary, and mark it
3410 * busy. We might yet fail to insert, but any attempt to
3411 * insert a conflicting filter while we're waiting for the
3412 * firmware must find the busy entry.
3413 */
3414 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3415 if (saved_spec) {
3416 if (spec->priority == EFX_FILTER_PRI_AUTO &&
3417 saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3418 /* Just make sure it won't be removed */
3419 if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3420 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3421 table->entry[ins_index].spec &=
3422 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3423 rc = ins_index;
3424 goto out_unlock;
3425 }
3426 replacing = true;
3427 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3428 } else {
3429 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3430 if (!saved_spec) {
3431 rc = -ENOMEM;
3432 goto out_unlock;
3433 }
3434 *saved_spec = *spec;
3435 priv_flags = 0;
3436 }
3437 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3438 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3439
3440 /* Mark lower-priority multicast recipients busy prior to removal */
3441 if (is_mc_recip) {
3442 unsigned int depth, i;
3443
3444 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3445 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3446 if (test_bit(depth, mc_rem_map))
3447 table->entry[i].spec |=
3448 EFX_EF10_FILTER_FLAG_BUSY;
3449 }
3450 }
3451
3452 spin_unlock_bh(&efx->filter_lock);
3453
3454 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3455 replacing);
3456
3457 /* Finalise the software table entry */
3458 spin_lock_bh(&efx->filter_lock);
3459 if (rc == 0) {
3460 if (replacing) {
3461 /* Update the fields that may differ */
3462 if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3463 saved_spec->flags |=
3464 EFX_FILTER_FLAG_RX_OVER_AUTO;
3465 saved_spec->priority = spec->priority;
3466 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3467 saved_spec->flags |= spec->flags;
3468 saved_spec->rss_context = spec->rss_context;
3469 saved_spec->dmaq_id = spec->dmaq_id;
3470 }
3471 } else if (!replacing) {
3472 kfree(saved_spec);
3473 saved_spec = NULL;
3474 }
3475 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3476
3477 /* Remove and finalise entries for lower-priority multicast
3478 * recipients
3479 */
3480 if (is_mc_recip) {
3481 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3482 unsigned int depth, i;
3483
3484 memset(inbuf, 0, sizeof(inbuf));
3485
3486 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3487 if (!test_bit(depth, mc_rem_map))
3488 continue;
3489
3490 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3491 saved_spec = efx_ef10_filter_entry_spec(table, i);
3492 priv_flags = efx_ef10_filter_entry_flags(table, i);
3493
3494 if (rc == 0) {
3495 spin_unlock_bh(&efx->filter_lock);
3496 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3497 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3498 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3499 table->entry[i].handle);
3500 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3501 inbuf, sizeof(inbuf),
3502 NULL, 0, NULL);
3503 spin_lock_bh(&efx->filter_lock);
3504 }
3505
3506 if (rc == 0) {
3507 kfree(saved_spec);
3508 saved_spec = NULL;
3509 priv_flags = 0;
3510 } else {
3511 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3512 }
3513 efx_ef10_filter_set_entry(table, i, saved_spec,
3514 priv_flags);
3515 }
3516 }
3517
3518 /* If successful, return the inserted filter ID */
3519 if (rc == 0)
3520 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3521
3522 wake_up_all(&table->waitq);
3523 out_unlock:
3524 spin_unlock_bh(&efx->filter_lock);
3525 finish_wait(&table->waitq, &wait);
3526 return rc;
3527 }
3528
3529 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3530 {
3531 /* no need to do anything here on EF10 */
3532 }
3533
3534 /* Remove a filter.
3535 * If !by_index, remove by ID
3536 * If by_index, remove by index
3537 * Filter ID may come from userland and must be range-checked.
3538 */
3539 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3540 unsigned int priority_mask,
3541 u32 filter_id, bool by_index)
3542 {
3543 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3544 struct efx_ef10_filter_table *table = efx->filter_state;
3545 MCDI_DECLARE_BUF(inbuf,
3546 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3547 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3548 struct efx_filter_spec *spec;
3549 DEFINE_WAIT(wait);
3550 int rc;
3551
3552 /* Find the software table entry and mark it busy. Don't
3553 * remove it yet; any attempt to update while we're waiting
3554 * for the firmware must find the busy entry.
3555 */
3556 for (;;) {
3557 spin_lock_bh(&efx->filter_lock);
3558 if (!(table->entry[filter_idx].spec &
3559 EFX_EF10_FILTER_FLAG_BUSY))
3560 break;
3561 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3562 spin_unlock_bh(&efx->filter_lock);
3563 schedule();
3564 }
3565
3566 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3567 if (!spec ||
3568 (!by_index &&
3569 efx_ef10_filter_pri(table, spec) !=
3570 filter_id / HUNT_FILTER_TBL_ROWS)) {
3571 rc = -ENOENT;
3572 goto out_unlock;
3573 }
3574
3575 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3576 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3577 /* Just remove flags */
3578 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3579 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3580 rc = 0;
3581 goto out_unlock;
3582 }
3583
3584 if (!(priority_mask & (1U << spec->priority))) {
3585 rc = -ENOENT;
3586 goto out_unlock;
3587 }
3588
3589 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3590 spin_unlock_bh(&efx->filter_lock);
3591
3592 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3593 /* Reset to an automatic filter */
3594
3595 struct efx_filter_spec new_spec = *spec;
3596
3597 new_spec.priority = EFX_FILTER_PRI_AUTO;
3598 new_spec.flags = (EFX_FILTER_FLAG_RX |
3599 (efx_rss_enabled(efx) ?
3600 EFX_FILTER_FLAG_RX_RSS : 0));
3601 new_spec.dmaq_id = 0;
3602 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3603 rc = efx_ef10_filter_push(efx, &new_spec,
3604 &table->entry[filter_idx].handle,
3605 true);
3606
3607 spin_lock_bh(&efx->filter_lock);
3608 if (rc == 0)
3609 *spec = new_spec;
3610 } else {
3611 /* Really remove the filter */
3612
3613 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3614 efx_ef10_filter_is_exclusive(spec) ?
