Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec...
[deliverable/linux.git] / drivers / net / ethernet / sun / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 *
19 * This driver uses the sungem driver (c) David Miller
20 * (davem@redhat.com) as its basis.
21 *
22 * The cassini chip has a number of features that distinguish it from
23 * the gem chip:
24 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
25 * load balancing (non-VLAN mode)
26 * batching of multiple packets
27 * multiple CPU dispatching
28 * page-based RX descriptor engine with separate completion rings
29 * Gigabit support (GMII and PCS interface)
30 * MIF link up/down detection works
31 *
32 * RX is handled by page sized buffers that are attached as fragments to
33 * the skb. here's what's done:
34 * -- driver allocates pages at a time and keeps reference counts
35 * on them.
36 * -- the upper protocol layers assume that the header is in the skb
37 * itself. as a result, cassini will copy a small amount (64 bytes)
38 * to make them happy.
39 * -- driver appends the rest of the data pages as frags to skbuffs
40 * and increments the reference count
41 * -- on page reclamation, the driver swaps the page with a spare page.
42 * if that page is still in use, it frees its reference to that page,
43 * and allocates a new page for use. otherwise, it just recycles the
44 * the page.
45 *
46 * NOTE: cassini can parse the header. however, it's not worth it
47 * as long as the network stack requires a header copy.
48 *
49 * TX has 4 queues. currently these queues are used in a round-robin
50 * fashion for load balancing. They can also be used for QoS. for that
51 * to work, however, QoS information needs to be exposed down to the driver
52 * level so that subqueues get targeted to particular transmit rings.
53 * alternatively, the queues can be configured via use of the all-purpose
54 * ioctl.
55 *
56 * RX DATA: the rx completion ring has all the info, but the rx desc
57 * ring has all of the data. RX can conceivably come in under multiple
58 * interrupts, but the INT# assignment needs to be set up properly by
59 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
60 * that. also, the two descriptor rings are designed to distinguish between
61 * encrypted and non-encrypted packets, but we use them for buffering
62 * instead.
63 *
64 * by default, the selective clear mask is set up to process rx packets.
65 */
66
67 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
68
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/types.h>
72 #include <linux/compiler.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/init.h>
76 #include <linux/interrupt.h>
77 #include <linux/vmalloc.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
84
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95 #include <linux/firmware.h>
96
97 #include <net/checksum.h>
98
99 #include <linux/atomic.h>
100 #include <asm/io.h>
101 #include <asm/byteorder.h>
102 #include <asm/uaccess.h>
103
104 #define cas_page_map(x) kmap_atomic((x))
105 #define cas_page_unmap(x) kunmap_atomic((x))
106 #define CAS_NCPUS num_online_cpus()
107
108 #define cas_skb_release(x) netif_rx(x)
109
110 /* select which firmware to use */
111 #define USE_HP_WORKAROUND
112 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
113 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
114
115 #include "cassini.h"
116
117 #define USE_TX_COMPWB /* use completion writeback registers */
118 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
119 #define USE_RX_BLANK /* hw interrupt mitigation */
120 #undef USE_ENTROPY_DEV /* don't test for entropy device */
121
122 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
123 * also, we need to make cp->lock finer-grained.
124 */
125 #undef USE_PCI_INTB
126 #undef USE_PCI_INTC
127 #undef USE_PCI_INTD
128 #undef USE_QOS
129
130 #undef USE_VPD_DEBUG /* debug vpd information if defined */
131
132 /* rx processing options */
133 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
134 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
135 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
136 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
137 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
138
139 #define DRV_MODULE_NAME "cassini"
140 #define DRV_MODULE_VERSION "1.6"
141 #define DRV_MODULE_RELDATE "21 May 2008"
142
143 #define CAS_DEF_MSG_ENABLE \
144 (NETIF_MSG_DRV | \
145 NETIF_MSG_PROBE | \
146 NETIF_MSG_LINK | \
147 NETIF_MSG_TIMER | \
148 NETIF_MSG_IFDOWN | \
149 NETIF_MSG_IFUP | \
150 NETIF_MSG_RX_ERR | \
151 NETIF_MSG_TX_ERR)
152
153 /* length of time before we decide the hardware is borked,
154 * and dev->tx_timeout() should be called to fix the problem
155 */
156 #define CAS_TX_TIMEOUT (HZ)
157 #define CAS_LINK_TIMEOUT (22*HZ/10)
158 #define CAS_LINK_FAST_TIMEOUT (1)
159
160 /* timeout values for state changing. these specify the number
161 * of 10us delays to be used before giving up.
162 */
163 #define STOP_TRIES_PHY 1000
164 #define STOP_TRIES 5000
165
166 /* specify a minimum frame size to deal with some fifo issues
167 * max mtu == 2 * page size - ethernet header - 64 - swivel =
168 * 2 * page_size - 0x50
169 */
170 #define CAS_MIN_FRAME 97
171 #define CAS_1000MB_MIN_FRAME 255
172 #define CAS_MIN_MTU 60
173 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
174
175 #if 1
176 /*
177 * Eliminate these and use separate atomic counters for each, to
178 * avoid a race condition.
179 */
180 #else
181 #define CAS_RESET_MTU 1
182 #define CAS_RESET_ALL 2
183 #define CAS_RESET_SPARE 3
184 #endif
185
186 static char version[] =
187 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
188
189 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
190 static int link_mode;
191
192 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
193 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
194 MODULE_LICENSE("GPL");
195 MODULE_FIRMWARE("sun/cassini.bin");
196 module_param(cassini_debug, int, 0);
197 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
198 module_param(link_mode, int, 0);
199 MODULE_PARM_DESC(link_mode, "default link mode");
200
201 /*
202 * Work around for a PCS bug in which the link goes down due to the chip
203 * being confused and never showing a link status of "up."
204 */
205 #define DEFAULT_LINKDOWN_TIMEOUT 5
206 /*
207 * Value in seconds, for user input.
208 */
209 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
210 module_param(linkdown_timeout, int, 0);
211 MODULE_PARM_DESC(linkdown_timeout,
212 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
213
214 /*
215 * value in 'ticks' (units used by jiffies). Set when we init the
216 * module because 'HZ' in actually a function call on some flavors of
217 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
218 */
219 static int link_transition_timeout;
220
221
222
223 static u16 link_modes[] = {
224 BMCR_ANENABLE, /* 0 : autoneg */
225 0, /* 1 : 10bt half duplex */
226 BMCR_SPEED100, /* 2 : 100bt half duplex */
227 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
228 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
229 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
230 };
231
232 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
233 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
235 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 { 0, }
238 };
239
240 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
241
242 static void cas_set_link_modes(struct cas *cp);
243
244 static inline void cas_lock_tx(struct cas *cp)
245 {
246 int i;
247
248 for (i = 0; i < N_TX_RINGS; i++)
249 spin_lock_nested(&cp->tx_lock[i], i);
250 }
251
252 static inline void cas_lock_all(struct cas *cp)
253 {
254 spin_lock_irq(&cp->lock);
255 cas_lock_tx(cp);
256 }
257
258 /* WTZ: QA was finding deadlock problems with the previous
259 * versions after long test runs with multiple cards per machine.
260 * See if replacing cas_lock_all with safer versions helps. The
261 * symptoms QA is reporting match those we'd expect if interrupts
262 * aren't being properly restored, and we fixed a previous deadlock
263 * with similar symptoms by using save/restore versions in other
264 * places.
265 */
266 #define cas_lock_all_save(cp, flags) \
267 do { \
268 struct cas *xxxcp = (cp); \
269 spin_lock_irqsave(&xxxcp->lock, flags); \
270 cas_lock_tx(xxxcp); \
271 } while (0)
272
273 static inline void cas_unlock_tx(struct cas *cp)
274 {
275 int i;
276
277 for (i = N_TX_RINGS; i > 0; i--)
278 spin_unlock(&cp->tx_lock[i - 1]);
279 }
280
281 static inline void cas_unlock_all(struct cas *cp)
282 {
283 cas_unlock_tx(cp);
284 spin_unlock_irq(&cp->lock);
285 }
286
287 #define cas_unlock_all_restore(cp, flags) \
288 do { \
289 struct cas *xxxcp = (cp); \
290 cas_unlock_tx(xxxcp); \
291 spin_unlock_irqrestore(&xxxcp->lock, flags); \
292 } while (0)
293
294 static void cas_disable_irq(struct cas *cp, const int ring)
295 {
296 /* Make sure we won't get any more interrupts */
297 if (ring == 0) {
298 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
299 return;
300 }
301
302 /* disable completion interrupts and selectively mask */
303 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
304 switch (ring) {
305 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
306 #ifdef USE_PCI_INTB
307 case 1:
308 #endif
309 #ifdef USE_PCI_INTC
310 case 2:
311 #endif
312 #ifdef USE_PCI_INTD
313 case 3:
314 #endif
315 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
316 cp->regs + REG_PLUS_INTRN_MASK(ring));
317 break;
318 #endif
319 default:
320 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
321 REG_PLUS_INTRN_MASK(ring));
322 break;
323 }
324 }
325 }
326
327 static inline void cas_mask_intr(struct cas *cp)
328 {
329 int i;
330
331 for (i = 0; i < N_RX_COMP_RINGS; i++)
332 cas_disable_irq(cp, i);
333 }
334
335 static void cas_enable_irq(struct cas *cp, const int ring)
336 {
337 if (ring == 0) { /* all but TX_DONE */
338 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
339 return;
340 }
341
342 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
343 switch (ring) {
344 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
345 #ifdef USE_PCI_INTB
346 case 1:
347 #endif
348 #ifdef USE_PCI_INTC
349 case 2:
350 #endif
351 #ifdef USE_PCI_INTD
352 case 3:
353 #endif
354 writel(INTRN_MASK_RX_EN, cp->regs +
355 REG_PLUS_INTRN_MASK(ring));
356 break;
357 #endif
358 default:
359 break;
360 }
361 }
362 }
363
364 static inline void cas_unmask_intr(struct cas *cp)
365 {
366 int i;
367
368 for (i = 0; i < N_RX_COMP_RINGS; i++)
369 cas_enable_irq(cp, i);
370 }
371
372 static inline void cas_entropy_gather(struct cas *cp)
373 {
374 #ifdef USE_ENTROPY_DEV
375 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
376 return;
377
378 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
379 readl(cp->regs + REG_ENTROPY_IV),
380 sizeof(uint64_t)*8);
381 #endif
382 }
383
384 static inline void cas_entropy_reset(struct cas *cp)
385 {
386 #ifdef USE_ENTROPY_DEV
387 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
388 return;
389
390 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
391 cp->regs + REG_BIM_LOCAL_DEV_EN);
392 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
393 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
394
395 /* if we read back 0x0, we don't have an entropy device */
396 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
397 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
398 #endif
399 }
400
401 /* access to the phy. the following assumes that we've initialized the MIF to
402 * be in frame rather than bit-bang mode
403 */
404 static u16 cas_phy_read(struct cas *cp, int reg)
405 {
406 u32 cmd;
407 int limit = STOP_TRIES_PHY;
408
409 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
410 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
411 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
412 cmd |= MIF_FRAME_TURN_AROUND_MSB;
413 writel(cmd, cp->regs + REG_MIF_FRAME);
414
415 /* poll for completion */
416 while (limit-- > 0) {
417 udelay(10);
418 cmd = readl(cp->regs + REG_MIF_FRAME);
419 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
420 return cmd & MIF_FRAME_DATA_MASK;
421 }
422 return 0xFFFF; /* -1 */
423 }
424
425 static int cas_phy_write(struct cas *cp, int reg, u16 val)
426 {
427 int limit = STOP_TRIES_PHY;
428 u32 cmd;
429
430 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
431 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
432 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
433 cmd |= MIF_FRAME_TURN_AROUND_MSB;
434 cmd |= val & MIF_FRAME_DATA_MASK;
435 writel(cmd, cp->regs + REG_MIF_FRAME);
436
437 /* poll for completion */
438 while (limit-- > 0) {
439 udelay(10);
440 cmd = readl(cp->regs + REG_MIF_FRAME);
441 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
442 return 0;
443 }
444 return -1;
445 }
446
447 static void cas_phy_powerup(struct cas *cp)
448 {
449 u16 ctl = cas_phy_read(cp, MII_BMCR);
450
451 if ((ctl & BMCR_PDOWN) == 0)
452 return;
453 ctl &= ~BMCR_PDOWN;
454 cas_phy_write(cp, MII_BMCR, ctl);
455 }
456
457 static void cas_phy_powerdown(struct cas *cp)
458 {
459 u16 ctl = cas_phy_read(cp, MII_BMCR);
460
461 if (ctl & BMCR_PDOWN)
462 return;
463 ctl |= BMCR_PDOWN;
464 cas_phy_write(cp, MII_BMCR, ctl);
465 }
466
467 /* cp->lock held. note: the last put_page will free the buffer */
468 static int cas_page_free(struct cas *cp, cas_page_t *page)
469 {
470 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
471 PCI_DMA_FROMDEVICE);
472 __free_pages(page->buffer, cp->page_order);
473 kfree(page);
474 return 0;
475 }
476
477 #ifdef RX_COUNT_BUFFERS
478 #define RX_USED_ADD(x, y) ((x)->used += (y))
479 #define RX_USED_SET(x, y) ((x)->used = (y))
480 #else
481 #define RX_USED_ADD(x, y)
482 #define RX_USED_SET(x, y)
483 #endif
484
485 /* local page allocation routines for the receive buffers. jumbo pages
486 * require at least 8K contiguous and 8K aligned buffers.
487 */
488 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
489 {
490 cas_page_t *page;
491
492 page = kmalloc(sizeof(cas_page_t), flags);
493 if (!page)
494 return NULL;
495
496 INIT_LIST_HEAD(&page->list);
497 RX_USED_SET(page, 0);
498 page->buffer = alloc_pages(flags, cp->page_order);
499 if (!page->buffer)
500 goto page_err;
501 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
502 cp->page_size, PCI_DMA_FROMDEVICE);
503 return page;
504
505 page_err:
506 kfree(page);
507 return NULL;
508 }
509
510 /* initialize spare pool of rx buffers, but allocate during the open */
511 static void cas_spare_init(struct cas *cp)
512 {
513 spin_lock(&cp->rx_inuse_lock);
514 INIT_LIST_HEAD(&cp->rx_inuse_list);
515 spin_unlock(&cp->rx_inuse_lock);
516
517 spin_lock(&cp->rx_spare_lock);
518 INIT_LIST_HEAD(&cp->rx_spare_list);
519 cp->rx_spares_needed = RX_SPARE_COUNT;
520 spin_unlock(&cp->rx_spare_lock);
521 }
522
523 /* used on close. free all the spare buffers. */
524 static void cas_spare_free(struct cas *cp)
525 {
526 struct list_head list, *elem, *tmp;
527
528 /* free spare buffers */
529 INIT_LIST_HEAD(&list);
530 spin_lock(&cp->rx_spare_lock);
531 list_splice_init(&cp->rx_spare_list, &list);
532 spin_unlock(&cp->rx_spare_lock);
533 list_for_each_safe(elem, tmp, &list) {
534 cas_page_free(cp, list_entry(elem, cas_page_t, list));
535 }
536
537 INIT_LIST_HEAD(&list);
538 #if 1
539 /*
540 * Looks like Adrian had protected this with a different
541 * lock than used everywhere else to manipulate this list.
542 */
543 spin_lock(&cp->rx_inuse_lock);
544 list_splice_init(&cp->rx_inuse_list, &list);
545 spin_unlock(&cp->rx_inuse_lock);
546 #else
547 spin_lock(&cp->rx_spare_lock);
548 list_splice_init(&cp->rx_inuse_list, &list);
549 spin_unlock(&cp->rx_spare_lock);
550 #endif
551 list_for_each_safe(elem, tmp, &list) {
552 cas_page_free(cp, list_entry(elem, cas_page_t, list));
553 }
554 }
555
556 /* replenish spares if needed */
557 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
558 {
559 struct list_head list, *elem, *tmp;
560 int needed, i;
561
562 /* check inuse list. if we don't need any more free buffers,
563 * just free it
564 */
565
566 /* make a local copy of the list */
567 INIT_LIST_HEAD(&list);
568 spin_lock(&cp->rx_inuse_lock);
569 list_splice_init(&cp->rx_inuse_list, &list);
570 spin_unlock(&cp->rx_inuse_lock);
571
572 list_for_each_safe(elem, tmp, &list) {
573 cas_page_t *page = list_entry(elem, cas_page_t, list);
574
575 /*
576 * With the lockless pagecache, cassini buffering scheme gets
577 * slightly less accurate: we might find that a page has an
578 * elevated reference count here, due to a speculative ref,
579 * and skip it as in-use. Ideally we would be able to reclaim
580 * it. However this would be such a rare case, it doesn't
581 * matter too much as we should pick it up the next time round.
582 *
583 * Importantly, if we find that the page has a refcount of 1
584 * here (our refcount), then we know it is definitely not inuse
585 * so we can reuse it.
586 */
587 if (page_count(page->buffer) > 1)
588 continue;
589
590 list_del(elem);
591 spin_lock(&cp->rx_spare_lock);
592 if (cp->rx_spares_needed > 0) {
593 list_add(elem, &cp->rx_spare_list);
594 cp->rx_spares_needed--;
595 spin_unlock(&cp->rx_spare_lock);
596 } else {
597 spin_unlock(&cp->rx_spare_lock);
598 cas_page_free(cp, page);
599 }
600 }
601
602 /* put any inuse buffers back on the list */
603 if (!list_empty(&list)) {
604 spin_lock(&cp->rx_inuse_lock);
605 list_splice(&list, &cp->rx_inuse_list);
606 spin_unlock(&cp->rx_inuse_lock);
607 }
608
609 spin_lock(&cp->rx_spare_lock);
610 needed = cp->rx_spares_needed;
611 spin_unlock(&cp->rx_spare_lock);
612 if (!needed)
613 return;
614
615 /* we still need spares, so try to allocate some */
616 INIT_LIST_HEAD(&list);
617 i = 0;
618 while (i < needed) {
619 cas_page_t *spare = cas_page_alloc(cp, flags);
620 if (!spare)
621 break;
622 list_add(&spare->list, &list);
623 i++;
624 }
625
626 spin_lock(&cp->rx_spare_lock);
627 list_splice(&list, &cp->rx_spare_list);
628 cp->rx_spares_needed -= i;
629 spin_unlock(&cp->rx_spare_lock);
630 }
631
632 /* pull a page from the list. */
633 static cas_page_t *cas_page_dequeue(struct cas *cp)
634 {
635 struct list_head *entry;
636 int recover;
637
638 spin_lock(&cp->rx_spare_lock);
639 if (list_empty(&cp->rx_spare_list)) {
640 /* try to do a quick recovery */
641 spin_unlock(&cp->rx_spare_lock);
642 cas_spare_recover(cp, GFP_ATOMIC);
643 spin_lock(&cp->rx_spare_lock);
644 if (list_empty(&cp->rx_spare_list)) {
645 netif_err(cp, rx_err, cp->dev,
646 "no spare buffers available\n");
647 spin_unlock(&cp->rx_spare_lock);
648 return NULL;
649 }
650 }
651
652 entry = cp->rx_spare_list.next;
653 list_del(entry);
654 recover = ++cp->rx_spares_needed;
655 spin_unlock(&cp->rx_spare_lock);
656
657 /* trigger the timer to do the recovery */
658 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
659 #if 1
660 atomic_inc(&cp->reset_task_pending);
661 atomic_inc(&cp->reset_task_pending_spare);
662 schedule_work(&cp->reset_task);
663 #else
664 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
665 schedule_work(&cp->reset_task);
666 #endif
667 }
668 return list_entry(entry, cas_page_t, list);
669 }
670
671
672 static void cas_mif_poll(struct cas *cp, const int enable)
673 {
674 u32 cfg;
675
676 cfg = readl(cp->regs + REG_MIF_CFG);
677 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
678
679 if (cp->phy_type & CAS_PHY_MII_MDIO1)
680 cfg |= MIF_CFG_PHY_SELECT;
681
682 /* poll and interrupt on link status change. */
683 if (enable) {
684 cfg |= MIF_CFG_POLL_EN;
685 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
686 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
687 }
688 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
689 cp->regs + REG_MIF_MASK);
690 writel(cfg, cp->regs + REG_MIF_CFG);
691 }
692
693 /* Must be invoked under cp->lock */
694 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
695 {
696 u16 ctl;
697 #if 1
698 int lcntl;
699 int changed = 0;
700 int oldstate = cp->lstate;
701 int link_was_not_down = !(oldstate == link_down);
702 #endif
703 /* Setup link parameters */
704 if (!ep)
705 goto start_aneg;
706 lcntl = cp->link_cntl;
707 if (ep->autoneg == AUTONEG_ENABLE)
708 cp->link_cntl = BMCR_ANENABLE;
709 else {
710 u32 speed = ethtool_cmd_speed(ep);
711 cp->link_cntl = 0;
712 if (speed == SPEED_100)
713 cp->link_cntl |= BMCR_SPEED100;
714 else if (speed == SPEED_1000)
715 cp->link_cntl |= CAS_BMCR_SPEED1000;
716 if (ep->duplex == DUPLEX_FULL)
717 cp->link_cntl |= BMCR_FULLDPLX;
718 }
719 #if 1
720 changed = (lcntl != cp->link_cntl);
721 #endif
722 start_aneg:
723 if (cp->lstate == link_up) {
724 netdev_info(cp->dev, "PCS link down\n");
725 } else {
726 if (changed) {
727 netdev_info(cp->dev, "link configuration changed\n");
728 }
729 }
730 cp->lstate = link_down;
731 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
732 if (!cp->hw_running)
733 return;
734 #if 1
735 /*
736 * WTZ: If the old state was link_up, we turn off the carrier
737 * to replicate everything we do elsewhere on a link-down
738 * event when we were already in a link-up state..
