Merge git://www.linux-watchdog.org/linux-watchdog
[deliverable/linux.git] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33 *
34 * NIC stats
35 *
36 **************************************************************************
37 */
38
39 #define FALCON_MAC_STATS_SIZE 0x100
40
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
135 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136
137 #define FALCON_DMA_STAT(ext_name, hw_name) \
138 [FALCON_STAT_ ## ext_name] = \
139 { #ext_name, \
140 /* 48-bit stats are zero-padded to 64 on DMA */ \
141 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
142 hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name) \
144 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145 #define GENERIC_SW_STAT(ext_name) \
146 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147
148 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
149 FALCON_DMA_STAT(tx_bytes, XgTxOctets),
150 FALCON_DMA_STAT(tx_packets, XgTxPkts),
151 FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
152 FALCON_DMA_STAT(tx_control, XgTxControlPkts),
153 FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
154 FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
155 FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
156 FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
157 FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
158 FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
159 FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
160 FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
161 FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
162 FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
163 FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
164 FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
165 FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
166 FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
167 FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
168 FALCON_DMA_STAT(rx_bytes, XgRxOctets),
169 FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
170 FALCON_OTHER_STAT(rx_bad_bytes),
171 FALCON_DMA_STAT(rx_packets, XgRxPkts),
172 FALCON_DMA_STAT(rx_good, XgRxPktsOK),
173 FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
174 FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
175 FALCON_DMA_STAT(rx_control, XgRxControlPkts),
176 FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
177 FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
178 FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
179 FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
180 FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
181 FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
182 FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
183 FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
184 FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
185 FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
186 FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
187 FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
188 FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
189 FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
190 FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
191 FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
192 FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
193 FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
194 FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
195 FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
196 GENERIC_SW_STAT(rx_nodesc_trunc),
197 GENERIC_SW_STAT(rx_noskb_drops),
198 };
199 static const unsigned long falcon_stat_mask[] = {
200 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
201 };
202
203 /**************************************************************************
204 *
205 * Basic SPI command set and bit definitions
206 *
207 *************************************************************************/
208
209 #define SPI_WRSR 0x01 /* Write status register */
210 #define SPI_WRITE 0x02 /* Write data to memory array */
211 #define SPI_READ 0x03 /* Read data from memory array */
212 #define SPI_WRDI 0x04 /* Reset write enable latch */
213 #define SPI_RDSR 0x05 /* Read status register */
214 #define SPI_WREN 0x06 /* Set write enable latch */
215 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
216
217 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
218 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
219 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
220 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
221 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
222 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
223
224 /**************************************************************************
225 *
226 * Non-volatile memory layout
227 *
228 **************************************************************************
229 */
230
231 /* SFC4000 flash is partitioned into:
232 * 0-0x400 chip and board config (see struct falcon_nvconfig)
233 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
234 * 0x8000-end boot code (mapped to PCI expansion ROM)
235 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237 * 0-0x400 chip and board config
238 * configurable VPD
239 * 0x800-0x1800 boot config
240 * Aside from the chip and board config, all of these are optional and may
241 * be absent or truncated depending on the devices used.
242 */
243 #define FALCON_NVCONFIG_END 0x400U
244 #define FALCON_FLASH_BOOTCODE_START 0x8000U
245 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247
248 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249 struct falcon_nvconfig_board_v2 {
250 __le16 nports;
251 u8 port0_phy_addr;
252 u8 port0_phy_type;
253 u8 port1_phy_addr;
254 u8 port1_phy_type;
255 __le16 asic_sub_revision;
256 __le16 board_revision;
257 } __packed;
258
259 /* Board configuration v3 extra information */
260 struct falcon_nvconfig_board_v3 {
261 __le32 spi_device_type[2];
262 } __packed;
263
264 /* Bit numbers for spi_device_type */
265 #define SPI_DEV_TYPE_SIZE_LBN 0
266 #define SPI_DEV_TYPE_SIZE_WIDTH 5
267 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_FIELD(type, field) \
276 (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
277
278 #define FALCON_NVCONFIG_OFFSET 0x300
279
280 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281 struct falcon_nvconfig {
282 efx_oword_t ee_vpd_cfg_reg; /* 0x300 */
283 u8 mac_address[2][8]; /* 0x310 */
284 efx_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
285 efx_oword_t pcie_sd_ctl45_reg; /* 0x330 */
286 efx_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
287 efx_oword_t hw_init_reg; /* 0x350 */
288 efx_oword_t nic_stat_reg; /* 0x360 */
289 efx_oword_t glb_ctl_reg; /* 0x370 */
290 efx_oword_t srm_cfg_reg; /* 0x380 */
291 efx_oword_t spare_reg; /* 0x390 */
292 __le16 board_magic_num; /* 0x3A0 */
293 __le16 board_struct_ver;
294 __le16 board_checksum;
295 struct falcon_nvconfig_board_v2 board_v2;
296 efx_oword_t ee_base_page_reg; /* 0x3B0 */
297 struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
298 } __packed;
299
300 /*************************************************************************/
301
302 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
303 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
304
305 static const unsigned int
306 /* "Large" EEPROM device: Atmel AT25640 or similar
307 * 8 KB, 16-bit address, 32 B write block */
308 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
309 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
310 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
311 /* Default flash device: Atmel AT25F1024
312 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
314 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
315 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
316 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
317 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318
319 /**************************************************************************
320 *
321 * I2C bus - this is a bit-bashing interface using GPIO pins
322 * Note that it uses the output enables to tristate the outputs
323 * SDA is the data pin and SCL is the clock
324 *
325 **************************************************************************
326 */
327 static void falcon_setsda(void *data, int state)
328 {
329 struct efx_nic *efx = (struct efx_nic *)data;
330 efx_oword_t reg;
331
332 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
333 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
334 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
335 }
336
337 static void falcon_setscl(void *data, int state)
338 {
339 struct efx_nic *efx = (struct efx_nic *)data;
340 efx_oword_t reg;
341
342 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
343 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
344 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
345 }
346
347 static int falcon_getsda(void *data)
348 {
349 struct efx_nic *efx = (struct efx_nic *)data;
350 efx_oword_t reg;
351
352 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
353 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
354 }
355
356 static int falcon_getscl(void *data)
357 {
358 struct efx_nic *efx = (struct efx_nic *)data;
359 efx_oword_t reg;
360
361 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
362 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
363 }
364
365 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
366 .setsda = falcon_setsda,
367 .setscl = falcon_setscl,
368 .getsda = falcon_getsda,
369 .getscl = falcon_getscl,
370 .udelay = 5,
371 /* Wait up to 50 ms for slave to let us pull SCL high */
372 .timeout = DIV_ROUND_UP(HZ, 20),
373 };
374
375 static void falcon_push_irq_moderation(struct efx_channel *channel)
376 {
377 efx_dword_t timer_cmd;
378 struct efx_nic *efx = channel->efx;
379
380 /* Set timer register */
381 if (channel->irq_moderation) {
382 EFX_POPULATE_DWORD_2(timer_cmd,
383 FRF_AB_TC_TIMER_MODE,
384 FFE_BB_TIMER_MODE_INT_HLDOFF,
385 FRF_AB_TC_TIMER_VAL,
386 channel->irq_moderation - 1);
387 } else {
388 EFX_POPULATE_DWORD_2(timer_cmd,
389 FRF_AB_TC_TIMER_MODE,
390 FFE_BB_TIMER_MODE_DIS,
391 FRF_AB_TC_TIMER_VAL, 0);
392 }
393 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
394 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
395 channel->channel);
396 }
397
398 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
399
400 static void falcon_prepare_flush(struct efx_nic *efx)
401 {
402 falcon_deconfigure_mac_wrapper(efx);
403
404 /* Wait for the tx and rx fifo's to get to the next packet boundary
405 * (~1ms without back-pressure), then to drain the remainder of the
406 * fifo's at data path speeds (negligible), with a healthy margin. */
407 msleep(10);
408 }
409
410 /* Acknowledge a legacy interrupt from Falcon
411 *
412 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
413 *
414 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
415 * BIU. Interrupt acknowledge is read sensitive so must write instead
416 * (then read to ensure the BIU collector is flushed)
417 *
418 * NB most hardware supports MSI interrupts
419 */
420 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
421 {
422 efx_dword_t reg;
423
424 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
425 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
426 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
427 }
428
429 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
430 {
431 struct efx_nic *efx = dev_id;
432 efx_oword_t *int_ker = efx->irq_status.addr;
433 int syserr;
434 int queues;
435
436 /* Check to see if this is our interrupt. If it isn't, we
437 * exit without having touched the hardware.
438 */
439 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
440 netif_vdbg(efx, intr, efx->net_dev,
441 "IRQ %d on CPU %d not for me\n", irq,
442 raw_smp_processor_id());
443 return IRQ_NONE;
444 }
445 efx->last_irq_cpu = raw_smp_processor_id();
446 netif_vdbg(efx, intr, efx->net_dev,
447 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
448 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
449
450 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
451 return IRQ_HANDLED;
452
453 /* Check to see if we have a serious error condition */
454 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
455 if (unlikely(syserr))
456 return efx_farch_fatal_interrupt(efx);
457
458 /* Determine interrupting queues, clear interrupt status
459 * register and acknowledge the device interrupt.
