sfc: Bind the sfc driver to any available VF's
[deliverable/linux.git] / drivers / net / ethernet / sfc / mcdi.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include <linux/delay.h>
11 #include <asm/cmpxchg.h>
12 #include "net_driver.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "farch_regs.h"
16 #include "mcdi_pcol.h"
17 #include "phy.h"
18
19 /**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26 #define MCDI_RPC_TIMEOUT (10 * HZ)
27
28 /* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
31 */
32 #define MCDI_STATUS_DELAY_US 100
33 #define MCDI_STATUS_DELAY_COUNT 2500
34 #define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37 #define SEQ_MASK \
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40 struct efx_mcdi_async_param {
41 struct list_head list;
42 unsigned int cmd;
43 size_t inlen;
44 size_t outlen;
45 bool quiet;
46 efx_mcdi_async_completer *complete;
47 unsigned long cookie;
48 /* followed by request/response buffer */
49 };
50
51 static void efx_mcdi_timeout_async(unsigned long context);
52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 bool *was_attached_out);
54 static bool efx_mcdi_poll_once(struct efx_nic *efx);
55 static void efx_mcdi_abandon(struct efx_nic *efx);
56
57 int efx_mcdi_init(struct efx_nic *efx)
58 {
59 struct efx_mcdi_iface *mcdi;
60 bool already_attached;
61 int rc;
62
63 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
64 if (!efx->mcdi)
65 return -ENOMEM;
66
67 mcdi = efx_mcdi(efx);
68 mcdi->efx = efx;
69 init_waitqueue_head(&mcdi->wq);
70 spin_lock_init(&mcdi->iface_lock);
71 mcdi->state = MCDI_STATE_QUIESCENT;
72 mcdi->mode = MCDI_MODE_POLL;
73 spin_lock_init(&mcdi->async_lock);
74 INIT_LIST_HEAD(&mcdi->async_list);
75 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
76 (unsigned long)mcdi);
77
78 (void) efx_mcdi_poll_reboot(efx);
79 mcdi->new_epoch = true;
80
81 /* Recover from a failed assertion before probing */
82 rc = efx_mcdi_handle_assertion(efx);
83 if (rc)
84 return rc;
85
86 /* Let the MC (and BMC, if this is a LOM) know that the driver
87 * is loaded. We should do this before we reset the NIC.
88 */
89 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
90 if (rc) {
91 netif_err(efx, probe, efx->net_dev,
92 "Unable to register driver with MCPU\n");
93 return rc;
94 }
95 if (already_attached)
96 /* Not a fatal error */
97 netif_err(efx, probe, efx->net_dev,
98 "Host already registered with MCPU\n");
99
100 if (efx->mcdi->fn_flags &
101 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
102 efx->primary = efx;
103
104 return 0;
105 }
106
107 void efx_mcdi_fini(struct efx_nic *efx)
108 {
109 if (!efx->mcdi)
110 return;
111
112 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
113
114 /* Relinquish the device (back to the BMC, if this is a LOM) */
115 efx_mcdi_drv_attach(efx, false, NULL);
116
117 kfree(efx->mcdi);
118 }
119
120 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
121 const efx_dword_t *inbuf, size_t inlen)
122 {
123 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
124 efx_dword_t hdr[2];
125 size_t hdr_len;
126 u32 xflags, seqno;
127
128 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
129
130 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
131 spin_lock_bh(&mcdi->iface_lock);
132 ++mcdi->seqno;
133 spin_unlock_bh(&mcdi->iface_lock);
134
135 seqno = mcdi->seqno & SEQ_MASK;
136 xflags = 0;
137 if (mcdi->mode == MCDI_MODE_EVENTS)
138 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
139
140 if (efx->type->mcdi_max_ver == 1) {
141 /* MCDI v1 */
142 EFX_POPULATE_DWORD_7(hdr[0],
143 MCDI_HEADER_RESPONSE, 0,
144 MCDI_HEADER_RESYNC, 1,
145 MCDI_HEADER_CODE, cmd,
146 MCDI_HEADER_DATALEN, inlen,
147 MCDI_HEADER_SEQ, seqno,
148 MCDI_HEADER_XFLAGS, xflags,
149 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
150 hdr_len = 4;
151 } else {
152 /* MCDI v2 */
153 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
154 EFX_POPULATE_DWORD_7(hdr[0],
155 MCDI_HEADER_RESPONSE, 0,
156 MCDI_HEADER_RESYNC, 1,
157 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
158 MCDI_HEADER_DATALEN, 0,
159 MCDI_HEADER_SEQ, seqno,
160 MCDI_HEADER_XFLAGS, xflags,
161 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
162 EFX_POPULATE_DWORD_2(hdr[1],
163 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
164 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
165 hdr_len = 8;
166 }
167
168 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
169
170 mcdi->new_epoch = false;
171 }
172
173 static int efx_mcdi_errno(unsigned int mcdi_err)
174 {
175 switch (mcdi_err) {
176 case 0:
177 return 0;
178 #define TRANSLATE_ERROR(name) \
179 case MC_CMD_ERR_ ## name: \
180 return -name;
181 TRANSLATE_ERROR(EPERM);
182 TRANSLATE_ERROR(ENOENT);
183 TRANSLATE_ERROR(EINTR);
184 TRANSLATE_ERROR(EAGAIN);
185 TRANSLATE_ERROR(EACCES);
186 TRANSLATE_ERROR(EBUSY);
187 TRANSLATE_ERROR(EINVAL);
188 TRANSLATE_ERROR(EDEADLK);
189 TRANSLATE_ERROR(ENOSYS);
190 TRANSLATE_ERROR(ETIME);
191 TRANSLATE_ERROR(EALREADY);
192 TRANSLATE_ERROR(ENOSPC);
193 #undef TRANSLATE_ERROR
194 case MC_CMD_ERR_ENOTSUP:
195 return -EOPNOTSUPP;
196 case MC_CMD_ERR_ALLOC_FAIL:
197 return -ENOBUFS;
198 case MC_CMD_ERR_MAC_EXIST:
199 return -EADDRINUSE;
200 default:
201 return -EPROTO;
202 }
203 }
204
205 static void efx_mcdi_read_response_header(struct efx_nic *efx)
206 {
207 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
208 unsigned int respseq, respcmd, error;
209 efx_dword_t hdr;
210
211 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
212 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
213 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
214 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
215
216 if (respcmd != MC_CMD_V2_EXTN) {
217 mcdi->resp_hdr_len = 4;
218 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
219 } else {
220 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
221 mcdi->resp_hdr_len = 8;
