45ba50e4eaec389a5103a54229d908421ce16553
[deliverable/linux.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/of_device.h>
35 #include <linux/if_vlan.h>
36
37 #include <linux/pinctrl/consumer.h>
38
39 #include "cpsw.h"
40 #include "cpsw_ale.h"
41 #include "cpts.h"
42 #include "davinci_cpdma.h"
43
44 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
45 NETIF_MSG_DRV | NETIF_MSG_LINK | \
46 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
47 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
48 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
49 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
50 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
51 NETIF_MSG_RX_STATUS)
52
53 #define cpsw_info(priv, type, format, ...) \
54 do { \
55 if (netif_msg_##type(priv) && net_ratelimit()) \
56 dev_info(priv->dev, format, ## __VA_ARGS__); \
57 } while (0)
58
59 #define cpsw_err(priv, type, format, ...) \
60 do { \
61 if (netif_msg_##type(priv) && net_ratelimit()) \
62 dev_err(priv->dev, format, ## __VA_ARGS__); \
63 } while (0)
64
65 #define cpsw_dbg(priv, type, format, ...) \
66 do { \
67 if (netif_msg_##type(priv) && net_ratelimit()) \
68 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
69 } while (0)
70
71 #define cpsw_notice(priv, type, format, ...) \
72 do { \
73 if (netif_msg_##type(priv) && net_ratelimit()) \
74 dev_notice(priv->dev, format, ## __VA_ARGS__); \
75 } while (0)
76
77 #define ALE_ALL_PORTS 0x7
78
79 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
80 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
81 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
82
83 #define CPSW_VERSION_1 0x19010a
84 #define CPSW_VERSION_2 0x19010c
85 #define CPSW_VERSION_3 0x19010f
86 #define CPSW_VERSION_4 0x190112
87
88 #define HOST_PORT_NUM 0
89 #define SLIVER_SIZE 0x40
90
91 #define CPSW1_HOST_PORT_OFFSET 0x028
92 #define CPSW1_SLAVE_OFFSET 0x050
93 #define CPSW1_SLAVE_SIZE 0x040
94 #define CPSW1_CPDMA_OFFSET 0x100
95 #define CPSW1_STATERAM_OFFSET 0x200
96 #define CPSW1_HW_STATS 0x400
97 #define CPSW1_CPTS_OFFSET 0x500
98 #define CPSW1_ALE_OFFSET 0x600
99 #define CPSW1_SLIVER_OFFSET 0x700
100
101 #define CPSW2_HOST_PORT_OFFSET 0x108
102 #define CPSW2_SLAVE_OFFSET 0x200
103 #define CPSW2_SLAVE_SIZE 0x100
104 #define CPSW2_CPDMA_OFFSET 0x800
105 #define CPSW2_HW_STATS 0x900
106 #define CPSW2_STATERAM_OFFSET 0xa00
107 #define CPSW2_CPTS_OFFSET 0xc00
108 #define CPSW2_ALE_OFFSET 0xd00
109 #define CPSW2_SLIVER_OFFSET 0xd80
110 #define CPSW2_BD_OFFSET 0x2000
111
112 #define CPDMA_RXTHRESH 0x0c0
113 #define CPDMA_RXFREE 0x0e0
114 #define CPDMA_TXHDP 0x00
115 #define CPDMA_RXHDP 0x20
116 #define CPDMA_TXCP 0x40
117 #define CPDMA_RXCP 0x60
118
119 #define CPSW_POLL_WEIGHT 64
120 #define CPSW_MIN_PACKET_SIZE 60
121 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
122
123 #define RX_PRIORITY_MAPPING 0x76543210
124 #define TX_PRIORITY_MAPPING 0x33221100
125 #define CPDMA_TX_PRIORITY_MAP 0x76543210
126
127 #define CPSW_VLAN_AWARE BIT(1)
128 #define CPSW_ALE_VLAN_AWARE 1
129
130 #define CPSW_FIFO_NORMAL_MODE (0 << 15)
131 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 15)
132 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 15)
133
134 #define CPSW_INTPACEEN (0x3f << 16)
135 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
136 #define CPSW_CMINTMAX_CNT 63
137 #define CPSW_CMINTMIN_CNT 2
138 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
139 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
140
141 #define cpsw_enable_irq(priv) \
142 do { \
143 u32 i; \
144 for (i = 0; i < priv->num_irqs; i++) \
145 enable_irq(priv->irqs_table[i]); \
146 } while (0)
147 #define cpsw_disable_irq(priv) \
148 do { \
149 u32 i; \
150 for (i = 0; i < priv->num_irqs; i++) \
151 disable_irq_nosync(priv->irqs_table[i]); \
152 } while (0)
153
154 #define cpsw_slave_index(priv) \
155 ((priv->data.dual_emac) ? priv->emac_port : \
156 priv->data.active_slave)
157
158 static int debug_level;
159 module_param(debug_level, int, 0);
160 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
161
162 static int ale_ageout = 10;
163 module_param(ale_ageout, int, 0);
164 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
165
166 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
167 module_param(rx_packet_max, int, 0);
168 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
169
170 struct cpsw_wr_regs {
171 u32 id_ver;
172 u32 soft_reset;
173 u32 control;
174 u32 int_control;
175 u32 rx_thresh_en;
176 u32 rx_en;
177 u32 tx_en;
178 u32 misc_en;
179 u32 mem_allign1[8];
180 u32 rx_thresh_stat;
181 u32 rx_stat;
182 u32 tx_stat;
183 u32 misc_stat;
184 u32 mem_allign2[8];
185 u32 rx_imax;
186 u32 tx_imax;
187
188 };
189
190 struct cpsw_ss_regs {
191 u32 id_ver;
192 u32 control;
193 u32 soft_reset;
194 u32 stat_port_en;
195 u32 ptype;
196 u32 soft_idle;
197 u32 thru_rate;
198 u32 gap_thresh;
199 u32 tx_start_wds;
200 u32 flow_control;
201 u32 vlan_ltype;
202 u32 ts_ltype;
203 u32 dlr_ltype;
204 };
205
206 /* CPSW_PORT_V1 */
207 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
208 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
209 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
210 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
211 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
212 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
213 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
214 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
215
216 /* CPSW_PORT_V2 */
217 #define CPSW2_CONTROL 0x00 /* Control Register */
218 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
219 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
220 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
221 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
222 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
223 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
224
225 /* CPSW_PORT_V1 and V2 */
226 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
227 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
228 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
229
230 /* CPSW_PORT_V2 only */
231 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
235 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
236 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
237 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
238 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
239
240 /* Bit definitions for the CPSW2_CONTROL register */
241 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
242 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
243 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
244 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
245 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
246 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
247 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
248 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
249 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
250 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
251 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
252 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
253 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
254 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
255 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
256 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
257 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
258
259 #define CTRL_V2_TS_BITS \
260 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
261 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
262
263 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
264 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
265 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
266
267
268 #define CTRL_V3_TS_BITS \
269 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
270 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
271 TS_LTYPE1_EN)
272
273 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
274 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
275 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
276
277 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
278 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
279 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
280 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
281 #define TS_MSG_TYPE_EN_MASK (0xffff)
282
283 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
284 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
285
286 /* Bit definitions for the CPSW1_TS_CTL register */
287 #define CPSW_V1_TS_RX_EN BIT(0)
288 #define CPSW_V1_TS_TX_EN BIT(4)
289 #define CPSW_V1_MSG_TYPE_OFS 16
290
291 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
292 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
293
294 struct cpsw_host_regs {
295 u32 max_blks;
296 u32 blk_cnt;
297 u32 tx_in_ctl;
298 u32 port_vlan;
299 u32 tx_pri_map;
300 u32 cpdma_tx_pri_map;
301 u32 cpdma_rx_chan_map;
302 };
303
304 struct cpsw_sliver_regs {
305 u32 id_ver;
306 u32 mac_control;
307 u32 mac_status;
308 u32 soft_reset;
309 u32 rx_maxlen;
310 u32 __reserved_0;
311 u32 rx_pause;
312 u32 tx_pause;
313 u32 __reserved_1;
314 u32 rx_pri_map;
315 };
316
317 struct cpsw_hw_stats {
318 u32 rxgoodframes;
319 u32 rxbroadcastframes;
320 u32 rxmulticastframes;
321 u32 rxpauseframes;
322 u32 rxcrcerrors;
323 u32 rxaligncodeerrors;
324 u32 rxoversizedframes;
325 u32 rxjabberframes;
326 u32 rxundersizedframes;
327 u32 rxfragments;
328 u32 __pad_0[2];
329 u32 rxoctets;
330 u32 txgoodframes;
331 u32 txbroadcastframes;
332 u32 txmulticastframes;
333 u32 txpauseframes;
334 u32 txdeferredframes;
335 u32 txcollisionframes;
336 u32 txsinglecollframes;
337 u32 txmultcollframes;
338 u32 txexcessivecollisions;
339 u32 txlatecollisions;
340 u32 txunderrun;
341 u32 txcarriersenseerrors;
342 u32 txoctets;
343 u32 octetframes64;
344 u32 octetframes65t127;
345 u32 octetframes128t255;
346 u32 octetframes256t511;
347 u32 octetframes512t1023;
348 u32 octetframes1024tup;
349 u32 netoctets;
350 u32 rxsofoverruns;
351 u32 rxmofoverruns;
352 u32 rxdmaoverruns;
353 };
354
355 struct cpsw_slave {
356 void __iomem *regs;
357 struct cpsw_sliver_regs __iomem *sliver;
358 int slave_num;
359 u32 mac_control;
360 struct cpsw_slave_data *data;
361 struct phy_device *phy;
362 struct net_device *ndev;
363 u32 port_vlan;
364 u32 open_stat;
365 };
366
367 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
368 {
369 return __raw_readl(slave->regs + offset);
370 }
371
372 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
373 {
374 __raw_writel(val, slave->regs + offset);
375 }
376
377 struct cpsw_priv {
378 spinlock_t lock;
379 struct platform_device *pdev;
380 struct net_device *ndev;
381 struct napi_struct napi;
382 struct device *dev;
383 struct cpsw_platform_data data;
384 struct cpsw_ss_regs __iomem *regs;
385 struct cpsw_wr_regs __iomem *wr_regs;
386 u8 __iomem *hw_stats;
387 struct cpsw_host_regs __iomem *host_port_regs;
388 u32 msg_enable;
389 u32 version;
390 u32 coal_intvl;
391 u32 bus_freq_mhz;
