GFS2: Check for glock already held in gfs2_getxattr
[deliverable/linux.git] / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <linux/iommu.h>
20 #include <net/ip.h>
21 #include <net/checksum.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "selftest.h"
26 #include "workarounds.h"
27
28 /* Preferred number of descriptors to fill at once */
29 #define EFX_RX_PREFERRED_BATCH 8U
30
31 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
32 * ring, this number is divided by the number of buffers per page to calculate
33 * the number of pages to store in the RX page recycle ring.
34 */
35 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
36 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
37
38 /* Size of buffer allocated for skb header area. */
39 #define EFX_SKB_HEADERS 128u
40
41 /* This is the percentage fill level below which new RX descriptors
42 * will be added to the RX descriptor ring.
43 */
44 static unsigned int rx_refill_threshold;
45
46 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
47 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
48 EFX_RX_USR_BUF_SIZE)
49
50 /*
51 * RX maximum head room required.
52 *
53 * This must be at least 1 to prevent overflow, plus one packet-worth
54 * to allow pipelined receives.
55 */
56 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
57
58 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
59 {
60 return page_address(buf->page) + buf->page_offset;
61 }
62
63 static inline u32 efx_rx_buf_hash(const u8 *eh)
64 {
65 /* The ethernet header is always directly after any hash. */
66 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
67 return __le32_to_cpup((const __le32 *)(eh - 4));
68 #else
69 const u8 *data = eh - 4;
70 return (u32)data[0] |
71 (u32)data[1] << 8 |
72 (u32)data[2] << 16 |
73 (u32)data[3] << 24;
74 #endif
75 }
76
77 static inline struct efx_rx_buffer *
78 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
79 {
80 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
81 return efx_rx_buffer(rx_queue, 0);
82 else
83 return rx_buf + 1;
84 }
85
86 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
87 struct efx_rx_buffer *rx_buf,
88 unsigned int len)
89 {
90 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
91 DMA_FROM_DEVICE);
92 }
93
94 void efx_rx_config_page_split(struct efx_nic *efx)
95 {
96 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
97 EFX_RX_BUF_ALIGNMENT);
98 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
99 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
100 efx->rx_page_buf_step);
101 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
102 efx->rx_bufs_per_page;
103 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
104 efx->rx_bufs_per_page);
105 }
106
107 /* Check the RX page recycle ring for a page that can be reused. */
108 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
109 {
110 struct efx_nic *efx = rx_queue->efx;
111 struct page *page;
112 struct efx_rx_page_state *state;
113 unsigned index;
114
115 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
116 page = rx_queue->page_ring[index];
117 if (page == NULL)
118 return NULL;
119
120 rx_queue->page_ring[index] = NULL;
121 /* page_remove cannot exceed page_add. */
122 if (rx_queue->page_remove != rx_queue->page_add)
123 ++rx_queue->page_remove;
124
125 /* If page_count is 1 then we hold the only reference to this page. */
126 if (page_count(page) == 1) {
127 ++rx_queue->page_recycle_count;
128 return page;
129 } else {
130 state = page_address(page);
131 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
132 PAGE_SIZE << efx->rx_buffer_order,
133 DMA_FROM_DEVICE);
134 put_page(page);
135 ++rx_queue->page_recycle_failed;
136 }
137
138 return NULL;
139 }
140
141 /**
142 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
143 *
144 * @rx_queue: Efx RX queue
145 *
146 * This allocates a batch of pages, maps them for DMA, and populates
147 * struct efx_rx_buffers for each one. Return a negative error code or
148 * 0 on success. If a single page can be used for multiple buffers,
149 * then the page will either be inserted fully, or not at all.