739 */
740 if (oldstate == link_up)
741 netif_carrier_off(cp->dev);
742 if (changed && link_was_not_down) {
743 /*
744 * WTZ: This branch will simply schedule a full reset after
745 * we explicitly changed link modes in an ioctl. See if this
746 * fixes the link-problems we were having for forced mode.
747 */
748 atomic_inc(&cp->reset_task_pending);
749 atomic_inc(&cp->reset_task_pending_all);
750 schedule_work(&cp->reset_task);
751 cp->timer_ticks = 0;
752 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
753 return;
754 }
755 #endif
756 if (cp->phy_type & CAS_PHY_SERDES) {
757 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
758
759 if (cp->link_cntl & BMCR_ANENABLE) {
760 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
761 cp->lstate = link_aneg;
762 } else {
763 if (cp->link_cntl & BMCR_FULLDPLX)
764 val |= PCS_MII_CTRL_DUPLEX;
765 val &= ~PCS_MII_AUTONEG_EN;
766 cp->lstate = link_force_ok;
767 }
768 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
769 writel(val, cp->regs + REG_PCS_MII_CTRL);
770
771 } else {
772 cas_mif_poll(cp, 0);
773 ctl = cas_phy_read(cp, MII_BMCR);
774 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
775 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
776 ctl |= cp->link_cntl;
777 if (ctl & BMCR_ANENABLE) {
778 ctl |= BMCR_ANRESTART;
779 cp->lstate = link_aneg;
780 } else {
781 cp->lstate = link_force_ok;
782 }
783 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
784 cas_phy_write(cp, MII_BMCR, ctl);
785 cas_mif_poll(cp, 1);
786 }
787
788 cp->timer_ticks = 0;
789 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
790 }
791
792 /* Must be invoked under cp->lock. */
793 static int cas_reset_mii_phy(struct cas *cp)
794 {
795 int limit = STOP_TRIES_PHY;
796 u16 val;
797
798 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
799 udelay(100);
800 while (--limit) {
801 val = cas_phy_read(cp, MII_BMCR);
802 if ((val & BMCR_RESET) == 0)
803 break;
804 udelay(10);
805 }
806 return limit <= 0;
807 }
808
809 static void cas_saturn_firmware_init(struct cas *cp)
810 {
811 const struct firmware *fw;
812 const char fw_name[] = "sun/cassini.bin";
813 int err;
814
815 if (PHY_NS_DP83065 != cp->phy_id)
816 return;
817
818 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
819 if (err) {
820 pr_err("Failed to load firmware \"%s\"\n",
821 fw_name);
822 return;
823 }
824 if (fw->size < 2) {
825 pr_err("bogus length %zu in \"%s\"\n",
826 fw->size, fw_name);
827 goto out;
828 }
829 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
830 cp->fw_size = fw->size - 2;
831 cp->fw_data = vmalloc(cp->fw_size);
832 if (!cp->fw_data)
833 goto out;
834 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
835 out:
836 release_firmware(fw);
837 }
838
839 static void cas_saturn_firmware_load(struct cas *cp)
840 {
841 int i;
842
843 if (!cp->fw_data)
844 return;
845
846 cas_phy_powerdown(cp);
847
848 /* expanded memory access mode */
849 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
850
851 /* pointer configuration for new firmware */
852 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
853 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
854 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
855 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
856 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
857 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
858 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
859 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
860
861 /* download new firmware */
862 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
863 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
864 for (i = 0; i < cp->fw_size; i++)
865 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
866
867 /* enable firmware */
868 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
869 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
870 }
871
872
873 /* phy initialization */
874 static void cas_phy_init(struct cas *cp)
875 {
876 u16 val;
877
878 /* if we're in MII/GMII mode, set up phy */
879 if (CAS_PHY_MII(cp->phy_type)) {
880 writel(PCS_DATAPATH_MODE_MII,
881 cp->regs + REG_PCS_DATAPATH_MODE);
882
883 cas_mif_poll(cp, 0);
884 cas_reset_mii_phy(cp); /* take out of isolate mode */
885
886 if (PHY_LUCENT_B0 == cp->phy_id) {
887 /* workaround link up/down issue with lucent */
888 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
889 cas_phy_write(cp, MII_BMCR, 0x00f1);
890 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
891
892 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
893 /* workarounds for broadcom phy */
894 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
895 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
896 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
897 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
898 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
899 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
900 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
901 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
903 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
904 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
905
906 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
907 val = cas_phy_read(cp, BROADCOM_MII_REG4);
908 val = cas_phy_read(cp, BROADCOM_MII_REG4);
909 if (val & 0x0080) {
910 /* link workaround */
911 cas_phy_write(cp, BROADCOM_MII_REG4,
912 val & ~0x0080);
913 }
914
915 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
916 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
917 SATURN_PCFG_FSI : 0x0,
918 cp->regs + REG_SATURN_PCFG);
919
920 /* load firmware to address 10Mbps auto-negotiation
921 * issue. NOTE: this will need to be changed if the
922 * default firmware gets fixed.
923 */
924 if (PHY_NS_DP83065 == cp->phy_id) {
925 cas_saturn_firmware_load(cp);
926 }
927 cas_phy_powerup(cp);
928 }
929
930 /* advertise capabilities */
931 val = cas_phy_read(cp, MII_BMCR);
932 val &= ~BMCR_ANENABLE;
933 cas_phy_write(cp, MII_BMCR, val);
934 udelay(10);
935
936 cas_phy_write(cp, MII_ADVERTISE,
937 cas_phy_read(cp, MII_ADVERTISE) |
938 (ADVERTISE_10HALF | ADVERTISE_10FULL |
939 ADVERTISE_100HALF | ADVERTISE_100FULL |
940 CAS_ADVERTISE_PAUSE |
941 CAS_ADVERTISE_ASYM_PAUSE));
942
943 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
944 /* make sure that we don't advertise half
945 * duplex to avoid a chip issue
946 */
947 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
948 val &= ~CAS_ADVERTISE_1000HALF;
949 val |= CAS_ADVERTISE_1000FULL;
950 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
951 }
952
953 } else {
954 /* reset pcs for serdes */
955 u32 val;
956 int limit;
957
958 writel(PCS_DATAPATH_MODE_SERDES,
959 cp->regs + REG_PCS_DATAPATH_MODE);
960
961 /* enable serdes pins on saturn */
962 if (cp->cas_flags & CAS_FLAG_SATURN)
963 writel(0, cp->regs + REG_SATURN_PCFG);
964
965 /* Reset PCS unit. */
966 val = readl(cp->regs + REG_PCS_MII_CTRL);
967 val |= PCS_MII_RESET;
968 writel(val, cp->regs + REG_PCS_MII_CTRL);
969
970 limit = STOP_TRIES;
971 while (--limit > 0) {
972 udelay(10);
973 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
974 PCS_MII_RESET) == 0)
975 break;
976 }
977 if (limit <= 0)
978 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
979 readl(cp->regs + REG_PCS_STATE_MACHINE));
980
981 /* Make sure PCS is disabled while changing advertisement
982 * configuration.
983 */
984 writel(0x0, cp->regs + REG_PCS_CFG);
985
986 /* Advertise all capabilities except half-duplex. */
987 val = readl(cp->regs + REG_PCS_MII_ADVERT);
988 val &= ~PCS_MII_ADVERT_HD;
989 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
990 PCS_MII_ADVERT_ASYM_PAUSE);
991 writel(val, cp->regs + REG_PCS_MII_ADVERT);
992
993 /* enable PCS */
994 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
995
996 /* pcs workaround: enable sync detect */
997 writel(PCS_SERDES_CTRL_SYNCD_EN,
998 cp->regs + REG_PCS_SERDES_CTRL);
999 }
1000 }
1001
1002
1003 static int cas_pcs_link_check(struct cas *cp)
1004 {
1005 u32 stat, state_machine;
1006 int retval = 0;
1007
1008 /* The link status bit latches on zero, so you must
1009 * read it twice in such a case to see a transition
1010 * to the link being up.
1011 */
1012 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1013 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1014 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015
1016 /* The remote-fault indication is only valid
1017 * when autoneg has completed.
1018 */
1019 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1020 PCS_MII_STATUS_REMOTE_FAULT)) ==
1021 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1022 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1023
1024 /* work around link detection issue by querying the PCS state
1025 * machine directly.
1026 */
1027 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1028 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1029 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1030 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1031 stat |= PCS_MII_STATUS_LINK_STATUS;
1032 }
1033
1034 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1035 if (cp->lstate != link_up) {
1036 if (cp->opened) {
1037 cp->lstate = link_up;
1038 cp->link_transition = LINK_TRANSITION_LINK_UP;
1039
1040 cas_set_link_modes(cp);
1041 netif_carrier_on(cp->dev);
1042 }
1043 }
1044 } else if (cp->lstate == link_up) {
1045 cp->lstate = link_down;
1046 if (link_transition_timeout != 0 &&
1047 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1048 !cp->link_transition_jiffies_valid) {
1049 /*
1050 * force a reset, as a workaround for the
1051 * link-failure problem. May want to move this to a
1052 * point a bit earlier in the sequence. If we had
1053 * generated a reset a short time ago, we'll wait for
1054 * the link timer to check the status until a
1055 * timer expires (link_transistion_jiffies_valid is
1056 * true when the timer is running.) Instead of using
1057 * a system timer, we just do a check whenever the
1058 * link timer is running - this clears the flag after
1059 * a suitable delay.
1060 */
1061 retval = 1;
1062 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1063 cp->link_transition_jiffies = jiffies;
1064 cp->link_transition_jiffies_valid = 1;
1065 } else {
1066 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1067 }
1068 netif_carrier_off(cp->dev);
1069 if (cp->opened)
1070 netif_info(cp, link, cp->dev, "PCS link down\n");
1071
1072 /* Cassini only: if you force a mode, there can be
1073 * sync problems on link down. to fix that, the following
1074 * things need to be checked:
1075 * 1) read serialink state register
1076 * 2) read pcs status register to verify link down.
1077 * 3) if link down and serial link == 0x03, then you need
1078 * to global reset the chip.
1079 */
1080 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1081 /* should check to see if we're in a forced mode */
1082 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1083 if (stat == 0x03)
1084 return 1;
1085 }
1086 } else if (cp->lstate == link_down) {
1087 if (link_transition_timeout != 0 &&
1088 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1089 !cp->link_transition_jiffies_valid) {
1090 /* force a reset, as a workaround for the
1091 * link-failure problem. May want to move
1092 * this to a point a bit earlier in the
1093 * sequence.
1094 */
1095 retval = 1;
1096 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1097 cp->link_transition_jiffies = jiffies;
1098 cp->link_transition_jiffies_valid = 1;
1099 } else {
1100 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1101 }
1102 }
1103
1104 return retval;
1105 }
1106
1107 static int cas_pcs_interrupt(struct net_device *dev,
1108 struct cas *cp, u32 status)
1109 {
1110 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1111
1112 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1113 return 0;
1114 return cas_pcs_link_check(cp);
1115 }
1116
1117 static int cas_txmac_interrupt(struct net_device *dev,
1118 struct cas *cp, u32 status)
1119 {
1120 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1121
1122 if (!txmac_stat)
1123 return 0;
1124
1125 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1126 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1127
1128 /* Defer timer expiration is quite normal,
1129 * don't even log the event.
1130 */
1131 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1133 return 0;
1134
1135 spin_lock(&cp->stat_lock[0]);
1136 if (txmac_stat & MAC_TX_UNDERRUN) {
1137 netdev_err(dev, "TX MAC xmit underrun\n");
1138 cp->net_stats[0].tx_fifo_errors++;
1139 }
1140
1141 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1142 netdev_err(dev, "TX MAC max packet size error\n");
1143 cp->net_stats[0].tx_errors++;
1144 }
1145
1146 /* The rest are all cases of one of the 16-bit TX
1147 * counters expiring.
1148 */
1149 if (txmac_stat & MAC_TX_COLL_NORMAL)
1150 cp->net_stats[0].collisions += 0x10000;
1151
1152 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1153 cp->net_stats[0].tx_aborted_errors += 0x10000;
1154 cp->net_stats[0].collisions += 0x10000;
1155 }
1156
1157 if (txmac_stat & MAC_TX_COLL_LATE) {
1158 cp->net_stats[0].tx_aborted_errors += 0x10000;
1159 cp->net_stats[0].collisions += 0x10000;
1160 }
1161 spin_unlock(&cp->stat_lock[0]);
1162
1163 /* We do not keep track of MAC_TX_COLL_FIRST and
1164 * MAC_TX_PEAK_ATTEMPTS events.
1165 */
1166 return 0;
1167 }
1168
1169 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1170 {
1171 cas_hp_inst_t *inst;
1172 u32 val;
1173 int i;
1174
1175 i = 0;
1176 while ((inst = firmware) && inst->note) {
1177 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1178
1179 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1180 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1181 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1182
1183 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1184 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1185 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1190 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1191
1192 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1193 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1194 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1196 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1197 ++firmware;
1198 ++i;
1199 }
1200 }
1201
1202 static void cas_init_rx_dma(struct cas *cp)
1203 {
1204 u64 desc_dma = cp->block_dvma;
1205 u32 val;
1206 int i, size;
1207
1208 /* rx free descriptors */
1209 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1210 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1211 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1212 if ((N_RX_DESC_RINGS > 1) &&
1213 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1214 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1215 writel(val, cp->regs + REG_RX_CFG);
1216
1217 val = (unsigned long) cp->init_rxds[0] -
1218 (unsigned long) cp->init_block;
1219 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1220 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1221 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1222
1223 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1224 /* rx desc 2 is for IPSEC packets. however,
1225 * we don't it that for that purpose.
1226 */
1227 val = (unsigned long) cp->init_rxds[1] -
1228 (unsigned long) cp->init_block;
1229 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1230 writel((desc_dma + val) & 0xffffffff, cp->regs +
1231 REG_PLUS_RX_DB1_LOW);
1232 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1233 REG_PLUS_RX_KICK1);
1234 }
1235
1236 /* rx completion registers */
1237 val = (unsigned long) cp->init_rxcs[0] -
1238 (unsigned long) cp->init_block;
1239 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1240 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1241
1242 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1243 /* rx comp 2-4 */
1244 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1245 val = (unsigned long) cp->init_rxcs[i] -
1246 (unsigned long) cp->init_block;
1247 writel((desc_dma + val) >> 32, cp->regs +
1248 REG_PLUS_RX_CBN_HI(i));
1249 writel((desc_dma + val) & 0xffffffff, cp->regs +
1250 REG_PLUS_RX_CBN_LOW(i));
1251 }
1252 }
1253
1254 /* read selective clear regs to prevent spurious interrupts
1255 * on reset because complete == kick.
1256 * selective clear set up to prevent interrupts on resets
1257 */
1258 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1259 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1260 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1261 for (i = 1; i < N_RX_COMP_RINGS; i++)
1262 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1263
1264 /* 2 is different from 3 and 4 */
1265 if (N_RX_COMP_RINGS > 1)
1266 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1267 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1268
1269 for (i = 2; i < N_RX_COMP_RINGS; i++)
1270 writel(INTR_RX_DONE_ALT,
1271 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1272 }
1273
1274 /* set up pause thresholds */
1275 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1276 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1277 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1278 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1279 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1280
1281 /* zero out dma reassembly buffers */
1282 for (i = 0; i < 64; i++) {
1283 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1284 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1285 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1287 }
1288
1289 /* make sure address register is 0 for normal operation */
1290 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1291 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1292
1293 /* interrupt mitigation */
1294 #ifdef USE_RX_BLANK
1295 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1296 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1297 writel(val, cp->regs + REG_RX_BLANK);
1298 #else
1299 writel(0x0, cp->regs + REG_RX_BLANK);
1300 #endif
1301
1302 /* interrupt generation as a function of low water marks for
1303 * free desc and completion entries. these are used to trigger
1304 * housekeeping for rx descs. we don't use the free interrupt
1305 * as it's not very useful
1306 */
1307 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1308 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1309 writel(val, cp->regs + REG_RX_AE_THRESH);
1310 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1311 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1312 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1313 }
1314
1315 /* Random early detect registers. useful for congestion avoidance.
1316 * this should be tunable.
1317 */
1318 writel(0x0, cp->regs + REG_RX_RED);
1319
1320 /* receive page sizes. default == 2K (0x800) */
1321 val = 0;
1322 if (cp->page_size == 0x1000)
1323 val = 0x1;
1324 else if (cp->page_size == 0x2000)
1325 val = 0x2;
1326 else if (cp->page_size == 0x4000)
1327 val = 0x3;
1328
1329 /* round mtu + offset. constrain to page size. */
1330 size = cp->dev->mtu + 64;
1331 if (size > cp->page_size)
1332 size = cp->page_size;
1333
1334 if (size <= 0x400)
1335 i = 0x0;
1336 else if (size <= 0x800)
1337 i = 0x1;
1338 else if (size <= 0x1000)
1339 i = 0x2;
1340 else
1341 i = 0x3;
1342
1343 cp->mtu_stride = 1 << (i + 10);
1344 val = CAS_BASE(RX_PAGE_SIZE, val);
1345 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1346 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1348 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1349
1350 /* enable the header parser if desired */
1351 if (CAS_HP_FIRMWARE == cas_prog_null)
1352 return;
1353
1354 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1355 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1356 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1357 writel(val, cp->regs + REG_HP_CFG);
1358 }
1359
1360 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1361 {
1362 memset(rxc, 0, sizeof(*rxc));
1363 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1364 }
1365
1366 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1367 * flipping is protected by the fact that the chip will not
1368 * hand back the same page index while it's being processed.