3615 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3616 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3617 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3618 table->entry[filter_idx].handle);
3619 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3620 inbuf, sizeof(inbuf), NULL, 0, NULL);
3621
3622 spin_lock_bh(&efx->filter_lock);
3623 if (rc == 0) {
3624 kfree(spec);
3625 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3626 }
3627 }
3628
3629 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3630 wake_up_all(&table->waitq);
3631 out_unlock:
3632 spin_unlock_bh(&efx->filter_lock);
3633 finish_wait(&table->waitq, &wait);
3634 return rc;
3635 }
3636
3637 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3638 enum efx_filter_priority priority,
3639 u32 filter_id)
3640 {
3641 return efx_ef10_filter_remove_internal(efx, 1U << priority,
3642 filter_id, false);
3643 }
3644
3645 static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
3646 {
3647 return filter_id % HUNT_FILTER_TBL_ROWS;
3648 }
3649
3650 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
3651 enum efx_filter_priority priority,
3652 u32 filter_id)
3653 {
3654 if (filter_id == EFX_EF10_FILTER_ID_INVALID)
3655 return;
3656 efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
3657 }
3658
3659 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3660 enum efx_filter_priority priority,
3661 u32 filter_id, struct efx_filter_spec *spec)
3662 {
3663 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3664 struct efx_ef10_filter_table *table = efx->filter_state;
3665 const struct efx_filter_spec *saved_spec;
3666 int rc;
3667
3668 spin_lock_bh(&efx->filter_lock);
3669 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3670 if (saved_spec && saved_spec->priority == priority &&
3671 efx_ef10_filter_pri(table, saved_spec) ==
3672 filter_id / HUNT_FILTER_TBL_ROWS) {
3673 *spec = *saved_spec;
3674 rc = 0;
3675 } else {
3676 rc = -ENOENT;
3677 }
3678 spin_unlock_bh(&efx->filter_lock);
3679 return rc;
3680 }
3681
3682 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3683 enum efx_filter_priority priority)
3684 {
3685 unsigned int priority_mask;
3686 unsigned int i;
3687 int rc;
3688
3689 priority_mask = (((1U << (priority + 1)) - 1) &
3690 ~(1U << EFX_FILTER_PRI_AUTO));
3691
3692 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3693 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3694 i, true);
3695 if (rc && rc != -ENOENT)
3696 return rc;
3697 }
3698
3699 return 0;
3700 }
3701
3702 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3703 enum efx_filter_priority priority)
3704 {
3705 struct efx_ef10_filter_table *table = efx->filter_state;
3706 unsigned int filter_idx;
3707 s32 count = 0;
3708
3709 spin_lock_bh(&efx->filter_lock);
3710 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3711 if (table->entry[filter_idx].spec &&
3712 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3713 priority)
3714 ++count;
3715 }
3716 spin_unlock_bh(&efx->filter_lock);
3717 return count;
3718 }
3719
3720 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3721 {
3722 struct efx_ef10_filter_table *table = efx->filter_state;
3723
3724 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3725 }
3726
3727 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3728 enum efx_filter_priority priority,
3729 u32 *buf, u32 size)
3730 {
3731 struct efx_ef10_filter_table *table = efx->filter_state;
3732 struct efx_filter_spec *spec;
3733 unsigned int filter_idx;
3734 s32 count = 0;
3735
3736 spin_lock_bh(&efx->filter_lock);
3737 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3738 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3739 if (spec && spec->priority == priority) {
3740 if (count == size) {
3741 count = -EMSGSIZE;
3742 break;
3743 }
3744 buf[count++] = (efx_ef10_filter_pri(table, spec) *
3745 HUNT_FILTER_TBL_ROWS +
3746 filter_idx);
3747 }
3748 }
3749 spin_unlock_bh(&efx->filter_lock);
3750 return count;
3751 }
3752
3753 #ifdef CONFIG_RFS_ACCEL
3754
3755 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3756
3757 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3758 struct efx_filter_spec *spec)
3759 {
3760 struct efx_ef10_filter_table *table = efx->filter_state;
3761 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3762 struct efx_filter_spec *saved_spec;
3763 unsigned int hash, i, depth = 1;
3764 bool replacing = false;
3765 int ins_index = -1;
3766 u64 cookie;
3767 s32 rc;
3768
3769 /* Must be an RX filter without RSS and not for a multicast
3770 * destination address (RFS only works for connected sockets).
3771 * These restrictions allow us to pass only a tiny amount of
3772 * data through to the completion function.
3773 */
3774 EFX_WARN_ON_PARANOID(spec->flags !=
3775 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3776 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3777 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3778
3779 hash = efx_ef10_filter_hash(spec);
3780
3781 spin_lock_bh(&efx->filter_lock);
3782
3783 /* Find any existing filter with the same match tuple or else
3784 * a free slot to insert at. If an existing filter is busy,
3785 * we have to give up.
3786 */
3787 for (;;) {
3788 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3789 saved_spec = efx_ef10_filter_entry_spec(table, i);
3790
3791 if (!saved_spec) {
3792 if (ins_index < 0)
3793 ins_index = i;
3794 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3795 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3796 rc = -EBUSY;
3797 goto fail_unlock;
3798 }
3799 if (spec->priority < saved_spec->priority) {
3800 rc = -EPERM;
3801 goto fail_unlock;
3802 }
3803 ins_index = i;
3804 break;
3805 }
3806
3807 /* Once we reach the maximum search depth, use the
3808 * first suitable slot or return -EBUSY if there was
3809 * none
3810 */
3811 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3812 if (ins_index < 0) {
3813 rc = -EBUSY;
3814 goto fail_unlock;
3815 }
3816 break;
3817 }
3818
3819 ++depth;
3820 }
3821
3822 /* Create a software table entry if necessary, and mark it
3823 * busy. We might yet fail to insert, but any attempt to
3824 * insert a conflicting filter while we're waiting for the
3825 * firmware must find the busy entry.
3826 */
3827 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3828 if (saved_spec) {
3829 replacing = true;
3830 } else {
3831 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3832 if (!saved_spec) {
3833 rc = -ENOMEM;
3834 goto fail_unlock;
3835 }
3836 *saved_spec = *spec;
3837 }
3838 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3839 EFX_EF10_FILTER_FLAG_BUSY);
3840
3841 spin_unlock_bh(&efx->filter_lock);
3842
3843 /* Pack up the variables needed on completion */
3844 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3845
3846 efx_ef10_filter_push_prep(efx, spec, inbuf,
3847 table->entry[ins_index].handle, replacing);
3848 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3849 MC_CMD_FILTER_OP_OUT_LEN,
3850 efx_ef10_filter_rfs_insert_complete, cookie);
3851
3852 return ins_index;
3853
3854 fail_unlock:
3855 spin_unlock_bh(&efx->filter_lock);
3856 return rc;
3857 }
3858
3859 static void
3860 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3861 int rc, efx_dword_t *outbuf,
3862 size_t outlen_actual)
3863 {
3864 struct efx_ef10_filter_table *table = efx->filter_state;
3865 unsigned int ins_index, dmaq_id;
3866 struct efx_filter_spec *spec;
3867 bool replacing;
3868
3869 /* Unpack the cookie */
3870 replacing = cookie >> 31;
3871 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
3872 dmaq_id = cookie & 0xffff;
3873
3874 spin_lock_bh(&efx->filter_lock);
3875 spec = efx_ef10_filter_entry_spec(table, ins_index);
3876 if (rc == 0) {
3877 table->entry[ins_index].handle =
3878 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3879 if (replacing)
3880 spec->dmaq_id = dmaq_id;
3881 } else if (!replacing) {
3882 kfree(spec);
3883 spec = NULL;
3884 }
3885 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
3886 spin_unlock_bh(&efx->filter_lock);
3887
3888 wake_up_all(&table->waitq);
3889 }
3890
3891 static void
3892 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3893 unsigned long filter_idx,
3894 int rc, efx_dword_t *outbuf,
3895 size_t outlen_actual);
3896
3897 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
3898 unsigned int filter_idx)
3899 {
3900 struct efx_ef10_filter_table *table = efx->filter_state;
3901 struct efx_filter_spec *spec =
3902 efx_ef10_filter_entry_spec(table, filter_idx);
3903 MCDI_DECLARE_BUF(inbuf,
3904 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3905 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3906
3907 if (!spec ||
3908 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
3909 spec->priority != EFX_FILTER_PRI_HINT ||
3910 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
3911 flow_id, filter_idx))
3912 return false;
3913
3914 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3915 MC_CMD_FILTER_OP_IN_OP_REMOVE);
3916 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3917 table->entry[filter_idx].handle);
3918 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
3919 efx_ef10_filter_rfs_expire_complete, filter_idx))
3920 return false;
3921
3922 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3923 return true;
3924 }
3925
3926 static void
3927 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3928 unsigned long filter_idx,
3929 int rc, efx_dword_t *outbuf,
3930 size_t outlen_actual)
3931 {
3932 struct efx_ef10_filter_table *table = efx->filter_state;
3933 struct efx_filter_spec *spec =