150 */
151 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
152 {
153 struct efx_nic *efx = rx_queue->efx;
154 struct efx_rx_buffer *rx_buf;
155 struct page *page;
156 unsigned int page_offset;
157 struct efx_rx_page_state *state;
158 dma_addr_t dma_addr;
159 unsigned index, count;
160
161 count = 0;
162 do {
163 page = efx_reuse_page(rx_queue);
164 if (page == NULL) {
165 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
166 efx->rx_buffer_order);
167 if (unlikely(page == NULL))
168 return -ENOMEM;
169 dma_addr =
170 dma_map_page(&efx->pci_dev->dev, page, 0,
171 PAGE_SIZE << efx->rx_buffer_order,
172 DMA_FROM_DEVICE);
173 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
174 dma_addr))) {
175 __free_pages(page, efx->rx_buffer_order);
176 return -EIO;
177 }
178 state = page_address(page);
179 state->dma_addr = dma_addr;
180 } else {
181 state = page_address(page);
182 dma_addr = state->dma_addr;
183 }
184
185 dma_addr += sizeof(struct efx_rx_page_state);
186 page_offset = sizeof(struct efx_rx_page_state);
187
188 do {
189 index = rx_queue->added_count & rx_queue->ptr_mask;
190 rx_buf = efx_rx_buffer(rx_queue, index);
191 rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
192 rx_buf->page = page;
193 rx_buf->page_offset = page_offset + NET_IP_ALIGN;
194 rx_buf->len = efx->rx_dma_len;
195 rx_buf->flags = 0;
196 ++rx_queue->added_count;
197 get_page(page);
198 dma_addr += efx->rx_page_buf_step;
199 page_offset += efx->rx_page_buf_step;
200 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
201
202 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
203 } while (++count < efx->rx_pages_per_batch);
204
205 return 0;
206 }
207
208 /* Unmap a DMA-mapped page. This function is only called for the final RX
209 * buffer in a page.
210 */
211 static void efx_unmap_rx_buffer(struct efx_nic *efx,
212 struct efx_rx_buffer *rx_buf)
213 {
214 struct page *page = rx_buf->page;
215
216 if (page) {
217 struct efx_rx_page_state *state = page_address(page);
218 dma_unmap_page(&efx->pci_dev->dev,
219 state->dma_addr,
220 PAGE_SIZE << efx->rx_buffer_order,
221 DMA_FROM_DEVICE);
222 }
223 }
224
225 static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
226 {
227 if (rx_buf->page) {
228 put_page(rx_buf->page);
229 rx_buf->page = NULL;
230 }
231 }
232
233 /* Attempt to recycle the page if there is an RX recycle ring; the page can
234 * only be added if this is the final RX buffer, to prevent pages being used in
235 * the descriptor ring and appearing in the recycle ring simultaneously.
236 */
237 static void efx_recycle_rx_page(struct efx_channel *channel,
238 struct efx_rx_buffer *rx_buf)
239 {
240 struct page *page = rx_buf->page;
241 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
242 struct efx_nic *efx = rx_queue->efx;
243 unsigned index;
244
245 /* Only recycle the page after processing the final buffer. */
246 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
247 return;
248
249 index = rx_queue->page_add & rx_queue->page_ptr_mask;
250 if (rx_queue->page_ring[index] == NULL) {
251 unsigned read_index = rx_queue->page_remove &
252 rx_queue->page_ptr_mask;
253
254 /* The next slot in the recycle ring is available, but
255 * increment page_remove if the read pointer currently
256 * points here.
