6febecc46e866282e1ad5af86731a0ec10cd7d5c
[deliverable/linux.git] / drivers / net / ethernet / sfc / net_driver.h
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 #include <linux/mtd/mtd.h>
31
32 #include "enum.h"
33 #include "bitfield.h"
34 #include "filter.h"
35
36 /**************************************************************************
37 *
38 * Build definitions
39 *
40 **************************************************************************/
41
42 #define EFX_DRIVER_VERSION "4.0"
43
44 #ifdef DEBUG
45 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
46 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
47 #else
48 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
49 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
50 #endif
51
52 /**************************************************************************
53 *
54 * Efx data structures
55 *
56 **************************************************************************/
57
58 #define EFX_MAX_CHANNELS 32U
59 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
60 #define EFX_EXTRA_CHANNEL_IOV 0
61 #define EFX_EXTRA_CHANNEL_PTP 1
62 #define EFX_MAX_EXTRA_CHANNELS 2U
63
64 /* Checksum generation is a per-queue option in hardware, so each
65 * queue visible to the networking core is backed by two hardware TX
66 * queues. */
67 #define EFX_MAX_TX_TC 2
68 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
69 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
70 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
71 #define EFX_TXQ_TYPES 4
72 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
73
74 /* Maximum possible MTU the driver supports */
75 #define EFX_MAX_MTU (9 * 1024)
76
77 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
78 * and should be a multiple of the cache line size.
79 */
80 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
81
82 /* If possible, we should ensure cache line alignment at start and end
83 * of every buffer. Otherwise, we just need to ensure 4-byte
84 * alignment of the network header.
85 */
86 #if NET_IP_ALIGN == 0
87 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
88 #else
89 #define EFX_RX_BUF_ALIGNMENT 4
90 #endif
91
92 /* Forward declare Precision Time Protocol (PTP) support structure. */
93 struct efx_ptp_data;
94
95 struct efx_self_tests;
96
97 /**
98 * struct efx_buffer - A general-purpose DMA buffer
99 * @addr: host base address of the buffer
100 * @dma_addr: DMA base address of the buffer
101 * @len: Buffer length, in bytes
102 *
103 * The NIC uses these buffers for its interrupt status registers and
104 * MAC stats dumps.
105 */
106 struct efx_buffer {
107 void *addr;
108 dma_addr_t dma_addr;
109 unsigned int len;
110 };
111
112 /**
113 * struct efx_special_buffer - DMA buffer entered into buffer table
114 * @buf: Standard &struct efx_buffer
115 * @index: Buffer index within controller;s buffer table
116 * @entries: Number of buffer table entries
117 *
118 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
119 * Event and descriptor rings are addressed via one or more buffer
120 * table entries (and so can be physically non-contiguous, although we
121 * currently do not take advantage of that). On Falcon and Siena we
122 * have to take care of allocating and initialising the entries
123 * ourselves. On later hardware this is managed by the firmware and
124 * @index and @entries are left as 0.
125 */
126 struct efx_special_buffer {
127 struct efx_buffer buf;
128 unsigned int index;
129 unsigned int entries;
130 };
131
132 /**
133 * struct efx_tx_buffer - buffer state for a TX descriptor
134 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
135 * freed when descriptor completes
136 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
137 * freed when descriptor completes.
138 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
139 * @dma_addr: DMA address of the fragment.
140 * @flags: Flags for allocation and DMA mapping type
141 * @len: Length of this fragment.
142 * This field is zero when the queue slot is empty.
143 * @unmap_len: Length of this fragment to unmap
144 */
145 struct efx_tx_buffer {
146 union {
147 const struct sk_buff *skb;
148 void *heap_buf;
149 };
150 union {
151 efx_qword_t option;
152 dma_addr_t dma_addr;
153 };
154 unsigned short flags;
155 unsigned short len;
156 unsigned short unmap_len;
157 };
158 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
159 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
160 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */
161 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
162 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
163
164 /**
165 * struct efx_tx_queue - An Efx TX queue
166 *
167 * This is a ring buffer of TX fragments.
168 * Since the TX completion path always executes on the same
169 * CPU and the xmit path can operate on different CPUs,
170 * performance is increased by ensuring that the completion
171 * path and the xmit path operate on different cache lines.
172 * This is particularly important if the xmit path is always
173 * executing on one CPU which is different from the completion
174 * path. There is also a cache line for members which are
175 * read but not written on the fast path.
176 *
177 * @efx: The associated Efx NIC
178 * @queue: DMA queue number
179 * @channel: The associated channel
180 * @core_txq: The networking core TX queue structure
181 * @buffer: The software buffer ring
182 * @tsoh_page: Array of pages of TSO header buffers
183 * @txd: The hardware descriptor ring
184 * @ptr_mask: The size of the ring minus 1.
185 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
186 * Size of the region is efx_piobuf_size.
187 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
188 * @initialised: Has hardware queue been initialised?
189 * @read_count: Current read pointer.
190 * This is the number of buffers that have been removed from both rings.
191 * @old_write_count: The value of @write_count when last checked.
192 * This is here for performance reasons. The xmit path will
193 * only get the up-to-date value of @write_count if this
194 * variable indicates that the queue is empty. This is to
195 * avoid cache-line ping-pong between the xmit path and the
196 * completion path.
197 * @merge_events: Number of TX merged completion events
198 * @insert_count: Current insert pointer
199 * This is the number of buffers that have been added to the
200 * software ring.
201 * @write_count: Current write pointer
202 * This is the number of buffers that have been added to the
203 * hardware ring.
204 * @old_read_count: The value of read_count when last checked.
205 * This is here for performance reasons. The xmit path will
206 * only get the up-to-date value of read_count if this
207 * variable indicates that the queue is full. This is to
208 * avoid cache-line ping-pong between the xmit path and the
209 * completion path.