1369 */
1370 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1371 {
1372 cas_page_t *page = cp->rx_pages[1][index];
1373 cas_page_t *new;
1374
1375 if (page_count(page->buffer) == 1)
1376 return page;
1377
1378 new = cas_page_dequeue(cp);
1379 if (new) {
1380 spin_lock(&cp->rx_inuse_lock);
1381 list_add(&page->list, &cp->rx_inuse_list);
1382 spin_unlock(&cp->rx_inuse_lock);
1383 }
1384 return new;
1385 }
1386
1387 /* this needs to be changed if we actually use the ENC RX DESC ring */
1388 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1389 const int index)
1390 {
1391 cas_page_t **page0 = cp->rx_pages[0];
1392 cas_page_t **page1 = cp->rx_pages[1];
1393
1394 /* swap if buffer is in use */
1395 if (page_count(page0[index]->buffer) > 1) {
1396 cas_page_t *new = cas_page_spare(cp, index);
1397 if (new) {
1398 page1[index] = page0[index];
1399 page0[index] = new;
1400 }
1401 }
1402 RX_USED_SET(page0[index], 0);
1403 return page0[index];
1404 }
1405
1406 static void cas_clean_rxds(struct cas *cp)
1407 {
1408 /* only clean ring 0 as ring 1 is used for spare buffers */
1409 struct cas_rx_desc *rxd = cp->init_rxds[0];
1410 int i, size;
1411
1412 /* release all rx flows */
1413 for (i = 0; i < N_RX_FLOWS; i++) {
1414 struct sk_buff *skb;
1415 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1416 cas_skb_release(skb);
1417 }
1418 }
1419
1420 /* initialize descriptors */
1421 size = RX_DESC_RINGN_SIZE(0);
1422 for (i = 0; i < size; i++) {
1423 cas_page_t *page = cas_page_swap(cp, 0, i);
1424 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1425 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1426 CAS_BASE(RX_INDEX_RING, 0));
1427 }
1428
1429 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1430 cp->rx_last[0] = 0;
1431 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1432 }
1433
1434 static void cas_clean_rxcs(struct cas *cp)
1435 {
1436 int i, j;
1437
1438 /* take ownership of rx comp descriptors */
1439 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1440 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1441 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1442 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1443 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1444 cas_rxc_init(rxc + j);
1445 }
1446 }
1447 }
1448
1449 #if 0
1450 /* When we get a RX fifo overflow, the RX unit is probably hung
1451 * so we do the following.
1452 *
1453 * If any part of the reset goes wrong, we return 1 and that causes the
1454 * whole chip to be reset.
1455 */
1456 static int cas_rxmac_reset(struct cas *cp)
1457 {
1458 struct net_device *dev = cp->dev;
1459 int limit;
1460 u32 val;
1461
1462 /* First, reset MAC RX. */
1463 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1464 for (limit = 0; limit < STOP_TRIES; limit++) {
1465 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1466 break;
1467 udelay(10);
1468 }
1469 if (limit == STOP_TRIES) {
1470 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1471 return 1;
1472 }
1473
1474 /* Second, disable RX DMA. */
1475 writel(0, cp->regs + REG_RX_CFG);
1476 for (limit = 0; limit < STOP_TRIES; limit++) {
1477 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1478 break;
1479 udelay(10);
1480 }
1481 if (limit == STOP_TRIES) {
1482 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1483 return 1;
1484 }
1485
1486 mdelay(5);
1487
1488 /* Execute RX reset command. */
1489 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1490 for (limit = 0; limit < STOP_TRIES; limit++) {
1491 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1492 break;
1493 udelay(10);
1494 }
1495 if (limit == STOP_TRIES) {
1496 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1497 return 1;
1498 }
1499
1500 /* reset driver rx state */
1501 cas_clean_rxds(cp);
1502 cas_clean_rxcs(cp);
1503
1504 /* Now, reprogram the rest of RX unit. */
1505 cas_init_rx_dma(cp);
1506
1507 /* re-enable */
1508 val = readl(cp->regs + REG_RX_CFG);
1509 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1510 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1511 val = readl(cp->regs + REG_MAC_RX_CFG);
1512 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1513 return 0;
1514 }
1515 #endif
1516
1517 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1518 u32 status)
1519 {
1520 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1521
1522 if (!stat)
1523 return 0;
1524
1525 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1526
1527 /* these are all rollovers */
1528 spin_lock(&cp->stat_lock[0]);
1529 if (stat & MAC_RX_ALIGN_ERR)
1530 cp->net_stats[0].rx_frame_errors += 0x10000;
1531
1532 if (stat & MAC_RX_CRC_ERR)
1533 cp->net_stats[0].rx_crc_errors += 0x10000;
1534
1535 if (stat & MAC_RX_LEN_ERR)
1536 cp->net_stats[0].rx_length_errors += 0x10000;
1537
1538 if (stat & MAC_RX_OVERFLOW) {
1539 cp->net_stats[0].rx_over_errors++;
1540 cp->net_stats[0].rx_fifo_errors++;
1541 }
1542
1543 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1544 * events.
1545 */
1546 spin_unlock(&cp->stat_lock[0]);
1547 return 0;
1548 }
1549
1550 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1551 u32 status)
1552 {
1553 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1554
1555 if (!stat)
1556 return 0;
1557
1558 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1559 "mac interrupt, stat: 0x%x\n", stat);
1560
1561 /* This interrupt is just for pause frame and pause
1562 * tracking. It is useful for diagnostics and debug
1563 * but probably by default we will mask these events.
1564 */
1565 if (stat & MAC_CTRL_PAUSE_STATE)
1566 cp->pause_entered++;
1567
1568 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1569 cp->pause_last_time_recvd = (stat >> 16);
1570
1571 return 0;
1572 }
1573
1574
1575 /* Must be invoked under cp->lock. */
1576 static inline int cas_mdio_link_not_up(struct cas *cp)
1577 {
1578 u16 val;
1579
1580 switch (cp->lstate) {
1581 case link_force_ret:
1582 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1583 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1584 cp->timer_ticks = 5;
1585 cp->lstate = link_force_ok;
1586 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1587 break;
1588
1589 case link_aneg:
1590 val = cas_phy_read(cp, MII_BMCR);
1591
1592 /* Try forced modes. we try things in the following order:
1593 * 1000 full -> 100 full/half -> 10 half
1594 */
1595 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1596 val |= BMCR_FULLDPLX;
1597 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1598 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1599 cas_phy_write(cp, MII_BMCR, val);
1600 cp->timer_ticks = 5;
1601 cp->lstate = link_force_try;
1602 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1603 break;
1604
1605 case link_force_try:
1606 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1607 val = cas_phy_read(cp, MII_BMCR);
1608 cp->timer_ticks = 5;
1609 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1610 val &= ~CAS_BMCR_SPEED1000;
1611 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1612 cas_phy_write(cp, MII_BMCR, val);
1613 break;
1614 }
1615
1616 if (val & BMCR_SPEED100) {
1617 if (val & BMCR_FULLDPLX) /* fd failed */
1618 val &= ~BMCR_FULLDPLX;
1619 else { /* 100Mbps failed */
1620 val &= ~BMCR_SPEED100;
1621 }
1622 cas_phy_write(cp, MII_BMCR, val);
1623 break;
1624 }
1625 default:
1626 break;
1627 }
1628 return 0;
1629 }
1630
1631
1632 /* must be invoked with cp->lock held */
1633 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1634 {
1635 int restart;
1636
1637 if (bmsr & BMSR_LSTATUS) {
1638 /* Ok, here we got a link. If we had it due to a forced
1639 * fallback, and we were configured for autoneg, we
1640 * retry a short autoneg pass. If you know your hub is
1641 * broken, use ethtool ;)
1642 */
1643 if ((cp->lstate == link_force_try) &&
1644 (cp->link_cntl & BMCR_ANENABLE)) {
1645 cp->lstate = link_force_ret;
1646 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1647 cas_mif_poll(cp, 0);
1648 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1649 cp->timer_ticks = 5;
1650 if (cp->opened)
1651 netif_info(cp, link, cp->dev,
1652 "Got link after fallback, retrying autoneg once...\n");
1653 cas_phy_write(cp, MII_BMCR,
1654 cp->link_fcntl | BMCR_ANENABLE |
1655 BMCR_ANRESTART);
1656 cas_mif_poll(cp, 1);
1657
1658 } else if (cp->lstate != link_up) {
1659 cp->lstate = link_up;
1660 cp->link_transition = LINK_TRANSITION_LINK_UP;
1661
1662 if (cp->opened) {
1663 cas_set_link_modes(cp);
1664 netif_carrier_on(cp->dev);
1665 }
1666 }
1667 return 0;
1668 }
1669
1670 /* link not up. if the link was previously up, we restart the
1671 * whole process
1672 */
1673 restart = 0;
1674 if (cp->lstate == link_up) {
1675 cp->lstate = link_down;
1676 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1677
1678 netif_carrier_off(cp->dev);
1679 if (cp->opened)
1680 netif_info(cp, link, cp->dev, "Link down\n");
1681 restart = 1;
1682
1683 } else if (++cp->timer_ticks > 10)
1684 cas_mdio_link_not_up(cp);
1685
1686 return restart;
1687 }
1688
1689 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1690 u32 status)
1691 {
1692 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1693 u16 bmsr;
1694
1695 /* check for a link change */
1696 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1697 return 0;
1698
1699 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1700 return cas_mii_link_check(cp, bmsr);
1701 }
1702
1703 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1704 u32 status)
1705 {
1706 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1707
1708 if (!stat)
1709 return 0;
1710
1711 netdev_err(dev, "PCI error [%04x:%04x]",
1712 stat, readl(cp->regs + REG_BIM_DIAG));
1713
1714 /* cassini+ has this reserved */
1715 if ((stat & PCI_ERR_BADACK) &&
1716 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1717 pr_cont(" <No ACK64# during ABS64 cycle>");
1718
1719 if (stat & PCI_ERR_DTRTO)
1720 pr_cont(" <Delayed transaction timeout>");
1721 if (stat & PCI_ERR_OTHER)
1722 pr_cont(" <other>");
1723 if (stat & PCI_ERR_BIM_DMA_WRITE)
1724 pr_cont(" <BIM DMA 0 write req>");
1725 if (stat & PCI_ERR_BIM_DMA_READ)
1726 pr_cont(" <BIM DMA 0 read req>");
1727 pr_cont("\n");
1728
1729 if (stat & PCI_ERR_OTHER) {
1730 u16 cfg;
1731
1732 /* Interrogate PCI config space for the
1733 * true cause.
1734 */
1735 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1736 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1737 if (cfg & PCI_STATUS_PARITY)
1738 netdev_err(dev, "PCI parity error detected\n");
1739 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1740 netdev_err(dev, "PCI target abort\n");
1741 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1742 netdev_err(dev, "PCI master acks target abort\n");
1743 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1744 netdev_err(dev, "PCI master abort\n");
1745 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1746 netdev_err(dev, "PCI system error SERR#\n");
1747 if (cfg & PCI_STATUS_DETECTED_PARITY)
1748 netdev_err(dev, "PCI parity error\n");
1749
1750 /* Write the error bits back to clear them. */
1751 cfg &= (PCI_STATUS_PARITY |
1752 PCI_STATUS_SIG_TARGET_ABORT |
1753 PCI_STATUS_REC_TARGET_ABORT |
1754 PCI_STATUS_REC_MASTER_ABORT |
1755 PCI_STATUS_SIG_SYSTEM_ERROR |
1756 PCI_STATUS_DETECTED_PARITY);
1757 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1758 }
1759
1760 /* For all PCI errors, we should reset the chip. */
1761 return 1;
1762 }
1763
1764 /* All non-normal interrupt conditions get serviced here.
1765 * Returns non-zero if we should just exit the interrupt
1766 * handler right now (ie. if we reset the card which invalidates
1767 * all of the other original irq status bits).
1768 */
1769 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1770 u32 status)
1771 {
1772 if (status & INTR_RX_TAG_ERROR) {
1773 /* corrupt RX tag framing */
1774 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1775 "corrupt rx tag framing\n");
1776 spin_lock(&cp->stat_lock[0]);
1777 cp->net_stats[0].rx_errors++;
1778 spin_unlock(&cp->stat_lock[0]);
1779 goto do_reset;
1780 }
1781
1782 if (status & INTR_RX_LEN_MISMATCH) {
1783 /* length mismatch. */
1784 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1785 "length mismatch for rx frame\n");
1786 spin_lock(&cp->stat_lock[0]);
1787 cp->net_stats[0].rx_errors++;
1788 spin_unlock(&cp->stat_lock[0]);
1789 goto do_reset;
1790 }
1791
1792 if (status & INTR_PCS_STATUS) {
1793 if (cas_pcs_interrupt(dev, cp, status))
1794 goto do_reset;
1795 }
1796
1797 if (status & INTR_TX_MAC_STATUS) {
1798 if (cas_txmac_interrupt(dev, cp, status))
1799 goto do_reset;
1800 }
1801
1802 if (status & INTR_RX_MAC_STATUS) {
1803 if (cas_rxmac_interrupt(dev, cp, status))
1804 goto do_reset;
1805 }
1806
1807 if (status & INTR_MAC_CTRL_STATUS) {
1808 if (cas_mac_interrupt(dev, cp, status))
1809 goto do_reset;
1810 }
1811
1812 if (status & INTR_MIF_STATUS) {
1813 if (cas_mif_interrupt(dev, cp, status))
1814 goto do_reset;
1815 }
1816
1817 if (status & INTR_PCI_ERROR_STATUS) {
1818 if (cas_pci_interrupt(dev, cp, status))
1819 goto do_reset;
1820 }
1821 return 0;
1822
1823 do_reset:
1824 #if 1
1825 atomic_inc(&cp->reset_task_pending);
1826 atomic_inc(&cp->reset_task_pending_all);
1827 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1828 schedule_work(&cp->reset_task);
1829 #else
1830 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1831 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1832 schedule_work(&cp->reset_task);
1833 #endif
1834 return 1;
1835 }
1836
1837 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1838 * determining whether to do a netif_stop/wakeup
1839 */
1840 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1841 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1842 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1843 const int len)
1844 {
1845 unsigned long off = addr + len;
1846
1847 if (CAS_TABORT(cp) == 1)
1848 return 0;
1849 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1850 return 0;
1851 return TX_TARGET_ABORT_LEN;
1852 }
1853
1854 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1855 {
1856 struct cas_tx_desc *txds;
1857 struct sk_buff **skbs;
1858 struct net_device *dev = cp->dev;
1859 int entry, count;
1860
1861 spin_lock(&cp->tx_lock[ring]);
1862 txds = cp->init_txds[ring];
1863 skbs = cp->tx_skbs[ring];
1864 entry = cp->tx_old[ring];
1865
1866 count = TX_BUFF_COUNT(ring, entry, limit);
1867 while (entry != limit) {
1868 struct sk_buff *skb = skbs[entry];
1869 dma_addr_t daddr;
1870 u32 dlen;
1871 int frag;
1872
1873 if (!skb) {
1874 /* this should never occur */
1875 entry = TX_DESC_NEXT(ring, entry);
1876 continue;
1877 }
1878
1879 /* however, we might get only a partial skb release. */
1880 count -= skb_shinfo(skb)->nr_frags +
1881 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1882 if (count < 0)
1883 break;
1884
1885 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1886 "tx[%d] done, slot %d\n", ring, entry);
1887
1888 skbs[entry] = NULL;
1889 cp->tx_tiny_use[ring][entry].nbufs = 0;
1890
1891 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1892 struct cas_tx_desc *txd = txds + entry;
1893
1894 daddr = le64_to_cpu(txd->buffer);
1895 dlen = CAS_VAL(TX_DESC_BUFLEN,
1896 le64_to_cpu(txd->control));
1897 pci_unmap_page(cp->pdev, daddr, dlen,
1898 PCI_DMA_TODEVICE);
1899 entry = TX_DESC_NEXT(ring, entry);
1900
1901 /* tiny buffer may follow */
1902 if (cp->tx_tiny_use[ring][entry].used) {
1903 cp->tx_tiny_use[ring][entry].used = 0;
1904 entry = TX_DESC_NEXT(ring, entry);
1905 }
1906 }
1907
1908 spin_lock(&cp->stat_lock[ring]);
1909 cp->net_stats[ring].tx_packets++;
1910 cp->net_stats[ring].tx_bytes += skb->len;
1911 spin_unlock(&cp->stat_lock[ring]);
1912 dev_kfree_skb_irq(skb);
1913 }
1914 cp->tx_old[ring] = entry;
1915
1916 /* this is wrong for multiple tx rings. the net device needs
1917 * multiple queues for this to do the right thing. we wait
1918 * for 2*packets to be available when using tiny buffers
1919 */
1920 if (netif_queue_stopped(dev) &&
1921 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1922 netif_wake_queue(dev);
1923 spin_unlock(&cp->tx_lock[ring]);
1924 }
1925
1926 static void cas_tx(struct net_device *dev, struct cas *cp,
1927 u32 status)
1928 {
1929 int limit, ring;
1930 #ifdef USE_TX_COMPWB
1931 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1932 #endif
1933 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1934 "tx interrupt, status: 0x%x, %llx\n",
1935 status, (unsigned long long)compwb);
1936 /* process all the rings */
1937 for (ring = 0; ring < N_TX_RINGS; ring++) {
1938 #ifdef USE_TX_COMPWB
1939 /* use the completion writeback registers */
1940 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1941 CAS_VAL(TX_COMPWB_LSB, compwb);
1942 compwb = TX_COMPWB_NEXT(compwb);
1943 #else
1944 limit = readl(cp->regs + REG_TX_COMPN(ring));
1945 #endif
1946 if (cp->tx_old[ring] != limit)
1947 cas_tx_ringN(cp, ring, limit);
1948 }
1949 }
1950
1951
1952 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1953 int entry, const u64 *words,
1954 struct sk_buff **skbref)
1955 {
1956 int dlen, hlen, len, i, alloclen;
1957 int off, swivel = RX_SWIVEL_OFF_VAL;
1958 struct cas_page *page;
1959 struct sk_buff *skb;
1960 void *addr, *crcaddr;
1961 __sum16 csum;
1962 char *p;
1963
1964 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1965 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1966 len = hlen + dlen;
1967
1968 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1969 alloclen = len;
1970 else
1971 alloclen = max(hlen, RX_COPY_MIN);
1972
1973 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1974 if (skb == NULL)
1975 return -1;
1976
1977 *skbref = skb;
1978 skb_reserve(skb, swivel);
1979
1980 p = skb->data;
1981 addr = crcaddr = NULL;
1982 if (hlen) { /* always copy header pages */
1983 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1984 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1985 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1986 swivel;
1987
1988 i = hlen;
1989 if (!dlen) /* attach FCS */
1990 i += cp->crc_size;
1991 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1992 PCI_DMA_FROMDEVICE);
1993 addr = cas_page_map(page->buffer);
1994 memcpy(p, addr + off, i);
1995 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1996 PCI_DMA_FROMDEVICE);
1997 cas_page_unmap(addr);
1998 RX_USED_ADD(page, 0x100);
1999 p += hlen;
2000 swivel = 0;
2001 }
2002
2003
2004 if (alloclen < (hlen + dlen)) {
2005 skb_frag_t *frag = skb_shinfo(skb)->frags;
2006
2007 /* normal or jumbo packets. we use frags */
2008 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2009 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2010 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2011
2012 hlen = min(cp->page_size - off, dlen);
2013 if (hlen < 0) {
2014 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2015 "rx page overflow: %d\n", hlen);
2016 dev_kfree_skb_irq(skb);
2017 return -1;
2018 }
2019 i = hlen;
2020 if (i == dlen) /* attach FCS */
2021 i += cp->crc_size;
2022 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2023 PCI_DMA_FROMDEVICE);
2024
2025 /* make sure we always copy a header */
2026 swivel = 0;
2027 if (p == (char *) skb->data) { /* not split */
2028 addr = cas_page_map(page->buffer);
2029 memcpy(p, addr + off, RX_COPY_MIN);
2030 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2031 PCI_DMA_FROMDEVICE);
2032 cas_page_unmap(addr);
2033 off += RX_COPY_MIN;
2034 swivel = RX_COPY_MIN;
2035 RX_USED_ADD(page, cp->mtu_stride);
2036 } else {
2037 RX_USED_ADD(page, hlen);
2038 }
2039 skb_put(skb, alloclen);
2040
2041 skb_shinfo(skb)->nr_frags++;
2042 skb->data_len += hlen - swivel;
2043 skb->truesize += hlen - swivel;
2044 skb->len += hlen - swivel;
2045
2046 __skb_frag_set_page(frag, page->buffer);
2047 __skb_frag_ref(frag);
2048 frag->page_offset = off;
2049 skb_frag_size_set(frag, hlen - swivel);
2050
2051 /* any more data? */
2052 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2053 hlen = dlen;
2054 off = 0;
2055
2056 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2057 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2058 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2059 hlen + cp->crc_size,
2060 PCI_DMA_FROMDEVICE);
2061 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2062 hlen + cp->crc_size,
2063 PCI_DMA_FROMDEVICE);
2064
2065 skb_shinfo(skb)->nr_frags++;
2066 skb->data_len += hlen;
2067 skb->len += hlen;
2068 frag++;
2069
2070 __skb_frag_set_page(frag, page->buffer);
2071 __skb_frag_ref(frag);
2072 frag->page_offset = 0;
2073 skb_frag_size_set(frag, hlen);
2074 RX_USED_ADD(page, hlen + cp->crc_size);
2075 }
2076
2077 if (cp->crc_size) {
2078 addr = cas_page_map(page->buffer);
2079 crcaddr = addr + off + hlen;
2080 }
2081
2082 } else {
2083 /* copying packet */
2084 if (!dlen)
2085 goto end_copy_pkt;
2086
2087 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2088 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2089 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2090 hlen = min(cp->page_size - off, dlen);
2091 if (hlen < 0) {
2092 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2093 "rx page overflow: %d\n", hlen);
2094 dev_kfree_skb_irq(skb);
2095 return -1;
2096 }
2097 i = hlen;
2098 if (i == dlen) /* attach FCS */
2099 i += cp->crc_size;
2100 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2101 PCI_DMA_FROMDEVICE);
2102 addr = cas_page_map(page->buffer);
2103 memcpy(p, addr + off, i);
2104 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2105 PCI_DMA_FROMDEVICE);
2106 cas_page_unmap(addr);
2107 if (p == (char *) skb->data) /* not split */
2108 RX_USED_ADD(page, cp->mtu_stride);
2109 else
2110 RX_USED_ADD(page, i);
2111
2112 /* any more data? */
2113 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2114 p += hlen;
2115 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2116 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2117 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2118 dlen + cp->crc_size,
2119 PCI_DMA_FROMDEVICE);
2120 addr = cas_page_map(page->buffer);
2121 memcpy(p, addr, dlen + cp->crc_size);
2122 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2123 dlen + cp->crc_size,
2124 PCI_DMA_FROMDEVICE);
2125 cas_page_unmap(addr);
2126 RX_USED_ADD(page, dlen + cp->crc_size);
2127 }
2128 end_copy_pkt:
2129 if (cp->crc_size) {
2130 addr = NULL;
2131 crcaddr = skb->data + alloclen;
2132 }
2133 skb_put(skb, alloclen);
2134 }
2135
2136 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2137 if (cp->crc_size) {
2138 /* checksum includes FCS. strip it out. */
2139 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2140 csum_unfold(csum)));
2141 if (addr)
2142 cas_page_unmap(addr);
2143 }
2144 skb->protocol = eth_type_trans(skb, cp->dev);
2145 if (skb->protocol == htons(ETH_P_IP)) {
2146 skb->csum = csum_unfold(~csum);
2147 skb->ip_summed = CHECKSUM_COMPLETE;
2148 } else
2149 skb_checksum_none_assert(skb);
2150 return len;
2151 }
2152
2153
2154 /* we can handle up to 64 rx flows at a time. we do the same thing
2155 * as nonreassm except that we batch up the buffers.