257 */
258 if (read_index == index)
259 ++rx_queue->page_remove;
260 rx_queue->page_ring[index] = page;
261 ++rx_queue->page_add;
262 return;
263 }
264 ++rx_queue->page_recycle_full;
265 efx_unmap_rx_buffer(efx, rx_buf);
266 put_page(rx_buf->page);
267 }
268
269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270 struct efx_rx_buffer *rx_buf)
271 {
272 /* Release the page reference we hold for the buffer. */
273 if (rx_buf->page)
274 put_page(rx_buf->page);
275
276 /* If this is the last buffer in a page, unmap and free it. */
277 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
278 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
279 efx_free_rx_buffer(rx_buf);
280 }
281 rx_buf->page = NULL;
282 }
283
284 /* Recycle the pages that are used by buffers that have just been received. */
285 static void efx_recycle_rx_pages(struct efx_channel *channel,
286 struct efx_rx_buffer *rx_buf,
287 unsigned int n_frags)
288 {
289 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
290
291 do {
292 efx_recycle_rx_page(channel, rx_buf);
293 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
294 } while (--n_frags);
295 }
296
297 static void efx_discard_rx_packet(struct efx_channel *channel,
298 struct efx_rx_buffer *rx_buf,
299 unsigned int n_frags)
300 {
301 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
302
303 efx_recycle_rx_pages(channel, rx_buf, n_frags);
304
305 do {
306 efx_free_rx_buffer(rx_buf);
307 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
308 } while (--n_frags);
309 }
310
311 /**
312 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
313 * @rx_queue: RX descriptor queue
314 *
315 * This will aim to fill the RX descriptor queue up to
316 * @rx_queue->@max_fill. If there is insufficient atomic
317 * memory to do so, a slow fill will be scheduled.
318 *
319 * The caller must provide serialisation (none is used here). In practise,
320 * this means this function must run from the NAPI handler, or be called
321 * when NAPI is disabled.
322 */
323 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
324 {
325 struct efx_nic *efx = rx_queue->efx;
326 unsigned int fill_level, batch_size;
327 int space, rc = 0;
328
329 /* Calculate current fill level, and exit if we don't need to fill */
330 fill_level = (rx_queue->added_count - rx_queue->removed_count);
331 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
332 if (fill_level >= rx_queue->fast_fill_trigger)
333 goto out;
334
335 /* Record minimum fill level */
336 if (unlikely(fill_level < rx_queue->min_fill)) {
337 if (fill_level)
338 rx_queue->min_fill = fill_level;
339 }
340
341 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
342 space = rx_queue->max_fill - fill_level;
343 EFX_BUG_ON_PARANOID(space < batch_size);
344
345 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
346 "RX queue %d fast-filling descriptor ring from"
347 " level %d to level %d\n",
348 efx_rx_queue_index(rx_queue), fill_level,
349 rx_queue->max_fill);
350
351
352 do {
353 rc = efx_init_rx_buffers(rx_queue);
354 if (unlikely(rc)) {
355 /* Ensure that we don't leave the rx queue empty */
356 if (rx_queue->added_count == rx_queue->removed_count)
357 efx_schedule_slow_fill(rx_queue);
358 goto out;
359 }
360 } while ((space -= batch_size) >= batch_size);
361
362 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
363 "RX queue %d fast-filled descriptor ring "
364 "to level %d\n", efx_rx_queue_index(rx_queue),
365 rx_queue->added_count - rx_queue->removed_count);
366
367 out:
368 if (rx_queue->notified_count != rx_queue->added_count)
369 efx_nic_notify_rx_desc(rx_queue);
370 }
371
372 void efx_rx_slow_fill(unsigned long context)
373 {
374 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
375
376 /* Post an event to cause NAPI to run and refill the queue */
377 efx_nic_generate_fill_event(rx_queue);
378 ++rx_queue->slow_fill_count;
379 }
380
381 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
382 struct efx_rx_buffer *rx_buf,
383 int len)
384 {
385 struct efx_nic *efx = rx_queue->efx;
386 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
387
388 if (likely(len <= max_len))
389 return;
390
391 /* The packet must be discarded, but this is only a fatal error
392 * if the caller indicated it was
393 */
394 rx_buf->flags |= EFX_RX_PKT_DISCARD;
395
396 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
397 if (net_ratelimit())
398 netif_err(efx, rx_err, efx->net_dev,
399 " RX queue %d seriously overlength "
400 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
401 efx_rx_queue_index(rx_queue), len, max_len,
402 efx->type->rx_buffer_padding);
403 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
404 } else {
405 if (net_ratelimit())
406 netif_err(efx, rx_err, efx->net_dev,
407 " RX queue %d overlength RX event "
408 "(0x%x > 0x%x)\n",
409 efx_rx_queue_index(rx_queue), len, max_len);
410 }
411
412 efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
413 }
414
415 /* Pass a received packet up through GRO. GRO can handle pages
416 * regardless of checksum state and skbs with a good checksum.