210 * @tso_bursts: Number of times TSO xmit invoked by kernel
211 * @tso_long_headers: Number of packets with headers too long for standard
212 * blocks
213 * @tso_packets: Number of packets via the TSO xmit path
214 * @pushes: Number of times the TX push feature has been used
215 * @empty_read_count: If the completion path has seen the queue as empty
216 * and the transmission path has not yet checked this, the value of
217 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
218 */
219 struct efx_tx_queue {
220 /* Members which don't change on the fast path */
221 struct efx_nic *efx ____cacheline_aligned_in_smp;
222 unsigned queue;
223 struct efx_channel *channel;
224 struct netdev_queue *core_txq;
225 struct efx_tx_buffer *buffer;
226 struct efx_buffer *tsoh_page;
227 struct efx_special_buffer txd;
228 unsigned int ptr_mask;
229 void __iomem *piobuf;
230 unsigned int piobuf_offset;
231 bool initialised;
232
233 /* Members used mainly on the completion path */
234 unsigned int read_count ____cacheline_aligned_in_smp;
235 unsigned int old_write_count;
236 unsigned int merge_events;
237
238 /* Members used only on the xmit path */
239 unsigned int insert_count ____cacheline_aligned_in_smp;
240 unsigned int write_count;
241 unsigned int old_read_count;
242 unsigned int tso_bursts;
243 unsigned int tso_long_headers;
244 unsigned int tso_packets;
245 unsigned int pushes;
246
247 /* Members shared between paths and sometimes updated */
248 unsigned int empty_read_count ____cacheline_aligned_in_smp;
249 #define EFX_EMPTY_COUNT_VALID 0x80000000
250 atomic_t flush_outstanding;
251 };
252
253 /**
254 * struct efx_rx_buffer - An Efx RX data buffer
255 * @dma_addr: DMA base address of the buffer
256 * @page: The associated page buffer.
257 * Will be %NULL if the buffer slot is currently free.
258 * @page_offset: If pending: offset in @page of DMA base address.
259 * If completed: offset in @page of Ethernet header.
260 * @len: If pending: length for DMA descriptor.
261 * If completed: received length, excluding hash prefix.
262 * @flags: Flags for buffer and packet state. These are only set on the
263 * first buffer of a scattered packet.
264 */
265 struct efx_rx_buffer {
266 dma_addr_t dma_addr;
267 struct page *page;
268 u16 page_offset;
269 u16 len;
270 u16 flags;
271 };
272 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
273 #define EFX_RX_PKT_CSUMMED 0x0002
274 #define EFX_RX_PKT_DISCARD 0x0004
275 #define EFX_RX_PKT_TCP 0x0040
276 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
277
278 /**
279 * struct efx_rx_page_state - Page-based rx buffer state
280 *
281 * Inserted at the start of every page allocated for receive buffers.
282 * Used to facilitate sharing dma mappings between recycled rx buffers
283 * and those passed up to the kernel.
284 *
285 * @refcnt: Number of struct efx_rx_buffer's referencing this page.
286 * When refcnt falls to zero, the page is unmapped for dma
287 * @dma_addr: The dma address of this page.
288 */
289 struct efx_rx_page_state {
290 unsigned refcnt;
291 dma_addr_t dma_addr;
292
293 unsigned int __pad[0] ____cacheline_aligned;
294 };
295
296 /**
297 * struct efx_rx_queue - An Efx RX queue
298 * @efx: The associated Efx NIC
299 * @core_index: Index of network core RX queue. Will be >= 0 iff this
300 * is associated with a real RX queue.
301 * @buffer: The software buffer ring
302 * @rxd: The hardware descriptor ring
303 * @ptr_mask: The size of the ring minus 1.
304 * @refill_enabled: Enable refill whenever fill level is low
305 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
306 * @rxq_flush_pending.
307 * @added_count: Number of buffers added to the receive queue.
308 * @notified_count: Number of buffers given to NIC (<= @added_count).
309 * @removed_count: Number of buffers removed from the receive queue.
310 * @scatter_n: Used by NIC specific receive code.
311 * @scatter_len: Used by NIC specific receive code.
312 * @page_ring: The ring to store DMA mapped pages for reuse.
313 * @page_add: Counter to calculate the write pointer for the recycle ring.
314 * @page_remove: Counter to calculate the read pointer for the recycle ring.
315 * @page_recycle_count: The number of pages that have been recycled.
316 * @page_recycle_failed: The number of pages that couldn't be recycled because
317 * the kernel still held a reference to them.
318 * @page_recycle_full: The number of pages that were released because the
319 * recycle ring was full.
320 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
321 * @max_fill: RX descriptor maximum fill level (<= ring size)
322 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
323 * (<= @max_fill)
324 * @min_fill: RX descriptor minimum non-zero fill level.
325 * This records the minimum fill level observed when a ring
326 * refill was triggered.
327 * @recycle_count: RX buffer recycle counter.
328 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
329 */
330 struct efx_rx_queue {
331 struct efx_nic *efx;
332 int core_index;
333 struct efx_rx_buffer *buffer;
334 struct efx_special_buffer rxd;
335 unsigned int ptr_mask;
336 bool refill_enabled;
337 bool flush_pending;
338
339 unsigned int added_count;
340 unsigned int notified_count;
341 unsigned int removed_count;
342 unsigned int scatter_n;
343 unsigned int scatter_len;
344 struct page **page_ring;
345 unsigned int page_add;
346 unsigned int page_remove;
347 unsigned int page_recycle_count;
348 unsigned int page_recycle_failed;
349 unsigned int page_recycle_full;
350 unsigned int page_ptr_mask;
351 unsigned int max_fill;
352 unsigned int fast_fill_trigger;
353 unsigned int min_fill;
354 unsigned int min_overfill;
355 unsigned int recycle_count;
356 struct timer_list slow_fill;
357 unsigned int slow_fill_count;
358 };
359
360 enum efx_rx_alloc_method {
361 RX_ALLOC_METHOD_AUTO = 0,
362 RX_ALLOC_METHOD_SKB = 1,
363 RX_ALLOC_METHOD_PAGE = 2,
364 };
365
366 /**
367 * struct efx_channel - An Efx channel
368 *
369 * A channel comprises an event queue, at least one TX queue, at least
370 * one RX queue, and an associated tasklet for processing the event
371 * queue.