392 int rx_packet_max;
393 int host_port;
394 struct clk *clk;
395 u8 mac_addr[ETH_ALEN];
396 struct cpsw_slave *slaves;
397 struct cpdma_ctlr *dma;
398 struct cpdma_chan *txch, *rxch;
399 struct cpsw_ale *ale;
400 bool rx_pause;
401 bool tx_pause;
402 /* snapshot of IRQ numbers */
403 u32 irqs_table[4];
404 u32 num_irqs;
405 bool irq_enabled;
406 struct cpts *cpts;
407 u32 emac_port;
408 };
409
410 struct cpsw_stats {
411 char stat_string[ETH_GSTRING_LEN];
412 int type;
413 int sizeof_stat;
414 int stat_offset;
415 };
416
417 enum {
418 CPSW_STATS,
419 CPDMA_RX_STATS,
420 CPDMA_TX_STATS,
421 };
422
423 #define CPSW_STAT(m) CPSW_STATS, \
424 sizeof(((struct cpsw_hw_stats *)0)->m), \
425 offsetof(struct cpsw_hw_stats, m)
426 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
427 sizeof(((struct cpdma_chan_stats *)0)->m), \
428 offsetof(struct cpdma_chan_stats, m)
429 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
430 sizeof(((struct cpdma_chan_stats *)0)->m), \
431 offsetof(struct cpdma_chan_stats, m)
432
433 static const struct cpsw_stats cpsw_gstrings_stats[] = {
434 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
435 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
436 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
437 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
438 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
439 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
440 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
441 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
442 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
443 { "Rx Fragments", CPSW_STAT(rxfragments) },
444 { "Rx Octets", CPSW_STAT(rxoctets) },
445 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
446 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
447 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
448 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
449 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
450 { "Collisions", CPSW_STAT(txcollisionframes) },
451 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
452 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
453 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
454 { "Late Collisions", CPSW_STAT(txlatecollisions) },
455 { "Tx Underrun", CPSW_STAT(txunderrun) },
456 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
457 { "Tx Octets", CPSW_STAT(txoctets) },
458 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
459 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
460 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
461 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
462 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
463 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
464 { "Net Octets", CPSW_STAT(netoctets) },
465 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
466 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
467 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
468 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
469 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
470 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
471 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
472 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
473 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
474 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
475 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
476 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
477 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
478 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
479 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
480 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
481 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
482 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
483 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
484 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
485 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
486 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
487 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
488 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
489 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
490 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
491 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
492 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
493 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
494 };
495
496 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats)
497
498 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi)
499 #define for_each_slave(priv, func, arg...) \
500 do { \
501 struct cpsw_slave *slave; \
502 int n; \
503 if (priv->data.dual_emac) \
504 (func)((priv)->slaves + priv->emac_port, ##arg);\
505 else \
506 for (n = (priv)->data.slaves, \
507 slave = (priv)->slaves; \
508 n; n--) \
509 (func)(slave++, ##arg); \
510 } while (0)
511 #define cpsw_get_slave_ndev(priv, __slave_no__) \
512 (priv->slaves[__slave_no__].ndev)
513 #define cpsw_get_slave_priv(priv, __slave_no__) \
514 ((priv->slaves[__slave_no__].ndev) ? \
515 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \
516
517 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \
518 do { \
519 if (!priv->data.dual_emac) \
520 break; \
521 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
522 ndev = cpsw_get_slave_ndev(priv, 0); \
523 priv = netdev_priv(ndev); \
524 skb->dev = ndev; \
525 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
526 ndev = cpsw_get_slave_ndev(priv, 1); \
527 priv = netdev_priv(ndev); \
528 skb->dev = ndev; \
529 } \
530 } while (0)
531 #define cpsw_add_mcast(priv, addr) \
532 do { \
533 if (priv->data.dual_emac) { \
534 struct cpsw_slave *slave = priv->slaves + \
535 priv->emac_port; \
536 int slave_port = cpsw_get_slave_port(priv, \
537 slave->slave_num); \
538 cpsw_ale_add_mcast(priv->ale, addr, \
539 1 << slave_port | 1 << priv->host_port, \
540 ALE_VLAN, slave->port_vlan, 0); \
541 } else { \
542 cpsw_ale_add_mcast(priv->ale, addr, \
543 ALE_ALL_PORTS << priv->host_port, \
544 0, 0, 0); \
545 } \
546 } while (0)
547
548 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
549 {
550 if (priv->host_port == 0)
551 return slave_num + 1;
552 else
553 return slave_num;
554 }
555
556 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
557 {
558 struct cpsw_priv *priv = netdev_priv(ndev);
559 struct cpsw_ale *ale = priv->ale;
560 int i;
561
562 if (priv->data.dual_emac) {
563 bool flag = false;
564
565 /* Enabling promiscuous mode for one interface will be
566 * common for both the interface as the interface shares
567 * the same hardware resource.
568 */
569 for (i = 0; i < priv->data.slaves; i++)
570 if (priv->slaves[i].ndev->flags & IFF_PROMISC)
571 flag = true;
572
573 if (!enable && flag) {
574 enable = true;
575 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
576 }
577
578 if (enable) {
579 /* Enable Bypass */
580 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
581
582 dev_dbg(&ndev->dev, "promiscuity enabled\n");
583 } else {
584 /* Disable Bypass */
585 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
586 dev_dbg(&ndev->dev, "promiscuity disabled\n");
587 }
588 } else {
589 if (enable) {
590 unsigned long timeout = jiffies + HZ;
591
592 /* Disable Learn for all ports */
593 for (i = 0; i < priv->data.slaves; i++) {
594 cpsw_ale_control_set(ale, i,
595 ALE_PORT_NOLEARN, 1);
596 cpsw_ale_control_set(ale, i,
597 ALE_PORT_NO_SA_UPDATE, 1);
598 }
599
600 /* Clear All Untouched entries */
601 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
602 do {
603 cpu_relax();
604 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
605 break;
606 } while (time_after(timeout, jiffies));
607 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
608
609 /* Clear all mcast from ALE */
610 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS <<
611 priv->host_port);
612
613 /* Flood All Unicast Packets to Host port */
614 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
615 dev_dbg(&ndev->dev, "promiscuity enabled\n");
616 } else {
617 /* Flood All Unicast Packets to Host port */
618 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
619
620 /* Enable Learn for all ports */
621 for (i = 0; i < priv->data.slaves; i++) {
622 cpsw_ale_control_set(ale, i,
623 ALE_PORT_NOLEARN, 0);
624 cpsw_ale_control_set(ale, i,
625 ALE_PORT_NO_SA_UPDATE, 0);
626 }
627 dev_dbg(&ndev->dev, "promiscuity disabled\n");
628 }
629 }
630 }
631
632 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
633 {
634 struct cpsw_priv *priv = netdev_priv(ndev);
635
636 if (ndev->flags & IFF_PROMISC) {
637 /* Enable promiscuous mode */
638 cpsw_set_promiscious(ndev, true);
639 return;
640 } else {
641 /* Disable promiscuous mode */
642 cpsw_set_promiscious(ndev, false);
643 }
644
645 /* Clear all mcast from ALE */
646 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port);
647
648 if (!netdev_mc_empty(ndev)) {
649 struct netdev_hw_addr *ha;
650
651 /* program multicast address list into ALE register */
652 netdev_for_each_mc_addr(ha, ndev) {
653 cpsw_add_mcast(priv, (u8 *)ha->addr);
654 }
655 }
656 }
657
658 static void cpsw_intr_enable(struct cpsw_priv *priv)
659 {
660 __raw_writel(0xFF, &priv->wr_regs->tx_en);
661 __raw_writel(0xFF, &priv->wr_regs->rx_en);
662
663 cpdma_ctlr_int_ctrl(priv->dma, true);
664 return;
665 }
666
667 static void cpsw_intr_disable(struct cpsw_priv *priv)
668 {
669 __raw_writel(0, &priv->wr_regs->tx_en);
670 __raw_writel(0, &priv->wr_regs->rx_en);
671
672 cpdma_ctlr_int_ctrl(priv->dma, false);
673 return;
674 }
675
676 static void cpsw_tx_handler(void *token, int len, int status)
677 {
678 struct sk_buff *skb = token;
679 struct net_device *ndev = skb->dev;
680 struct cpsw_priv *priv = netdev_priv(ndev);
681
682 /* Check whether the queue is stopped due to stalled tx dma, if the
683 * queue is stopped then start the queue as we have free desc for tx
684 */
685 if (unlikely(netif_queue_stopped(ndev)))
686 netif_wake_queue(ndev);
687 cpts_tx_timestamp(priv->cpts, skb);
688 ndev->stats.tx_packets++;
689 ndev->stats.tx_bytes += len;
690 dev_kfree_skb_any(skb);
691 }
692
693 static void cpsw_rx_handler(void *token, int len, int status)
694 {
695 struct sk_buff *skb = token;
696 struct sk_buff *new_skb;
697 struct net_device *ndev = skb->dev;
698 struct cpsw_priv *priv = netdev_priv(ndev);
699 int ret = 0;
700
701 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
702
703 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
704 bool ndev_status = false;
705 struct cpsw_slave *slave = priv->slaves;
706 int n;
707
708 if (priv->data.dual_emac) {
709 /* In dual emac mode check for all interfaces */
710 for (n = priv->data.slaves; n; n--, slave++)
711 if (netif_running(slave->ndev))
712 ndev_status = true;
713 }
714
715 if (ndev_status && (status >= 0)) {
716 /* The packet received is for the interface which
717 * is already down and the other interface is up
718 * and running, intead of freeing which results
719 * in reducing of the number of rx descriptor in
720 * DMA engine, requeue skb back to cpdma.
