Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39 return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51 struct efx_tx_buffer *buffer =
52 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54 EFX_BUG_ON_PARANOID(buffer->len);
55 EFX_BUG_ON_PARANOID(buffer->flags);
56 EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58 return buffer;
59 }
60
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62 struct efx_tx_buffer *buffer,
63 unsigned int *pkts_compl,
64 unsigned int *bytes_compl)
65 {
66 if (buffer->unmap_len) {
67 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71 DMA_TO_DEVICE);
72 else
73 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74 DMA_TO_DEVICE);
75 buffer->unmap_len = 0;
76 }
77
78 if (buffer->flags & EFX_TX_BUF_SKB) {
79 (*pkts_compl)++;
80 (*bytes_compl) += buffer->skb->len;
81 dev_consume_skb_any((struct sk_buff *)buffer->skb);
82 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83 "TX queue %d transmission id %x complete\n",
84 tx_queue->queue, tx_queue->read_count);
85 } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86 kfree(buffer->heap_buf);
87 }
88
89 buffer->len = 0;
90 buffer->flags = 0;
91 }
92
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94 struct sk_buff *skb);
95
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99 /* Depending on the NIC revision, we can use descriptor
100 * lengths up to 8K or 8K-1. However, since PCI Express
101 * devices must split read requests at 4K boundaries, there is
102 * little benefit from using descriptors that cross those
103 * boundaries and we keep things simple by not doing so.
104 */
105 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107 /* Work around hardware bug for unaligned buffers. */
108 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111 return len;
112 }
113
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116 /* Header and payload descriptor for each output segment, plus
117 * one for every input fragment boundary within a segment
118 */
119 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121 /* Possibly one more per segment for the alignment workaround,
122 * or for option descriptors
123 */
124 if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125 max_descs += EFX_TSO_MAX_SEGS;
126
127 /* Possibly more for PCIe page boundaries within input fragments */
128 if (PAGE_SIZE > EFX_PAGE_SIZE)
129 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132 return max_descs;
133 }
134
135 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
136 {
137 /* We need to consider both queues that the net core sees as one */
138 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
139 struct efx_nic *efx = txq1->efx;
140 unsigned int fill_level;
141
142 fill_level = max(txq1->insert_count - txq1->old_read_count,
143 txq2->insert_count - txq2->old_read_count);
144 if (likely(fill_level < efx->txq_stop_thresh))
145 return;
146
147 /* We used the stale old_read_count above, which gives us a
148 * pessimistic estimate of the fill level (which may even
149 * validly be >= efx->txq_entries). Now try again using
150 * read_count (more likely to be a cache miss).
151 *
152 * If we read read_count and then conditionally stop the
153 * queue, it is possible for the completion path to race with
154 * us and complete all outstanding descriptors in the middle,
155 * after which there will be no more completions to wake it.
156 * Therefore we stop the queue first, then read read_count
157 * (with a memory barrier to ensure the ordering), then
158 * restart the queue if the fill level turns out to be low
159 * enough.
160 */
161 netif_tx_stop_queue(txq1->core_txq);
162 smp_mb();
163 txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
164 txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
165
166 fill_level = max(txq1->insert_count - txq1->old_read_count,
167 txq2->insert_count - txq2->old_read_count);
168 EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
169 if (likely(fill_level < efx->txq_stop_thresh)) {
170 smp_mb();
171 if (likely(!efx->loopback_selftest))
172 netif_tx_start_queue(txq1->core_txq);
173 }
174 }
175
176 #ifdef EFX_USE_PIO
177
178 struct efx_short_copy_buffer {
179 int used;
180 u8 buf[L1_CACHE_BYTES];
181 };
182
183 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184 * Advances piobuf pointer. Leaves additional data in the copy buffer.
185 */
186 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
187 u8 *data, int len,
188 struct efx_short_copy_buffer *copy_buf)
189 {
190 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
191
192 __iowrite64_copy(*piobuf, data, block_len >> 3);
193 *piobuf += block_len;
194 len -= block_len;
195
196 if (len) {
197 data += block_len;
198 BUG_ON(copy_buf->used);
199 BUG_ON(len > sizeof(copy_buf->buf));
200 memcpy(copy_buf->buf, data, len);
201 copy_buf->used = len;
202 }
203 }
204
205 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206 * Advances piobuf pointer. Leaves additional data in the copy buffer.
