regulator: max8973: provide enable/disable if external control disabled
[deliverable/linux.git] / drivers / net / ethernet / sis / sis900.c
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
4
5 Modified from the driver which is originally written by Donald Becker.
6
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
11
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
19
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E equalizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
73
74 #include <asm/processor.h> /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h> /* User space memory access functions */
78
79 #include "sis900.h"
80
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
83
84 static const char version[] __devinitconst =
85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
86
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
89
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
91
92 #define SIS900_DEF_MSG \
93 (NETIF_MSG_DRV | \
94 NETIF_MSG_LINK | \
95 NETIF_MSG_RX_ERR | \
96 NETIF_MSG_TX_ERR)
97
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT (4*HZ)
100
101 enum {
102 SIS_900 = 0,
103 SIS_7016
104 };
105 static const char * card_names[] = {
106 "SiS 900 PCI Fast Ethernet",
107 "SiS 7016 PCI Fast Ethernet"
108 };
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 {0,}
115 };
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
117
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
119
120 static const struct mii_chip_info {
121 const char * name;
122 u16 phy_id0;
123 u16 phy_id1;
124 u8 phy_types;
125 #define HOME 0x0001
126 #define LAN 0x0002
127 #define MIX 0x0003
128 #define UNKNOWN 0x0
129 } mii_chip_table[] = {
130 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
131 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
132 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
133 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
134 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
135 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
136 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
137 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
138 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
139 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
140 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
141 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
142 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
143 {NULL,},
144 };
145
146 struct mii_phy {
147 struct mii_phy * next;
148 int phy_addr;
149 u16 phy_id0;
150 u16 phy_id1;
151 u16 status;
152 u8 phy_types;
153 };
154
155 typedef struct _BufferDesc {
156 u32 link;
157 u32 cmdsts;
158 u32 bufptr;
159 } BufferDesc;
160
161 struct sis900_private {
162 struct pci_dev * pci_dev;
163
164 spinlock_t lock;
165
166 struct mii_phy * mii;
167 struct mii_phy * first_mii; /* record the first mii structure */
168 unsigned int cur_phy;
169 struct mii_if_info mii_info;
170
171 void __iomem *ioaddr;
172
173 struct timer_list timer; /* Link status detection timer. */
174 u8 autong_complete; /* 1: auto-negotiate complete */
175
176 u32 msg_enable;
177
178 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
179 unsigned int cur_tx, dirty_tx;
180
181 /* The saved address of a sent/receive-in-place packet buffer */
182 struct sk_buff *tx_skbuff[NUM_TX_DESC];
183 struct sk_buff *rx_skbuff[NUM_RX_DESC];
184 BufferDesc *tx_ring;
185 BufferDesc *rx_ring;
186
187 dma_addr_t tx_ring_dma;
188 dma_addr_t rx_ring_dma;
189
190 unsigned int tx_full; /* The Tx queue is full. */
191 u8 host_bridge_rev;
192 u8 chipset_rev;
193 };
194
195 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
196 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
197 MODULE_LICENSE("GPL");
198
199 module_param(multicast_filter_limit, int, 0444);
200 module_param(max_interrupt_work, int, 0444);
201 module_param(sis900_debug, int, 0444);
202 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
203 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
204 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
205
206 #define sw32(reg, val) iowrite32(val, ioaddr + (reg))
207 #define sw8(reg, val) iowrite8(val, ioaddr + (reg))
208 #define sr32(reg) ioread32(ioaddr + (reg))
209 #define sr16(reg) ioread16(ioaddr + (reg))
210
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 static void sis900_poll(struct net_device *dev);
213 #endif
214 static int sis900_open(struct net_device *net_dev);
215 static int sis900_mii_probe (struct net_device * net_dev);
216 static void sis900_init_rxfilter (struct net_device * net_dev);
217 static u16 read_eeprom(void __iomem *ioaddr, int location);
218 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
219 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
220 static void sis900_timer(unsigned long data);
221 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
222 static void sis900_tx_timeout(struct net_device *net_dev);
223 static void sis900_init_tx_ring(struct net_device *net_dev);
224 static void sis900_init_rx_ring(struct net_device *net_dev);
225 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
226 struct net_device *net_dev);
227 static int sis900_rx(struct net_device *net_dev);
228 static void sis900_finish_xmit (struct net_device *net_dev);
229 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
230 static int sis900_close(struct net_device *net_dev);
231 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
232 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
233 static void set_rx_mode(struct net_device *net_dev);
234 static void sis900_reset(struct net_device *net_dev);
235 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
236 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
237 static u16 sis900_default_phy(struct net_device * net_dev);
238 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
239 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
240 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
241 static void sis900_set_mode(struct sis900_private *, int speed, int duplex);
242 static const struct ethtool_ops sis900_ethtool_ops;
243
244 /**
245 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
246 * @pci_dev: the sis900 pci device
247 * @net_dev: the net device to get address for
248 *
249 * Older SiS900 and friends, use EEPROM to store MAC address.
250 * MAC address is read from read_eeprom() into @net_dev->dev_addr and
251 * @net_dev->perm_addr.
252 */
253
254 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
255 {
256 struct sis900_private *sis_priv = netdev_priv(net_dev);
257 void __iomem *ioaddr = sis_priv->ioaddr;
258 u16 signature;
259 int i;
260
261 /* check to see if we have sane EEPROM */
262 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
263 if (signature == 0xffff || signature == 0x0000) {
264 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
265 pci_name(pci_dev), signature);
266 return 0;
267 }
268
269 /* get MAC address from EEPROM */
270 for (i = 0; i < 3; i++)
271 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
272
273 /* Store MAC Address in perm_addr */
274 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
275
276 return 1;
277 }
278
279 /**
280 * sis630e_get_mac_addr - Get MAC address for SiS630E model
281 * @pci_dev: the sis900 pci device
282 * @net_dev: the net device to get address for
283 *
284 * SiS630E model, use APC CMOS RAM to store MAC address.
285 * APC CMOS RAM is accessed through ISA bridge.
286 * MAC address is read into @net_dev->dev_addr and
287 * @net_dev->perm_addr.
288 */
289
290 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
291 struct net_device *net_dev)
292 {
293 struct pci_dev *isa_bridge = NULL;
294 u8 reg;
295 int i;
296
297 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
298 if (!isa_bridge)
299 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
300 if (!isa_bridge) {
301 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
302 pci_name(pci_dev));
303 return 0;
304 }
305 pci_read_config_byte(isa_bridge, 0x48, &reg);
306 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
307
308 for (i = 0; i < 6; i++) {
309 outb(0x09 + i, 0x70);
310 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
311 }
312
313 /* Store MAC Address in perm_addr */
314 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
315
316 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
317 pci_dev_put(isa_bridge);
318
319 return 1;
320 }
321
322
323 /**
324 * sis635_get_mac_addr - Get MAC address for SIS635 model
325 * @pci_dev: the sis900 pci device
326 * @net_dev: the net device to get address for
327 *
328 * SiS635 model, set MAC Reload Bit to load Mac address from APC
329 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
330 * @net_dev->dev_addr and @net_dev->perm_addr.
331 */
332
333 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
334 struct net_device *net_dev)
335 {
336 struct sis900_private *sis_priv = netdev_priv(net_dev);
337 void __iomem *ioaddr = sis_priv->ioaddr;
338 u32 rfcrSave;
339 u32 i;
340
341 rfcrSave = sr32(rfcr);
342
343 sw32(cr, rfcrSave | RELOAD);
344 sw32(cr, 0);
345
346 /* disable packet filtering before setting filter */
347 sw32(rfcr, rfcrSave & ~RFEN);
348
349 /* load MAC addr to filter data register */
350 for (i = 0 ; i < 3 ; i++) {
351 sw32(rfcr, (i << RFADDR_shift));
352 *( ((u16 *)net_dev->dev_addr) + i) = sr16(rfdr);
353 }
354
355 /* Store MAC Address in perm_addr */
356 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
357
358 /* enable packet filtering */
359 sw32(rfcr, rfcrSave | RFEN);
360
361 return 1;
362 }
363
364 /**
365 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
366 * @pci_dev: the sis900 pci device
367 * @net_dev: the net device to get address for
368 *
369 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
370 * is shared by
371 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
372 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
373 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
374 * EEDONE signal to refuse EEPROM access by LAN.
375 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
376 * The signature field in SiS962 or SiS963 spec is meaningless.
377 * MAC address is read into @net_dev->dev_addr and @net_dev->perm_addr.
378 */
379
380 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
381 struct net_device *net_dev)
382 {
383 struct sis900_private *sis_priv = netdev_priv(net_dev);
384 void __iomem *ioaddr = sis_priv->ioaddr;
385 int wait, rc = 0;
386
387 sw32(mear, EEREQ);
388 for (wait = 0; wait < 2000; wait++) {
389 if (sr32(mear) & EEGNT) {
390 u16 *mac = (u16 *)net_dev->dev_addr;
391 int i;
392
393 /* get MAC address from EEPROM */
394 for (i = 0; i < 3; i++)
395 mac[i] = read_eeprom(ioaddr, i + EEPROMMACAddr);
396
397 /* Store MAC Address in perm_addr */
398 memcpy(net_dev->perm_addr, net_dev->dev_addr, ETH_ALEN);
399
400 rc = 1;
401 break;
402 }
403 udelay(1);
404 }
405 sw32(mear, EEDONE);
406 return rc;
407 }
408
409 static const struct net_device_ops sis900_netdev_ops = {
410 .ndo_open = sis900_open,
411 .ndo_stop = sis900_close,
412 .ndo_start_xmit = sis900_start_xmit,
413 .ndo_set_config = sis900_set_config,
414 .ndo_set_rx_mode = set_rx_mode,
415 .ndo_change_mtu = eth_change_mtu,
416 .ndo_validate_addr = eth_validate_addr,
417 .ndo_set_mac_address = eth_mac_addr,
418 .ndo_do_ioctl = mii_ioctl,
419 .ndo_tx_timeout = sis900_tx_timeout,
420 #ifdef CONFIG_NET_POLL_CONTROLLER
421 .ndo_poll_controller = sis900_poll,
422 #endif
423 };
424
425 /**
426 * sis900_probe - Probe for sis900 device
427 * @pci_dev: the sis900 pci device
428 * @pci_id: the pci device ID
429 *
430 * Check and probe sis900 net device for @pci_dev.