3934 efx_ef10_filter_entry_spec(table, filter_idx);
3935
3936 spin_lock_bh(&efx->filter_lock);
3937 if (rc == 0) {
3938 kfree(spec);
3939 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3940 }
3941 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3942 wake_up_all(&table->waitq);
3943 spin_unlock_bh(&efx->filter_lock);
3944 }
3945
3946 #endif /* CONFIG_RFS_ACCEL */
3947
3948 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
3949 {
3950 int match_flags = 0;
3951
3952 #define MAP_FLAG(gen_flag, mcdi_field) { \
3953 u32 old_mcdi_flags = mcdi_flags; \
3954 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
3955 mcdi_field ## _LBN); \
3956 if (mcdi_flags != old_mcdi_flags) \
3957 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
3958 }
3959 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
3960 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
3961 MAP_FLAG(REM_HOST, SRC_IP);
3962 MAP_FLAG(LOC_HOST, DST_IP);
3963 MAP_FLAG(REM_MAC, SRC_MAC);
3964 MAP_FLAG(REM_PORT, SRC_PORT);
3965 MAP_FLAG(LOC_MAC, DST_MAC);
3966 MAP_FLAG(LOC_PORT, DST_PORT);
3967 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
3968 MAP_FLAG(INNER_VID, INNER_VLAN);
3969 MAP_FLAG(OUTER_VID, OUTER_VLAN);
3970 MAP_FLAG(IP_PROTO, IP_PROTO);
3971 #undef MAP_FLAG
3972
3973 /* Did we map them all? */
3974 if (mcdi_flags)
3975 return -EINVAL;
3976
3977 return match_flags;
3978 }
3979
3980 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
3981 {
3982 struct efx_ef10_filter_table *table = efx->filter_state;
3983 struct efx_ef10_filter_vlan *vlan, *next_vlan;
3984
3985 /* See comment in efx_ef10_filter_table_remove() */
3986 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
3987 return;
3988
3989 if (!table)
3990 return;
3991
3992 list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
3993 efx_ef10_filter_del_vlan_internal(efx, vlan);
3994 }
3995
3996 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
3997 enum efx_filter_match_flags match_flags)
3998 {
3999 unsigned int match_pri;
4000 int mf;
4001
4002 for (match_pri = 0;
4003 match_pri < table->rx_match_count;
4004 match_pri++) {
4005 mf = efx_ef10_filter_match_flags_from_mcdi(
4006 table->rx_match_mcdi_flags[match_pri]);
4007 if (mf == match_flags)
4008 return true;
4009 }
4010
4011 return false;
4012 }
4013
4014 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4015 {
4016 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4017 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4018 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4019 struct net_device *net_dev = efx->net_dev;
4020 unsigned int pd_match_pri, pd_match_count;
4021 struct efx_ef10_filter_table *table;
4022 struct efx_ef10_vlan *vlan;
4023 size_t outlen;
4024 int rc;
4025
4026 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4027 return -EINVAL;
4028
4029 if (efx->filter_state) /* already probed */
4030 return 0;
4031
4032 table = kzalloc(sizeof(*table), GFP_KERNEL);
4033 if (!table)
4034 return -ENOMEM;
4035
4036 /* Find out which RX filter types are supported, and their priorities */
4037 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4038 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4039 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4040 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4041 &outlen);
4042 if (rc)
4043 goto fail;
4044 pd_match_count = MCDI_VAR_ARRAY_LEN(
4045 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4046 table->rx_match_count = 0;
4047
4048 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4049 u32 mcdi_flags =
4050 MCDI_ARRAY_DWORD(
4051 outbuf,
4052 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4053 pd_match_pri);
4054 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
4055 if (rc < 0) {
4056 netif_dbg(efx, probe, efx->net_dev,
4057 "%s: fw flags %#x pri %u not supported in driver\n",
4058 __func__, mcdi_flags, pd_match_pri);
4059 } else {
4060 netif_dbg(efx, probe, efx->net_dev,
4061 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4062 __func__, mcdi_flags, pd_match_pri,
4063 rc, table->rx_match_count);
4064 table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4065 table->rx_match_count++;
4066 }
4067 }
4068
4069 if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4070 !(efx_ef10_filter_match_supported(table,
4071 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4072 efx_ef10_filter_match_supported(table,
4073 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4074 netif_info(efx, probe, net_dev,
4075 "VLAN filters are not supported in this firmware variant\n");
4076 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4077 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4078 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4079 }
4080
4081 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4082 if (!table->entry) {
4083 rc = -ENOMEM;
4084 goto fail;
4085 }
4086
4087 table->mc_promisc_last = false;
4088 table->vlan_filter =
4089 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4090 INIT_LIST_HEAD(&table->vlan_list);
4091
4092 efx->filter_state = table;
4093 init_waitqueue_head(&table->waitq);
4094
4095 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4096 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4097 if (rc)
4098 goto fail_add_vlan;
4099 }
4100
4101 return 0;
4102
4103 fail_add_vlan:
4104 efx_ef10_filter_cleanup_vlans(efx);
4105 efx->filter_state = NULL;
4106 fail:
4107 kfree(table);
4108 return rc;
4109 }
4110
4111 /* Caller must hold efx->filter_sem for read if race against
4112 * efx_ef10_filter_table_remove() is possible
4113 */
4114 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4115 {
4116 struct efx_ef10_filter_table *table = efx->filter_state;
4117 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4118 struct efx_filter_spec *spec;
4119 unsigned int filter_idx;
4120 bool failed = false;
4121 int rc;
4122
4123 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4124
4125 if (!nic_data->must_restore_filters)
4126 return;
4127
4128 if (!table)
4129 return;
4130
4131 spin_lock_bh(&efx->filter_lock);
4132
4133 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4134 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4135 if (!spec)
4136 continue;
4137
4138 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4139 spin_unlock_bh(&efx->filter_lock);
4140
4141 rc = efx_ef10_filter_push(efx, spec,
4142 &table->entry[filter_idx].handle,
4143 false);
4144 if (rc)
4145 failed = true;
4146
4147 spin_lock_bh(&efx->filter_lock);
4148 if (rc) {
4149 kfree(spec);
4150 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4151 } else {
4152 table->entry[filter_idx].spec &=
4153 ~EFX_EF10_FILTER_FLAG_BUSY;
4154 }
4155 }
4156
4157 spin_unlock_bh(&efx->filter_lock);
4158
4159 if (failed)
4160 netif_err(efx, hw, efx->net_dev,
4161 "unable to restore all filters\n");
4162 else
4163 nic_data->must_restore_filters = false;
4164 }
4165
4166 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4167 {
4168 struct efx_ef10_filter_table *table = efx->filter_state;
4169 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4170 struct efx_filter_spec *spec;
4171 unsigned int filter_idx;
4172 int rc;
4173
4174 efx_ef10_filter_cleanup_vlans(efx);
4175 efx->filter_state = NULL;
4176 /* If we were called without locking, then it's not safe to free
4177 * the table as others might be using it. So we just WARN, leak
4178 * the memory, and potentially get an inconsistent filter table
4179 * state.
4180 * This should never actually happen.
4181 */
4182 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4183 return;
4184
4185 if (!table)
4186 return;
4187
4188 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4189 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4190 if (!spec)
4191 continue;
4192
4193 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4194 efx_ef10_filter_is_exclusive(spec) ?
4195 MC_CMD_FILTER_OP_IN_OP_REMOVE :
4196 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4197 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4198 table->entry[filter_idx].handle);
4199 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4200 sizeof(inbuf), NULL, 0, NULL);
4201 if (rc)
4202 netif_info(efx, drv, efx->net_dev,
4203 "%s: filter %04x remove failed\n",
4204 __func__, filter_idx);
4205 kfree(spec);
4206 }
4207
4208 vfree(table->entry);
4209 kfree(table);
4210 }
4211
4212 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4213 {
4214 struct efx_ef10_filter_table *table = efx->filter_state;
4215 unsigned int filter_idx;
4216
4217 if (*id != EFX_EF10_FILTER_ID_INVALID) {
4218 filter_idx = efx_ef10_filter_get_unsafe_id(efx, *id);
4219 if (!table->entry[filter_idx].spec)
4220 netif_dbg(efx, drv, efx->net_dev,
4221 "marked null spec old %04x:%04x\n", *id,
4222 filter_idx);
4223 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
4224 *id = EFX_EF10_FILTER_ID_INVALID;
4225 }
4226 }
4227
4228 /* Mark old per-VLAN filters that may need to be removed */
4229 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
4230 struct efx_ef10_filter_vlan *vlan)
4231 {
4232 struct efx_ef10_filter_table *table = efx->filter_state;
4233 unsigned int i;
4234
4235 for (i = 0; i < table->dev_uc_count; i++)
4236 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
4237 for (i = 0; i < table->dev_mc_count; i++)
4238 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
4239 efx_ef10_filter_mark_one_old(efx, &vlan->ucdef);
4240 efx_ef10_filter_mark_one_old(efx, &vlan->bcast);
4241 efx_ef10_filter_mark_one_old(efx, &vlan->mcdef);
4242 }
4243
4244 /* Mark old filters that may need to be removed.
