stmmac: remove custom implementation of print_hex_dump()
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55
56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
57
58 /* Module parameters */
59 #define TX_TIMEO 5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94
95 #define DEFAULT_BUFSIZE 1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
104 #define STMMAC_DEFAULT_LPI_TIMER 1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118
119 #ifdef CONFIG_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
126 /**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it verifies if some wrong parameter is passed to the driver.
129 * Note that wrong parameters are replaced with the default values.
130 */
131 static void stmmac_verify_args(void)
132 {
133 if (unlikely(watchdog < 0))
134 watchdog = TX_TIMEO;
135 if (unlikely(dma_rxsize < 0))
136 dma_rxsize = DMA_RX_SIZE;
137 if (unlikely(dma_txsize < 0))
138 dma_txsize = DMA_TX_SIZE;
139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 buf_sz = DEFAULT_BUFSIZE;
141 if (unlikely(flow_ctrl > 1))
142 flow_ctrl = FLOW_AUTO;
143 else if (likely(flow_ctrl < 0))
144 flow_ctrl = FLOW_OFF;
145 if (unlikely((pause < 0) || (pause > 0xffff)))
146 pause = PAUSE_TIME;
147 if (eee_timer < 0)
148 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150
151 /**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 * If a specific clk_csr value is passed from the platform
158 * this means that the CSR Clock Range selection cannot be
159 * changed at run-time and it is fixed (as reported in the driver
160 * documentation). Viceversa the driver will try to set the MDC
161 * clock dynamically according to the actual clock input.
162 */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 u32 clk_rate;
166
167 clk_rate = clk_get_rate(priv->stmmac_clk);
168
169 /* Platform provided default clk_csr would be assumed valid
170 * for all other cases except for the below mentioned ones.
171 * For values higher than the IEEE 802.3 specified frequency
172 * we can not estimate the proper divider as it is not known
173 * the frequency of clk_csr_i. So we do not change the default
174 * divider.
175 */
176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 if (clk_rate < CSR_F_35M)
178 priv->clk_csr = STMMAC_CSR_20_35M;
179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 priv->clk_csr = STMMAC_CSR_35_60M;
181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 priv->clk_csr = STMMAC_CSR_60_100M;
183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 priv->clk_csr = STMMAC_CSR_100_150M;
185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 priv->clk_csr = STMMAC_CSR_150_250M;
187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 priv->clk_csr = STMMAC_CSR_250_300M;
189 }
190 }
191
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
195 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
196 }
197
198 /* minimum number of free TX descriptors required to wake up TX process */
199 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
200
201 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
202 {
203 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
204 }
205
206 /**
207 * stmmac_hw_fix_mac_speed: callback for speed selection
208 * @priv: driver private structure
209 * Description: on some platforms (e.g. ST), some HW system configuraton
210 * registers have to be set according to the link speed negotiated.
211 */
212 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
213 {
214 struct phy_device *phydev = priv->phydev;
215
216 if (likely(priv->plat->fix_mac_speed))
217 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
218 }
219
220 /**
221 * stmmac_enable_eee_mode: Check and enter in LPI mode
222 * @priv: driver private structure
223 * Description: this function is to verify and enter in LPI mode for EEE.
224 */
225 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
226 {
227 /* Check and enter in LPI mode */
228 if ((priv->dirty_tx == priv->cur_tx) &&
229 (priv->tx_path_in_lpi_mode == false))
230 priv->hw->mac->set_eee_mode(priv->hw);
231 }
232
233 /**
234 * stmmac_disable_eee_mode: disable/exit from EEE
235 * @priv: driver private structure
236 * Description: this function is to exit and disable EEE in case of
237 * LPI state is true. This is called by the xmit.
238 */
239 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
240 {
241 priv->hw->mac->reset_eee_mode(priv->hw);
242 del_timer_sync(&priv->eee_ctrl_timer);
243 priv->tx_path_in_lpi_mode = false;
244 }
245
246 /**
247 * stmmac_eee_ctrl_timer: EEE TX SW timer.
248 * @arg : data hook
249 * Description:
250 * if there is no data transfer and if we are not in LPI state,
251 * then MAC Transmitter can be moved to LPI state.
252 */
253 static void stmmac_eee_ctrl_timer(unsigned long arg)
254 {
255 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
256
257 stmmac_enable_eee_mode(priv);
258 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
259 }
260
261 /**
262 * stmmac_eee_init: init EEE
263 * @priv: driver private structure
264 * Description:
265 * If the EEE support has been enabled while configuring the driver,
266 * if the GMAC actually supports the EEE (from the HW cap reg) and the
267 * phy can also manage EEE, so enable the LPI state and start the timer
268 * to verify if the tx path can enter in LPI state.
269 */
270 bool stmmac_eee_init(struct stmmac_priv *priv)
271 {
272 char *phy_bus_name = priv->plat->phy_bus_name;
273 unsigned long flags;
274 bool ret = false;
275
276 /* Using PCS we cannot dial with the phy registers at this stage
277 * so we do not support extra feature like EEE.
278 */
279 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
280 (priv->pcs == STMMAC_PCS_RTBI))
281 goto out;
282
283 /* Never init EEE in case of a switch is attached */
284 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
285 goto out;
286
287 /* MAC core supports the EEE feature. */
288 if (priv->dma_cap.eee) {
289 int tx_lpi_timer = priv->tx_lpi_timer;
290
291 /* Check if the PHY supports EEE */
292 if (phy_init_eee(priv->phydev, 1)) {
293 /* To manage at run-time if the EEE cannot be supported
294 * anymore (for example because the lp caps have been
295 * changed).
296 * In that case the driver disable own timers.
297 */
298 spin_lock_irqsave(&priv->lock, flags);
299 if (priv->eee_active) {
300 pr_debug("stmmac: disable EEE\n");
301 del_timer_sync(&priv->eee_ctrl_timer);
302 priv->hw->mac->set_eee_timer(priv->hw, 0,
303 tx_lpi_timer);
304 }
305 priv->eee_active = 0;
306 spin_unlock_irqrestore(&priv->lock, flags);
307 goto out;
308 }
309 /* Activate the EEE and start timers */
310 spin_lock_irqsave(&priv->lock, flags);
311 if (!priv->eee_active) {
312 priv->eee_active = 1;
313 init_timer(&priv->eee_ctrl_timer);
314 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
315 priv->eee_ctrl_timer.data = (unsigned long)priv;
316 priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
317 add_timer(&priv->eee_ctrl_timer);
318
319 priv->hw->mac->set_eee_timer(priv->hw,
320 STMMAC_DEFAULT_LIT_LS,
321 tx_lpi_timer);
322 }
323 /* Set HW EEE according to the speed */
324 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
325
326 ret = true;
327 spin_unlock_irqrestore(&priv->lock, flags);
328
329 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
330 }
331 out:
332 return ret;
333 }
334
335 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
336 * @priv: driver private structure
337 * @entry : descriptor index to be used.
338 * @skb : the socket buffer
339 * Description :
340 * This function will read timestamp from the descriptor & pass it to stack.
341 * and also perform some sanity checks.
342 */
343 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
344 unsigned int entry, struct sk_buff *skb)
345 {
346 struct skb_shared_hwtstamps shhwtstamp;
347 u64 ns;
348 void *desc = NULL;
349
350 if (!priv->hwts_tx_en)
351 return;
352
353 /* exit if skb doesn't support hw tstamp */
354 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
355 return;
356
357 if (priv->adv_ts)
358 desc = (priv->dma_etx + entry);
359 else
360 desc = (priv->dma_tx + entry);
361
362 /* check tx tstamp status */
363 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
364 return;
365
366 /* get the valid tstamp */
367 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
368
369 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370 shhwtstamp.hwtstamp = ns_to_ktime(ns);
371 /* pass tstamp to stack */
372 skb_tstamp_tx(skb, &shhwtstamp);
373
374 return;
375 }
376
377 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
378 * @priv: driver private structure
379 * @entry : descriptor index to be used.
380 * @skb : the socket buffer
381 * Description :
382 * This function will read received packet's timestamp from the descriptor
383 * and pass it to stack. It also perform some sanity checks.
384 */
385 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
386 unsigned int entry, struct sk_buff *skb)
387 {
388 struct skb_shared_hwtstamps *shhwtstamp = NULL;
389 u64 ns;
390 void *desc = NULL;
391
392 if (!priv->hwts_rx_en)
393 return;
394
395 if (priv->adv_ts)
396 desc = (priv->dma_erx + entry);
397 else
398 desc = (priv->dma_rx + entry);
399
400 /* exit if rx tstamp is not valid */
401 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
402 return;
403
404 /* get valid tstamp */
405 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
406 shhwtstamp = skb_hwtstamps(skb);
407 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
408 shhwtstamp->hwtstamp = ns_to_ktime(ns);
409 }
410
411 /**
412 * stmmac_hwtstamp_ioctl - control hardware timestamping.
413 * @dev: device pointer.
414 * @ifr: An IOCTL specefic structure, that can contain a pointer to
415 * a proprietary structure used to pass information to the driver.
416 * Description:
417 * This function configures the MAC to enable/disable both outgoing(TX)
418 * and incoming(RX) packets time stamping based on user input.
419 * Return Value:
420 * 0 on success and an appropriate -ve integer on failure.