417 */
418 static void
419 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
420 unsigned int n_frags, u8 *eh)
421 {
422 struct napi_struct *napi = &channel->napi_str;
423 gro_result_t gro_result;
424 struct efx_nic *efx = channel->efx;
425 struct sk_buff *skb;
426
427 skb = napi_get_frags(napi);
428 if (unlikely(!skb)) {
429 while (n_frags--) {
430 put_page(rx_buf->page);
431 rx_buf->page = NULL;
432 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
433 }
434 return;
435 }
436
437 if (efx->net_dev->features & NETIF_F_RXHASH)
438 skb->rxhash = efx_rx_buf_hash(eh);
439 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
440 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
441
442 for (;;) {
443 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
444 rx_buf->page, rx_buf->page_offset,
445 rx_buf->len);
446 rx_buf->page = NULL;
447 skb->len += rx_buf->len;
448 if (skb_shinfo(skb)->nr_frags == n_frags)
449 break;
450
451 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
452 }
453
454 skb->data_len = skb->len;
455 skb->truesize += n_frags * efx->rx_buffer_truesize;
456
457 skb_record_rx_queue(skb, channel->rx_queue.core_index);
458
459 gro_result = napi_gro_frags(napi);
460 if (gro_result != GRO_DROP)
461 channel->irq_mod_score += 2;
462 }
463
464 /* Allocate and construct an SKB around page fragments */
465 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
466 struct efx_rx_buffer *rx_buf,
467 unsigned int n_frags,
468 u8 *eh, int hdr_len)
469 {
470 struct efx_nic *efx = channel->efx;
471 struct sk_buff *skb;
472
473 /* Allocate an SKB to store the headers */
474 skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
475 if (unlikely(skb == NULL))
476 return NULL;
477
478 EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
479
480 skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
481 memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
482
483 /* Append the remaining page(s) onto the frag list */
484 if (rx_buf->len > hdr_len) {
485 rx_buf->page_offset += hdr_len;
486 rx_buf->len -= hdr_len;
487
488 for (;;) {
489 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
490 rx_buf->page, rx_buf->page_offset,
491 rx_buf->len);
492 rx_buf->page = NULL;
493 skb->len += rx_buf->len;
494 skb->data_len += rx_buf->len;
495 if (skb_shinfo(skb)->nr_frags == n_frags)
496 break;
497
498 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
499 }
500 } else {
501 __free_pages(rx_buf->page, efx->rx_buffer_order);
502 rx_buf->page = NULL;
503 n_frags = 0;
504 }
505
506 skb->truesize += n_frags * efx->rx_buffer_truesize;
507
508 /* Move past the ethernet header */
509 skb->protocol = eth_type_trans(skb, efx->net_dev);
510
511 return skb;
512 }
513
514 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
515 unsigned int n_frags, unsigned int len, u16 flags)
516 {
517 struct efx_nic *efx = rx_queue->efx;
518 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
519 struct efx_rx_buffer *rx_buf;
520
521 rx_buf = efx_rx_buffer(rx_queue, index);
522 rx_buf->flags |= flags;
523
524 /* Validate the number of fragments and completed length */
525 if (n_frags == 1) {
526 efx_rx_packet__check_len(rx_queue, rx_buf, len);
527 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
528 unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
529 unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
530 unlikely(!efx->rx_scatter)) {
531 /* If this isn't an explicit discard request, either
532 * the hardware or the driver is broken.