4245 * Caller must hold efx->filter_sem for read if race against
4246 * efx_ef10_filter_table_remove() is possible
4247 */
4248 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
4249 {
4250 struct efx_ef10_filter_table *table = efx->filter_state;
4251 struct efx_ef10_filter_vlan *vlan;
4252
4253 spin_lock_bh(&efx->filter_lock);
4254 list_for_each_entry(vlan, &table->vlan_list, list)
4255 _efx_ef10_filter_vlan_mark_old(efx, vlan);
4256 spin_unlock_bh(&efx->filter_lock);
4257 }
4258
4259 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
4260 {
4261 struct efx_ef10_filter_table *table = efx->filter_state;
4262 struct net_device *net_dev = efx->net_dev;
4263 struct netdev_hw_addr *uc;
4264 int addr_count;
4265 unsigned int i;
4266
4267 addr_count = netdev_uc_count(net_dev);
4268 table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
4269 table->dev_uc_count = 1 + addr_count;
4270 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
4271 i = 1;
4272 netdev_for_each_uc_addr(uc, net_dev) {
4273 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
4274 table->uc_promisc = true;
4275 break;
4276 }
4277 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
4278 i++;
4279 }
4280 }
4281
4282 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
4283 {
4284 struct efx_ef10_filter_table *table = efx->filter_state;
4285 struct net_device *net_dev = efx->net_dev;
4286 struct netdev_hw_addr *mc;
4287 unsigned int i, addr_count;
4288
4289 table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
4290
4291 addr_count = netdev_mc_count(net_dev);
4292 i = 0;
4293 netdev_for_each_mc_addr(mc, net_dev) {
4294 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
4295 table->mc_promisc = true;
4296 break;
4297 }
4298 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
4299 i++;
4300 }
4301
4302 table->dev_mc_count = i;
4303 }
4304
4305 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
4306 struct efx_ef10_filter_vlan *vlan,
4307 bool multicast, bool rollback)
4308 {
4309 struct efx_ef10_filter_table *table = efx->filter_state;
4310 struct efx_ef10_dev_addr *addr_list;
4311 enum efx_filter_flags filter_flags;
4312 struct efx_filter_spec spec;
4313 u8 baddr[ETH_ALEN];
4314 unsigned int i, j;
4315 int addr_count;
4316 u16 *ids;
4317 int rc;
4318
4319 if (multicast) {
4320 addr_list = table->dev_mc_list;
4321 addr_count = table->dev_mc_count;
4322 ids = vlan->mc;
4323 } else {
4324 addr_list = table->dev_uc_list;
4325 addr_count = table->dev_uc_count;
4326 ids = vlan->uc;
4327 }
4328
4329 filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4330
4331 /* Insert/renew filters */
4332 for (i = 0; i < addr_count; i++) {
4333 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4334 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
4335 rc = efx_ef10_filter_insert(efx, &spec, true);
4336 if (rc < 0) {
4337 if (rollback) {
4338 netif_info(efx, drv, efx->net_dev,
4339 "efx_ef10_filter_insert failed rc=%d\n",
4340 rc);
4341 /* Fall back to promiscuous */
4342 for (j = 0; j < i; j++) {
4343 efx_ef10_filter_remove_unsafe(
4344 efx, EFX_FILTER_PRI_AUTO,
4345 ids[j]);
4346 ids[j] = EFX_EF10_FILTER_ID_INVALID;
4347 }
4348 return rc;
4349 } else {
4350 /* mark as not inserted, and carry on */
4351 rc = EFX_EF10_FILTER_ID_INVALID;
4352 }
4353 }
4354 ids[i] = efx_ef10_filter_get_unsafe_id(efx, rc);
4355 }
4356
4357 if (multicast && rollback) {
4358 /* Also need an Ethernet broadcast filter */
4359 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4360 eth_broadcast_addr(baddr);
4361 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4362 rc = efx_ef10_filter_insert(efx, &spec, true);
4363 if (rc < 0) {
4364 netif_warn(efx, drv, efx->net_dev,
4365 "Broadcast filter insert failed rc=%d\n", rc);
4366 /* Fall back to promiscuous */
4367 for (j = 0; j < i; j++) {
4368 efx_ef10_filter_remove_unsafe(
4369 efx, EFX_FILTER_PRI_AUTO,
4370 ids[j]);
4371 ids[j] = EFX_EF10_FILTER_ID_INVALID;
4372 }
4373 return rc;
4374 } else {
4375 EFX_WARN_ON_PARANOID(vlan->bcast !=
4376 EFX_EF10_FILTER_ID_INVALID);
4377 vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4378 }
4379 }
4380
4381 return 0;
4382 }
4383
4384 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
4385 struct efx_ef10_filter_vlan *vlan,
4386 bool multicast, bool rollback)
4387 {
4388 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4389 enum efx_filter_flags filter_flags;
4390 struct efx_filter_spec spec;
4391 u8 baddr[ETH_ALEN];
4392 int rc;
4393
4394 filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4395
4396 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4397
4398 if (multicast)
4399 efx_filter_set_mc_def(&spec);
4400 else
4401 efx_filter_set_uc_def(&spec);
4402
4403 if (vlan->vid != EFX_FILTER_VID_UNSPEC)
4404 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
4405
4406 rc = efx_ef10_filter_insert(efx, &spec, true);
4407 if (rc < 0) {
4408 netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
4409 efx->net_dev,
4410 "%scast mismatch filter insert failed rc=%d\n",
4411 multicast ? "Multi" : "Uni", rc);
4412 } else if (multicast) {
4413 EFX_WARN_ON_PARANOID(vlan->mcdef != EFX_EF10_FILTER_ID_INVALID);
4414 vlan->mcdef = efx_ef10_filter_get_unsafe_id(efx, rc);
4415 if (!nic_data->workaround_26807) {
4416 /* Also need an Ethernet broadcast filter */
4417 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4418 filter_flags, 0);
4419 eth_broadcast_addr(baddr);
4420 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4421 rc = efx_ef10_filter_insert(efx, &spec, true);
4422 if (rc < 0) {
4423 netif_warn(efx, drv, efx->net_dev,
4424 "Broadcast filter insert failed rc=%d\n",
4425 rc);
4426 if (rollback) {
4427 /* Roll back the mc_def filter */
4428 efx_ef10_filter_remove_unsafe(
4429 efx, EFX_FILTER_PRI_AUTO,
4430 vlan->mcdef);
4431 vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4432 return rc;
4433 }
4434 } else {
4435 EFX_WARN_ON_PARANOID(vlan->bcast !=
4436 EFX_EF10_FILTER_ID_INVALID);
4437 vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4438 }
4439 }
4440 rc = 0;
4441 } else {
4442 EFX_WARN_ON_PARANOID(vlan->ucdef != EFX_EF10_FILTER_ID_INVALID);
4443 vlan->ucdef = rc;
4444 rc = 0;
4445 }
4446 return rc;
4447 }
4448
4449 /* Remove filters that weren't renewed. Since nothing else changes the AUTO_OLD
4450 * flag or removes these filters, we don't need to hold the filter_lock while
4451 * scanning for these filters.