421 */
422 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
423 {
424 struct stmmac_priv *priv = netdev_priv(dev);
425 struct hwtstamp_config config;
426 struct timespec now;
427 u64 temp = 0;
428 u32 ptp_v2 = 0;
429 u32 tstamp_all = 0;
430 u32 ptp_over_ipv4_udp = 0;
431 u32 ptp_over_ipv6_udp = 0;
432 u32 ptp_over_ethernet = 0;
433 u32 snap_type_sel = 0;
434 u32 ts_master_en = 0;
435 u32 ts_event_en = 0;
436 u32 value = 0;
437
438 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
439 netdev_alert(priv->dev, "No support for HW time stamping\n");
440 priv->hwts_tx_en = 0;
441 priv->hwts_rx_en = 0;
442
443 return -EOPNOTSUPP;
444 }
445
446 if (copy_from_user(&config, ifr->ifr_data,
447 sizeof(struct hwtstamp_config)))
448 return -EFAULT;
449
450 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
451 __func__, config.flags, config.tx_type, config.rx_filter);
452
453 /* reserved for future extensions */
454 if (config.flags)
455 return -EINVAL;
456
457 if (config.tx_type != HWTSTAMP_TX_OFF &&
458 config.tx_type != HWTSTAMP_TX_ON)
459 return -ERANGE;
460
461 if (priv->adv_ts) {
462 switch (config.rx_filter) {
463 case HWTSTAMP_FILTER_NONE:
464 /* time stamp no incoming packet at all */
465 config.rx_filter = HWTSTAMP_FILTER_NONE;
466 break;
467
468 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
469 /* PTP v1, UDP, any kind of event packet */
470 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
471 /* take time stamp for all event messages */
472 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
473
474 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
475 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
476 break;
477
478 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
479 /* PTP v1, UDP, Sync packet */
480 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
481 /* take time stamp for SYNC messages only */
482 ts_event_en = PTP_TCR_TSEVNTENA;
483
484 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486 break;
487
488 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
489 /* PTP v1, UDP, Delay_req packet */
490 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
491 /* take time stamp for Delay_Req messages only */
492 ts_master_en = PTP_TCR_TSMSTRENA;
493 ts_event_en = PTP_TCR_TSEVNTENA;
494
495 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
496 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
497 break;
498
499 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500 /* PTP v2, UDP, any kind of event packet */
501 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
502 ptp_v2 = PTP_TCR_TSVER2ENA;
503 /* take time stamp for all event messages */
504 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
505
506 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
507 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
508 break;
509
510 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
511 /* PTP v2, UDP, Sync packet */
512 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
513 ptp_v2 = PTP_TCR_TSVER2ENA;
514 /* take time stamp for SYNC messages only */
515 ts_event_en = PTP_TCR_TSEVNTENA;
516
517 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519 break;
520
521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
522 /* PTP v2, UDP, Delay_req packet */
523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
524 ptp_v2 = PTP_TCR_TSVER2ENA;
525 /* take time stamp for Delay_Req messages only */
526 ts_master_en = PTP_TCR_TSMSTRENA;
527 ts_event_en = PTP_TCR_TSEVNTENA;
528
529 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
530 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
531 break;
532
533 case HWTSTAMP_FILTER_PTP_V2_EVENT:
534 /* PTP v2/802.AS1 any layer, any kind of event packet */
535 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
536 ptp_v2 = PTP_TCR_TSVER2ENA;
537 /* take time stamp for all event messages */
538 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
539
540 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542 ptp_over_ethernet = PTP_TCR_TSIPENA;
543 break;
544
545 case HWTSTAMP_FILTER_PTP_V2_SYNC:
546 /* PTP v2/802.AS1, any layer, Sync packet */
547 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
548 ptp_v2 = PTP_TCR_TSVER2ENA;
549 /* take time stamp for SYNC messages only */
550 ts_event_en = PTP_TCR_TSEVNTENA;
551
552 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
553 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
554 ptp_over_ethernet = PTP_TCR_TSIPENA;
555 break;
556
557 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
558 /* PTP v2/802.AS1, any layer, Delay_req packet */
559 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
560 ptp_v2 = PTP_TCR_TSVER2ENA;
561 /* take time stamp for Delay_Req messages only */
562 ts_master_en = PTP_TCR_TSMSTRENA;
563 ts_event_en = PTP_TCR_TSEVNTENA;
564
565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 ptp_over_ethernet = PTP_TCR_TSIPENA;
568 break;
569
570 case HWTSTAMP_FILTER_ALL:
571 /* time stamp any incoming packet */
572 config.rx_filter = HWTSTAMP_FILTER_ALL;
573 tstamp_all = PTP_TCR_TSENALL;
574 break;
575
576 default:
577 return -ERANGE;
578 }
579 } else {
580 switch (config.rx_filter) {
581 case HWTSTAMP_FILTER_NONE:
582 config.rx_filter = HWTSTAMP_FILTER_NONE;
583 break;
584 default:
585 /* PTP v1, UDP, any kind of event packet */
586 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
587 break;
588 }
589 }
590 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
591 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
592
593 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
594 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
595 else {
596 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
597 tstamp_all | ptp_v2 | ptp_over_ethernet |
598 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
599 ts_master_en | snap_type_sel);
600
601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
602
603 /* program Sub Second Increment reg */
604 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
605
606 /* calculate default added value:
607 * formula is :
608 * addend = (2^32)/freq_div_ratio;
609 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
610 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
611 * NOTE: clk_ptp_ref_i should be >= 50MHz to
612 * achive 20ns accuracy.
613 *
614 * 2^x * y == (y << x), hence
615 * 2^32 * 50000000 ==> (50000000 << 32)
616 */
617 temp = (u64) (50000000ULL << 32);
618 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
619 priv->hw->ptp->config_addend(priv->ioaddr,
620 priv->default_addend);
621
622 /* initialize system time */
623 getnstimeofday(&now);
624 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
625 now.tv_nsec);
626 }
627
628 return copy_to_user(ifr->ifr_data, &config,
629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631
632 /**
633 * stmmac_init_ptp: init PTP
634 * @priv: driver private structure
635 * Description: this is to verify if the HW supports the PTPv1 or v2.
636 * This is done by looking at the HW cap. register.
637 * Also it registers the ptp driver.
638 */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642 return -EOPNOTSUPP;
643
644 /* Fall-back to main clock in case of no PTP ref is passed */
645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646 if (IS_ERR(priv->clk_ptp_ref)) {
647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648 priv->clk_ptp_ref = NULL;
649 } else {
650 clk_prepare_enable(priv->clk_ptp_ref);
651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652 }
653
654 priv->adv_ts = 0;
655 if (priv->dma_cap.atime_stamp && priv->extend_desc)
656 priv->adv_ts = 1;
657
658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660
661 if (netif_msg_hw(priv) && priv->adv_ts)
662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663
664 priv->hw->ptp = &stmmac_ptp;
665 priv->hwts_tx_en = 0;
666 priv->hwts_rx_en = 0;
667
668 return stmmac_ptp_register(priv);
669 }
670
671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673 if (priv->clk_ptp_ref)
674 clk_disable_unprepare(priv->clk_ptp_ref);
675 stmmac_ptp_unregister(priv);
676 }
677
678 /**
679 * stmmac_adjust_link
680 * @dev: net device structure
681 * Description: it adjusts the link parameters.
682 */
683 static void stmmac_adjust_link(struct net_device *dev)
684 {
685 struct stmmac_priv *priv = netdev_priv(dev);
686 struct phy_device *phydev = priv->phydev;
687 unsigned long flags;
688 int new_state = 0;
689 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
690
691 if (phydev == NULL)
692 return;
693
694 spin_lock_irqsave(&priv->lock, flags);
695
696 if (phydev->link) {
697 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
698
699 /* Now we make sure that we can be in full duplex mode.
700 * If not, we operate in half-duplex mode. */
701 if (phydev->duplex != priv->oldduplex) {
702 new_state = 1;
703 if (!(phydev->duplex))
704 ctrl &= ~priv->hw->link.duplex;
705 else
706 ctrl |= priv->hw->link.duplex;
707 priv->oldduplex = phydev->duplex;
708 }
709 /* Flow Control operation */
710 if (phydev->pause)
711 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
712 fc, pause_time);
713
714 if (phydev->speed != priv->speed) {
715 new_state = 1;
716 switch (phydev->speed) {
717 case 1000:
718 if (likely(priv->plat->has_gmac))
719 ctrl &= ~priv->hw->link.port;
720 stmmac_hw_fix_mac_speed(priv);
721 break;
722 case 100:
723 case 10:
724 if (priv->plat->has_gmac) {
725 ctrl |= priv->hw->link.port;
726 if (phydev->speed == SPEED_100) {
727 ctrl |= priv->hw->link.speed;
728 } else {
729 ctrl &= ~(priv->hw->link.speed);
730 }
731 } else {
732 ctrl &= ~priv->hw->link.port;
733 }
734 stmmac_hw_fix_mac_speed(priv);
735 break;
736 default:
737 if (netif_msg_link(priv))
738 pr_warn("%s: Speed (%d) not 10/100\n",
739 dev->name, phydev->speed);
740 break;
741 }
742
743 priv->speed = phydev->speed;
744 }
745
746 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
747
748 if (!priv->oldlink) {
749 new_state = 1;
750 priv->oldlink = 1;
751 }
752 } else if (priv->oldlink) {
753 new_state = 1;
754 priv->oldlink = 0;
755 priv->speed = 0;
756 priv->oldduplex = -1;
757 }
758
759 if (new_state && netif_msg_link(priv))
760 phy_print_status(phydev);
761
762 spin_unlock_irqrestore(&priv->lock, flags);
763
764 /* At this stage, it could be needed to setup the EEE or adjust some
765 * MAC related HW registers.
766 */
767 priv->eee_enabled = stmmac_eee_init(priv);
768 }
769
770 /**
771 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
772 * @priv: driver private structure
773 * Description: this is to verify if the HW supports the PCS.
774 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
775 * configured for the TBI, RTBI, or SGMII PHY interface.
776 */
777 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
778 {
779 int interface = priv->plat->interface;
780
781 if (priv->dma_cap.pcs) {
782 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
783 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
784 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
785 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
786 pr_debug("STMMAC: PCS RGMII support enable\n");
787 priv->pcs = STMMAC_PCS_RGMII;
788 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
789 pr_debug("STMMAC: PCS SGMII support enable\n");
790 priv->pcs = STMMAC_PCS_SGMII;
791 }
792 }
793 }
794
795 /**
796 * stmmac_init_phy - PHY initialization
797 * @dev: net device structure
798 * Description: it initializes the driver's PHY state, and attaches the PHY
799 * to the mac driver.
800 * Return value:
801 * 0 on success
802 */
803 static int stmmac_init_phy(struct net_device *dev)
804 {
805 struct stmmac_priv *priv = netdev_priv(dev);
806 struct phy_device *phydev;
807 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
808 char bus_id[MII_BUS_ID_SIZE];
809 int interface = priv->plat->interface;
810 int max_speed = priv->plat->max_speed;
811 priv->oldlink = 0;
812 priv->speed = 0;
813 priv->oldduplex = -1;
814
815 if (priv->plat->phy_bus_name)
816 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
817 priv->plat->phy_bus_name, priv->plat->bus_id);
818 else
819 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
820 priv->plat->bus_id);
821
822 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
823 priv->plat->phy_addr);
824 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
825
826 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
827
828 if (IS_ERR(phydev)) {
829 pr_err("%s: Could not attach to PHY\n", dev->name);
830 return PTR_ERR(phydev);
831 }
832
833 /* Stop Advertising 1000BASE Capability if interface is not GMII */
834 if ((interface == PHY_INTERFACE_MODE_MII) ||
835 (interface == PHY_INTERFACE_MODE_RMII) ||
836 (max_speed < 1000 && max_speed > 0))
837 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
838 SUPPORTED_1000baseT_Full);
839
840 /*
841 * Broken HW is sometimes missing the pull-up resistor on the
842 * MDIO line, which results in reads to non-existent devices returning
843 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
844 * device as well.
845 * Note: phydev->phy_id is the result of reading the UID PHY registers.
846 */
847 if (phydev->phy_id == 0) {
848 phy_disconnect(phydev);
849 return -ENODEV;
850 }
851 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
852 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
853
854 priv->phydev = phydev;
855
856 return 0;
857 }
858
859 /**
860 * stmmac_display_ring: display ring
861 * @head: pointer to the head of the ring passed.
862 * @size: size of the ring.
863 * @extend_desc: to verify if extended descriptors are used.
864 * Description: display the control/status and buffer descriptors.
865 */
866 static void stmmac_display_ring(void *head, int size, int extend_desc)
867 {
868 int i;
869 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
870 struct dma_desc *p = (struct dma_desc *)head;
871
872 for (i = 0; i < size; i++) {
873 u64 x;
874 if (extend_desc) {
875 x = *(u64 *) ep;
876 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
877 i, (unsigned int)virt_to_phys(ep),
878 (unsigned int)x, (unsigned int)(x >> 32),
879 ep->basic.des2, ep->basic.des3);
880 ep++;
881 } else {
882 x = *(u64 *) p;
883 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
884 i, (unsigned int)virt_to_phys(p),
885 (unsigned int)x, (unsigned int)(x >> 32),
886 p->des2, p->des3);
887 p++;
888 }
889 pr_info("\n");
890 }
891 }
892
893 static void stmmac_display_rings(struct stmmac_priv *priv)
894 {
895 unsigned int txsize = priv->dma_tx_size;
896 unsigned int rxsize = priv->dma_rx_size;
897
898 if (priv->extend_desc) {
899 pr_info("Extended RX descriptor ring:\n");
900 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
901 pr_info("Extended TX descriptor ring:\n");
902 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
903 } else {
904 pr_info("RX descriptor ring:\n");
905 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
906 pr_info("TX descriptor ring:\n");
907 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
908 }
909 }
910
911 static int stmmac_set_bfsize(int mtu, int bufsize)
912 {
913 int ret = bufsize;
914
915 if (mtu >= BUF_SIZE_4KiB)
916 ret = BUF_SIZE_8KiB;
917 else if (mtu >= BUF_SIZE_2KiB)
918 ret = BUF_SIZE_4KiB;
919 else if (mtu > DEFAULT_BUFSIZE)
920 ret = BUF_SIZE_2KiB;
921 else
922 ret = DEFAULT_BUFSIZE;
923
924 return ret;
925 }
926
927 /**
928 * stmmac_clear_descriptors: clear descriptors
929 * @priv: driver private structure
930 * Description: this function is called to clear the tx and rx descriptors
931 * in case of both basic and extended descriptors are used.