533 */
534 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
535 rx_buf->flags |= EFX_RX_PKT_DISCARD;
536 }
537
538 netif_vdbg(efx, rx_status, efx->net_dev,
539 "RX queue %d received ids %x-%x len %d %s%s\n",
540 efx_rx_queue_index(rx_queue), index,
541 (index + n_frags - 1) & rx_queue->ptr_mask, len,
542 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
543 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
544
545 /* Discard packet, if instructed to do so. Process the
546 * previous receive first.
547 */
548 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
549 efx_rx_flush_packet(channel);
550 efx_discard_rx_packet(channel, rx_buf, n_frags);
551 return;
552 }
553
554 if (n_frags == 1)
555 rx_buf->len = len;
556
557 /* Release and/or sync the DMA mapping - assumes all RX buffers
558 * consumed in-order per RX queue.
559 */
560 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
561
562 /* Prefetch nice and early so data will (hopefully) be in cache by
563 * the time we look at it.
564 */
565 prefetch(efx_rx_buf_va(rx_buf));
566
567 rx_buf->page_offset += efx->type->rx_buffer_hash_size;
568 rx_buf->len -= efx->type->rx_buffer_hash_size;
569
570 if (n_frags > 1) {
571 /* Release/sync DMA mapping for additional fragments.
572 * Fix length for last fragment.
573 */
574 unsigned int tail_frags = n_frags - 1;
575
576 for (;;) {
577 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
578 if (--tail_frags == 0)
579 break;
580 efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
581 }
582 rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
583 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
584 }
585
586 /* All fragments have been DMA-synced, so recycle pages. */
587 rx_buf = efx_rx_buffer(rx_queue, index);
588 efx_recycle_rx_pages(channel, rx_buf, n_frags);
589
590 /* Pipeline receives so that we give time for packet headers to be
591 * prefetched into cache.
592 */
593 efx_rx_flush_packet(channel);
594 channel->rx_pkt_n_frags = n_frags;
595 channel->rx_pkt_index = index;
596 }
597
598 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
599 struct efx_rx_buffer *rx_buf,
600 unsigned int n_frags)
601 {
602 struct sk_buff *skb;
603 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
604
605 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
606 if (unlikely(skb == NULL)) {
607 efx_free_rx_buffer(rx_buf);
608 return;
609 }
610 skb_record_rx_queue(skb, channel->rx_queue.core_index);
611
612 /* Set the SKB flags */
613 skb_checksum_none_assert(skb);
614 if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
615 skb->ip_summed = CHECKSUM_UNNECESSARY;
616
617 if (channel->type->receive_skb)
618 if (channel->type->receive_skb(channel, skb))
619 return;
620
621 /* Pass the packet up */
622 netif_receive_skb(skb);
623 }
624
625 /* Handle a received packet. Second half: Touches packet payload. */
626 void __efx_rx_packet(struct efx_channel *channel)
627 {
628 struct efx_nic *efx = channel->efx;
629 struct efx_rx_buffer *rx_buf =
630 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
631 u8 *eh = efx_rx_buf_va(rx_buf);
632
633 /* If we're in loopback test, then pass the packet directly to the
634 * loopback layer, and free the rx_buf here
635 */
636 if (unlikely(efx->loopback_selftest)) {
637 efx_loopback_rx_packet(efx, eh, rx_buf->len);
638 efx_free_rx_buffer(rx_buf);
639 goto out;
640 }
641
642 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
643 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
644
645 if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
646 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
647 else
648 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
649 out:
650 channel->rx_pkt_n_frags = 0;
651 }
652
653 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
654 {
655 struct efx_nic *efx = rx_queue->efx;
656 unsigned int entries;
657 int rc;
658
659 /* Create the smallest power-of-two aligned ring */
660 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
661 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
662 rx_queue->ptr_mask = entries - 1;
663
664 netif_dbg(efx, probe, efx->net_dev,
665 "creating RX queue %d size %#x mask %#x\n",