431 * Get mac address according to the chip revision,
432 * and assign SiS900-specific entries in the device structure.
433 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
434 */
435
436 static int __devinit sis900_probe(struct pci_dev *pci_dev,
437 const struct pci_device_id *pci_id)
438 {
439 struct sis900_private *sis_priv;
440 struct net_device *net_dev;
441 struct pci_dev *dev;
442 dma_addr_t ring_dma;
443 void *ring_space;
444 void __iomem *ioaddr;
445 int i, ret;
446 const char *card_name = card_names[pci_id->driver_data];
447 const char *dev_name = pci_name(pci_dev);
448
449 /* when built into the kernel, we only print version if device is found */
450 #ifndef MODULE
451 static int printed_version;
452 if (!printed_version++)
453 printk(version);
454 #endif
455
456 /* setup various bits in PCI command register */
457 ret = pci_enable_device(pci_dev);
458 if(ret) return ret;
459
460 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
461 if(i){
462 printk(KERN_ERR "sis900.c: architecture does not support "
463 "32bit PCI busmaster DMA\n");
464 return i;
465 }
466
467 pci_set_master(pci_dev);
468
469 net_dev = alloc_etherdev(sizeof(struct sis900_private));
470 if (!net_dev)
471 return -ENOMEM;
472 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
473
474 /* We do a request_region() to register /proc/ioports info. */
475 ret = pci_request_regions(pci_dev, "sis900");
476 if (ret)
477 goto err_out;
478
479 /* IO region. */
480 ioaddr = pci_iomap(pci_dev, 0, 0);
481 if (!ioaddr) {
482 ret = -ENOMEM;
483 goto err_out_cleardev;
484 }
485
486 sis_priv = netdev_priv(net_dev);
487 sis_priv->ioaddr = ioaddr;
488 sis_priv->pci_dev = pci_dev;
489 spin_lock_init(&sis_priv->lock);
490
491 pci_set_drvdata(pci_dev, net_dev);
492
493 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
494 if (!ring_space) {
495 ret = -ENOMEM;
496 goto err_out_unmap;
497 }
498 sis_priv->tx_ring = ring_space;
499 sis_priv->tx_ring_dma = ring_dma;
500
501 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
502 if (!ring_space) {
503 ret = -ENOMEM;
504 goto err_unmap_tx;
505 }
506 sis_priv->rx_ring = ring_space;
507 sis_priv->rx_ring_dma = ring_dma;
508
509 /* The SiS900-specific entries in the device structure. */
510 net_dev->netdev_ops = &sis900_netdev_ops;
511 net_dev->watchdog_timeo = TX_TIMEOUT;
512 net_dev->ethtool_ops = &sis900_ethtool_ops;
513
514 if (sis900_debug > 0)
515 sis_priv->msg_enable = sis900_debug;
516 else
517 sis_priv->msg_enable = SIS900_DEF_MSG;
518
519 sis_priv->mii_info.dev = net_dev;
520 sis_priv->mii_info.mdio_read = mdio_read;
521 sis_priv->mii_info.mdio_write = mdio_write;
522 sis_priv->mii_info.phy_id_mask = 0x1f;
523 sis_priv->mii_info.reg_num_mask = 0x1f;
524
525 /* Get Mac address according to the chip revision */
526 sis_priv->chipset_rev = pci_dev->revision;
527 if(netif_msg_probe(sis_priv))
528 printk(KERN_DEBUG "%s: detected revision %2.2x, "
529 "trying to get MAC address...\n",
530 dev_name, sis_priv->chipset_rev);
531
532 ret = 0;
533 if (sis_priv->chipset_rev == SIS630E_900_REV)
534 ret = sis630e_get_mac_addr(pci_dev, net_dev);
535 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
536 ret = sis635_get_mac_addr(pci_dev, net_dev);
537 else if (sis_priv->chipset_rev == SIS96x_900_REV)
538 ret = sis96x_get_mac_addr(pci_dev, net_dev);
539 else
540 ret = sis900_get_mac_addr(pci_dev, net_dev);
541
542 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
543 eth_hw_addr_random(net_dev);
544 printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
545 "using random generated one\n", dev_name);
546 }
547
548 /* 630ET : set the mii access mode as software-mode */
549 if (sis_priv->chipset_rev == SIS630ET_900_REV)
550 sw32(cr, ACCESSMODE | sr32(cr));
551
552 /* probe for mii transceiver */
553 if (sis900_mii_probe(net_dev) == 0) {
554 printk(KERN_WARNING "%s: Error probing MII device.\n",
555 dev_name);
556 ret = -ENODEV;
557 goto err_unmap_rx;
558 }
559
560 /* save our host bridge revision */
561 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
562 if (dev) {
563 sis_priv->host_bridge_rev = dev->revision;
564 pci_dev_put(dev);
565 }
566
567 ret = register_netdev(net_dev);
568 if (ret)
569 goto err_unmap_rx;
570
571 /* print some information about our NIC */
572 printk(KERN_INFO "%s: %s at 0x%p, IRQ %d, %pM\n",
573 net_dev->name, card_name, ioaddr, pci_dev->irq,
574 net_dev->dev_addr);
575
576 /* Detect Wake on Lan support */
577 ret = (sr32(CFGPMC) & PMESP) >> 27;
578 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
579 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
580
581 return 0;
582
583 err_unmap_rx:
584 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
585 sis_priv->rx_ring_dma);
586 err_unmap_tx:
587 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
588 sis_priv->tx_ring_dma);
589 err_out_unmap:
590 pci_iounmap(pci_dev, ioaddr);
591 err_out_cleardev:
592 pci_set_drvdata(pci_dev, NULL);
593 pci_release_regions(pci_dev);
594 err_out:
595 free_netdev(net_dev);
596 return ret;
597 }
598
599 /**
600 * sis900_mii_probe - Probe MII PHY for sis900
601 * @net_dev: the net device to probe for
602 *
603 * Search for total of 32 possible mii phy addresses.
604 * Identify and set current phy if found one,
605 * return error if it failed to found.
606 */
607
608 static int __devinit sis900_mii_probe(struct net_device * net_dev)
609 {
610 struct sis900_private *sis_priv = netdev_priv(net_dev);
611 const char *dev_name = pci_name(sis_priv->pci_dev);
612 u16 poll_bit = MII_STAT_LINK, status = 0;
613 unsigned long timeout = jiffies + 5 * HZ;
614 int phy_addr;
615
616 sis_priv->mii = NULL;
617
618 /* search for total of 32 possible mii phy addresses */
619 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
620 struct mii_phy * mii_phy = NULL;
621 u16 mii_status;
622 int i;
623
624 mii_phy = NULL;
625 for(i = 0; i < 2; i++)
626 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
627
628 if (mii_status == 0xffff || mii_status == 0x0000) {
629 if (netif_msg_probe(sis_priv))
630 printk(KERN_DEBUG "%s: MII at address %d"
631 " not accessible\n",
632 dev_name, phy_addr);
633 continue;
634 }
635
636 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
637 mii_phy = sis_priv->first_mii;
638 while (mii_phy) {
639 struct mii_phy *phy;
640 phy = mii_phy;
641 mii_phy = mii_phy->next;
642 kfree(phy);
643 }
644 return 0;
645 }
646
647 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
648 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
649 mii_phy->phy_addr = phy_addr;
650 mii_phy->status = mii_status;
651 mii_phy->next = sis_priv->mii;
652 sis_priv->mii = mii_phy;
653 sis_priv->first_mii = mii_phy;
654
655 for (i = 0; mii_chip_table[i].phy_id1; i++)
656 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
657 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
658 mii_phy->phy_types = mii_chip_table[i].phy_types;
659 if (mii_chip_table[i].phy_types == MIX)
660 mii_phy->phy_types =
661 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
662 printk(KERN_INFO "%s: %s transceiver found "
663 "at address %d.\n",
664 dev_name,
665 mii_chip_table[i].name,
666 phy_addr);
667 break;
668 }
669
670 if( !mii_chip_table[i].phy_id1 ) {
671 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
672 dev_name, phy_addr);
673 mii_phy->phy_types = UNKNOWN;
674 }
675 }
676
677 if (sis_priv->mii == NULL) {
678 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
679 return 0;
680 }
681
682 /* select default PHY for mac */
683 sis_priv->mii = NULL;
684 sis900_default_phy( net_dev );
685
686 /* Reset phy if default phy is internal sis900 */
687 if ((sis_priv->mii->phy_id0 == 0x001D) &&
688 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
689 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
690
691 /* workaround for ICS1893 PHY */
692 if ((sis_priv->mii->phy_id0 == 0x0015) &&
693 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
694 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
695
696 if(status & MII_STAT_LINK){
697 while (poll_bit) {
698 yield();
699
700 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
701 if (time_after_eq(jiffies, timeout)) {
702 printk(KERN_WARNING "%s: reset phy and link down now\n",
703 dev_name);
704 return -ETIME;
705 }
706 }
707 }
708
709 if (sis_priv->chipset_rev == SIS630E_900_REV) {
710 /* SiS 630E has some bugs on default value of PHY registers */
711 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
712 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
713 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
714 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
715 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
716 }
717
718 if (sis_priv->mii->status & MII_STAT_LINK)
719 netif_carrier_on(net_dev);
720 else
721 netif_carrier_off(net_dev);
722
723 return 1;
724 }
725
726 /**
727 * sis900_default_phy - Select default PHY for sis900 mac.