932 */
933 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
934 {
935 int i;
936 unsigned int txsize = priv->dma_tx_size;
937 unsigned int rxsize = priv->dma_rx_size;
938
939 /* Clear the Rx/Tx descriptors */
940 for (i = 0; i < rxsize; i++)
941 if (priv->extend_desc)
942 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
943 priv->use_riwt, priv->mode,
944 (i == rxsize - 1));
945 else
946 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
947 priv->use_riwt, priv->mode,
948 (i == rxsize - 1));
949 for (i = 0; i < txsize; i++)
950 if (priv->extend_desc)
951 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
952 priv->mode,
953 (i == txsize - 1));
954 else
955 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
956 priv->mode,
957 (i == txsize - 1));
958 }
959
960 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
961 int i, gfp_t flags)
962 {
963 struct sk_buff *skb;
964
965 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
966 flags);
967 if (!skb) {
968 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
969 return -ENOMEM;
970 }
971 skb_reserve(skb, NET_IP_ALIGN);
972 priv->rx_skbuff[i] = skb;
973 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
974 priv->dma_buf_sz,
975 DMA_FROM_DEVICE);
976 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
977 pr_err("%s: DMA mapping error\n", __func__);
978 dev_kfree_skb_any(skb);
979 return -EINVAL;
980 }
981
982 p->des2 = priv->rx_skbuff_dma[i];
983
984 if ((priv->hw->mode->init_desc3) &&
985 (priv->dma_buf_sz == BUF_SIZE_16KiB))
986 priv->hw->mode->init_desc3(p);
987
988 return 0;
989 }
990
991 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
992 {
993 if (priv->rx_skbuff[i]) {
994 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
995 priv->dma_buf_sz, DMA_FROM_DEVICE);
996 dev_kfree_skb_any(priv->rx_skbuff[i]);
997 }
998 priv->rx_skbuff[i] = NULL;
999 }
1000
1001 /**
1002 * init_dma_desc_rings - init the RX/TX descriptor rings
1003 * @dev: net device structure
1004 * Description: this function initializes the DMA RX/TX descriptors
1005 * and allocates the socket buffers. It suppors the chained and ring
1006 * modes.
1007 */
1008 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1009 {
1010 int i;
1011 struct stmmac_priv *priv = netdev_priv(dev);
1012 unsigned int txsize = priv->dma_tx_size;
1013 unsigned int rxsize = priv->dma_rx_size;
1014 unsigned int bfsize = 0;
1015 int ret = -ENOMEM;
1016
1017 if (priv->hw->mode->set_16kib_bfsize)
1018 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1019
1020 if (bfsize < BUF_SIZE_16KiB)
1021 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1022
1023 priv->dma_buf_sz = bfsize;
1024
1025 if (netif_msg_probe(priv))
1026 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1027 txsize, rxsize, bfsize);
1028
1029 if (netif_msg_probe(priv)) {
1030 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1031 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1032
1033 /* RX INITIALIZATION */
1034 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1035 }
1036 for (i = 0; i < rxsize; i++) {
1037 struct dma_desc *p;
1038 if (priv->extend_desc)
1039 p = &((priv->dma_erx + i)->basic);
1040 else
1041 p = priv->dma_rx + i;
1042
1043 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1044 if (ret)
1045 goto err_init_rx_buffers;
1046
1047 if (netif_msg_probe(priv))
1048 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1049 priv->rx_skbuff[i]->data,
1050 (unsigned int)priv->rx_skbuff_dma[i]);
1051 }
1052 priv->cur_rx = 0;
1053 priv->dirty_rx = (unsigned int)(i - rxsize);
1054 buf_sz = bfsize;
1055
1056 /* Setup the chained descriptor addresses */
1057 if (priv->mode == STMMAC_CHAIN_MODE) {
1058 if (priv->extend_desc) {
1059 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1060 rxsize, 1);
1061 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1062 txsize, 1);
1063 } else {
1064 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1065 rxsize, 0);
1066 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1067 txsize, 0);
1068 }
1069 }
1070
1071 /* TX INITIALIZATION */
1072 for (i = 0; i < txsize; i++) {
1073 struct dma_desc *p;
1074 if (priv->extend_desc)
1075 p = &((priv->dma_etx + i)->basic);
1076 else
1077 p = priv->dma_tx + i;
1078 p->des2 = 0;
1079 priv->tx_skbuff_dma[i].buf = 0;
1080 priv->tx_skbuff_dma[i].map_as_page = false;
1081 priv->tx_skbuff[i] = NULL;
1082 }
1083
1084 priv->dirty_tx = 0;
1085 priv->cur_tx = 0;
1086
1087 stmmac_clear_descriptors(priv);
1088
1089 if (netif_msg_hw(priv))
1090 stmmac_display_rings(priv);
1091
1092 return 0;
1093 err_init_rx_buffers:
1094 while (--i >= 0)
1095 stmmac_free_rx_buffers(priv, i);
1096 return ret;
1097 }
1098
1099 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1100 {
1101 int i;
1102
1103 for (i = 0; i < priv->dma_rx_size; i++)
1104 stmmac_free_rx_buffers(priv, i);
1105 }
1106
1107 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1108 {
1109 int i;
1110
1111 for (i = 0; i < priv->dma_tx_size; i++) {
1112 struct dma_desc *p;
1113
1114 if (priv->extend_desc)
1115 p = &((priv->dma_etx + i)->basic);
1116 else
1117 p = priv->dma_tx + i;
1118
1119 if (priv->tx_skbuff_dma[i].buf) {
1120 if (priv->tx_skbuff_dma[i].map_as_page)
1121 dma_unmap_page(priv->device,
1122 priv->tx_skbuff_dma[i].buf,
1123 priv->hw->desc->get_tx_len(p),
1124 DMA_TO_DEVICE);
1125 else
1126 dma_unmap_single(priv->device,
1127 priv->tx_skbuff_dma[i].buf,
1128 priv->hw->desc->get_tx_len(p),
1129 DMA_TO_DEVICE);
1130 }
1131
1132 if (priv->tx_skbuff[i] != NULL) {
1133 dev_kfree_skb_any(priv->tx_skbuff[i]);
1134 priv->tx_skbuff[i] = NULL;
1135 priv->tx_skbuff_dma[i].buf = 0;
1136 priv->tx_skbuff_dma[i].map_as_page = false;
1137 }
1138 }
1139 }
1140
1141 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1142 {
1143 unsigned int txsize = priv->dma_tx_size;
1144 unsigned int rxsize = priv->dma_rx_size;
1145 int ret = -ENOMEM;
1146
1147 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1148 GFP_KERNEL);
1149 if (!priv->rx_skbuff_dma)
1150 return -ENOMEM;
1151
1152 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1153 GFP_KERNEL);
1154 if (!priv->rx_skbuff)
1155 goto err_rx_skbuff;
1156
1157 priv->tx_skbuff_dma = kmalloc_array(txsize,
1158 sizeof(*priv->tx_skbuff_dma),
1159 GFP_KERNEL);
1160 if (!priv->tx_skbuff_dma)
1161 goto err_tx_skbuff_dma;
1162
1163 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1164 GFP_KERNEL);
1165 if (!priv->tx_skbuff)
1166 goto err_tx_skbuff;
1167
1168 if (priv->extend_desc) {
1169 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1170 sizeof(struct
1171 dma_extended_desc),
1172 &priv->dma_rx_phy,
1173 GFP_KERNEL);
1174 if (!priv->dma_erx)
1175 goto err_dma;
1176
1177 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1178 sizeof(struct
1179 dma_extended_desc),
1180 &priv->dma_tx_phy,
1181 GFP_KERNEL);
1182 if (!priv->dma_etx) {
1183 dma_free_coherent(priv->device, priv->dma_rx_size *
1184 sizeof(struct dma_extended_desc),
1185 priv->dma_erx, priv->dma_rx_phy);
1186 goto err_dma;
1187 }
1188 } else {
1189 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1190 sizeof(struct dma_desc),
1191 &priv->dma_rx_phy,
1192 GFP_KERNEL);
1193 if (!priv->dma_rx)
1194 goto err_dma;
1195
1196 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1197 sizeof(struct dma_desc),
1198 &priv->dma_tx_phy,
1199 GFP_KERNEL);
1200 if (!priv->dma_tx) {
1201 dma_free_coherent(priv->device, priv->dma_rx_size *
1202 sizeof(struct dma_desc),
1203 priv->dma_rx, priv->dma_rx_phy);
1204 goto err_dma;
1205 }
1206 }
1207
1208 return 0;
1209
1210 err_dma:
1211 kfree(priv->tx_skbuff);
1212 err_tx_skbuff:
1213 kfree(priv->tx_skbuff_dma);
1214 err_tx_skbuff_dma:
1215 kfree(priv->rx_skbuff);
1216 err_rx_skbuff:
1217 kfree(priv->rx_skbuff_dma);
1218 return ret;
1219 }
1220
1221 static void free_dma_desc_resources(struct stmmac_priv *priv)
1222 {
1223 /* Release the DMA TX/RX socket buffers */
1224 dma_free_rx_skbufs(priv);
1225 dma_free_tx_skbufs(priv);
1226
1227 /* Free DMA regions of consistent memory previously allocated */
1228 if (!priv->extend_desc) {
1229 dma_free_coherent(priv->device,
1230 priv->dma_tx_size * sizeof(struct dma_desc),
1231 priv->dma_tx, priv->dma_tx_phy);
1232 dma_free_coherent(priv->device,
1233 priv->dma_rx_size * sizeof(struct dma_desc),
1234 priv->dma_rx, priv->dma_rx_phy);
1235 } else {
1236 dma_free_coherent(priv->device, priv->dma_tx_size *
1237 sizeof(struct dma_extended_desc),
1238 priv->dma_etx, priv->dma_tx_phy);
1239 dma_free_coherent(priv->device, priv->dma_rx_size *
1240 sizeof(struct dma_extended_desc),
1241 priv->dma_erx, priv->dma_rx_phy);
1242 }
1243 kfree(priv->rx_skbuff_dma);
1244 kfree(priv->rx_skbuff);
1245 kfree(priv->tx_skbuff_dma);
1246 kfree(priv->tx_skbuff);
1247 }
1248
1249 /**
1250 * stmmac_dma_operation_mode - HW DMA operation mode
1251 * @priv: driver private structure
1252 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
1253 * or Store-And-Forward capability.
1254 */
1255 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1256 {
1257 if (priv->plat->force_thresh_dma_mode)
1258 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1259 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1260 /*
1261 * In case of GMAC, SF mode can be enabled
1262 * to perform the TX COE in HW. This depends on:
1263 * 1) TX COE if actually supported
1264 * 2) There is no bugged Jumbo frame support
1265 * that needs to not insert csum in the TDES.
1266 */
1267 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1268 tc = SF_DMA_MODE;
1269 } else
1270 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1271 }
1272
1273 /**
1274 * stmmac_tx_clean:
1275 * @priv: driver private structure
1276 * Description: it reclaims resources after transmission completes.