372 *
373 * @efx: Associated Efx NIC
374 * @channel: Channel instance number
375 * @type: Channel type definition
376 * @eventq_init: Event queue initialised flag
377 * @enabled: Channel enabled indicator
378 * @irq: IRQ number (MSI and MSI-X only)
379 * @irq_moderation: IRQ moderation value (in hardware ticks)
380 * @napi_dev: Net device used with NAPI
381 * @napi_str: NAPI control structure
382 * @eventq: Event queue buffer
383 * @eventq_mask: Event queue pointer mask
384 * @eventq_read_ptr: Event queue read pointer
385 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
386 * @irq_count: Number of IRQs since last adaptive moderation decision
387 * @irq_mod_score: IRQ moderation score
388 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
389 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
390 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
391 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
392 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
393 * @n_rx_overlength: Count of RX_OVERLENGTH errors
394 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
395 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
396 * lack of descriptors
397 * @n_rx_merge_events: Number of RX merged completion events
398 * @n_rx_merge_packets: Number of RX packets completed by merged events
399 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
400 * __efx_rx_packet(), or zero if there is none
401 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
402 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
403 * @rx_queue: RX queue for this channel
404 * @tx_queue: TX queues for this channel
405 */
406 struct efx_channel {
407 struct efx_nic *efx;
408 int channel;
409 const struct efx_channel_type *type;
410 bool eventq_init;
411 bool enabled;
412 int irq;
413 unsigned int irq_moderation;
414 struct net_device *napi_dev;
415 struct napi_struct napi_str;
416 struct efx_special_buffer eventq;
417 unsigned int eventq_mask;
418 unsigned int eventq_read_ptr;
419 int event_test_cpu;
420
421 unsigned int irq_count;
422 unsigned int irq_mod_score;
423 #ifdef CONFIG_RFS_ACCEL
424 unsigned int rfs_filters_added;
425 #endif
426
427 unsigned n_rx_tobe_disc;
428 unsigned n_rx_ip_hdr_chksum_err;
429 unsigned n_rx_tcp_udp_chksum_err;
430 unsigned n_rx_mcast_mismatch;
431 unsigned n_rx_frm_trunc;
432 unsigned n_rx_overlength;
433 unsigned n_skbuff_leaks;
434 unsigned int n_rx_nodesc_trunc;
435 unsigned int n_rx_merge_events;
436 unsigned int n_rx_merge_packets;
437
438 unsigned int rx_pkt_n_frags;
439 unsigned int rx_pkt_index;
440
441 struct efx_rx_queue rx_queue;
442 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
443 };
444
445 /**
446 * struct efx_msi_context - Context for each MSI
447 * @efx: The associated NIC
448 * @index: Index of the channel/IRQ
449 * @name: Name of the channel/IRQ
450 *
451 * Unlike &struct efx_channel, this is never reallocated and is always
452 * safe for the IRQ handler to access.
453 */
454 struct efx_msi_context {
455 struct efx_nic *efx;
456 unsigned int index;
457 char name[IFNAMSIZ + 6];
458 };
459
460 /**
461 * struct efx_channel_type - distinguishes traffic and extra channels
462 * @handle_no_channel: Handle failure to allocate an extra channel
463 * @pre_probe: Set up extra state prior to initialisation
464 * @post_remove: Tear down extra state after finalisation, if allocated.
465 * May be called on channels that have not been probed.
466 * @get_name: Generate the channel's name (used for its IRQ handler)
467 * @copy: Copy the channel state prior to reallocation. May be %NULL if
468 * reallocation is not supported.
469 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
470 * @keep_eventq: Flag for whether event queue should be kept initialised
471 * while the device is stopped
472 */
473 struct efx_channel_type {
474 void (*handle_no_channel)(struct efx_nic *);
475 int (*pre_probe)(struct efx_channel *);
476 void (*post_remove)(struct efx_channel *);
477 void (*get_name)(struct efx_channel *, char *buf, size_t len);
478 struct efx_channel *(*copy)(const struct efx_channel *);
479 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
480 bool keep_eventq;
481 };
482
483 enum efx_led_mode {
484 EFX_LED_OFF = 0,
485 EFX_LED_ON = 1,
486 EFX_LED_DEFAULT = 2
487 };
488
489 #define STRING_TABLE_LOOKUP(val, member) \
490 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
491
492 extern const char *const efx_loopback_mode_names[];
493 extern const unsigned int efx_loopback_mode_max;
494 #define LOOPBACK_MODE(efx) \
495 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
496
497 extern const char *const efx_reset_type_names[];
498 extern const unsigned int efx_reset_type_max;
499 #define RESET_TYPE(type) \
500 STRING_TABLE_LOOKUP(type, efx_reset_type)
501
502 enum efx_int_mode {
503 /* Be careful if altering to correct macro below */
504 EFX_INT_MODE_MSIX = 0,
505 EFX_INT_MODE_MSI = 1,
506 EFX_INT_MODE_LEGACY = 2,
507 EFX_INT_MODE_MAX /* Insert any new items before this */
508 };
509 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
510
511 enum nic_state {
512 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
513 STATE_READY = 1, /* hardware ready and netdev registered */
514 STATE_DISABLED = 2, /* device disabled due to hardware errors */
515 STATE_RECOVERY = 3, /* device recovering from PCI error */
516 };
517
518 /*
519 * Alignment of the skb->head which wraps a page-allocated RX buffer
520 *
521 * The skb allocated to wrap an rx_buffer can have this alignment. Since
522 * the data is memcpy'd from the rx_buf, it does not need to be equal to
523 * NET_IP_ALIGN.