460 */
461 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
462 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
463 EFX_ZERO_OWORD(*int_ker);
464 wmb(); /* Ensure the vector is cleared before interrupt ack */
465 falcon_irq_ack_a1(efx);
466
467 if (queues & 1)
468 efx_schedule_channel_irq(efx_get_channel(efx, 0));
469 if (queues & 2)
470 efx_schedule_channel_irq(efx_get_channel(efx, 1));
471 return IRQ_HANDLED;
472 }
473
474 /**************************************************************************
475 *
476 * RSS
477 *
478 **************************************************************************
479 */
480 static int dummy_rx_push_rss_config(struct efx_nic *efx, bool user,
481 const u32 *rx_indir_table)
482 {
483 (void) efx;
484 (void) user;
485 (void) rx_indir_table;
486 return -ENOSYS;
487 }
488
489 static int falcon_b0_rx_push_rss_config(struct efx_nic *efx, bool user,
490 const u32 *rx_indir_table)
491 {
492 efx_oword_t temp;
493
494 (void) user;
495 /* Set hash key for IPv4 */
496 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
497 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
498
499 memcpy(efx->rx_indir_table, rx_indir_table,
500 sizeof(efx->rx_indir_table));
501 efx_farch_rx_push_indir_table(efx);
502 return 0;
503 }
504
505 /**************************************************************************
506 *
507 * EEPROM/flash
508 *
509 **************************************************************************
510 */
511
512 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
513
514 static int falcon_spi_poll(struct efx_nic *efx)
515 {
516 efx_oword_t reg;
517 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
518 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
519 }
520
521 /* Wait for SPI command completion */
522 static int falcon_spi_wait(struct efx_nic *efx)
523 {
524 /* Most commands will finish quickly, so we start polling at
525 * very short intervals. Sometimes the command may have to
526 * wait for VPD or expansion ROM access outside of our
527 * control, so we allow up to 100 ms. */
528 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
529 int i;
530
531 for (i = 0; i < 10; i++) {
532 if (!falcon_spi_poll(efx))
533 return 0;
534 udelay(10);
535 }
536
537 for (;;) {
538 if (!falcon_spi_poll(efx))
539 return 0;
540 if (time_after_eq(jiffies, timeout)) {
541 netif_err(efx, hw, efx->net_dev,
542 "timed out waiting for SPI\n");
543 return -ETIMEDOUT;
544 }
545 schedule_timeout_uninterruptible(1);
546 }
547 }
548
549 static int
550 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
551 unsigned int command, int address,
552 const void *in, void *out, size_t len)
553 {
554 bool addressed = (address >= 0);
555 bool reading = (out != NULL);
556 efx_oword_t reg;
557 int rc;
558
559 /* Input validation */
560 if (len > FALCON_SPI_MAX_LEN)
561 return -EINVAL;
562
563 /* Check that previous command is not still running */
564 rc = falcon_spi_poll(efx);
565 if (rc)
566 return rc;
567
568 /* Program address register, if we have an address */
569 if (addressed) {
570 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
571 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
572 }
573
574 /* Program data register, if we have data */
575 if (in != NULL) {
576 memcpy(&reg, in, len);
577 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
578 }
579
580 /* Issue read/write command */
581 EFX_POPULATE_OWORD_7(reg,
582 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
583 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
584 FRF_AB_EE_SPI_HCMD_DABCNT, len,
585 FRF_AB_EE_SPI_HCMD_READ, reading,
586 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
587 FRF_AB_EE_SPI_HCMD_ADBCNT,
588 (addressed ? spi->addr_len : 0),
589 FRF_AB_EE_SPI_HCMD_ENC, command);
590 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
591
592 /* Wait for read/write to complete */
593 rc = falcon_spi_wait(efx);
594 if (rc)
595 return rc;
596
597 /* Read data */
598 if (out != NULL) {
599 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
600 memcpy(out, &reg, len);
601 }
602
603 return 0;
604 }
605
606 static inline u8
607 falcon_spi_munge_command(const struct falcon_spi_device *spi,
608 const u8 command, const unsigned int address)
609 {
610 return command | (((address >> 8) & spi->munge_address) << 3);
611 }
612
613 static int
614 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
615 loff_t start, size_t len, size_t *retlen, u8 *buffer)
616 {
617 size_t block_len, pos = 0;
618 unsigned int command;
619 int rc = 0;
620
621 while (pos < len) {
622 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
623
624 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
625 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
626 buffer + pos, block_len);
627 if (rc)
628 break;
629 pos += block_len;
630
631 /* Avoid locking up the system */
632 cond_resched();
633 if (signal_pending(current)) {
634 rc = -EINTR;
635 break;
636 }
637 }
638
639 if (retlen)
640 *retlen = pos;
641 return rc;
642 }
643
644 #ifdef CONFIG_SFC_MTD
645
646 struct falcon_mtd_partition {
647 struct efx_mtd_partition common;
648 const struct falcon_spi_device *spi;
649 size_t offset;
650 };
651
652 #define to_falcon_mtd_partition(mtd) \
653 container_of(mtd, struct falcon_mtd_partition, common.mtd)
654
655 static size_t
656 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
657 {
658 return min(FALCON_SPI_MAX_LEN,
659 (spi->block_size - (start & (spi->block_size - 1))));
660 }
661
662 /* Wait up to 10 ms for buffered write completion */
663 static int
664 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
665 {
666 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
667 u8 status;
668 int rc;
669
670 for (;;) {
671 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
672 &status, sizeof(status));
673 if (rc)
674 return rc;
675 if (!(status & SPI_STATUS_NRDY))
676 return 0;
677 if (time_after_eq(jiffies, timeout)) {
678 netif_err(efx, hw, efx->net_dev,
679 "SPI write timeout on device %d"
680 " last status=0x%02x\n",
681 spi->device_id, status);
682 return -ETIMEDOUT;
683 }
684 schedule_timeout_uninterruptible(1);
685 }
686 }
687
688 static int
689 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
690 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
691 {
692 u8 verify_buffer[FALCON_SPI_MAX_LEN];
693 size_t block_len, pos = 0;
694 unsigned int command;
695 int rc = 0;
696
697 while (pos < len) {
698 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
699 if (rc)
700 break;
701
702 block_len = min(len - pos,
703 falcon_spi_write_limit(spi, start + pos));
704 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
705 rc = falcon_spi_cmd(efx, spi, command, start + pos,
706 buffer + pos, NULL, block_len);
707 if (rc)
708 break;
709
710 rc = falcon_spi_wait_write(efx, spi);
711 if (rc)
712 break;
713
714 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
715 rc = falcon_spi_cmd(efx, spi, command, start + pos,
716 NULL, verify_buffer, block_len);
717 if (memcmp(verify_buffer, buffer + pos, block_len)) {
718 rc = -EIO;
719 break;
720 }
721
722 pos += block_len;
723
724 /* Avoid locking up the system */
725 cond_resched();
726 if (signal_pending(current)) {
727 rc = -EINTR;
728 break;
729 }
730 }
731
732 if (retlen)
733 *retlen = pos;
734 return rc;
735 }
736
737 static int
738 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
739 {
740 const struct falcon_spi_device *spi = part->spi;
741 struct efx_nic *efx = part->common.mtd.priv;
742 u8 status;
743 int rc, i;
744
745 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
746 for (i = 0; i < 40; i++) {
747 __set_current_state(uninterruptible ?
748 TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
749 schedule_timeout(HZ / 10);
750 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
751 &status, sizeof(status));
752 if (rc)
753 return rc;
754 if (!(status & SPI_STATUS_NRDY))
755 return 0;
756 if (signal_pending(current))
757 return -EINTR;
758 }
759 pr_err("%s: timed out waiting for %s\n",
760 part->common.name, part->common.dev_type_name);
761 return -ETIMEDOUT;
762 }
763
764 static int
765 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
766 {
767 const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
768 SPI_STATUS_BP0);
769 u8 status;
770 int rc;
771
772 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
773 &status, sizeof(status));
774 if (rc)
775 return rc;
776
777 if (!(status & unlock_mask))
778 return 0; /* already unlocked */
779
780 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
781 if (rc)
782 return rc;
783 rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
784 if (rc)
785 return rc;
786
787 status &= ~unlock_mask;
788 rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
789 NULL, sizeof(status));
790 if (rc)
791 return rc;
792 rc = falcon_spi_wait_write(efx, spi);
793 if (rc)
794 return rc;
795
796 return 0;
797 }
798
799 #define FALCON_SPI_VERIFY_BUF_LEN 16
800
801 static int
802 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
803 {
804 const struct falcon_spi_device *spi = part->spi;
805 struct efx_nic *efx = part->common.mtd.priv;
806 unsigned pos, block_len;
807 u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
808 u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
809 int rc;
810
811 if (len != spi->erase_size)
812 return -EINVAL;
813
814 if (spi->erase_command == 0)
815 return -EOPNOTSUPP;
816
817 rc = falcon_spi_unlock(efx, spi);
818 if (rc)
819 return rc;
820 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
821 if (rc)
822 return rc;
823 rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
824 NULL, 0);
825 if (rc)
826 return rc;
827 rc = falcon_spi_slow_wait(part, false);
828
829 /* Verify the entire region has been wiped */
830 memset(empty, 0xff, sizeof(empty));
831 for (pos = 0; pos < len; pos += block_len) {
832 block_len = min(len - pos, sizeof(buffer));
833 rc = falcon_spi_read(efx, spi, start + pos, block_len,
834 NULL, buffer);
835 if (rc)
836 return rc;
837 if (memcmp(empty, buffer, block_len))
838 return -EIO;
839
840 /* Avoid locking up the system */
841 cond_resched();
842 if (signal_pending(current))
843 return -EINTR;
844 }
845
846 return rc;
847 }
848
849 static void falcon_mtd_rename(struct efx_mtd_partition *part)
850 {
851 struct efx_nic *efx = part->mtd.priv;
852
853 snprintf(part->name, sizeof(part->name), "%s %s",
854 efx->name, part->type_name);
855 }
856
857 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
858 size_t len, size_t *retlen, u8 *buffer)
859 {
860 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
861 struct efx_nic *efx = mtd->priv;
862 struct falcon_nic_data *nic_data = efx->nic_data;
863 int rc;
864
865 rc = mutex_lock_interruptible(&nic_data->spi_lock);
866 if (rc)