721 */
722 new_skb = skb;
723 goto requeue;
724 }
725
726 /* the interface is going down, skbs are purged */
727 dev_kfree_skb_any(skb);
728 return;
729 }
730
731 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
732 if (new_skb) {
733 skb_put(skb, len);
734 cpts_rx_timestamp(priv->cpts, skb);
735 skb->protocol = eth_type_trans(skb, ndev);
736 netif_receive_skb(skb);
737 ndev->stats.rx_bytes += len;
738 ndev->stats.rx_packets++;
739 } else {
740 ndev->stats.rx_dropped++;
741 new_skb = skb;
742 }
743
744 requeue:
745 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
746 skb_tailroom(new_skb), 0);
747 if (WARN_ON(ret < 0))
748 dev_kfree_skb_any(new_skb);
749 }
750
751 static irqreturn_t cpsw_interrupt(int irq, void *dev_id)
752 {
753 struct cpsw_priv *priv = dev_id;
754
755 cpsw_intr_disable(priv);
756 if (priv->irq_enabled == true) {
757 cpsw_disable_irq(priv);
758 priv->irq_enabled = false;
759 }
760
761 if (netif_running(priv->ndev)) {
762 napi_schedule(&priv->napi);
763 return IRQ_HANDLED;
764 }
765
766 priv = cpsw_get_slave_priv(priv, 1);
767 if (!priv)
768 return IRQ_NONE;
769
770 if (netif_running(priv->ndev)) {
771 napi_schedule(&priv->napi);
772 return IRQ_HANDLED;
773 }
774 return IRQ_NONE;
775 }
776
777 static int cpsw_poll(struct napi_struct *napi, int budget)
778 {
779 struct cpsw_priv *priv = napi_to_priv(napi);
780 int num_tx, num_rx;
781
782 num_tx = cpdma_chan_process(priv->txch, 128);
783 if (num_tx)
784 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
785
786 num_rx = cpdma_chan_process(priv->rxch, budget);
787 if (num_rx < budget) {
788 struct cpsw_priv *prim_cpsw;
789
790 napi_complete(napi);
791 cpsw_intr_enable(priv);
792 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
793 prim_cpsw = cpsw_get_slave_priv(priv, 0);
794 if (prim_cpsw->irq_enabled == false) {
795 prim_cpsw->irq_enabled = true;
796 cpsw_enable_irq(priv);
797 }
798 }
799
800 if (num_rx || num_tx)
801 cpsw_dbg(priv, intr, "poll %d rx, %d tx pkts\n",
802 num_rx, num_tx);
803
804 return num_rx;
805 }
806
807 static inline void soft_reset(const char *module, void __iomem *reg)
808 {
809 unsigned long timeout = jiffies + HZ;
810
811 __raw_writel(1, reg);
812 do {
813 cpu_relax();
814 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
815
816 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
817 }
818
819 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
820 ((mac)[2] << 16) | ((mac)[3] << 24))
821 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
822
823 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
824 struct cpsw_priv *priv)
825 {
826 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
827 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
828 }
829
830 static void _cpsw_adjust_link(struct cpsw_slave *slave,
831 struct cpsw_priv *priv, bool *link)
832 {
833 struct phy_device *phy = slave->phy;
834 u32 mac_control = 0;
835 u32 slave_port;
836
837 if (!phy)
838 return;
839
840 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
841
842 if (phy->link) {
843 mac_control = priv->data.mac_control;
844
845 /* enable forwarding */
846 cpsw_ale_control_set(priv->ale, slave_port,
847 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
848
849 if (phy->speed == 1000)
850 mac_control |= BIT(7); /* GIGABITEN */
851 if (phy->duplex)
852 mac_control |= BIT(0); /* FULLDUPLEXEN */
853
854 /* set speed_in input in case RMII mode is used in 100Mbps */
855 if (phy->speed == 100)
856 mac_control |= BIT(15);
857 else if (phy->speed == 10)
858 mac_control |= BIT(18); /* In Band mode */
859
860 if (priv->rx_pause)
861 mac_control |= BIT(3);
862
863 if (priv->tx_pause)
864 mac_control |= BIT(4);
865
866 *link = true;
867 } else {
868 mac_control = 0;
869 /* disable forwarding */
870 cpsw_ale_control_set(priv->ale, slave_port,
871 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
872 }
873
874 if (mac_control != slave->mac_control) {
875 phy_print_status(phy);
876 __raw_writel(mac_control, &slave->sliver->mac_control);
877 }
878
879 slave->mac_control = mac_control;
880 }
881
882 static void cpsw_adjust_link(struct net_device *ndev)
883 {
884 struct cpsw_priv *priv = netdev_priv(ndev);
885 bool link = false;
886
887 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
888
889 if (link) {
890 netif_carrier_on(ndev);
891 if (netif_running(ndev))
892 netif_wake_queue(ndev);
893 } else {
894 netif_carrier_off(ndev);
895 netif_stop_queue(ndev);
896 }
897 }
898
899 static int cpsw_get_coalesce(struct net_device *ndev,
900 struct ethtool_coalesce *coal)
901 {
902 struct cpsw_priv *priv = netdev_priv(ndev);
903
904 coal->rx_coalesce_usecs = priv->coal_intvl;
905 return 0;
906 }
907
908 static int cpsw_set_coalesce(struct net_device *ndev,
909 struct ethtool_coalesce *coal)
910 {
911 struct cpsw_priv *priv = netdev_priv(ndev);
912 u32 int_ctrl;
913 u32 num_interrupts = 0;
914 u32 prescale = 0;
915 u32 addnl_dvdr = 1;
916 u32 coal_intvl = 0;
917
918 coal_intvl = coal->rx_coalesce_usecs;
919
920 int_ctrl = readl(&priv->wr_regs->int_control);
921 prescale = priv->bus_freq_mhz * 4;
922
923 if (!coal->rx_coalesce_usecs) {
924 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
925 goto update_return;
926 }
927
928 if (coal_intvl < CPSW_CMINTMIN_INTVL)
929 coal_intvl = CPSW_CMINTMIN_INTVL;
930
931 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
932 /* Interrupt pacer works with 4us Pulse, we can
933 * throttle further by dilating the 4us pulse.