524 */
525 #define EFX_PAGE_SKB_ALIGN 2
526
527 /* Forward declaration */
528 struct efx_nic;
529
530 /* Pseudo bit-mask flow control field */
531 #define EFX_FC_RX FLOW_CTRL_RX
532 #define EFX_FC_TX FLOW_CTRL_TX
533 #define EFX_FC_AUTO 4
534
535 /**
536 * struct efx_link_state - Current state of the link
537 * @up: Link is up
538 * @fd: Link is full-duplex
539 * @fc: Actual flow control flags
540 * @speed: Link speed (Mbps)
541 */
542 struct efx_link_state {
543 bool up;
544 bool fd;
545 u8 fc;
546 unsigned int speed;
547 };
548
549 static inline bool efx_link_state_equal(const struct efx_link_state *left,
550 const struct efx_link_state *right)
551 {
552 return left->up == right->up && left->fd == right->fd &&
553 left->fc == right->fc && left->speed == right->speed;
554 }
555
556 /**
557 * struct efx_phy_operations - Efx PHY operations table
558 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
559 * efx->loopback_modes.
560 * @init: Initialise PHY
561 * @fini: Shut down PHY
562 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
563 * @poll: Update @link_state and report whether it changed.
564 * Serialised by the mac_lock.
565 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
566 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
567 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
568 * (only needed where AN bit is set in mmds)
569 * @test_alive: Test that PHY is 'alive' (online)
570 * @test_name: Get the name of a PHY-specific test/result
571 * @run_tests: Run tests and record results as appropriate (offline).
572 * Flags are the ethtool tests flags.
573 */
574 struct efx_phy_operations {
575 int (*probe) (struct efx_nic *efx);
576 int (*init) (struct efx_nic *efx);
577 void (*fini) (struct efx_nic *efx);
578 void (*remove) (struct efx_nic *efx);
579 int (*reconfigure) (struct efx_nic *efx);
580 bool (*poll) (struct efx_nic *efx);
581 void (*get_settings) (struct efx_nic *efx,
582 struct ethtool_cmd *ecmd);
583 int (*set_settings) (struct efx_nic *efx,
584 struct ethtool_cmd *ecmd);
585 void (*set_npage_adv) (struct efx_nic *efx, u32);
586 int (*test_alive) (struct efx_nic *efx);
587 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
588 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
589 int (*get_module_eeprom) (struct efx_nic *efx,
590 struct ethtool_eeprom *ee,
591 u8 *data);
592 int (*get_module_info) (struct efx_nic *efx,
593 struct ethtool_modinfo *modinfo);
594 };
595
596 /**
597 * enum efx_phy_mode - PHY operating mode flags
598 * @PHY_MODE_NORMAL: on and should pass traffic
599 * @PHY_MODE_TX_DISABLED: on with TX disabled
600 * @PHY_MODE_LOW_POWER: set to low power through MDIO
601 * @PHY_MODE_OFF: switched off through external control
602 * @PHY_MODE_SPECIAL: on but will not pass traffic
603 */
604 enum efx_phy_mode {
605 PHY_MODE_NORMAL = 0,
606 PHY_MODE_TX_DISABLED = 1,
607 PHY_MODE_LOW_POWER = 2,
608 PHY_MODE_OFF = 4,
609 PHY_MODE_SPECIAL = 8,
610 };
611
612 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
613 {
614 return !!(mode & ~PHY_MODE_TX_DISABLED);
615 }
616
617 /**
618 * struct efx_hw_stat_desc - Description of a hardware statistic
619 * @name: Name of the statistic as visible through ethtool, or %NULL if
620 * it should not be exposed
621 * @dma_width: Width in bits (0 for non-DMA statistics)
622 * @offset: Offset within stats (ignored for non-DMA statistics)
623 */
624 struct efx_hw_stat_desc {
625 const char *name;
626 u16 dma_width;
627 u16 offset;
628 };
629
630 /* Number of bits used in a multicast filter hash address */
631 #define EFX_MCAST_HASH_BITS 8
632
633 /* Number of (single-bit) entries in a multicast filter hash */
634 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
635
636 /* An Efx multicast filter hash */
637 union efx_multicast_hash {
638 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
639 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
640 };
641
642 struct efx_vf;
643 struct vfdi_status;
644
645 /**
646 * struct efx_nic - an Efx NIC
647 * @name: Device name (net device name or bus id before net device registered)
648 * @pci_dev: The PCI device
649 * @type: Controller type attributes
650 * @legacy_irq: IRQ number
651 * @workqueue: Workqueue for port reconfigures and the HW monitor.
652 * Work items do not hold and must not acquire RTNL.
653 * @workqueue_name: Name of workqueue
654 * @reset_work: Scheduled reset workitem
655 * @membase_phys: Memory BAR value as physical address
656 * @membase: Memory BAR value
657 * @interrupt_mode: Interrupt mode
658 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
659 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
660 * @irq_rx_moderation: IRQ moderation time for RX event queues
661 * @msg_enable: Log message enable flags
662 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
663 * @reset_pending: Bitmask for pending resets
664 * @tx_queue: TX DMA queues
665 * @rx_queue: RX DMA queues
666 * @channel: Channels
667 * @msi_context: Context for each MSI
668 * @extra_channel_types: Types of extra (non-traffic) channels that
669 * should be allocated for this NIC
670 * @rxq_entries: Size of receive queues requested by user.
671 * @txq_entries: Size of transmit queues requested by user.
672 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
673 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
674 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
675 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
676 * @sram_lim_qw: Qword address limit of SRAM
677 * @next_buffer_table: First available buffer table id
678 * @n_channels: Number of channels in use
679 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
680 * @n_tx_channels: Number of channels used for TX
681 * @rx_dma_len: Current maximum RX DMA length
682 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
683 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
684 * for use in sk_buff::truesize
685 * @rx_prefix_size: Size of RX prefix before packet data
686 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
687 * (valid only if @rx_prefix_size != 0; always negative)
688 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
689 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
690 * @rx_hash_key: Toeplitz hash key for RSS
691 * @rx_indir_table: Indirection table for RSS
692 * @rx_scatter: Scatter mode enabled for receives
693 * @int_error_count: Number of internal errors seen recently
694 * @int_error_expire: Time at which error count will be expired
695 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
696 * acknowledge but do nothing else.