867 return rc;
868 rc = falcon_spi_read(efx, part->spi, part->offset + start,
869 len, retlen, buffer);
870 mutex_unlock(&nic_data->spi_lock);
871 return rc;
872 }
873
874 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
875 {
876 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
877 struct efx_nic *efx = mtd->priv;
878 struct falcon_nic_data *nic_data = efx->nic_data;
879 int rc;
880
881 rc = mutex_lock_interruptible(&nic_data->spi_lock);
882 if (rc)
883 return rc;
884 rc = falcon_spi_erase(part, part->offset + start, len);
885 mutex_unlock(&nic_data->spi_lock);
886 return rc;
887 }
888
889 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
890 size_t len, size_t *retlen, const u8 *buffer)
891 {
892 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
893 struct efx_nic *efx = mtd->priv;
894 struct falcon_nic_data *nic_data = efx->nic_data;
895 int rc;
896
897 rc = mutex_lock_interruptible(&nic_data->spi_lock);
898 if (rc)
899 return rc;
900 rc = falcon_spi_write(efx, part->spi, part->offset + start,
901 len, retlen, buffer);
902 mutex_unlock(&nic_data->spi_lock);
903 return rc;
904 }
905
906 static int falcon_mtd_sync(struct mtd_info *mtd)
907 {
908 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
909 struct efx_nic *efx = mtd->priv;
910 struct falcon_nic_data *nic_data = efx->nic_data;
911 int rc;
912
913 mutex_lock(&nic_data->spi_lock);
914 rc = falcon_spi_slow_wait(part, true);
915 mutex_unlock(&nic_data->spi_lock);
916 return rc;
917 }
918
919 static int falcon_mtd_probe(struct efx_nic *efx)
920 {
921 struct falcon_nic_data *nic_data = efx->nic_data;
922 struct falcon_mtd_partition *parts;
923 struct falcon_spi_device *spi;
924 size_t n_parts;
925 int rc = -ENODEV;
926
927 ASSERT_RTNL();
928
929 /* Allocate space for maximum number of partitions */
930 parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
931 if (!parts)
932 return -ENOMEM;
933 n_parts = 0;
934
935 spi = &nic_data->spi_flash;
936 if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
937 parts[n_parts].spi = spi;
938 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
939 parts[n_parts].common.dev_type_name = "flash";
940 parts[n_parts].common.type_name = "sfc_flash_bootrom";
941 parts[n_parts].common.mtd.type = MTD_NORFLASH;
942 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
943 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
944 parts[n_parts].common.mtd.erasesize = spi->erase_size;
945 n_parts++;
946 }
947
948 spi = &nic_data->spi_eeprom;
949 if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
950 parts[n_parts].spi = spi;
951 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
952 parts[n_parts].common.dev_type_name = "EEPROM";
953 parts[n_parts].common.type_name = "sfc_bootconfig";
954 parts[n_parts].common.mtd.type = MTD_RAM;
955 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
956 parts[n_parts].common.mtd.size =
957 min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
958 FALCON_EEPROM_BOOTCONFIG_START;
959 parts[n_parts].common.mtd.erasesize = spi->erase_size;
960 n_parts++;
961 }
962
963 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
964 if (rc)
965 kfree(parts);
966 return rc;
967 }
968
969 #endif /* CONFIG_SFC_MTD */
970
971 /**************************************************************************
972 *
973 * XMAC operations
974 *
975 **************************************************************************
976 */
977
978 /* Configure the XAUI driver that is an output from Falcon */
979 static void falcon_setup_xaui(struct efx_nic *efx)
980 {
981 efx_oword_t sdctl, txdrv;
982
983 /* Move the XAUI into low power, unless there is no PHY, in
984 * which case the XAUI will have to drive a cable. */
985 if (efx->phy_type == PHY_TYPE_NONE)
986 return;
987
988 efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
989 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
990 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
991 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
992 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
993 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
994 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
995 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
996 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
997 efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
998
999 EFX_POPULATE_OWORD_8(txdrv,
1000 FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1001 FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1002 FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1003 FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1004 FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1005 FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1006 FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1007 FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1008 efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1009 }
1010
1011 int falcon_reset_xaui(struct efx_nic *efx)
1012 {
1013 struct falcon_nic_data *nic_data = efx->nic_data;
1014 efx_oword_t reg;
1015 int count;
1016
1017 /* Don't fetch MAC statistics over an XMAC reset */
1018 WARN_ON(nic_data->stats_disable_count == 0);
1019
1020 /* Start reset sequence */
1021 EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1022 efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1023
1024 /* Wait up to 10 ms for completion, then reinitialise */
1025 for (count = 0; count < 1000; count++) {
1026 efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1027 if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1028 EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1029 falcon_setup_xaui(efx);
1030 return 0;
1031 }
1032 udelay(10);
1033 }
1034 netif_err(efx, hw, efx->net_dev,
1035 "timed out waiting for XAUI/XGXS reset\n");
1036 return -ETIMEDOUT;
1037 }
1038
1039 static void falcon_ack_status_intr(struct efx_nic *efx)
1040 {
1041 struct falcon_nic_data *nic_data = efx->nic_data;
1042 efx_oword_t reg;
1043
1044 if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1045 return;
1046
1047 /* We expect xgmii faults if the wireside link is down */
1048 if (!efx->link_state.up)
1049 return;
1050
1051 /* We can only use this interrupt to signal the negative edge of
1052 * xaui_align [we have to poll the positive edge]. */
1053 if (nic_data->xmac_poll_required)
1054 return;
1055
1056 efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1057 }
1058
1059 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1060 {
1061 efx_oword_t reg;
1062 bool align_done, link_ok = false;
1063 int sync_status;
1064
1065 /* Read link status */
1066 efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1067
1068 align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1069 sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1070 if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1071 link_ok = true;
1072
1073 /* Clear link status ready for next read */
1074 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1075 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1076 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1077 efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1078
1079 return link_ok;
1080 }
1081
1082 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1083 {
1084 /*
1085 * Check MAC's XGXS link status except when using XGMII loopback
1086 * which bypasses the XGXS block.
1087 * If possible, check PHY's XGXS link status except when using
1088 * MAC loopback.
1089 */
1090 return (efx->loopback_mode == LOOPBACK_XGMII ||
1091 falcon_xgxs_link_ok(efx)) &&
1092 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1093 LOOPBACK_INTERNAL(efx) ||
1094 efx_mdio_phyxgxs_lane_sync(efx));
1095 }
1096
1097 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1098 {
1099 unsigned int max_frame_len;
1100 efx_oword_t reg;
1101 bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1102 bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1103
1104 /* Configure MAC - cut-thru mode is hard wired on */
1105 EFX_POPULATE_OWORD_3(reg,
1106 FRF_AB_XM_RX_JUMBO_MODE, 1,
1107 FRF_AB_XM_TX_STAT_EN, 1,
1108 FRF_AB_XM_RX_STAT_EN, 1);
1109 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1110
1111 /* Configure TX */
1112 EFX_POPULATE_OWORD_6(reg,
1113 FRF_AB_XM_TXEN, 1,
1114 FRF_AB_XM_TX_PRMBL, 1,
1115 FRF_AB_XM_AUTO_PAD, 1,
1116 FRF_AB_XM_TXCRC, 1,
1117 FRF_AB_XM_FCNTL, tx_fc,
1118 FRF_AB_XM_IPG, 0x3);
1119 efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1120
1121 /* Configure RX */
1122 EFX_POPULATE_OWORD_5(reg,
1123 FRF_AB_XM_RXEN, 1,
1124 FRF_AB_XM_AUTO_DEPAD, 0,
1125 FRF_AB_XM_ACPT_ALL_MCAST, 1,
1126 FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1127 FRF_AB_XM_PASS_CRC_ERR, 1);
1128 efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1129
1130 /* Set frame length */
1131 max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1132 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1133 efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1134 EFX_POPULATE_OWORD_2(reg,
1135 FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1136 FRF_AB_XM_TX_JUMBO_MODE, 1);
1137 efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1138
1139 EFX_POPULATE_OWORD_2(reg,
1140 FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1141 FRF_AB_XM_DIS_FCNTL, !rx_fc);
1142 efx_writeo(efx, &reg, FR_AB_XM_FC);
1143
1144 /* Set MAC address */
1145 memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1146 efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1147 memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1148 efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1149 }
1150
1151 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1152 {
1153 efx_oword_t reg;
1154 bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1155 bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1156 bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1157 bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1158
1159 /* XGXS block is flaky and will need to be reset if moving
1160 * into our out of XGMII, XGXS or XAUI loopbacks. */
1161 efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1162 old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1163 old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1164
1165 efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1166 old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1167
1168 /* The PHY driver may have turned XAUI off */
1169 if ((xgxs_loopback != old_xgxs_loopback) ||
1170 (xaui_loopback != old_xaui_loopback) ||
1171 (xgmii_loopback != old_xgmii_loopback))
1172 falcon_reset_xaui(efx);
1173
1174 efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1175 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1176 (xgxs_loopback || xaui_loopback) ?