934 */
935 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
936
937 if (addnl_dvdr > 1) {
938 prescale *= addnl_dvdr;
939 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
940 coal_intvl = (CPSW_CMINTMAX_INTVL
941 * addnl_dvdr);
942 } else {
943 addnl_dvdr = 1;
944 coal_intvl = CPSW_CMINTMAX_INTVL;
945 }
946 }
947
948 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
949 writel(num_interrupts, &priv->wr_regs->rx_imax);
950 writel(num_interrupts, &priv->wr_regs->tx_imax);
951
952 int_ctrl |= CPSW_INTPACEEN;
953 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
954 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
955
956 update_return:
957 writel(int_ctrl, &priv->wr_regs->int_control);
958
959 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
960 if (priv->data.dual_emac) {
961 int i;
962
963 for (i = 0; i < priv->data.slaves; i++) {
964 priv = netdev_priv(priv->slaves[i].ndev);
965 priv->coal_intvl = coal_intvl;
966 }
967 } else {
968 priv->coal_intvl = coal_intvl;
969 }
970
971 return 0;
972 }
973
974 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
975 {
976 switch (sset) {
977 case ETH_SS_STATS:
978 return CPSW_STATS_LEN;
979 default:
980 return -EOPNOTSUPP;
981 }
982 }
983
984 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
985 {
986 u8 *p = data;
987 int i;
988
989 switch (stringset) {
990 case ETH_SS_STATS:
991 for (i = 0; i < CPSW_STATS_LEN; i++) {
992 memcpy(p, cpsw_gstrings_stats[i].stat_string,
993 ETH_GSTRING_LEN);
994 p += ETH_GSTRING_LEN;
995 }
996 break;
997 }
998 }
999
1000 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1001 struct ethtool_stats *stats, u64 *data)
1002 {
1003 struct cpsw_priv *priv = netdev_priv(ndev);
1004 struct cpdma_chan_stats rx_stats;
1005 struct cpdma_chan_stats tx_stats;
1006 u32 val;
1007 u8 *p;
1008 int i;
1009
1010 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1011 cpdma_chan_get_stats(priv->rxch, &rx_stats);
1012 cpdma_chan_get_stats(priv->txch, &tx_stats);
1013
1014 for (i = 0; i < CPSW_STATS_LEN; i++) {
1015 switch (cpsw_gstrings_stats[i].type) {
1016 case CPSW_STATS:
1017 val = readl(priv->hw_stats +
1018 cpsw_gstrings_stats[i].stat_offset);
1019 data[i] = val;
1020 break;
1021
1022 case CPDMA_RX_STATS:
1023 p = (u8 *)&rx_stats +
1024 cpsw_gstrings_stats[i].stat_offset;
1025 data[i] = *(u32 *)p;
1026 break;
1027
1028 case CPDMA_TX_STATS:
1029 p = (u8 *)&tx_stats +
1030 cpsw_gstrings_stats[i].stat_offset;
1031 data[i] = *(u32 *)p;
1032 break;
1033 }
1034 }
1035 }
1036
1037 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1038 {
1039 u32 i;
1040 u32 usage_count = 0;
1041
1042 if (!priv->data.dual_emac)
1043 return 0;
1044
1045 for (i = 0; i < priv->data.slaves; i++)
1046 if (priv->slaves[i].open_stat)
1047 usage_count++;
1048
1049 return usage_count;
1050 }
1051
1052 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1053 struct cpsw_priv *priv, struct sk_buff *skb)
1054 {
1055 if (!priv->data.dual_emac)
1056 return cpdma_chan_submit(priv->txch, skb, skb->data,
1057 skb->len, 0);
1058
1059 if (ndev == cpsw_get_slave_ndev(priv, 0))
1060 return cpdma_chan_submit(priv->txch, skb, skb->data,
1061 skb->len, 1);
1062 else
1063 return cpdma_chan_submit(priv->txch, skb, skb->data,
1064 skb->len, 2);
1065 }
1066
1067 static inline void cpsw_add_dual_emac_def_ale_entries(
1068 struct cpsw_priv *priv, struct cpsw_slave *slave,
1069 u32 slave_port)
1070 {
1071 u32 port_mask = 1 << slave_port | 1 << priv->host_port;
1072
1073 if (priv->version == CPSW_VERSION_1)
1074 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1075 else
1076 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1077 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1078 port_mask, port_mask, 0);
1079 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1080 port_mask, ALE_VLAN, slave->port_vlan, 0);
1081 cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1082 priv->host_port, ALE_VLAN, slave->port_vlan);
1083 }
1084
1085 static void soft_reset_slave(struct cpsw_slave *slave)
1086 {
1087 char name[32];
1088
1089 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1090 soft_reset(name, &slave->sliver->soft_reset);
1091 }
1092
1093 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1094 {
1095 u32 slave_port;
1096
1097 soft_reset_slave(slave);
1098
1099 /* setup priority mapping */
1100 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1101
1102 switch (priv->version) {
1103 case CPSW_VERSION_1:
1104 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1105 break;
1106 case CPSW_VERSION_2:
1107 case CPSW_VERSION_3:
1108 case CPSW_VERSION_4:
1109 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1110 break;
1111 }
1112
1113 /* setup max packet size, and mac address */
1114 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1115 cpsw_set_slave_mac(slave, priv);
1116
1117 slave->mac_control = 0; /* no link yet */
1118
1119 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1120
1121 if (priv->data.dual_emac)
1122 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1123 else
1124 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1125 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1126
1127 slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1128 &cpsw_adjust_link, slave->data->phy_if);
1129 if (IS_ERR(slave->phy)) {
1130 dev_err(priv->dev, "phy %s not found on slave %d\n",
1131 slave->data->phy_id, slave->slave_num);
1132 slave->phy = NULL;
1133 } else {
1134 dev_info(priv->dev, "phy found : id is : 0x%x\n",
1135 slave->phy->phy_id);
1136 phy_start(slave->phy);
1137
1138 /* Configure GMII_SEL register */
1139 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface,
1140 slave->slave_num);
1141 }
1142 }
1143
1144 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1145 {
1146 const int vlan = priv->data.default_vlan;
1147 const int port = priv->host_port;
1148 u32 reg;
1149 int i;
1150
1151 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1152 CPSW2_PORT_VLAN;
1153
1154 writel(vlan, &priv->host_port_regs->port_vlan);
1155
1156 for (i = 0; i < priv->data.slaves; i++)
1157 slave_write(priv->slaves + i, vlan, reg);
1158
1159 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port,
1160 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port,
1161 (ALE_PORT_1 | ALE_PORT_2) << port);
1162 }
1163
1164 static void cpsw_init_host_port(struct cpsw_priv *priv)
1165 {
1166 u32 control_reg;
1167 u32 fifo_mode;
1168
1169 /* soft reset the controller and initialize ale */
1170 soft_reset("cpsw", &priv->regs->soft_reset);
1171 cpsw_ale_start(priv->ale);
1172
1173 /* switch to vlan unaware mode */
1174 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE,
1175 CPSW_ALE_VLAN_AWARE);
1176 control_reg = readl(&priv->regs->control);
1177 control_reg |= CPSW_VLAN_AWARE;
1178 writel(control_reg, &priv->regs->control);
1179 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1180 CPSW_FIFO_NORMAL_MODE;
1181 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1182
1183 /* setup host port priority mapping */
1184 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1185 &priv->host_port_regs->cpdma_tx_pri_map);
1186 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1187
1188 cpsw_ale_control_set(priv->ale, priv->host_port,
1189 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1190
1191 if (!priv->data.dual_emac) {
1192 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port,
1193 0, 0);
1194 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1195 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2);
1196 }
1197 }
1198
1199 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1200 {
1201 u32 slave_port;
1202
1203 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1204
1205 if (!slave->phy)
1206 return;
1207 phy_stop(slave->phy);
1208 phy_disconnect(slave->phy);
1209 slave->phy = NULL;
1210 cpsw_ale_control_set(priv->ale, slave_port,
1211 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1212 }
1213
1214 static int cpsw_ndo_open(struct net_device *ndev)
1215 {
1216 struct cpsw_priv *priv = netdev_priv(ndev);
1217 struct cpsw_priv *prim_cpsw;
1218 int i, ret;
1219 u32 reg;
1220
1221 if (!cpsw_common_res_usage_state(priv))
1222 cpsw_intr_disable(priv);
1223 netif_carrier_off(ndev);
1224
1225 pm_runtime_get_sync(&priv->pdev->dev);
1226
1227 reg = priv->version;
1228
1229 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1230 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1231 CPSW_RTL_VERSION(reg));
1232
1233 /* initialize host and slave ports */
1234 if (!cpsw_common_res_usage_state(priv))
1235 cpsw_init_host_port(priv);
1236 for_each_slave(priv, cpsw_slave_open, priv);
1237
1238 /* Add default VLAN */
1239 if (!priv->data.dual_emac)
1240 cpsw_add_default_vlan(priv);
1241 else
1242 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1243 ALE_ALL_PORTS << priv->host_port,
1244 ALE_ALL_PORTS << priv->host_port, 0, 0);
1245
1246 if (!cpsw_common_res_usage_state(priv)) {
1247 /* setup tx dma to fixed prio and zero offset */
1248 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1249 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1250
1251 /* disable priority elevation */
1252 __raw_writel(0, &priv->regs->ptype);
1253
1254 /* enable statistics collection only on all ports */
1255 __raw_writel(0x7, &priv->regs->stat_port_en);
1256
1257 /* Enable internal fifo flow control */
1258 writel(0x7, &priv->regs->flow_control);
1259
1260 if (WARN_ON(!priv->data.rx_descs))
1261 priv->data.rx_descs = 128;
1262
1263 for (i = 0; i < priv->data.rx_descs; i++) {
1264 struct sk_buff *skb;
1265
1266 ret = -ENOMEM;
1267 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1268 priv->rx_packet_max, GFP_KERNEL);
1269 if (!skb)
1270 goto err_cleanup;
1271 ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1272 skb_tailroom(skb), 0);
1273 if (ret < 0) {
1274 kfree_skb(skb);
1275 goto err_cleanup;
1276 }
1277 }
1278 /* continue even if we didn't manage to submit all
1279 * receive descs
1280 */
1281 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1282
1283 if (cpts_register(&priv->pdev->dev, priv->cpts,
1284 priv->data.cpts_clock_mult,
1285 priv->data.cpts_clock_shift))
1286 dev_err(priv->dev, "error registering cpts device\n");
1287
1288 }
1289
1290 /* Enable Interrupt pacing if configured */
1291 if (priv->coal_intvl != 0) {
1292 struct ethtool_coalesce coal;
1293
1294 coal.rx_coalesce_usecs = (priv->coal_intvl << 4);
1295 cpsw_set_coalesce(ndev, &coal);
1296 }
1297
1298 napi_enable(&priv->napi);
1299 cpdma_ctlr_start(priv->dma);
1300 cpsw_intr_enable(priv);
1301 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
1302 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
1303
1304 prim_cpsw = cpsw_get_slave_priv(priv, 0);
1305 if (prim_cpsw->irq_enabled == false) {
1306 if ((priv == prim_cpsw) || !netif_running(prim_cpsw->ndev)) {
1307 prim_cpsw->irq_enabled = true;
1308 cpsw_enable_irq(prim_cpsw);
1309 }
1310 }
1311
1312 if (priv->data.dual_emac)
1313 priv->slaves[priv->emac_port].open_stat = true;
1314 return 0;
1315
1316 err_cleanup:
1317 cpdma_ctlr_stop(priv->dma);
1318 for_each_slave(priv, cpsw_slave_stop, priv);
1319 pm_runtime_put_sync(&priv->pdev->dev);
1320 netif_carrier_off(priv->ndev);
1321 return ret;
1322 }
1323
1324 static int cpsw_ndo_stop(struct net_device *ndev)
1325 {
1326 struct cpsw_priv *priv = netdev_priv(ndev);
1327
1328 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1329 netif_stop_queue(priv->ndev);
1330 napi_disable(&priv->napi);
1331 netif_carrier_off(priv->ndev);
1332
1333 if (cpsw_common_res_usage_state(priv) <= 1) {
1334 cpts_unregister(priv->cpts);
1335 cpsw_intr_disable(priv);
1336 cpdma_ctlr_int_ctrl(priv->dma, false);
1337 cpdma_ctlr_stop(priv->dma);
1338 cpsw_ale_stop(priv->ale);
1339 }
1340 for_each_slave(priv, cpsw_slave_stop, priv);
1341 pm_runtime_put_sync(&priv->pdev->dev);
1342 if (priv->data.dual_emac)
1343 priv->slaves[priv->emac_port].open_stat = false;
1344 return 0;
1345 }
1346
1347 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1348 struct net_device *ndev)
1349 {
1350 struct cpsw_priv *priv = netdev_priv(ndev);
1351 int ret;
1352
1353 ndev->trans_start = jiffies;
1354
1355 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1356 cpsw_err(priv, tx_err, "packet pad failed\n");
1357 ndev->stats.tx_dropped++;
1358 return NETDEV_TX_OK;
1359 }
1360
1361 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1362 priv->cpts->tx_enable)
1363 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1364
1365 skb_tx_timestamp(skb);
1366
1367 ret = cpsw_tx_packet_submit(ndev, priv, skb);
1368 if (unlikely(ret != 0)) {
1369 cpsw_err(priv, tx_err, "desc submit failed\n");
1370 goto fail;
1371 }
1372
1373 /* If there is no more tx desc left free then we need to
1374 * tell the kernel to stop sending us tx frames.