207 */
208 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
209 u8 *data, int len,
210 struct efx_short_copy_buffer *copy_buf)
211 {
212 if (copy_buf->used) {
213 /* if the copy buffer is partially full, fill it up and write */
214 int copy_to_buf =
215 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
216
217 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
218 copy_buf->used += copy_to_buf;
219
220 /* if we didn't fill it up then we're done for now */
221 if (copy_buf->used < sizeof(copy_buf->buf))
222 return;
223
224 __iowrite64_copy(*piobuf, copy_buf->buf,
225 sizeof(copy_buf->buf) >> 3);
226 *piobuf += sizeof(copy_buf->buf);
227 data += copy_to_buf;
228 len -= copy_to_buf;
229 copy_buf->used = 0;
230 }
231
232 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
233 }
234
235 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
236 struct efx_short_copy_buffer *copy_buf)
237 {
238 /* if there's anything in it, write the whole buffer, including junk */
239 if (copy_buf->used)
240 __iowrite64_copy(piobuf, copy_buf->buf,
241 sizeof(copy_buf->buf) >> 3);
242 }
243
244 /* Traverse skb structure and copy fragments in to PIO buffer.
245 * Advances piobuf pointer.
246 */
247 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
248 u8 __iomem **piobuf,
249 struct efx_short_copy_buffer *copy_buf)
250 {
251 int i;
252
253 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
254 copy_buf);
255
256 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
257 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
258 u8 *vaddr;
259
260 vaddr = kmap_atomic(skb_frag_page(f));
261
262 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
263 skb_frag_size(f), copy_buf);
264 kunmap_atomic(vaddr);
265 }
266
267 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
268 }
269
270 static struct efx_tx_buffer *
271 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
272 {
273 struct efx_tx_buffer *buffer =
274 efx_tx_queue_get_insert_buffer(tx_queue);
275 u8 __iomem *piobuf = tx_queue->piobuf;
276
277 /* Copy to PIO buffer. Ensure the writes are padded to the end
278 * of a cache line, as this is required for write-combining to be
279 * effective on at least x86.
280 */
281
282 if (skb_shinfo(skb)->nr_frags) {
283 /* The size of the copy buffer will ensure all writes
284 * are the size of a cache line.
285 */
286 struct efx_short_copy_buffer copy_buf;
287
288 copy_buf.used = 0;
289
290 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
291 &piobuf, &copy_buf);
292 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
293 } else {
294 /* Pad the write to the size of a cache line.
295 * We can do this because we know the skb_shared_info sruct is
296 * after the source, and the destination buffer is big enough.
297 */
298 BUILD_BUG_ON(L1_CACHE_BYTES >
299 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
300 __iowrite64_copy(tx_queue->piobuf, skb->data,
301 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
302 }
303
304 EFX_POPULATE_QWORD_5(buffer->option,
305 ESF_DZ_TX_DESC_IS_OPT, 1,
306 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
307 ESF_DZ_TX_PIO_CONT, 0,
308 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
309 ESF_DZ_TX_PIO_BUF_ADDR,
310 tx_queue->piobuf_offset);
311 ++tx_queue->pio_packets;
312 ++tx_queue->insert_count;
313 return buffer;
314 }
315 #endif /* EFX_USE_PIO */
316
317 /*
318 * Add a socket buffer to a TX queue
319 *
320 * This maps all fragments of a socket buffer for DMA and adds them to
321 * the TX queue. The queue's insert pointer will be incremented by
322 * the number of fragments in the socket buffer.
323 *
324 * If any DMA mapping fails, any mapped fragments will be unmapped,
325 * the queue's insert pointer will be restored to its original value.
326 *
327 * This function is split out from efx_hard_start_xmit to allow the
328 * loopback test to direct packets via specific TX queues.
329 *
330 * Returns NETDEV_TX_OK.
331 * You must hold netif_tx_lock() to call this function.
332 */
333 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
334 {
335 struct efx_nic *efx = tx_queue->efx;
336 struct device *dma_dev = &efx->pci_dev->dev;
337 struct efx_tx_buffer *buffer;
338 unsigned int old_insert_count = tx_queue->insert_count;
339 skb_frag_t *fragment;
340 unsigned int len, unmap_len = 0;
341 dma_addr_t dma_addr, unmap_addr = 0;
342 unsigned int dma_len;
343 unsigned short dma_flags;
344 int i = 0;
345
346 if (skb_shinfo(skb)->gso_size)
347 return efx_enqueue_skb_tso(tx_queue, skb);
348
349 /* Get size of the initial fragment */
350 len = skb_headlen(skb);
351
352 /* Pad if necessary */
353 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
354 EFX_BUG_ON_PARANOID(skb->data_len);
355 len = 32 + 1;
356 if (skb_pad(skb, len - skb->len))
357 return NETDEV_TX_OK;
358 }
359
360 /* Consider using PIO for short packets */
361 #ifdef EFX_USE_PIO
362 if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
363 efx_nic_may_tx_pio(tx_queue)) {
364 buffer = efx_enqueue_skb_pio(tx_queue, skb);
365 dma_flags = EFX_TX_BUF_OPTION;
366 goto finish_packet;
367 }
368 #endif
369
370 /* Map for DMA. Use dma_map_single rather than dma_map_page
371 * since this is more efficient on machines with sparse
372 * memory.