1177 FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1178 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1179 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1180 efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1181
1182 efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1183 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1184 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1185 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1186 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1187 efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1188 }
1189
1190
1191 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1192 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1193 {
1194 bool mac_up = falcon_xmac_link_ok(efx);
1195
1196 if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1197 efx_phy_mode_disabled(efx->phy_mode))
1198 /* XAUI link is expected to be down */
1199 return mac_up;
1200
1201 falcon_stop_nic_stats(efx);
1202
1203 while (!mac_up && tries) {
1204 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1205 falcon_reset_xaui(efx);
1206 udelay(200);
1207
1208 mac_up = falcon_xmac_link_ok(efx);
1209 --tries;
1210 }
1211
1212 falcon_start_nic_stats(efx);
1213
1214 return mac_up;
1215 }
1216
1217 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1218 {
1219 return !falcon_xmac_link_ok_retry(efx, 5);
1220 }
1221
1222 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1223 {
1224 struct falcon_nic_data *nic_data = efx->nic_data;
1225
1226 efx_farch_filter_sync_rx_mode(efx);
1227
1228 falcon_reconfigure_xgxs_core(efx);
1229 falcon_reconfigure_xmac_core(efx);
1230
1231 falcon_reconfigure_mac_wrapper(efx);
1232
1233 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1234 falcon_ack_status_intr(efx);
1235
1236 return 0;
1237 }
1238
1239 static void falcon_poll_xmac(struct efx_nic *efx)
1240 {
1241 struct falcon_nic_data *nic_data = efx->nic_data;
1242
1243 /* We expect xgmii faults if the wireside link is down */
1244 if (!efx->link_state.up || !nic_data->xmac_poll_required)
1245 return;
1246
1247 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1248 falcon_ack_status_intr(efx);
1249 }
1250
1251 /**************************************************************************
1252 *
1253 * MAC wrapper
1254 *
1255 **************************************************************************
1256 */
1257
1258 static void falcon_push_multicast_hash(struct efx_nic *efx)
1259 {
1260 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1261
1262 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1263
1264 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1265 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1266 }
1267
1268 static void falcon_reset_macs(struct efx_nic *efx)
1269 {
1270 struct falcon_nic_data *nic_data = efx->nic_data;
1271 efx_oword_t reg, mac_ctrl;
1272 int count;
1273
1274 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1275 /* It's not safe to use GLB_CTL_REG to reset the
1276 * macs, so instead use the internal MAC resets
1277 */
1278 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1279 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1280
1281 for (count = 0; count < 10000; count++) {
1282 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1283 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1284 0)
1285 return;
1286 udelay(10);
1287 }
1288
1289 netif_err(efx, hw, efx->net_dev,
1290 "timed out waiting for XMAC core reset\n");
1291 }
1292
1293 /* Mac stats will fail whist the TX fifo is draining */
1294 WARN_ON(nic_data->stats_disable_count == 0);
1295
1296 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1297 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1298 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299
1300 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1301 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1302 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1303 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1304 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1305
1306 count = 0;
1307 while (1) {
1308 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1309 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1310 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1311 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1312 netif_dbg(efx, hw, efx->net_dev,
1313 "Completed MAC reset after %d loops\n",
1314 count);
1315 break;
1316 }
1317 if (count > 20) {
1318 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1319 break;
1320 }
1321 count++;
1322 udelay(10);
1323 }
1324
1325 /* Ensure the correct MAC is selected before statistics
1326 * are re-enabled by the caller */
1327 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1328
1329 falcon_setup_xaui(efx);
1330 }
1331
1332 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1333 {
1334 efx_oword_t reg;
1335
1336 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1337 (efx->loopback_mode != LOOPBACK_NONE))
1338 return;
1339
1340 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1341 /* There is no point in draining more than once */
1342 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1343 return;
1344
1345 falcon_reset_macs(efx);
1346 }
1347
1348 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1349 {
1350 efx_oword_t reg;
1351
1352 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1353 return;
1354
1355 /* Isolate the MAC -> RX */
1356 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1357 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1358 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1359
1360 /* Isolate TX -> MAC */
1361 falcon_drain_tx_fifo(efx);
1362 }
1363
1364 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1365 {
1366 struct efx_link_state *link_state = &efx->link_state;
1367 efx_oword_t reg;
1368 int link_speed, isolate;
1369
1370 isolate = !!ACCESS_ONCE(efx->reset_pending);
1371
1372 switch (link_state->speed) {
1373 case 10000: link_speed = 3; break;
1374 case 1000: link_speed = 2; break;
1375 case 100: link_speed = 1; break;
1376 default: link_speed = 0; break;
1377 }
1378
1379 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1380 * as advertised. Disable to ensure packets are not
1381 * indefinitely held and TX queue can be flushed at any point
1382 * while the link is down. */
1383 EFX_POPULATE_OWORD_5(reg,
1384 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1385 FRF_AB_MAC_BCAD_ACPT, 1,
1386 FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1387 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1388 FRF_AB_MAC_SPEED, link_speed);
1389 /* On B0, MAC backpressure can be disabled and packets get
1390 * discarded. */
1391 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1392 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1393 !link_state->up || isolate);
1394 }
1395
1396 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1397
1398 /* Restore the multicast hash registers. */
1399 falcon_push_multicast_hash(efx);
1400
1401 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1402 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1403 * initialisation but it may read back as 0) */
1404 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1405 /* Unisolate the MAC -> RX */
1406 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1407 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1408 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1409 }
1410
1411 static void falcon_stats_request(struct efx_nic *efx)
1412 {
1413 struct falcon_nic_data *nic_data = efx->nic_data;
1414 efx_oword_t reg;
1415
1416 WARN_ON(nic_data->stats_pending);
1417 WARN_ON(nic_data->stats_disable_count);
1418
1419 FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1420 nic_data->stats_pending = true;
1421 wmb(); /* ensure done flag is clear */
1422
1423 /* Initiate DMA transfer of stats */
1424 EFX_POPULATE_OWORD_2(reg,
1425 FRF_AB_MAC_STAT_DMA_CMD, 1,
1426 FRF_AB_MAC_STAT_DMA_ADR,
1427 efx->stats_buffer.dma_addr);
1428 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1429
1430 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1431 }
1432
1433 static void falcon_stats_complete(struct efx_nic *efx)
1434 {
1435 struct falcon_nic_data *nic_data = efx->nic_data;
1436
1437 if (!nic_data->stats_pending)
1438 return;
1439
1440 nic_data->stats_pending = false;
1441 if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1442 rmb(); /* read the done flag before the stats */
1443 efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1444 falcon_stat_mask, nic_data->stats,
1445 efx->stats_buffer.addr, true);
1446 } else {
1447 netif_err(efx, hw, efx->net_dev,
1448 "timed out waiting for statistics\n");
1449 }
1450 }
1451
1452 static void falcon_stats_timer_func(unsigned long context)
1453 {
1454 struct efx_nic *efx = (struct efx_nic *)context;
1455 struct falcon_nic_data *nic_data = efx->nic_data;
1456
1457 spin_lock(&efx->stats_lock);
1458
1459 falcon_stats_complete(efx);
1460 if (nic_data->stats_disable_count == 0)
1461 falcon_stats_request(efx);
1462
1463 spin_unlock(&efx->stats_lock);
1464 }
1465
1466 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1467 {
1468 struct efx_link_state old_state = efx->link_state;
1469
1470 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1471 WARN_ON(!LOOPBACK_INTERNAL(efx));
1472
1473 efx->link_state.fd = true;
1474 efx->link_state.fc = efx->wanted_fc;
1475 efx->link_state.up = true;
1476 efx->link_state.speed = 10000;
1477
1478 return !efx_link_state_equal(&efx->link_state, &old_state);
1479 }
1480
1481 static int falcon_reconfigure_port(struct efx_nic *efx)
1482 {
1483 int rc;
1484
1485 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1486
1487 /* Poll the PHY link state *before* reconfiguring it. This means we
1488 * will pick up the correct speed (in loopback) to select the correct
1489 * MAC.
1490 */
1491 if (LOOPBACK_INTERNAL(efx))
1492 falcon_loopback_link_poll(efx);
1493 else
1494 efx->phy_op->poll(efx);
1495
1496 falcon_stop_nic_stats(efx);
1497 falcon_deconfigure_mac_wrapper(efx);
1498
1499 falcon_reset_macs(efx);
1500
1501 efx->phy_op->reconfigure(efx);
1502 rc = falcon_reconfigure_xmac(efx);
1503 BUG_ON(rc);
1504
1505 falcon_start_nic_stats(efx);
1506
1507 /* Synchronise efx->link_state with the kernel */
1508 efx_link_status_changed(efx);
1509
1510 return 0;
1511 }
1512
1513 /* TX flow control may automatically turn itself off if the link
1514 * partner (intermittently) stops responding to pause frames. There
1515 * isn't any indication that this has happened, so the best we do is
1516 * leave it up to the user to spot this and fix it by cycling transmit
1517 * flow control on this end.
1518 */
1519
1520 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1521 {
1522 /* Schedule a reset to recover */
1523 efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1524 }
1525
1526 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1527 {
1528 /* Recover by resetting the EM block */
1529 falcon_stop_nic_stats(efx);
1530 falcon_drain_tx_fifo(efx);
1531 falcon_reconfigure_xmac(efx);
1532 falcon_start_nic_stats(efx);
1533 }
1534
1535 /**************************************************************************
1536 *
1537 * PHY access via GMII
1538 *
1539 **************************************************************************
1540 */
1541
1542 /* Wait for GMII access to complete */
1543 static int falcon_gmii_wait(struct efx_nic *efx)
1544 {
1545 efx_oword_t md_stat;
1546 int count;
1547
1548 /* wait up to 50ms - taken max from datasheet */
1549 for (count = 0; count < 5000; count++) {
1550 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1551 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1552 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1553 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1554 netif_err(efx, hw, efx->net_dev,