728 * @net_dev: the net device to probe for
729 *
730 * Select first detected PHY with link as default.
731 * If no one is link on, select PHY whose types is HOME as default.
732 * If HOME doesn't exist, select LAN.
733 */
734
735 static u16 sis900_default_phy(struct net_device * net_dev)
736 {
737 struct sis900_private *sis_priv = netdev_priv(net_dev);
738 struct mii_phy *phy = NULL, *phy_home = NULL,
739 *default_phy = NULL, *phy_lan = NULL;
740 u16 status;
741
742 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
743 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
744 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
745
746 /* Link ON & Not select default PHY & not ghost PHY */
747 if ((status & MII_STAT_LINK) && !default_phy &&
748 (phy->phy_types != UNKNOWN))
749 default_phy = phy;
750 else {
751 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
752 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
753 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
754 if (phy->phy_types == HOME)
755 phy_home = phy;
756 else if(phy->phy_types == LAN)
757 phy_lan = phy;
758 }
759 }
760
761 if (!default_phy && phy_home)
762 default_phy = phy_home;
763 else if (!default_phy && phy_lan)
764 default_phy = phy_lan;
765 else if (!default_phy)
766 default_phy = sis_priv->first_mii;
767
768 if (sis_priv->mii != default_phy) {
769 sis_priv->mii = default_phy;
770 sis_priv->cur_phy = default_phy->phy_addr;
771 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
772 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
773 }
774
775 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
776
777 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
778 status &= (~MII_CNTL_ISOLATE);
779
780 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
781 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
782 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
783
784 return status;
785 }
786
787
788 /**
789 * sis900_set_capability - set the media capability of network adapter.
790 * @net_dev : the net device to probe for
791 * @phy : default PHY
792 *
793 * Set the media capability of network adapter according to
794 * mii status register. It's necessary before auto-negotiate.
795 */
796
797 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
798 {
799 u16 cap;
800 u16 status;
801
802 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
803 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
804
805 cap = MII_NWAY_CSMA_CD |
806 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
807 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
808 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
809 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
810
811 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
812 }
813
814
815 /* Delay between EEPROM clock transitions. */
816 #define eeprom_delay() sr32(mear)
817
818 /**
819 * read_eeprom - Read Serial EEPROM
820 * @ioaddr: base i/o address
821 * @location: the EEPROM location to read
822 *
823 * Read Serial EEPROM through EEPROM Access Register.
824 * Note that location is in word (16 bits) unit
825 */
826
827 static u16 __devinit read_eeprom(void __iomem *ioaddr, int location)
828 {
829 u32 read_cmd = location | EEread;
830 int i;
831 u16 retval = 0;
832
833 sw32(mear, 0);
834 eeprom_delay();
835 sw32(mear, EECS);
836 eeprom_delay();
837
838 /* Shift the read command (9) bits out. */
839 for (i = 8; i >= 0; i--) {
840 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
841
842 sw32(mear, dataval);
843 eeprom_delay();
844 sw32(mear, dataval | EECLK);
845 eeprom_delay();
846 }
847 sw32(mear, EECS);
848 eeprom_delay();
849
850 /* read the 16-bits data in */
851 for (i = 16; i > 0; i--) {
852 sw32(mear, EECS);
853 eeprom_delay();
854 sw32(mear, EECS | EECLK);
855 eeprom_delay();
856 retval = (retval << 1) | ((sr32(mear) & EEDO) ? 1 : 0);
857 eeprom_delay();
858 }
859
860 /* Terminate the EEPROM access. */
861 sw32(mear, 0);
862 eeprom_delay();
863
864 return retval;
865 }
866
867 /* Read and write the MII management registers using software-generated
868 serial MDIO protocol. Note that the command bits and data bits are
869 send out separately */
870 #define mdio_delay() sr32(mear)
871
872 static void mdio_idle(struct sis900_private *sp)
873 {
874 void __iomem *ioaddr = sp->ioaddr;
875
876 sw32(mear, MDIO | MDDIR);
877 mdio_delay();
878 sw32(mear, MDIO | MDDIR | MDC);
879 }
880
881 /* Synchronize the MII management interface by shifting 32 one bits out. */
882 static void mdio_reset(struct sis900_private *sp)
883 {
884 void __iomem *ioaddr = sp->ioaddr;
885 int i;
886
887 for (i = 31; i >= 0; i--) {
888 sw32(mear, MDDIR | MDIO);
889 mdio_delay();
890 sw32(mear, MDDIR | MDIO | MDC);
891 mdio_delay();
892 }
893 }
894
895 /**
896 * mdio_read - read MII PHY register
897 * @net_dev: the net device to read
898 * @phy_id: the phy address to read
899 * @location: the phy regiester id to read
900 *
901 * Read MII registers through MDIO and MDC
902 * using MDIO management frame structure and protocol(defined by ISO/IEC).
903 * Please see SiS7014 or ICS spec
904 */
905
906 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
907 {
908 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
909 struct sis900_private *sp = netdev_priv(net_dev);
910 void __iomem *ioaddr = sp->ioaddr;
911 u16 retval = 0;
912 int i;
913
914 mdio_reset(sp);
915 mdio_idle(sp);
916
917 for (i = 15; i >= 0; i--) {
918 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
919
920 sw32(mear, dataval);
921 mdio_delay();
922 sw32(mear, dataval | MDC);
923 mdio_delay();
924 }
925
926 /* Read the 16 data bits. */
927 for (i = 16; i > 0; i--) {
928 sw32(mear, 0);
929 mdio_delay();
930 retval = (retval << 1) | ((sr32(mear) & MDIO) ? 1 : 0);
931 sw32(mear, MDC);
932 mdio_delay();
933 }
934 sw32(mear, 0x00);
935
936 return retval;
937 }
938
939 /**
940 * mdio_write - write MII PHY register
941 * @net_dev: the net device to write
942 * @phy_id: the phy address to write
943 * @location: the phy regiester id to write
944 * @value: the register value to write with
945 *
946 * Write MII registers with @value through MDIO and MDC
947 * using MDIO management frame structure and protocol(defined by ISO/IEC)
948 * please see SiS7014 or ICS spec
949 */
950
951 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
952 int value)
953 {
954 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
955 struct sis900_private *sp = netdev_priv(net_dev);
956 void __iomem *ioaddr = sp->ioaddr;
957 int i;
958
959 mdio_reset(sp);
960 mdio_idle(sp);
961
962 /* Shift the command bits out. */
963 for (i = 15; i >= 0; i--) {
964 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
965
966 sw8(mear, dataval);
967 mdio_delay();
968 sw8(mear, dataval | MDC);
969 mdio_delay();
970 }
971 mdio_delay();
972
973 /* Shift the value bits out. */
974 for (i = 15; i >= 0; i--) {
975 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
976
977 sw32(mear, dataval);
978 mdio_delay();
979 sw32(mear, dataval | MDC);
980 mdio_delay();
981 }
982 mdio_delay();
983
984 /* Clear out extra bits. */
985 for (i = 2; i > 0; i--) {
986 sw8(mear, 0);
987 mdio_delay();
988 sw8(mear, MDC);
989 mdio_delay();
990 }
991 sw32(mear, 0x00);
992 }
993
994
995 /**
996 * sis900_reset_phy - reset sis900 mii phy.
997 * @net_dev: the net device to write
998 * @phy_addr: default phy address
999 *
1000 * Some specific phy can't work properly without reset.
1001 * This function will be called during initialization and
1002 * link status change from ON to DOWN.
1003 */
1004
1005 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
1006 {
1007 int i;
1008 u16 status;
1009
1010 for (i = 0; i < 2; i++)
1011 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1012
1013 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
1014
1015 return status;
1016 }
1017
1018 #ifdef CONFIG_NET_POLL_CONTROLLER
1019 /*
1020 * Polling 'interrupt' - used by things like netconsole to send skbs
1021 * without having to re-enable interrupts. It's not called while
1022 * the interrupt routine is executing.
1023 */
1024 static void sis900_poll(struct net_device *dev)
1025 {
1026 struct sis900_private *sp = netdev_priv(dev);
1027 const int irq = sp->pci_dev->irq;
1028
1029 disable_irq(irq);
1030 sis900_interrupt(irq, dev);
1031 enable_irq(irq);
1032 }
1033 #endif
1034
1035 /**
1036 * sis900_open - open sis900 device
1037 * @net_dev: the net device to open
1038 *
1039 * Do some initialization and start net interface.
1040 * enable interrupts and set sis900 timer.
1041 */
1042
1043 static int
1044 sis900_open(struct net_device *net_dev)
1045 {
1046 struct sis900_private *sis_priv = netdev_priv(net_dev);
1047 void __iomem *ioaddr = sis_priv->ioaddr;
1048 int ret;
1049
1050 /* Soft reset the chip. */
1051 sis900_reset(net_dev);
1052
1053 /* Equalizer workaround Rule */
1054 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1055
1056 ret = request_irq(sis_priv->pci_dev->irq, sis900_interrupt, IRQF_SHARED,
1057 net_dev->name, net_dev);
1058 if (ret)
1059 return ret;
1060
1061 sis900_init_rxfilter(net_dev);
1062
1063 sis900_init_tx_ring(net_dev);
1064 sis900_init_rx_ring(net_dev);
1065
1066 set_rx_mode(net_dev);
1067
1068 netif_start_queue(net_dev);
1069
1070 /* Workaround for EDB */
1071 sis900_set_mode(sis_priv, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1072
1073 /* Enable all known interrupts by setting the interrupt mask. */
1074 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1075 sw32(cr, RxENA | sr32(cr));
1076 sw32(ier, IE);
1077
1078 sis900_check_mode(net_dev, sis_priv->mii);
1079
1080 /* Set the timer to switch to check for link beat and perhaps switch
1081 to an alternate media type. */
1082 init_timer(&sis_priv->timer);
1083 sis_priv->timer.expires = jiffies + HZ;
1084 sis_priv->timer.data = (unsigned long)net_dev;
1085 sis_priv->timer.function = sis900_timer;
1086 add_timer(&sis_priv->timer);
1087
1088 return 0;
1089 }
1090
1091 /**
1092 * sis900_init_rxfilter - Initialize the Rx filter
1093 * @net_dev: the net device to initialize for
1094 *
1095 * Set receive filter address to our MAC address
1096 * and enable packet filtering.