373 */
374 dma_flags = EFX_TX_BUF_MAP_SINGLE;
375 dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
376
377 /* Process all fragments */
378 while (1) {
379 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
380 goto dma_err;
381
382 /* Store fields for marking in the per-fragment final
383 * descriptor */
384 unmap_len = len;
385 unmap_addr = dma_addr;
386
387 /* Add to TX queue, splitting across DMA boundaries */
388 do {
389 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
390
391 dma_len = efx_max_tx_len(efx, dma_addr);
392 if (likely(dma_len >= len))
393 dma_len = len;
394
395 /* Fill out per descriptor fields */
396 buffer->len = dma_len;
397 buffer->dma_addr = dma_addr;
398 buffer->flags = EFX_TX_BUF_CONT;
399 len -= dma_len;
400 dma_addr += dma_len;
401 ++tx_queue->insert_count;
402 } while (len);
403
404 /* Transfer ownership of the unmapping to the final buffer */
405 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
406 buffer->unmap_len = unmap_len;
407 buffer->dma_offset = buffer->dma_addr - unmap_addr;
408 unmap_len = 0;
409
410 /* Get address and size of next fragment */
411 if (i >= skb_shinfo(skb)->nr_frags)
412 break;
413 fragment = &skb_shinfo(skb)->frags[i];
414 len = skb_frag_size(fragment);
415 i++;
416 /* Map for DMA */
417 dma_flags = 0;
418 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
419 DMA_TO_DEVICE);
420 }
421
422 /* Transfer ownership of the skb to the final buffer */
423 #ifdef EFX_USE_PIO
424 finish_packet:
425 #endif
426 buffer->skb = skb;
427 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
428
429 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
430
431 efx_tx_maybe_stop_queue(tx_queue);
432
433 /* Pass off to hardware */
434 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
435 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
436
437 /* There could be packets left on the partner queue if those
438 * SKBs had skb->xmit_more set. If we do not push those they
439 * could be left for a long time and cause a netdev watchdog.
440 */
441 if (txq2->xmit_more_available)
442 efx_nic_push_buffers(txq2);
443
444 efx_nic_push_buffers(tx_queue);
445 } else {
446 tx_queue->xmit_more_available = skb->xmit_more;
447 }
448
449 tx_queue->tx_packets++;
450
451 return NETDEV_TX_OK;
452
453 dma_err:
454 netif_err(efx, tx_err, efx->net_dev,
455 " TX queue %d could not map skb with %d bytes %d "
456 "fragments for DMA\n", tx_queue->queue, skb->len,
457 skb_shinfo(skb)->nr_frags + 1);
458
459 /* Mark the packet as transmitted, and free the SKB ourselves */
460 dev_kfree_skb_any(skb);
461
462 /* Work backwards until we hit the original insert pointer value */
463 while (tx_queue->insert_count != old_insert_count) {
464 unsigned int pkts_compl = 0, bytes_compl = 0;
465 --tx_queue->insert_count;
466 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
467 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
468 }
469
470 /* Free the fragment we were mid-way through pushing */
471 if (unmap_len) {
472 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
473 dma_unmap_single(dma_dev, unmap_addr, unmap_len,
474 DMA_TO_DEVICE);
475 else
476 dma_unmap_page(dma_dev, unmap_addr, unmap_len,
477 DMA_TO_DEVICE);
478 }
479
480 return NETDEV_TX_OK;
481 }
482
483 /* Remove packets from the TX queue
484 *
485 * This removes packets from the TX queue, up to and including the
486 * specified index.
487 */
488 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
489 unsigned int index,
490 unsigned int *pkts_compl,
491 unsigned int *bytes_compl)
492 {
493 struct efx_nic *efx = tx_queue->efx;
494 unsigned int stop_index, read_ptr;
495
496 stop_index = (index + 1) & tx_queue->ptr_mask;
497 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
498
499 while (read_ptr != stop_index) {
500 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
501
502 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
503 unlikely(buffer->len == 0)) {
504 netif_err(efx, tx_err, efx->net_dev,
505 "TX queue %d spurious TX completion id %x\n",
506 tx_queue->queue, read_ptr);
507 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
508 return;
509 }
510
511 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
512
513 ++tx_queue->read_count;
514 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
515 }
516 }
517
518 /* Initiate a packet transmission. We use one channel per CPU
519 * (sharing when we have more CPUs than channels). On Falcon, the TX
520 * completion events will be directed back to the CPU that transmitted
521 * the packet, which should be cache-efficient.
522 *
523 * Context: non-blocking.
524 * Note that returning anything other than NETDEV_TX_OK will cause the
525 * OS to free the skb.