2156 * NOTE: we currently just treat each flow as a bunch of packets that
2157 * we pass up. a better way would be to coalesce the packets
2158 * into a jumbo packet. to do that, we need to do the following:
2159 * 1) the first packet will have a clean split between header and
2160 * data. save both.
2161 * 2) each time the next flow packet comes in, extend the
2162 * data length and merge the checksums.
2163 * 3) on flow release, fix up the header.
2164 * 4) make sure the higher layer doesn't care.
2165 * because packets get coalesced, we shouldn't run into fragment count
2166 * issues.
2167 */
2168 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2169 struct sk_buff *skb)
2170 {
2171 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2172 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2173
2174 /* this is protected at a higher layer, so no need to
2175 * do any additional locking here. stick the buffer
2176 * at the end.
2177 */
2178 __skb_queue_tail(flow, skb);
2179 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2180 while ((skb = __skb_dequeue(flow))) {
2181 cas_skb_release(skb);
2182 }
2183 }
2184 }
2185
2186 /* put rx descriptor back on ring. if a buffer is in use by a higher
2187 * layer, this will need to put in a replacement.
2188 */
2189 static void cas_post_page(struct cas *cp, const int ring, const int index)
2190 {
2191 cas_page_t *new;
2192 int entry;
2193
2194 entry = cp->rx_old[ring];
2195
2196 new = cas_page_swap(cp, ring, index);
2197 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2198 cp->init_rxds[ring][entry].index =
2199 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2200 CAS_BASE(RX_INDEX_RING, ring));
2201
2202 entry = RX_DESC_ENTRY(ring, entry + 1);
2203 cp->rx_old[ring] = entry;
2204
2205 if (entry % 4)
2206 return;
2207
2208 if (ring == 0)
2209 writel(entry, cp->regs + REG_RX_KICK);
2210 else if ((N_RX_DESC_RINGS > 1) &&
2211 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2212 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2213 }
2214
2215
2216 /* only when things are bad */
2217 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2218 {
2219 unsigned int entry, last, count, released;
2220 int cluster;
2221 cas_page_t **page = cp->rx_pages[ring];
2222
2223 entry = cp->rx_old[ring];
2224
2225 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2226 "rxd[%d] interrupt, done: %d\n", ring, entry);
2227
2228 cluster = -1;
2229 count = entry & 0x3;
2230 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2231 released = 0;
2232 while (entry != last) {
2233 /* make a new buffer if it's still in use */
2234 if (page_count(page[entry]->buffer) > 1) {
2235 cas_page_t *new = cas_page_dequeue(cp);
2236 if (!new) {
2237 /* let the timer know that we need to
2238 * do this again
2239 */
2240 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2241 if (!timer_pending(&cp->link_timer))
2242 mod_timer(&cp->link_timer, jiffies +
2243 CAS_LINK_FAST_TIMEOUT);
2244 cp->rx_old[ring] = entry;
2245 cp->rx_last[ring] = num ? num - released : 0;
2246 return -ENOMEM;
2247 }
2248 spin_lock(&cp->rx_inuse_lock);
2249 list_add(&page[entry]->list, &cp->rx_inuse_list);
2250 spin_unlock(&cp->rx_inuse_lock);
2251 cp->init_rxds[ring][entry].buffer =
2252 cpu_to_le64(new->dma_addr);
2253 page[entry] = new;
2254
2255 }
2256
2257 if (++count == 4) {
2258 cluster = entry;
2259 count = 0;
2260 }
2261 released++;
2262 entry = RX_DESC_ENTRY(ring, entry + 1);
2263 }
2264 cp->rx_old[ring] = entry;
2265
2266 if (cluster < 0)
2267 return 0;
2268
2269 if (ring == 0)
2270 writel(cluster, cp->regs + REG_RX_KICK);
2271 else if ((N_RX_DESC_RINGS > 1) &&
2272 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2273 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2274 return 0;
2275 }
2276
2277
2278 /* process a completion ring. packets are set up in three basic ways:
2279 * small packets: should be copied header + data in single buffer.
2280 * large packets: header and data in a single buffer.
2281 * split packets: header in a separate buffer from data.
2282 * data may be in multiple pages. data may be > 256
2283 * bytes but in a single page.
2284 *
2285 * NOTE: RX page posting is done in this routine as well. while there's
2286 * the capability of using multiple RX completion rings, it isn't
2287 * really worthwhile due to the fact that the page posting will
2288 * force serialization on the single descriptor ring.
2289 */
2290 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2291 {
2292 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2293 int entry, drops;
2294 int npackets = 0;
2295
2296 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2297 "rx[%d] interrupt, done: %d/%d\n",
2298 ring,
2299 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2300
2301 entry = cp->rx_new[ring];
2302 drops = 0;
2303 while (1) {
2304 struct cas_rx_comp *rxc = rxcs + entry;
2305 struct sk_buff *uninitialized_var(skb);
2306 int type, len;
2307 u64 words[4];
2308 int i, dring;
2309
2310 words[0] = le64_to_cpu(rxc->word1);
2311 words[1] = le64_to_cpu(rxc->word2);
2312 words[2] = le64_to_cpu(rxc->word3);
2313 words[3] = le64_to_cpu(rxc->word4);
2314
2315 /* don't touch if still owned by hw */
2316 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2317 if (type == 0)
2318 break;
2319
2320 /* hw hasn't cleared the zero bit yet */
2321 if (words[3] & RX_COMP4_ZERO) {
2322 break;
2323 }
2324
2325 /* get info on the packet */
2326 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2327 spin_lock(&cp->stat_lock[ring]);
2328 cp->net_stats[ring].rx_errors++;
2329 if (words[3] & RX_COMP4_LEN_MISMATCH)
2330 cp->net_stats[ring].rx_length_errors++;
2331 if (words[3] & RX_COMP4_BAD)
2332 cp->net_stats[ring].rx_crc_errors++;
2333 spin_unlock(&cp->stat_lock[ring]);
2334
2335 /* We'll just return it to Cassini. */
2336 drop_it:
2337 spin_lock(&cp->stat_lock[ring]);
2338 ++cp->net_stats[ring].rx_dropped;
2339 spin_unlock(&cp->stat_lock[ring]);
2340 goto next;
2341 }
2342
2343 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2344 if (len < 0) {
2345 ++drops;
2346 goto drop_it;
2347 }
2348
2349 /* see if it's a flow re-assembly or not. the driver
2350 * itself handles release back up.
2351 */
2352 if (RX_DONT_BATCH || (type == 0x2)) {
2353 /* non-reassm: these always get released */
2354 cas_skb_release(skb);
2355 } else {
2356 cas_rx_flow_pkt(cp, words, skb);
2357 }
2358
2359 spin_lock(&cp->stat_lock[ring]);
2360 cp->net_stats[ring].rx_packets++;
2361 cp->net_stats[ring].rx_bytes += len;
2362 spin_unlock(&cp->stat_lock[ring]);
2363
2364 next:
2365 npackets++;
2366
2367 /* should it be released? */
2368 if (words[0] & RX_COMP1_RELEASE_HDR) {
2369 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2370 dring = CAS_VAL(RX_INDEX_RING, i);
2371 i = CAS_VAL(RX_INDEX_NUM, i);
2372 cas_post_page(cp, dring, i);
2373 }
2374
2375 if (words[0] & RX_COMP1_RELEASE_DATA) {
2376 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2377 dring = CAS_VAL(RX_INDEX_RING, i);
2378 i = CAS_VAL(RX_INDEX_NUM, i);
2379 cas_post_page(cp, dring, i);
2380 }
2381
2382 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2383 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2384 dring = CAS_VAL(RX_INDEX_RING, i);
2385 i = CAS_VAL(RX_INDEX_NUM, i);
2386 cas_post_page(cp, dring, i);
2387 }
2388
2389 /* skip to the next entry */
2390 entry = RX_COMP_ENTRY(ring, entry + 1 +
2391 CAS_VAL(RX_COMP1_SKIP, words[0]));
2392 #ifdef USE_NAPI
2393 if (budget && (npackets >= budget))
2394 break;
2395 #endif
2396 }
2397 cp->rx_new[ring] = entry;
2398
2399 if (drops)
2400 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2401 return npackets;
2402 }
2403
2404
2405 /* put completion entries back on the ring */
2406 static void cas_post_rxcs_ringN(struct net_device *dev,
2407 struct cas *cp, int ring)
2408 {
2409 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2410 int last, entry;
2411
2412 last = cp->rx_cur[ring];
2413 entry = cp->rx_new[ring];
2414 netif_printk(cp, intr, KERN_DEBUG, dev,
2415 "rxc[%d] interrupt, done: %d/%d\n",
2416 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2417
2418 /* zero and re-mark descriptors */
2419 while (last != entry) {
2420 cas_rxc_init(rxc + last);
2421 last = RX_COMP_ENTRY(ring, last + 1);
2422 }
2423 cp->rx_cur[ring] = last;
2424
2425 if (ring == 0)
2426 writel(last, cp->regs + REG_RX_COMP_TAIL);
2427 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2428 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2429 }
2430
2431
2432
2433 /* cassini can use all four PCI interrupts for the completion ring.
2434 * rings 3 and 4 are identical
2435 */
2436 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2437 static inline void cas_handle_irqN(struct net_device *dev,
2438 struct cas *cp, const u32 status,
2439 const int ring)
2440 {
2441 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2442 cas_post_rxcs_ringN(dev, cp, ring);
2443 }
2444
2445 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2446 {
2447 struct net_device *dev = dev_id;
2448 struct cas *cp = netdev_priv(dev);
2449 unsigned long flags;
2450 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2451 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2452
2453 /* check for shared irq */
2454 if (status == 0)
2455 return IRQ_NONE;
2456
2457 spin_lock_irqsave(&cp->lock, flags);
2458 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2459 #ifdef USE_NAPI
2460 cas_mask_intr(cp);
2461 napi_schedule(&cp->napi);
2462 #else
2463 cas_rx_ringN(cp, ring, 0);
2464 #endif
2465 status &= ~INTR_RX_DONE_ALT;
2466 }
2467
2468 if (status)
2469 cas_handle_irqN(dev, cp, status, ring);
2470 spin_unlock_irqrestore(&cp->lock, flags);
2471 return IRQ_HANDLED;
2472 }
2473 #endif
2474
2475 #ifdef USE_PCI_INTB
2476 /* everything but rx packets */
2477 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2478 {
2479 if (status & INTR_RX_BUF_UNAVAIL_1) {
2480 /* Frame arrived, no free RX buffers available.
2481 * NOTE: we can get this on a link transition. */
2482 cas_post_rxds_ringN(cp, 1, 0);
2483 spin_lock(&cp->stat_lock[1]);
2484 cp->net_stats[1].rx_dropped++;
2485 spin_unlock(&cp->stat_lock[1]);
2486 }
2487
2488 if (status & INTR_RX_BUF_AE_1)
2489 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2490 RX_AE_FREEN_VAL(1));
2491
2492 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2493 cas_post_rxcs_ringN(cp, 1);
2494 }
2495
2496 /* ring 2 handles a few more events than 3 and 4 */
2497 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2498 {
2499 struct net_device *dev = dev_id;
2500 struct cas *cp = netdev_priv(dev);
2501 unsigned long flags;
2502 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2503
2504 /* check for shared interrupt */
2505 if (status == 0)
2506 return IRQ_NONE;
2507
2508 spin_lock_irqsave(&cp->lock, flags);
2509 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2510 #ifdef USE_NAPI
2511 cas_mask_intr(cp);
2512 napi_schedule(&cp->napi);
2513 #else
2514 cas_rx_ringN(cp, 1, 0);
2515 #endif
2516 status &= ~INTR_RX_DONE_ALT;
2517 }
2518 if (status)
2519 cas_handle_irq1(cp, status);
2520 spin_unlock_irqrestore(&cp->lock, flags);
2521 return IRQ_HANDLED;
2522 }
2523 #endif
2524
2525 static inline void cas_handle_irq(struct net_device *dev,
2526 struct cas *cp, const u32 status)
2527 {
2528 /* housekeeping interrupts */
2529 if (status & INTR_ERROR_MASK)
2530 cas_abnormal_irq(dev, cp, status);
2531
2532 if (status & INTR_RX_BUF_UNAVAIL) {
2533 /* Frame arrived, no free RX buffers available.
2534 * NOTE: we can get this on a link transition.