1097 */
1098
1099 static void
1100 sis900_init_rxfilter (struct net_device * net_dev)
1101 {
1102 struct sis900_private *sis_priv = netdev_priv(net_dev);
1103 void __iomem *ioaddr = sis_priv->ioaddr;
1104 u32 rfcrSave;
1105 u32 i;
1106
1107 rfcrSave = sr32(rfcr);
1108
1109 /* disable packet filtering before setting filter */
1110 sw32(rfcr, rfcrSave & ~RFEN);
1111
1112 /* load MAC addr to filter data register */
1113 for (i = 0 ; i < 3 ; i++) {
1114 u32 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1115
1116 sw32(rfcr, i << RFADDR_shift);
1117 sw32(rfdr, w);
1118
1119 if (netif_msg_hw(sis_priv)) {
1120 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1121 net_dev->name, i, sr32(rfdr));
1122 }
1123 }
1124
1125 /* enable packet filtering */
1126 sw32(rfcr, rfcrSave | RFEN);
1127 }
1128
1129 /**
1130 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1131 * @net_dev: the net device to initialize for
1132 *
1133 * Initialize the Tx descriptor ring,
1134 */
1135
1136 static void
1137 sis900_init_tx_ring(struct net_device *net_dev)
1138 {
1139 struct sis900_private *sis_priv = netdev_priv(net_dev);
1140 void __iomem *ioaddr = sis_priv->ioaddr;
1141 int i;
1142
1143 sis_priv->tx_full = 0;
1144 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1145
1146 for (i = 0; i < NUM_TX_DESC; i++) {
1147 sis_priv->tx_skbuff[i] = NULL;
1148
1149 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1150 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1151 sis_priv->tx_ring[i].cmdsts = 0;
1152 sis_priv->tx_ring[i].bufptr = 0;
1153 }
1154
1155 /* load Transmit Descriptor Register */
1156 sw32(txdp, sis_priv->tx_ring_dma);
1157 if (netif_msg_hw(sis_priv))
1158 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1159 net_dev->name, sr32(txdp));
1160 }
1161
1162 /**
1163 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1164 * @net_dev: the net device to initialize for
1165 *
1166 * Initialize the Rx descriptor ring,
1167 * and pre-allocate recevie buffers (socket buffer)
1168 */
1169
1170 static void
1171 sis900_init_rx_ring(struct net_device *net_dev)
1172 {
1173 struct sis900_private *sis_priv = netdev_priv(net_dev);
1174 void __iomem *ioaddr = sis_priv->ioaddr;
1175 int i;
1176
1177 sis_priv->cur_rx = 0;
1178 sis_priv->dirty_rx = 0;
1179
1180 /* init RX descriptor */
1181 for (i = 0; i < NUM_RX_DESC; i++) {
1182 sis_priv->rx_skbuff[i] = NULL;
1183
1184 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1185 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1186 sis_priv->rx_ring[i].cmdsts = 0;
1187 sis_priv->rx_ring[i].bufptr = 0;
1188 }
1189
1190 /* allocate sock buffers */
1191 for (i = 0; i < NUM_RX_DESC; i++) {
1192 struct sk_buff *skb;
1193
1194 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1195 /* not enough memory for skbuff, this makes a "hole"
1196 on the buffer ring, it is not clear how the
1197 hardware will react to this kind of degenerated
1198 buffer */
1199 break;
1200 }
1201 sis_priv->rx_skbuff[i] = skb;
1202 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1203 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1204 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1205 }
1206 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1207
1208 /* load Receive Descriptor Register */
1209 sw32(rxdp, sis_priv->rx_ring_dma);
1210 if (netif_msg_hw(sis_priv))
1211 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1212 net_dev->name, sr32(rxdp));
1213 }
1214
1215 /**
1216 * sis630_set_eq - set phy equalizer value for 630 LAN
1217 * @net_dev: the net device to set equalizer value
1218 * @revision: 630 LAN revision number
1219 *
1220 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1221 * PHY register 14h(Test)
1222 * Bit 14: 0 -- Automatically detect (default)
1223 * 1 -- Manually set Equalizer filter
1224 * Bit 13: 0 -- (Default)
1225 * 1 -- Speed up convergence of equalizer setting
1226 * Bit 9 : 0 -- (Default)
1227 * 1 -- Disable Baseline Wander
1228 * Bit 3~7 -- Equalizer filter setting
1229 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1230 * Then calculate equalizer value
1231 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1232 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1233 * Calculate Equalizer value:
1234 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-detect proper equalizer value.
1235 * When the equalizer is stable, this value is not a fixed value. It will be within
1236 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1237 * 0 <= max <= 4 --> set equalizer to max
1238 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1239 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1240 */
1241
1242 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1243 {
1244 struct sis900_private *sis_priv = netdev_priv(net_dev);
1245 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1246 int i, maxcount=10;
1247
1248 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1249 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1250 return;
1251
1252 if (netif_carrier_ok(net_dev)) {
1253 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1254 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1255 (0x2200 | reg14h) & 0xBFFF);
1256 for (i=0; i < maxcount; i++) {
1257 eq_value = (0x00F8 & mdio_read(net_dev,
1258 sis_priv->cur_phy, MII_RESV)) >> 3;
1259 if (i == 0)
1260 max_value=min_value=eq_value;
1261 max_value = (eq_value > max_value) ?
1262 eq_value : max_value;
1263 min_value = (eq_value < min_value) ?
1264 eq_value : min_value;
1265 }
1266 /* 630E rule to determine the equalizer value */
1267 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1268 revision == SIS630ET_900_REV) {
1269 if (max_value < 5)
1270 eq_value = max_value;
1271 else if (max_value >= 5 && max_value < 15)
1272 eq_value = (max_value == min_value) ?
1273 max_value+2 : max_value+1;
1274 else if (max_value >= 15)
1275 eq_value=(max_value == min_value) ?
1276 max_value+6 : max_value+5;
1277 }
1278 /* 630B0&B1 rule to determine the equalizer value */
1279 if (revision == SIS630A_900_REV &&
1280 (sis_priv->host_bridge_rev == SIS630B0 ||
1281 sis_priv->host_bridge_rev == SIS630B1)) {
1282 if (max_value == 0)
1283 eq_value = 3;
1284 else
1285 eq_value = (max_value + min_value + 1)/2;
1286 }
1287 /* write equalizer value and setting */
1288 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1289 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1290 reg14h = (reg14h | 0x6000) & 0xFDFF;
1291 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1292 } else {
1293 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1294 if (revision == SIS630A_900_REV &&
1295 (sis_priv->host_bridge_rev == SIS630B0 ||
1296 sis_priv->host_bridge_rev == SIS630B1))
1297 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1298 (reg14h | 0x2200) & 0xBFFF);
1299 else
1300 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1301 (reg14h | 0x2000) & 0xBFFF);
1302 }
1303 }
1304
1305 /**
1306 * sis900_timer - sis900 timer routine
1307 * @data: pointer to sis900 net device
1308 *
1309 * On each timer ticks we check two things,
1310 * link status (ON/OFF) and link mode (10/100/Full/Half)
1311 */
1312
1313 static void sis900_timer(unsigned long data)
1314 {
1315 struct net_device *net_dev = (struct net_device *)data;
1316 struct sis900_private *sis_priv = netdev_priv(net_dev);
1317 struct mii_phy *mii_phy = sis_priv->mii;
1318 static const int next_tick = 5*HZ;
1319 u16 status;
1320
1321 if (!sis_priv->autong_complete){
1322 int uninitialized_var(speed), duplex = 0;
1323
1324 sis900_read_mode(net_dev, &speed, &duplex);
1325 if (duplex){
1326 sis900_set_mode(sis_priv, speed, duplex);
1327 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1328 netif_start_queue(net_dev);
1329 }
1330
1331 sis_priv->timer.expires = jiffies + HZ;
1332 add_timer(&sis_priv->timer);
1333 return;
1334 }
1335
1336 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1337 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1338
1339 /* Link OFF -> ON */
1340 if (!netif_carrier_ok(net_dev)) {
1341 LookForLink:
1342 /* Search for new PHY */
1343 status = sis900_default_phy(net_dev);
1344 mii_phy = sis_priv->mii;
1345
1346 if (status & MII_STAT_LINK){
1347 sis900_check_mode(net_dev, mii_phy);
1348 netif_carrier_on(net_dev);
1349 }
1350 } else {
1351 /* Link ON -> OFF */
1352 if (!(status & MII_STAT_LINK)){
1353 netif_carrier_off(net_dev);
1354 if(netif_msg_link(sis_priv))
1355 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1356
1357 /* Change mode issue */
1358 if ((mii_phy->phy_id0 == 0x001D) &&
1359 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1360 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1361
1362 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1363
1364 goto LookForLink;
1365 }
1366 }
1367
1368 sis_priv->timer.expires = jiffies + next_tick;
1369 add_timer(&sis_priv->timer);
1370 }
1371
1372 /**
1373 * sis900_check_mode - check the media mode for sis900
1374 * @net_dev: the net device to be checked
1375 * @mii_phy: the mii phy
1376 *
1377 * Older driver gets the media mode from mii status output
1378 * register. Now we set our media capability and auto-negotiate
1379 * to get the upper bound of speed and duplex between two ends.