1555 "error from GMII access "
1556 EFX_OWORD_FMT"\n",
1557 EFX_OWORD_VAL(md_stat));
1558 return -EIO;
1559 }
1560 return 0;
1561 }
1562 udelay(10);
1563 }
1564 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1565 return -ETIMEDOUT;
1566 }
1567
1568 /* Write an MDIO register of a PHY connected to Falcon. */
1569 static int falcon_mdio_write(struct net_device *net_dev,
1570 int prtad, int devad, u16 addr, u16 value)
1571 {
1572 struct efx_nic *efx = netdev_priv(net_dev);
1573 struct falcon_nic_data *nic_data = efx->nic_data;
1574 efx_oword_t reg;
1575 int rc;
1576
1577 netif_vdbg(efx, hw, efx->net_dev,
1578 "writing MDIO %d register %d.%d with 0x%04x\n",
1579 prtad, devad, addr, value);
1580
1581 mutex_lock(&nic_data->mdio_lock);
1582
1583 /* Check MDIO not currently being accessed */
1584 rc = falcon_gmii_wait(efx);
1585 if (rc)
1586 goto out;
1587
1588 /* Write the address/ID register */
1589 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1590 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1591
1592 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1593 FRF_AB_MD_DEV_ADR, devad);
1594 efx_writeo(efx, &reg, FR_AB_MD_ID);
1595
1596 /* Write data */
1597 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1598 efx_writeo(efx, &reg, FR_AB_MD_TXD);
1599
1600 EFX_POPULATE_OWORD_2(reg,
1601 FRF_AB_MD_WRC, 1,
1602 FRF_AB_MD_GC, 0);
1603 efx_writeo(efx, &reg, FR_AB_MD_CS);
1604
1605 /* Wait for data to be written */
1606 rc = falcon_gmii_wait(efx);
1607 if (rc) {
1608 /* Abort the write operation */
1609 EFX_POPULATE_OWORD_2(reg,
1610 FRF_AB_MD_WRC, 0,
1611 FRF_AB_MD_GC, 1);
1612 efx_writeo(efx, &reg, FR_AB_MD_CS);
1613 udelay(10);
1614 }
1615
1616 out:
1617 mutex_unlock(&nic_data->mdio_lock);
1618 return rc;
1619 }
1620
1621 /* Read an MDIO register of a PHY connected to Falcon. */
1622 static int falcon_mdio_read(struct net_device *net_dev,
1623 int prtad, int devad, u16 addr)
1624 {
1625 struct efx_nic *efx = netdev_priv(net_dev);
1626 struct falcon_nic_data *nic_data = efx->nic_data;
1627 efx_oword_t reg;
1628 int rc;
1629
1630 mutex_lock(&nic_data->mdio_lock);
1631
1632 /* Check MDIO not currently being accessed */
1633 rc = falcon_gmii_wait(efx);
1634 if (rc)
1635 goto out;
1636
1637 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1638 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1639
1640 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1641 FRF_AB_MD_DEV_ADR, devad);
1642 efx_writeo(efx, &reg, FR_AB_MD_ID);
1643
1644 /* Request data to be read */
1645 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1646 efx_writeo(efx, &reg, FR_AB_MD_CS);
1647
1648 /* Wait for data to become available */
1649 rc = falcon_gmii_wait(efx);
1650 if (rc == 0) {
1651 efx_reado(efx, &reg, FR_AB_MD_RXD);
1652 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1653 netif_vdbg(efx, hw, efx->net_dev,
1654 "read from MDIO %d register %d.%d, got %04x\n",
1655 prtad, devad, addr, rc);
1656 } else {
1657 /* Abort the read operation */
1658 EFX_POPULATE_OWORD_2(reg,
1659 FRF_AB_MD_RIC, 0,
1660 FRF_AB_MD_GC, 1);
1661 efx_writeo(efx, &reg, FR_AB_MD_CS);
1662
1663 netif_dbg(efx, hw, efx->net_dev,
1664 "read from MDIO %d register %d.%d, got error %d\n",
1665 prtad, devad, addr, rc);
1666 }
1667
1668 out:
1669 mutex_unlock(&nic_data->mdio_lock);
1670 return rc;
1671 }
1672
1673 /* This call is responsible for hooking in the MAC and PHY operations */
1674 static int falcon_probe_port(struct efx_nic *efx)
1675 {
1676 struct falcon_nic_data *nic_data = efx->nic_data;
1677 int rc;
1678
1679 switch (efx->phy_type) {
1680 case PHY_TYPE_SFX7101:
1681 efx->phy_op = &falcon_sfx7101_phy_ops;
1682 break;
1683 case PHY_TYPE_QT2022C2:
1684 case PHY_TYPE_QT2025C:
1685 efx->phy_op = &falcon_qt202x_phy_ops;
1686 break;
1687 case PHY_TYPE_TXC43128:
1688 efx->phy_op = &falcon_txc_phy_ops;
1689 break;
1690 default:
1691 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1692 efx->phy_type);
1693 return -ENODEV;
1694 }
1695
1696 /* Fill out MDIO structure and loopback modes */
1697 mutex_init(&nic_data->mdio_lock);
1698 efx->mdio.mdio_read = falcon_mdio_read;
1699 efx->mdio.mdio_write = falcon_mdio_write;
1700 rc = efx->phy_op->probe(efx);
1701 if (rc != 0)
1702 return rc;
1703
1704 /* Initial assumption */
1705 efx->link_state.speed = 10000;
1706 efx->link_state.fd = true;
1707
1708 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1709 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1710 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1711 else
1712 efx->wanted_fc = EFX_FC_RX;
1713 if (efx->mdio.mmds & MDIO_DEVS_AN)
1714 efx->wanted_fc |= EFX_FC_AUTO;
1715
1716 /* Allocate buffer for stats */
1717 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1718 FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1719 if (rc)
1720 return rc;
1721 netif_dbg(efx, probe, efx->net_dev,
1722 "stats buffer at %llx (virt %p phys %llx)\n",
1723 (u64)efx->stats_buffer.dma_addr,
1724 efx->stats_buffer.addr,
1725 (u64)virt_to_phys(efx->stats_buffer.addr));
1726
1727 return 0;
1728 }
1729
1730 static void falcon_remove_port(struct efx_nic *efx)
1731 {
1732 efx->phy_op->remove(efx);
1733 efx_nic_free_buffer(efx, &efx->stats_buffer);
1734 }
1735
1736 /* Global events are basically PHY events */
1737 static bool
1738 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1739 {
1740 struct efx_nic *efx = channel->efx;
1741 struct falcon_nic_data *nic_data = efx->nic_data;
1742
1743 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1744 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1745 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1746 /* Ignored */
1747 return true;
1748
1749 if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1750 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1751 nic_data->xmac_poll_required = true;
1752 return true;
1753 }
1754
1755 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1756 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1757 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1758 netif_err(efx, rx_err, efx->net_dev,
1759 "channel %d seen global RX_RESET event. Resetting.\n",
1760 channel->channel);
1761
1762 atomic_inc(&efx->rx_reset);
1763 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1764 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1765 return true;
1766 }
1767
1768 return false;
1769 }
1770
1771 /**************************************************************************
1772 *
1773 * Falcon test code
1774 *
1775 **************************************************************************/
1776
1777 static int
1778 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1779 {
1780 struct falcon_nic_data *nic_data = efx->nic_data;
1781 struct falcon_nvconfig *nvconfig;
1782 struct falcon_spi_device *spi;
1783 void *region;
1784 int rc, magic_num, struct_ver;
1785 __le16 *word, *limit;
1786 u32 csum;
1787
1788 if (falcon_spi_present(&nic_data->spi_flash))
1789 spi = &nic_data->spi_flash;
1790 else if (falcon_spi_present(&nic_data->spi_eeprom))
1791 spi = &nic_data->spi_eeprom;
1792 else
1793 return -EINVAL;
1794
1795 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1796 if (!region)
1797 return -ENOMEM;
1798 nvconfig = region + FALCON_NVCONFIG_OFFSET;
1799
1800 mutex_lock(&nic_data->spi_lock);
1801 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1802 mutex_unlock(&nic_data->spi_lock);
1803 if (rc) {
1804 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1805 falcon_spi_present(&nic_data->spi_flash) ?
1806 "flash" : "EEPROM");
1807 rc = -EIO;
1808 goto out;
1809 }
1810
1811 magic_num = le16_to_cpu(nvconfig->board_magic_num);
1812 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1813
1814 rc = -EINVAL;
1815 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1816 netif_err(efx, hw, efx->net_dev,
1817 "NVRAM bad magic 0x%x\n", magic_num);
1818 goto out;
1819 }
1820 if (struct_ver < 2) {
1821 netif_err(efx, hw, efx->net_dev,
1822 "NVRAM has ancient version 0x%x\n", struct_ver);
1823 goto out;
1824 } else if (struct_ver < 4) {
1825 word = &nvconfig->board_magic_num;
1826 limit = (__le16 *) (nvconfig + 1);
1827 } else {
1828 word = region;
1829 limit = region + FALCON_NVCONFIG_END;
1830 }
1831 for (csum = 0; word < limit; ++word)
1832 csum += le16_to_cpu(*word);
1833
1834 if (~csum & 0xffff) {
1835 netif_err(efx, hw, efx->net_dev,
1836 "NVRAM has incorrect checksum\n");
1837 goto out;
1838 }
1839
1840 rc = 0;
1841 if (nvconfig_out)
1842 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1843
1844 out:
1845 kfree(region);
1846 return rc;
1847 }
1848
1849 static int falcon_test_nvram(struct efx_nic *efx)
1850 {
1851 return falcon_read_nvram(efx, NULL);
1852 }
1853
1854 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1855 { FR_AZ_ADR_REGION,
1856 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1857 { FR_AZ_RX_CFG,
1858 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1859 { FR_AZ_TX_CFG,
1860 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1861 { FR_AZ_TX_RESERVED,
1862 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1863 { FR_AB_MAC_CTRL,
1864 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1865 { FR_AZ_SRM_TX_DC_CFG,
1866 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1867 { FR_AZ_RX_DC_CFG,
1868 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1869 { FR_AZ_RX_DC_PF_WM,
1870 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1871 { FR_BZ_DP_CTRL,
1872 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1873 { FR_AB_GM_CFG2,
1874 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1875 { FR_AB_GMF_CFG0,
1876 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1877 { FR_AB_XM_GLB_CFG,
1878 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1879 { FR_AB_XM_TX_CFG,
1880 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1881 { FR_AB_XM_RX_CFG,
1882 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1883 { FR_AB_XM_RX_PARAM,
1884 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1885 { FR_AB_XM_FC,
1886 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1887 { FR_AB_XM_ADR_LO,
1888 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1889 { FR_AB_XX_SD_CTL,
1890 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1891 };
1892
1893 static int
1894 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1895 {
1896 enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1897 int rc, rc2;
1898
1899 mutex_lock(&efx->mac_lock);
1900 if (efx->loopback_modes) {
1901 /* We need the 312 clock from the PHY to test the XMAC
1902 * registers, so move into XGMII loopback if available */
1903 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1904 efx->loopback_mode = LOOPBACK_XGMII;
1905 else
1906 efx->loopback_mode = __ffs(efx->loopback_modes);
1907 }
1908 __efx_reconfigure_port(efx);
1909 mutex_unlock(&efx->mac_lock);
1910
1911 efx_reset_down(efx, reset_method);
1912
1913 tests->registers =
1914 efx_farch_test_registers(efx, falcon_b0_register_tests,
1915 ARRAY_SIZE(falcon_b0_register_tests))
1916 ? -1 : 1;
1917
1918 rc = falcon_reset_hw(efx, reset_method);
1919 rc2 = efx_reset_up(efx, reset_method, rc == 0);
1920 return rc ? rc : rc2;
1921 }
1922
1923 /**************************************************************************
1924 *
1925 * Device reset
1926 *
1927 **************************************************************************
1928 */
1929
1930 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1931 {
1932 switch (reason) {
1933 case RESET_TYPE_RX_RECOVERY:
1934 case RESET_TYPE_DMA_ERROR:
1935 case RESET_TYPE_TX_SKIP:
1936 /* These can occasionally occur due to hardware bugs.
1937 * We try to reset without disrupting the link.