222 mcdi->resp_data_len =
223 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
224 }
225
226 if (error && mcdi->resp_data_len == 0) {
227 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
228 mcdi->resprc = -EIO;
229 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
230 netif_err(efx, hw, efx->net_dev,
231 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
232 respseq, mcdi->seqno);
233 mcdi->resprc = -EIO;
234 } else if (error) {
235 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
236 mcdi->resprc =
237 efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
238 } else {
239 mcdi->resprc = 0;
240 }
241 }
242
243 static bool efx_mcdi_poll_once(struct efx_nic *efx)
244 {
245 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
246
247 rmb();
248 if (!efx->type->mcdi_poll_response(efx))
249 return false;
250
251 spin_lock_bh(&mcdi->iface_lock);
252 efx_mcdi_read_response_header(efx);
253 spin_unlock_bh(&mcdi->iface_lock);
254
255 return true;
256 }
257
258 static int efx_mcdi_poll(struct efx_nic *efx)
259 {
260 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
261 unsigned long time, finish;
262 unsigned int spins;
263 int rc;
264
265 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
266 rc = efx_mcdi_poll_reboot(efx);
267 if (rc) {
268 spin_lock_bh(&mcdi->iface_lock);
269 mcdi->resprc = rc;
270 mcdi->resp_hdr_len = 0;
271 mcdi->resp_data_len = 0;
272 spin_unlock_bh(&mcdi->iface_lock);
273 return 0;
274 }
275
276 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
277 * because generally mcdi responses are fast. After that, back off
278 * and poll once a jiffy (approximately)
279 */
280 spins = TICK_USEC;
281 finish = jiffies + MCDI_RPC_TIMEOUT;
282
283 while (1) {
284 if (spins != 0) {
285 --spins;
286 udelay(1);
287 } else {
288 schedule_timeout_uninterruptible(1);
289 }
290
291 time = jiffies;
292
293 if (efx_mcdi_poll_once(efx))
294 break;
295
296 if (time_after(time, finish))
297 return -ETIMEDOUT;
298 }
299
300 /* Return rc=0 like wait_event_timeout() */
301 return 0;
302 }
303
304 /* Test and clear MC-rebooted flag for this port/function; reset
305 * software state as necessary.
306 */
307 int efx_mcdi_poll_reboot(struct efx_nic *efx)
308 {
309 if (!efx->mcdi)
310 return 0;
311
312 return efx->type->mcdi_poll_reboot(efx);
313 }
314
315 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
316 {
317 return cmpxchg(&mcdi->state,
318 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
319 MCDI_STATE_QUIESCENT;
320 }
321
322 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
323 {
324 /* Wait until the interface becomes QUIESCENT and we win the race
325 * to mark it RUNNING_SYNC.
326 */
327 wait_event(mcdi->wq,
328 cmpxchg(&mcdi->state,
329 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
330 MCDI_STATE_QUIESCENT);
331 }
332
333 static int efx_mcdi_await_completion(struct efx_nic *efx)
334 {
335 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
336
337 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
338 MCDI_RPC_TIMEOUT) == 0)
339 return -ETIMEDOUT;
340
341 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
342 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
343 * completed the request first, then we'll just end up completing the
344 * request again, which is safe.
345 *
346 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
347 * wait_event_timeout() implicitly provides.
348 */
349 if (mcdi->mode == MCDI_MODE_POLL)
350 return efx_mcdi_poll(efx);
351
352 return 0;
353 }
354
355 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
356 * requester. Return whether this was done. Does not take any locks.
357 */
358 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
359 {
360 if (cmpxchg(&mcdi->state,
361 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
362 MCDI_STATE_RUNNING_SYNC) {
363 wake_up(&mcdi->wq);
364 return true;
365 }
366
367 return false;
368 }
369
370 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
371 {
372 if (mcdi->mode == MCDI_MODE_EVENTS) {
373 struct efx_mcdi_async_param *async;
374 struct efx_nic *efx = mcdi->efx;
375
376 /* Process the asynchronous request queue */
377 spin_lock_bh(&mcdi->async_lock);
378 async = list_first_entry_or_null(
379 &mcdi->async_list, struct efx_mcdi_async_param, list);
380 if (async) {
381 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
382 efx_mcdi_send_request(efx, async->cmd,
383 (const efx_dword_t *)(async + 1),
384 async->inlen);
385 mod_timer(&mcdi->async_timer,
386 jiffies + MCDI_RPC_TIMEOUT);
387 }
388 spin_unlock_bh(&mcdi->async_lock);
389
390 if (async)
391 return;
392 }
393
394 mcdi->state = MCDI_STATE_QUIESCENT;
395 wake_up(&mcdi->wq);
396 }
397
398 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
399 * asynchronous completion function, and release the interface.
400 * Return whether this was done. Must be called in bh-disabled
401 * context. Will take iface_lock and async_lock.
402 */
403 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
404 {
405 struct efx_nic *efx = mcdi->efx;
406 struct efx_mcdi_async_param *async;
407 size_t hdr_len, data_len, err_len;
408 efx_dword_t *outbuf;
409 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
410 int rc;
411
412 if (cmpxchg(&mcdi->state,
413 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
414 MCDI_STATE_RUNNING_ASYNC)
415 return false;
416
417 spin_lock(&mcdi->iface_lock);
418 if (timeout) {
419 /* Ensure that if the completion event arrives later,
420 * the seqno check in efx_mcdi_ev_cpl() will fail
421 */
422 ++mcdi->seqno;
423 ++mcdi->credits;
424 rc = -ETIMEDOUT;
425 hdr_len = 0;
426 data_len = 0;
427 } else {
428 rc = mcdi->resprc;
429 hdr_len = mcdi->resp_hdr_len;
430 data_len = mcdi->resp_data_len;
431 }
432 spin_unlock(&mcdi->iface_lock);
433
434 /* Stop the timer. In case the timer function is running, we
435 * must wait for it to return so that there is no possibility
436 * of it aborting the next request.