1380 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1381 * and autong_complete should be set to 1.
1382 */
1383
1384 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1385 {
1386 struct sis900_private *sis_priv = netdev_priv(net_dev);
1387 void __iomem *ioaddr = sis_priv->ioaddr;
1388 int speed, duplex;
1389
1390 if (mii_phy->phy_types == LAN) {
1391 sw32(cfg, ~EXD & sr32(cfg));
1392 sis900_set_capability(net_dev , mii_phy);
1393 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1394 } else {
1395 sw32(cfg, EXD | sr32(cfg));
1396 speed = HW_SPEED_HOME;
1397 duplex = FDX_CAPABLE_HALF_SELECTED;
1398 sis900_set_mode(sis_priv, speed, duplex);
1399 sis_priv->autong_complete = 1;
1400 }
1401 }
1402
1403 /**
1404 * sis900_set_mode - Set the media mode of mac register.
1405 * @sp: the device private data
1406 * @speed : the transmit speed to be determined
1407 * @duplex: the duplex mode to be determined
1408 *
1409 * Set the media mode of mac register txcfg/rxcfg according to
1410 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1411 * bus is used instead of PCI bus. When this bit is set 1, the
1412 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1413 * double words.
1414 */
1415
1416 static void sis900_set_mode(struct sis900_private *sp, int speed, int duplex)
1417 {
1418 void __iomem *ioaddr = sp->ioaddr;
1419 u32 tx_flags = 0, rx_flags = 0;
1420
1421 if (sr32( cfg) & EDB_MASTER_EN) {
1422 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1423 (TX_FILL_THRESH << TxFILLT_shift);
1424 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1425 } else {
1426 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1427 (TX_FILL_THRESH << TxFILLT_shift);
1428 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1429 }
1430
1431 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1432 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1433 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1434 } else {
1435 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1436 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1437 }
1438
1439 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1440 tx_flags |= (TxCSI | TxHBI);
1441 rx_flags |= RxATX;
1442 }
1443
1444 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1445 /* Can accept Jumbo packet */
1446 rx_flags |= RxAJAB;
1447 #endif
1448
1449 sw32(txcfg, tx_flags);
1450 sw32(rxcfg, rx_flags);
1451 }
1452
1453 /**
1454 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1455 * @net_dev: the net device to read mode for
1456 * @phy_addr: mii phy address
1457 *
1458 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1459 * autong_complete should be set to 0 when starting auto-negotiation.
1460 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1461 * sis900_timer will wait for link on again if autong_complete = 0.
1462 */
1463
1464 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1465 {
1466 struct sis900_private *sis_priv = netdev_priv(net_dev);
1467 int i = 0;
1468 u32 status;
1469
1470 for (i = 0; i < 2; i++)
1471 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1472
1473 if (!(status & MII_STAT_LINK)){
1474 if(netif_msg_link(sis_priv))
1475 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1476 sis_priv->autong_complete = 1;
1477 netif_carrier_off(net_dev);
1478 return;
1479 }
1480
1481 /* (Re)start AutoNegotiate */
1482 mdio_write(net_dev, phy_addr, MII_CONTROL,
1483 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1484 sis_priv->autong_complete = 0;
1485 }
1486
1487
1488 /**
1489 * sis900_read_mode - read media mode for sis900 internal phy
1490 * @net_dev: the net device to read mode for
1491 * @speed : the transmit speed to be determined
1492 * @duplex : the duplex mode to be determined
1493 *
1494 * The capability of remote end will be put in mii register autorec
1495 * after auto-negotiation. Use AND operation to get the upper bound
1496 * of speed and duplex between two ends.
1497 */
1498
1499 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1500 {
1501 struct sis900_private *sis_priv = netdev_priv(net_dev);
1502 struct mii_phy *phy = sis_priv->mii;
1503 int phy_addr = sis_priv->cur_phy;
1504 u32 status;
1505 u16 autoadv, autorec;
1506 int i;
1507
1508 for (i = 0; i < 2; i++)
1509 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1510
1511 if (!(status & MII_STAT_LINK))
1512 return;
1513
1514 /* AutoNegotiate completed */
1515 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1516 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1517 status = autoadv & autorec;
1518
1519 *speed = HW_SPEED_10_MBPS;
1520 *duplex = FDX_CAPABLE_HALF_SELECTED;
1521
1522 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1523 *speed = HW_SPEED_100_MBPS;
1524 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1525 *duplex = FDX_CAPABLE_FULL_SELECTED;
1526
1527 sis_priv->autong_complete = 1;
1528
1529 /* Workaround for Realtek RTL8201 PHY issue */
1530 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1531 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1532 *duplex = FDX_CAPABLE_FULL_SELECTED;
1533 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1534 *speed = HW_SPEED_100_MBPS;
1535 }
1536
1537 if(netif_msg_link(sis_priv))
1538 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1539 net_dev->name,
1540 *speed == HW_SPEED_100_MBPS ?
1541 "100mbps" : "10mbps",
1542 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1543 "full" : "half");
1544 }
1545
1546 /**
1547 * sis900_tx_timeout - sis900 transmit timeout routine
1548 * @net_dev: the net device to transmit
1549 *
1550 * print transmit timeout status
1551 * disable interrupts and do some tasks
1552 */
1553
1554 static void sis900_tx_timeout(struct net_device *net_dev)
1555 {
1556 struct sis900_private *sis_priv = netdev_priv(net_dev);
1557 void __iomem *ioaddr = sis_priv->ioaddr;
1558 unsigned long flags;
1559 int i;
1560
1561 if (netif_msg_tx_err(sis_priv)) {
1562 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1563 net_dev->name, sr32(cr), sr32(isr));
1564 }
1565
1566 /* Disable interrupts by clearing the interrupt mask. */
1567 sw32(imr, 0x0000);
1568
1569 /* use spinlock to prevent interrupt handler accessing buffer ring */
1570 spin_lock_irqsave(&sis_priv->lock, flags);
1571
1572 /* discard unsent packets */
1573 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1574 for (i = 0; i < NUM_TX_DESC; i++) {
1575 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1576
1577 if (skb) {
1578 pci_unmap_single(sis_priv->pci_dev,
1579 sis_priv->tx_ring[i].bufptr, skb->len,
1580 PCI_DMA_TODEVICE);
1581 dev_kfree_skb_irq(skb);
1582 sis_priv->tx_skbuff[i] = NULL;
1583 sis_priv->tx_ring[i].cmdsts = 0;
1584 sis_priv->tx_ring[i].bufptr = 0;
1585 net_dev->stats.tx_dropped++;
1586 }
1587 }
1588 sis_priv->tx_full = 0;
1589 netif_wake_queue(net_dev);
1590
1591 spin_unlock_irqrestore(&sis_priv->lock, flags);
1592
1593 net_dev->trans_start = jiffies; /* prevent tx timeout */
1594
1595 /* load Transmit Descriptor Register */
1596 sw32(txdp, sis_priv->tx_ring_dma);
1597
1598 /* Enable all known interrupts by setting the interrupt mask. */
1599 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
1600 }
1601
1602 /**
1603 * sis900_start_xmit - sis900 start transmit routine
1604 * @skb: socket buffer pointer to put the data being transmitted
1605 * @net_dev: the net device to transmit with
1606 *
1607 * Set the transmit buffer descriptor,
1608 * and write TxENA to enable transmit state machine.