1375 */
1376 if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1377 netif_stop_queue(ndev);
1378
1379 return NETDEV_TX_OK;
1380 fail:
1381 ndev->stats.tx_dropped++;
1382 netif_stop_queue(ndev);
1383 return NETDEV_TX_BUSY;
1384 }
1385
1386 #ifdef CONFIG_TI_CPTS
1387
1388 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1389 {
1390 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1391 u32 ts_en, seq_id;
1392
1393 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1394 slave_write(slave, 0, CPSW1_TS_CTL);
1395 return;
1396 }
1397
1398 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1399 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1400
1401 if (priv->cpts->tx_enable)
1402 ts_en |= CPSW_V1_TS_TX_EN;
1403
1404 if (priv->cpts->rx_enable)
1405 ts_en |= CPSW_V1_TS_RX_EN;
1406
1407 slave_write(slave, ts_en, CPSW1_TS_CTL);
1408 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1409 }
1410
1411 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1412 {
1413 struct cpsw_slave *slave;
1414 u32 ctrl, mtype;
1415
1416 if (priv->data.dual_emac)
1417 slave = &priv->slaves[priv->emac_port];
1418 else
1419 slave = &priv->slaves[priv->data.active_slave];
1420
1421 ctrl = slave_read(slave, CPSW2_CONTROL);
1422 switch (priv->version) {
1423 case CPSW_VERSION_2:
1424 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1425
1426 if (priv->cpts->tx_enable)
1427 ctrl |= CTRL_V2_TX_TS_BITS;
1428
1429 if (priv->cpts->rx_enable)
1430 ctrl |= CTRL_V2_RX_TS_BITS;
1431 break;
1432 case CPSW_VERSION_3:
1433 default:
1434 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1435
1436 if (priv->cpts->tx_enable)
1437 ctrl |= CTRL_V3_TX_TS_BITS;
1438
1439 if (priv->cpts->rx_enable)
1440 ctrl |= CTRL_V3_RX_TS_BITS;
1441 break;
1442 }
1443
1444 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1445
1446 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1447 slave_write(slave, ctrl, CPSW2_CONTROL);
1448 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1449 }
1450
1451 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1452 {
1453 struct cpsw_priv *priv = netdev_priv(dev);
1454 struct cpts *cpts = priv->cpts;
1455 struct hwtstamp_config cfg;
1456
1457 if (priv->version != CPSW_VERSION_1 &&
1458 priv->version != CPSW_VERSION_2 &&
1459 priv->version != CPSW_VERSION_3)
1460 return -EOPNOTSUPP;
1461
1462 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1463 return -EFAULT;
1464
1465 /* reserved for future extensions */
1466 if (cfg.flags)
1467 return -EINVAL;
1468
1469 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1470 return -ERANGE;
1471
1472 switch (cfg.rx_filter) {
1473 case HWTSTAMP_FILTER_NONE:
1474 cpts->rx_enable = 0;
1475 break;
1476 case HWTSTAMP_FILTER_ALL:
1477 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1478 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1479 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1480 return -ERANGE;
1481 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1482 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1483 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1484 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1485 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1486 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1487 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1488 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1489 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1490 cpts->rx_enable = 1;
1491 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1492 break;
1493 default:
1494 return -ERANGE;
1495 }
1496
1497 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1498
1499 switch (priv->version) {
1500 case CPSW_VERSION_1:
1501 cpsw_hwtstamp_v1(priv);
1502 break;
1503 case CPSW_VERSION_2:
1504 case CPSW_VERSION_3:
1505 cpsw_hwtstamp_v2(priv);
1506 break;
1507 default:
1508 WARN_ON(1);
1509 }
1510
1511 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1512 }
1513
1514 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1515 {
1516 struct cpsw_priv *priv = netdev_priv(dev);
1517 struct cpts *cpts = priv->cpts;
1518 struct hwtstamp_config cfg;
1519
1520 if (priv->version != CPSW_VERSION_1 &&
1521 priv->version != CPSW_VERSION_2 &&
1522 priv->version != CPSW_VERSION_3)
1523 return -EOPNOTSUPP;
1524
1525 cfg.flags = 0;
1526 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1527 cfg.rx_filter = (cpts->rx_enable ?