697 * @irq_status: Interrupt status buffer
698 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
699 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
700 * @selftest_work: Work item for asynchronous self-test
701 * @mtd_list: List of MTDs attached to the NIC
702 * @nic_data: Hardware dependent state
703 * @mcdi: Management-Controller-to-Driver Interface state
704 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
705 * efx_monitor() and efx_reconfigure_port()
706 * @port_enabled: Port enabled indicator.
707 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
708 * efx_mac_work() with kernel interfaces. Safe to read under any
709 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
710 * be held to modify it.
711 * @port_initialized: Port initialized?
712 * @net_dev: Operating system network device. Consider holding the rtnl lock
713 * @stats_buffer: DMA buffer for statistics
714 * @phy_type: PHY type
715 * @phy_op: PHY interface
716 * @phy_data: PHY private data (including PHY-specific stats)
717 * @mdio: PHY MDIO interface
718 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
719 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
720 * @link_advertising: Autonegotiation advertising flags
721 * @link_state: Current state of the link
722 * @n_link_state_changes: Number of times the link has changed state
723 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
724 * Protected by @mac_lock.
725 * @multicast_hash: Multicast hash table for Falcon-arch.
726 * Protected by @mac_lock.
727 * @wanted_fc: Wanted flow control flags
728 * @fc_disable: When non-zero flow control is disabled. Typically used to
729 * ensure that network back pressure doesn't delay dma queue flushes.
730 * Serialised by the rtnl lock.
731 * @mac_work: Work item for changing MAC promiscuity and multicast hash
732 * @loopback_mode: Loopback status
733 * @loopback_modes: Supported loopback mode bitmask
734 * @loopback_selftest: Offline self-test private state
735 * @filter_lock: Filter table lock
736 * @filter_state: Architecture-dependent filter table state
737 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
738 * indexed by filter ID
739 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
740 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
741 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
742 * Decremented when the efx_flush_rx_queue() is called.
743 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
744 * completed (either success or failure). Not used when MCDI is used to
745 * flush receive queues.
746 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
747 * @vf: Array of &struct efx_vf objects.
748 * @vf_count: Number of VFs intended to be enabled.
749 * @vf_init_count: Number of VFs that have been fully initialised.
750 * @vi_scale: log2 number of vnics per VF.
751 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
752 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
753 * @local_addr_list: List of local addresses. Protected by %local_lock.
754 * @local_page_list: List of DMA addressable pages used to broadcast
755 * %local_addr_list. Protected by %local_lock.
756 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
757 * @peer_work: Work item to broadcast peer addresses to VMs.
758 * @ptp_data: PTP state data
759 * @monitor_work: Hardware monitor workitem
760 * @biu_lock: BIU (bus interface unit) lock
761 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
762 * field is used by efx_test_interrupts() to verify that an
763 * interrupt has occurred.
764 * @stats_lock: Statistics update lock. Must be held when calling
765 * efx_nic_type::{update,start,stop}_stats.
766 *
767 * This is stored in the private area of the &struct net_device.
768 */
769 struct efx_nic {
770 /* The following fields should be written very rarely */
771
772 char name[IFNAMSIZ];
773 struct pci_dev *pci_dev;
774 unsigned int port_num;
775 const struct efx_nic_type *type;
776 int legacy_irq;
777 bool eeh_disabled_legacy_irq;
778 struct workqueue_struct *workqueue;
779 char workqueue_name[16];
780 struct work_struct reset_work;
781 resource_size_t membase_phys;
782 void __iomem *membase;
783
784 enum efx_int_mode interrupt_mode;
785 unsigned int timer_quantum_ns;
786 bool irq_rx_adaptive;
787 unsigned int irq_rx_moderation;
788 u32 msg_enable;
789
790 enum nic_state state;
791 unsigned long reset_pending;
792
793 struct efx_channel *channel[EFX_MAX_CHANNELS];
794 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
795 const struct efx_channel_type *
796 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
797
798 unsigned rxq_entries;
799 unsigned txq_entries;
800 unsigned int txq_stop_thresh;
801 unsigned int txq_wake_thresh;
802
803 unsigned tx_dc_base;
804 unsigned rx_dc_base;
805 unsigned sram_lim_qw;
806 unsigned next_buffer_table;
807
808 unsigned int max_channels;
809 unsigned n_channels;
810 unsigned n_rx_channels;
811 unsigned rss_spread;
812 unsigned tx_channel_offset;
813 unsigned n_tx_channels;
814 unsigned int rx_dma_len;
815 unsigned int rx_buffer_order;
816 unsigned int rx_buffer_truesize;
817 unsigned int rx_page_buf_step;
818 unsigned int rx_bufs_per_page;
819 unsigned int rx_pages_per_batch;
820 unsigned int rx_prefix_size;
821 int rx_packet_hash_offset;
822 int rx_packet_len_offset;
823 u8 rx_hash_key[40];
824 u32 rx_indir_table[128];
825 bool rx_scatter;
826
827 unsigned int_error_count;
828 unsigned long int_error_expire;
829
830 bool irq_soft_enabled;
831 struct efx_buffer irq_status;
832 unsigned irq_zero_count;
833 unsigned irq_level;
834 struct delayed_work selftest_work;
835
836 #ifdef CONFIG_SFC_MTD
837 struct list_head mtd_list;
838 #endif
839
840 void *nic_data;
841 struct efx_mcdi_data *mcdi;
842
843 struct mutex mac_lock;
844 struct work_struct mac_work;
845 bool port_enabled;
846
847 bool port_initialized;
848 struct net_device *net_dev;
849
850 struct efx_buffer stats_buffer;
851
852 unsigned int phy_type;
853 const struct efx_phy_operations *phy_op;
854 void *phy_data;
855 struct mdio_if_info mdio;
856 unsigned int mdio_bus;
857 enum efx_phy_mode phy_mode;
858
859 u32 link_advertising;
860 struct efx_link_state link_state;
861 unsigned int n_link_state_changes;
862
863 bool unicast_filter;
864 union efx_multicast_hash multicast_hash;
865 u8 wanted_fc;
866 unsigned fc_disable;
867
868 atomic_t rx_reset;
869 enum efx_loopback_mode loopback_mode;
870 u64 loopback_modes;
871
872 void *loopback_selftest;
873