2535 */
2536 cas_post_rxds_ringN(cp, 0, 0);
2537 spin_lock(&cp->stat_lock[0]);
2538 cp->net_stats[0].rx_dropped++;
2539 spin_unlock(&cp->stat_lock[0]);
2540 } else if (status & INTR_RX_BUF_AE) {
2541 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2542 RX_AE_FREEN_VAL(0));
2543 }
2544
2545 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2546 cas_post_rxcs_ringN(dev, cp, 0);
2547 }
2548
2549 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2550 {
2551 struct net_device *dev = dev_id;
2552 struct cas *cp = netdev_priv(dev);
2553 unsigned long flags;
2554 u32 status = readl(cp->regs + REG_INTR_STATUS);
2555
2556 if (status == 0)
2557 return IRQ_NONE;
2558
2559 spin_lock_irqsave(&cp->lock, flags);
2560 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2561 cas_tx(dev, cp, status);
2562 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2563 }
2564
2565 if (status & INTR_RX_DONE) {
2566 #ifdef USE_NAPI
2567 cas_mask_intr(cp);
2568 napi_schedule(&cp->napi);
2569 #else
2570 cas_rx_ringN(cp, 0, 0);
2571 #endif
2572 status &= ~INTR_RX_DONE;
2573 }
2574
2575 if (status)
2576 cas_handle_irq(dev, cp, status);
2577 spin_unlock_irqrestore(&cp->lock, flags);
2578 return IRQ_HANDLED;
2579 }
2580
2581
2582 #ifdef USE_NAPI
2583 static int cas_poll(struct napi_struct *napi, int budget)
2584 {
2585 struct cas *cp = container_of(napi, struct cas, napi);
2586 struct net_device *dev = cp->dev;
2587 int i, enable_intr, credits;
2588 u32 status = readl(cp->regs + REG_INTR_STATUS);
2589 unsigned long flags;
2590
2591 spin_lock_irqsave(&cp->lock, flags);
2592 cas_tx(dev, cp, status);
2593 spin_unlock_irqrestore(&cp->lock, flags);
2594
2595 /* NAPI rx packets. we spread the credits across all of the
2596 * rxc rings
2597 *
2598 * to make sure we're fair with the work we loop through each
2599 * ring N_RX_COMP_RING times with a request of
2600 * budget / N_RX_COMP_RINGS
2601 */
2602 enable_intr = 1;
2603 credits = 0;
2604 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2605 int j;
2606 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2607 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2608 if (credits >= budget) {
2609 enable_intr = 0;
2610 goto rx_comp;
2611 }
2612 }
2613 }
2614
2615 rx_comp:
2616 /* final rx completion */
2617 spin_lock_irqsave(&cp->lock, flags);
2618 if (status)
2619 cas_handle_irq(dev, cp, status);
2620
2621 #ifdef USE_PCI_INTB
2622 if (N_RX_COMP_RINGS > 1) {
2623 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2624 if (status)
2625 cas_handle_irq1(dev, cp, status);
2626 }
2627 #endif
2628
2629 #ifdef USE_PCI_INTC
2630 if (N_RX_COMP_RINGS > 2) {
2631 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2632 if (status)
2633 cas_handle_irqN(dev, cp, status, 2);
2634 }
2635 #endif
2636
2637 #ifdef USE_PCI_INTD
2638 if (N_RX_COMP_RINGS > 3) {
2639 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2640 if (status)
2641 cas_handle_irqN(dev, cp, status, 3);
2642 }
2643 #endif
2644 spin_unlock_irqrestore(&cp->lock, flags);
2645 if (enable_intr) {
2646 napi_complete(napi);
2647 cas_unmask_intr(cp);
2648 }
2649 return credits;
2650 }
2651 #endif
2652
2653 #ifdef CONFIG_NET_POLL_CONTROLLER
2654 static void cas_netpoll(struct net_device *dev)
2655 {
2656 struct cas *cp = netdev_priv(dev);
2657
2658 cas_disable_irq(cp, 0);
2659 cas_interrupt(cp->pdev->irq, dev);
2660 cas_enable_irq(cp, 0);
2661
2662 #ifdef USE_PCI_INTB
2663 if (N_RX_COMP_RINGS > 1) {
2664 /* cas_interrupt1(); */
2665 }
2666 #endif
2667 #ifdef USE_PCI_INTC
2668 if (N_RX_COMP_RINGS > 2) {
2669 /* cas_interruptN(); */
2670 }
2671 #endif
2672 #ifdef USE_PCI_INTD
2673 if (N_RX_COMP_RINGS > 3) {
2674 /* cas_interruptN(); */
2675 }
2676 #endif
2677 }
2678 #endif
2679
2680 static void cas_tx_timeout(struct net_device *dev)
2681 {
2682 struct cas *cp = netdev_priv(dev);
2683
2684 netdev_err(dev, "transmit timed out, resetting\n");
2685 if (!cp->hw_running) {
2686 netdev_err(dev, "hrm.. hw not running!\n");
2687 return;
2688 }
2689
2690 netdev_err(dev, "MIF_STATE[%08x]\n",
2691 readl(cp->regs + REG_MIF_STATE_MACHINE));
2692
2693 netdev_err(dev, "MAC_STATE[%08x]\n",
2694 readl(cp->regs + REG_MAC_STATE_MACHINE));
2695
2696 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2697 readl(cp->regs + REG_TX_CFG),
2698 readl(cp->regs + REG_MAC_TX_STATUS),
2699 readl(cp->regs + REG_MAC_TX_CFG),
2700 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2701 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2702 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2703 readl(cp->regs + REG_TX_SM_1),
2704 readl(cp->regs + REG_TX_SM_2));
2705
2706 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2707 readl(cp->regs + REG_RX_CFG),
2708 readl(cp->regs + REG_MAC_RX_STATUS),
2709 readl(cp->regs + REG_MAC_RX_CFG));
2710
2711 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2712 readl(cp->regs + REG_HP_STATE_MACHINE),
2713 readl(cp->regs + REG_HP_STATUS0),
2714 readl(cp->regs + REG_HP_STATUS1),
2715 readl(cp->regs + REG_HP_STATUS2));
2716
2717 #if 1
2718 atomic_inc(&cp->reset_task_pending);
2719 atomic_inc(&cp->reset_task_pending_all);
2720 schedule_work(&cp->reset_task);
2721 #else
2722 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2723 schedule_work(&cp->reset_task);
2724 #endif
2725 }
2726
2727 static inline int cas_intme(int ring, int entry)
2728 {
2729 /* Algorithm: IRQ every 1/2 of descriptors. */
2730 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2731 return 1;
2732 return 0;
2733 }
2734
2735
2736 static void cas_write_txd(struct cas *cp, int ring, int entry,
2737 dma_addr_t mapping, int len, u64 ctrl, int last)
2738 {
2739 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2740
2741 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2742 if (cas_intme(ring, entry))
2743 ctrl |= TX_DESC_INTME;
2744 if (last)
2745 ctrl |= TX_DESC_EOF;
2746 txd->control = cpu_to_le64(ctrl);
2747 txd->buffer = cpu_to_le64(mapping);
2748 }
2749
2750 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2751 const int entry)
2752 {
2753 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2754 }
2755
2756 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2757 const int entry, const int tentry)
2758 {
2759 cp->tx_tiny_use[ring][tentry].nbufs++;
2760 cp->tx_tiny_use[ring][entry].used = 1;
2761 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2762 }
2763
2764 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2765 struct sk_buff *skb)
2766 {
2767 struct net_device *dev = cp->dev;
2768 int entry, nr_frags, frag, tabort, tentry;
2769 dma_addr_t mapping;
2770 unsigned long flags;
2771 u64 ctrl;
2772 u32 len;
2773
2774 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2775
2776 /* This is a hard error, log it. */
2777 if (TX_BUFFS_AVAIL(cp, ring) <=
2778 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2779 netif_stop_queue(dev);
2780 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2781 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2782 return 1;
2783 }
2784
2785 ctrl = 0;
2786 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2787 const u64 csum_start_off = skb_checksum_start_offset(skb);
2788 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2789
2790 ctrl = TX_DESC_CSUM_EN |
2791 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2792 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2793 }
2794
2795 entry = cp->tx_new[ring];
2796 cp->tx_skbs[ring][entry] = skb;
2797
2798 nr_frags = skb_shinfo(skb)->nr_frags;
2799 len = skb_headlen(skb);
2800 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2801 offset_in_page(skb->data), len,
2802 PCI_DMA_TODEVICE);
2803
2804 tentry = entry;
2805 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2806 if (unlikely(tabort)) {
2807 /* NOTE: len is always > tabort */
2808 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2809 ctrl | TX_DESC_SOF, 0);
2810 entry = TX_DESC_NEXT(ring, entry);
2811
2812 skb_copy_from_linear_data_offset(skb, len - tabort,
2813 tx_tiny_buf(cp, ring, entry), tabort);
2814 mapping = tx_tiny_map(cp, ring, entry, tentry);
2815 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2816 (nr_frags == 0));
2817 } else {
2818 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2819 TX_DESC_SOF, (nr_frags == 0));
2820 }
2821 entry = TX_DESC_NEXT(ring, entry);
2822
2823 for (frag = 0; frag < nr_frags; frag++) {
2824 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2825
2826 len = skb_frag_size(fragp);
2827 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2828 DMA_TO_DEVICE);
2829
2830 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2831 if (unlikely(tabort)) {
2832 void *addr;
2833
2834 /* NOTE: len is always > tabort */
2835 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2836 ctrl, 0);
2837 entry = TX_DESC_NEXT(ring, entry);
2838
2839 addr = cas_page_map(skb_frag_page(fragp));
2840 memcpy(tx_tiny_buf(cp, ring, entry),
2841 addr + fragp->page_offset + len - tabort,
2842 tabort);
2843 cas_page_unmap(addr);
2844 mapping = tx_tiny_map(cp, ring, entry, tentry);
2845 len = tabort;
2846 }
2847
2848 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2849 (frag + 1 == nr_frags));
2850 entry = TX_DESC_NEXT(ring, entry);
2851 }
2852
2853 cp->tx_new[ring] = entry;
2854 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2855 netif_stop_queue(dev);
2856
2857 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2858 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2859 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2860 writel(entry, cp->regs + REG_TX_KICKN(ring));
2861 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2862 return 0;
2863 }
2864
2865 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2866 {
2867 struct cas *cp = netdev_priv(dev);
2868
2869 /* this is only used as a load-balancing hint, so it doesn't
2870 * need to be SMP safe
2871 */
2872 static int ring;
2873
2874 if (skb_padto(skb, cp->min_frame_size))
2875 return NETDEV_TX_OK;
2876
2877 /* XXX: we need some higher-level QoS hooks to steer packets to
2878 * individual queues.
2879 */
2880 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2881 return NETDEV_TX_BUSY;
2882 return NETDEV_TX_OK;
2883 }
2884
2885 static void cas_init_tx_dma(struct cas *cp)
2886 {
2887 u64 desc_dma = cp->block_dvma;
2888 unsigned long off;
2889 u32 val;
2890 int i;
2891
2892 /* set up tx completion writeback registers. must be 8-byte aligned */
2893 #ifdef USE_TX_COMPWB
2894 off = offsetof(struct cas_init_block, tx_compwb);
2895 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2896 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2897 #endif
2898
2899 /* enable completion writebacks, enable paced mode,
2900 * disable read pipe, and disable pre-interrupt compwbs
2901 */
2902 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2903 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2904 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2905 TX_CFG_INTR_COMPWB_DIS;
2906
2907 /* write out tx ring info and tx desc bases */
2908 for (i = 0; i < MAX_TX_RINGS; i++) {
2909 off = (unsigned long) cp->init_txds[i] -
2910 (unsigned long) cp->init_block;
2911
2912 val |= CAS_TX_RINGN_BASE(i);
2913 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2914 writel((desc_dma + off) & 0xffffffff, cp->regs +
2915 REG_TX_DBN_LOW(i));
2916 /* don't zero out the kick register here as the system
2917 * will wedge
2918 */
2919 }
2920 writel(val, cp->regs + REG_TX_CFG);
2921
2922 /* program max burst sizes. these numbers should be different
2923 * if doing QoS.
2924 */
2925 #ifdef USE_QOS
2926 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2927 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2928 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2929 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2930 #else
2931 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2932 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2933 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2934 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2935 #endif
2936 }
2937
2938 /* Must be invoked under cp->lock. */
2939 static inline void cas_init_dma(struct cas *cp)
2940 {
2941 cas_init_tx_dma(cp);
2942 cas_init_rx_dma(cp);
2943 }
2944
2945 static void cas_process_mc_list(struct cas *cp)
2946 {
2947 u16 hash_table[16];
2948 u32 crc;
2949 struct netdev_hw_addr *ha;
2950 int i = 1;
2951
2952 memset(hash_table, 0, sizeof(hash_table));
2953 netdev_for_each_mc_addr(ha, cp->dev) {
2954 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2955 /* use the alternate mac address registers for the
2956 * first 15 multicast addresses
2957 */
2958 writel((ha->addr[4] << 8) | ha->addr[5],
2959 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2960 writel((ha->addr[2] << 8) | ha->addr[3],
2961 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2962 writel((ha->addr[0] << 8) | ha->addr[1],
2963 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2964 i++;
2965 }
2966 else {
2967 /* use hw hash table for the next series of
2968 * multicast addresses
2969 */
2970 crc = ether_crc_le(ETH_ALEN, ha->addr);
2971 crc >>= 24;
2972 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2973 }
2974 }
2975 for (i = 0; i < 16; i++)
2976 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2977 }
2978
2979 /* Must be invoked under cp->lock. */
2980 static u32 cas_setup_multicast(struct cas *cp)
2981 {
2982 u32 rxcfg = 0;
2983 int i;
2984
2985 if (cp->dev->flags & IFF_PROMISC) {
2986 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2987
2988 } else if (cp->dev->flags & IFF_ALLMULTI) {
2989 for (i=0; i < 16; i++)
2990 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2991 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2992
2993 } else {
2994 cas_process_mc_list(cp);
2995 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2996 }
2997
2998 return rxcfg;
2999 }
3000
3001 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3002 static void cas_clear_mac_err(struct cas *cp)
3003 {
3004 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3005 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3006 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3007 writel(0, cp->regs + REG_MAC_COLL_LATE);
3008 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3009 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3010 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3011 writel(0, cp->regs + REG_MAC_LEN_ERR);
3012 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3013 writel(0, cp->regs + REG_MAC_FCS_ERR);
3014 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3015 }
3016
3017
3018 static void cas_mac_reset(struct cas *cp)
3019 {
3020 int i;
3021
3022 /* do both TX and RX reset */
3023 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3024 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3025
3026 /* wait for TX */
3027 i = STOP_TRIES;
3028 while (i-- > 0) {
3029 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3030 break;
3031 udelay(10);
3032 }
3033
3034 /* wait for RX */
3035 i = STOP_TRIES;
3036 while (i-- > 0) {
3037 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3038 break;
3039 udelay(10);
3040 }
3041
3042 if (readl(cp->regs + REG_MAC_TX_RESET) |
3043 readl(cp->regs + REG_MAC_RX_RESET))
3044 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3045 readl(cp->regs + REG_MAC_TX_RESET),
3046 readl(cp->regs + REG_MAC_RX_RESET),
3047 readl(cp->regs + REG_MAC_STATE_MACHINE));
3048 }
3049
3050
3051 /* Must be invoked under cp->lock. */
3052 static void cas_init_mac(struct cas *cp)
3053 {
3054 unsigned char *e = &cp->dev->dev_addr[0];
3055 int i;
3056 cas_mac_reset(cp);
3057
3058 /* setup core arbitration weight register */
3059 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3060
3061 /* XXX Use pci_dma_burst_advice() */
3062 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3063 /* set the infinite burst register for chips that don't have
3064 * pci issues.
3065 */
3066 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3067 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3068 #endif
3069
3070 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3071
3072 writel(0x00, cp->regs + REG_MAC_IPG0);
3073 writel(0x08, cp->regs + REG_MAC_IPG1);
3074 writel(0x04, cp->regs + REG_MAC_IPG2);
3075
3076 /* change later for 802.3z */
3077 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3078
3079 /* min frame + FCS */
3080 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3081
3082 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3083 * specify the maximum frame size to prevent RX tag errors on
3084 * oversized frames.
3085 */
3086 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3087 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3088 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3089 cp->regs + REG_MAC_FRAMESIZE_MAX);
3090
3091 /* NOTE: crc_size is used as a surrogate for half-duplex.
3092 * workaround saturn half-duplex issue by increasing preamble
3093 * size to 65 bytes.
3094 */
3095 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3096 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3097 else
3098 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3099 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3100 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3101 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3102
3103 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3104
3105 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3106 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3107 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3108 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3109 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3110
3111 /* setup mac address in perfect filter array */
3112 for (i = 0; i < 45; i++)
3113 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3114
3115 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3116 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3117 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3118
3119 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3120 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3121 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3122
3123 cp->mac_rx_cfg = cas_setup_multicast(cp);
3124
3125 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3126 cas_clear_mac_err(cp);
3127 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3128
3129 /* Setup MAC interrupts. We want to get all of the interesting
3130 * counter expiration events, but we do not want to hear about
3131 * normal rx/tx as the DMA engine tells us that.
3132 */
3133 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3134 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3135
3136 /* Don't enable even the PAUSE interrupts for now, we
3137 * make no use of those events other than to record them.
3138 */
3139 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3140 }
3141
3142 /* Must be invoked under cp->lock. */
3143 static void cas_init_pause_thresholds(struct cas *cp)
3144 {
3145 /* Calculate pause thresholds. Setting the OFF threshold to the
3146 * full RX fifo size effectively disables PAUSE generation
3147 */
3148 if (cp->rx_fifo_size <= (2 * 1024)) {
3149 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3150 } else {
3151 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3152 if (max_frame * 3 > cp->rx_fifo_size) {
3153 cp->rx_pause_off = 7104;
3154 cp->rx_pause_on = 960;
3155 } else {
3156 int off = (cp->rx_fifo_size - (max_frame * 2));
3157 int on = off - max_frame;
3158 cp->rx_pause_off = off;
3159 cp->rx_pause_on = on;
3160 }
3161 }
3162 }
3163
3164 static int cas_vpd_match(const void __iomem *p, const char *str)
3165 {
3166 int len = strlen(str) + 1;
3167 int i;
3168
3169 for (i = 0; i < len; i++) {
3170 if (readb(p + i) != str[i])
3171 return 0;
3172 }
3173 return 1;
3174 }
3175
3176
3177 /* get the mac address by reading the vpd information in the rom.
3178 * also get the phy type and determine if there's an entropy generator.
3179 * NOTE: this is a bit convoluted for the following reasons:
3180 * 1) vpd info has order-dependent mac addresses for multinic cards
3181 * 2) the only way to determine the nic order is to use the slot
3182 * number.
3183 * 3) fiber cards don't have bridges, so their slot numbers don't
3184 * mean anything.
3185 * 4) we don't actually know we have a fiber card until after
3186 * the mac addresses are parsed.
3187 */
3188 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3189 const int offset)
3190 {
3191 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3192 void __iomem *base, *kstart;
3193 int i, len;
3194 int found = 0;
3195 #define VPD_FOUND_MAC 0x01
3196 #define VPD_FOUND_PHY 0x02
3197
3198 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3199 int mac_off = 0;
3200
3201 #if defined(CONFIG_SPARC)
3202 const unsigned char *addr;
3203 #endif
3204
3205 /* give us access to the PROM */
3206 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3207 cp->regs + REG_BIM_LOCAL_DEV_EN);
3208
3209 /* check for an expansion rom */
3210 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3211 goto use_random_mac_addr;
3212
3213 /* search for beginning of vpd */
3214 base = NULL;
3215 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3216 /* check for PCIR */
3217 if ((readb(p + i + 0) == 0x50) &&
3218 (readb(p + i + 1) == 0x43) &&
3219 (readb(p + i + 2) == 0x49) &&
3220 (readb(p + i + 3) == 0x52)) {
3221 base = p + (readb(p + i + 8) |
3222 (readb(p + i + 9) << 8));
3223 break;
3224 }
3225 }
3226
3227 if (!base || (readb(base) != 0x82))
3228 goto use_random_mac_addr;
3229
3230 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3231 while (i < EXPANSION_ROM_SIZE) {
3232 if (readb(base + i) != 0x90) /* no vpd found */
3233 goto use_random_mac_addr;
3234
3235 /* found a vpd field */
3236 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3237
3238 /* extract keywords */
3239 kstart = base + i + 3;
3240 p = kstart;
3241 while ((p - kstart) < len) {
3242 int klen = readb(p + 2);
3243 int j;
3244 char type;
3245
3246 p += 3;
3247
3248 /* look for the following things:
3249 * -- correct length == 29
3250 * 3 (type) + 2 (size) +
3251 * 18 (strlen("local-mac-address") + 1) +
3252 * 6 (mac addr)
3253 * -- VPD Instance 'I'
3254 * -- VPD Type Bytes 'B'
3255 * -- VPD data length == 6
3256 * -- property string == local-mac-address
3257 *
3258 * -- correct length == 24
3259 * 3 (type) + 2 (size) +
3260 * 12 (strlen("entropy-dev") + 1) +
3261 * 7 (strlen("vms110") + 1)
3262 * -- VPD Instance 'I'
3263 * -- VPD Type String 'B'
3264 * -- VPD data length == 7
3265 * -- property string == entropy-dev
3266 *
3267 * -- correct length == 18
3268 * 3 (type) + 2 (size) +
3269 * 9 (strlen("phy-type") + 1) +
3270 * 4 (strlen("pcs") + 1)
3271 * -- VPD Instance 'I'
3272 * -- VPD Type String 'S'
3273 * -- VPD data length == 4
3274 * -- property string == phy-type
3275 *
3276 * -- correct length == 23
3277 * 3 (type) + 2 (size) +
3278 * 14 (strlen("phy-interface") + 1) +
3279 * 4 (strlen("pcs") + 1)
3280 * -- VPD Instance 'I'
3281 * -- VPD Type String 'S'
3282 * -- VPD data length == 4
3283 * -- property string == phy-interface
3284 */
3285 if (readb(p) != 'I')
3286 goto next;
3287
3288 /* finally, check string and length */
3289 type = readb(p + 3);
3290 if (type == 'B') {
3291 if ((klen == 29) && readb(p + 4) == 6 &&
3292 cas_vpd_match(p + 5,
3293 "local-mac-address")) {
3294 if (mac_off++ > offset)
3295 goto next;
3296
3297 /* set mac address */
3298 for (j = 0; j < 6; j++)
3299 dev_addr[j] =
3300 readb(p + 23 + j);
3301 goto found_mac;
3302 }
3303 }
3304
3305 if (type != 'S')
3306 goto next;
3307
3308 #ifdef USE_ENTROPY_DEV
3309 if ((klen == 24) &&
3310 cas_vpd_match(p + 5, "entropy-dev") &&
3311 cas_vpd_match(p + 17, "vms110")) {
3312 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3313 goto next;
3314 }
3315 #endif
3316
3317 if (found & VPD_FOUND_PHY)
3318 goto next;
3319
3320 if ((klen == 18) && readb(p + 4) == 4 &&
3321 cas_vpd_match(p + 5, "phy-type")) {
3322 if (cas_vpd_match(p + 14, "pcs")) {
3323 phy_type = CAS_PHY_SERDES;
3324 goto found_phy;
3325 }
3326 }
3327
3328 if ((klen == 23) && readb(p + 4) == 4 &&
3329 cas_vpd_match(p + 5, "phy-interface")) {
3330 if (cas_vpd_match(p + 19, "pcs")) {
3331 phy_type = CAS_PHY_SERDES;
3332 goto found_phy;
3333 }
3334 }
3335 found_mac:
3336 found |= VPD_FOUND_MAC;
3337 goto next;
3338
3339 found_phy:
3340 found |= VPD_FOUND_PHY;
3341
3342 next:
3343 p += klen;
3344 }
3345 i += len + 3;
3346 }
3347
3348 use_random_mac_addr:
3349 if (found & VPD_FOUND_MAC)
3350 goto done;
3351
3352 #if defined(CONFIG_SPARC)
3353 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3354 if (addr != NULL) {
3355 memcpy(dev_addr, addr, ETH_ALEN);
3356 goto done;
3357 }
3358 #endif
3359
3360 /* Sun MAC prefix then 3 random bytes. */
3361 pr_info("MAC address not found in ROM VPD\n");
3362 dev_addr[0] = 0x08;
3363 dev_addr[1] = 0x00;
3364 dev_addr[2] = 0x20;
3365 get_random_bytes(dev_addr + 3, 3);
3366
3367 done:
3368 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3369 return phy_type;
3370 }
3371
3372 /* check pci invariants */
3373 static void cas_check_pci_invariants(struct cas *cp)
3374 {
3375 struct pci_dev *pdev = cp->pdev;
3376
3377 cp->cas_flags = 0;
3378 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3379 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3380 if (pdev->revision >= CAS_ID_REVPLUS)
3381 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3382 if (pdev->revision < CAS_ID_REVPLUS02u)
3383 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3384
3385 /* Original Cassini supports HW CSUM, but it's not
3386 * enabled by default as it can trigger TX hangs.
3387 */
3388 if (pdev->revision < CAS_ID_REV2)
3389 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3390 } else {
3391 /* Only sun has original cassini chips. */
3392 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3393
3394 /* We use a flag because the same phy might be externally
3395 * connected.