437 */
438 if (!timeout)
439 del_timer_sync(&mcdi->async_timer);
440
441 spin_lock(&mcdi->async_lock);
442 async = list_first_entry(&mcdi->async_list,
443 struct efx_mcdi_async_param, list);
444 list_del(&async->list);
445 spin_unlock(&mcdi->async_lock);
446
447 outbuf = (efx_dword_t *)(async + 1);
448 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
449 min(async->outlen, data_len));
450 if (!timeout && rc && !async->quiet) {
451 err_len = min(sizeof(errbuf), data_len);
452 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
453 sizeof(errbuf));
454 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
455 err_len, rc);
456 }
457 async->complete(efx, async->cookie, rc, outbuf, data_len);
458 kfree(async);
459
460 efx_mcdi_release(mcdi);
461
462 return true;
463 }
464
465 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
466 unsigned int datalen, unsigned int mcdi_err)
467 {
468 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
469 bool wake = false;
470
471 spin_lock(&mcdi->iface_lock);
472
473 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
474 if (mcdi->credits)
475 /* The request has been cancelled */
476 --mcdi->credits;
477 else
478 netif_err(efx, hw, efx->net_dev,
479 "MC response mismatch tx seq 0x%x rx "
480 "seq 0x%x\n", seqno, mcdi->seqno);
481 } else {
482 if (efx->type->mcdi_max_ver >= 2) {
483 /* MCDI v2 responses don't fit in an event */
484 efx_mcdi_read_response_header(efx);
485 } else {
486 mcdi->resprc = efx_mcdi_errno(mcdi_err);
487 mcdi->resp_hdr_len = 4;
488 mcdi->resp_data_len = datalen;
489 }
490
491 wake = true;
492 }
493
494 spin_unlock(&mcdi->iface_lock);
495
496 if (wake) {
497 if (!efx_mcdi_complete_async(mcdi, false))
498 (void) efx_mcdi_complete_sync(mcdi);
499
500 /* If the interface isn't RUNNING_ASYNC or
501 * RUNNING_SYNC then we've received a duplicate
502 * completion after we've already transitioned back to
503 * QUIESCENT. [A subsequent invocation would increment
504 * seqno, so would have failed the seqno check].
505 */
506 }
507 }
508
509 static void efx_mcdi_timeout_async(unsigned long context)
510 {
511 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
512
513 efx_mcdi_complete_async(mcdi, true);
514 }
515
516 static int
517 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
518 {
519 if (efx->type->mcdi_max_ver < 0 ||
520 (efx->type->mcdi_max_ver < 2 &&
521 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
522 return -EINVAL;
523
524 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
525 (efx->type->mcdi_max_ver < 2 &&
526 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
527 return -EMSGSIZE;
528
529 return 0;
530 }
531
532 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
533 efx_dword_t *outbuf, size_t outlen,
534 size_t *outlen_actual, bool quiet)
535 {
536 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
537 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
538 int rc;
539
540 if (mcdi->mode == MCDI_MODE_POLL)
541 rc = efx_mcdi_poll(efx);
542 else
543 rc = efx_mcdi_await_completion(efx);
544
545 if (rc != 0) {
546 netif_err(efx, hw, efx->net_dev,
547 "MC command 0x%x inlen %d mode %d timed out\n",
548 cmd, (int)inlen, mcdi->mode);
549
550 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
551 netif_err(efx, hw, efx->net_dev,
552 "MCDI request was completed without an event\n");
553 rc = 0;
554 }
555
556 efx_mcdi_abandon(efx);
557
558 /* Close the race with efx_mcdi_ev_cpl() executing just too late
559 * and completing a request we've just cancelled, by ensuring
560 * that the seqno check therein fails.
561 */
562 spin_lock_bh(&mcdi->iface_lock);
563 ++mcdi->seqno;
564 ++mcdi->credits;
565 spin_unlock_bh(&mcdi->iface_lock);
566 }
567
568 if (rc != 0) {
569 if (outlen_actual)
570 *outlen_actual = 0;
571 } else {
572 size_t hdr_len, data_len, err_len;
573
574 /* At the very least we need a memory barrier here to ensure
575 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
576 * a spurious efx_mcdi_ev_cpl() running concurrently by
577 * acquiring the iface_lock. */
578 spin_lock_bh(&mcdi->iface_lock);
579 rc = mcdi->resprc;
580 hdr_len = mcdi->resp_hdr_len;
581 data_len = mcdi->resp_data_len;
582 err_len = min(sizeof(errbuf), data_len);
583 spin_unlock_bh(&mcdi->iface_lock);
584
585 BUG_ON(rc > 0);
586
587 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
588 min(outlen, data_len));
589 if (outlen_actual)
590 *outlen_actual = data_len;
591
592 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
593
594 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
595 /* Don't reset if MC_CMD_REBOOT returns EIO */
596 } else if (rc == -EIO || rc == -EINTR) {
597 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
598 -rc);
599 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
600 } else if (rc && !quiet) {
601 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
602 rc);
603 }
604
605 if (rc == -EIO || rc == -EINTR) {
606 msleep(MCDI_STATUS_SLEEP_MS);
607 efx_mcdi_poll_reboot(efx);
608 mcdi->new_epoch = true;
609 }
610 }
611
612 efx_mcdi_release(mcdi);
613 return rc;
614 }
615
616 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
617 const efx_dword_t *inbuf, size_t inlen,
618 efx_dword_t *outbuf, size_t outlen,
619 size_t *outlen_actual, bool quiet)
620 {
621 int rc;
622
623 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
624 if (rc) {
625 if (outlen_actual)
626 *outlen_actual = 0;
627 return rc;
628 }
629 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
630 outlen_actual, quiet);
631 }
632
633 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
634 const efx_dword_t *inbuf, size_t inlen,
635 efx_dword_t *outbuf, size_t outlen,
636 size_t *outlen_actual)
637 {
638 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
639 outlen_actual, false);
640 }
641
642 /* Normally, on receiving an error code in the MCDI response,
643 * efx_mcdi_rpc will log an error message containing (among other
644 * things) the raw error code, by means of efx_mcdi_display_error.