1528 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1529
1530 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1531 }
1532
1533 #endif /*CONFIG_TI_CPTS*/
1534
1535 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1536 {
1537 struct cpsw_priv *priv = netdev_priv(dev);
1538 int slave_no = cpsw_slave_index(priv);
1539
1540 if (!netif_running(dev))
1541 return -EINVAL;
1542
1543 switch (cmd) {
1544 #ifdef CONFIG_TI_CPTS
1545 case SIOCSHWTSTAMP:
1546 return cpsw_hwtstamp_set(dev, req);
1547 case SIOCGHWTSTAMP:
1548 return cpsw_hwtstamp_get(dev, req);
1549 #endif
1550 }
1551
1552 if (!priv->slaves[slave_no].phy)
1553 return -EOPNOTSUPP;
1554 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1555 }
1556
1557 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1558 {
1559 struct cpsw_priv *priv = netdev_priv(ndev);
1560
1561 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1562 ndev->stats.tx_errors++;
1563 cpsw_intr_disable(priv);
1564 cpdma_ctlr_int_ctrl(priv->dma, false);
1565 cpdma_chan_stop(priv->txch);
1566 cpdma_chan_start(priv->txch);
1567 cpdma_ctlr_int_ctrl(priv->dma, true);
1568 cpsw_intr_enable(priv);
1569 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
1570 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
1571
1572 }
1573
1574 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1575 {
1576 struct cpsw_priv *priv = netdev_priv(ndev);
1577 struct sockaddr *addr = (struct sockaddr *)p;
1578 int flags = 0;
1579 u16 vid = 0;
1580
1581 if (!is_valid_ether_addr(addr->sa_data))
1582 return -EADDRNOTAVAIL;
1583
1584 if (priv->data.dual_emac) {
1585 vid = priv->slaves[priv->emac_port].port_vlan;
1586 flags = ALE_VLAN;
1587 }
1588
1589 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port,
1590 flags, vid);
1591 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port,
1592 flags, vid);
1593
1594 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1595 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1596 for_each_slave(priv, cpsw_set_slave_mac, priv);
1597
1598 return 0;
1599 }
1600
1601 #ifdef CONFIG_NET_POLL_CONTROLLER
1602 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1603 {
1604 struct cpsw_priv *priv = netdev_priv(ndev);
1605
1606 cpsw_intr_disable(priv);
1607 cpdma_ctlr_int_ctrl(priv->dma, false);
1608 cpsw_interrupt(ndev->irq, priv);
1609 cpdma_ctlr_int_ctrl(priv->dma, true);
1610 cpsw_intr_enable(priv);
1611 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
1612 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
1613
1614 }
1615 #endif
1616
1617 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1618 unsigned short vid)
1619 {
1620 int ret;
1621
1622 ret = cpsw_ale_add_vlan(priv->ale, vid,
1623 ALE_ALL_PORTS << priv->host_port,
1624 0, ALE_ALL_PORTS << priv->host_port,
1625 (ALE_PORT_1 | ALE_PORT_2) << priv->host_port);
1626 if (ret != 0)
1627 return ret;
1628
1629 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1630 priv->host_port, ALE_VLAN, vid);
1631 if (ret != 0)
1632 goto clean_vid;
1633
1634 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1635 ALE_ALL_PORTS << priv->host_port,
1636 ALE_VLAN, vid, 0);
1637 if (ret != 0)
1638 goto clean_vlan_ucast;
1639 return 0;
1640
1641 clean_vlan_ucast:
1642 cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1643 priv->host_port, ALE_VLAN, vid);
1644 clean_vid:
1645 cpsw_ale_del_vlan(priv->ale, vid, 0);
1646 return ret;
1647 }
1648
1649 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1650 __be16 proto, u16 vid)
1651 {
1652 struct cpsw_priv *priv = netdev_priv(ndev);
1653
1654 if (vid == priv->data.default_vlan)
1655 return 0;
1656
1657 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1658 return cpsw_add_vlan_ale_entry(priv, vid);
1659 }
1660
1661 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1662 __be16 proto, u16 vid)
1663 {
1664 struct cpsw_priv *priv = netdev_priv(ndev);
1665 int ret;
1666
1667 if (vid == priv->data.default_vlan)
1668 return 0;
1669
1670 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1671 ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1672 if (ret != 0)
1673 return ret;
1674
1675 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1676 priv->host_port, ALE_VLAN, vid);
1677 if (ret != 0)
1678 return ret;
1679
1680 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1681 0, ALE_VLAN, vid);
1682 }
1683
1684 static const struct net_device_ops cpsw_netdev_ops = {
1685 .ndo_open = cpsw_ndo_open,
1686 .ndo_stop = cpsw_ndo_stop,
1687 .ndo_start_xmit = cpsw_ndo_start_xmit,
1688 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
1689 .ndo_do_ioctl = cpsw_ndo_ioctl,
1690 .ndo_validate_addr = eth_validate_addr,
1691 .ndo_change_mtu = eth_change_mtu,
1692 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
1693 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
1694 #ifdef CONFIG_NET_POLL_CONTROLLER
1695 .ndo_poll_controller = cpsw_ndo_poll_controller,
1696 #endif
1697 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
1698 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
1699 };
1700
1701 static int cpsw_get_regs_len(struct net_device *ndev)
1702 {
1703 struct cpsw_priv *priv = netdev_priv(ndev);
1704
1705 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1706 }
1707
1708 static void cpsw_get_regs(struct net_device *ndev,
1709 struct ethtool_regs *regs, void *p)
1710 {
1711 struct cpsw_priv *priv = netdev_priv(ndev);
1712 u32 *reg = p;
1713
1714 /* update CPSW IP version */
1715 regs->version = priv->version;
1716
1717 cpsw_ale_dump(priv->ale, reg);
1718 }
1719
1720 static void cpsw_get_drvinfo(struct net_device *ndev,
1721 struct ethtool_drvinfo *info)
1722 {
1723 struct cpsw_priv *priv = netdev_priv(ndev);
1724
1725 strlcpy(info->driver, "cpsw", sizeof(info->driver));
1726 strlcpy(info->version, "1.0", sizeof(info->version));
1727 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1728 info->regdump_len = cpsw_get_regs_len(ndev);
1729 }
1730
1731 static u32 cpsw_get_msglevel(struct net_device *ndev)
1732 {
1733 struct cpsw_priv *priv = netdev_priv(ndev);
1734 return priv->msg_enable;
1735 }
1736
1737 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1738 {
1739 struct cpsw_priv *priv = netdev_priv(ndev);
1740 priv->msg_enable = value;
1741 }
1742
1743 static int cpsw_get_ts_info(struct net_device *ndev,
1744 struct ethtool_ts_info *info)
1745 {
1746 #ifdef CONFIG_TI_CPTS
1747 struct cpsw_priv *priv = netdev_priv(ndev);
1748
1749 info->so_timestamping =
1750 SOF_TIMESTAMPING_TX_HARDWARE |
1751 SOF_TIMESTAMPING_TX_SOFTWARE |
1752 SOF_TIMESTAMPING_RX_HARDWARE |
1753 SOF_TIMESTAMPING_RX_SOFTWARE |
1754 SOF_TIMESTAMPING_SOFTWARE |
1755 SOF_TIMESTAMPING_RAW_HARDWARE;
1756 info->phc_index = priv->cpts->phc_index;
1757 info->tx_types =
1758 (1 << HWTSTAMP_TX_OFF) |
1759 (1 << HWTSTAMP_TX_ON);
1760 info->rx_filters =
1761 (1 << HWTSTAMP_FILTER_NONE) |
1762 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1763 #else
1764 info->so_timestamping =
1765 SOF_TIMESTAMPING_TX_SOFTWARE |
1766 SOF_TIMESTAMPING_RX_SOFTWARE |
1767 SOF_TIMESTAMPING_SOFTWARE;
1768 info->phc_index = -1;
1769 info->tx_types = 0;
1770 info->rx_filters = 0;
1771 #endif
1772 return 0;
1773 }
1774
1775 static int cpsw_get_settings(struct net_device *ndev,
1776 struct ethtool_cmd *ecmd)
1777 {
1778 struct cpsw_priv *priv = netdev_priv(ndev);
1779 int slave_no = cpsw_slave_index(priv);
1780
1781 if (priv->slaves[slave_no].phy)
1782 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1783 else
1784 return -EOPNOTSUPP;
1785 }
1786
1787 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1788 {
1789 struct cpsw_priv *priv = netdev_priv(ndev);
1790 int slave_no = cpsw_slave_index(priv);
1791
1792 if (priv->slaves[slave_no].phy)
1793 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1794 else
1795 return -EOPNOTSUPP;
1796 }
1797
1798 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1799 {
1800 struct cpsw_priv *priv = netdev_priv(ndev);
1801 int slave_no = cpsw_slave_index(priv);
1802
1803 wol->supported = 0;
1804 wol->wolopts = 0;
1805
1806 if (priv->slaves[slave_no].phy)
1807 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1808 }
1809
1810 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1811 {
1812 struct cpsw_priv *priv = netdev_priv(ndev);
1813 int slave_no = cpsw_slave_index(priv);
1814
1815 if (priv->slaves[slave_no].phy)
1816 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1817 else
1818 return -EOPNOTSUPP;
1819 }
1820
1821 static void cpsw_get_pauseparam(struct net_device *ndev,
1822 struct ethtool_pauseparam *pause)
1823 {
1824 struct cpsw_priv *priv = netdev_priv(ndev);
1825
1826 pause->autoneg = AUTONEG_DISABLE;
1827 pause->rx_pause = priv->rx_pause ? true : false;
1828 pause->tx_pause = priv->tx_pause ? true : false;
1829 }
1830
1831 static int cpsw_set_pauseparam(struct net_device *ndev,
1832 struct ethtool_pauseparam *pause)
1833 {
1834 struct cpsw_priv *priv = netdev_priv(ndev);
1835 bool link;
1836
1837 priv->rx_pause = pause->rx_pause ? true : false;
1838 priv->tx_pause = pause->tx_pause ? true : false;
1839
1840 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1841
1842 return 0;
1843 }
1844
1845 static const struct ethtool_ops cpsw_ethtool_ops = {
1846 .get_drvinfo = cpsw_get_drvinfo,
1847 .get_msglevel = cpsw_get_msglevel,
1848 .set_msglevel = cpsw_set_msglevel,
1849 .get_link = ethtool_op_get_link,
1850 .get_ts_info = cpsw_get_ts_info,
1851 .get_settings = cpsw_get_settings,
1852 .set_settings = cpsw_set_settings,
1853 .get_coalesce = cpsw_get_coalesce,
1854 .set_coalesce = cpsw_set_coalesce,
1855 .get_sset_count = cpsw_get_sset_count,
1856 .get_strings = cpsw_get_strings,
1857 .get_ethtool_stats = cpsw_get_ethtool_stats,
1858 .get_pauseparam = cpsw_get_pauseparam,
1859 .set_pauseparam = cpsw_set_pauseparam,
1860 .get_wol = cpsw_get_wol,
1861 .set_wol = cpsw_set_wol,
1862 .get_regs_len = cpsw_get_regs_len,
1863 .get_regs = cpsw_get_regs,
1864 };
1865
1866 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1867 u32 slave_reg_ofs, u32 sliver_reg_ofs)
1868 {
1869 void __iomem *regs = priv->regs;
1870 int slave_num = slave->slave_num;
1871 struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
1872
1873 slave->data = data;
1874 slave->regs = regs + slave_reg_ofs;
1875 slave->sliver = regs + sliver_reg_ofs;
1876 slave->port_vlan = data->dual_emac_res_vlan;
1877 }
1878
1879 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1880 struct platform_device *pdev)
1881 {
1882 struct device_node *node = pdev->dev.of_node;
1883 struct device_node *slave_node;
1884 int i = 0, ret;
1885 u32 prop;
1886
1887 if (!node)
1888 return -EINVAL;
1889
1890 if (of_property_read_u32(node, "slaves", &prop)) {
1891 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1892 return -EINVAL;
1893 }
1894 data->slaves = prop;
1895
1896 if (of_property_read_u32(node, "active_slave", &prop)) {
1897 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1898 return -EINVAL;
1899 }
1900 data->active_slave = prop;
1901
1902 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
1903 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
1904 return -EINVAL;
1905 }
1906 data->cpts_clock_mult = prop;
1907
1908 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
1909 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
1910 return -EINVAL;
1911 }
1912 data->cpts_clock_shift = prop;
1913
1914 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
1915 * sizeof(struct cpsw_slave_data),
1916 GFP_KERNEL);
1917 if (!data->slave_data)
1918 return -ENOMEM;
1919
1920 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1921 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1922 return -EINVAL;
1923 }
1924 data->channels = prop;
1925
1926 if (of_property_read_u32(node, "ale_entries", &prop)) {
1927 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
1928 return -EINVAL;
1929 }
1930 data->ale_entries = prop;
1931
1932 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1933 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1934 return -EINVAL;
1935 }
1936 data->bd_ram_size = prop;
1937
1938 if (of_property_read_u32(node, "rx_descs", &prop)) {
1939 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n");
1940 return -EINVAL;
1941 }
1942 data->rx_descs = prop;
1943
1944 if (of_property_read_u32(node, "mac_control", &prop)) {
1945 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
1946 return -EINVAL;
1947 }
1948 data->mac_control = prop;
1949
1950 if (of_property_read_bool(node, "dual_emac"))
1951 data->dual_emac = 1;
1952
1953 /*
1954 * Populate all the child nodes here...