1938 */
1939 return RESET_TYPE_INVISIBLE;
1940 default:
1941 return RESET_TYPE_ALL;
1942 }
1943 }
1944
1945 static int falcon_map_reset_flags(u32 *flags)
1946 {
1947 enum {
1948 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1949 ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1950 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1951 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1952 };
1953
1954 if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1955 *flags &= ~FALCON_RESET_WORLD;
1956 return RESET_TYPE_WORLD;
1957 }
1958
1959 if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1960 *flags &= ~FALCON_RESET_ALL;
1961 return RESET_TYPE_ALL;
1962 }
1963
1964 if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1965 *flags &= ~FALCON_RESET_INVISIBLE;
1966 return RESET_TYPE_INVISIBLE;
1967 }
1968
1969 return -EINVAL;
1970 }
1971
1972 /* Resets NIC to known state. This routine must be called in process
1973 * context and is allowed to sleep. */
1974 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1975 {
1976 struct falcon_nic_data *nic_data = efx->nic_data;
1977 efx_oword_t glb_ctl_reg_ker;
1978 int rc;
1979
1980 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1981 RESET_TYPE(method));
1982
1983 /* Initiate device reset */
1984 if (method == RESET_TYPE_WORLD) {
1985 rc = pci_save_state(efx->pci_dev);
1986 if (rc) {
1987 netif_err(efx, drv, efx->net_dev,
1988 "failed to backup PCI state of primary "
1989 "function prior to hardware reset\n");
1990 goto fail1;
1991 }
1992 if (efx_nic_is_dual_func(efx)) {
1993 rc = pci_save_state(nic_data->pci_dev2);
1994 if (rc) {
1995 netif_err(efx, drv, efx->net_dev,
1996 "failed to backup PCI state of "
1997 "secondary function prior to "
1998 "hardware reset\n");
1999 goto fail2;
2000 }
2001 }
2002
2003 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2004 FRF_AB_EXT_PHY_RST_DUR,
2005 FFE_AB_EXT_PHY_RST_DUR_10240US,
2006 FRF_AB_SWRST, 1);
2007 } else {
2008 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2009 /* exclude PHY from "invisible" reset */
2010 FRF_AB_EXT_PHY_RST_CTL,
2011 method == RESET_TYPE_INVISIBLE,
2012 /* exclude EEPROM/flash and PCIe */
2013 FRF_AB_PCIE_CORE_RST_CTL, 1,
2014 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2015 FRF_AB_PCIE_SD_RST_CTL, 1,
2016 FRF_AB_EE_RST_CTL, 1,
2017 FRF_AB_EXT_PHY_RST_DUR,
2018 FFE_AB_EXT_PHY_RST_DUR_10240US,
2019 FRF_AB_SWRST, 1);
2020 }
2021 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2022
2023 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2024 schedule_timeout_uninterruptible(HZ / 20);
2025
2026 /* Restore PCI configuration if needed */
2027 if (method == RESET_TYPE_WORLD) {
2028 if (efx_nic_is_dual_func(efx))
2029 pci_restore_state(nic_data->pci_dev2);
2030 pci_restore_state(efx->pci_dev);
2031 netif_dbg(efx, drv, efx->net_dev,
2032 "successfully restored PCI config\n");
2033 }
2034
2035 /* Assert that reset complete */
2036 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2037 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2038 rc = -ETIMEDOUT;
2039 netif_err(efx, hw, efx->net_dev,
2040 "timed out waiting for hardware reset\n");
2041 goto fail3;
2042 }
2043 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2044
2045 return 0;
2046
2047 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2048 fail2:
2049 pci_restore_state(efx->pci_dev);
2050 fail1:
2051 fail3:
2052 return rc;
2053 }
2054
2055 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2056 {
2057 struct falcon_nic_data *nic_data = efx->nic_data;
2058 int rc;
2059
2060 mutex_lock(&nic_data->spi_lock);
2061 rc = __falcon_reset_hw(efx, method);
2062 mutex_unlock(&nic_data->spi_lock);
2063
2064 return rc;
2065 }
2066
2067 static void falcon_monitor(struct efx_nic *efx)
2068 {
2069 bool link_changed;
2070 int rc;
2071
2072 BUG_ON(!mutex_is_locked(&efx->mac_lock));
2073
2074 rc = falcon_board(efx)->type->monitor(efx);
2075 if (rc) {
2076 netif_err(efx, hw, efx->net_dev,
2077 "Board sensor %s; shutting down PHY\n",
2078 (rc == -ERANGE) ? "reported fault" : "failed");
2079 efx->phy_mode |= PHY_MODE_LOW_POWER;
2080 rc = __efx_reconfigure_port(efx);
2081 WARN_ON(rc);
2082 }
2083
2084 if (LOOPBACK_INTERNAL(efx))
2085 link_changed = falcon_loopback_link_poll(efx);
2086 else
2087 link_changed = efx->phy_op->poll(efx);
2088
2089 if (link_changed) {
2090 falcon_stop_nic_stats(efx);
2091 falcon_deconfigure_mac_wrapper(efx);
2092
2093 falcon_reset_macs(efx);
2094 rc = falcon_reconfigure_xmac(efx);
2095 BUG_ON(rc);
2096
2097 falcon_start_nic_stats(efx);
2098
2099 efx_link_status_changed(efx);
2100 }
2101
2102 falcon_poll_xmac(efx);
2103 }
2104
2105 /* Zeroes out the SRAM contents. This routine must be called in
2106 * process context and is allowed to sleep.
2107 */
2108 static int falcon_reset_sram(struct efx_nic *efx)
2109 {
2110 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2111 int count;
2112
2113 /* Set the SRAM wake/sleep GPIO appropriately. */
2114 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2115 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2116 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2117 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118
2119 /* Initiate SRAM reset */
2120 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2121 FRF_AZ_SRM_INIT_EN, 1,
2122 FRF_AZ_SRM_NB_SZ, 0);
2123 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2124
2125 /* Wait for SRAM reset to complete */
2126 count = 0;
2127 do {
2128 netif_dbg(efx, hw, efx->net_dev,
2129 "waiting for SRAM reset (attempt %d)...\n", count);
2130
2131 /* SRAM reset is slow; expect around 16ms */
2132 schedule_timeout_uninterruptible(HZ / 50);
2133
2134 /* Check for reset complete */
2135 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2136 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2137 netif_dbg(efx, hw, efx->net_dev,
2138 "SRAM reset complete\n");
2139
2140 return 0;
2141 }
2142 } while (++count < 20); /* wait up to 0.4 sec */
2143
2144 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2145 return -ETIMEDOUT;
2146 }
2147
2148 static void falcon_spi_device_init(struct efx_nic *efx,
2149 struct falcon_spi_device *spi_device,
2150 unsigned int device_id, u32 device_type)
2151 {
2152 if (device_type != 0) {
2153 spi_device->device_id = device_id;
2154 spi_device->size =
2155 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2156 spi_device->addr_len =
2157 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2158 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2159 spi_device->addr_len == 1);
2160 spi_device->erase_command =
2161 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2162 spi_device->erase_size =
2163 1 << SPI_DEV_TYPE_FIELD(device_type,
2164 SPI_DEV_TYPE_ERASE_SIZE);
2165 spi_device->block_size =
2166 1 << SPI_DEV_TYPE_FIELD(device_type,
2167 SPI_DEV_TYPE_BLOCK_SIZE);
2168 } else {
2169 spi_device->size = 0;
2170 }
2171 }
2172
2173 /* Extract non-volatile configuration */
2174 static int falcon_probe_nvconfig(struct efx_nic *efx)
2175 {
2176 struct falcon_nic_data *nic_data = efx->nic_data;
2177 struct falcon_nvconfig *nvconfig;
2178 int rc;
2179
2180 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2181 if (!nvconfig)
2182 return -ENOMEM;
2183
2184 rc = falcon_read_nvram(efx, nvconfig);
2185 if (rc)
2186 goto out;
2187
2188 efx->phy_type = nvconfig->board_v2.port0_phy_type;
2189 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2190
2191 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2192 falcon_spi_device_init(
2193 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2194 le32_to_cpu(nvconfig->board_v3
2195 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2196 falcon_spi_device_init(
2197 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2198 le32_to_cpu(nvconfig->board_v3
2199 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2200 }
2201
2202 /* Read the MAC addresses */
2203 ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2204
2205 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2206 efx->phy_type, efx->mdio.prtad);
2207
2208 rc = falcon_probe_board(efx,
2209 le16_to_cpu(nvconfig->board_v2.board_revision));
2210 out:
2211 kfree(nvconfig);
2212 return rc;
2213 }
2214
2215 static int falcon_dimension_resources(struct efx_nic *efx)
2216 {
2217 efx->rx_dc_base = 0x20000;
2218 efx->tx_dc_base = 0x26000;
2219 return 0;
2220 }
2221
2222 /* Probe all SPI devices on the NIC */
2223 static void falcon_probe_spi_devices(struct efx_nic *efx)
2224 {
2225 struct falcon_nic_data *nic_data = efx->nic_data;
2226 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2227 int boot_dev;
2228
2229 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2230 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2231 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2232
2233 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2234 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2235 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2236 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2237 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2238 "flash" : "EEPROM");
2239 } else {
2240 /* Disable VPD and set clock dividers to safe
2241 * values for initial programming. */
2242 boot_dev = -1;
2243 netif_dbg(efx, probe, efx->net_dev,
2244 "Booted from internal ASIC settings;"
2245 " setting SPI config\n");
2246 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2247 /* 125 MHz / 7 ~= 20 MHz */
2248 FRF_AB_EE_SF_CLOCK_DIV, 7,
2249 /* 125 MHz / 63 ~= 2 MHz */
2250 FRF_AB_EE_EE_CLOCK_DIV, 63);
2251 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2252 }
2253
2254 mutex_init(&nic_data->spi_lock);
2255
2256 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2257 falcon_spi_device_init(efx, &nic_data->spi_flash,
2258 FFE_AB_SPI_DEVICE_FLASH,
2259 default_flash_type);
2260 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2261 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2262 FFE_AB_SPI_DEVICE_EEPROM,
2263 large_eeprom_type);
2264 }
2265
2266 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2267 {
2268 return 0x20000;
2269 }
2270
2271 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2272 {
2273 /* Map everything up to and including the RSS indirection table.
2274 * The PCI core takes care of mapping the MSI-X tables.