1277 */
1278 static void stmmac_tx_clean(struct stmmac_priv *priv)
1279 {
1280 unsigned int txsize = priv->dma_tx_size;
1281
1282 spin_lock(&priv->tx_lock);
1283
1284 priv->xstats.tx_clean++;
1285
1286 while (priv->dirty_tx != priv->cur_tx) {
1287 int last;
1288 unsigned int entry = priv->dirty_tx % txsize;
1289 struct sk_buff *skb = priv->tx_skbuff[entry];
1290 struct dma_desc *p;
1291
1292 if (priv->extend_desc)
1293 p = (struct dma_desc *)(priv->dma_etx + entry);
1294 else
1295 p = priv->dma_tx + entry;
1296
1297 /* Check if the descriptor is owned by the DMA. */
1298 if (priv->hw->desc->get_tx_owner(p))
1299 break;
1300
1301 /* Verify tx error by looking at the last segment. */
1302 last = priv->hw->desc->get_tx_ls(p);
1303 if (likely(last)) {
1304 int tx_error =
1305 priv->hw->desc->tx_status(&priv->dev->stats,
1306 &priv->xstats, p,
1307 priv->ioaddr);
1308 if (likely(tx_error == 0)) {
1309 priv->dev->stats.tx_packets++;
1310 priv->xstats.tx_pkt_n++;
1311 } else
1312 priv->dev->stats.tx_errors++;
1313
1314 stmmac_get_tx_hwtstamp(priv, entry, skb);
1315 }
1316 if (netif_msg_tx_done(priv))
1317 pr_debug("%s: curr %d, dirty %d\n", __func__,
1318 priv->cur_tx, priv->dirty_tx);
1319
1320 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1321 if (priv->tx_skbuff_dma[entry].map_as_page)
1322 dma_unmap_page(priv->device,
1323 priv->tx_skbuff_dma[entry].buf,
1324 priv->hw->desc->get_tx_len(p),
1325 DMA_TO_DEVICE);
1326 else
1327 dma_unmap_single(priv->device,
1328 priv->tx_skbuff_dma[entry].buf,
1329 priv->hw->desc->get_tx_len(p),
1330 DMA_TO_DEVICE);
1331 priv->tx_skbuff_dma[entry].buf = 0;
1332 priv->tx_skbuff_dma[entry].map_as_page = false;
1333 }
1334 priv->hw->mode->clean_desc3(priv, p);
1335
1336 if (likely(skb != NULL)) {
1337 dev_consume_skb_any(skb);
1338 priv->tx_skbuff[entry] = NULL;
1339 }
1340
1341 priv->hw->desc->release_tx_desc(p, priv->mode);
1342
1343 priv->dirty_tx++;
1344 }
1345 if (unlikely(netif_queue_stopped(priv->dev) &&
1346 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1347 netif_tx_lock(priv->dev);
1348 if (netif_queue_stopped(priv->dev) &&
1349 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1350 if (netif_msg_tx_done(priv))
1351 pr_debug("%s: restart transmit\n", __func__);
1352 netif_wake_queue(priv->dev);
1353 }
1354 netif_tx_unlock(priv->dev);
1355 }
1356
1357 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1358 stmmac_enable_eee_mode(priv);
1359 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1360 }
1361 spin_unlock(&priv->tx_lock);
1362 }
1363
1364 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1365 {
1366 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1367 }
1368
1369 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1370 {
1371 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1372 }
1373
1374 /**
1375 * stmmac_tx_err: irq tx error mng function
1376 * @priv: driver private structure
1377 * Description: it cleans the descriptors and restarts the transmission
1378 * in case of errors.
1379 */
1380 static void stmmac_tx_err(struct stmmac_priv *priv)
1381 {
1382 int i;
1383 int txsize = priv->dma_tx_size;
1384 netif_stop_queue(priv->dev);
1385
1386 priv->hw->dma->stop_tx(priv->ioaddr);
1387 dma_free_tx_skbufs(priv);
1388 for (i = 0; i < txsize; i++)
1389 if (priv->extend_desc)
1390 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1391 priv->mode,
1392 (i == txsize - 1));
1393 else
1394 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1395 priv->mode,
1396 (i == txsize - 1));
1397 priv->dirty_tx = 0;
1398 priv->cur_tx = 0;
1399 priv->hw->dma->start_tx(priv->ioaddr);
1400
1401 priv->dev->stats.tx_errors++;
1402 netif_wake_queue(priv->dev);
1403 }
1404
1405 /**
1406 * stmmac_dma_interrupt: DMA ISR
1407 * @priv: driver private structure
1408 * Description: this is the DMA ISR. It is called by the main ISR.
1409 * It calls the dwmac dma routine to understand which type of interrupt
1410 * happened. In case of there is a Normal interrupt and either TX or RX
1411 * interrupt happened so the NAPI is scheduled.
1412 */
1413 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1414 {
1415 int status;
1416
1417 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1418 if (likely((status & handle_rx)) || (status & handle_tx)) {
1419 if (likely(napi_schedule_prep(&priv->napi))) {
1420 stmmac_disable_dma_irq(priv);
1421 __napi_schedule(&priv->napi);
1422 }
1423 }
1424 if (unlikely(status & tx_hard_error_bump_tc)) {
1425 /* Try to bump up the dma threshold on this failure */
1426 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1427 tc += 64;
1428 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1429 priv->xstats.threshold = tc;
1430 }
1431 } else if (unlikely(status == tx_hard_error))
1432 stmmac_tx_err(priv);
1433 }
1434
1435 /**
1436 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1437 * @priv: driver private structure
1438 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1439 */
1440 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1441 {
1442 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1443 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1444
1445 dwmac_mmc_intr_all_mask(priv->ioaddr);
1446
1447 if (priv->dma_cap.rmon) {
1448 dwmac_mmc_ctrl(priv->ioaddr, mode);
1449 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1450 } else
1451 pr_info(" No MAC Management Counters available\n");
1452 }
1453
1454 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1455 {
1456 u32 hwid = priv->hw->synopsys_uid;
1457
1458 /* Check Synopsys Id (not available on old chips) */
1459 if (likely(hwid)) {
1460 u32 uid = ((hwid & 0x0000ff00) >> 8);
1461 u32 synid = (hwid & 0x000000ff);
1462
1463 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1464 uid, synid);
1465
1466 return synid;
1467 }
1468 return 0;
1469 }
1470
1471 /**
1472 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1473 * @priv: driver private structure
1474 * Description: select the Enhanced/Alternate or Normal descriptors.
1475 * In case of Enhanced/Alternate, it looks at the extended descriptors are
1476 * supported by the HW cap. register.
1477 */
1478 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1479 {
1480 if (priv->plat->enh_desc) {
1481 pr_info(" Enhanced/Alternate descriptors\n");
1482
1483 /* GMAC older than 3.50 has no extended descriptors */
1484 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1485 pr_info("\tEnabled extended descriptors\n");
1486 priv->extend_desc = 1;
1487 } else
1488 pr_warn("Extended descriptors not supported\n");
1489
1490 priv->hw->desc = &enh_desc_ops;
1491 } else {
1492 pr_info(" Normal descriptors\n");
1493 priv->hw->desc = &ndesc_ops;
1494 }
1495 }
1496
1497 /**
1498 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1499 * @priv: driver private structure
1500 * Description:
1501 * new GMAC chip generations have a new register to indicate the
1502 * presence of the optional feature/functions.
1503 * This can be also used to override the value passed through the
1504 * platform and necessary for old MAC10/100 and GMAC chips.
1505 */
1506 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1507 {
1508 u32 hw_cap = 0;
1509
1510 if (priv->hw->dma->get_hw_feature) {
1511 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1512
1513 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1514 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1515 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1516 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1517 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1518 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1519 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1520 priv->dma_cap.pmt_remote_wake_up =
1521 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1522 priv->dma_cap.pmt_magic_frame =
1523 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1524 /* MMC */
1525 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1526 /* IEEE 1588-2002 */
1527 priv->dma_cap.time_stamp =
1528 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1529 /* IEEE 1588-2008 */
1530 priv->dma_cap.atime_stamp =
1531 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1532 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1533 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1534 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1535 /* TX and RX csum */
1536 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1537 priv->dma_cap.rx_coe_type1 =
1538 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1539 priv->dma_cap.rx_coe_type2 =
1540 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1541 priv->dma_cap.rxfifo_over_2048 =
1542 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1543 /* TX and RX number of channels */
1544 priv->dma_cap.number_rx_channel =
1545 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1546 priv->dma_cap.number_tx_channel =
1547 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1548 /* Alternate (enhanced) DESC mode */
1549 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1550 }
1551
1552 return hw_cap;
1553 }
1554
1555 /**
1556 * stmmac_check_ether_addr: check if the MAC addr is valid
1557 * @priv: driver private structure
1558 * Description:
1559 * it is to verify if the MAC address is valid, in case of failures it
1560 * generates a random MAC address
1561 */
1562 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1563 {
1564 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1565 priv->hw->mac->get_umac_addr(priv->hw,
1566 priv->dev->dev_addr, 0);
1567 if (!is_valid_ether_addr(priv->dev->dev_addr))
1568 eth_hw_addr_random(priv->dev);
1569 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1570 priv->dev->dev_addr);
1571 }
1572 }
1573
1574 /**
1575 * stmmac_init_dma_engine: DMA init.
1576 * @priv: driver private structure
1577 * Description:
1578 * It inits the DMA invoking the specific MAC/GMAC callback.
1579 * Some DMA parameters can be passed from the platform;
1580 * in case of these are not passed a default is kept for the MAC or GMAC.
1581 */
1582 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1583 {
1584 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1585 int mixed_burst = 0;
1586 int atds = 0;
1587
1588 if (priv->plat->dma_cfg) {
1589 pbl = priv->plat->dma_cfg->pbl;
1590 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1591 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1592 burst_len = priv->plat->dma_cfg->burst_len;
1593 }
1594
1595 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1596 atds = 1;
1597
1598 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1599 burst_len, priv->dma_tx_phy,
1600 priv->dma_rx_phy, atds);
1601 }
1602
1603 /**
1604 * stmmac_tx_timer: mitigation sw timer for tx.
1605 * @data: data pointer
1606 * Description:
1607 * This is the timer handler to directly invoke the stmmac_tx_clean.
1608 */
1609 static void stmmac_tx_timer(unsigned long data)
1610 {
1611 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1612
1613 stmmac_tx_clean(priv);
1614 }
1615
1616 /**
1617 * stmmac_init_tx_coalesce: init tx mitigation options.
1618 * @priv: driver private structure
1619 * Description:
1620 * This inits the transmit coalesce parameters: i.e. timer rate,
1621 * timer handler and default threshold used for enabling the
1622 * interrupt on completion bit.
1623 */
1624 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1625 {
1626 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1627 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1628 init_timer(&priv->txtimer);
1629 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1630 priv->txtimer.data = (unsigned long)priv;
1631 priv->txtimer.function = stmmac_tx_timer;
1632 add_timer(&priv->txtimer);
1633 }
1634
1635 /**
1636 * stmmac_hw_setup: setup mac in a usable state.
1637 * @dev : pointer to the device structure.
1638 * Description:
1639 * This function sets up the ip in a usable state.
1640 * Return value:
1641 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1642 * file on failure.