1609 * tell upper layer if the buffer is full
1610 */
1611
1612 static netdev_tx_t
1613 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1614 {
1615 struct sis900_private *sis_priv = netdev_priv(net_dev);
1616 void __iomem *ioaddr = sis_priv->ioaddr;
1617 unsigned int entry;
1618 unsigned long flags;
1619 unsigned int index_cur_tx, index_dirty_tx;
1620 unsigned int count_dirty_tx;
1621
1622 /* Don't transmit data before the complete of auto-negotiation */
1623 if(!sis_priv->autong_complete){
1624 netif_stop_queue(net_dev);
1625 return NETDEV_TX_BUSY;
1626 }
1627
1628 spin_lock_irqsave(&sis_priv->lock, flags);
1629
1630 /* Calculate the next Tx descriptor entry. */
1631 entry = sis_priv->cur_tx % NUM_TX_DESC;
1632 sis_priv->tx_skbuff[entry] = skb;
1633
1634 /* set the transmit buffer descriptor and enable Transmit State Machine */
1635 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1636 skb->data, skb->len, PCI_DMA_TODEVICE);
1637 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1638 sw32(cr, TxENA | sr32(cr));
1639
1640 sis_priv->cur_tx ++;
1641 index_cur_tx = sis_priv->cur_tx;
1642 index_dirty_tx = sis_priv->dirty_tx;
1643
1644 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1645 count_dirty_tx ++;
1646
1647 if (index_cur_tx == index_dirty_tx) {
1648 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1649 sis_priv->tx_full = 1;
1650 netif_stop_queue(net_dev);
1651 } else if (count_dirty_tx < NUM_TX_DESC) {
1652 /* Typical path, tell upper layer that more transmission is possible */
1653 netif_start_queue(net_dev);
1654 } else {
1655 /* buffer full, tell upper layer no more transmission */
1656 sis_priv->tx_full = 1;
1657 netif_stop_queue(net_dev);
1658 }
1659
1660 spin_unlock_irqrestore(&sis_priv->lock, flags);
1661
1662 if (netif_msg_tx_queued(sis_priv))
1663 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1664 "to slot %d.\n",
1665 net_dev->name, skb->data, (int)skb->len, entry);
1666
1667 return NETDEV_TX_OK;
1668 }
1669
1670 /**
1671 * sis900_interrupt - sis900 interrupt handler
1672 * @irq: the irq number
1673 * @dev_instance: the client data object
1674 *
1675 * The interrupt handler does all of the Rx thread work,
1676 * and cleans up after the Tx thread
1677 */
1678
1679 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1680 {
1681 struct net_device *net_dev = dev_instance;
1682 struct sis900_private *sis_priv = netdev_priv(net_dev);
1683 int boguscnt = max_interrupt_work;
1684 void __iomem *ioaddr = sis_priv->ioaddr;
1685 u32 status;
1686 unsigned int handled = 0;
1687
1688 spin_lock (&sis_priv->lock);
1689
1690 do {
1691 status = sr32(isr);
1692
1693 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1694 /* nothing intresting happened */
1695 break;
1696 handled = 1;
1697
1698 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1699 if (status & (RxORN | RxERR | RxOK))
1700 /* Rx interrupt */
1701 sis900_rx(net_dev);
1702
1703 if (status & (TxURN | TxERR | TxIDLE))
1704 /* Tx interrupt */
1705 sis900_finish_xmit(net_dev);
1706
1707 /* something strange happened !!! */
1708 if (status & HIBERR) {
1709 if(netif_msg_intr(sis_priv))
1710 printk(KERN_INFO "%s: Abnormal interrupt, "
1711 "status %#8.8x.\n", net_dev->name, status);
1712 break;
1713 }
1714 if (--boguscnt < 0) {
1715 if(netif_msg_intr(sis_priv))
1716 printk(KERN_INFO "%s: Too much work at interrupt, "
1717 "interrupt status = %#8.8x.\n",
1718 net_dev->name, status);
1719 break;
1720 }
1721 } while (1);
1722
1723 if(netif_msg_intr(sis_priv))
1724 printk(KERN_DEBUG "%s: exiting interrupt, "
1725 "interrupt status = 0x%#8.8x.\n",
1726 net_dev->name, sr32(isr));
1727
1728 spin_unlock (&sis_priv->lock);
1729 return IRQ_RETVAL(handled);
1730 }
1731
1732 /**
1733 * sis900_rx - sis900 receive routine
1734 * @net_dev: the net device which receives data
1735 *
1736 * Process receive interrupt events,
1737 * put buffer to higher layer and refill buffer pool
1738 * Note: This function is called by interrupt handler,
1739 * don't do "too much" work here
1740 */
1741
1742 static int sis900_rx(struct net_device *net_dev)
1743 {
1744 struct sis900_private *sis_priv = netdev_priv(net_dev);
1745 void __iomem *ioaddr = sis_priv->ioaddr;
1746 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1747 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1748 int rx_work_limit;
1749
1750 if (netif_msg_rx_status(sis_priv))
1751 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1752 "status:0x%8.8x\n",
1753 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1754 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1755
1756 while (rx_status & OWN) {
1757 unsigned int rx_size;
1758 unsigned int data_size;
1759
1760 if (--rx_work_limit < 0)
1761 break;
1762
1763 data_size = rx_status & DSIZE;
1764 rx_size = data_size - CRC_SIZE;
1765
1766 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1767 /* ``TOOLONG'' flag means jumbo packet received. */
1768 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1769 rx_status &= (~ ((unsigned int)TOOLONG));
1770 #endif
1771
1772 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1773 /* corrupted packet received */
1774 if (netif_msg_rx_err(sis_priv))
1775 printk(KERN_DEBUG "%s: Corrupted packet "
1776 "received, buffer status = 0x%8.8x/%d.\n",
1777 net_dev->name, rx_status, data_size);
1778 net_dev->stats.rx_errors++;
1779 if (rx_status & OVERRUN)
1780 net_dev->stats.rx_over_errors++;
1781 if (rx_status & (TOOLONG|RUNT))
1782 net_dev->stats.rx_length_errors++;
1783 if (rx_status & (RXISERR | FAERR))
1784 net_dev->stats.rx_frame_errors++;
1785 if (rx_status & CRCERR)
1786 net_dev->stats.rx_crc_errors++;
1787 /* reset buffer descriptor state */
1788 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1789 } else {
1790 struct sk_buff * skb;
1791 struct sk_buff * rx_skb;
1792
1793 pci_unmap_single(sis_priv->pci_dev,
1794 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1795 PCI_DMA_FROMDEVICE);
1796
1797 /* refill the Rx buffer, what if there is not enough
1798 * memory for new socket buffer ?? */
1799 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1800 /*
1801 * Not enough memory to refill the buffer
1802 * so we need to recycle the old one so
1803 * as to avoid creating a memory hole
1804 * in the rx ring
1805 */
1806 skb = sis_priv->rx_skbuff[entry];
1807 net_dev->stats.rx_dropped++;
1808 goto refill_rx_ring;
1809 }
1810
1811 /* This situation should never happen, but due to
1812 some unknown bugs, it is possible that
1813 we are working on NULL sk_buff :-( */
1814 if (sis_priv->rx_skbuff[entry] == NULL) {
1815 if (netif_msg_rx_err(sis_priv))
1816 printk(KERN_WARNING "%s: NULL pointer "
1817 "encountered in Rx ring\n"
1818 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1819 net_dev->name, sis_priv->cur_rx,
1820 sis_priv->dirty_rx);
1821 dev_kfree_skb(skb);
1822 break;
1823 }
1824
1825 /* give the socket buffer to upper layers */
1826 rx_skb = sis_priv->rx_skbuff[entry];
1827 skb_put(rx_skb, rx_size);
1828 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1829 netif_rx(rx_skb);
1830
1831 /* some network statistics */
1832 if ((rx_status & BCAST) == MCAST)
1833 net_dev->stats.multicast++;
1834 net_dev->stats.rx_bytes += rx_size;
1835 net_dev->stats.rx_packets++;
1836 sis_priv->dirty_rx++;
1837 refill_rx_ring:
1838 sis_priv->rx_skbuff[entry] = skb;
1839 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1840 sis_priv->rx_ring[entry].bufptr =
1841 pci_map_single(sis_priv->pci_dev, skb->data,
1842 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1843 }
1844 sis_priv->cur_rx++;
1845 entry = sis_priv->cur_rx % NUM_RX_DESC;
1846 rx_status = sis_priv->rx_ring[entry].cmdsts;
1847 } // while
1848
1849 /* refill the Rx buffer, what if the rate of refilling is slower
1850 * than consuming ?? */
1851 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1852 struct sk_buff *skb;
1853
1854 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1855
1856 if (sis_priv->rx_skbuff[entry] == NULL) {
1857 if ((skb = netdev_alloc_skb(net_dev, RX_BUF_SIZE)) == NULL) {
1858 /* not enough memory for skbuff, this makes a
1859 * "hole" on the buffer ring, it is not clear
1860 * how the hardware will react to this kind
1861 * of degenerated buffer */
1862 if (netif_msg_rx_err(sis_priv))
1863 printk(KERN_INFO "%s: Memory squeeze, "
1864 "deferring packet.\n",
1865 net_dev->name);
1866 net_dev->stats.rx_dropped++;
1867 break;
1868 }
1869 sis_priv->rx_skbuff[entry] = skb;
1870 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1871 sis_priv->rx_ring[entry].bufptr =
1872 pci_map_single(sis_priv->pci_dev, skb->data,
1873 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1874 }
1875 }
1876 /* re-enable the potentially idle receive state matchine */
1877 sw32(cr , RxENA | sr32(cr));
1878
1879 return 0;
1880 }
1881
1882 /**
1883 * sis900_finish_xmit - finish up transmission of packets
1884 * @net_dev: the net device to be transmitted on
1885 *
1886 * Check for error condition and free socket buffer etc
1887 * schedule for more transmission as needed
1888 * Note: This function is called by interrupt handler,
1889 * don't do "too much" work here
1890 */
1891
1892 static void sis900_finish_xmit (struct net_device *net_dev)
1893 {
1894 struct sis900_private *sis_priv = netdev_priv(net_dev);
1895
1896 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1897 struct sk_buff *skb;
1898 unsigned int entry;
1899 u32 tx_status;
1900
1901 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1902 tx_status = sis_priv->tx_ring[entry].cmdsts;
1903
1904 if (tx_status & OWN) {
1905 /* The packet is not transmitted yet (owned by hardware) !