645 * This _quiet version suppresses that; if the caller wishes to log
646 * the error conditionally on the return code, it should call this
647 * function and is then responsible for calling efx_mcdi_display_error
648 * as needed.
649 */
650 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
651 const efx_dword_t *inbuf, size_t inlen,
652 efx_dword_t *outbuf, size_t outlen,
653 size_t *outlen_actual)
654 {
655 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
656 outlen_actual, true);
657 }
658
659 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
660 const efx_dword_t *inbuf, size_t inlen)
661 {
662 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
663 int rc;
664
665 rc = efx_mcdi_check_supported(efx, cmd, inlen);
666 if (rc)
667 return rc;
668
669 if (efx->mc_bist_for_other_fn)
670 return -ENETDOWN;
671
672 if (mcdi->mode == MCDI_MODE_FAIL)
673 return -ENETDOWN;
674
675 efx_mcdi_acquire_sync(mcdi);
676 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
677 return 0;
678 }
679
680 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
681 const efx_dword_t *inbuf, size_t inlen,
682 size_t outlen,
683 efx_mcdi_async_completer *complete,
684 unsigned long cookie, bool quiet)
685 {
686 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
687 struct efx_mcdi_async_param *async;
688 int rc;
689
690 rc = efx_mcdi_check_supported(efx, cmd, inlen);
691 if (rc)
692 return rc;
693
694 if (efx->mc_bist_for_other_fn)
695 return -ENETDOWN;
696
697 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
698 GFP_ATOMIC);
699 if (!async)
700 return -ENOMEM;
701
702 async->cmd = cmd;
703 async->inlen = inlen;
704 async->outlen = outlen;
705 async->quiet = quiet;
706 async->complete = complete;
707 async->cookie = cookie;
708 memcpy(async + 1, inbuf, inlen);
709
710 spin_lock_bh(&mcdi->async_lock);
711
712 if (mcdi->mode == MCDI_MODE_EVENTS) {
713 list_add_tail(&async->list, &mcdi->async_list);
714
715 /* If this is at the front of the queue, try to start it
716 * immediately
717 */
718 if (mcdi->async_list.next == &async->list &&
719 efx_mcdi_acquire_async(mcdi)) {
720 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
721 mod_timer(&mcdi->async_timer,
722 jiffies + MCDI_RPC_TIMEOUT);
723 }
724 } else {
725 kfree(async);
726 rc = -ENETDOWN;
727 }
728
729 spin_unlock_bh(&mcdi->async_lock);
730
731 return rc;
732 }
733
734 /**
735 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
736 * @efx: NIC through which to issue the command
737 * @cmd: Command type number
738 * @inbuf: Command parameters
739 * @inlen: Length of command parameters, in bytes
740 * @outlen: Length to allocate for response buffer, in bytes
741 * @complete: Function to be called on completion or cancellation.
742 * @cookie: Arbitrary value to be passed to @complete.
743 *
744 * This function does not sleep and therefore may be called in atomic
745 * context. It will fail if event queues are disabled or if MCDI
746 * event completions have been disabled due to an error.
747 *
748 * If it succeeds, the @complete function will be called exactly once
749 * in atomic context, when one of the following occurs:
750 * (a) the completion event is received (in NAPI context)
751 * (b) event queues are disabled (in the process that disables them)
752 * (c) the request times-out (in timer context)
753 */
754 int
755 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
756 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
757 efx_mcdi_async_completer *complete, unsigned long cookie)
758 {
759 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
760 cookie, false);
761 }
762
763 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
764 const efx_dword_t *inbuf, size_t inlen,
765 size_t outlen, efx_mcdi_async_completer *complete,
766 unsigned long cookie)
767 {
768 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
769 cookie, true);
770 }
771
772 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
773 efx_dword_t *outbuf, size_t outlen,
774 size_t *outlen_actual)
775 {
776 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
777 outlen_actual, false);
778 }
779
780 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
781 efx_dword_t *outbuf, size_t outlen,
782 size_t *outlen_actual)
783 {
784 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
785 outlen_actual, true);
786 }
787
788 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
789 size_t inlen, efx_dword_t *outbuf,
790 size_t outlen, int rc)
791 {
792 int code = 0, err_arg = 0;
793
794 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
795 code = MCDI_DWORD(outbuf, ERR_CODE);
796 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
797 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
798 netif_err(efx, hw, efx->net_dev,
799 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
800 cmd, (int)inlen, rc, code, err_arg);
801 }
802
803 /* Switch to polled MCDI completions. This can be called in various
804 * error conditions with various locks held, so it must be lockless.
805 * Caller is responsible for flushing asynchronous requests later.
806 */
807 void efx_mcdi_mode_poll(struct efx_nic *efx)
808 {
809 struct efx_mcdi_iface *mcdi;
810
811 if (!efx->mcdi)
812 return;
813
814 mcdi = efx_mcdi(efx);
815 /* If already in polling mode, nothing to do.
816 * If in fail-fast state, don't switch to polled completion.
817 * FLR recovery will do that later.
818 */
819 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
820 return;
821
822 /* We can switch from event completion to polled completion, because
823 * mcdi requests are always completed in shared memory. We do this by
824 * switching the mode to POLL'd then completing the request.
825 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
826 *
827 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
828 * which efx_mcdi_complete_sync() provides for us.
829 */
830 mcdi->mode = MCDI_MODE_POLL;
831
832 efx_mcdi_complete_sync(mcdi);
833 }
834
835 /* Flush any running or queued asynchronous requests, after event processing
836 * is stopped
837 */
838 void efx_mcdi_flush_async(struct efx_nic *efx)
839 {
840 struct efx_mcdi_async_param *async, *next;
841 struct efx_mcdi_iface *mcdi;
842
843 if (!efx->mcdi)
844 return;
845
846 mcdi = efx_mcdi(efx);
847
848 /* We must be in poll or fail mode so no more requests can be queued */
849 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
850
851 del_timer_sync(&mcdi->async_timer);
852
853 /* If a request is still running, make sure we give the MC
854 * time to complete it so that the response won't overwrite our
855 * next request.