1643 */
1644 static int stmmac_hw_setup(struct net_device *dev)
1645 {
1646 struct stmmac_priv *priv = netdev_priv(dev);
1647 int ret;
1648
1649 /* DMA initialization and SW reset */
1650 ret = stmmac_init_dma_engine(priv);
1651 if (ret < 0) {
1652 pr_err("%s: DMA engine initialization failed\n", __func__);
1653 return ret;
1654 }
1655
1656 /* Copy the MAC addr into the HW */
1657 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1658
1659 /* If required, perform hw setup of the bus. */
1660 if (priv->plat->bus_setup)
1661 priv->plat->bus_setup(priv->ioaddr);
1662
1663 /* Initialize the MAC Core */
1664 priv->hw->mac->core_init(priv->hw, dev->mtu);
1665
1666 ret = priv->hw->mac->rx_ipc(priv->hw);
1667 if (!ret) {
1668 pr_warn(" RX IPC Checksum Offload disabled\n");
1669 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1670 priv->hw->rx_csum = 0;
1671 }
1672
1673 /* Enable the MAC Rx/Tx */
1674 stmmac_set_mac(priv->ioaddr, true);
1675
1676 /* Set the HW DMA mode and the COE */
1677 stmmac_dma_operation_mode(priv);
1678
1679 stmmac_mmc_setup(priv);
1680
1681 ret = stmmac_init_ptp(priv);
1682 if (ret && ret != -EOPNOTSUPP)
1683 pr_warn("%s: failed PTP initialisation\n", __func__);
1684
1685 #ifdef CONFIG_DEBUG_FS
1686 ret = stmmac_init_fs(dev);
1687 if (ret < 0)
1688 pr_warn("%s: failed debugFS registration\n", __func__);
1689 #endif
1690 /* Start the ball rolling... */
1691 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1692 priv->hw->dma->start_tx(priv->ioaddr);
1693 priv->hw->dma->start_rx(priv->ioaddr);
1694
1695 /* Dump DMA/MAC registers */
1696 if (netif_msg_hw(priv)) {
1697 priv->hw->mac->dump_regs(priv->hw);
1698 priv->hw->dma->dump_regs(priv->ioaddr);
1699 }
1700 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1701
1702 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1703 priv->rx_riwt = MAX_DMA_RIWT;
1704 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1705 }
1706
1707 if (priv->pcs && priv->hw->mac->ctrl_ane)
1708 priv->hw->mac->ctrl_ane(priv->hw, 0);
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * stmmac_open - open entry point of the driver
1715 * @dev : pointer to the device structure.
1716 * Description:
1717 * This function is the open entry point of the driver.
1718 * Return value:
1719 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1720 * file on failure.
1721 */
1722 static int stmmac_open(struct net_device *dev)
1723 {
1724 struct stmmac_priv *priv = netdev_priv(dev);
1725 int ret;
1726
1727 stmmac_check_ether_addr(priv);
1728
1729 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1730 priv->pcs != STMMAC_PCS_RTBI) {
1731 ret = stmmac_init_phy(dev);
1732 if (ret) {
1733 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1734 __func__, ret);
1735 return ret;
1736 }
1737 }
1738
1739 /* Extra statistics */
1740 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1741 priv->xstats.threshold = tc;
1742
1743 /* Create and initialize the TX/RX descriptors chains. */
1744 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1745 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1746 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1747
1748 ret = alloc_dma_desc_resources(priv);
1749 if (ret < 0) {
1750 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1751 goto dma_desc_error;
1752 }
1753
1754 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1755 if (ret < 0) {
1756 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1757 goto init_error;
1758 }
1759
1760 ret = stmmac_hw_setup(dev);
1761 if (ret < 0) {
1762 pr_err("%s: Hw setup failed\n", __func__);
1763 goto init_error;
1764 }
1765
1766 stmmac_init_tx_coalesce(priv);
1767
1768 if (priv->phydev)
1769 phy_start(priv->phydev);
1770
1771 /* Request the IRQ lines */
1772 ret = request_irq(dev->irq, stmmac_interrupt,
1773 IRQF_SHARED, dev->name, dev);
1774 if (unlikely(ret < 0)) {
1775 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1776 __func__, dev->irq, ret);
1777 goto init_error;
1778 }
1779
1780 /* Request the Wake IRQ in case of another line is used for WoL */
1781 if (priv->wol_irq != dev->irq) {
1782 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1783 IRQF_SHARED, dev->name, dev);
1784 if (unlikely(ret < 0)) {
1785 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1786 __func__, priv->wol_irq, ret);
1787 goto wolirq_error;
1788 }
1789 }
1790
1791 /* Request the IRQ lines */
1792 if (priv->lpi_irq > 0) {
1793 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1794 dev->name, dev);
1795 if (unlikely(ret < 0)) {
1796 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1797 __func__, priv->lpi_irq, ret);
1798 goto lpiirq_error;
1799 }
1800 }
1801
1802 napi_enable(&priv->napi);
1803 netif_start_queue(dev);
1804
1805 return 0;
1806
1807 lpiirq_error:
1808 if (priv->wol_irq != dev->irq)
1809 free_irq(priv->wol_irq, dev);
1810 wolirq_error:
1811 free_irq(dev->irq, dev);
1812
1813 init_error:
1814 free_dma_desc_resources(priv);
1815 dma_desc_error:
1816 if (priv->phydev)
1817 phy_disconnect(priv->phydev);
1818
1819 return ret;
1820 }
1821
1822 /**
1823 * stmmac_release - close entry point of the driver
1824 * @dev : device pointer.
1825 * Description:
1826 * This is the stop entry point of the driver.
1827 */
1828 static int stmmac_release(struct net_device *dev)
1829 {
1830 struct stmmac_priv *priv = netdev_priv(dev);
1831
1832 if (priv->eee_enabled)
1833 del_timer_sync(&priv->eee_ctrl_timer);
1834
1835 /* Stop and disconnect the PHY */
1836 if (priv->phydev) {
1837 phy_stop(priv->phydev);
1838 phy_disconnect(priv->phydev);
1839 priv->phydev = NULL;
1840 }
1841
1842 netif_stop_queue(dev);
1843
1844 napi_disable(&priv->napi);
1845
1846 del_timer_sync(&priv->txtimer);
1847
1848 /* Free the IRQ lines */
1849 free_irq(dev->irq, dev);
1850 if (priv->wol_irq != dev->irq)
1851 free_irq(priv->wol_irq, dev);
1852 if (priv->lpi_irq > 0)
1853 free_irq(priv->lpi_irq, dev);
1854
1855 /* Stop TX/RX DMA and clear the descriptors */
1856 priv->hw->dma->stop_tx(priv->ioaddr);
1857 priv->hw->dma->stop_rx(priv->ioaddr);
1858
1859 /* Release and free the Rx/Tx resources */
1860 free_dma_desc_resources(priv);
1861
1862 /* Disable the MAC Rx/Tx */
1863 stmmac_set_mac(priv->ioaddr, false);
1864
1865 netif_carrier_off(dev);
1866
1867 #ifdef CONFIG_DEBUG_FS
1868 stmmac_exit_fs();
1869 #endif
1870
1871 stmmac_release_ptp(priv);
1872
1873 return 0;
1874 }
1875
1876 /**
1877 * stmmac_xmit: Tx entry point of the driver
1878 * @skb : the socket buffer
1879 * @dev : device pointer
1880 * Description : this is the tx entry point of the driver.
1881 * It programs the chain or the ring and supports oversized frames
1882 * and SG feature.
1883 */
1884 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1885 {
1886 struct stmmac_priv *priv = netdev_priv(dev);
1887 unsigned int txsize = priv->dma_tx_size;
1888 unsigned int entry;
1889 int i, csum_insertion = 0, is_jumbo = 0;
1890 int nfrags = skb_shinfo(skb)->nr_frags;
1891 struct dma_desc *desc, *first;
1892 unsigned int nopaged_len = skb_headlen(skb);
1893 unsigned int enh_desc = priv->plat->enh_desc;
1894
1895 spin_lock(&priv->tx_lock);
1896
1897 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1898 spin_unlock(&priv->tx_lock);
1899 if (!netif_queue_stopped(dev)) {
1900 netif_stop_queue(dev);
1901 /* This is a hard error, log it. */
1902 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1903 }
1904 return NETDEV_TX_BUSY;
1905 }
1906
1907 if (priv->tx_path_in_lpi_mode)
1908 stmmac_disable_eee_mode(priv);
1909
1910 entry = priv->cur_tx % txsize;
1911
1912 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1913
1914 if (priv->extend_desc)
1915 desc = (struct dma_desc *)(priv->dma_etx + entry);
1916 else
1917 desc = priv->dma_tx + entry;
1918
1919 first = desc;
1920
1921 /* To program the descriptors according to the size of the frame */
1922 if (enh_desc)
1923 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1924
1925 if (likely(!is_jumbo)) {
1926 desc->des2 = dma_map_single(priv->device, skb->data,
1927 nopaged_len, DMA_TO_DEVICE);
1928 if (dma_mapping_error(priv->device, desc->des2))
1929 goto dma_map_err;
1930 priv->tx_skbuff_dma[entry].buf = desc->des2;
1931 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1932 csum_insertion, priv->mode);
1933 } else {
1934 desc = first;
1935 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1936 if (unlikely(entry < 0))
1937 goto dma_map_err;
1938 }
1939
1940 for (i = 0; i < nfrags; i++) {
1941 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1942 int len = skb_frag_size(frag);
1943
1944 priv->tx_skbuff[entry] = NULL;
1945 entry = (++priv->cur_tx) % txsize;
1946 if (priv->extend_desc)
1947 desc = (struct dma_desc *)(priv->dma_etx + entry);
1948 else
1949 desc = priv->dma_tx + entry;
1950
1951 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1952 DMA_TO_DEVICE);
1953 if (dma_mapping_error(priv->device, desc->des2))
1954 goto dma_map_err; /* should reuse desc w/o issues */
1955
1956 priv->tx_skbuff_dma[entry].buf = desc->des2;
1957 priv->tx_skbuff_dma[entry].map_as_page = true;
1958 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1959 priv->mode);
1960 wmb();
1961 priv->hw->desc->set_tx_owner(desc);
1962 wmb();
1963 }
1964
1965 priv->tx_skbuff[entry] = skb;
1966
1967 /* Finalize the latest segment. */
1968 priv->hw->desc->close_tx_desc(desc);
1969
1970 wmb();
1971 /* According to the coalesce parameter the IC bit for the latest
1972 * segment could be reset and the timer re-started to invoke the
1973 * stmmac_tx function. This approach takes care about the fragments.
1974 */
1975 priv->tx_count_frames += nfrags + 1;
1976 if (priv->tx_coal_frames > priv->tx_count_frames) {
1977 priv->hw->desc->clear_tx_ic(desc);
1978 priv->xstats.tx_reset_ic_bit++;
1979 mod_timer(&priv->txtimer,
1980 STMMAC_COAL_TIMER(priv->tx_coal_timer));
1981 } else
1982 priv->tx_count_frames = 0;
1983
1984 /* To avoid raise condition */
1985 priv->hw->desc->set_tx_owner(first);
1986 wmb();
1987
1988 priv->cur_tx++;
1989
1990 if (netif_msg_pktdata(priv)) {
1991 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1992 __func__, (priv->cur_tx % txsize),
1993 (priv->dirty_tx % txsize), entry, first, nfrags);
1994
1995 if (priv->extend_desc)
1996 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1997 else
1998 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1999
2000 pr_debug(">>> frame to be transmitted: ");
2001 print_pkt(skb->data, skb->len);
2002 }
2003 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2004 if (netif_msg_hw(priv))
2005 pr_debug("%s: stop transmitted packets\n", __func__);
2006 netif_stop_queue(dev);
2007 }
2008
2009 dev->stats.tx_bytes += skb->len;
2010
2011 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2012 priv->hwts_tx_en)) {
2013 /* declare that device is doing timestamping */
2014 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2015 priv->hw->desc->enable_tx_timestamp(first);
2016 }
2017
2018 if (!priv->hwts_tx_en)
2019 skb_tx_timestamp(skb);
2020
2021 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2022
2023 spin_unlock(&priv->tx_lock);
2024 return NETDEV_TX_OK;
2025
2026 dma_map_err:
2027 spin_unlock(&priv->tx_lock);
2028 dev_err(priv->device, "Tx dma map failed\n");
2029 dev_kfree_skb(skb);
2030 priv->dev->stats.tx_dropped++;
2031 return NETDEV_TX_OK;
2032 }
2033
2034 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2035 {
2036 struct ethhdr *ehdr;
2037 u16 vlanid;
2038
2039 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2040 NETIF_F_HW_VLAN_CTAG_RX &&
2041 !__vlan_get_tag(skb, &vlanid)) {
2042 /* pop the vlan tag */
2043 ehdr = (struct ethhdr *)skb->data;
2044 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2045 skb_pull(skb, VLAN_HLEN);
2046 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2047 }
2048 }
2049
2050
2051 /**
2052 * stmmac_rx_refill: refill used skb preallocated buffers
2053 * @priv: driver private structure
2054 * Description : this is to reallocate the skb for the reception process
2055 * that is based on zero-copy.