874 spinlock_t filter_lock;
875 void *filter_state;
876 #ifdef CONFIG_RFS_ACCEL
877 u32 *rps_flow_id;
878 unsigned int rps_expire_index;
879 #endif
880
881 atomic_t active_queues;
882 atomic_t rxq_flush_pending;
883 atomic_t rxq_flush_outstanding;
884 wait_queue_head_t flush_wq;
885
886 #ifdef CONFIG_SFC_SRIOV
887 struct efx_channel *vfdi_channel;
888 struct efx_vf *vf;
889 unsigned vf_count;
890 unsigned vf_init_count;
891 unsigned vi_scale;
892 unsigned vf_buftbl_base;
893 struct efx_buffer vfdi_status;
894 struct list_head local_addr_list;
895 struct list_head local_page_list;
896 struct mutex local_lock;
897 struct work_struct peer_work;
898 #endif
899
900 struct efx_ptp_data *ptp_data;
901
902 /* The following fields may be written more often */
903
904 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
905 spinlock_t biu_lock;
906 int last_irq_cpu;
907 spinlock_t stats_lock;
908 };
909
910 static inline int efx_dev_registered(struct efx_nic *efx)
911 {
912 return efx->net_dev->reg_state == NETREG_REGISTERED;
913 }
914
915 static inline unsigned int efx_port_num(struct efx_nic *efx)
916 {
917 return efx->port_num;
918 }
919
920 struct efx_mtd_partition {
921 struct list_head node;
922 struct mtd_info mtd;
923 const char *dev_type_name;
924 const char *type_name;
925 char name[IFNAMSIZ + 20];
926 };
927
928 /**
929 * struct efx_nic_type - Efx device type definition
930 * @mem_map_size: Get memory BAR mapped size
931 * @probe: Probe the controller
932 * @remove: Free resources allocated by probe()
933 * @init: Initialise the controller
934 * @dimension_resources: Dimension controller resources (buffer table,
935 * and VIs once the available interrupt resources are clear)
936 * @fini: Shut down the controller
937 * @monitor: Periodic function for polling link state and hardware monitor
938 * @map_reset_reason: Map ethtool reset reason to a reset method
939 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
940 * @reset: Reset the controller hardware and possibly the PHY. This will
941 * be called while the controller is uninitialised.
942 * @probe_port: Probe the MAC and PHY
943 * @remove_port: Free resources allocated by probe_port()
944 * @handle_global_event: Handle a "global" event (may be %NULL)
945 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
946 * @prepare_flush: Prepare the hardware for flushing the DMA queues
947 * (for Falcon architecture)
948 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
949 * architecture)
950 * @describe_stats: Describe statistics for ethtool
951 * @update_stats: Update statistics not provided by event handling.
952 * Either argument may be %NULL.
953 * @start_stats: Start the regular fetching of statistics
954 * @stop_stats: Stop the regular fetching of statistics
955 * @set_id_led: Set state of identifying LED or revert to automatic function
956 * @push_irq_moderation: Apply interrupt moderation value
957 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
958 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
959 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
960 * to the hardware. Serialised by the mac_lock.
961 * @check_mac_fault: Check MAC fault state. True if fault present.
962 * @get_wol: Get WoL configuration from driver state
963 * @set_wol: Push WoL configuration to the NIC
964 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
965 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
966 * expected to reset the NIC.
967 * @test_nvram: Test validity of NVRAM contents
968 * @mcdi_request: Send an MCDI request with the given header and SDU.
969 * The SDU length may be any value from 0 up to the protocol-
970 * defined maximum, but its buffer will be padded to a multiple
971 * of 4 bytes.
972 * @mcdi_poll_response: Test whether an MCDI response is available.
973 * @mcdi_read_response: Read the MCDI response PDU. The offset will
974 * be a multiple of 4. The length may not be, but the buffer
975 * will be padded so it is safe to round up.
976 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
977 * return an appropriate error code for aborting any current
978 * request; otherwise return 0.
979 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
980 * be separately enabled after this.
981 * @irq_test_generate: Generate a test IRQ
982 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
983 * queue must be separately disabled before this.
984 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
985 * a pointer to the &struct efx_msi_context for the channel.
986 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
987 * is a pointer to the &struct efx_nic.
988 * @tx_probe: Allocate resources for TX queue
989 * @tx_init: Initialise TX queue on the NIC
990 * @tx_remove: Free resources for TX queue
991 * @tx_write: Write TX descriptors and doorbell
992 * @rx_push_indir_table: Write RSS indirection table to the NIC
993 * @rx_probe: Allocate resources for RX queue
994 * @rx_init: Initialise RX queue on the NIC
995 * @rx_remove: Free resources for RX queue
996 * @rx_write: Write RX descriptors and doorbell
997 * @rx_defer_refill: Generate a refill reminder event
998 * @ev_probe: Allocate resources for event queue
999 * @ev_init: Initialise event queue on the NIC
1000 * @ev_fini: Deinitialise event queue on the NIC
1001 * @ev_remove: Free resources for event queue
1002 * @ev_process: Process events for a queue, up to the given NAPI quota
1003 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1004 * @ev_test_generate: Generate a test event
1005 * @filter_table_probe: Probe filter capabilities and set up filter software state
1006 * @filter_table_restore: Restore filters removed from hardware
1007 * @filter_table_remove: Remove filters from hardware and tear down software state
1008 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1009 * @filter_insert: add or replace a filter
1010 * @filter_remove_safe: remove a filter by ID, carefully
1011 * @filter_get_safe: retrieve a filter by ID, carefully
1012 * @filter_clear_rx: remove RX filters by priority
1013 * @filter_count_rx_used: Get the number of filters in use at a given priority
1014 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1015 * @filter_get_rx_ids: Get list of RX filters at a given priority
1016 * @filter_rfs_insert: Add or replace a filter for RFS. This must be
1017 * atomic. The hardware change may be asynchronous but should
1018 * not be delayed for long. It may fail if this can't be done
1019 * atomically.