856 */
857 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
858 efx_mcdi_poll(efx);
859 mcdi->state = MCDI_STATE_QUIESCENT;
860 }
861
862 /* Nothing else will access the async list now, so it is safe
863 * to walk it without holding async_lock. If we hold it while
864 * calling a completer then lockdep may warn that we have
865 * acquired locks in the wrong order.
866 */
867 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
868 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
869 list_del(&async->list);
870 kfree(async);
871 }
872 }
873
874 void efx_mcdi_mode_event(struct efx_nic *efx)
875 {
876 struct efx_mcdi_iface *mcdi;
877
878 if (!efx->mcdi)
879 return;
880
881 mcdi = efx_mcdi(efx);
882 /* If already in event completion mode, nothing to do.
883 * If in fail-fast state, don't switch to event completion. FLR
884 * recovery will do that later.
885 */
886 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
887 return;
888
889 /* We can't switch from polled to event completion in the middle of a
890 * request, because the completion method is specified in the request.
891 * So acquire the interface to serialise the requestors. We don't need
892 * to acquire the iface_lock to change the mode here, but we do need a
893 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
894 * efx_mcdi_acquire() provides.
895 */
896 efx_mcdi_acquire_sync(mcdi);
897 mcdi->mode = MCDI_MODE_EVENTS;
898 efx_mcdi_release(mcdi);
899 }
900
901 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
902 {
903 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
904
905 /* If there is an outstanding MCDI request, it has been terminated
906 * either by a BADASSERT or REBOOT event. If the mcdi interface is
907 * in polled mode, then do nothing because the MC reboot handler will
908 * set the header correctly. However, if the mcdi interface is waiting
909 * for a CMDDONE event it won't receive it [and since all MCDI events
910 * are sent to the same queue, we can't be racing with
911 * efx_mcdi_ev_cpl()]
912 *
913 * If there is an outstanding asynchronous request, we can't
914 * complete it now (efx_mcdi_complete() would deadlock). The
915 * reset process will take care of this.
916 *
917 * There's a race here with efx_mcdi_send_request(), because
918 * we might receive a REBOOT event *before* the request has
919 * been copied out. In polled mode (during startup) this is
920 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
921 * event mode, this condition is just an edge-case of
922 * receiving a REBOOT event after posting the MCDI
923 * request. Did the mc reboot before or after the copyout? The
924 * best we can do always is just return failure.
925 */
926 spin_lock(&mcdi->iface_lock);
927 if (efx_mcdi_complete_sync(mcdi)) {
928 if (mcdi->mode == MCDI_MODE_EVENTS) {
929 mcdi->resprc = rc;
930 mcdi->resp_hdr_len = 0;
931 mcdi->resp_data_len = 0;
932 ++mcdi->credits;
933 }
934 } else {
935 int count;
936
937 /* Consume the status word since efx_mcdi_rpc_finish() won't */
938 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
939 if (efx_mcdi_poll_reboot(efx))
940 break;
941 udelay(MCDI_STATUS_DELAY_US);
942 }
943 mcdi->new_epoch = true;
944
945 /* Nobody was waiting for an MCDI request, so trigger a reset */
946 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
947 }
948
949 spin_unlock(&mcdi->iface_lock);
950 }
951
952 /* The MC is going down in to BIST mode. set the BIST flag to block
953 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
954 * (which doesn't actually execute a reset, it waits for the controlling
955 * function to reset it).
956 */
957 static void efx_mcdi_ev_bist(struct efx_nic *efx)
958 {
959 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
960
961 spin_lock(&mcdi->iface_lock);
962 efx->mc_bist_for_other_fn = true;
963 if (efx_mcdi_complete_sync(mcdi)) {
964 if (mcdi->mode == MCDI_MODE_EVENTS) {
965 mcdi->resprc = -EIO;
966 mcdi->resp_hdr_len = 0;
967 mcdi->resp_data_len = 0;
968 ++mcdi->credits;
969 }
970 }
971 mcdi->new_epoch = true;
972 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
973 spin_unlock(&mcdi->iface_lock);
974 }
975
976 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
977 * to recover.
978 */
979 static void efx_mcdi_abandon(struct efx_nic *efx)
980 {
981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
982
983 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
984 return; /* it had already been done */
985 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
986 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
987 }
988
989 /* Called from falcon_process_eventq for MCDI events */
990 void efx_mcdi_process_event(struct efx_channel *channel,
991 efx_qword_t *event)
992 {
993 struct efx_nic *efx = channel->efx;
994 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
995 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
996
997 switch (code) {
998 case MCDI_EVENT_CODE_BADSSERT:
999 netif_err(efx, hw, efx->net_dev,
1000 "MC watchdog or assertion failure at 0x%x\n", data);
1001 efx_mcdi_ev_death(efx, -EINTR);
1002 break;
1003
1004 case MCDI_EVENT_CODE_PMNOTICE:
1005 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1006 break;
1007
1008 case MCDI_EVENT_CODE_CMDDONE:
1009 efx_mcdi_ev_cpl(efx,
1010 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1011 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1012 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1013 break;
1014
1015 case MCDI_EVENT_CODE_LINKCHANGE:
1016 efx_mcdi_process_link_change(efx, event);
1017 break;
1018 case MCDI_EVENT_CODE_SENSOREVT:
1019 efx_mcdi_sensor_event(efx, event);
1020 break;
1021 case MCDI_EVENT_CODE_SCHEDERR:
1022 netif_dbg(efx, hw, efx->net_dev,
1023 "MC Scheduler alert (0x%x)\n", data);
1024 break;
1025 case MCDI_EVENT_CODE_REBOOT:
1026 case MCDI_EVENT_CODE_MC_REBOOT:
1027 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1028 efx_mcdi_ev_death(efx, -EIO);
1029 break;
1030 case MCDI_EVENT_CODE_MC_BIST:
1031 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1032 efx_mcdi_ev_bist(efx);
1033 break;
1034 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1035 /* MAC stats are gather lazily. We can ignore this. */
1036 break;
1037 case MCDI_EVENT_CODE_FLR:
1038 if (efx->type->sriov_flr)
1039 efx->type->sriov_flr(efx,
1040 MCDI_EVENT_FIELD(*event, FLR_VF));
1041 break;
1042 case MCDI_EVENT_CODE_PTP_RX:
1043 case MCDI_EVENT_CODE_PTP_FAULT:
1044 case MCDI_EVENT_CODE_PTP_PPS:
1045 efx_ptp_event(efx, event);
1046 break;
1047 case MCDI_EVENT_CODE_PTP_TIME:
1048 efx_time_sync_event(channel, event);
1049 break;
1050 case MCDI_EVENT_CODE_TX_FLUSH:
1051 case MCDI_EVENT_CODE_RX_FLUSH:
1052 /* Two flush events will be sent: one to the same event
1053 * queue as completions, and one to event queue 0.