2056 */
2057 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2058 {
2059 unsigned int rxsize = priv->dma_rx_size;
2060 int bfsize = priv->dma_buf_sz;
2061
2062 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2063 unsigned int entry = priv->dirty_rx % rxsize;
2064 struct dma_desc *p;
2065
2066 if (priv->extend_desc)
2067 p = (struct dma_desc *)(priv->dma_erx + entry);
2068 else
2069 p = priv->dma_rx + entry;
2070
2071 if (likely(priv->rx_skbuff[entry] == NULL)) {
2072 struct sk_buff *skb;
2073
2074 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2075
2076 if (unlikely(skb == NULL))
2077 break;
2078
2079 priv->rx_skbuff[entry] = skb;
2080 priv->rx_skbuff_dma[entry] =
2081 dma_map_single(priv->device, skb->data, bfsize,
2082 DMA_FROM_DEVICE);
2083 if (dma_mapping_error(priv->device,
2084 priv->rx_skbuff_dma[entry])) {
2085 dev_err(priv->device, "Rx dma map failed\n");
2086 dev_kfree_skb(skb);
2087 break;
2088 }
2089 p->des2 = priv->rx_skbuff_dma[entry];
2090
2091 priv->hw->mode->refill_desc3(priv, p);
2092
2093 if (netif_msg_rx_status(priv))
2094 pr_debug("\trefill entry #%d\n", entry);
2095 }
2096 wmb();
2097 priv->hw->desc->set_rx_owner(p);
2098 wmb();
2099 }
2100 }
2101
2102 /**
2103 * stmmac_rx_refill: refill used skb preallocated buffers
2104 * @priv: driver private structure
2105 * @limit: napi bugget.
2106 * Description : this the function called by the napi poll method.
2107 * It gets all the frames inside the ring.
2108 */
2109 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2110 {
2111 unsigned int rxsize = priv->dma_rx_size;
2112 unsigned int entry = priv->cur_rx % rxsize;
2113 unsigned int next_entry;
2114 unsigned int count = 0;
2115 int coe = priv->hw->rx_csum;
2116
2117 if (netif_msg_rx_status(priv)) {
2118 pr_debug("%s: descriptor ring:\n", __func__);
2119 if (priv->extend_desc)
2120 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2121 else
2122 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2123 }
2124 while (count < limit) {
2125 int status;
2126 struct dma_desc *p;
2127
2128 if (priv->extend_desc)
2129 p = (struct dma_desc *)(priv->dma_erx + entry);
2130 else
2131 p = priv->dma_rx + entry;
2132
2133 if (priv->hw->desc->get_rx_owner(p))
2134 break;
2135
2136 count++;
2137
2138 next_entry = (++priv->cur_rx) % rxsize;
2139 if (priv->extend_desc)
2140 prefetch(priv->dma_erx + next_entry);
2141 else
2142 prefetch(priv->dma_rx + next_entry);
2143
2144 /* read the status of the incoming frame */
2145 status = priv->hw->desc->rx_status(&priv->dev->stats,
2146 &priv->xstats, p);
2147 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2148 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2149 &priv->xstats,
2150 priv->dma_erx +
2151 entry);
2152 if (unlikely(status == discard_frame)) {
2153 priv->dev->stats.rx_errors++;
2154 if (priv->hwts_rx_en && !priv->extend_desc) {
2155 /* DESC2 & DESC3 will be overwitten by device
2156 * with timestamp value, hence reinitialize
2157 * them in stmmac_rx_refill() function so that
2158 * device can reuse it.
2159 */
2160 priv->rx_skbuff[entry] = NULL;
2161 dma_unmap_single(priv->device,
2162 priv->rx_skbuff_dma[entry],
2163 priv->dma_buf_sz,
2164 DMA_FROM_DEVICE);
2165 }
2166 } else {
2167 struct sk_buff *skb;
2168 int frame_len;
2169
2170 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2171
2172 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2173 * Type frames (LLC/LLC-SNAP)
2174 */
2175 if (unlikely(status != llc_snap))
2176 frame_len -= ETH_FCS_LEN;
2177
2178 if (netif_msg_rx_status(priv)) {
2179 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2180 p, entry, p->des2);
2181 if (frame_len > ETH_FRAME_LEN)
2182 pr_debug("\tframe size %d, COE: %d\n",
2183 frame_len, status);
2184 }
2185 skb = priv->rx_skbuff[entry];
2186 if (unlikely(!skb)) {
2187 pr_err("%s: Inconsistent Rx descriptor chain\n",
2188 priv->dev->name);
2189 priv->dev->stats.rx_dropped++;
2190 break;
2191 }
2192 prefetch(skb->data - NET_IP_ALIGN);
2193 priv->rx_skbuff[entry] = NULL;
2194
2195 stmmac_get_rx_hwtstamp(priv, entry, skb);
2196
2197 skb_put(skb, frame_len);
2198 dma_unmap_single(priv->device,
2199 priv->rx_skbuff_dma[entry],
2200 priv->dma_buf_sz, DMA_FROM_DEVICE);
2201
2202 if (netif_msg_pktdata(priv)) {
2203 pr_debug("frame received (%dbytes)", frame_len);
2204 print_pkt(skb->data, frame_len);
2205 }
2206
2207 stmmac_rx_vlan(priv->dev, skb);
2208
2209 skb->protocol = eth_type_trans(skb, priv->dev);
2210
2211 if (unlikely(!coe))
2212 skb_checksum_none_assert(skb);
2213 else
2214 skb->ip_summed = CHECKSUM_UNNECESSARY;
2215
2216 napi_gro_receive(&priv->napi, skb);
2217
2218 priv->dev->stats.rx_packets++;
2219 priv->dev->stats.rx_bytes += frame_len;
2220 }
2221 entry = next_entry;
2222 }
2223
2224 stmmac_rx_refill(priv);
2225
2226 priv->xstats.rx_pkt_n += count;
2227
2228 return count;
2229 }
2230
2231 /**
2232 * stmmac_poll - stmmac poll method (NAPI)
2233 * @napi : pointer to the napi structure.
2234 * @budget : maximum number of packets that the current CPU can receive from
2235 * all interfaces.
2236 * Description :
2237 * To look at the incoming frames and clear the tx resources.
2238 */
2239 static int stmmac_poll(struct napi_struct *napi, int budget)
2240 {
2241 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2242 int work_done = 0;
2243
2244 priv->xstats.napi_poll++;
2245 stmmac_tx_clean(priv);
2246
2247 work_done = stmmac_rx(priv, budget);
2248 if (work_done < budget) {
2249 napi_complete(napi);
2250 stmmac_enable_dma_irq(priv);
2251 }
2252 return work_done;
2253 }
2254
2255 /**
2256 * stmmac_tx_timeout
2257 * @dev : Pointer to net device structure
2258 * Description: this function is called when a packet transmission fails to
2259 * complete within a reasonable time. The driver will mark the error in the
2260 * netdev structure and arrange for the device to be reset to a sane state
2261 * in order to transmit a new packet.
2262 */
2263 static void stmmac_tx_timeout(struct net_device *dev)
2264 {
2265 struct stmmac_priv *priv = netdev_priv(dev);
2266
2267 /* Clear Tx resources and restart transmitting again */
2268 stmmac_tx_err(priv);
2269 }
2270
2271 /**
2272 * stmmac_set_rx_mode - entry point for multicast addressing
2273 * @dev : pointer to the device structure
2274 * Description:
2275 * This function is a driver entry point which gets called by the kernel
2276 * whenever multicast addresses must be enabled/disabled.
2277 * Return value:
2278 * void.
2279 */
2280 static void stmmac_set_rx_mode(struct net_device *dev)
2281 {
2282 struct stmmac_priv *priv = netdev_priv(dev);
2283
2284 priv->hw->mac->set_filter(priv->hw, dev);
2285 }
2286
2287 /**
2288 * stmmac_change_mtu - entry point to change MTU size for the device.
2289 * @dev : device pointer.
2290 * @new_mtu : the new MTU size for the device.
2291 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2292 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2293 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2294 * Return value:
2295 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2296 * file on failure.
2297 */
2298 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2299 {
2300 struct stmmac_priv *priv = netdev_priv(dev);
2301 int max_mtu;
2302
2303 if (netif_running(dev)) {
2304 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2305 return -EBUSY;
2306 }
2307
2308 if (priv->plat->enh_desc)
2309 max_mtu = JUMBO_LEN;
2310 else
2311 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2312
2313 if (priv->plat->maxmtu < max_mtu)
2314 max_mtu = priv->plat->maxmtu;
2315
2316 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2317 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2318 return -EINVAL;
2319 }
2320
2321 dev->mtu = new_mtu;
2322 netdev_update_features(dev);
2323
2324 return 0;
2325 }
2326
2327 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2328 netdev_features_t features)
2329 {
2330 struct stmmac_priv *priv = netdev_priv(dev);
2331
2332 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2333 features &= ~NETIF_F_RXCSUM;
2334
2335 if (!priv->plat->tx_coe)
2336 features &= ~NETIF_F_ALL_CSUM;
2337
2338 /* Some GMAC devices have a bugged Jumbo frame support that
2339 * needs to have the Tx COE disabled for oversized frames
2340 * (due to limited buffer sizes). In this case we disable
2341 * the TX csum insertionin the TDES and not use SF.
2342 */
2343 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2344 features &= ~NETIF_F_ALL_CSUM;
2345
2346 return features;
2347 }
2348
2349 static int stmmac_set_features(struct net_device *netdev,
2350 netdev_features_t features)
2351 {
2352 struct stmmac_priv *priv = netdev_priv(netdev);
2353
2354 /* Keep the COE Type in case of csum is supporting */
2355 if (features & NETIF_F_RXCSUM)
2356 priv->hw->rx_csum = priv->plat->rx_coe;
2357 else
2358 priv->hw->rx_csum = 0;
2359 /* No check needed because rx_coe has been set before and it will be
2360 * fixed in case of issue.
2361 */
2362 priv->hw->mac->rx_ipc(priv->hw);
2363
2364 return 0;
2365 }
2366
2367 /**
2368 * stmmac_interrupt - main ISR
2369 * @irq: interrupt number.
2370 * @dev_id: to pass the net device pointer.
2371 * Description: this is the main driver interrupt service routine.
2372 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2373 * interrupts.