2275 */
2276 return FR_BZ_RX_INDIRECTION_TBL +
2277 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2278 }
2279
2280 static int falcon_probe_nic(struct efx_nic *efx)
2281 {
2282 struct falcon_nic_data *nic_data;
2283 struct falcon_board *board;
2284 int rc;
2285
2286 efx->primary = efx; /* only one usable function per controller */
2287
2288 /* Allocate storage for hardware specific data */
2289 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2290 if (!nic_data)
2291 return -ENOMEM;
2292 efx->nic_data = nic_data;
2293
2294 rc = -ENODEV;
2295
2296 if (efx_farch_fpga_ver(efx) != 0) {
2297 netif_err(efx, probe, efx->net_dev,
2298 "Falcon FPGA not supported\n");
2299 goto fail1;
2300 }
2301
2302 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2303 efx_oword_t nic_stat;
2304 struct pci_dev *dev;
2305 u8 pci_rev = efx->pci_dev->revision;
2306
2307 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2308 netif_err(efx, probe, efx->net_dev,
2309 "Falcon rev A0 not supported\n");
2310 goto fail1;
2311 }
2312 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2313 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2314 netif_err(efx, probe, efx->net_dev,
2315 "Falcon rev A1 1G not supported\n");
2316 goto fail1;
2317 }
2318 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2319 netif_err(efx, probe, efx->net_dev,
2320 "Falcon rev A1 PCI-X not supported\n");
2321 goto fail1;
2322 }
2323
2324 dev = pci_dev_get(efx->pci_dev);
2325 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2326 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2327 dev))) {
2328 if (dev->bus == efx->pci_dev->bus &&
2329 dev->devfn == efx->pci_dev->devfn + 1) {
2330 nic_data->pci_dev2 = dev;
2331 break;
2332 }
2333 }
2334 if (!nic_data->pci_dev2) {
2335 netif_err(efx, probe, efx->net_dev,
2336 "failed to find secondary function\n");
2337 rc = -ENODEV;
2338 goto fail2;
2339 }
2340 }
2341
2342 /* Now we can reset the NIC */
2343 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2344 if (rc) {
2345 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2346 goto fail3;
2347 }
2348
2349 /* Allocate memory for INT_KER */
2350 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2351 GFP_KERNEL);
2352 if (rc)
2353 goto fail4;
2354 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2355
2356 netif_dbg(efx, probe, efx->net_dev,
2357 "INT_KER at %llx (virt %p phys %llx)\n",
2358 (u64)efx->irq_status.dma_addr,
2359 efx->irq_status.addr,
2360 (u64)virt_to_phys(efx->irq_status.addr));
2361
2362 falcon_probe_spi_devices(efx);
2363
2364 /* Read in the non-volatile configuration */
2365 rc = falcon_probe_nvconfig(efx);
2366 if (rc) {
2367 if (rc == -EINVAL)
2368 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2369 goto fail5;
2370 }
2371
2372 efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2373 EFX_MAX_CHANNELS);
2374 efx->max_tx_channels = efx->max_channels;
2375 efx->timer_quantum_ns = 4968; /* 621 cycles */
2376
2377 /* Initialise I2C adapter */
2378 board = falcon_board(efx);
2379 board->i2c_adap.owner = THIS_MODULE;
2380 board->i2c_data = falcon_i2c_bit_operations;
2381 board->i2c_data.data = efx;
2382 board->i2c_adap.algo_data = &board->i2c_data;
2383 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2384 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2385 sizeof(board->i2c_adap.name));
2386 rc = i2c_bit_add_bus(&board->i2c_adap);
2387 if (rc)
2388 goto fail5;
2389
2390 rc = falcon_board(efx)->type->init(efx);
2391 if (rc) {
2392 netif_err(efx, probe, efx->net_dev,
2393 "failed to initialise board\n");
2394 goto fail6;
2395 }
2396
2397 nic_data->stats_disable_count = 1;
2398 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2399 (unsigned long)efx);
2400
2401 return 0;
2402
2403 fail6:
2404 i2c_del_adapter(&board->i2c_adap);
2405 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2406 fail5:
2407 efx_nic_free_buffer(efx, &efx->irq_status);
2408 fail4:
2409 fail3:
2410 if (nic_data->pci_dev2) {
2411 pci_dev_put(nic_data->pci_dev2);
2412 nic_data->pci_dev2 = NULL;
2413 }
2414 fail2:
2415 fail1:
2416 kfree(efx->nic_data);
2417 return rc;
2418 }
2419
2420 static void falcon_init_rx_cfg(struct efx_nic *efx)
2421 {
2422 /* RX control FIFO thresholds (32 entries) */
2423 const unsigned ctrl_xon_thr = 20;
2424 const unsigned ctrl_xoff_thr = 25;
2425 efx_oword_t reg;
2426
2427 efx_reado(efx, &reg, FR_AZ_RX_CFG);
2428 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2429 /* Data FIFO size is 5.5K. The RX DMA engine only
2430 * supports scattering for user-mode queues, but will
2431 * split DMA writes at intervals of RX_USR_BUF_SIZE
2432 * (32-byte units) even for kernel-mode queues. We
2433 * set it to be so large that that never happens.
2434 */
2435 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2436 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2437 (3 * 4096) >> 5);
2438 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2439 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2440 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2441 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2442 } else {
2443 /* Data FIFO size is 80K; register fields moved */
2444 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2445 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2446 EFX_RX_USR_BUF_SIZE >> 5);
2447 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2448 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2449 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2450 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2451 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2452 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2453
2454 /* Enable hash insertion. This is broken for the
2455 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2456 * IPv4 hashes. */
2457 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2458 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2459 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2460 }
2461 /* Always enable XOFF signal from RX FIFO. We enable
2462 * or disable transmission of pause frames at the MAC. */
2463 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2464 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2465 }
2466
2467 /* This call performs hardware-specific global initialisation, such as
2468 * defining the descriptor cache sizes and number of RSS channels.
2469 * It does not set up any buffers, descriptor rings or event queues.
2470 */
2471 static int falcon_init_nic(struct efx_nic *efx)
2472 {
2473 efx_oword_t temp;
2474 int rc;
2475
2476 /* Use on-chip SRAM */
2477 efx_reado(efx, &temp, FR_AB_NIC_STAT);
2478 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2479 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2480
2481 rc = falcon_reset_sram(efx);
2482 if (rc)
2483 return rc;
2484
2485 /* Clear the parity enables on the TX data fifos as
2486 * they produce false parity errors because of timing issues
2487 */
2488 if (EFX_WORKAROUND_5129(efx)) {
2489 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2490 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2491 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2492 }
2493
2494 if (EFX_WORKAROUND_7244(efx)) {
2495 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2496 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2497 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2498 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2499 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2500 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501 }
2502
2503 /* XXX This is documented only for Falcon A0/A1 */
2504 /* Setup RX. Wait for descriptor is broken and must
2505 * be disabled. RXDP recovery shouldn't be needed, but is.
2506 */
2507 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2508 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2509 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2510 if (EFX_WORKAROUND_5583(efx))
2511 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2512 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2513
2514 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2515 * descriptors (which is bad).
2516 */
2517 efx_reado(efx, &temp, FR_AZ_TX_CFG);
2518 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2519 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2520
2521 falcon_init_rx_cfg(efx);
2522
2523 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2524 falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2525
2526 /* Set destination of both TX and RX Flush events */
2527 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2528 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2529 }
2530
2531 efx_farch_init_common(efx);
2532
2533 return 0;
2534 }
2535
2536 static void falcon_remove_nic(struct efx_nic *efx)
2537 {
2538 struct falcon_nic_data *nic_data = efx->nic_data;
2539 struct falcon_board *board = falcon_board(efx);
2540
2541 board->type->fini(efx);
2542
2543 /* Remove I2C adapter and clear it in preparation for a retry */
2544 i2c_del_adapter(&board->i2c_adap);
2545 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2546
2547 efx_nic_free_buffer(efx, &efx->irq_status);
2548
2549 __falcon_reset_hw(efx, RESET_TYPE_ALL);
2550
2551 /* Release the second function after the reset */
2552 if (nic_data->pci_dev2) {
2553 pci_dev_put(nic_data->pci_dev2);
2554 nic_data->pci_dev2 = NULL;
2555 }
2556
2557 /* Tear down the private nic state */
2558 kfree(efx->nic_data);
2559 efx->nic_data = NULL;
2560 }
2561
2562 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2563 {
2564 return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2565 falcon_stat_mask, names);
2566 }
2567
2568 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2569 struct rtnl_link_stats64 *core_stats)
2570 {
2571 struct falcon_nic_data *nic_data = efx->nic_data;
2572 u64 *stats = nic_data->stats;
2573 efx_oword_t cnt;
2574
2575 if (!nic_data->stats_disable_count) {
2576 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2577 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2578 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2579
2580 if (nic_data->stats_pending &&
2581 FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2582 nic_data->stats_pending = false;
2583 rmb(); /* read the done flag before the stats */
2584 efx_nic_update_stats(
2585 falcon_stat_desc, FALCON_STAT_COUNT,
2586 falcon_stat_mask,
2587 stats, efx->stats_buffer.addr, true);
2588 }
2589
2590 /* Update derived statistic */
2591 efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2592 stats[FALCON_STAT_rx_bytes] -
2593 stats[FALCON_STAT_rx_good_bytes] -
2594 stats[FALCON_STAT_rx_control] * 64);
2595 efx_update_sw_stats(efx, stats);
2596 }
2597
2598 if (full_stats)
2599 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2600
2601 if (core_stats) {
2602 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2603 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2604 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2605 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2606 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2607 stats[GENERIC_STAT_rx_nodesc_trunc] +
2608 stats[GENERIC_STAT_rx_noskb_drops];