3396 */
3397 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3398 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3399 cp->cas_flags |= CAS_FLAG_SATURN;
3400 }
3401 }
3402
3403
3404 static int cas_check_invariants(struct cas *cp)
3405 {
3406 struct pci_dev *pdev = cp->pdev;
3407 u32 cfg;
3408 int i;
3409
3410 /* get page size for rx buffers. */
3411 cp->page_order = 0;
3412 #ifdef USE_PAGE_ORDER
3413 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3414 /* see if we can allocate larger pages */
3415 struct page *page = alloc_pages(GFP_ATOMIC,
3416 CAS_JUMBO_PAGE_SHIFT -
3417 PAGE_SHIFT);
3418 if (page) {
3419 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3420 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3421 } else {
3422 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3423 }
3424 }
3425 #endif
3426 cp->page_size = (PAGE_SIZE << cp->page_order);
3427
3428 /* Fetch the FIFO configurations. */
3429 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3430 cp->rx_fifo_size = RX_FIFO_SIZE;
3431
3432 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3433 * they're both connected.
3434 */
3435 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3436 PCI_SLOT(pdev->devfn));
3437 if (cp->phy_type & CAS_PHY_SERDES) {
3438 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3439 return 0; /* no more checking needed */
3440 }
3441
3442 /* MII */
3443 cfg = readl(cp->regs + REG_MIF_CFG);
3444 if (cfg & MIF_CFG_MDIO_1) {
3445 cp->phy_type = CAS_PHY_MII_MDIO1;
3446 } else if (cfg & MIF_CFG_MDIO_0) {
3447 cp->phy_type = CAS_PHY_MII_MDIO0;
3448 }
3449
3450 cas_mif_poll(cp, 0);
3451 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3452
3453 for (i = 0; i < 32; i++) {
3454 u32 phy_id;
3455 int j;
3456
3457 for (j = 0; j < 3; j++) {
3458 cp->phy_addr = i;
3459 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3460 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3461 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3462 cp->phy_id = phy_id;
3463 goto done;
3464 }
3465 }
3466 }
3467 pr_err("MII phy did not respond [%08x]\n",
3468 readl(cp->regs + REG_MIF_STATE_MACHINE));
3469 return -1;
3470
3471 done:
3472 /* see if we can do gigabit */
3473 cfg = cas_phy_read(cp, MII_BMSR);
3474 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3475 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3476 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3477 return 0;
3478 }
3479
3480 /* Must be invoked under cp->lock. */
3481 static inline void cas_start_dma(struct cas *cp)
3482 {
3483 int i;
3484 u32 val;
3485 int txfailed = 0;
3486
3487 /* enable dma */
3488 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3489 writel(val, cp->regs + REG_TX_CFG);
3490 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3491 writel(val, cp->regs + REG_RX_CFG);
3492
3493 /* enable the mac */
3494 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3495 writel(val, cp->regs + REG_MAC_TX_CFG);
3496 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3497 writel(val, cp->regs + REG_MAC_RX_CFG);
3498
3499 i = STOP_TRIES;
3500 while (i-- > 0) {
3501 val = readl(cp->regs + REG_MAC_TX_CFG);
3502 if ((val & MAC_TX_CFG_EN))
3503 break;
3504 udelay(10);
3505 }
3506 if (i < 0) txfailed = 1;
3507 i = STOP_TRIES;
3508 while (i-- > 0) {
3509 val = readl(cp->regs + REG_MAC_RX_CFG);
3510 if ((val & MAC_RX_CFG_EN)) {
3511 if (txfailed) {
3512 netdev_err(cp->dev,
3513 "enabling mac failed [tx:%08x:%08x]\n",
3514 readl(cp->regs + REG_MIF_STATE_MACHINE),
3515 readl(cp->regs + REG_MAC_STATE_MACHINE));
3516 }
3517 goto enable_rx_done;
3518 }
3519 udelay(10);
3520 }
3521 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3522 (txfailed ? "tx,rx" : "rx"),
3523 readl(cp->regs + REG_MIF_STATE_MACHINE),
3524 readl(cp->regs + REG_MAC_STATE_MACHINE));
3525
3526 enable_rx_done:
3527 cas_unmask_intr(cp); /* enable interrupts */
3528 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3529 writel(0, cp->regs + REG_RX_COMP_TAIL);
3530
3531 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3532 if (N_RX_DESC_RINGS > 1)
3533 writel(RX_DESC_RINGN_SIZE(1) - 4,
3534 cp->regs + REG_PLUS_RX_KICK1);
3535
3536 for (i = 1; i < N_RX_COMP_RINGS; i++)
3537 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3538 }
3539 }
3540
3541 /* Must be invoked under cp->lock. */
3542 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3543 int *pause)
3544 {
3545 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3546 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3547 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3548 if (val & PCS_MII_LPA_ASYM_PAUSE)
3549 *pause |= 0x10;
3550 *spd = 1000;
3551 }
3552
3553 /* Must be invoked under cp->lock. */
3554 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3555 int *pause)
3556 {
3557 u32 val;
3558
3559 *fd = 0;
3560 *spd = 10;
3561 *pause = 0;
3562
3563 /* use GMII registers */
3564 val = cas_phy_read(cp, MII_LPA);
3565 if (val & CAS_LPA_PAUSE)
3566 *pause = 0x01;
3567
3568 if (val & CAS_LPA_ASYM_PAUSE)
3569 *pause |= 0x10;
3570
3571 if (val & LPA_DUPLEX)
3572 *fd = 1;
3573 if (val & LPA_100)
3574 *spd = 100;
3575
3576 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3577 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3578 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3579 *spd = 1000;
3580 if (val & CAS_LPA_1000FULL)
3581 *fd = 1;
3582 }
3583 }
3584
3585 /* A link-up condition has occurred, initialize and enable the
3586 * rest of the chip.
3587 *
3588 * Must be invoked under cp->lock.
3589 */
3590 static void cas_set_link_modes(struct cas *cp)
3591 {
3592 u32 val;
3593 int full_duplex, speed, pause;
3594
3595 full_duplex = 0;
3596 speed = 10;
3597 pause = 0;
3598
3599 if (CAS_PHY_MII(cp->phy_type)) {
3600 cas_mif_poll(cp, 0);
3601 val = cas_phy_read(cp, MII_BMCR);
3602 if (val & BMCR_ANENABLE) {
3603 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3604 &pause);
3605 } else {
3606 if (val & BMCR_FULLDPLX)
3607 full_duplex = 1;
3608
3609 if (val & BMCR_SPEED100)
3610 speed = 100;
3611 else if (val & CAS_BMCR_SPEED1000)
3612 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3613 1000 : 100;
3614 }
3615 cas_mif_poll(cp, 1);
3616
3617 } else {
3618 val = readl(cp->regs + REG_PCS_MII_CTRL);
3619 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3620 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3621 if (val & PCS_MII_CTRL_DUPLEX)
3622 full_duplex = 1;
3623 }
3624 }
3625
3626 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3627 speed, full_duplex ? "full" : "half");
3628
3629 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3630 if (CAS_PHY_MII(cp->phy_type)) {
3631 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3632 if (!full_duplex)
3633 val |= MAC_XIF_DISABLE_ECHO;
3634 }
3635 if (full_duplex)
3636 val |= MAC_XIF_FDPLX_LED;
3637 if (speed == 1000)
3638 val |= MAC_XIF_GMII_MODE;
3639 writel(val, cp->regs + REG_MAC_XIF_CFG);
3640
3641 /* deal with carrier and collision detect. */
3642 val = MAC_TX_CFG_IPG_EN;
3643 if (full_duplex) {
3644 val |= MAC_TX_CFG_IGNORE_CARRIER;
3645 val |= MAC_TX_CFG_IGNORE_COLL;
3646 } else {
3647 #ifndef USE_CSMA_CD_PROTO
3648 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3649 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3650 #endif
3651 }
3652 /* val now set up for REG_MAC_TX_CFG */
3653
3654 /* If gigabit and half-duplex, enable carrier extension
3655 * mode. increase slot time to 512 bytes as well.
3656 * else, disable it and make sure slot time is 64 bytes.
3657 * also activate checksum bug workaround
3658 */
3659 if ((speed == 1000) && !full_duplex) {
3660 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3661 cp->regs + REG_MAC_TX_CFG);
3662
3663 val = readl(cp->regs + REG_MAC_RX_CFG);
3664 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3665 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3666 cp->regs + REG_MAC_RX_CFG);
3667
3668 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3669
3670 cp->crc_size = 4;
3671 /* minimum size gigabit frame at half duplex */
3672 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3673
3674 } else {
3675 writel(val, cp->regs + REG_MAC_TX_CFG);
3676
3677 /* checksum bug workaround. don't strip FCS when in
3678 * half-duplex mode
3679 */
3680 val = readl(cp->regs + REG_MAC_RX_CFG);
3681 if (full_duplex) {
3682 val |= MAC_RX_CFG_STRIP_FCS;
3683 cp->crc_size = 0;
3684 cp->min_frame_size = CAS_MIN_MTU;
3685 } else {
3686 val &= ~MAC_RX_CFG_STRIP_FCS;
3687 cp->crc_size = 4;
3688 cp->min_frame_size = CAS_MIN_FRAME;
3689 }
3690 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3691 cp->regs + REG_MAC_RX_CFG);
3692 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3693 }
3694
3695 if (netif_msg_link(cp)) {
3696 if (pause & 0x01) {
3697 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3698 cp->rx_fifo_size,
3699 cp->rx_pause_off,
3700 cp->rx_pause_on);
3701 } else if (pause & 0x10) {
3702 netdev_info(cp->dev, "TX pause enabled\n");
3703 } else {
3704 netdev_info(cp->dev, "Pause is disabled\n");
3705 }
3706 }
3707
3708 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3709 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3710 if (pause) { /* symmetric or asymmetric pause */
3711 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3712 if (pause & 0x01) { /* symmetric pause */
3713 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3714 }
3715 }
3716 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3717 cas_start_dma(cp);
3718 }
3719
3720 /* Must be invoked under cp->lock. */
3721 static void cas_init_hw(struct cas *cp, int restart_link)
3722 {
3723 if (restart_link)
3724 cas_phy_init(cp);
3725
3726 cas_init_pause_thresholds(cp);
3727 cas_init_mac(cp);
3728 cas_init_dma(cp);
3729
3730 if (restart_link) {
3731 /* Default aneg parameters */
3732 cp->timer_ticks = 0;
3733 cas_begin_auto_negotiation(cp, NULL);
3734 } else if (cp->lstate == link_up) {
3735 cas_set_link_modes(cp);
3736 netif_carrier_on(cp->dev);
3737 }
3738 }
3739
3740 /* Must be invoked under cp->lock. on earlier cassini boards,
3741 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3742 * let it settle out, and then restore pci state.
3743 */
3744 static void cas_hard_reset(struct cas *cp)
3745 {
3746 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3747 udelay(20);
3748 pci_restore_state(cp->pdev);
3749 }
3750
3751
3752 static void cas_global_reset(struct cas *cp, int blkflag)
3753 {
3754 int limit;
3755
3756 /* issue a global reset. don't use RSTOUT. */
3757 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3758 /* For PCS, when the blkflag is set, we should set the
3759 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3760 * the last autonegotiation from being cleared. We'll
3761 * need some special handling if the chip is set into a
3762 * loopback mode.
3763 */
3764 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3765 cp->regs + REG_SW_RESET);
3766 } else {
3767 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3768 }
3769
3770 /* need to wait at least 3ms before polling register */
3771 mdelay(3);
3772
3773 limit = STOP_TRIES;
3774 while (limit-- > 0) {
3775 u32 val = readl(cp->regs + REG_SW_RESET);
3776 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3777 goto done;
3778 udelay(10);
3779 }
3780 netdev_err(cp->dev, "sw reset failed\n");
3781
3782 done:
3783 /* enable various BIM interrupts */
3784 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3785 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3786
3787 /* clear out pci error status mask for handled errors.
3788 * we don't deal with DMA counter overflows as they happen
3789 * all the time.
3790 */
3791 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3792 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3793 PCI_ERR_BIM_DMA_READ), cp->regs +
3794 REG_PCI_ERR_STATUS_MASK);
3795
3796 /* set up for MII by default to address mac rx reset timeout
3797 * issue
3798 */
3799 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3800 }
3801
3802 static void cas_reset(struct cas *cp, int blkflag)
3803 {
3804 u32 val;
3805
3806 cas_mask_intr(cp);
3807 cas_global_reset(cp, blkflag);
3808 cas_mac_reset(cp);
3809 cas_entropy_reset(cp);
3810
3811 /* disable dma engines. */
3812 val = readl(cp->regs + REG_TX_CFG);
3813 val &= ~TX_CFG_DMA_EN;
3814 writel(val, cp->regs + REG_TX_CFG);
3815
3816 val = readl(cp->regs + REG_RX_CFG);
3817 val &= ~RX_CFG_DMA_EN;
3818 writel(val, cp->regs + REG_RX_CFG);
3819
3820 /* program header parser */
3821 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3822 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3823 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3824 } else {
3825 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3826 }
3827
3828 /* clear out error registers */
3829 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3830 cas_clear_mac_err(cp);
3831 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3832 }
3833
3834 /* Shut down the chip, must be called with pm_mutex held. */
3835 static void cas_shutdown(struct cas *cp)
3836 {
3837 unsigned long flags;
3838
3839 /* Make us not-running to avoid timers respawning */
3840 cp->hw_running = 0;
3841
3842 del_timer_sync(&cp->link_timer);
3843
3844 /* Stop the reset task */
3845 #if 0
3846 while (atomic_read(&cp->reset_task_pending_mtu) ||
3847 atomic_read(&cp->reset_task_pending_spare) ||
3848 atomic_read(&cp->reset_task_pending_all))
3849 schedule();
3850
3851 #else
3852 while (atomic_read(&cp->reset_task_pending))
3853 schedule();
3854 #endif
3855 /* Actually stop the chip */
3856 cas_lock_all_save(cp, flags);
3857 cas_reset(cp, 0);
3858 if (cp->cas_flags & CAS_FLAG_SATURN)
3859 cas_phy_powerdown(cp);
3860 cas_unlock_all_restore(cp, flags);
3861 }
3862
3863 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3864 {
3865 struct cas *cp = netdev_priv(dev);
3866
3867 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3868 return -EINVAL;
3869
3870 dev->mtu = new_mtu;
3871 if (!netif_running(dev) || !netif_device_present(dev))
3872 return 0;
3873
3874 /* let the reset task handle it */
3875 #if 1
3876 atomic_inc(&cp->reset_task_pending);
3877 if ((cp->phy_type & CAS_PHY_SERDES)) {
3878 atomic_inc(&cp->reset_task_pending_all);
3879 } else {
3880 atomic_inc(&cp->reset_task_pending_mtu);
3881 }
3882 schedule_work(&cp->reset_task);
3883 #else
3884 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3885 CAS_RESET_ALL : CAS_RESET_MTU);
3886 pr_err("reset called in cas_change_mtu\n");
3887 schedule_work(&cp->reset_task);
3888 #endif
3889
3890 flush_work(&cp->reset_task);
3891 return 0;
3892 }
3893
3894 static void cas_clean_txd(struct cas *cp, int ring)
3895 {
3896 struct cas_tx_desc *txd = cp->init_txds[ring];
3897 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3898 u64 daddr, dlen;
3899 int i, size;
3900
3901 size = TX_DESC_RINGN_SIZE(ring);
3902 for (i = 0; i < size; i++) {
3903 int frag;
3904
3905 if (skbs[i] == NULL)
3906 continue;
3907
3908 skb = skbs[i];
3909 skbs[i] = NULL;
3910
3911 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3912 int ent = i & (size - 1);
3913
3914 /* first buffer is never a tiny buffer and so
3915 * needs to be unmapped.
3916 */
3917 daddr = le64_to_cpu(txd[ent].buffer);
3918 dlen = CAS_VAL(TX_DESC_BUFLEN,
3919 le64_to_cpu(txd[ent].control));
3920 pci_unmap_page(cp->pdev, daddr, dlen,
3921 PCI_DMA_TODEVICE);
3922
3923 if (frag != skb_shinfo(skb)->nr_frags) {
3924 i++;
3925
3926 /* next buffer might by a tiny buffer.
3927 * skip past it.
3928 */
3929 ent = i & (size - 1);
3930 if (cp->tx_tiny_use[ring][ent].used)
3931 i++;
3932 }
3933 }
3934 dev_kfree_skb_any(skb);
3935 }
3936
3937 /* zero out tiny buf usage */
3938 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3939 }
3940
3941 /* freed on close */
3942 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3943 {
3944 cas_page_t **page = cp->rx_pages[ring];
3945 int i, size;
3946
3947 size = RX_DESC_RINGN_SIZE(ring);
3948 for (i = 0; i < size; i++) {
3949 if (page[i]) {
3950 cas_page_free(cp, page[i]);
3951 page[i] = NULL;
3952 }
3953 }
3954 }
3955
3956 static void cas_free_rxds(struct cas *cp)
3957 {
3958 int i;
3959
3960 for (i = 0; i < N_RX_DESC_RINGS; i++)
3961 cas_free_rx_desc(cp, i);
3962 }
3963
3964 /* Must be invoked under cp->lock. */
3965 static void cas_clean_rings(struct cas *cp)
3966 {
3967 int i;
3968
3969 /* need to clean all tx rings */
3970 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3971 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3972 for (i = 0; i < N_TX_RINGS; i++)
3973 cas_clean_txd(cp, i);
3974
3975 /* zero out init block */
3976 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3977 cas_clean_rxds(cp);
3978 cas_clean_rxcs(cp);
3979 }
3980
3981 /* allocated on open */
3982 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3983 {
3984 cas_page_t **page = cp->rx_pages[ring];
3985 int size, i = 0;
3986
3987 size = RX_DESC_RINGN_SIZE(ring);
3988 for (i = 0; i < size; i++) {
3989 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3990 return -1;
3991 }
3992 return 0;
3993 }
3994
3995 static int cas_alloc_rxds(struct cas *cp)
3996 {
3997 int i;
3998
3999 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4000 if (cas_alloc_rx_desc(cp, i) < 0) {
4001 cas_free_rxds(cp);
4002 return -1;
4003 }
4004 }
4005 return 0;
4006 }
4007
4008 static void cas_reset_task(struct work_struct *work)
4009 {
4010 struct cas *cp = container_of(work, struct cas, reset_task);
4011 #if 0
4012 int pending = atomic_read(&cp->reset_task_pending);
4013 #else
4014 int pending_all = atomic_read(&cp->reset_task_pending_all);
4015 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4016 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4017
4018 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4019 /* We can have more tasks scheduled than actually
4020 * needed.
4021 */
4022 atomic_dec(&cp->reset_task_pending);
4023 return;
4024 }
4025 #endif
4026 /* The link went down, we reset the ring, but keep
4027 * DMA stopped. Use this function for reset
4028 * on error as well.
4029 */
4030 if (cp->hw_running) {
4031 unsigned long flags;
4032
4033 /* Make sure we don't get interrupts or tx packets */
4034 netif_device_detach(cp->dev);
4035 cas_lock_all_save(cp, flags);
4036
4037 if (cp->opened) {
4038 /* We call cas_spare_recover when we call cas_open.
4039 * but we do not initialize the lists cas_spare_recover
4040 * uses until cas_open is called.
4041 */
4042 cas_spare_recover(cp, GFP_ATOMIC);
4043 }
4044 #if 1
4045 /* test => only pending_spare set */
4046 if (!pending_all && !pending_mtu)
4047 goto done;
4048 #else
4049 if (pending == CAS_RESET_SPARE)
4050 goto done;
4051 #endif
4052 /* when pending == CAS_RESET_ALL, the following
4053 * call to cas_init_hw will restart auto negotiation.
4054 * Setting the second argument of cas_reset to
4055 * !(pending == CAS_RESET_ALL) will set this argument
4056 * to 1 (avoiding reinitializing the PHY for the normal
4057 * PCS case) when auto negotiation is not restarted.