2374 */
2375 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2376 {
2377 struct net_device *dev = (struct net_device *)dev_id;
2378 struct stmmac_priv *priv = netdev_priv(dev);
2379
2380 if (priv->irq_wake)
2381 pm_wakeup_event(priv->device, 0);
2382
2383 if (unlikely(!dev)) {
2384 pr_err("%s: invalid dev pointer\n", __func__);
2385 return IRQ_NONE;
2386 }
2387
2388 /* To handle GMAC own interrupts */
2389 if (priv->plat->has_gmac) {
2390 int status = priv->hw->mac->host_irq_status(priv->hw,
2391 &priv->xstats);
2392 if (unlikely(status)) {
2393 /* For LPI we need to save the tx status */
2394 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2395 priv->tx_path_in_lpi_mode = true;
2396 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2397 priv->tx_path_in_lpi_mode = false;
2398 }
2399 }
2400
2401 /* To handle DMA interrupts */
2402 stmmac_dma_interrupt(priv);
2403
2404 return IRQ_HANDLED;
2405 }
2406
2407 #ifdef CONFIG_NET_POLL_CONTROLLER
2408 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2409 * to allow network I/O with interrupts disabled.
2410 */
2411 static void stmmac_poll_controller(struct net_device *dev)
2412 {
2413 disable_irq(dev->irq);
2414 stmmac_interrupt(dev->irq, dev);
2415 enable_irq(dev->irq);
2416 }
2417 #endif
2418
2419 /**
2420 * stmmac_ioctl - Entry point for the Ioctl
2421 * @dev: Device pointer.
2422 * @rq: An IOCTL specefic structure, that can contain a pointer to
2423 * a proprietary structure used to pass information to the driver.
2424 * @cmd: IOCTL command
2425 * Description:
2426 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2427 */
2428 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2429 {
2430 struct stmmac_priv *priv = netdev_priv(dev);
2431 int ret = -EOPNOTSUPP;
2432
2433 if (!netif_running(dev))
2434 return -EINVAL;
2435
2436 switch (cmd) {
2437 case SIOCGMIIPHY:
2438 case SIOCGMIIREG:
2439 case SIOCSMIIREG:
2440 if (!priv->phydev)
2441 return -EINVAL;
2442 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2443 break;
2444 case SIOCSHWTSTAMP:
2445 ret = stmmac_hwtstamp_ioctl(dev, rq);
2446 break;
2447 default:
2448 break;
2449 }
2450
2451 return ret;
2452 }
2453
2454 #ifdef CONFIG_DEBUG_FS
2455 static struct dentry *stmmac_fs_dir;
2456 static struct dentry *stmmac_rings_status;
2457 static struct dentry *stmmac_dma_cap;
2458
2459 static void sysfs_display_ring(void *head, int size, int extend_desc,
2460 struct seq_file *seq)
2461 {
2462 int i;
2463 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2464 struct dma_desc *p = (struct dma_desc *)head;
2465
2466 for (i = 0; i < size; i++) {
2467 u64 x;
2468 if (extend_desc) {
2469 x = *(u64 *) ep;
2470 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2471 i, (unsigned int)virt_to_phys(ep),
2472 (unsigned int)x, (unsigned int)(x >> 32),
2473 ep->basic.des2, ep->basic.des3);
2474 ep++;
2475 } else {
2476 x = *(u64 *) p;
2477 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2478 i, (unsigned int)virt_to_phys(ep),
2479 (unsigned int)x, (unsigned int)(x >> 32),
2480 p->des2, p->des3);
2481 p++;
2482 }
2483 seq_printf(seq, "\n");
2484 }
2485 }
2486
2487 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2488 {
2489 struct net_device *dev = seq->private;
2490 struct stmmac_priv *priv = netdev_priv(dev);
2491 unsigned int txsize = priv->dma_tx_size;
2492 unsigned int rxsize = priv->dma_rx_size;
2493
2494 if (priv->extend_desc) {
2495 seq_printf(seq, "Extended RX descriptor ring:\n");
2496 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2497 seq_printf(seq, "Extended TX descriptor ring:\n");
2498 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2499 } else {
2500 seq_printf(seq, "RX descriptor ring:\n");
2501 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2502 seq_printf(seq, "TX descriptor ring:\n");
2503 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2504 }
2505
2506 return 0;
2507 }
2508
2509 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2510 {
2511 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2512 }
2513
2514 static const struct file_operations stmmac_rings_status_fops = {
2515 .owner = THIS_MODULE,
2516 .open = stmmac_sysfs_ring_open,
2517 .read = seq_read,
2518 .llseek = seq_lseek,
2519 .release = single_release,
2520 };
2521
2522 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2523 {
2524 struct net_device *dev = seq->private;
2525 struct stmmac_priv *priv = netdev_priv(dev);
2526
2527 if (!priv->hw_cap_support) {
2528 seq_printf(seq, "DMA HW features not supported\n");
2529 return 0;
2530 }
2531
2532 seq_printf(seq, "==============================\n");
2533 seq_printf(seq, "\tDMA HW features\n");
2534 seq_printf(seq, "==============================\n");
2535
2536 seq_printf(seq, "\t10/100 Mbps %s\n",
2537 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2538 seq_printf(seq, "\t1000 Mbps %s\n",
2539 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2540 seq_printf(seq, "\tHalf duple %s\n",
2541 (priv->dma_cap.half_duplex) ? "Y" : "N");
2542 seq_printf(seq, "\tHash Filter: %s\n",
2543 (priv->dma_cap.hash_filter) ? "Y" : "N");
2544 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2545 (priv->dma_cap.multi_addr) ? "Y" : "N");
2546 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2547 (priv->dma_cap.pcs) ? "Y" : "N");
2548 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2549 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2550 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2551 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2552 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2553 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2554 seq_printf(seq, "\tRMON module: %s\n",
2555 (priv->dma_cap.rmon) ? "Y" : "N");
2556 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2557 (priv->dma_cap.time_stamp) ? "Y" : "N");
2558 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2559 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2560 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2561 (priv->dma_cap.eee) ? "Y" : "N");
2562 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2563 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2564 (priv->dma_cap.tx_coe) ? "Y" : "N");
2565 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2566 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2567 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2568 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2569 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2570 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2571 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2572 priv->dma_cap.number_rx_channel);
2573 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2574 priv->dma_cap.number_tx_channel);
2575 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2576 (priv->dma_cap.enh_desc) ? "Y" : "N");
2577
2578 return 0;
2579 }
2580
2581 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2582 {
2583 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2584 }
2585
2586 static const struct file_operations stmmac_dma_cap_fops = {
2587 .owner = THIS_MODULE,
2588 .open = stmmac_sysfs_dma_cap_open,
2589 .read = seq_read,
2590 .llseek = seq_lseek,
2591 .release = single_release,
2592 };
2593
2594 static int stmmac_init_fs(struct net_device *dev)
2595 {
2596 /* Create debugfs entries */
2597 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2598
2599 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2600 pr_err("ERROR %s, debugfs create directory failed\n",
2601 STMMAC_RESOURCE_NAME);
2602
2603 return -ENOMEM;
2604 }
2605
2606 /* Entry to report DMA RX/TX rings */
2607 stmmac_rings_status = debugfs_create_file("descriptors_status",
2608 S_IRUGO, stmmac_fs_dir, dev,
2609 &stmmac_rings_status_fops);
2610
2611 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2612 pr_info("ERROR creating stmmac ring debugfs file\n");
2613 debugfs_remove(stmmac_fs_dir);
2614
2615 return -ENOMEM;
2616 }
2617
2618 /* Entry to report the DMA HW features */
2619 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2620 dev, &stmmac_dma_cap_fops);
2621
2622 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2623 pr_info("ERROR creating stmmac MMC debugfs file\n");
2624 debugfs_remove(stmmac_rings_status);
2625 debugfs_remove(stmmac_fs_dir);
2626
2627 return -ENOMEM;
2628 }
2629
2630 return 0;
2631 }
2632
2633 static void stmmac_exit_fs(void)
2634 {
2635 debugfs_remove(stmmac_rings_status);
2636 debugfs_remove(stmmac_dma_cap);
2637 debugfs_remove(stmmac_fs_dir);
2638 }
2639 #endif /* CONFIG_DEBUG_FS */
2640
2641 static const struct net_device_ops stmmac_netdev_ops = {
2642 .ndo_open = stmmac_open,
2643 .ndo_start_xmit = stmmac_xmit,
2644 .ndo_stop = stmmac_release,
2645 .ndo_change_mtu = stmmac_change_mtu,
2646 .ndo_fix_features = stmmac_fix_features,
2647 .ndo_set_features = stmmac_set_features,
2648 .ndo_set_rx_mode = stmmac_set_rx_mode,
2649 .ndo_tx_timeout = stmmac_tx_timeout,
2650 .ndo_do_ioctl = stmmac_ioctl,
2651 #ifdef CONFIG_NET_POLL_CONTROLLER
2652 .ndo_poll_controller = stmmac_poll_controller,
2653 #endif
2654 .ndo_set_mac_address = eth_mac_addr,
2655 };
2656
2657 /**
2658 * stmmac_hw_init - Init the MAC device
2659 * @priv: driver private structure
2660 * Description: this function detects which MAC device
2661 * (GMAC/MAC10-100) has to attached, checks the HW capability
2662 * (if supported) and sets the driver's features (for example
2663 * to use the ring or chaine mode or support the normal/enh
2664 * descriptor structure).
2665 */
2666 static int stmmac_hw_init(struct stmmac_priv *priv)
2667 {
2668 struct mac_device_info *mac;
2669
2670 /* Identify the MAC HW device */
2671 if (priv->plat->has_gmac) {
2672 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2673 mac = dwmac1000_setup(priv->ioaddr,
2674 priv->plat->multicast_filter_bins,
2675 priv->plat->unicast_filter_entries);
2676 } else {
2677 mac = dwmac100_setup(priv->ioaddr);
2678 }
2679 if (!mac)
2680 return -ENOMEM;
2681
2682 priv->hw = mac;
2683
2684 /* Get and dump the chip ID */
2685 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2686
2687 /* To use the chained or ring mode */
2688 if (chain_mode) {
2689 priv->hw->mode = &chain_mode_ops;
2690 pr_info(" Chain mode enabled\n");
2691 priv->mode = STMMAC_CHAIN_MODE;
2692 } else {
2693 priv->hw->mode = &ring_mode_ops;
2694 pr_info(" Ring mode enabled\n");
2695 priv->mode = STMMAC_RING_MODE;
2696 }
2697
2698 /* Get the HW capability (new GMAC newer than 3.50a) */
2699 priv->hw_cap_support = stmmac_get_hw_features(priv);
2700 if (priv->hw_cap_support) {
2701 pr_info(" DMA HW capability register supported");
2702
2703 /* We can override some gmac/dma configuration fields: e.g.
2704 * enh_desc, tx_coe (e.g. that are passed through the
2705 * platform) with the values from the HW capability
2706 * register (if supported).
2707 */
2708 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2709 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2710
2711 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2712
2713 if (priv->dma_cap.rx_coe_type2)
2714 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2715 else if (priv->dma_cap.rx_coe_type1)
2716 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2717
2718 } else
2719 pr_info(" No HW DMA feature register supported");
2720
2721 /* To use alternate (extended) or normal descriptor structures */
2722 stmmac_selec_desc_mode(priv);
2723
2724 if (priv->plat->rx_coe) {
2725 priv->hw->rx_csum = priv->plat->rx_coe;
2726 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2727 priv->plat->rx_coe);
2728 }
2729 if (priv->plat->tx_coe)
2730 pr_info(" TX Checksum insertion supported\n");
2731
2732 if (priv->plat->pmt) {
2733 pr_info(" Wake-Up On Lan supported\n");
2734 device_set_wakeup_capable(priv->device, 1);
2735 }
2736
2737 return 0;
2738 }
2739
2740 /**
2741 * stmmac_dvr_probe
2742 * @device: device pointer
2743 * @plat_dat: platform data pointer
2744 * @addr: iobase memory address
2745 * Description: this is the main probe function used to
2746 * call the alloc_etherdev, allocate the priv structure.