1906 * Note: the interrupt is generated only when Tx Machine
1907 * is idle, so this is an almost impossible case */
1908 break;
1909 }
1910
1911 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1912 /* packet unsuccessfully transmitted */
1913 if (netif_msg_tx_err(sis_priv))
1914 printk(KERN_DEBUG "%s: Transmit "
1915 "error, Tx status %8.8x.\n",
1916 net_dev->name, tx_status);
1917 net_dev->stats.tx_errors++;
1918 if (tx_status & UNDERRUN)
1919 net_dev->stats.tx_fifo_errors++;
1920 if (tx_status & ABORT)
1921 net_dev->stats.tx_aborted_errors++;
1922 if (tx_status & NOCARRIER)
1923 net_dev->stats.tx_carrier_errors++;
1924 if (tx_status & OWCOLL)
1925 net_dev->stats.tx_window_errors++;
1926 } else {
1927 /* packet successfully transmitted */
1928 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1929 net_dev->stats.tx_bytes += tx_status & DSIZE;
1930 net_dev->stats.tx_packets++;
1931 }
1932 /* Free the original skb. */
1933 skb = sis_priv->tx_skbuff[entry];
1934 pci_unmap_single(sis_priv->pci_dev,
1935 sis_priv->tx_ring[entry].bufptr, skb->len,
1936 PCI_DMA_TODEVICE);
1937 dev_kfree_skb_irq(skb);
1938 sis_priv->tx_skbuff[entry] = NULL;
1939 sis_priv->tx_ring[entry].bufptr = 0;
1940 sis_priv->tx_ring[entry].cmdsts = 0;
1941 }
1942
1943 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1944 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1945 /* The ring is no longer full, clear tx_full and schedule
1946 * more transmission by netif_wake_queue(net_dev) */
1947 sis_priv->tx_full = 0;
1948 netif_wake_queue (net_dev);
1949 }
1950 }
1951
1952 /**
1953 * sis900_close - close sis900 device
1954 * @net_dev: the net device to be closed
1955 *
1956 * Disable interrupts, stop the Tx and Rx Status Machine
1957 * free Tx and RX socket buffer
1958 */
1959
1960 static int sis900_close(struct net_device *net_dev)
1961 {
1962 struct sis900_private *sis_priv = netdev_priv(net_dev);
1963 struct pci_dev *pdev = sis_priv->pci_dev;
1964 void __iomem *ioaddr = sis_priv->ioaddr;
1965 struct sk_buff *skb;
1966 int i;
1967
1968 netif_stop_queue(net_dev);
1969
1970 /* Disable interrupts by clearing the interrupt mask. */
1971 sw32(imr, 0x0000);
1972 sw32(ier, 0x0000);
1973
1974 /* Stop the chip's Tx and Rx Status Machine */
1975 sw32(cr, RxDIS | TxDIS | sr32(cr));
1976
1977 del_timer(&sis_priv->timer);
1978
1979 free_irq(pdev->irq, net_dev);
1980
1981 /* Free Tx and RX skbuff */
1982 for (i = 0; i < NUM_RX_DESC; i++) {
1983 skb = sis_priv->rx_skbuff[i];
1984 if (skb) {
1985 pci_unmap_single(pdev, sis_priv->rx_ring[i].bufptr,
1986 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1987 dev_kfree_skb(skb);
1988 sis_priv->rx_skbuff[i] = NULL;
1989 }
1990 }
1991 for (i = 0; i < NUM_TX_DESC; i++) {
1992 skb = sis_priv->tx_skbuff[i];
1993 if (skb) {
1994 pci_unmap_single(pdev, sis_priv->tx_ring[i].bufptr,
1995 skb->len, PCI_DMA_TODEVICE);
1996 dev_kfree_skb(skb);
1997 sis_priv->tx_skbuff[i] = NULL;
1998 }
1999 }
2000
2001 /* Green! Put the chip in low-power mode. */
2002
2003 return 0;
2004 }
2005
2006 /**
2007 * sis900_get_drvinfo - Return information about driver
2008 * @net_dev: the net device to probe
2009 * @info: container for info returned
2010 *
2011 * Process ethtool command such as "ehtool -i" to show information
2012 */
2013
2014 static void sis900_get_drvinfo(struct net_device *net_dev,
2015 struct ethtool_drvinfo *info)
2016 {
2017 struct sis900_private *sis_priv = netdev_priv(net_dev);
2018
2019 strlcpy(info->driver, SIS900_MODULE_NAME, sizeof(info->driver));
2020 strlcpy(info->version, SIS900_DRV_VERSION, sizeof(info->version));
2021 strlcpy(info->bus_info, pci_name(sis_priv->pci_dev),
2022 sizeof(info->bus_info));
2023 }
2024
2025 static u32 sis900_get_msglevel(struct net_device *net_dev)
2026 {
2027 struct sis900_private *sis_priv = netdev_priv(net_dev);
2028 return sis_priv->msg_enable;
2029 }
2030
2031 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
2032 {
2033 struct sis900_private *sis_priv = netdev_priv(net_dev);
2034 sis_priv->msg_enable = value;
2035 }
2036
2037 static u32 sis900_get_link(struct net_device *net_dev)
2038 {
2039 struct sis900_private *sis_priv = netdev_priv(net_dev);
2040 return mii_link_ok(&sis_priv->mii_info);
2041 }
2042
2043 static int sis900_get_settings(struct net_device *net_dev,
2044 struct ethtool_cmd *cmd)
2045 {
2046 struct sis900_private *sis_priv = netdev_priv(net_dev);
2047 spin_lock_irq(&sis_priv->lock);
2048 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2049 spin_unlock_irq(&sis_priv->lock);
2050 return 0;
2051 }
2052
2053 static int sis900_set_settings(struct net_device *net_dev,
2054 struct ethtool_cmd *cmd)
2055 {
2056 struct sis900_private *sis_priv = netdev_priv(net_dev);
2057 int rt;
2058 spin_lock_irq(&sis_priv->lock);
2059 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2060 spin_unlock_irq(&sis_priv->lock);
2061 return rt;
2062 }
2063
2064 static int sis900_nway_reset(struct net_device *net_dev)
2065 {
2066 struct sis900_private *sis_priv = netdev_priv(net_dev);
2067 return mii_nway_restart(&sis_priv->mii_info);
2068 }
2069
2070 /**
2071 * sis900_set_wol - Set up Wake on Lan registers
2072 * @net_dev: the net device to probe
2073 * @wol: container for info passed to the driver
2074 *
2075 * Process ethtool command "wol" to setup wake on lan features.
2076 * SiS900 supports sending WoL events if a correct packet is received,
2077 * but there is no simple way to filter them to only a subset (broadcast,
2078 * multicast, unicast or arp).
2079 */
2080
2081 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2082 {
2083 struct sis900_private *sis_priv = netdev_priv(net_dev);
2084 void __iomem *ioaddr = sis_priv->ioaddr;
2085 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2086
2087 if (wol->wolopts == 0) {
2088 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2089 cfgpmcsr &= ~PME_EN;
2090 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2091 sw32(pmctrl, pmctrl_bits);
2092 if (netif_msg_wol(sis_priv))
2093 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2094 return 0;
2095 }
2096
2097 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2098 | WAKE_BCAST | WAKE_ARP))
2099 return -EINVAL;
2100
2101 if (wol->wolopts & WAKE_MAGIC)
2102 pmctrl_bits |= MAGICPKT;
2103 if (wol->wolopts & WAKE_PHY)
2104 pmctrl_bits |= LINKON;
2105
2106 sw32(pmctrl, pmctrl_bits);
2107
2108 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2109 cfgpmcsr |= PME_EN;
2110 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2111 if (netif_msg_wol(sis_priv))
2112 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2113
2114 return 0;
2115 }
2116
2117 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2118 {
2119 struct sis900_private *sp = netdev_priv(net_dev);
2120 void __iomem *ioaddr = sp->ioaddr;
2121 u32 pmctrl_bits;
2122
2123 pmctrl_bits = sr32(pmctrl);
2124 if (pmctrl_bits & MAGICPKT)
2125 wol->wolopts |= WAKE_MAGIC;
2126 if (pmctrl_bits & LINKON)
2127 wol->wolopts |= WAKE_PHY;
2128
2129 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2130 }
2131
2132 static const struct ethtool_ops sis900_ethtool_ops = {
2133 .get_drvinfo = sis900_get_drvinfo,
2134 .get_msglevel = sis900_get_msglevel,
2135 .set_msglevel = sis900_set_msglevel,
2136 .get_link = sis900_get_link,
2137 .get_settings = sis900_get_settings,
2138 .set_settings = sis900_set_settings,
2139 .nway_reset = sis900_nway_reset,
2140 .get_wol = sis900_get_wol,
2141 .set_wol = sis900_set_wol
2142 };
2143
2144 /**
2145 * mii_ioctl - process MII i/o control command
2146 * @net_dev: the net device to command for
2147 * @rq: parameter for command
2148 * @cmd: the i/o command
2149 *
2150 * Process MII command like read/write MII register
2151 */
2152
2153 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2154 {
2155 struct sis900_private *sis_priv = netdev_priv(net_dev);
2156 struct mii_ioctl_data *data = if_mii(rq);
2157
2158 switch(cmd) {
2159 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2160 data->phy_id = sis_priv->mii->phy_addr;
2161 /* Fall Through */
2162
2163 case SIOCGMIIREG: /* Read MII PHY register. */
2164 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2165 return 0;
2166
2167 case SIOCSMIIREG: /* Write MII PHY register. */
2168 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2169 return 0;
2170 default:
2171 return -EOPNOTSUPP;
2172 }
2173 }
2174
2175 /**
2176 * sis900_set_config - Set media type by net_device.set_config
2177 * @dev: the net device for media type change
2178 * @map: ifmap passed by ifconfig
2179 *
2180 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2181 * we support only port changes. All other runtime configuration
2182 * changes will be ignored
2183 */
2184
2185 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2186 {
2187 struct sis900_private *sis_priv = netdev_priv(dev);
2188 struct mii_phy *mii_phy = sis_priv->mii;
2189
2190 u16 status;
2191
2192 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2193 /* we switch on the ifmap->port field. I couldn't find anything
2194 * like a definition or standard for the values of that field.