4058 */
4059 #if 1
4060 cas_reset(cp, !(pending_all > 0));
4061 if (cp->opened)
4062 cas_clean_rings(cp);
4063 cas_init_hw(cp, (pending_all > 0));
4064 #else
4065 cas_reset(cp, !(pending == CAS_RESET_ALL));
4066 if (cp->opened)
4067 cas_clean_rings(cp);
4068 cas_init_hw(cp, pending == CAS_RESET_ALL);
4069 #endif
4070
4071 done:
4072 cas_unlock_all_restore(cp, flags);
4073 netif_device_attach(cp->dev);
4074 }
4075 #if 1
4076 atomic_sub(pending_all, &cp->reset_task_pending_all);
4077 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4078 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4079 atomic_dec(&cp->reset_task_pending);
4080 #else
4081 atomic_set(&cp->reset_task_pending, 0);
4082 #endif
4083 }
4084
4085 static void cas_link_timer(unsigned long data)
4086 {
4087 struct cas *cp = (struct cas *) data;
4088 int mask, pending = 0, reset = 0;
4089 unsigned long flags;
4090
4091 if (link_transition_timeout != 0 &&
4092 cp->link_transition_jiffies_valid &&
4093 ((jiffies - cp->link_transition_jiffies) >
4094 (link_transition_timeout))) {
4095 /* One-second counter so link-down workaround doesn't
4096 * cause resets to occur so fast as to fool the switch
4097 * into thinking the link is down.
4098 */
4099 cp->link_transition_jiffies_valid = 0;
4100 }
4101
4102 if (!cp->hw_running)
4103 return;
4104
4105 spin_lock_irqsave(&cp->lock, flags);
4106 cas_lock_tx(cp);
4107 cas_entropy_gather(cp);
4108
4109 /* If the link task is still pending, we just
4110 * reschedule the link timer
4111 */
4112 #if 1
4113 if (atomic_read(&cp->reset_task_pending_all) ||
4114 atomic_read(&cp->reset_task_pending_spare) ||
4115 atomic_read(&cp->reset_task_pending_mtu))
4116 goto done;
4117 #else
4118 if (atomic_read(&cp->reset_task_pending))
4119 goto done;
4120 #endif
4121
4122 /* check for rx cleaning */
4123 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4124 int i, rmask;
4125
4126 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4127 rmask = CAS_FLAG_RXD_POST(i);
4128 if ((mask & rmask) == 0)
4129 continue;
4130
4131 /* post_rxds will do a mod_timer */
4132 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4133 pending = 1;
4134 continue;
4135 }
4136 cp->cas_flags &= ~rmask;
4137 }
4138 }
4139
4140 if (CAS_PHY_MII(cp->phy_type)) {
4141 u16 bmsr;
4142 cas_mif_poll(cp, 0);
4143 bmsr = cas_phy_read(cp, MII_BMSR);
4144 /* WTZ: Solaris driver reads this twice, but that
4145 * may be due to the PCS case and the use of a
4146 * common implementation. Read it twice here to be
4147 * safe.
4148 */
4149 bmsr = cas_phy_read(cp, MII_BMSR);
4150 cas_mif_poll(cp, 1);
4151 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4152 reset = cas_mii_link_check(cp, bmsr);
4153 } else {
4154 reset = cas_pcs_link_check(cp);
4155 }
4156
4157 if (reset)
4158 goto done;
4159
4160 /* check for tx state machine confusion */
4161 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4162 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4163 u32 wptr, rptr;
4164 int tlm = CAS_VAL(MAC_SM_TLM, val);
4165
4166 if (((tlm == 0x5) || (tlm == 0x3)) &&
4167 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4168 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4169 "tx err: MAC_STATE[%08x]\n", val);
4170 reset = 1;
4171 goto done;
4172 }
4173
4174 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4175 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4176 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4177 if ((val == 0) && (wptr != rptr)) {
4178 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4179 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4180 val, wptr, rptr);
4181 reset = 1;
4182 }
4183
4184 if (reset)
4185 cas_hard_reset(cp);
4186 }
4187
4188 done:
4189 if (reset) {
4190 #if 1
4191 atomic_inc(&cp->reset_task_pending);
4192 atomic_inc(&cp->reset_task_pending_all);
4193 schedule_work(&cp->reset_task);
4194 #else
4195 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4196 pr_err("reset called in cas_link_timer\n");
4197 schedule_work(&cp->reset_task);
4198 #endif
4199 }
4200
4201 if (!pending)
4202 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4203 cas_unlock_tx(cp);
4204 spin_unlock_irqrestore(&cp->lock, flags);
4205 }
4206
4207 /* tiny buffers are used to avoid target abort issues with
4208 * older cassini's
4209 */
4210 static void cas_tx_tiny_free(struct cas *cp)
4211 {
4212 struct pci_dev *pdev = cp->pdev;
4213 int i;
4214
4215 for (i = 0; i < N_TX_RINGS; i++) {
4216 if (!cp->tx_tiny_bufs[i])
4217 continue;
4218
4219 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4220 cp->tx_tiny_bufs[i],
4221 cp->tx_tiny_dvma[i]);
4222 cp->tx_tiny_bufs[i] = NULL;
4223 }
4224 }
4225
4226 static int cas_tx_tiny_alloc(struct cas *cp)
4227 {
4228 struct pci_dev *pdev = cp->pdev;
4229 int i;
4230
4231 for (i = 0; i < N_TX_RINGS; i++) {
4232 cp->tx_tiny_bufs[i] =
4233 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4234 &cp->tx_tiny_dvma[i]);
4235 if (!cp->tx_tiny_bufs[i]) {
4236 cas_tx_tiny_free(cp);
4237 return -1;
4238 }
4239 }
4240 return 0;
4241 }
4242
4243
4244 static int cas_open(struct net_device *dev)
4245 {
4246 struct cas *cp = netdev_priv(dev);
4247 int hw_was_up, err;
4248 unsigned long flags;
4249
4250 mutex_lock(&cp->pm_mutex);
4251
4252 hw_was_up = cp->hw_running;
4253
4254 /* The power-management mutex protects the hw_running
4255 * etc. state so it is safe to do this bit without cp->lock
4256 */
4257 if (!cp->hw_running) {
4258 /* Reset the chip */
4259 cas_lock_all_save(cp, flags);
4260 /* We set the second arg to cas_reset to zero
4261 * because cas_init_hw below will have its second
4262 * argument set to non-zero, which will force
4263 * autonegotiation to start.
4264 */
4265 cas_reset(cp, 0);
4266 cp->hw_running = 1;
4267 cas_unlock_all_restore(cp, flags);
4268 }
4269
4270 err = -ENOMEM;
4271 if (cas_tx_tiny_alloc(cp) < 0)
4272 goto err_unlock;
4273
4274 /* alloc rx descriptors */
4275 if (cas_alloc_rxds(cp) < 0)
4276 goto err_tx_tiny;
4277
4278 /* allocate spares */
4279 cas_spare_init(cp);
4280 cas_spare_recover(cp, GFP_KERNEL);
4281
4282 /* We can now request the interrupt as we know it's masked
4283 * on the controller. cassini+ has up to 4 interrupts
4284 * that can be used, but you need to do explicit pci interrupt
4285 * mapping to expose them
4286 */
4287 if (request_irq(cp->pdev->irq, cas_interrupt,
4288 IRQF_SHARED, dev->name, (void *) dev)) {
4289 netdev_err(cp->dev, "failed to request irq !\n");
4290 err = -EAGAIN;
4291 goto err_spare;
4292 }
4293
4294 #ifdef USE_NAPI
4295 napi_enable(&cp->napi);
4296 #endif
4297 /* init hw */
4298 cas_lock_all_save(cp, flags);
4299 cas_clean_rings(cp);
4300 cas_init_hw(cp, !hw_was_up);
4301 cp->opened = 1;
4302 cas_unlock_all_restore(cp, flags);
4303
4304 netif_start_queue(dev);
4305 mutex_unlock(&cp->pm_mutex);
4306 return 0;
4307
4308 err_spare:
4309 cas_spare_free(cp);
4310 cas_free_rxds(cp);
4311 err_tx_tiny:
4312 cas_tx_tiny_free(cp);
4313 err_unlock:
4314 mutex_unlock(&cp->pm_mutex);
4315 return err;
4316 }
4317
4318 static int cas_close(struct net_device *dev)
4319 {
4320 unsigned long flags;
4321 struct cas *cp = netdev_priv(dev);
4322
4323 #ifdef USE_NAPI
4324 napi_disable(&cp->napi);
4325 #endif
4326 /* Make sure we don't get distracted by suspend/resume */
4327 mutex_lock(&cp->pm_mutex);
4328
4329 netif_stop_queue(dev);
4330
4331 /* Stop traffic, mark us closed */
4332 cas_lock_all_save(cp, flags);
4333 cp->opened = 0;
4334 cas_reset(cp, 0);
4335 cas_phy_init(cp);
4336 cas_begin_auto_negotiation(cp, NULL);
4337 cas_clean_rings(cp);
4338 cas_unlock_all_restore(cp, flags);
4339
4340 free_irq(cp->pdev->irq, (void *) dev);
4341 cas_spare_free(cp);
4342 cas_free_rxds(cp);
4343 cas_tx_tiny_free(cp);
4344 mutex_unlock(&cp->pm_mutex);
4345 return 0;
4346 }
4347
4348 static struct {
4349 const char name[ETH_GSTRING_LEN];
4350 } ethtool_cassini_statnames[] = {
4351 {"collisions"},
4352 {"rx_bytes"},
4353 {"rx_crc_errors"},
4354 {"rx_dropped"},
4355 {"rx_errors"},
4356 {"rx_fifo_errors"},
4357 {"rx_frame_errors"},
4358 {"rx_length_errors"},
4359 {"rx_over_errors"},
4360 {"rx_packets"},
4361 {"tx_aborted_errors"},
4362 {"tx_bytes"},
4363 {"tx_dropped"},
4364 {"tx_errors"},
4365 {"tx_fifo_errors"},
4366 {"tx_packets"}
4367 };
4368 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4369
4370 static struct {
4371 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4372 } ethtool_register_table[] = {
4373 {-MII_BMSR},
4374 {-MII_BMCR},
4375 {REG_CAWR},
4376 {REG_INF_BURST},
4377 {REG_BIM_CFG},
4378 {REG_RX_CFG},
4379 {REG_HP_CFG},
4380 {REG_MAC_TX_CFG},
4381 {REG_MAC_RX_CFG},
4382 {REG_MAC_CTRL_CFG},
4383 {REG_MAC_XIF_CFG},
4384 {REG_MIF_CFG},
4385 {REG_PCS_CFG},
4386 {REG_SATURN_PCFG},
4387 {REG_PCS_MII_STATUS},
4388 {REG_PCS_STATE_MACHINE},
4389 {REG_MAC_COLL_EXCESS},
4390 {REG_MAC_COLL_LATE}
4391 };
4392 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4393 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4394
4395 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4396 {
4397 u8 *p;
4398 int i;
4399 unsigned long flags;
4400
4401 spin_lock_irqsave(&cp->lock, flags);
4402 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4403 u16 hval;
4404 u32 val;
4405 if (ethtool_register_table[i].offsets < 0) {
4406 hval = cas_phy_read(cp,
4407 -ethtool_register_table[i].offsets);
4408 val = hval;
4409 } else {
4410 val= readl(cp->regs+ethtool_register_table[i].offsets);
4411 }
4412 memcpy(p, (u8 *)&val, sizeof(u32));
4413 }
4414 spin_unlock_irqrestore(&cp->lock, flags);
4415 }
4416
4417 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4418 {
4419 struct cas *cp = netdev_priv(dev);
4420 struct net_device_stats *stats = cp->net_stats;
4421 unsigned long flags;
4422 int i;
4423 unsigned long tmp;
4424
4425 /* we collate all of the stats into net_stats[N_TX_RING] */
4426 if (!cp->hw_running)
4427 return stats + N_TX_RINGS;
4428
4429 /* collect outstanding stats */
4430 /* WTZ: the Cassini spec gives these as 16 bit counters but
4431 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4432 * in case the chip somehow puts any garbage in the other bits.
4433 * Also, counter usage didn't seem to mach what Adrian did
4434 * in the parts of the code that set these quantities. Made
4435 * that consistent.
4436 */
4437 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4438 stats[N_TX_RINGS].rx_crc_errors +=
4439 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4440 stats[N_TX_RINGS].rx_frame_errors +=
4441 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4442 stats[N_TX_RINGS].rx_length_errors +=
4443 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4444 #if 1
4445 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4446 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4447 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4448 stats[N_TX_RINGS].collisions +=
4449 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4450 #else
4451 stats[N_TX_RINGS].tx_aborted_errors +=
4452 readl(cp->regs + REG_MAC_COLL_EXCESS);
4453 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4454 readl(cp->regs + REG_MAC_COLL_LATE);
4455 #endif
4456 cas_clear_mac_err(cp);
4457
4458 /* saved bits that are unique to ring 0 */
4459 spin_lock(&cp->stat_lock[0]);
4460 stats[N_TX_RINGS].collisions += stats[0].collisions;
4461 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4462 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4463 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4464 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4465 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4466 spin_unlock(&cp->stat_lock[0]);
4467
4468 for (i = 0; i < N_TX_RINGS; i++) {
4469 spin_lock(&cp->stat_lock[i]);
4470 stats[N_TX_RINGS].rx_length_errors +=
4471 stats[i].rx_length_errors;
4472 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4473 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4474 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4475 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4476 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4477 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4478 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4479 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4480 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4481 memset(stats + i, 0, sizeof(struct net_device_stats));
4482 spin_unlock(&cp->stat_lock[i]);
4483 }
4484 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4485 return stats + N_TX_RINGS;
4486 }
4487
4488
4489 static void cas_set_multicast(struct net_device *dev)
4490 {
4491 struct cas *cp = netdev_priv(dev);
4492 u32 rxcfg, rxcfg_new;
4493 unsigned long flags;
4494 int limit = STOP_TRIES;
4495
4496 if (!cp->hw_running)
4497 return;
4498
4499 spin_lock_irqsave(&cp->lock, flags);
4500 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4501
4502 /* disable RX MAC and wait for completion */
4503 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4504 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4505 if (!limit--)
4506 break;
4507 udelay(10);
4508 }
4509
4510 /* disable hash filter and wait for completion */
4511 limit = STOP_TRIES;
4512 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4513 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4514 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4515 if (!limit--)
4516 break;
4517 udelay(10);
4518 }
4519
4520 /* program hash filters */
4521 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4522 rxcfg |= rxcfg_new;
4523 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4524 spin_unlock_irqrestore(&cp->lock, flags);
4525 }
4526
4527 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4528 {
4529 struct cas *cp = netdev_priv(dev);
4530 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4531 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4532 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4533 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4534 cp->casreg_len : CAS_MAX_REGS;
4535 info->n_stats = CAS_NUM_STAT_KEYS;
4536 }
4537
4538 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4539 {
4540 struct cas *cp = netdev_priv(dev);
4541 u16 bmcr;
4542 int full_duplex, speed, pause;
4543 unsigned long flags;
4544 enum link_state linkstate = link_up;
4545
4546 cmd->advertising = 0;
4547 cmd->supported = SUPPORTED_Autoneg;
4548 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4549 cmd->supported |= SUPPORTED_1000baseT_Full;
4550 cmd->advertising |= ADVERTISED_1000baseT_Full;
4551 }
4552
4553 /* Record PHY settings if HW is on. */
4554 spin_lock_irqsave(&cp->lock, flags);
4555 bmcr = 0;
4556 linkstate = cp->lstate;
4557 if (CAS_PHY_MII(cp->phy_type)) {
4558 cmd->port = PORT_MII;
4559 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4560 XCVR_INTERNAL : XCVR_EXTERNAL;
4561 cmd->phy_address = cp->phy_addr;
4562 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4563 ADVERTISED_10baseT_Half |
4564 ADVERTISED_10baseT_Full |
4565 ADVERTISED_100baseT_Half |
4566 ADVERTISED_100baseT_Full;
4567
4568 cmd->supported |=
4569 (SUPPORTED_10baseT_Half |
4570 SUPPORTED_10baseT_Full |
4571 SUPPORTED_100baseT_Half |
4572 SUPPORTED_100baseT_Full |
4573 SUPPORTED_TP | SUPPORTED_MII);
4574
4575 if (cp->hw_running) {
4576 cas_mif_poll(cp, 0);
4577 bmcr = cas_phy_read(cp, MII_BMCR);
4578 cas_read_mii_link_mode(cp, &full_duplex,
4579 &speed, &pause);
4580 cas_mif_poll(cp, 1);
4581 }
4582
4583 } else {
4584 cmd->port = PORT_FIBRE;
4585 cmd->transceiver = XCVR_INTERNAL;
4586 cmd->phy_address = 0;
4587 cmd->supported |= SUPPORTED_FIBRE;
4588 cmd->advertising |= ADVERTISED_FIBRE;
4589
4590 if (cp->hw_running) {
4591 /* pcs uses the same bits as mii */
4592 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4593 cas_read_pcs_link_mode(cp, &full_duplex,
4594 &speed, &pause);
4595 }
4596 }
4597 spin_unlock_irqrestore(&cp->lock, flags);
4598
4599 if (bmcr & BMCR_ANENABLE) {
4600 cmd->advertising |= ADVERTISED_Autoneg;
4601 cmd->autoneg = AUTONEG_ENABLE;
4602 ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4603 SPEED_10 :
4604 ((speed == 1000) ?
4605 SPEED_1000 : SPEED_100)));
4606 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4607 } else {
4608 cmd->autoneg = AUTONEG_DISABLE;
4609 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4610 SPEED_1000 :
4611 ((bmcr & BMCR_SPEED100) ?
4612 SPEED_100 : SPEED_10)));
4613 cmd->duplex =
4614 (bmcr & BMCR_FULLDPLX) ?
4615 DUPLEX_FULL : DUPLEX_HALF;
4616 }
4617 if (linkstate != link_up) {
4618 /* Force these to "unknown" if the link is not up and
4619 * autonogotiation in enabled. We can set the link
4620 * speed to 0, but not cmd->duplex,
4621 * because its legal values are 0 and 1. Ethtool will
4622 * print the value reported in parentheses after the
4623 * word "Unknown" for unrecognized values.
4624 *
4625 * If in forced mode, we report the speed and duplex
4626 * settings that we configured.