1054 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1055 * flag will be set, and we should ignore the event
1056 * because we want to wait for all completions.
1057 */
1058 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1059 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1060 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1061 efx_ef10_handle_drain_event(efx);
1062 break;
1063 case MCDI_EVENT_CODE_TX_ERR:
1064 case MCDI_EVENT_CODE_RX_ERR:
1065 netif_err(efx, hw, efx->net_dev,
1066 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1067 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1068 EFX_QWORD_VAL(*event));
1069 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1070 break;
1071 default:
1072 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1073 code);
1074 }
1075 }
1076
1077 /**************************************************************************
1078 *
1079 * Specific request functions
1080 *
1081 **************************************************************************
1082 */
1083
1084 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1085 {
1086 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1087 size_t outlength;
1088 const __le16 *ver_words;
1089 size_t offset;
1090 int rc;
1091
1092 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1093 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1094 outbuf, sizeof(outbuf), &outlength);
1095 if (rc)
1096 goto fail;
1097 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1098 rc = -EIO;
1099 goto fail;
1100 }
1101
1102 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1103 offset = snprintf(buf, len, "%u.%u.%u.%u",
1104 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1105 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1106
1107 /* EF10 may have multiple datapath firmware variants within a
1108 * single version. Report which variants are running.
1109 */
1110 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1111 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1112
1113 offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1114 nic_data->rx_dpcpu_fw_id,
1115 nic_data->tx_dpcpu_fw_id);
1116
1117 /* It's theoretically possible for the string to exceed 31
1118 * characters, though in practice the first three version
1119 * components are short enough that this doesn't happen.
1120 */
1121 if (WARN_ON(offset >= len))
1122 buf[0] = 0;
1123 }
1124
1125 return;
1126
1127 fail:
1128 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1129 buf[0] = 0;
1130 }
1131
1132 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1133 bool *was_attached)
1134 {
1135 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1136 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1137 size_t outlen;
1138 int rc;
1139
1140 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1141 driver_operating ? 1 : 0);
1142 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1143 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1144
1145 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1146 outbuf, sizeof(outbuf), &outlen);
1147 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1148 * specified will fail with EPERM, and we have to tell the MC we don't
1149 * care what firmware we get.
1150 */
1151 if (rc == -EPERM) {
1152 netif_dbg(efx, probe, efx->net_dev,
1153 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1154 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1155 MC_CMD_FW_DONT_CARE);
1156 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1157 sizeof(inbuf), outbuf, sizeof(outbuf),
1158 &outlen);
1159 }
1160 if (rc) {
1161 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1162 outbuf, outlen, rc);
1163 goto fail;
1164 }
1165 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1166 rc = -EIO;
1167 goto fail;
1168 }
1169
1170 if (driver_operating) {
1171 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1172 efx->mcdi->fn_flags =
1173 MCDI_DWORD(outbuf,
1174 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1175 } else {
1176 /* Synthesise flags for Siena */
1177 efx->mcdi->fn_flags =
1178 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1179 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1180 (efx_port_num(efx) == 0) <<
1181 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1182 }
1183 }
1184
1185 /* We currently assume we have control of the external link
1186 * and are completely trusted by firmware. Abort probing
1187 * if that's not true for this function.
1188 */
1189
1190 if (was_attached != NULL)
1191 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1192 return 0;
1193
1194 fail:
1195 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1196 return rc;
1197 }
1198
1199 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1200 u16 *fw_subtype_list, u32 *capabilities)
1201 {
1202 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1203 size_t outlen, i;
1204 int port_num = efx_port_num(efx);
1205 int rc;
1206
1207 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1208 /* we need __aligned(2) for ether_addr_copy */
1209 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1210 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1211
1212 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1213 outbuf, sizeof(outbuf), &outlen);
1214 if (rc)
1215 goto fail;
1216
1217 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1218 rc = -EIO;
1219 goto fail;
1220 }
1221
1222 if (mac_address)
1223 ether_addr_copy(mac_address,
1224 port_num ?
1225 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1226 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1227 if (fw_subtype_list) {
1228 for (i = 0;
1229 i < MCDI_VAR_ARRAY_LEN(outlen,
1230 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1231 i++)
1232 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1233 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1234 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1235 fw_subtype_list[i] = 0;
1236 }
1237 if (capabilities) {
1238 if (port_num)
1239 *capabilities = MCDI_DWORD(outbuf,
1240 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1241 else
1242 *capabilities = MCDI_DWORD(outbuf,
1243 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1244 }
1245
1246 return 0;
1247
1248 fail:
1249 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1250 __func__, rc, (int)outlen);
1251
1252 return rc;
1253 }
1254
1255 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1256 {
1257 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1258 u32 dest = 0;
1259 int rc;
1260
1261 if (uart)
1262 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1263 if (evq)
1264 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1265
1266 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1267 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1268
1269 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1270
1271 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1272 NULL, 0, NULL);
1273 return rc;
1274 }
1275
1276 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1277 {
1278 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1279 size_t outlen;
1280 int rc;
1281
1282 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1283
1284 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1285 outbuf, sizeof(outbuf), &outlen);
1286 if (rc)
1287 goto fail;
1288 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1289 rc = -EIO;
1290 goto fail;
1291 }
1292
1293 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1294 return 0;
1295
1296 fail:
1297 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1298 __func__, rc);
1299 return rc;
1300 }
1301
1302 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1303 size_t *size_out, size_t *erase_size_out,
1304 bool *protected_out)
1305 {
1306 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1307 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1308 size_t outlen;
1309 int rc;
1310
1311 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1312
1313 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1314 outbuf, sizeof(outbuf), &outlen);
1315 if (rc)
1316 goto fail;
1317 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1318 rc = -EIO;
1319 goto fail;
1320 }
1321
1322 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1323 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1324 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1325 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1326 return 0;
1327
1328 fail:
1329 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1330 return rc;
1331 }
1332
1333 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1334 {
1335 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1336 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1337 int rc;
1338
1339 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1340
1341 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1342 outbuf, sizeof(outbuf), NULL);
1343 if (rc)
1344 return rc;
1345
1346 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1347 case MC_CMD_NVRAM_TEST_PASS:
1348 case MC_CMD_NVRAM_TEST_NOTSUPP:
1349 return 0;
1350 default:
1351 return -EIO;
1352 }
1353 }
1354
1355 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1356 {
1357 u32 nvram_types;
1358 unsigned int type;
1359 int rc;
1360
1361 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1362 if (rc)
1363 goto fail1;
1364
1365 type = 0;
1366 while (nvram_types != 0) {
1367 if (nvram_types & 1) {
1368 rc = efx_mcdi_nvram_test(efx, type);
1369 if (rc)
1370 goto fail2;
1371 }
1372 type++;
1373 nvram_types >>= 1;
1374 }
1375
1376 return 0;
1377
1378 fail2:
1379 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1380 __func__, type);
1381 fail1:
1382 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1383 return rc;
1384 }
1385
1386 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1387 * negative on error.