2195 * I think the meaning of those values is device specific. But
2196 * since I would like to change the media type via the ifconfig
2197 * command I use the definition from linux/netdevice.h
2198 * (which seems to be different from the ifport(pcmcia) definition) */
2199 switch(map->port){
2200 case IF_PORT_UNKNOWN: /* use auto here */
2201 dev->if_port = map->port;
2202 /* we are going to change the media type, so the Link
2203 * will be temporary down and we need to reflect that
2204 * here. When the Link comes up again, it will be
2205 * sensed by the sis_timer procedure, which also does
2206 * all the rest for us */
2207 netif_carrier_off(dev);
2208
2209 /* read current state */
2210 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2211
2212 /* enable auto negotiation and reset the negotioation
2213 * (I don't really know what the auto negatiotiation
2214 * reset really means, but it sounds for me right to
2215 * do one here) */
2216 mdio_write(dev, mii_phy->phy_addr,
2217 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2218
2219 break;
2220
2221 case IF_PORT_10BASET: /* 10BaseT */
2222 dev->if_port = map->port;
2223
2224 /* we are going to change the media type, so the Link
2225 * will be temporary down and we need to reflect that
2226 * here. When the Link comes up again, it will be
2227 * sensed by the sis_timer procedure, which also does
2228 * all the rest for us */
2229 netif_carrier_off(dev);
2230
2231 /* set Speed to 10Mbps */
2232 /* read current state */
2233 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2234
2235 /* disable auto negotiation and force 10MBit mode*/
2236 mdio_write(dev, mii_phy->phy_addr,
2237 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2238 MII_CNTL_AUTO));
2239 break;
2240
2241 case IF_PORT_100BASET: /* 100BaseT */
2242 case IF_PORT_100BASETX: /* 100BaseTx */
2243 dev->if_port = map->port;
2244
2245 /* we are going to change the media type, so the Link
2246 * will be temporary down and we need to reflect that
2247 * here. When the Link comes up again, it will be
2248 * sensed by the sis_timer procedure, which also does
2249 * all the rest for us */
2250 netif_carrier_off(dev);
2251
2252 /* set Speed to 100Mbps */
2253 /* disable auto negotiation and enable 100MBit Mode */
2254 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2255 mdio_write(dev, mii_phy->phy_addr,
2256 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2257 MII_CNTL_SPEED);
2258
2259 break;
2260
2261 case IF_PORT_10BASE2: /* 10Base2 */
2262 case IF_PORT_AUI: /* AUI */
2263 case IF_PORT_100BASEFX: /* 100BaseFx */
2264 /* These Modes are not supported (are they?)*/
2265 return -EOPNOTSUPP;
2266 break;
2267
2268 default:
2269 return -EINVAL;
2270 }
2271 }
2272 return 0;
2273 }
2274
2275 /**
2276 * sis900_mcast_bitnr - compute hashtable index
2277 * @addr: multicast address
2278 * @revision: revision id of chip
2279 *
2280 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2281 * hash table, which makes this function a little bit different from other drivers
2282 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2283 * multicast hash table.
2284 */
2285
2286 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2287 {
2288
2289 u32 crc = ether_crc(6, addr);
2290
2291 /* leave 8 or 7 most siginifant bits */
2292 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2293 return (int)(crc >> 24);
2294 else
2295 return (int)(crc >> 25);
2296 }
2297
2298 /**
2299 * set_rx_mode - Set SiS900 receive mode
2300 * @net_dev: the net device to be set
2301 *
2302 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2303 * And set the appropriate multicast filter.
2304 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2305 */
2306
2307 static void set_rx_mode(struct net_device *net_dev)
2308 {
2309 struct sis900_private *sis_priv = netdev_priv(net_dev);
2310 void __iomem *ioaddr = sis_priv->ioaddr;
2311 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2312 int i, table_entries;
2313 u32 rx_mode;
2314
2315 /* 635 Hash Table entries = 256(2^16) */
2316 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2317 (sis_priv->chipset_rev == SIS900B_900_REV))
2318 table_entries = 16;
2319 else
2320 table_entries = 8;
2321
2322 if (net_dev->flags & IFF_PROMISC) {
2323 /* Accept any kinds of packets */
2324 rx_mode = RFPromiscuous;
2325 for (i = 0; i < table_entries; i++)
2326 mc_filter[i] = 0xffff;
2327 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2328 (net_dev->flags & IFF_ALLMULTI)) {
2329 /* too many multicast addresses or accept all multicast packet */
2330 rx_mode = RFAAB | RFAAM;
2331 for (i = 0; i < table_entries; i++)
2332 mc_filter[i] = 0xffff;
2333 } else {
2334 /* Accept Broadcast packet, destination address matchs our
2335 * MAC address, use Receive Filter to reject unwanted MCAST
2336 * packets */
2337 struct netdev_hw_addr *ha;
2338 rx_mode = RFAAB;
2339
2340 netdev_for_each_mc_addr(ha, net_dev) {
2341 unsigned int bit_nr;
2342
2343 bit_nr = sis900_mcast_bitnr(ha->addr,
2344 sis_priv->chipset_rev);
2345 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2346 }
2347 }
2348
2349 /* update Multicast Hash Table in Receive Filter */
2350 for (i = 0; i < table_entries; i++) {
2351 /* why plus 0x04 ??, That makes the correct value for hash table. */
2352 sw32(rfcr, (u32)(0x00000004 + i) << RFADDR_shift);
2353 sw32(rfdr, mc_filter[i]);
2354 }
2355
2356 sw32(rfcr, RFEN | rx_mode);
2357
2358 /* sis900 is capable of looping back packets at MAC level for
2359 * debugging purpose */
2360 if (net_dev->flags & IFF_LOOPBACK) {
2361 u32 cr_saved;
2362 /* We must disable Tx/Rx before setting loopback mode */
2363 cr_saved = sr32(cr);
2364 sw32(cr, cr_saved | TxDIS | RxDIS);
2365 /* enable loopback */
2366 sw32(txcfg, sr32(txcfg) | TxMLB);
2367 sw32(rxcfg, sr32(rxcfg) | RxATX);
2368 /* restore cr */
2369 sw32(cr, cr_saved);
2370 }
2371 }
2372
2373 /**
2374 * sis900_reset - Reset sis900 MAC
2375 * @net_dev: the net device to reset
2376 *
2377 * reset sis900 MAC and wait until finished
2378 * reset through command register
2379 * change backoff algorithm for 900B0 & 635 M/B
2380 */
2381
2382 static void sis900_reset(struct net_device *net_dev)
2383 {
2384 struct sis900_private *sis_priv = netdev_priv(net_dev);
2385 void __iomem *ioaddr = sis_priv->ioaddr;
2386 u32 status = TxRCMP | RxRCMP;
2387 int i;
2388
2389 sw32(ier, 0);
2390 sw32(imr, 0);
2391 sw32(rfcr, 0);
2392
2393 sw32(cr, RxRESET | TxRESET | RESET | sr32(cr));
2394
2395 /* Check that the chip has finished the reset. */
2396 for (i = 0; status && (i < 1000); i++)
2397 status ^= sr32(isr) & status;
2398
2399 if (sis_priv->chipset_rev >= SIS635A_900_REV ||
2400 sis_priv->chipset_rev == SIS900B_900_REV)
2401 sw32(cfg, PESEL | RND_CNT);
2402 else
2403 sw32(cfg, PESEL);
2404 }
2405
2406 /**
2407 * sis900_remove - Remove sis900 device
2408 * @pci_dev: the pci device to be removed
2409 *
2410 * remove and release SiS900 net device
2411 */
2412
2413 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2414 {
2415 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2416 struct sis900_private *sis_priv = netdev_priv(net_dev);
2417
2418 unregister_netdev(net_dev);
2419
2420 while (sis_priv->first_mii) {
2421 struct mii_phy *phy = sis_priv->first_mii;
2422
2423 sis_priv->first_mii = phy->next;
2424 kfree(phy);
2425 }
2426
2427 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2428 sis_priv->rx_ring_dma);
2429 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2430 sis_priv->tx_ring_dma);
2431 pci_iounmap(pci_dev, sis_priv->ioaddr);
2432 free_netdev(net_dev);
2433 pci_release_regions(pci_dev);
2434 pci_set_drvdata(pci_dev, NULL);
2435 }
2436
2437 #ifdef CONFIG_PM
2438
2439 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2440 {
2441 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2442 struct sis900_private *sis_priv = netdev_priv(net_dev);
2443 void __iomem *ioaddr = sis_priv->ioaddr;
2444
2445 if(!netif_running(net_dev))
2446 return 0;
2447
2448 netif_stop_queue(net_dev);
2449 netif_device_detach(net_dev);
2450
2451 /* Stop the chip's Tx and Rx Status Machine */
2452 sw32(cr, RxDIS | TxDIS | sr32(cr));
2453
2454 pci_set_power_state(pci_dev, PCI_D3hot);
2455 pci_save_state(pci_dev);
2456
2457 return 0;
2458 }
2459
2460 static int sis900_resume(struct pci_dev *pci_dev)
2461 {
2462 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2463 struct sis900_private *sis_priv = netdev_priv(net_dev);
2464 void __iomem *ioaddr = sis_priv->ioaddr;
2465
2466 if(!netif_running(net_dev))
2467 return 0;
2468 pci_restore_state(pci_dev);
2469 pci_set_power_state(pci_dev, PCI_D0);
2470
2471 sis900_init_rxfilter(net_dev);
2472
2473 sis900_init_tx_ring(net_dev);
2474 sis900_init_rx_ring(net_dev);
2475
2476 set_rx_mode(net_dev);
2477
2478 netif_device_attach(net_dev);
2479 netif_start_queue(net_dev);
2480
2481 /* Workaround for EDB */
2482 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2483
2484 /* Enable all known interrupts by setting the interrupt mask. */
2485 sw32(imr, RxSOVR | RxORN | RxERR | RxOK | TxURN | TxERR | TxIDLE);
2486 sw32(cr, RxENA | sr32(cr));
2487 sw32(ier, IE);
2488
2489 sis900_check_mode(net_dev, sis_priv->mii);
2490
2491 return 0;
2492 }
2493 #endif /* CONFIG_PM */
2494
2495 static struct pci_driver sis900_pci_driver = {
2496 .name = SIS900_MODULE_NAME,
2497 .id_table = sis900_pci_tbl,
2498 .probe = sis900_probe,
2499 .remove = __devexit_p(sis900_remove),
2500 #ifdef CONFIG_PM
2501 .suspend = sis900_suspend,
2502 .resume = sis900_resume,
2503 #endif /* CONFIG_PM */
2504 };
2505
2506 static int __init sis900_init_module(void)
2507 {
2508 /* when a module, this is printed whether or not devices are found in probe */
2509 #ifdef MODULE
2510 printk(version);
2511 #endif
2512
2513 return pci_register_driver(&sis900_pci_driver);
2514 }
2515
2516 static void __exit sis900_cleanup_module(void)
2517 {
2518 pci_unregister_driver(&sis900_pci_driver);
2519 }
2520
2521 module_init(sis900_init_module);
2522 module_exit(sis900_cleanup_module);
2523
This page took 0.087312 seconds and 5 git commands to generate.