666 efx_rx_queue_index(rx_queue), efx->rxq_entries,
667 rx_queue->ptr_mask);
668
669 /* Allocate RX buffers */
670 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
671 GFP_KERNEL);
672 if (!rx_queue->buffer)
673 return -ENOMEM;
674
675 rc = efx_nic_probe_rx(rx_queue);
676 if (rc) {
677 kfree(rx_queue->buffer);
678 rx_queue->buffer = NULL;
679 }
680
681 return rc;
682 }
683
684 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
685 struct efx_rx_queue *rx_queue)
686 {
687 unsigned int bufs_in_recycle_ring, page_ring_size;
688
689 /* Set the RX recycle ring size */
690 #ifdef CONFIG_PPC64
691 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
692 #else
693 if (iommu_present(&pci_bus_type))
694 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
695 else
696 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
697 #endif /* CONFIG_PPC64 */
698
699 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
700 efx->rx_bufs_per_page);
701 rx_queue->page_ring = kcalloc(page_ring_size,
702 sizeof(*rx_queue->page_ring), GFP_KERNEL);
703 rx_queue->page_ptr_mask = page_ring_size - 1;
704 }
705
706 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
707 {
708 struct efx_nic *efx = rx_queue->efx;
709 unsigned int max_fill, trigger, max_trigger;
710
711 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
712 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
713
714 /* Initialise ptr fields */
715 rx_queue->added_count = 0;
716 rx_queue->notified_count = 0;
717 rx_queue->removed_count = 0;
718 rx_queue->min_fill = -1U;
719 efx_init_rx_recycle_ring(efx, rx_queue);
720
721 rx_queue->page_remove = 0;
722 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
723 rx_queue->page_recycle_count = 0;
724 rx_queue->page_recycle_failed = 0;
725 rx_queue->page_recycle_full = 0;
726
727 /* Initialise limit fields */
728 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
729 max_trigger =
730 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
731 if (rx_refill_threshold != 0) {
732 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
733 if (trigger > max_trigger)
734 trigger = max_trigger;
735 } else {
736 trigger = max_trigger;
737 }
738
739 rx_queue->max_fill = max_fill;
740 rx_queue->fast_fill_trigger = trigger;
741
742 /* Set up RX descriptor ring */
743 rx_queue->enabled = true;
744 efx_nic_init_rx(rx_queue);
745 }
746
747 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
748 {
749 int i;
750 struct efx_nic *efx = rx_queue->efx;
751 struct efx_rx_buffer *rx_buf;
752
753 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
754 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
755
756 /* A flush failure might have left rx_queue->enabled */
757 rx_queue->enabled = false;
758
759 del_timer_sync(&rx_queue->slow_fill);
760 efx_nic_fini_rx(rx_queue);
761
762 /* Release RX buffers from the current read ptr to the write ptr */
763 if (rx_queue->buffer) {
764 for (i = rx_queue->removed_count; i < rx_queue->added_count;
765 i++) {
766 unsigned index = i & rx_queue->ptr_mask;
767 rx_buf = efx_rx_buffer(rx_queue, index);
768 efx_fini_rx_buffer(rx_queue, rx_buf);
769 }
770 }
771
772 /* Unmap and release the pages in the recycle ring. Remove the ring. */
773 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
774 struct page *page = rx_queue->page_ring[i];
775 struct efx_rx_page_state *state;
776
777 if (page == NULL)
778 continue;
779
780 state = page_address(page);
781 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
782 PAGE_SIZE << efx->rx_buffer_order,
783 DMA_FROM_DEVICE);
784 put_page(page);
785 }
786 kfree(rx_queue->page_ring);
787 rx_queue->page_ring = NULL;
788 }
789
790 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
791 {
792 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
793 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
794
795 efx_nic_remove_rx(rx_queue);
796
797 kfree(rx_queue->buffer);
798 rx_queue->buffer = NULL;
799 }
800
801
802 module_param(rx_refill_threshold, uint, 0444);
803 MODULE_PARM_DESC(rx_refill_threshold,
804 "RX descriptor ring refill threshold (%)");
805
This page took 0.048301 seconds and 5 git commands to generate.