526 */
527 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
528 struct net_device *net_dev)
529 {
530 struct efx_nic *efx = netdev_priv(net_dev);
531 struct efx_tx_queue *tx_queue;
532 unsigned index, type;
533
534 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
535
536 /* PTP "event" packet */
537 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
538 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
539 return efx_ptp_tx(efx, skb);
540 }
541
542 index = skb_get_queue_mapping(skb);
543 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
544 if (index >= efx->n_tx_channels) {
545 index -= efx->n_tx_channels;
546 type |= EFX_TXQ_TYPE_HIGHPRI;
547 }
548 tx_queue = efx_get_tx_queue(efx, index, type);
549
550 return efx_enqueue_skb(tx_queue, skb);
551 }
552
553 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
554 {
555 struct efx_nic *efx = tx_queue->efx;
556
557 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
558 tx_queue->core_txq =
559 netdev_get_tx_queue(efx->net_dev,
560 tx_queue->queue / EFX_TXQ_TYPES +
561 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
562 efx->n_tx_channels : 0));
563 }
564
565 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
566 {
567 struct efx_nic *efx = netdev_priv(net_dev);
568 struct efx_channel *channel;
569 struct efx_tx_queue *tx_queue;
570 unsigned tc;
571 int rc;
572
573 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
574 return -EINVAL;
575
576 if (num_tc == net_dev->num_tc)
577 return 0;
578
579 for (tc = 0; tc < num_tc; tc++) {
580 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
581 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
582 }
583
584 if (num_tc > net_dev->num_tc) {
585 /* Initialise high-priority queues as necessary */
586 efx_for_each_channel(channel, efx) {
587 efx_for_each_possible_channel_tx_queue(tx_queue,
588 channel) {
589 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
590 continue;
591 if (!tx_queue->buffer) {
592 rc = efx_probe_tx_queue(tx_queue);
593 if (rc)
594 return rc;
595 }
596 if (!tx_queue->initialised)
597 efx_init_tx_queue(tx_queue);
598 efx_init_tx_queue_core_txq(tx_queue);
599 }
600 }
601 } else {
602 /* Reduce number of classes before number of queues */
603 net_dev->num_tc = num_tc;
604 }
605
606 rc = netif_set_real_num_tx_queues(net_dev,
607 max_t(int, num_tc, 1) *
608 efx->n_tx_channels);
609 if (rc)
610 return rc;
611
612 /* Do not destroy high-priority queues when they become
613 * unused. We would have to flush them first, and it is
614 * fairly difficult to flush a subset of TX queues. Leave
615 * it to efx_fini_channels().
616 */
617
618 net_dev->num_tc = num_tc;
619 return 0;
620 }
621
622 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
623 {
624 unsigned fill_level;
625 struct efx_nic *efx = tx_queue->efx;
626 struct efx_tx_queue *txq2;
627 unsigned int pkts_compl = 0, bytes_compl = 0;
628
629 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
630
631 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
632 tx_queue->pkts_compl += pkts_compl;
633 tx_queue->bytes_compl += bytes_compl;
634
635 if (pkts_compl > 1)
636 ++tx_queue->merge_events;
637
638 /* See if we need to restart the netif queue. This memory
639 * barrier ensures that we write read_count (inside
640 * efx_dequeue_buffers()) before reading the queue status.
641 */
642 smp_mb();
643 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
644 likely(efx->port_enabled) &&
645 likely(netif_device_present(efx->net_dev))) {
646 txq2 = efx_tx_queue_partner(tx_queue);
647 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
648 txq2->insert_count - txq2->read_count);
649 if (fill_level <= efx->txq_wake_thresh)
650 netif_tx_wake_queue(tx_queue->core_txq);
651 }
652
653 /* Check whether the hardware queue is now empty */
654 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
655 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
656 if (tx_queue->read_count == tx_queue->old_write_count) {
657 smp_mb();
658 tx_queue->empty_read_count =
659 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
660 }
661 }
662 }
663
664 /* Size of page-based TSO header buffers. Larger blocks must be
665 * allocated from the heap.
666 */
667 #define TSOH_STD_SIZE 128
668 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
669
670 /* At most half the descriptors in the queue at any time will refer to
671 * a TSO header buffer, since they must always be followed by a
672 * payload descriptor referring to an skb.