1020 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1021 * This must check whether the specified table entry is used by RFS
1022 * and that rps_may_expire_flow() returns true for it.
1023 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1024 * using efx_mtd_add()
1025 * @mtd_rename: Set an MTD partition name using the net device name
1026 * @mtd_read: Read from an MTD partition
1027 * @mtd_erase: Erase part of an MTD partition
1028 * @mtd_write: Write to an MTD partition
1029 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1030 * also notifies the driver that a writer has finished using this
1031 * partition.
1032 * @revision: Hardware architecture revision
1033 * @txd_ptr_tbl_base: TX descriptor ring base address
1034 * @rxd_ptr_tbl_base: RX descriptor ring base address
1035 * @buf_tbl_base: Buffer table base address
1036 * @evq_ptr_tbl_base: Event queue pointer table base address
1037 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1038 * @max_dma_mask: Maximum possible DMA mask
1039 * @rx_prefix_size: Size of RX prefix before packet data
1040 * @rx_hash_offset: Offset of RX flow hash within prefix
1041 * @rx_buffer_padding: Size of padding at end of RX packet
1042 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1043 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1044 * @max_interrupt_mode: Highest capability interrupt mode supported
1045 * from &enum efx_init_mode.
1046 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1047 * @offload_features: net_device feature flags for protocol offload
1048 * features implemented in hardware
1049 * @mcdi_max_ver: Maximum MCDI version supported
1050 */
1051 struct efx_nic_type {
1052 unsigned int (*mem_map_size)(struct efx_nic *efx);
1053 int (*probe)(struct efx_nic *efx);
1054 void (*remove)(struct efx_nic *efx);
1055 int (*init)(struct efx_nic *efx);
1056 int (*dimension_resources)(struct efx_nic *efx);
1057 void (*fini)(struct efx_nic *efx);
1058 void (*monitor)(struct efx_nic *efx);
1059 enum reset_type (*map_reset_reason)(enum reset_type reason);
1060 int (*map_reset_flags)(u32 *flags);
1061 int (*reset)(struct efx_nic *efx, enum reset_type method);
1062 int (*probe_port)(struct efx_nic *efx);
1063 void (*remove_port)(struct efx_nic *efx);
1064 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1065 int (*fini_dmaq)(struct efx_nic *efx);
1066 void (*prepare_flush)(struct efx_nic *efx);
1067 void (*finish_flush)(struct efx_nic *efx);
1068 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1069 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1070 struct rtnl_link_stats64 *core_stats);
1071 void (*start_stats)(struct efx_nic *efx);
1072 void (*stop_stats)(struct efx_nic *efx);
1073 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1074 void (*push_irq_moderation)(struct efx_channel *channel);
1075 int (*reconfigure_port)(struct efx_nic *efx);
1076 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1077 int (*reconfigure_mac)(struct efx_nic *efx);
1078 bool (*check_mac_fault)(struct efx_nic *efx);
1079 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1080 int (*set_wol)(struct efx_nic *efx, u32 type);
1081 void (*resume_wol)(struct efx_nic *efx);
1082 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1083 int (*test_nvram)(struct efx_nic *efx);
1084 void (*mcdi_request)(struct efx_nic *efx,
1085 const efx_dword_t *hdr, size_t hdr_len,
1086 const efx_dword_t *sdu, size_t sdu_len);
1087 bool (*mcdi_poll_response)(struct efx_nic *efx);
1088 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1089 size_t pdu_offset, size_t pdu_len);
1090 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1091 void (*irq_enable_master)(struct efx_nic *efx);
1092 void (*irq_test_generate)(struct efx_nic *efx);
1093 void (*irq_disable_non_ev)(struct efx_nic *efx);
1094 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1095 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1096 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1097 void (*tx_init)(struct efx_tx_queue *tx_queue);
1098 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1099 void (*tx_write)(struct efx_tx_queue *tx_queue);
1100 void (*rx_push_indir_table)(struct efx_nic *efx);
1101 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1102 void (*rx_init)(struct efx_rx_queue *rx_queue);
1103 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1104 void (*rx_write)(struct efx_rx_queue *rx_queue);
1105 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1106 int (*ev_probe)(struct efx_channel *channel);
1107 int (*ev_init)(struct efx_channel *channel);
1108 void (*ev_fini)(struct efx_channel *channel);
1109 void (*ev_remove)(struct efx_channel *channel);
1110 int (*ev_process)(struct efx_channel *channel, int quota);
1111 void (*ev_read_ack)(struct efx_channel *channel);
1112 void (*ev_test_generate)(struct efx_channel *channel);
1113 int (*filter_table_probe)(struct efx_nic *efx);
1114 void (*filter_table_restore)(struct efx_nic *efx);
1115 void (*filter_table_remove)(struct efx_nic *efx);
1116 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1117 s32 (*filter_insert)(struct efx_nic *efx,
1118 struct efx_filter_spec *spec, bool replace);
1119 int (*filter_remove_safe)(struct efx_nic *efx,
1120 enum efx_filter_priority priority,
1121 u32 filter_id);
1122 int (*filter_get_safe)(struct efx_nic *efx,
1123 enum efx_filter_priority priority,
1124 u32 filter_id, struct efx_filter_spec *);
1125 void (*filter_clear_rx)(struct efx_nic *efx,
1126 enum efx_filter_priority priority);
1127 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1128 enum efx_filter_priority priority);
1129 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1130 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1131 enum efx_filter_priority priority,
1132 u32 *buf, u32 size);
1133 #ifdef CONFIG_RFS_ACCEL
1134 s32 (*filter_rfs_insert)(struct efx_nic *efx,
1135 struct efx_filter_spec *spec);
1136 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1137 unsigned int index);