2747 */
2748 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2749 struct plat_stmmacenet_data *plat_dat,
2750 void __iomem *addr)
2751 {
2752 int ret = 0;
2753 struct net_device *ndev = NULL;
2754 struct stmmac_priv *priv;
2755
2756 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2757 if (!ndev)
2758 return NULL;
2759
2760 SET_NETDEV_DEV(ndev, device);
2761
2762 priv = netdev_priv(ndev);
2763 priv->device = device;
2764 priv->dev = ndev;
2765
2766 stmmac_set_ethtool_ops(ndev);
2767 priv->pause = pause;
2768 priv->plat = plat_dat;
2769 priv->ioaddr = addr;
2770 priv->dev->base_addr = (unsigned long)addr;
2771
2772 /* Verify driver arguments */
2773 stmmac_verify_args();
2774
2775 /* Override with kernel parameters if supplied XXX CRS XXX
2776 * this needs to have multiple instances
2777 */
2778 if ((phyaddr >= 0) && (phyaddr <= 31))
2779 priv->plat->phy_addr = phyaddr;
2780
2781 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2782 if (IS_ERR(priv->stmmac_clk)) {
2783 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2784 __func__);
2785 /* If failed to obtain stmmac_clk and specific clk_csr value
2786 * is NOT passed from the platform, probe fail.
2787 */
2788 if (!priv->plat->clk_csr) {
2789 ret = PTR_ERR(priv->stmmac_clk);
2790 goto error_clk_get;
2791 } else {
2792 priv->stmmac_clk = NULL;
2793 }
2794 }
2795 clk_prepare_enable(priv->stmmac_clk);
2796
2797 priv->stmmac_rst = devm_reset_control_get(priv->device,
2798 STMMAC_RESOURCE_NAME);
2799 if (IS_ERR(priv->stmmac_rst)) {
2800 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2801 ret = -EPROBE_DEFER;
2802 goto error_hw_init;
2803 }
2804 dev_info(priv->device, "no reset control found\n");
2805 priv->stmmac_rst = NULL;
2806 }
2807 if (priv->stmmac_rst)
2808 reset_control_deassert(priv->stmmac_rst);
2809
2810 /* Init MAC and get the capabilities */
2811 ret = stmmac_hw_init(priv);
2812 if (ret)
2813 goto error_hw_init;
2814
2815 ndev->netdev_ops = &stmmac_netdev_ops;
2816
2817 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2818 NETIF_F_RXCSUM;
2819 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2820 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2821 #ifdef STMMAC_VLAN_TAG_USED
2822 /* Both mac100 and gmac support receive VLAN tag detection */
2823 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2824 #endif
2825 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2826
2827 if (flow_ctrl)
2828 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2829
2830 /* Rx Watchdog is available in the COREs newer than the 3.40.
2831 * In some case, for example on bugged HW this feature
2832 * has to be disable and this can be done by passing the
2833 * riwt_off field from the platform.
2834 */
2835 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2836 priv->use_riwt = 1;
2837 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2838 }
2839
2840 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2841
2842 spin_lock_init(&priv->lock);
2843 spin_lock_init(&priv->tx_lock);
2844
2845 ret = register_netdev(ndev);
2846 if (ret) {
2847 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2848 goto error_netdev_register;
2849 }
2850
2851 /* If a specific clk_csr value is passed from the platform
2852 * this means that the CSR Clock Range selection cannot be
2853 * changed at run-time and it is fixed. Viceversa the driver'll try to
2854 * set the MDC clock dynamically according to the csr actual
2855 * clock input.
2856 */
2857 if (!priv->plat->clk_csr)
2858 stmmac_clk_csr_set(priv);
2859 else
2860 priv->clk_csr = priv->plat->clk_csr;
2861
2862 stmmac_check_pcs_mode(priv);
2863
2864 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2865 priv->pcs != STMMAC_PCS_RTBI) {
2866 /* MDIO bus Registration */
2867 ret = stmmac_mdio_register(ndev);
2868 if (ret < 0) {
2869 pr_debug("%s: MDIO bus (id: %d) registration failed",
2870 __func__, priv->plat->bus_id);
2871 goto error_mdio_register;
2872 }
2873 }
2874
2875 return priv;
2876
2877 error_mdio_register:
2878 unregister_netdev(ndev);
2879 error_netdev_register:
2880 netif_napi_del(&priv->napi);
2881 error_hw_init:
2882 clk_disable_unprepare(priv->stmmac_clk);
2883 error_clk_get:
2884 free_netdev(ndev);
2885
2886 return ERR_PTR(ret);
2887 }
2888
2889 /**
2890 * stmmac_dvr_remove
2891 * @ndev: net device pointer
2892 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2893 * changes the link status, releases the DMA descriptor rings.
2894 */
2895 int stmmac_dvr_remove(struct net_device *ndev)
2896 {
2897 struct stmmac_priv *priv = netdev_priv(ndev);
2898
2899 pr_info("%s:\n\tremoving driver", __func__);
2900
2901 priv->hw->dma->stop_rx(priv->ioaddr);
2902 priv->hw->dma->stop_tx(priv->ioaddr);
2903
2904 stmmac_set_mac(priv->ioaddr, false);
2905 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2906 priv->pcs != STMMAC_PCS_RTBI)
2907 stmmac_mdio_unregister(ndev);
2908 netif_carrier_off(ndev);
2909 unregister_netdev(ndev);
2910 if (priv->stmmac_rst)
2911 reset_control_assert(priv->stmmac_rst);
2912 clk_disable_unprepare(priv->stmmac_clk);
2913 free_netdev(ndev);
2914
2915 return 0;
2916 }
2917
2918 #ifdef CONFIG_PM
2919 int stmmac_suspend(struct net_device *ndev)
2920 {
2921 struct stmmac_priv *priv = netdev_priv(ndev);
2922 unsigned long flags;
2923
2924 if (!ndev || !netif_running(ndev))
2925 return 0;
2926
2927 if (priv->phydev)
2928 phy_stop(priv->phydev);
2929
2930 spin_lock_irqsave(&priv->lock, flags);
2931
2932 netif_device_detach(ndev);
2933 netif_stop_queue(ndev);
2934
2935 napi_disable(&priv->napi);
2936
2937 /* Stop TX/RX DMA */
2938 priv->hw->dma->stop_tx(priv->ioaddr);
2939 priv->hw->dma->stop_rx(priv->ioaddr);
2940
2941 stmmac_clear_descriptors(priv);
2942
2943 /* Enable Power down mode by programming the PMT regs */
2944 if (device_may_wakeup(priv->device)) {
2945 priv->hw->mac->pmt(priv->hw, priv->wolopts);
2946 priv->irq_wake = 1;
2947 } else {
2948 stmmac_set_mac(priv->ioaddr, false);
2949 pinctrl_pm_select_sleep_state(priv->device);
2950 /* Disable clock in case of PWM is off */
2951 clk_disable(priv->stmmac_clk);
2952 }
2953 spin_unlock_irqrestore(&priv->lock, flags);
2954
2955 priv->oldlink = 0;
2956 priv->speed = 0;
2957 priv->oldduplex = -1;
2958 return 0;
2959 }
2960
2961 int stmmac_resume(struct net_device *ndev)
2962 {
2963 struct stmmac_priv *priv = netdev_priv(ndev);
2964 unsigned long flags;
2965
2966 if (!netif_running(ndev))
2967 return 0;
2968
2969 spin_lock_irqsave(&priv->lock, flags);
2970
2971 /* Power Down bit, into the PM register, is cleared
2972 * automatically as soon as a magic packet or a Wake-up frame
2973 * is received. Anyway, it's better to manually clear
2974 * this bit because it can generate problems while resuming
2975 * from another devices (e.g. serial console).
2976 */
2977 if (device_may_wakeup(priv->device)) {
2978 priv->hw->mac->pmt(priv->hw, 0);
2979 priv->irq_wake = 0;
2980 } else {
2981 pinctrl_pm_select_default_state(priv->device);
2982 /* enable the clk prevously disabled */
2983 clk_enable(priv->stmmac_clk);
2984 /* reset the phy so that it's ready */
2985 if (priv->mii)
2986 stmmac_mdio_reset(priv->mii);
2987 }
2988
2989 netif_device_attach(ndev);
2990
2991 init_dma_desc_rings(ndev, GFP_ATOMIC);
2992 stmmac_hw_setup(ndev);
2993 stmmac_init_tx_coalesce(priv);
2994
2995 napi_enable(&priv->napi);
2996
2997 netif_start_queue(ndev);
2998
2999 spin_unlock_irqrestore(&priv->lock, flags);
3000
3001 if (priv->phydev)
3002 phy_start(priv->phydev);
3003
3004 return 0;
3005 }
3006 #endif /* CONFIG_PM */
3007
3008 /* Driver can be configured w/ and w/ both PCI and Platf drivers
3009 * depending on the configuration selected.
3010 */
3011 static int __init stmmac_init(void)
3012 {
3013 int ret;
3014
3015 ret = stmmac_register_platform();
3016 if (ret)
3017 goto err;
3018 ret = stmmac_register_pci();
3019 if (ret)
3020 goto err_pci;
3021 return 0;
3022 err_pci:
3023 stmmac_unregister_platform();
3024 err:
3025 pr_err("stmmac: driver registration failed\n");
3026 return ret;
3027 }
3028
3029 static void __exit stmmac_exit(void)
3030 {
3031 stmmac_unregister_platform();
3032 stmmac_unregister_pci();
3033 }
3034
3035 module_init(stmmac_init);
3036 module_exit(stmmac_exit);
3037
3038 #ifndef MODULE
3039 static int __init stmmac_cmdline_opt(char *str)
3040 {
3041 char *opt;
3042
3043 if (!str || !*str)
3044 return -EINVAL;
3045 while ((opt = strsep(&str, ",")) != NULL) {
3046 if (!strncmp(opt, "debug:", 6)) {
3047 if (kstrtoint(opt + 6, 0, &debug))
3048 goto err;
3049 } else if (!strncmp(opt, "phyaddr:", 8)) {
3050 if (kstrtoint(opt + 8, 0, &phyaddr))
3051 goto err;
3052 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3053 if (kstrtoint(opt + 11, 0, &dma_txsize))
3054 goto err;
3055 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3056 if (kstrtoint(opt + 11, 0, &dma_rxsize))
3057 goto err;
3058 } else if (!strncmp(opt, "buf_sz:", 7)) {
3059 if (kstrtoint(opt + 7, 0, &buf_sz))
3060 goto err;
3061 } else if (!strncmp(opt, "tc:", 3)) {
3062 if (kstrtoint(opt + 3, 0, &tc))
3063 goto err;
3064 } else if (!strncmp(opt, "watchdog:", 9)) {
3065 if (kstrtoint(opt + 9, 0, &watchdog))
3066 goto err;
3067 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3068 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3069 goto err;
3070 } else if (!strncmp(opt, "pause:", 6)) {
3071 if (kstrtoint(opt + 6, 0, &pause))
3072 goto err;
3073 } else if (!strncmp(opt, "eee_timer:", 10)) {
3074 if (kstrtoint(opt + 10, 0, &eee_timer))
3075 goto err;
3076 } else if (!strncmp(opt, "chain_mode:", 11)) {
3077 if (kstrtoint(opt + 11, 0, &chain_mode))
3078 goto err;
3079 }
3080 }
3081 return 0;
3082
3083 err:
3084 pr_err("%s: ERROR broken module parameter conversion", __func__);
3085 return -EINVAL;
3086 }
3087
3088 __setup("stmmaceth=", stmmac_cmdline_opt);
3089 #endif /* MODULE */
3090
3091 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3092 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3093 MODULE_LICENSE("GPL");
This page took 0.097963 seconds and 5 git commands to generate.