673 */
674 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
675 {
676 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
677 }
678
679 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
680 {
681 struct efx_nic *efx = tx_queue->efx;
682 unsigned int entries;
683 int rc;
684
685 /* Create the smallest power-of-two aligned ring */
686 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
687 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
688 tx_queue->ptr_mask = entries - 1;
689
690 netif_dbg(efx, probe, efx->net_dev,
691 "creating TX queue %d size %#x mask %#x\n",
692 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
693
694 /* Allocate software ring */
695 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
696 GFP_KERNEL);
697 if (!tx_queue->buffer)
698 return -ENOMEM;
699
700 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
701 tx_queue->tsoh_page =
702 kcalloc(efx_tsoh_page_count(tx_queue),
703 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
704 if (!tx_queue->tsoh_page) {
705 rc = -ENOMEM;
706 goto fail1;
707 }
708 }
709
710 /* Allocate hardware ring */
711 rc = efx_nic_probe_tx(tx_queue);
712 if (rc)
713 goto fail2;
714
715 return 0;
716
717 fail2:
718 kfree(tx_queue->tsoh_page);
719 tx_queue->tsoh_page = NULL;
720 fail1:
721 kfree(tx_queue->buffer);
722 tx_queue->buffer = NULL;
723 return rc;
724 }
725
726 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
727 {
728 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
729 "initialising TX queue %d\n", tx_queue->queue);
730
731 tx_queue->insert_count = 0;
732 tx_queue->write_count = 0;
733 tx_queue->old_write_count = 0;
734 tx_queue->read_count = 0;
735 tx_queue->old_read_count = 0;
736 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
737 tx_queue->xmit_more_available = false;
738
739 /* Set up TX descriptor ring */
740 efx_nic_init_tx(tx_queue);
741
742 tx_queue->initialised = true;
743 }
744
745 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
746 {
747 struct efx_tx_buffer *buffer;
748
749 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
750 "shutting down TX queue %d\n", tx_queue->queue);
751
752 if (!tx_queue->buffer)
753 return;
754
755 /* Free any buffers left in the ring */
756 while (tx_queue->read_count != tx_queue->write_count) {
757 unsigned int pkts_compl = 0, bytes_compl = 0;
758 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
759 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
760
761 ++tx_queue->read_count;
762 }
763 tx_queue->xmit_more_available = false;
764 netdev_tx_reset_queue(tx_queue->core_txq);
765 }
766
767 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
768 {
769 int i;
770
771 if (!tx_queue->buffer)
772 return;
773
774 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
775 "destroying TX queue %d\n", tx_queue->queue);
776 efx_nic_remove_tx(tx_queue);
777
778 if (tx_queue->tsoh_page) {
779 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
780 efx_nic_free_buffer(tx_queue->efx,
781 &tx_queue->tsoh_page[i]);
782 kfree(tx_queue->tsoh_page);
783 tx_queue->tsoh_page = NULL;
784 }
785
786 kfree(tx_queue->buffer);
787 tx_queue->buffer = NULL;
788 }
789
790
791 /* Efx TCP segmentation acceleration.
792 *
793 * Why? Because by doing it here in the driver we can go significantly
794 * faster than the GSO.
795 *
796 * Requires TX checksum offload support.
797 */
798
799 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
800
801 /**
802 * struct tso_state - TSO state for an SKB
803 * @out_len: Remaining length in current segment
804 * @seqnum: Current sequence number
805 * @ipv4_id: Current IPv4 ID, host endian
806 * @packet_space: Remaining space in current packet
807 * @dma_addr: DMA address of current position
808 * @in_len: Remaining length in current SKB fragment
809 * @unmap_len: Length of SKB fragment
810 * @unmap_addr: DMA address of SKB fragment
811 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
812 * @protocol: Network protocol (after any VLAN header)
813 * @ip_off: Offset of IP header
814 * @tcp_off: Offset of TCP header
815 * @header_len: Number of bytes of header
816 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
817 * @header_dma_addr: Header DMA address, when using option descriptors
818 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
819 * descriptors
820 *
821 * The state used during segmentation. It is put into this data structure
822 * just to make it easy to pass into inline functions.
823 */
824 struct tso_state {
825 /* Output position */
826 unsigned out_len;
827 unsigned seqnum;
828 u16 ipv4_id;
829 unsigned packet_space;
830
831 /* Input position */
832 dma_addr_t dma_addr;
833 unsigned in_len;
834 unsigned unmap_len;
835 dma_addr_t unmap_addr;
836 unsigned short dma_flags;
837
838 __be16 protocol;
839 unsigned int ip_off;
840 unsigned int tcp_off;
841 unsigned header_len;
842 unsigned int ip_base_len;
843 dma_addr_t header_dma_addr;
844 unsigned int header_unmap_len;
845 };
846
847
848 /*
849 * Verify that our various assumptions about sk_buffs and the conditions
850 * under which TSO will be attempted hold true. Return the protocol number.