1138 #endif
1139 #ifdef CONFIG_SFC_MTD
1140 int (*mtd_probe)(struct efx_nic *efx);
1141 void (*mtd_rename)(struct efx_mtd_partition *part);
1142 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1143 size_t *retlen, u8 *buffer);
1144 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1145 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1146 size_t *retlen, const u8 *buffer);
1147 int (*mtd_sync)(struct mtd_info *mtd);
1148 #endif
1149 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1150
1151 int revision;
1152 unsigned int txd_ptr_tbl_base;
1153 unsigned int rxd_ptr_tbl_base;
1154 unsigned int buf_tbl_base;
1155 unsigned int evq_ptr_tbl_base;
1156 unsigned int evq_rptr_tbl_base;
1157 u64 max_dma_mask;
1158 unsigned int rx_prefix_size;
1159 unsigned int rx_hash_offset;
1160 unsigned int rx_buffer_padding;
1161 bool can_rx_scatter;
1162 bool always_rx_scatter;
1163 unsigned int max_interrupt_mode;
1164 unsigned int timer_period_max;
1165 netdev_features_t offload_features;
1166 int mcdi_max_ver;
1167 unsigned int max_rx_ip_filters;
1168 };
1169
1170 /**************************************************************************
1171 *
1172 * Prototypes and inline functions
1173 *
1174 *************************************************************************/
1175
1176 static inline struct efx_channel *
1177 efx_get_channel(struct efx_nic *efx, unsigned index)
1178 {
1179 EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1180 return efx->channel[index];
1181 }
1182
1183 /* Iterate over all used channels */
1184 #define efx_for_each_channel(_channel, _efx) \
1185 for (_channel = (_efx)->channel[0]; \
1186 _channel; \
1187 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1188 (_efx)->channel[_channel->channel + 1] : NULL)
1189
1190 /* Iterate over all used channels in reverse */
1191 #define efx_for_each_channel_rev(_channel, _efx) \
1192 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1193 _channel; \
1194 _channel = _channel->channel ? \
1195 (_efx)->channel[_channel->channel - 1] : NULL)
1196
1197 static inline struct efx_tx_queue *
1198 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1199 {
1200 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1201 type >= EFX_TXQ_TYPES);
1202 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1203 }
1204
1205 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1206 {
1207 return channel->channel - channel->efx->tx_channel_offset <
1208 channel->efx->n_tx_channels;
1209 }
1210
1211 static inline struct efx_tx_queue *
1212 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1213 {
1214 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1215 type >= EFX_TXQ_TYPES);
1216 return &channel->tx_queue[type];
1217 }
1218
1219 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1220 {
1221 return !(tx_queue->efx->net_dev->num_tc < 2 &&
1222 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1223 }
1224
1225 /* Iterate over all TX queues belonging to a channel */
1226 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1227 if (!efx_channel_has_tx_queues(_channel)) \
1228 ; \
1229 else \
1230 for (_tx_queue = (_channel)->tx_queue; \
1231 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1232 efx_tx_queue_used(_tx_queue); \
1233 _tx_queue++)
1234
1235 /* Iterate over all possible TX queues belonging to a channel */
1236 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
1237 if (!efx_channel_has_tx_queues(_channel)) \
1238 ; \
1239 else \
1240 for (_tx_queue = (_channel)->tx_queue; \
1241 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
1242 _tx_queue++)
1243
1244 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1245 {
1246 return channel->rx_queue.core_index >= 0;
1247 }
1248
1249 static inline struct efx_rx_queue *
1250 efx_channel_get_rx_queue(struct efx_channel *channel)
1251 {
1252 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1253 return &channel->rx_queue;
1254 }
1255
1256 /* Iterate over all RX queues belonging to a channel */
1257 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1258 if (!efx_channel_has_rx_queue(_channel)) \
1259 ; \
1260 else \
1261 for (_rx_queue = &(_channel)->rx_queue; \
1262 _rx_queue; \
1263 _rx_queue = NULL)
1264
1265 static inline struct efx_channel *
1266 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1267 {
1268 return container_of(rx_queue, struct efx_channel, rx_queue);
1269 }
1270
1271 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1272 {
1273 return efx_rx_queue_channel(rx_queue)->channel;
1274 }
1275
1276 /* Returns a pointer to the specified receive buffer in the RX
1277 * descriptor queue.
1278 */
1279 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1280 unsigned int index)
1281 {
1282 return &rx_queue->buffer[index];
1283 }
1284
1285
1286 /**
1287 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1288 *
1289 * This calculates the maximum frame length that will be used for a
1290 * given MTU. The frame length will be equal to the MTU plus a
1291 * constant amount of header space and padding. This is the quantity
1292 * that the net driver will program into the MAC as the maximum frame
1293 * length.
1294 *
1295 * The 10G MAC requires 8-byte alignment on the frame
1296 * length, so we round up to the nearest 8.
1297 *
1298 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1299 * XGMII cycle). If the frame length reaches the maximum value in the
1300 * same cycle, the XMAC can miss the IPG altogether. We work around
1301 * this by adding a further 16 bytes.
1302 */
1303 #define EFX_MAX_FRAME_LEN(mtu) \
1304 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1305
1306 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1307 {
1308 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1309 }
1310 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1311 {
1312 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1313 }
1314
1315 #endif /* EFX_NET_DRIVER_H */
This page took 0.081232 seconds and 4 git commands to generate.