4452 */
4453 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4454 {
4455 struct efx_ef10_filter_table *table = efx->filter_state;
4456 int remove_failed = 0;
4457 int remove_noent = 0;
4458 int rc;
4459 int i;
4460
4461 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4462 if (ACCESS_ONCE(table->entry[i].spec) &
4463 EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4464 rc = efx_ef10_filter_remove_internal(efx,
4465 1U << EFX_FILTER_PRI_AUTO, i, true);
4466 if (rc == -ENOENT)
4467 remove_noent++;
4468 else if (rc)
4469 remove_failed++;
4470 }
4471 }
4472
4473 if (remove_failed)
4474 netif_info(efx, drv, efx->net_dev,
4475 "%s: failed to remove %d filters\n",
4476 __func__, remove_failed);
4477 if (remove_noent)
4478 netif_info(efx, drv, efx->net_dev,
4479 "%s: failed to remove %d non-existent filters\n",
4480 __func__, remove_noent);
4481 }
4482
4483 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4484 {
4485 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4486 u8 mac_old[ETH_ALEN];
4487 int rc, rc2;
4488
4489 /* Only reconfigure a PF-created vport */
4490 if (is_zero_ether_addr(nic_data->vport_mac))
4491 return 0;
4492
4493 efx_device_detach_sync(efx);
4494 efx_net_stop(efx->net_dev);
4495 down_write(&efx->filter_sem);
4496 efx_ef10_filter_table_remove(efx);
4497 up_write(&efx->filter_sem);
4498
4499 rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4500 if (rc)
4501 goto restore_filters;
4502
4503 ether_addr_copy(mac_old, nic_data->vport_mac);
4504 rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4505 nic_data->vport_mac);
4506 if (rc)
4507 goto restore_vadaptor;
4508
4509 rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4510 efx->net_dev->dev_addr);
4511 if (!rc) {
4512 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4513 } else {
4514 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4515 if (rc2) {
4516 /* Failed to add original MAC, so clear vport_mac */
4517 eth_zero_addr(nic_data->vport_mac);
4518 goto reset_nic;
4519 }
4520 }
4521
4522 restore_vadaptor:
4523 rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4524 if (rc2)
4525 goto reset_nic;
4526 restore_filters:
4527 down_write(&efx->filter_sem);
4528 rc2 = efx_ef10_filter_table_probe(efx);
4529 up_write(&efx->filter_sem);
4530 if (rc2)
4531 goto reset_nic;
4532
4533 rc2 = efx_net_open(efx->net_dev);
4534 if (rc2)
4535 goto reset_nic;
4536
4537 netif_device_attach(efx->net_dev);
4538
4539 return rc;
4540
4541 reset_nic:
4542 netif_err(efx, drv, efx->net_dev,
4543 "Failed to restore when changing MAC address - scheduling reset\n");
4544 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4545
4546 return rc ? rc : rc2;
4547 }
4548
4549 /* Caller must hold efx->filter_sem for read if race against
4550 * efx_ef10_filter_table_remove() is possible
4551 */
4552 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
4553 struct efx_ef10_filter_vlan *vlan)
4554 {
4555 struct efx_ef10_filter_table *table = efx->filter_state;
4556 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4557
4558 /* Do not install unspecified VID if VLAN filtering is enabled.
4559 * Do not install all specified VIDs if VLAN filtering is disabled.
4560 */
4561 if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
4562 return;
4563
4564 /* Insert/renew unicast filters */
4565 if (table->uc_promisc) {
4566 efx_ef10_filter_insert_def(efx, vlan, false, false);
4567 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
4568 } else {
4569 /* If any of the filters failed to insert, fall back to
4570 * promiscuous mode - add in the uc_def filter. But keep
4571 * our individual unicast filters.
4572 */
4573 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
4574 efx_ef10_filter_insert_def(efx, vlan, false, false);
4575 }
4576
4577 /* Insert/renew multicast filters */
4578 /* If changing promiscuous state with cascaded multicast filters, remove
4579 * old filters first, so that packets are dropped rather than duplicated
4580 */
4581 if (nic_data->workaround_26807 &&
4582 table->mc_promisc_last != table->mc_promisc)
4583 efx_ef10_filter_remove_old(efx);
4584 if (table->mc_promisc) {
4585 if (nic_data->workaround_26807) {
4586 /* If we failed to insert promiscuous filters, rollback
4587 * and fall back to individual multicast filters
4588 */
4589 if (efx_ef10_filter_insert_def(efx, vlan, true, true)) {
4590 /* Changing promisc state, so remove old filters */
4591 efx_ef10_filter_remove_old(efx);
4592 efx_ef10_filter_insert_addr_list(efx, vlan,
4593 true, false);
4594 }
4595 } else {
4596 /* If we failed to insert promiscuous filters, don't
4597 * rollback. Regardless, also insert the mc_list
4598 */
4599 efx_ef10_filter_insert_def(efx, vlan, true, false);
4600 efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
4601 }
4602 } else {
4603 /* If any filters failed to insert, rollback and fall back to
4604 * promiscuous mode - mc_def filter and maybe broadcast. If
4605 * that fails, roll back again and insert as many of our
4606 * individual multicast filters as we can.
4607 */
4608 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
4609 /* Changing promisc state, so remove old filters */
4610 if (nic_data->workaround_26807)
4611 efx_ef10_filter_remove_old(efx);
4612 if (efx_ef10_filter_insert_def(efx, vlan, true, true))
4613 efx_ef10_filter_insert_addr_list(efx, vlan,
4614 true, false);
4615 }
4616 }
4617 }
4618
4619 /* Caller must hold efx->filter_sem for read if race against
4620 * efx_ef10_filter_table_remove() is possible
4621 */
4622 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4623 {
4624 struct efx_ef10_filter_table *table = efx->filter_state;
4625 struct net_device *net_dev = efx->net_dev;
4626 struct efx_ef10_filter_vlan *vlan;
4627 bool vlan_filter;
4628
4629 if (!efx_dev_registered(efx))
4630 return;
4631
4632 if (!table)
4633 return;
4634
4635 efx_ef10_filter_mark_old(efx);
4636
4637 /* Copy/convert the address lists; add the primary station
4638 * address and broadcast address
4639 */
4640 netif_addr_lock_bh(net_dev);
4641 efx_ef10_filter_uc_addr_list(efx);
4642 efx_ef10_filter_mc_addr_list(efx);
4643 netif_addr_unlock_bh(net_dev);
4644
4645 /* If VLAN filtering changes, all old filters are finally removed.
4646 * Do it in advance to avoid conflicts for unicast untagged and
4647 * VLAN 0 tagged filters.