851 */
852 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
853 {
854 __be16 protocol = skb->protocol;
855
856 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
857 protocol);
858 if (protocol == htons(ETH_P_8021Q)) {
859 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
860 protocol = veh->h_vlan_encapsulated_proto;
861 }
862
863 if (protocol == htons(ETH_P_IP)) {
864 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
865 } else {
866 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
867 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
868 }
869 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
870 + (tcp_hdr(skb)->doff << 2u)) >
871 skb_headlen(skb));
872
873 return protocol;
874 }
875
876 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
877 struct efx_tx_buffer *buffer, unsigned int len)
878 {
879 u8 *result;
880
881 EFX_BUG_ON_PARANOID(buffer->len);
882 EFX_BUG_ON_PARANOID(buffer->flags);
883 EFX_BUG_ON_PARANOID(buffer->unmap_len);
884
885 if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
886 unsigned index =
887 (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
888 struct efx_buffer *page_buf =
889 &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
890 unsigned offset =
891 TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
892
893 if (unlikely(!page_buf->addr) &&
894 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
895 GFP_ATOMIC))
896 return NULL;
897
898 result = (u8 *)page_buf->addr + offset;
899 buffer->dma_addr = page_buf->dma_addr + offset;
900 buffer->flags = EFX_TX_BUF_CONT;
901 } else {
902 tx_queue->tso_long_headers++;
903
904 buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
905 if (unlikely(!buffer->heap_buf))
906 return NULL;
907 result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
908 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
909 }
910
911 buffer->len = len;
912
913 return result;
914 }
915
916 /**
917 * efx_tx_queue_insert - push descriptors onto the TX queue
918 * @tx_queue: Efx TX queue
919 * @dma_addr: DMA address of fragment
920 * @len: Length of fragment
921 * @final_buffer: The final buffer inserted into the queue
922 *
923 * Push descriptors onto the TX queue.
924 */
925 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
926 dma_addr_t dma_addr, unsigned len,
927 struct efx_tx_buffer **final_buffer)
928 {
929 struct efx_tx_buffer *buffer;
930 struct efx_nic *efx = tx_queue->efx;
931 unsigned dma_len;
932
933 EFX_BUG_ON_PARANOID(len <= 0);
934
935 while (1) {
936 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
937 ++tx_queue->insert_count;
938
939 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
940 tx_queue->read_count >=
941 efx->txq_entries);
942
943 buffer->dma_addr = dma_addr;
944
945 dma_len = efx_max_tx_len(efx, dma_addr);
946
947 /* If there is enough space to send then do so */
948 if (dma_len >= len)
949 break;
950
951 buffer->len = dma_len;
952 buffer->flags = EFX_TX_BUF_CONT;
953 dma_addr += dma_len;
954 len -= dma_len;
955 }
956
957 EFX_BUG_ON_PARANOID(!len);
958 buffer->len = len;
959 *final_buffer = buffer;
960 }
961
962
963 /*
964 * Put a TSO header into the TX queue.
965 *
966 * This is special-cased because we know that it is small enough to fit in
967 * a single fragment, and we know it doesn't cross a page boundary. It
968 * also allows us to not worry about end-of-packet etc.
969 */
970 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
971 struct efx_tx_buffer *buffer, u8 *header)
972 {
973 if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
974 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
975 header, buffer->len,
976 DMA_TO_DEVICE);
977 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
978 buffer->dma_addr))) {
979 kfree(buffer->heap_buf);
980 buffer->len = 0;
981 buffer->flags = 0;
982 return -ENOMEM;
983 }
984 buffer->unmap_len = buffer->len;
985 buffer->dma_offset = 0;
986 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
987 }
988
989 ++tx_queue->insert_count;
990 return 0;
991 }
992
993
994 /* Remove buffers put into a tx_queue. None of the buffers must have
995 * an skb attached.
996 */
997 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
998 unsigned int insert_count)
999 {
1000 struct efx_tx_buffer *buffer;
1001
1002 /* Work backwards until we hit the original insert pointer value */
1003 while (tx_queue->insert_count != insert_count) {
1004 --tx_queue->insert_count;
1005 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1006 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1007 }
1008 }
1009
1010
1011 /* Parse the SKB header and initialise state. */
1012 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1013 struct efx_tx_queue *tx_queue,
1014 const struct sk_buff *skb)
1015 {
1016 struct device *dma_dev = &efx->pci_dev->dev;
1017 unsigned int header_len, in_len;
1018 bool use_opt_desc = false;
1019 dma_addr_t dma_addr;
1020
1021 if (tx_queue->tso_version == 1)
1022 use_opt_desc = true;
1023
1024 st->ip_off = skb_network_header(skb) - skb->data;
1025 st->tcp_off = skb_transport_header(skb) - skb->data;
1026 header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1027 in_len = skb_headlen(skb) - header_len;
1028 st->header_len = header_len;
1029 st->in_len = in_len;
1030 if (st->protocol == htons(ETH_P_IP)) {
1031 st->ip_base_len = st->header_len - st->ip_off;
1032 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1033 } else {
1034 st->ip_base_len = st->header_len - st->tcp_off;
1035 st->ipv4_id = 0;
1036 }
1037 st->seqnum = ntohl(tcp_hdr(skb)->seq);
1038
1039 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1040 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1041 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1042
1043 st->out_len = skb->len - header_len;
1044
1045 if (!use_opt_desc) {
1046 st->header_unmap_len = 0;
1047
1048 if (likely(in_len == 0)) {
1049 st->dma_flags = 0;
1050 st->unmap_len = 0;
1051 return 0;
1052 }
1053
1054 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1055 in_len, DMA_TO_DEVICE);
1056 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1057 st->dma_addr = dma_addr;
1058 st->unmap_addr = dma_addr;
1059 st->unmap_len = in_len;
1060 } else {
1061 dma_addr = dma_map_single(dma_dev, skb->data,
1062 skb_headlen(skb), DMA_TO_DEVICE);
1063 st->header_dma_addr = dma_addr;
1064 st->header_unmap_len = skb_headlen(skb);
1065 st->dma_flags = 0;
1066 st->dma_addr = dma_addr + header_len;
1067 st->unmap_len = 0;
1068 }
1069
1070 return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1071 }
1072
1073 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1074 skb_frag_t *frag)
1075 {
1076 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1077 skb_frag_size(frag), DMA_TO_DEVICE);
1078 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1079 st->dma_flags = 0;
1080 st->unmap_len = skb_frag_size(frag);
1081 st->in_len = skb_frag_size(frag);
1082 st->dma_addr = st->unmap_addr;
1083 return 0;
1084 }
1085 return -ENOMEM;
1086 }
1087
1088
1089 /**
1090 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1091 * @tx_queue: Efx TX queue
1092 * @skb: Socket buffer
1093 * @st: TSO state
1094 *
1095 * Form descriptors for the current fragment, until we reach the end
1096 * of fragment or end-of-packet.