1955 */
1956 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
1957 /* We do not want to force this, as in some cases may not have child */
1958 if (ret)
1959 dev_warn(&pdev->dev, "Doesn't have any child node\n");
1960
1961 for_each_child_of_node(node, slave_node) {
1962 struct cpsw_slave_data *slave_data = data->slave_data + i;
1963 const void *mac_addr = NULL;
1964 u32 phyid;
1965 int lenp;
1966 const __be32 *parp;
1967 struct device_node *mdio_node;
1968 struct platform_device *mdio;
1969
1970 /* This is no slave child node, continue */
1971 if (strcmp(slave_node->name, "slave"))
1972 continue;
1973
1974 parp = of_get_property(slave_node, "phy_id", &lenp);
1975 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) {
1976 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i);
1977 return -EINVAL;
1978 }
1979 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
1980 phyid = be32_to_cpup(parp+1);
1981 mdio = of_find_device_by_node(mdio_node);
1982 of_node_put(mdio_node);
1983 if (!mdio) {
1984 pr_err("Missing mdio platform device\n");
1985 return -EINVAL;
1986 }
1987 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
1988 PHY_ID_FMT, mdio->name, phyid);
1989
1990 mac_addr = of_get_mac_address(slave_node);
1991 if (mac_addr)
1992 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
1993
1994 slave_data->phy_if = of_get_phy_mode(slave_node);
1995 if (slave_data->phy_if < 0) {
1996 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
1997 i);
1998 return slave_data->phy_if;
1999 }
2000
2001 if (data->dual_emac) {
2002 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2003 &prop)) {
2004 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2005 slave_data->dual_emac_res_vlan = i+1;
2006 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2007 slave_data->dual_emac_res_vlan, i);
2008 } else {
2009 slave_data->dual_emac_res_vlan = prop;
2010 }
2011 }
2012
2013 i++;
2014 if (i == data->slaves)
2015 break;
2016 }
2017
2018 return 0;
2019 }
2020
2021 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2022 struct cpsw_priv *priv)
2023 {
2024 struct cpsw_platform_data *data = &priv->data;
2025 struct net_device *ndev;
2026 struct cpsw_priv *priv_sl2;
2027 int ret = 0, i;
2028
2029 ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2030 if (!ndev) {
2031 dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2032 return -ENOMEM;
2033 }
2034
2035 priv_sl2 = netdev_priv(ndev);
2036 spin_lock_init(&priv_sl2->lock);
2037 priv_sl2->data = *data;
2038 priv_sl2->pdev = pdev;
2039 priv_sl2->ndev = ndev;
2040 priv_sl2->dev = &ndev->dev;
2041 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2042 priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2043
2044 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2045 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2046 ETH_ALEN);
2047 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2048 } else {
2049 random_ether_addr(priv_sl2->mac_addr);
2050 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2051 }
2052 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2053
2054 priv_sl2->slaves = priv->slaves;
2055 priv_sl2->clk = priv->clk;
2056
2057 priv_sl2->coal_intvl = 0;
2058 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2059
2060 priv_sl2->regs = priv->regs;
2061 priv_sl2->host_port = priv->host_port;
2062 priv_sl2->host_port_regs = priv->host_port_regs;
2063 priv_sl2->wr_regs = priv->wr_regs;
2064 priv_sl2->hw_stats = priv->hw_stats;
2065 priv_sl2->dma = priv->dma;
2066 priv_sl2->txch = priv->txch;
2067 priv_sl2->rxch = priv->rxch;
2068 priv_sl2->ale = priv->ale;
2069 priv_sl2->emac_port = 1;
2070 priv->slaves[1].ndev = ndev;
2071 priv_sl2->cpts = priv->cpts;
2072 priv_sl2->version = priv->version;
2073
2074 for (i = 0; i < priv->num_irqs; i++) {
2075 priv_sl2->irqs_table[i] = priv->irqs_table[i];
2076 priv_sl2->num_irqs = priv->num_irqs;
2077 }
2078 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2079
2080 ndev->netdev_ops = &cpsw_netdev_ops;
2081 ndev->ethtool_ops = &cpsw_ethtool_ops;
2082 netif_napi_add(ndev, &priv_sl2->napi, cpsw_poll, CPSW_POLL_WEIGHT);
2083
2084 /* register the network device */
2085 SET_NETDEV_DEV(ndev, &pdev->dev);
2086 ret = register_netdev(ndev);
2087 if (ret) {
2088 dev_err(&pdev->dev, "cpsw: error registering net device\n");
2089 free_netdev(ndev);
2090 ret = -ENODEV;
2091 }
2092
2093 return ret;
2094 }
2095
2096 static int cpsw_probe(struct platform_device *pdev)
2097 {
2098 struct cpsw_platform_data *data;
2099 struct net_device *ndev;
2100 struct cpsw_priv *priv;
2101 struct cpdma_params dma_params;
2102 struct cpsw_ale_params ale_params;
2103 void __iomem *ss_regs;
2104 struct resource *res, *ss_res;
2105 u32 slave_offset, sliver_offset, slave_size;
2106 int ret = 0, i, k = 0;
2107
2108 ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2109 if (!ndev) {
2110 dev_err(&pdev->dev, "error allocating net_device\n");
2111 return -ENOMEM;
2112 }
2113
2114 platform_set_drvdata(pdev, ndev);
2115 priv = netdev_priv(ndev);
2116 spin_lock_init(&priv->lock);
2117 priv->pdev = pdev;
2118 priv->ndev = ndev;
2119 priv->dev = &ndev->dev;
2120 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2121 priv->rx_packet_max = max(rx_packet_max, 128);
2122 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2123 priv->irq_enabled = true;
2124 if (!priv->cpts) {
2125 dev_err(&pdev->dev, "error allocating cpts\n");
2126 goto clean_ndev_ret;
2127 }
2128
2129 /*
2130 * This may be required here for child devices.