4648 */
4649 vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4650 if (table->vlan_filter != vlan_filter) {
4651 table->vlan_filter = vlan_filter;
4652 efx_ef10_filter_remove_old(efx);
4653 }
4654
4655 list_for_each_entry(vlan, &table->vlan_list, list)
4656 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
4657
4658 efx_ef10_filter_remove_old(efx);
4659 table->mc_promisc_last = table->mc_promisc;
4660 }
4661
4662 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
4663 {
4664 struct efx_ef10_filter_table *table = efx->filter_state;
4665 struct efx_ef10_filter_vlan *vlan;
4666
4667 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4668
4669 list_for_each_entry(vlan, &table->vlan_list, list) {
4670 if (vlan->vid == vid)
4671 return vlan;
4672 }
4673
4674 return NULL;
4675 }
4676
4677 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
4678 {
4679 struct efx_ef10_filter_table *table = efx->filter_state;
4680 struct efx_ef10_filter_vlan *vlan;
4681 unsigned int i;
4682
4683 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4684 return -EINVAL;
4685
4686 vlan = efx_ef10_filter_find_vlan(efx, vid);
4687 if (WARN_ON(vlan)) {
4688 netif_err(efx, drv, efx->net_dev,
4689 "VLAN %u already added\n", vid);
4690 return -EALREADY;
4691 }
4692
4693 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
4694 if (!vlan)
4695 return -ENOMEM;
4696
4697 vlan->vid = vid;
4698
4699 for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
4700 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
4701 for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
4702 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
4703 vlan->ucdef = EFX_EF10_FILTER_ID_INVALID;
4704 vlan->bcast = EFX_EF10_FILTER_ID_INVALID;
4705 vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4706
4707 list_add_tail(&vlan->list, &table->vlan_list);
4708
4709 if (efx_dev_registered(efx))
4710 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
4711
4712 return 0;
4713 }
4714
4715 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
4716 struct efx_ef10_filter_vlan *vlan)
4717 {
4718 unsigned int i;
4719
4720 /* See comment in efx_ef10_filter_table_remove() */
4721 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4722 return;
4723
4724 list_del(&vlan->list);
4725
4726 for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
4727 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
4728 vlan->uc[i]);
4729 for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
4730 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
4731 vlan->mc[i]);
4732 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->ucdef);
4733 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->bcast);
4734 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->mcdef);
4735
4736 kfree(vlan);
4737 }
4738
4739 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
4740 {
4741 struct efx_ef10_filter_vlan *vlan;
4742
4743 /* See comment in efx_ef10_filter_table_remove() */
4744 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4745 return;
4746
4747 vlan = efx_ef10_filter_find_vlan(efx, vid);
4748 if (!vlan) {
4749 netif_err(efx, drv, efx->net_dev,
4750 "VLAN %u not found in filter state\n", vid);
4751 return;
4752 }
4753
4754 efx_ef10_filter_del_vlan_internal(efx, vlan);
4755 }
4756
4757 static int efx_ef10_set_mac_address(struct efx_nic *efx)
4758 {
4759 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
4760 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4761 bool was_enabled = efx->port_enabled;
4762 int rc;
4763
4764 efx_device_detach_sync(efx);
4765 efx_net_stop(efx->net_dev);
4766
4767 mutex_lock(&efx->mac_lock);
4768 down_write(&efx->filter_sem);
4769 efx_ef10_filter_table_remove(efx);
4770
4771 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
4772 efx->net_dev->dev_addr);
4773 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
4774 nic_data->vport_id);
4775 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
4776 sizeof(inbuf), NULL, 0, NULL);
4777
4778 efx_ef10_filter_table_probe(efx);
4779 up_write(&efx->filter_sem);
4780 mutex_unlock(&efx->mac_lock);
4781
4782 if (was_enabled)
4783 efx_net_open(efx->net_dev);
4784 netif_device_attach(efx->net_dev);
4785
4786 #ifdef CONFIG_SFC_SRIOV
4787 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4788 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
4789
4790 if (rc == -EPERM) {
4791 struct efx_nic *efx_pf;
4792
4793 /* Switch to PF and change MAC address on vport */
4794 efx_pf = pci_get_drvdata(pci_dev_pf);
4795
4796 rc = efx_ef10_sriov_set_vf_mac(efx_pf,
4797 nic_data->vf_index,
4798 efx->net_dev->dev_addr);
4799 } else if (!rc) {
4800 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
4801 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
4802 unsigned int i;
4803
4804 /* MAC address successfully changed by VF (with MAC
4805 * spoofing) so update the parent PF if possible.
4806 */
4807 for (i = 0; i < efx_pf->vf_count; ++i) {
4808 struct ef10_vf *vf = nic_data->vf + i;
4809
4810 if (vf->efx == efx) {
4811 ether_addr_copy(vf->mac,
4812 efx->net_dev->dev_addr);
4813 return 0;
4814 }
4815 }
4816 }
4817 } else
4818 #endif
4819 if (rc == -EPERM) {
4820 netif_err(efx, drv, efx->net_dev,
4821 "Cannot change MAC address; use sfboot to enable"
4822 " mac-spoofing on this interface\n");
4823 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
4824 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4825 * fall-back to the method of changing the MAC address on the
4826 * vport. This only applies to PFs because such versions of
4827 * MCFW do not support VFs.
4828 */
4829 rc = efx_ef10_vport_set_mac_address(efx);
4830 } else {
4831 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
4832 sizeof(inbuf), NULL, 0, rc);
4833 }
4834
4835 return rc;
4836 }
4837
4838 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
4839 {
4840 efx_ef10_filter_sync_rx_mode(efx);
4841
4842 return efx_mcdi_set_mac(efx);
4843 }
4844
4845 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4846 {
4847 efx_ef10_filter_sync_rx_mode(efx);
4848
4849 return 0;
4850 }
4851
4852 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4853 {
4854 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4855
4856 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4857 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4858 NULL, 0, NULL);
4859 }
4860
4861 /* MC BISTs follow a different poll mechanism to phy BISTs.
4862 * The BIST is done in the poll handler on the MC, and the MCDI command
4863 * will block until the BIST is done.
4864 */
4865 static int efx_ef10_poll_bist(struct efx_nic *efx)
4866 {
4867 int rc;
4868 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
4869 size_t outlen;
4870 u32 result;
4871
4872 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
4873 outbuf, sizeof(outbuf), &outlen);
4874 if (rc != 0)
4875 return rc;
4876
4877 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
4878 return -EIO;
4879
4880 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
4881 switch (result) {
4882 case MC_CMD_POLL_BIST_PASSED:
4883 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
4884 return 0;
4885 case MC_CMD_POLL_BIST_TIMEOUT:
4886 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
4887 return -EIO;
4888 case MC_CMD_POLL_BIST_FAILED:
4889 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
4890 return -EIO;
4891 default:
4892 netif_err(efx, hw, efx->net_dev,
4893 "BIST returned unknown result %u", result);
4894 return -EIO;
4895 }
4896 }
4897
4898 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
4899 {
4900 int rc;
4901
4902 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
4903
4904 rc = efx_ef10_start_bist(efx, bist_type);
4905 if (rc != 0)
4906 return rc;
4907
4908 return efx_ef10_poll_bist(efx);
4909 }
4910
4911 static int
4912 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
4913 {
4914 int rc, rc2;
4915
4916 efx_reset_down(efx, RESET_TYPE_WORLD);
4917
4918 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
4919 NULL, 0, NULL, 0, NULL);
4920 if (rc != 0)
4921 goto out;
4922
4923 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
4924 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
4925
4926 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
4927
4928 out:
4929 if (rc == -EPERM)
4930 rc = 0;
4931 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
4932 return rc ? rc : rc2;
4933 }
4934
4935 #ifdef CONFIG_SFC_MTD
4936
4937 struct efx_ef10_nvram_type_info {
4938 u16 type, type_mask;
4939 u8 port;
4940 const char *name;
4941 };
4942
4943 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
4944 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
4945 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
4946 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
4947 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
4948 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
4949 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