1097 */
1098 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1099 const struct sk_buff *skb,
1100 struct tso_state *st)
1101 {
1102 struct efx_tx_buffer *buffer;
1103 int n;
1104
1105 if (st->in_len == 0)
1106 return;
1107 if (st->packet_space == 0)
1108 return;
1109
1110 EFX_BUG_ON_PARANOID(st->in_len <= 0);
1111 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1112
1113 n = min(st->in_len, st->packet_space);
1114
1115 st->packet_space -= n;
1116 st->out_len -= n;
1117 st->in_len -= n;
1118
1119 efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1120
1121 if (st->out_len == 0) {
1122 /* Transfer ownership of the skb */
1123 buffer->skb = skb;
1124 buffer->flags = EFX_TX_BUF_SKB;
1125 } else if (st->packet_space != 0) {
1126 buffer->flags = EFX_TX_BUF_CONT;
1127 }
1128
1129 if (st->in_len == 0) {
1130 /* Transfer ownership of the DMA mapping */
1131 buffer->unmap_len = st->unmap_len;
1132 buffer->dma_offset = buffer->unmap_len - buffer->len;
1133 buffer->flags |= st->dma_flags;
1134 st->unmap_len = 0;
1135 }
1136
1137 st->dma_addr += n;
1138 }
1139
1140
1141 /**
1142 * tso_start_new_packet - generate a new header and prepare for the new packet
1143 * @tx_queue: Efx TX queue
1144 * @skb: Socket buffer
1145 * @st: TSO state
1146 *
1147 * Generate a new header and prepare for the new packet. Return 0 on
1148 * success, or -%ENOMEM if failed to alloc header.
1149 */
1150 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1151 const struct sk_buff *skb,
1152 struct tso_state *st)
1153 {
1154 struct efx_tx_buffer *buffer =
1155 efx_tx_queue_get_insert_buffer(tx_queue);
1156 bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1157 u8 tcp_flags_clear;
1158
1159 if (!is_last) {
1160 st->packet_space = skb_shinfo(skb)->gso_size;
1161 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1162 } else {
1163 st->packet_space = st->out_len;
1164 tcp_flags_clear = 0x00;
1165 }
1166
1167 if (!st->header_unmap_len) {
1168 /* Allocate and insert a DMA-mapped header buffer. */
1169 struct tcphdr *tsoh_th;
1170 unsigned ip_length;
1171 u8 *header;
1172 int rc;
1173
1174 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1175 if (!header)
1176 return -ENOMEM;
1177
1178 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1179
1180 /* Copy and update the headers. */
1181 memcpy(header, skb->data, st->header_len);
1182
1183 tsoh_th->seq = htonl(st->seqnum);
1184 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1185
1186 ip_length = st->ip_base_len + st->packet_space;
1187
1188 if (st->protocol == htons(ETH_P_IP)) {
1189 struct iphdr *tsoh_iph =
1190 (struct iphdr *)(header + st->ip_off);
1191
1192 tsoh_iph->tot_len = htons(ip_length);
1193 tsoh_iph->id = htons(st->ipv4_id);
1194 } else {
1195 struct ipv6hdr *tsoh_iph =
1196 (struct ipv6hdr *)(header + st->ip_off);
1197
1198 tsoh_iph->payload_len = htons(ip_length);
1199 }
1200
1201 rc = efx_tso_put_header(tx_queue, buffer, header);
1202 if (unlikely(rc))
1203 return rc;
1204 } else {
1205 /* Send the original headers with a TSO option descriptor
1206 * in front
1207 */
1208 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1209
1210 buffer->flags = EFX_TX_BUF_OPTION;
1211 buffer->len = 0;
1212 buffer->unmap_len = 0;
1213 EFX_POPULATE_QWORD_5(buffer->option,
1214 ESF_DZ_TX_DESC_IS_OPT, 1,
1215 ESF_DZ_TX_OPTION_TYPE,
1216 ESE_DZ_TX_OPTION_DESC_TSO,
1217 ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1218 ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1219 ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1220 ++tx_queue->insert_count;
1221
1222 /* We mapped the headers in tso_start(). Unmap them
1223 * when the last segment is completed.