4627 */
4628 if (cp->link_cntl & BMCR_ANENABLE) {
4629 ethtool_cmd_speed_set(cmd, 0);
4630 cmd->duplex = 0xff;
4631 } else {
4632 ethtool_cmd_speed_set(cmd, SPEED_10);
4633 if (cp->link_cntl & BMCR_SPEED100) {
4634 ethtool_cmd_speed_set(cmd, SPEED_100);
4635 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4636 ethtool_cmd_speed_set(cmd, SPEED_1000);
4637 }
4638 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4639 DUPLEX_FULL : DUPLEX_HALF;
4640 }
4641 }
4642 return 0;
4643 }
4644
4645 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4646 {
4647 struct cas *cp = netdev_priv(dev);
4648 unsigned long flags;
4649 u32 speed = ethtool_cmd_speed(cmd);
4650
4651 /* Verify the settings we care about. */
4652 if (cmd->autoneg != AUTONEG_ENABLE &&
4653 cmd->autoneg != AUTONEG_DISABLE)
4654 return -EINVAL;
4655
4656 if (cmd->autoneg == AUTONEG_DISABLE &&
4657 ((speed != SPEED_1000 &&
4658 speed != SPEED_100 &&
4659 speed != SPEED_10) ||
4660 (cmd->duplex != DUPLEX_HALF &&
4661 cmd->duplex != DUPLEX_FULL)))
4662 return -EINVAL;
4663
4664 /* Apply settings and restart link process. */
4665 spin_lock_irqsave(&cp->lock, flags);
4666 cas_begin_auto_negotiation(cp, cmd);
4667 spin_unlock_irqrestore(&cp->lock, flags);
4668 return 0;
4669 }
4670
4671 static int cas_nway_reset(struct net_device *dev)
4672 {
4673 struct cas *cp = netdev_priv(dev);
4674 unsigned long flags;
4675
4676 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4677 return -EINVAL;
4678
4679 /* Restart link process. */
4680 spin_lock_irqsave(&cp->lock, flags);
4681 cas_begin_auto_negotiation(cp, NULL);
4682 spin_unlock_irqrestore(&cp->lock, flags);
4683
4684 return 0;
4685 }
4686
4687 static u32 cas_get_link(struct net_device *dev)
4688 {
4689 struct cas *cp = netdev_priv(dev);
4690 return cp->lstate == link_up;
4691 }
4692
4693 static u32 cas_get_msglevel(struct net_device *dev)
4694 {
4695 struct cas *cp = netdev_priv(dev);
4696 return cp->msg_enable;
4697 }
4698
4699 static void cas_set_msglevel(struct net_device *dev, u32 value)
4700 {
4701 struct cas *cp = netdev_priv(dev);
4702 cp->msg_enable = value;
4703 }
4704
4705 static int cas_get_regs_len(struct net_device *dev)
4706 {
4707 struct cas *cp = netdev_priv(dev);
4708 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4709 }
4710
4711 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4712 void *p)
4713 {
4714 struct cas *cp = netdev_priv(dev);
4715 regs->version = 0;
4716 /* cas_read_regs handles locks (cp->lock). */
4717 cas_read_regs(cp, p, regs->len / sizeof(u32));
4718 }
4719
4720 static int cas_get_sset_count(struct net_device *dev, int sset)
4721 {
4722 switch (sset) {
4723 case ETH_SS_STATS:
4724 return CAS_NUM_STAT_KEYS;
4725 default:
4726 return -EOPNOTSUPP;
4727 }
4728 }
4729
4730 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4731 {
4732 memcpy(data, &ethtool_cassini_statnames,
4733 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4734 }
4735
4736 static void cas_get_ethtool_stats(struct net_device *dev,
4737 struct ethtool_stats *estats, u64 *data)
4738 {
4739 struct cas *cp = netdev_priv(dev);
4740 struct net_device_stats *stats = cas_get_stats(cp->dev);
4741 int i = 0;
4742 data[i++] = stats->collisions;
4743 data[i++] = stats->rx_bytes;
4744 data[i++] = stats->rx_crc_errors;
4745 data[i++] = stats->rx_dropped;
4746 data[i++] = stats->rx_errors;
4747 data[i++] = stats->rx_fifo_errors;
4748 data[i++] = stats->rx_frame_errors;
4749 data[i++] = stats->rx_length_errors;
4750 data[i++] = stats->rx_over_errors;
4751 data[i++] = stats->rx_packets;
4752 data[i++] = stats->tx_aborted_errors;
4753 data[i++] = stats->tx_bytes;
4754 data[i++] = stats->tx_dropped;
4755 data[i++] = stats->tx_errors;
4756 data[i++] = stats->tx_fifo_errors;
4757 data[i++] = stats->tx_packets;
4758 BUG_ON(i != CAS_NUM_STAT_KEYS);
4759 }
4760
4761 static const struct ethtool_ops cas_ethtool_ops = {
4762 .get_drvinfo = cas_get_drvinfo,
4763 .get_settings = cas_get_settings,
4764 .set_settings = cas_set_settings,
4765 .nway_reset = cas_nway_reset,
4766 .get_link = cas_get_link,
4767 .get_msglevel = cas_get_msglevel,
4768 .set_msglevel = cas_set_msglevel,
4769 .get_regs_len = cas_get_regs_len,
4770 .get_regs = cas_get_regs,
4771 .get_sset_count = cas_get_sset_count,
4772 .get_strings = cas_get_strings,
4773 .get_ethtool_stats = cas_get_ethtool_stats,
4774 };
4775
4776 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4777 {
4778 struct cas *cp = netdev_priv(dev);
4779 struct mii_ioctl_data *data = if_mii(ifr);
4780 unsigned long flags;
4781 int rc = -EOPNOTSUPP;
4782
4783 /* Hold the PM mutex while doing ioctl's or we may collide
4784 * with open/close and power management and oops.
4785 */
4786 mutex_lock(&cp->pm_mutex);
4787 switch (cmd) {
4788 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4789 data->phy_id = cp->phy_addr;
4790 /* Fallthrough... */
4791
4792 case SIOCGMIIREG: /* Read MII PHY register. */
4793 spin_lock_irqsave(&cp->lock, flags);
4794 cas_mif_poll(cp, 0);
4795 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4796 cas_mif_poll(cp, 1);
4797 spin_unlock_irqrestore(&cp->lock, flags);
4798 rc = 0;
4799 break;
4800
4801 case SIOCSMIIREG: /* Write MII PHY register. */
4802 spin_lock_irqsave(&cp->lock, flags);
4803 cas_mif_poll(cp, 0);
4804 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4805 cas_mif_poll(cp, 1);
4806 spin_unlock_irqrestore(&cp->lock, flags);
4807 break;
4808 default:
4809 break;
4810 }
4811
4812 mutex_unlock(&cp->pm_mutex);
4813 return rc;
4814 }
4815
4816 /* When this chip sits underneath an Intel 31154 bridge, it is the
4817 * only subordinate device and we can tweak the bridge settings to
4818 * reflect that fact.
4819 */
4820 static void cas_program_bridge(struct pci_dev *cas_pdev)
4821 {
4822 struct pci_dev *pdev = cas_pdev->bus->self;
4823 u32 val;
4824
4825 if (!pdev)
4826 return;
4827
4828 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4829 return;
4830
4831 /* Clear bit 10 (Bus Parking Control) in the Secondary
4832 * Arbiter Control/Status Register which lives at offset
4833 * 0x41. Using a 32-bit word read/modify/write at 0x40
4834 * is much simpler so that's how we do this.
4835 */
4836 pci_read_config_dword(pdev, 0x40, &val);
4837 val &= ~0x00040000;
4838 pci_write_config_dword(pdev, 0x40, val);
4839
4840 /* Max out the Multi-Transaction Timer settings since
4841 * Cassini is the only device present.
4842 *
4843 * The register is 16-bit and lives at 0x50. When the
4844 * settings are enabled, it extends the GRANT# signal
4845 * for a requestor after a transaction is complete. This
4846 * allows the next request to run without first needing
4847 * to negotiate the GRANT# signal back.
4848 *
4849 * Bits 12:10 define the grant duration:
4850 *
4851 * 1 -- 16 clocks
4852 * 2 -- 32 clocks
4853 * 3 -- 64 clocks
4854 * 4 -- 128 clocks
4855 * 5 -- 256 clocks
4856 *
4857 * All other values are illegal.
4858 *
4859 * Bits 09:00 define which REQ/GNT signal pairs get the
4860 * GRANT# signal treatment. We set them all.
4861 */
4862 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4863
4864 /* The Read Prefecth Policy register is 16-bit and sits at
4865 * offset 0x52. It enables a "smart" pre-fetch policy. We
4866 * enable it and max out all of the settings since only one
4867 * device is sitting underneath and thus bandwidth sharing is
4868 * not an issue.
4869 *
4870 * The register has several 3 bit fields, which indicates a
4871 * multiplier applied to the base amount of prefetching the
4872 * chip would do. These fields are at:
4873 *
4874 * 15:13 --- ReRead Primary Bus
4875 * 12:10 --- FirstRead Primary Bus
4876 * 09:07 --- ReRead Secondary Bus
4877 * 06:04 --- FirstRead Secondary Bus
4878 *
4879 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4880 * get enabled on. Bit 3 is a grouped enabler which controls
4881 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4882 * the individual REQ/GNT pairs [2:0].
4883 */
4884 pci_write_config_word(pdev, 0x52,
4885 (0x7 << 13) |
4886 (0x7 << 10) |
4887 (0x7 << 7) |
4888 (0x7 << 4) |
4889 (0xf << 0));
4890
4891 /* Force cacheline size to 0x8 */
4892 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4893
4894 /* Force latency timer to maximum setting so Cassini can
4895 * sit on the bus as long as it likes.
4896 */
4897 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4898 }
4899
4900 static const struct net_device_ops cas_netdev_ops = {
4901 .ndo_open = cas_open,
4902 .ndo_stop = cas_close,
4903 .ndo_start_xmit = cas_start_xmit,
4904 .ndo_get_stats = cas_get_stats,
4905 .ndo_set_rx_mode = cas_set_multicast,
4906 .ndo_do_ioctl = cas_ioctl,
4907 .ndo_tx_timeout = cas_tx_timeout,
4908 .ndo_change_mtu = cas_change_mtu,
4909 .ndo_set_mac_address = eth_mac_addr,
4910 .ndo_validate_addr = eth_validate_addr,
4911 #ifdef CONFIG_NET_POLL_CONTROLLER
4912 .ndo_poll_controller = cas_netpoll,
4913 #endif
4914 };
4915
4916 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4917 {
4918 static int cas_version_printed = 0;
4919 unsigned long casreg_len;
4920 struct net_device *dev;
4921 struct cas *cp;
4922 int i, err, pci_using_dac;
4923 u16 pci_cmd;
4924 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4925
4926 if (cas_version_printed++ == 0)
4927 pr_info("%s", version);
4928
4929 err = pci_enable_device(pdev);
4930 if (err) {
4931 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4932 return err;
4933 }
4934
4935 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4936 dev_err(&pdev->dev, "Cannot find proper PCI device "
4937 "base address, aborting\n");
4938 err = -ENODEV;
4939 goto err_out_disable_pdev;
4940 }
4941
4942 dev = alloc_etherdev(sizeof(*cp));
4943 if (!dev) {
4944 err = -ENOMEM;
4945 goto err_out_disable_pdev;
4946 }
4947 SET_NETDEV_DEV(dev, &pdev->dev);
4948
4949 err = pci_request_regions(pdev, dev->name);
4950 if (err) {
4951 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4952 goto err_out_free_netdev;
4953 }
4954 pci_set_master(pdev);
4955
4956 /* we must always turn on parity response or else parity
4957 * doesn't get generated properly. disable SERR/PERR as well.
4958 * in addition, we want to turn MWI on.
4959 */
4960 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4961 pci_cmd &= ~PCI_COMMAND_SERR;
4962 pci_cmd |= PCI_COMMAND_PARITY;
4963 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4964 if (pci_try_set_mwi(pdev))
4965 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4966
4967 cas_program_bridge(pdev);
4968
4969 /*
4970 * On some architectures, the default cache line size set
4971 * by pci_try_set_mwi reduces perforamnce. We have to increase
4972 * it for this case. To start, we'll print some configuration
4973 * data.
4974 */
4975 #if 1
4976 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4977 &orig_cacheline_size);
4978 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4979 cas_cacheline_size =
4980 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4981 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4982 if (pci_write_config_byte(pdev,
4983 PCI_CACHE_LINE_SIZE,
4984 cas_cacheline_size)) {
4985 dev_err(&pdev->dev, "Could not set PCI cache "
4986 "line size\n");
4987 goto err_write_cacheline;
4988 }
4989 }
4990 #endif
4991
4992
4993 /* Configure DMA attributes. */
4994 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4995 pci_using_dac = 1;
4996 err = pci_set_consistent_dma_mask(pdev,
4997 DMA_BIT_MASK(64));
4998 if (err < 0) {
4999 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5000 "for consistent allocations\n");
5001 goto err_out_free_res;
5002 }
5003
5004 } else {
5005 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5006 if (err) {
5007 dev_err(&pdev->dev, "No usable DMA configuration, "
5008 "aborting\n");
5009 goto err_out_free_res;
5010 }
5011 pci_using_dac = 0;
5012 }
5013
5014 casreg_len = pci_resource_len(pdev, 0);
5015
5016 cp = netdev_priv(dev);
5017 cp->pdev = pdev;
5018 #if 1
5019 /* A value of 0 indicates we never explicitly set it */
5020 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5021 #endif
5022 cp->dev = dev;
5023 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5024 cassini_debug;
5025
5026 #if defined(CONFIG_SPARC)
5027 cp->of_node = pci_device_to_OF_node(pdev);
5028 #endif
5029
5030 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5031 cp->link_transition_jiffies_valid = 0;
5032
5033 spin_lock_init(&cp->lock);
5034 spin_lock_init(&cp->rx_inuse_lock);
5035 spin_lock_init(&cp->rx_spare_lock);
5036 for (i = 0; i < N_TX_RINGS; i++) {
5037 spin_lock_init(&cp->stat_lock[i]);
5038 spin_lock_init(&cp->tx_lock[i]);
5039 }
5040 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5041 mutex_init(&cp->pm_mutex);
5042
5043 init_timer(&cp->link_timer);
5044 cp->link_timer.function = cas_link_timer;
5045 cp->link_timer.data = (unsigned long) cp;
5046
5047 #if 1
5048 /* Just in case the implementation of atomic operations
5049 * change so that an explicit initialization is necessary.
5050 */
5051 atomic_set(&cp->reset_task_pending, 0);
5052 atomic_set(&cp->reset_task_pending_all, 0);
5053 atomic_set(&cp->reset_task_pending_spare, 0);
5054 atomic_set(&cp->reset_task_pending_mtu, 0);
5055 #endif
5056 INIT_WORK(&cp->reset_task, cas_reset_task);
5057
5058 /* Default link parameters */
5059 if (link_mode >= 0 && link_mode < 6)
5060 cp->link_cntl = link_modes[link_mode];
5061 else
5062 cp->link_cntl = BMCR_ANENABLE;
5063 cp->lstate = link_down;
5064 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5065 netif_carrier_off(cp->dev);
5066 cp->timer_ticks = 0;
5067
5068 /* give us access to cassini registers */
5069 cp->regs = pci_iomap(pdev, 0, casreg_len);
5070 if (!cp->regs) {
5071 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5072 goto err_out_free_res;
5073 }
5074 cp->casreg_len = casreg_len;
5075
5076 pci_save_state(pdev);
5077 cas_check_pci_invariants(cp);
5078 cas_hard_reset(cp);
5079 cas_reset(cp, 0);
5080 if (cas_check_invariants(cp))
5081 goto err_out_iounmap;
5082 if (cp->cas_flags & CAS_FLAG_SATURN)
5083 cas_saturn_firmware_init(cp);
5084
5085 cp->init_block = (struct cas_init_block *)
5086 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5087 &cp->block_dvma);
5088 if (!cp->init_block) {
5089 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5090 goto err_out_iounmap;
5091 }
5092
5093 for (i = 0; i < N_TX_RINGS; i++)
5094 cp->init_txds[i] = cp->init_block->txds[i];
5095
5096 for (i = 0; i < N_RX_DESC_RINGS; i++)
5097 cp->init_rxds[i] = cp->init_block->rxds[i];
5098
5099 for (i = 0; i < N_RX_COMP_RINGS; i++)
5100 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5101
5102 for (i = 0; i < N_RX_FLOWS; i++)
5103 skb_queue_head_init(&cp->rx_flows[i]);
5104
5105 dev->netdev_ops = &cas_netdev_ops;
5106 dev->ethtool_ops = &cas_ethtool_ops;
5107 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5108
5109 #ifdef USE_NAPI
5110 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5111 #endif
5112 dev->irq = pdev->irq;
5113 dev->dma = 0;
5114
5115 /* Cassini features. */
5116 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5117 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5118
5119 if (pci_using_dac)
5120 dev->features |= NETIF_F_HIGHDMA;
5121
5122 if (register_netdev(dev)) {
5123 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5124 goto err_out_free_consistent;
5125 }
5126
5127 i = readl(cp->regs + REG_BIM_CFG);
5128 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5129 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5130 (i & BIM_CFG_32BIT) ? "32" : "64",
5131 (i & BIM_CFG_66MHZ) ? "66" : "33",
5132 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5133 dev->dev_addr);
5134
5135 pci_set_drvdata(pdev, dev);
5136 cp->hw_running = 1;
5137 cas_entropy_reset(cp);
5138 cas_phy_init(cp);
5139 cas_begin_auto_negotiation(cp, NULL);
5140 return 0;
5141
5142 err_out_free_consistent:
5143 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5144 cp->init_block, cp->block_dvma);
5145
5146 err_out_iounmap:
5147 mutex_lock(&cp->pm_mutex);
5148 if (cp->hw_running)
5149 cas_shutdown(cp);
5150 mutex_unlock(&cp->pm_mutex);
5151
5152 pci_iounmap(pdev, cp->regs);
5153
5154
5155 err_out_free_res:
5156 pci_release_regions(pdev);
5157
5158 err_write_cacheline:
5159 /* Try to restore it in case the error occurred after we
5160 * set it.
5161 */
5162 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5163
5164 err_out_free_netdev:
5165 free_netdev(dev);
5166
5167 err_out_disable_pdev:
5168 pci_disable_device(pdev);
5169 return -ENODEV;
5170 }
5171
5172 static void cas_remove_one(struct pci_dev *pdev)
5173 {
5174 struct net_device *dev = pci_get_drvdata(pdev);
5175 struct cas *cp;
5176 if (!dev)
5177 return;
5178
5179 cp = netdev_priv(dev);
5180 unregister_netdev(dev);
5181
5182 if (cp->fw_data)
5183 vfree(cp->fw_data);
5184
5185 mutex_lock(&cp->pm_mutex);
5186 cancel_work_sync(&cp->reset_task);
5187 if (cp->hw_running)
5188 cas_shutdown(cp);
5189 mutex_unlock(&cp->pm_mutex);
5190
5191 #if 1
5192 if (cp->orig_cacheline_size) {
5193 /* Restore the cache line size if we had modified
5194 * it.
5195 */
5196 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5197 cp->orig_cacheline_size);
5198 }
5199 #endif
5200 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5201 cp->init_block, cp->block_dvma);
5202 pci_iounmap(pdev, cp->regs);
5203 free_netdev(dev);
5204 pci_release_regions(pdev);
5205 pci_disable_device(pdev);
5206 }
5207
5208 #ifdef CONFIG_PM
5209 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5210 {
5211 struct net_device *dev = pci_get_drvdata(pdev);
5212 struct cas *cp = netdev_priv(dev);
5213 unsigned long flags;
5214
5215 mutex_lock(&cp->pm_mutex);
5216
5217 /* If the driver is opened, we stop the DMA */
5218 if (cp->opened) {
5219 netif_device_detach(dev);
5220
5221 cas_lock_all_save(cp, flags);
5222
5223 /* We can set the second arg of cas_reset to 0
5224 * because on resume, we'll call cas_init_hw with
5225 * its second arg set so that autonegotiation is
5226 * restarted.
5227 */
5228 cas_reset(cp, 0);
5229 cas_clean_rings(cp);
5230 cas_unlock_all_restore(cp, flags);
5231 }
5232
5233 if (cp->hw_running)
5234 cas_shutdown(cp);
5235 mutex_unlock(&cp->pm_mutex);
5236
5237 return 0;
5238 }
5239
5240 static int cas_resume(struct pci_dev *pdev)
5241 {
5242 struct net_device *dev = pci_get_drvdata(pdev);
5243 struct cas *cp = netdev_priv(dev);
5244
5245 netdev_info(dev, "resuming\n");
5246
5247 mutex_lock(&cp->pm_mutex);
5248 cas_hard_reset(cp);
5249 if (cp->opened) {
5250 unsigned long flags;
5251 cas_lock_all_save(cp, flags);
5252 cas_reset(cp, 0);
5253 cp->hw_running = 1;
5254 cas_clean_rings(cp);
5255 cas_init_hw(cp, 1);
5256 cas_unlock_all_restore(cp, flags);
5257
5258 netif_device_attach(dev);
5259 }
5260 mutex_unlock(&cp->pm_mutex);
5261 return 0;
5262 }
5263 #endif /* CONFIG_PM */
5264
5265 static struct pci_driver cas_driver = {
5266 .name = DRV_MODULE_NAME,
5267 .id_table = cas_pci_tbl,
5268 .probe = cas_init_one,
5269 .remove = cas_remove_one,
5270 #ifdef CONFIG_PM
5271 .suspend = cas_suspend,
5272 .resume = cas_resume
5273 #endif
5274 };
5275
5276 static int __init cas_init(void)
5277 {
5278 if (linkdown_timeout > 0)
5279 link_transition_timeout = linkdown_timeout * HZ;
5280 else
5281 link_transition_timeout = 0;
5282
5283 return pci_register_driver(&cas_driver);
5284 }
5285
5286 static void __exit cas_cleanup(void)
5287 {
5288 pci_unregister_driver(&cas_driver);
5289 }
5290
5291 module_init(cas_init);
5292 module_exit(cas_cleanup);
This page took 0.141071 seconds and 5 git commands to generate.