2131 */
2132 pm_runtime_enable(&pdev->dev);
2133
2134 /* Select default pin state */
2135 pinctrl_pm_select_default_state(&pdev->dev);
2136
2137 if (cpsw_probe_dt(&priv->data, pdev)) {
2138 dev_err(&pdev->dev, "cpsw: platform data missing\n");
2139 ret = -ENODEV;
2140 goto clean_runtime_disable_ret;
2141 }
2142 data = &priv->data;
2143
2144 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2145 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2146 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2147 } else {
2148 eth_random_addr(priv->mac_addr);
2149 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2150 }
2151
2152 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2153
2154 priv->slaves = devm_kzalloc(&pdev->dev,
2155 sizeof(struct cpsw_slave) * data->slaves,
2156 GFP_KERNEL);
2157 if (!priv->slaves) {
2158 ret = -ENOMEM;
2159 goto clean_runtime_disable_ret;
2160 }
2161 for (i = 0; i < data->slaves; i++)
2162 priv->slaves[i].slave_num = i;
2163
2164 priv->slaves[0].ndev = ndev;
2165 priv->emac_port = 0;
2166
2167 priv->clk = devm_clk_get(&pdev->dev, "fck");
2168 if (IS_ERR(priv->clk)) {
2169 dev_err(priv->dev, "fck is not found\n");
2170 ret = -ENODEV;
2171 goto clean_runtime_disable_ret;
2172 }
2173 priv->coal_intvl = 0;
2174 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2175
2176 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2177 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2178 if (IS_ERR(ss_regs)) {
2179 ret = PTR_ERR(ss_regs);
2180 goto clean_runtime_disable_ret;
2181 }
2182 priv->regs = ss_regs;
2183 priv->host_port = HOST_PORT_NUM;
2184
2185 /* Need to enable clocks with runtime PM api to access module
2186 * registers
2187 */
2188 pm_runtime_get_sync(&pdev->dev);
2189 priv->version = readl(&priv->regs->id_ver);
2190 pm_runtime_put_sync(&pdev->dev);
2191
2192 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2193 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2194 if (IS_ERR(priv->wr_regs)) {
2195 ret = PTR_ERR(priv->wr_regs);
2196 goto clean_runtime_disable_ret;
2197 }
2198
2199 memset(&dma_params, 0, sizeof(dma_params));
2200 memset(&ale_params, 0, sizeof(ale_params));
2201
2202 switch (priv->version) {
2203 case CPSW_VERSION_1:
2204 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2205 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET;
2206 priv->hw_stats = ss_regs + CPSW1_HW_STATS;
2207 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2208 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2209 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2210 slave_offset = CPSW1_SLAVE_OFFSET;
2211 slave_size = CPSW1_SLAVE_SIZE;
2212 sliver_offset = CPSW1_SLIVER_OFFSET;
2213 dma_params.desc_mem_phys = 0;
2214 break;
2215 case CPSW_VERSION_2:
2216 case CPSW_VERSION_3:
2217 case CPSW_VERSION_4:
2218 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2219 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET;
2220 priv->hw_stats = ss_regs + CPSW2_HW_STATS;
2221 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
2222 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
2223 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
2224 slave_offset = CPSW2_SLAVE_OFFSET;
2225 slave_size = CPSW2_SLAVE_SIZE;
2226 sliver_offset = CPSW2_SLIVER_OFFSET;
2227 dma_params.desc_mem_phys =
2228 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2229 break;
2230 default:
2231 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2232 ret = -ENODEV;
2233 goto clean_runtime_disable_ret;
2234 }
2235 for (i = 0; i < priv->data.slaves; i++) {
2236 struct cpsw_slave *slave = &priv->slaves[i];
2237 cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2238 slave_offset += slave_size;
2239 sliver_offset += SLIVER_SIZE;
2240 }
2241
2242 dma_params.dev = &pdev->dev;
2243 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
2244 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
2245 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
2246 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
2247 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
2248
2249 dma_params.num_chan = data->channels;
2250 dma_params.has_soft_reset = true;
2251 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
2252 dma_params.desc_mem_size = data->bd_ram_size;
2253 dma_params.desc_align = 16;
2254 dma_params.has_ext_regs = true;
2255 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
2256
2257 priv->dma = cpdma_ctlr_create(&dma_params);
2258 if (!priv->dma) {
2259 dev_err(priv->dev, "error initializing dma\n");
2260 ret = -ENOMEM;
2261 goto clean_runtime_disable_ret;
2262 }
2263
2264 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2265 cpsw_tx_handler);
2266 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2267 cpsw_rx_handler);
2268
2269 if (WARN_ON(!priv->txch || !priv->rxch)) {
2270 dev_err(priv->dev, "error initializing dma channels\n");
2271 ret = -ENOMEM;
2272 goto clean_dma_ret;
2273 }
2274
2275 ale_params.dev = &ndev->dev;
2276 ale_params.ale_ageout = ale_ageout;
2277 ale_params.ale_entries = data->ale_entries;
2278 ale_params.ale_ports = data->slaves;
2279
2280 priv->ale = cpsw_ale_create(&ale_params);
2281 if (!priv->ale) {
2282 dev_err(priv->dev, "error initializing ale engine\n");
2283 ret = -ENODEV;
2284 goto clean_dma_ret;
2285 }
2286
2287 ndev->irq = platform_get_irq(pdev, 0);
2288 if (ndev->irq < 0) {
2289 dev_err(priv->dev, "error getting irq resource\n");
2290 ret = -ENOENT;
2291 goto clean_ale_ret;
2292 }
2293
2294 while ((res = platform_get_resource(priv->pdev, IORESOURCE_IRQ, k))) {
2295 if (k >= ARRAY_SIZE(priv->irqs_table)) {
2296 ret = -EINVAL;
2297 goto clean_ale_ret;
2298 }
2299
2300 ret = devm_request_irq(&pdev->dev, res->start, cpsw_interrupt,
2301 0, dev_name(&pdev->dev), priv);
2302 if (ret < 0) {
2303 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2304 goto clean_ale_ret;
2305 }
2306
2307 priv->irqs_table[k] = res->start;
2308 k++;
2309 }
2310
2311 priv->num_irqs = k;
2312
2313 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2314
2315 ndev->netdev_ops = &cpsw_netdev_ops;
2316 ndev->ethtool_ops = &cpsw_ethtool_ops;
2317 netif_napi_add(ndev, &priv->napi, cpsw_poll, CPSW_POLL_WEIGHT);
2318
2319 /* register the network device */
2320 SET_NETDEV_DEV(ndev, &pdev->dev);
2321 ret = register_netdev(ndev);
2322 if (ret) {
2323 dev_err(priv->dev, "error registering net device\n");
2324 ret = -ENODEV;
2325 goto clean_ale_ret;
2326 }
2327
2328 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2329 &ss_res->start, ndev->irq);
2330
2331 if (priv->data.dual_emac) {
2332 ret = cpsw_probe_dual_emac(pdev, priv);
2333 if (ret) {
2334 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2335 goto clean_ale_ret;
2336 }
2337 }
2338
2339 return 0;
2340
2341 clean_ale_ret:
2342 cpsw_ale_destroy(priv->ale);
2343 clean_dma_ret:
2344 cpdma_chan_destroy(priv->txch);
2345 cpdma_chan_destroy(priv->rxch);
2346 cpdma_ctlr_destroy(priv->dma);
2347 clean_runtime_disable_ret:
2348 pm_runtime_disable(&pdev->dev);
2349 clean_ndev_ret:
2350 free_netdev(priv->ndev);
2351 return ret;
2352 }
2353
2354 static int cpsw_remove(struct platform_device *pdev)
2355 {
2356 struct net_device *ndev = platform_get_drvdata(pdev);
2357 struct cpsw_priv *priv = netdev_priv(ndev);
2358
2359 if (priv->data.dual_emac)
2360 unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2361 unregister_netdev(ndev);
2362
2363 cpsw_ale_destroy(priv->ale);
2364 cpdma_chan_destroy(priv->txch);
2365 cpdma_chan_destroy(priv->rxch);
2366 cpdma_ctlr_destroy(priv->dma);
2367 pm_runtime_disable(&pdev->dev);
2368 if (priv->data.dual_emac)
2369 free_netdev(cpsw_get_slave_ndev(priv, 1));
2370 free_netdev(ndev);
2371 return 0;
2372 }
2373
2374 static int cpsw_suspend(struct device *dev)
2375 {
2376 struct platform_device *pdev = to_platform_device(dev);
2377 struct net_device *ndev = platform_get_drvdata(pdev);
2378 struct cpsw_priv *priv = netdev_priv(ndev);
2379
2380 if (priv->data.dual_emac) {
2381 int i;
2382
2383 for (i = 0; i < priv->data.slaves; i++) {
2384 if (netif_running(priv->slaves[i].ndev))
2385 cpsw_ndo_stop(priv->slaves[i].ndev);
2386 soft_reset_slave(priv->slaves + i);
2387 }
2388 } else {
2389 if (netif_running(ndev))
2390 cpsw_ndo_stop(ndev);
2391 for_each_slave(priv, soft_reset_slave);
2392 }
2393
2394 pm_runtime_put_sync(&pdev->dev);
2395
2396 /* Select sleep pin state */
2397 pinctrl_pm_select_sleep_state(&pdev->dev);
2398
2399 return 0;
2400 }
2401
2402 static int cpsw_resume(struct device *dev)
2403 {
2404 struct platform_device *pdev = to_platform_device(dev);
2405 struct net_device *ndev = platform_get_drvdata(pdev);
2406 struct cpsw_priv *priv = netdev_priv(ndev);
2407
2408 pm_runtime_get_sync(&pdev->dev);
2409
2410 /* Select default pin state */
2411 pinctrl_pm_select_default_state(&pdev->dev);
2412
2413 if (priv->data.dual_emac) {
2414 int i;
2415
2416 for (i = 0; i < priv->data.slaves; i++) {
2417 if (netif_running(priv->slaves[i].ndev))
2418 cpsw_ndo_open(priv->slaves[i].ndev);
2419 }
2420 } else {
2421 if (netif_running(ndev))
2422 cpsw_ndo_open(ndev);
2423 }
2424 return 0;
2425 }
2426
2427 static const struct dev_pm_ops cpsw_pm_ops = {
2428 .suspend = cpsw_suspend,
2429 .resume = cpsw_resume,
2430 };
2431
2432 static const struct of_device_id cpsw_of_mtable[] = {
2433 { .compatible = "ti,cpsw", },
2434 { /* sentinel */ },
2435 };
2436 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2437
2438 static struct platform_driver cpsw_driver = {
2439 .driver = {
2440 .name = "cpsw",
2441 .pm = &cpsw_pm_ops,
2442 .of_match_table = cpsw_of_mtable,
2443 },
2444 .probe = cpsw_probe,
2445 .remove = cpsw_remove,
2446 };
2447
2448 static int __init cpsw_init(void)
2449 {
2450 return platform_driver_register(&cpsw_driver);
2451 }
2452 late_initcall(cpsw_init);
2453
2454 static void __exit cpsw_exit(void)
2455 {
2456 platform_driver_unregister(&cpsw_driver);
2457 }
2458 module_exit(cpsw_exit);
2459
2460 MODULE_LICENSE("GPL");
2461 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2462 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2463 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
This page took 0.07764 seconds and 4 git commands to generate.