4950 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
4951 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
4952 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
4953 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
4954 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
4955 };
4956
4957 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
4958 struct efx_mcdi_mtd_partition *part,
4959 unsigned int type)
4960 {
4961 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
4962 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
4963 const struct efx_ef10_nvram_type_info *info;
4964 size_t size, erase_size, outlen;
4965 bool protected;
4966 int rc;
4967
4968 for (info = efx_ef10_nvram_types; ; info++) {
4969 if (info ==
4970 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
4971 return -ENODEV;
4972 if ((type & ~info->type_mask) == info->type)
4973 break;
4974 }
4975 if (info->port != efx_port_num(efx))
4976 return -ENODEV;
4977
4978 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
4979 if (rc)
4980 return rc;
4981 if (protected)
4982 return -ENODEV; /* hide it */
4983
4984 part->nvram_type = type;
4985
4986 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
4987 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
4988 outbuf, sizeof(outbuf), &outlen);
4989 if (rc)
4990 return rc;
4991 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
4992 return -EIO;
4993 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
4994 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
4995 part->fw_subtype = MCDI_DWORD(outbuf,
4996 NVRAM_METADATA_OUT_SUBTYPE);
4997
4998 part->common.dev_type_name = "EF10 NVRAM manager";
4999 part->common.type_name = info->name;
5000
5001 part->common.mtd.type = MTD_NORFLASH;
5002 part->common.mtd.flags = MTD_CAP_NORFLASH;
5003 part->common.mtd.size = size;
5004 part->common.mtd.erasesize = erase_size;
5005
5006 return 0;
5007 }
5008
5009 static int efx_ef10_mtd_probe(struct efx_nic *efx)
5010 {
5011 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
5012 struct efx_mcdi_mtd_partition *parts;
5013 size_t outlen, n_parts_total, i, n_parts;
5014 unsigned int type;
5015 int rc;
5016
5017 ASSERT_RTNL();
5018
5019 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5020 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5021 outbuf, sizeof(outbuf), &outlen);
5022 if (rc)
5023 return rc;
5024 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5025 return -EIO;
5026
5027 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5028 if (n_parts_total >
5029 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5030 return -EIO;
5031
5032 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5033 if (!parts)
5034 return -ENOMEM;
5035
5036 n_parts = 0;
5037 for (i = 0; i < n_parts_total; i++) {
5038 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5039 i);
5040 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
5041 if (rc == 0)
5042 n_parts++;
5043 else if (rc != -ENODEV)
5044 goto fail;
5045 }
5046
5047 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5048 fail:
5049 if (rc)
5050 kfree(parts);
5051 return rc;
5052 }
5053
5054 #endif /* CONFIG_SFC_MTD */
5055
5056 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5057 {
5058 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5059 }
5060
5061 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5062 u32 host_time) {}
5063
5064 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5065 bool temp)
5066 {
5067 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5068 int rc;
5069
5070 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5071 channel->sync_events_state == SYNC_EVENTS_VALID ||
5072 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5073 return 0;
5074 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5075
5076 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5077 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5078 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5079 channel->channel);
5080
5081 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5082 inbuf, sizeof(inbuf), NULL, 0, NULL);
5083
5084 if (rc != 0)
5085 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5086 SYNC_EVENTS_DISABLED;
5087
5088 return rc;
5089 }
5090
5091 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5092 bool temp)
5093 {
5094 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
5095 int rc;
5096
5097 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
5098 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
5099 return 0;
5100 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
5101 channel->sync_events_state = SYNC_EVENTS_DISABLED;
5102 return 0;
5103 }
5104 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5105 SYNC_EVENTS_DISABLED;
5106
5107 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
5108 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5109 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
5110 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
5111 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
5112 channel->channel);
5113
5114 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5115 inbuf, sizeof(inbuf), NULL, 0, NULL);
5116
5117 return rc;
5118 }
5119
5120 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
5121 bool temp)
5122 {
5123 int (*set)(struct efx_channel *channel, bool temp);
5124 struct efx_channel *channel;
5125
5126 set = en ?
5127 efx_ef10_rx_enable_timestamping :
5128 efx_ef10_rx_disable_timestamping;
5129
5130 efx_for_each_channel(channel, efx) {
5131 int rc = set(channel, temp);
5132 if (en && rc != 0) {
5133 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
5134 return rc;
5135 }
5136 }
5137
5138 return 0;
5139 }
5140
5141 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
5142 struct hwtstamp_config *init)
5143 {
5144 return -EOPNOTSUPP;
5145 }
5146
5147 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
5148 struct hwtstamp_config *init)
5149 {
5150 int rc;
5151
5152 switch (init->rx_filter) {
5153 case HWTSTAMP_FILTER_NONE:
5154 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
5155 /* if TX timestamping is still requested then leave PTP on */
5156 return efx_ptp_change_mode(efx,
5157 init->tx_type != HWTSTAMP_TX_OFF, 0);
5158 case HWTSTAMP_FILTER_ALL:
5159 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5160 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5161 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5162 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5163 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5164 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5165 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5166 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5167 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5168 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5169 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5170 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5171 init->rx_filter = HWTSTAMP_FILTER_ALL;
5172 rc = efx_ptp_change_mode(efx, true, 0);
5173 if (!rc)
5174 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
5175 if (rc)
5176 efx_ptp_change_mode(efx, false, 0);
5177 return rc;
5178 default:
5179 return -ERANGE;
5180 }
5181 }
5182
5183 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
5184 {
5185 if (proto != htons(ETH_P_8021Q))
5186 return -EINVAL;
5187
5188 return efx_ef10_add_vlan(efx, vid);
5189 }
5190
5191 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
5192 {
5193 if (proto != htons(ETH_P_8021Q))
5194 return -EINVAL;
5195
5196 return efx_ef10_del_vlan(efx, vid);
5197 }
5198
5199 #define EF10_OFFLOAD_FEATURES \
5200 (NETIF_F_IP_CSUM | \
5201 NETIF_F_HW_VLAN_CTAG_FILTER | \
5202 NETIF_F_IPV6_CSUM | \
5203 NETIF_F_RXHASH | \
5204 NETIF_F_NTUPLE)
5205
5206 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
5207 .is_vf = true,
5208 .mem_bar = EFX_MEM_VF_BAR,
5209 .mem_map_size = efx_ef10_mem_map_size,
5210 .probe = efx_ef10_probe_vf,
5211 .remove = efx_ef10_remove,
5212 .dimension_resources = efx_ef10_dimension_resources,
5213 .init = efx_ef10_init_nic,
5214 .fini = efx_port_dummy_op_void,
5215 .map_reset_reason = efx_ef10_map_reset_reason,
5216 .map_reset_flags = efx_ef10_map_reset_flags,
5217 .reset = efx_ef10_reset,
5218 .probe_port = efx_mcdi_port_probe,
5219 .remove_port = efx_mcdi_port_remove,
5220 .fini_dmaq = efx_ef10_fini_dmaq,
5221 .prepare_flr = efx_ef10_prepare_flr,
5222 .finish_flr = efx_port_dummy_op_void,
5223 .describe_stats = efx_ef10_describe_stats,
5224 .update_stats = efx_ef10_update_stats_vf,
5225 .start_stats = efx_port_dummy_op_void,
5226 .pull_stats = efx_port_dummy_op_void,
5227 .stop_stats = efx_port_dummy_op_void,
5228 .set_id_led = efx_mcdi_set_id_led,
5229 .push_irq_moderation = efx_ef10_push_irq_moderation,
5230 .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
5231 .check_mac_fault = efx_mcdi_mac_check_fault,
5232 .reconfigure_port = efx_mcdi_port_reconfigure,