1388 */
1389 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1390 {
1391 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1392 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1393 unsigned int flags, index;
1394 const char *reason;
1395 size_t outlen;
1396 int retry;
1397 int rc;
1398
1399 /* Attempt to read any stored assertion state before we reboot
1400 * the mcfw out of the assertion handler. Retry twice, once
1401 * because a boot-time assertion might cause this command to fail
1402 * with EINTR. And once again because GET_ASSERTS can race with
1403 * MC_CMD_REBOOT running on the other port. */
1404 retry = 2;
1405 do {
1406 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1407 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1408 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1409 outbuf, sizeof(outbuf), &outlen);
1410 if (rc == -EPERM)
1411 return 0;
1412 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1413
1414 if (rc) {
1415 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1416 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1417 outlen, rc);
1418 return rc;
1419 }
1420 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1421 return -EIO;
1422
1423 /* Print out any recorded assertion state */
1424 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1425 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1426 return 0;
1427
1428 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1429 ? "system-level assertion"
1430 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1431 ? "thread-level assertion"
1432 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1433 ? "watchdog reset"
1434 : "unknown assertion";
1435 netif_err(efx, hw, efx->net_dev,
1436 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1437 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1438 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1439
1440 /* Print out the registers */
1441 for (index = 0;
1442 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1443 index++)
1444 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1445 1 + index,
1446 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1447 index));
1448
1449 return 1;
1450 }
1451
1452 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1453 {
1454 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1455 int rc;
1456
1457 /* If the MC is running debug firmware, it might now be
1458 * waiting for a debugger to attach, but we just want it to
1459 * reboot. We set a flag that makes the command a no-op if it
1460 * has already done so.
1461 * The MCDI will thus return either 0 or -EIO.
1462 */
1463 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1464 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1465 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1466 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1467 NULL, 0, NULL);
1468 if (rc == -EIO)
1469 rc = 0;
1470 if (rc)
1471 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1472 NULL, 0, rc);
1473 return rc;
1474 }
1475
1476 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1477 {
1478 int rc;
1479
1480 rc = efx_mcdi_read_assertion(efx);
1481 if (rc <= 0)
1482 return rc;
1483
1484 return efx_mcdi_exit_assertion(efx);
1485 }
1486
1487 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1488 {
1489 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1490 int rc;
1491
1492 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1493 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1494 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1495
1496 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1497
1498 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1499
1500 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1501 NULL, 0, NULL);
1502 }
1503
1504 static int efx_mcdi_reset_func(struct efx_nic *efx)
1505 {
1506 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1507 int rc;
1508
1509 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1510 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1511 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1512 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1513 NULL, 0, NULL);
1514 return rc;
1515 }
1516
1517 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1518 {
1519 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1520 int rc;
1521
1522 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1523 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1524 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1525 NULL, 0, NULL);
1526 /* White is black, and up is down */
1527 if (rc == -EIO)
1528 return 0;
1529 if (rc == 0)
1530 rc = -EIO;
1531 return rc;
1532 }
1533
1534 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1535 {
1536 return RESET_TYPE_RECOVER_OR_ALL;
1537 }
1538
1539 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1540 {
1541 int rc;
1542
1543 /* If MCDI is down, we can't handle_assertion */
1544 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1545 rc = pci_reset_function(efx->pci_dev);
1546 if (rc)
1547 return rc;
1548 /* Re-enable polled MCDI completion */
1549 if (efx->mcdi) {
1550 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1551 mcdi->mode = MCDI_MODE_POLL;
1552 }
1553 return 0;
1554 }
1555
1556 /* Recover from a failed assertion pre-reset */
1557 rc = efx_mcdi_handle_assertion(efx);
1558 if (rc)
1559 return rc;
1560
1561 if (method == RESET_TYPE_WORLD)
1562 return efx_mcdi_reset_mc(efx);
1563 else
1564 return efx_mcdi_reset_func(efx);
1565 }
1566
1567 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1568 const u8 *mac, int *id_out)
1569 {
1570 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1571 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1572 size_t outlen;
1573 int rc;
1574
1575 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1576 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1577 MC_CMD_FILTER_MODE_SIMPLE);
1578 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1579
1580 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1581 outbuf, sizeof(outbuf), &outlen);
1582 if (rc)
1583 goto fail;
1584
1585 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1586 rc = -EIO;
1587 goto fail;
1588 }
1589
1590 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1591
1592 return 0;
1593
1594 fail:
1595 *id_out = -1;
1596 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1597 return rc;
1598
1599 }
1600
1601
1602 int
1603 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1604 {
1605 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1606 }
1607
1608
1609 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1610 {
1611 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1612 size_t outlen;
1613 int rc;
1614
1615 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1616 outbuf, sizeof(outbuf), &outlen);
1617 if (rc)
1618 goto fail;
1619
1620 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1621 rc = -EIO;
1622 goto fail;
1623 }
1624
1625 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1626
1627 return 0;
1628
1629 fail:
1630 *id_out = -1;
1631 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1632 return rc;
1633 }
1634
1635
1636 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1637 {
1638 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1639 int rc;
1640
1641 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1642
1643 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1644 NULL, 0, NULL);
1645 return rc;
1646 }
1647
1648 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1649 {
1650 struct efx_channel *channel;
1651 struct efx_rx_queue *rx_queue;
1652 MCDI_DECLARE_BUF(inbuf,
1653 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1654 int rc, count;
1655