1224 */
1225 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1226 buffer->dma_addr = st->header_dma_addr;
1227 buffer->len = st->header_len;
1228 if (is_last) {
1229 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1230 buffer->unmap_len = st->header_unmap_len;
1231 buffer->dma_offset = 0;
1232 /* Ensure we only unmap them once in case of a
1233 * later DMA mapping error and rollback
1234 */
1235 st->header_unmap_len = 0;
1236 } else {
1237 buffer->flags = EFX_TX_BUF_CONT;
1238 buffer->unmap_len = 0;
1239 }
1240 ++tx_queue->insert_count;
1241 }
1242
1243 st->seqnum += skb_shinfo(skb)->gso_size;
1244
1245 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1246 ++st->ipv4_id;
1247
1248 ++tx_queue->tso_packets;
1249
1250 ++tx_queue->tx_packets;
1251
1252 return 0;
1253 }
1254
1255
1256 /**
1257 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1258 * @tx_queue: Efx TX queue
1259 * @skb: Socket buffer
1260 *
1261 * Context: You must hold netif_tx_lock() to call this function.
1262 *
1263 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1264 * @skb was not enqueued. In all cases @skb is consumed. Return
1265 * %NETDEV_TX_OK.
1266 */
1267 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1268 struct sk_buff *skb)
1269 {
1270 struct efx_nic *efx = tx_queue->efx;
1271 unsigned int old_insert_count = tx_queue->insert_count;
1272 int frag_i, rc;
1273 struct tso_state state;
1274
1275 /* Find the packet protocol and sanity-check it */
1276 state.protocol = efx_tso_check_protocol(skb);
1277
1278 rc = tso_start(&state, efx, tx_queue, skb);
1279 if (rc)
1280 goto mem_err;
1281
1282 if (likely(state.in_len == 0)) {
1283 /* Grab the first payload fragment. */
1284 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1285 frag_i = 0;
1286 rc = tso_get_fragment(&state, efx,
1287 skb_shinfo(skb)->frags + frag_i);
1288 if (rc)
1289 goto mem_err;
1290 } else {
1291 /* Payload starts in the header area. */
1292 frag_i = -1;
1293 }
1294
1295 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1296 goto mem_err;
1297
1298 while (1) {
1299 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1300
1301 /* Move onto the next fragment? */
1302 if (state.in_len == 0) {
1303 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1304 /* End of payload reached. */
1305 break;
1306 rc = tso_get_fragment(&state, efx,
1307 skb_shinfo(skb)->frags + frag_i);
1308 if (rc)
1309 goto mem_err;
1310 }
1311
1312 /* Start at new packet? */
1313 if (state.packet_space == 0 &&
1314 tso_start_new_packet(tx_queue, skb, &state) < 0)
1315 goto mem_err;
1316 }
1317
1318 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1319
1320 efx_tx_maybe_stop_queue(tx_queue);
1321
1322 /* Pass off to hardware */
1323 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
1324 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
1325
1326 /* There could be packets left on the partner queue if those
1327 * SKBs had skb->xmit_more set. If we do not push those they
1328 * could be left for a long time and cause a netdev watchdog.
1329 */
1330 if (txq2->xmit_more_available)
1331 efx_nic_push_buffers(txq2);
1332
1333 efx_nic_push_buffers(tx_queue);
1334 } else {
1335 tx_queue->xmit_more_available = skb->xmit_more;
1336 }
1337
1338 tx_queue->tso_bursts++;
1339 return NETDEV_TX_OK;
1340
1341 mem_err:
1342 netif_err(efx, tx_err, efx->net_dev,
1343 "Out of memory for TSO headers, or DMA mapping error\n");
1344 dev_kfree_skb_any(skb);
1345
1346 /* Free the DMA mapping we were in the process of writing out */
1347 if (state.unmap_len) {
1348 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1349 dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1350 state.unmap_len, DMA_TO_DEVICE);
1351 else
1352 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1353 state.unmap_len, DMA_TO_DEVICE);
1354 }
1355
1356 /* Free the header DMA mapping, if using option descriptors */
1357 if (state.header_unmap_len)
1358 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1359 state.header_unmap_len, DMA_TO_DEVICE);
1360
1361 efx_enqueue_unwind(tx_queue, old_insert_count);
1362 return NETDEV_TX_OK;
1363 }
This page took 0.058605 seconds and 6 git commands to generate.