2609 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2610 core_stats->rx_length_errors =
2611 stats[FALCON_STAT_rx_gtjumbo] +
2612 stats[FALCON_STAT_rx_length_error];
2613 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2614 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2615 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2616
2617 core_stats->rx_errors = (core_stats->rx_length_errors +
2618 core_stats->rx_crc_errors +
2619 core_stats->rx_frame_errors +
2620 stats[FALCON_STAT_rx_symbol_error]);
2621 }
2622
2623 return FALCON_STAT_COUNT;
2624 }
2625
2626 void falcon_start_nic_stats(struct efx_nic *efx)
2627 {
2628 struct falcon_nic_data *nic_data = efx->nic_data;
2629
2630 spin_lock_bh(&efx->stats_lock);
2631 if (--nic_data->stats_disable_count == 0)
2632 falcon_stats_request(efx);
2633 spin_unlock_bh(&efx->stats_lock);
2634 }
2635
2636 /* We don't acutally pull stats on falcon. Wait 10ms so that
2637 * they arrive when we call this just after start_stats
2638 */
2639 static void falcon_pull_nic_stats(struct efx_nic *efx)
2640 {
2641 msleep(10);
2642 }
2643
2644 void falcon_stop_nic_stats(struct efx_nic *efx)
2645 {
2646 struct falcon_nic_data *nic_data = efx->nic_data;
2647 int i;
2648
2649 might_sleep();
2650
2651 spin_lock_bh(&efx->stats_lock);
2652 ++nic_data->stats_disable_count;
2653 spin_unlock_bh(&efx->stats_lock);
2654
2655 del_timer_sync(&nic_data->stats_timer);
2656
2657 /* Wait enough time for the most recent transfer to
2658 * complete. */
2659 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2660 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2661 break;
2662 msleep(1);
2663 }
2664
2665 spin_lock_bh(&efx->stats_lock);
2666 falcon_stats_complete(efx);
2667 spin_unlock_bh(&efx->stats_lock);
2668 }
2669
2670 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2671 {
2672 falcon_board(efx)->type->set_id_led(efx, mode);
2673 }
2674
2675 /**************************************************************************
2676 *
2677 * Wake on LAN
2678 *
2679 **************************************************************************
2680 */
2681
2682 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2683 {
2684 wol->supported = 0;
2685 wol->wolopts = 0;
2686 memset(&wol->sopass, 0, sizeof(wol->sopass));
2687 }
2688
2689 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2690 {
2691 if (type != 0)
2692 return -EINVAL;
2693 return 0;
2694 }
2695
2696 /**************************************************************************
2697 *
2698 * Revision-dependent attributes used by efx.c and nic.c
2699 *
2700 **************************************************************************
2701 */
2702
2703 const struct efx_nic_type falcon_a1_nic_type = {
2704 .is_vf = false,
2705 .mem_bar = EFX_MEM_BAR,
2706 .mem_map_size = falcon_a1_mem_map_size,
2707 .probe = falcon_probe_nic,
2708 .remove = falcon_remove_nic,
2709 .init = falcon_init_nic,
2710 .dimension_resources = falcon_dimension_resources,
2711 .fini = falcon_irq_ack_a1,
2712 .monitor = falcon_monitor,
2713 .map_reset_reason = falcon_map_reset_reason,
2714 .map_reset_flags = falcon_map_reset_flags,
2715 .reset = falcon_reset_hw,
2716 .probe_port = falcon_probe_port,
2717 .remove_port = falcon_remove_port,
2718 .handle_global_event = falcon_handle_global_event,
2719 .fini_dmaq = efx_farch_fini_dmaq,
2720 .prepare_flush = falcon_prepare_flush,
2721 .finish_flush = efx_port_dummy_op_void,
2722 .prepare_flr = efx_port_dummy_op_void,
2723 .finish_flr = efx_farch_finish_flr,
2724 .describe_stats = falcon_describe_nic_stats,
2725 .update_stats = falcon_update_nic_stats,
2726 .start_stats = falcon_start_nic_stats,
2727 .pull_stats = falcon_pull_nic_stats,
2728 .stop_stats = falcon_stop_nic_stats,
2729 .set_id_led = falcon_set_id_led,
2730 .push_irq_moderation = falcon_push_irq_moderation,
2731 .reconfigure_port = falcon_reconfigure_port,
2732 .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2733 .reconfigure_mac = falcon_reconfigure_xmac,
2734 .check_mac_fault = falcon_xmac_check_fault,
2735 .get_wol = falcon_get_wol,
2736 .set_wol = falcon_set_wol,
2737 .resume_wol = efx_port_dummy_op_void,
2738 .test_nvram = falcon_test_nvram,
2739 .irq_enable_master = efx_farch_irq_enable_master,
2740 .irq_test_generate = efx_farch_irq_test_generate,
2741 .irq_disable_non_ev = efx_farch_irq_disable_master,
2742 .irq_handle_msi = efx_farch_msi_interrupt,
2743 .irq_handle_legacy = falcon_legacy_interrupt_a1,
2744 .tx_probe = efx_farch_tx_probe,
2745 .tx_init = efx_farch_tx_init,
2746 .tx_remove = efx_farch_tx_remove,
2747 .tx_write = efx_farch_tx_write,
2748 .rx_push_rss_config = dummy_rx_push_rss_config,
2749 .rx_probe = efx_farch_rx_probe,
2750 .rx_init = efx_farch_rx_init,
2751 .rx_remove = efx_farch_rx_remove,
2752 .rx_write = efx_farch_rx_write,
2753 .rx_defer_refill = efx_farch_rx_defer_refill,
2754 .ev_probe = efx_farch_ev_probe,
2755 .ev_init = efx_farch_ev_init,
2756 .ev_fini = efx_farch_ev_fini,
2757 .ev_remove = efx_farch_ev_remove,
2758 .ev_process = efx_farch_ev_process,
2759 .ev_read_ack = efx_farch_ev_read_ack,
2760 .ev_test_generate = efx_farch_ev_test_generate,
2761
2762 /* We don't expose the filter table on Falcon A1 as it is not
2763 * mapped into function 0, but these implementations still
2764 * work with a degenerate case of all tables set to size 0.
2765 */
2766 .filter_table_probe = efx_farch_filter_table_probe,
2767 .filter_table_restore = efx_farch_filter_table_restore,
2768 .filter_table_remove = efx_farch_filter_table_remove,
2769 .filter_insert = efx_farch_filter_insert,
2770 .filter_remove_safe = efx_farch_filter_remove_safe,
2771 .filter_get_safe = efx_farch_filter_get_safe,
2772 .filter_clear_rx = efx_farch_filter_clear_rx,
2773 .filter_count_rx_used = efx_farch_filter_count_rx_used,
2774 .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2775 .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2776
2777 #ifdef CONFIG_SFC_MTD
2778 .mtd_probe = falcon_mtd_probe,
2779 .mtd_rename = falcon_mtd_rename,
2780 .mtd_read = falcon_mtd_read,
2781 .mtd_erase = falcon_mtd_erase,
2782 .mtd_write = falcon_mtd_write,
2783 .mtd_sync = falcon_mtd_sync,
2784 #endif
2785
2786 .revision = EFX_REV_FALCON_A1,
2787 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2788 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2789 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2790 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2791 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2792 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2793 .rx_buffer_padding = 0x24,
2794 .can_rx_scatter = false,
2795 .max_interrupt_mode = EFX_INT_MODE_MSI,
2796 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2797 .offload_features = NETIF_F_IP_CSUM,
2798 .mcdi_max_ver = -1,
2799 };
2800
2801 const struct efx_nic_type falcon_b0_nic_type = {
2802 .is_vf = false,
2803 .mem_bar = EFX_MEM_BAR,
2804 .mem_map_size = falcon_b0_mem_map_size,
2805 .probe = falcon_probe_nic,
2806 .remove = falcon_remove_nic,
2807 .init = falcon_init_nic,
2808 .dimension_resources = falcon_dimension_resources,
2809 .fini = efx_port_dummy_op_void,
2810 .monitor = falcon_monitor,
2811 .map_reset_reason = falcon_map_reset_reason,
2812 .map_reset_flags = falcon_map_reset_flags,
2813 .reset = falcon_reset_hw,
2814 .probe_port = falcon_probe_port,
2815 .remove_port = falcon_remove_port,
2816 .handle_global_event = falcon_handle_global_event,
2817 .fini_dmaq = efx_farch_fini_dmaq,
2818 .prepare_flush = falcon_prepare_flush,
2819 .finish_flush = efx_port_dummy_op_void,
2820 .prepare_flr = efx_port_dummy_op_void,
2821 .finish_flr = efx_farch_finish_flr,
2822 .describe_stats = falcon_describe_nic_stats,
2823 .update_stats = falcon_update_nic_stats,
2824 .start_stats = falcon_start_nic_stats,
2825 .pull_stats = falcon_pull_nic_stats,
2826 .stop_stats = falcon_stop_nic_stats,
2827 .set_id_led = falcon_set_id_led,
2828 .push_irq_moderation = falcon_push_irq_moderation,
2829 .reconfigure_port = falcon_reconfigure_port,
2830 .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2831 .reconfigure_mac = falcon_reconfigure_xmac,
2832 .check_mac_fault = falcon_xmac_check_fault,
2833 .get_wol = falcon_get_wol,
2834 .set_wol = falcon_set_wol,
2835 .resume_wol = efx_port_dummy_op_void,
2836 .test_chip = falcon_b0_test_chip,
2837 .test_nvram = falcon_test_nvram,
2838 .irq_enable_master = efx_farch_irq_enable_master,
2839 .irq_test_generate = efx_farch_irq_test_generate,
2840 .irq_disable_non_ev = efx_farch_irq_disable_master,
2841 .irq_handle_msi = efx_farch_msi_interrupt,
2842 .irq_handle_legacy = efx_farch_legacy_interrupt,
2843 .tx_probe = efx_farch_tx_probe,
2844 .tx_init = efx_farch_tx_init,
2845 .tx_remove = efx_farch_tx_remove,
2846 .tx_write = efx_farch_tx_write,
2847 .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2848 .rx_probe = efx_farch_rx_probe,
2849 .rx_init = efx_farch_rx_init,
2850 .rx_remove = efx_farch_rx_remove,
2851 .rx_write = efx_farch_rx_write,
2852 .rx_defer_refill = efx_farch_rx_defer_refill,
2853 .ev_probe = efx_farch_ev_probe,
2854 .ev_init = efx_farch_ev_init,
2855 .ev_fini = efx_farch_ev_fini,
2856 .ev_remove = efx_farch_ev_remove,
2857 .ev_process = efx_farch_ev_process,
2858 .ev_read_ack = efx_farch_ev_read_ack,
2859 .ev_test_generate = efx_farch_ev_test_generate,
2860 .filter_table_probe = efx_farch_filter_table_probe,
2861 .filter_table_restore = efx_farch_filter_table_restore,
2862 .filter_table_remove = efx_farch_filter_table_remove,
2863 .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2864 .filter_insert = efx_farch_filter_insert,
2865 .filter_remove_safe = efx_farch_filter_remove_safe,
2866 .filter_get_safe = efx_farch_filter_get_safe,
2867 .filter_clear_rx = efx_farch_filter_clear_rx,
2868 .filter_count_rx_used = efx_farch_filter_count_rx_used,
2869 .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2870 .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2871 #ifdef CONFIG_RFS_ACCEL
2872 .filter_rfs_insert = efx_farch_filter_rfs_insert,
2873 .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2874 #endif
2875 #ifdef CONFIG_SFC_MTD
2876 .mtd_probe = falcon_mtd_probe,
2877 .mtd_rename = falcon_mtd_rename,
2878 .mtd_read = falcon_mtd_read,
2879 .mtd_erase = falcon_mtd_erase,
2880 .mtd_write = falcon_mtd_write,
2881 .mtd_sync = falcon_mtd_sync,
2882 #endif
2883
2884 .revision = EFX_REV_FALCON_B0,
2885 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2886 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2887 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2888 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2889 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2890 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2891 .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2892 .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2893 .rx_buffer_padding = 0,
2894 .can_rx_scatter = true,
2895 .max_interrupt_mode = EFX_INT_MODE_MSIX,
2896 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2897 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2898 .mcdi_max_ver = -1,
2899 .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2900 };
This page took 0.094317 seconds and 6 git commands to generate.