1656 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1657 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1658
1659 count = 0;
1660 efx_for_each_channel(channel, efx) {
1661 efx_for_each_channel_rx_queue(rx_queue, channel) {
1662 if (rx_queue->flush_pending) {
1663 rx_queue->flush_pending = false;
1664 atomic_dec(&efx->rxq_flush_pending);
1665 MCDI_SET_ARRAY_DWORD(
1666 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1667 count, efx_rx_queue_index(rx_queue));
1668 count++;
1669 }
1670 }
1671 }
1672
1673 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1674 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1675 WARN_ON(rc < 0);
1676
1677 return rc;
1678 }
1679
1680 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1681 {
1682 int rc;
1683
1684 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1685 return rc;
1686 }
1687
1688 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled)
1689 {
1690 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1691
1692 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1693 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1694 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1695 return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1696 NULL, 0, NULL);
1697 }
1698
1699 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
1700 unsigned int *enabled_out)
1701 {
1702 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
1703 size_t outlen;
1704 int rc;
1705
1706 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
1707 outbuf, sizeof(outbuf), &outlen);
1708 if (rc)
1709 goto fail;
1710
1711 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
1712 rc = -EIO;
1713 goto fail;
1714 }
1715
1716 if (impl_out)
1717 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
1718
1719 if (enabled_out)
1720 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
1721
1722 return 0;
1723
1724 fail:
1725 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1726 return rc;
1727 }
1728
1729 #ifdef CONFIG_SFC_MTD
1730
1731 #define EFX_MCDI_NVRAM_LEN_MAX 128
1732
1733 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1734 {
1735 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1736 int rc;
1737
1738 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1739
1740 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1741
1742 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1743 NULL, 0, NULL);
1744 return rc;
1745 }
1746
1747 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1748 loff_t offset, u8 *buffer, size_t length)
1749 {
1750 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1751 MCDI_DECLARE_BUF(outbuf,
1752 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1753 size_t outlen;
1754 int rc;
1755
1756 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1757 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1758 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1759
1760 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1761 outbuf, sizeof(outbuf), &outlen);
1762 if (rc)
1763 return rc;
1764
1765 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1766 return 0;
1767 }
1768
1769 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1770 loff_t offset, const u8 *buffer, size_t length)
1771 {
1772 MCDI_DECLARE_BUF(inbuf,
1773 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1774 int rc;
1775
1776 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1777 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1778 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1779 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1780
1781 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1782
1783 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1784 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1785 NULL, 0, NULL);
1786 return rc;
1787 }
1788
1789 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1790 loff_t offset, size_t length)
1791 {
1792 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1793 int rc;
1794
1795 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1796 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1797 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1798
1799 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1800
1801 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1802 NULL, 0, NULL);
1803 return rc;
1804 }
1805
1806 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1807 {
1808 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1809 int rc;
1810
1811 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1812
1813 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1814
1815 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1816 NULL, 0, NULL);
1817 return rc;
1818 }
1819
1820 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1821 size_t len, size_t *retlen, u8 *buffer)
1822 {
1823 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1824 struct efx_nic *efx = mtd->priv;
1825 loff_t offset = start;
1826 loff_t end = min_t(loff_t, start + len, mtd->size);
1827 size_t chunk;
1828 int rc = 0;
1829
1830 while (offset < end) {
1831 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1832 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1833 buffer, chunk);
1834 if (rc)
1835 goto out;
1836 offset += chunk;
1837 buffer += chunk;
1838 }
1839 out:
1840 *retlen = offset - start;
1841 return rc;
1842 }
1843
1844 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1845 {
1846 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1847 struct efx_nic *efx = mtd->priv;
1848 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1849 loff_t end = min_t(loff_t, start + len, mtd->size);
1850 size_t chunk = part->common.mtd.erasesize;
1851 int rc = 0;
1852
1853 if (!part->updating) {
1854 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1855 if (rc)
1856 goto out;
1857 part->updating = true;
1858 }
1859
1860 /* The MCDI interface can in fact do multiple erase blocks at once;
1861 * but erasing may be slow, so we make multiple calls here to avoid
1862 * tripping the MCDI RPC timeout. */
1863 while (offset < end) {
1864 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1865 chunk);
1866 if (rc)
1867 goto out;
1868 offset += chunk;
1869 }
1870 out:
1871 return rc;
1872 }
1873
1874 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
1875 size_t len, size_t *retlen, const u8 *buffer)
1876 {
1877 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1878 struct efx_nic *efx = mtd->priv;
1879 loff_t offset = start;
1880 loff_t end = min_t(loff_t, start + len, mtd->size);
1881 size_t chunk;
1882 int rc = 0;
1883
1884 if (!part->updating) {
1885 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1886 if (rc)
1887 goto out;
1888 part->updating = true;
1889 }
1890
1891 while (offset < end) {
1892 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1893 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
1894 buffer, chunk);
1895 if (rc)
1896 goto out;
1897 offset += chunk;
1898 buffer += chunk;
1899 }
1900 out:
1901 *retlen = offset - start;
1902 return rc;
1903 }
1904
1905 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
1906 {
1907 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1908 struct efx_nic *efx = mtd->priv;
1909 int rc = 0;
1910
1911 if (part->updating) {
1912 part->updating = false;
1913 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
1914 }
1915
1916 return rc;
1917 }
1918
1919 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
1920 {
1921 struct efx_mcdi_mtd_partition *mcdi_part =
1922 container_of(part, struct efx_mcdi_mtd_partition, common);
1923 struct efx_nic *efx = part->mtd.priv;
1924
1925 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
1926 efx->name, part->type_name, mcdi_part->fw_subtype);
1927 }
1928
1929 #endif /* CONFIG_SFC_MTD */
This page took 0.090282 seconds and 5 git commands to generate.