5233 .get_wol = efx_ef10_get_wol_vf,
5234 .set_wol = efx_ef10_set_wol_vf,
5235 .resume_wol = efx_port_dummy_op_void,
5236 .mcdi_request = efx_ef10_mcdi_request,
5237 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
5238 .mcdi_read_response = efx_ef10_mcdi_read_response,
5239 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5240 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5241 .irq_enable_master = efx_port_dummy_op_void,
5242 .irq_test_generate = efx_ef10_irq_test_generate,
5243 .irq_disable_non_ev = efx_port_dummy_op_void,
5244 .irq_handle_msi = efx_ef10_msi_interrupt,
5245 .irq_handle_legacy = efx_ef10_legacy_interrupt,
5246 .tx_probe = efx_ef10_tx_probe,
5247 .tx_init = efx_ef10_tx_init,
5248 .tx_remove = efx_ef10_tx_remove,
5249 .tx_write = efx_ef10_tx_write,
5250 .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
5251 .rx_probe = efx_ef10_rx_probe,
5252 .rx_init = efx_ef10_rx_init,
5253 .rx_remove = efx_ef10_rx_remove,
5254 .rx_write = efx_ef10_rx_write,
5255 .rx_defer_refill = efx_ef10_rx_defer_refill,
5256 .ev_probe = efx_ef10_ev_probe,
5257 .ev_init = efx_ef10_ev_init,
5258 .ev_fini = efx_ef10_ev_fini,
5259 .ev_remove = efx_ef10_ev_remove,
5260 .ev_process = efx_ef10_ev_process,
5261 .ev_read_ack = efx_ef10_ev_read_ack,
5262 .ev_test_generate = efx_ef10_ev_test_generate,
5263 .filter_table_probe = efx_ef10_filter_table_probe,
5264 .filter_table_restore = efx_ef10_filter_table_restore,
5265 .filter_table_remove = efx_ef10_filter_table_remove,
5266 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
5267 .filter_insert = efx_ef10_filter_insert,
5268 .filter_remove_safe = efx_ef10_filter_remove_safe,
5269 .filter_get_safe = efx_ef10_filter_get_safe,
5270 .filter_clear_rx = efx_ef10_filter_clear_rx,
5271 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
5272 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
5273 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
5274 #ifdef CONFIG_RFS_ACCEL
5275 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
5276 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
5277 #endif
5278 #ifdef CONFIG_SFC_MTD
5279 .mtd_probe = efx_port_dummy_op_int,
5280 #endif
5281 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
5282 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
5283 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
5284 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5285 #ifdef CONFIG_SFC_SRIOV
5286 .vswitching_probe = efx_ef10_vswitching_probe_vf,
5287 .vswitching_restore = efx_ef10_vswitching_restore_vf,
5288 .vswitching_remove = efx_ef10_vswitching_remove_vf,
5289 .sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
5290 #endif
5291 .get_mac_address = efx_ef10_get_mac_address_vf,
5292 .set_mac_address = efx_ef10_set_mac_address,
5293
5294 .revision = EFX_REV_HUNT_A0,
5295 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
5296 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
5297 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5298 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5299 .can_rx_scatter = true,
5300 .always_rx_scatter = true,
5301 .max_interrupt_mode = EFX_INT_MODE_MSIX,
5302 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5303 .offload_features = EF10_OFFLOAD_FEATURES,
5304 .mcdi_max_ver = 2,
5305 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5306 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
5307 1 << HWTSTAMP_FILTER_ALL,
5308 };
5309
5310 const struct efx_nic_type efx_hunt_a0_nic_type = {
5311 .is_vf = false,
5312 .mem_bar = EFX_MEM_BAR,
5313 .mem_map_size = efx_ef10_mem_map_size,
5314 .probe = efx_ef10_probe_pf,
5315 .remove = efx_ef10_remove,
5316 .dimension_resources = efx_ef10_dimension_resources,
5317 .init = efx_ef10_init_nic,
5318 .fini = efx_port_dummy_op_void,
5319 .map_reset_reason = efx_ef10_map_reset_reason,
5320 .map_reset_flags = efx_ef10_map_reset_flags,
5321 .reset = efx_ef10_reset,
5322 .probe_port = efx_mcdi_port_probe,
5323 .remove_port = efx_mcdi_port_remove,
5324 .fini_dmaq = efx_ef10_fini_dmaq,
5325 .prepare_flr = efx_ef10_prepare_flr,
5326 .finish_flr = efx_port_dummy_op_void,
5327 .describe_stats = efx_ef10_describe_stats,
5328 .update_stats = efx_ef10_update_stats_pf,
5329 .start_stats = efx_mcdi_mac_start_stats,
5330 .pull_stats = efx_mcdi_mac_pull_stats,
5331 .stop_stats = efx_mcdi_mac_stop_stats,
5332 .set_id_led = efx_mcdi_set_id_led,
5333 .push_irq_moderation = efx_ef10_push_irq_moderation,
5334 .reconfigure_mac = efx_ef10_mac_reconfigure,
5335 .check_mac_fault = efx_mcdi_mac_check_fault,
5336 .reconfigure_port = efx_mcdi_port_reconfigure,
5337 .get_wol = efx_ef10_get_wol,
5338 .set_wol = efx_ef10_set_wol,
5339 .resume_wol = efx_port_dummy_op_void,
5340 .test_chip = efx_ef10_test_chip,
5341 .test_nvram = efx_mcdi_nvram_test_all,
5342 .mcdi_request = efx_ef10_mcdi_request,
5343 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
5344 .mcdi_read_response = efx_ef10_mcdi_read_response,
5345 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5346 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5347 .irq_enable_master = efx_port_dummy_op_void,
5348 .irq_test_generate = efx_ef10_irq_test_generate,
5349 .irq_disable_non_ev = efx_port_dummy_op_void,
5350 .irq_handle_msi = efx_ef10_msi_interrupt,
5351 .irq_handle_legacy = efx_ef10_legacy_interrupt,
5352 .tx_probe = efx_ef10_tx_probe,
5353 .tx_init = efx_ef10_tx_init,
5354 .tx_remove = efx_ef10_tx_remove,
5355 .tx_write = efx_ef10_tx_write,
5356 .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
5357 .rx_probe = efx_ef10_rx_probe,
5358 .rx_init = efx_ef10_rx_init,
5359 .rx_remove = efx_ef10_rx_remove,
5360 .rx_write = efx_ef10_rx_write,
5361 .rx_defer_refill = efx_ef10_rx_defer_refill,
5362 .ev_probe = efx_ef10_ev_probe,
5363 .ev_init = efx_ef10_ev_init,
5364 .ev_fini = efx_ef10_ev_fini,
5365 .ev_remove = efx_ef10_ev_remove,
5366 .ev_process = efx_ef10_ev_process,
5367 .ev_read_ack = efx_ef10_ev_read_ack,
5368 .ev_test_generate = efx_ef10_ev_test_generate,
5369 .filter_table_probe = efx_ef10_filter_table_probe,
5370 .filter_table_restore = efx_ef10_filter_table_restore,
5371 .filter_table_remove = efx_ef10_filter_table_remove,
5372 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
5373 .filter_insert = efx_ef10_filter_insert,
5374 .filter_remove_safe = efx_ef10_filter_remove_safe,
5375 .filter_get_safe = efx_ef10_filter_get_safe,
5376 .filter_clear_rx = efx_ef10_filter_clear_rx,
5377 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
5378 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
5379 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
5380 #ifdef CONFIG_RFS_ACCEL
5381 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
5382 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
5383 #endif
5384 #ifdef CONFIG_SFC_MTD
5385 .mtd_probe = efx_ef10_mtd_probe,
5386 .mtd_rename = efx_mcdi_mtd_rename,
5387 .mtd_read = efx_mcdi_mtd_read,
5388 .mtd_erase = efx_mcdi_mtd_erase,
5389 .mtd_write = efx_mcdi_mtd_write,
5390 .mtd_sync = efx_mcdi_mtd_sync,
5391 #endif
5392 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
5393 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
5394 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
5395 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
5396 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5397 #ifdef CONFIG_SFC_SRIOV
5398 .sriov_configure = efx_ef10_sriov_configure,
5399 .sriov_init = efx_ef10_sriov_init,
5400 .sriov_fini = efx_ef10_sriov_fini,
5401 .sriov_wanted = efx_ef10_sriov_wanted,
5402 .sriov_reset = efx_ef10_sriov_reset,
5403 .sriov_flr = efx_ef10_sriov_flr,
5404 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
5405 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
5406 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
5407 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
5408 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
5409 .vswitching_probe = efx_ef10_vswitching_probe_pf,
5410 .vswitching_restore = efx_ef10_vswitching_restore_pf,
5411 .vswitching_remove = efx_ef10_vswitching_remove_pf,
5412 #endif
5413 .get_mac_address = efx_ef10_get_mac_address_pf,
5414 .set_mac_address = efx_ef10_set_mac_address,
5415
5416 .revision = EFX_REV_HUNT_A0,
5417 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
5418 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
5419 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5420 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5421 .can_rx_scatter = true,
5422 .always_rx_scatter = true,
5423 .max_interrupt_mode = EFX_INT_MODE_MSIX,
5424 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5425 .offload_features = EF10_OFFLOAD_FEATURES,
5426 .mcdi_max_ver = 2,
5427 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5428 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
5429 1 << HWTSTAMP_FILTER_ALL,
5430 };
This page took 0.247129 seconds and 5 git commands to generate.