Merge remote-tracking branch 'spi/topic/build' into spi-next
[deliverable/linux.git] / drivers / net / ethernet / via / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
13 *
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
16 *
17 * This source has not been verified for use in safety critical systems.
18 *
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
21 *
22 * Original code:
23 *
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
26 *
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
31 *
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
36 *
37 * Author: Chuang Liang-Shing, AJ Jiang
38 *
39 * Date: Jan 24, 2003
40 *
41 * MODULE_LICENSE("GPL");
42 *
43 */
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <linux/io.h>
65 #include <linux/if.h>
66 #include <linux/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/of_address.h>
69 #include <linux/of_device.h>
70 #include <linux/of_irq.h>
71 #include <linux/inetdevice.h>
72 #include <linux/platform_device.h>
73 #include <linux/reboot.h>
74 #include <linux/ethtool.h>
75 #include <linux/mii.h>
76 #include <linux/in.h>
77 #include <linux/if_arp.h>
78 #include <linux/if_vlan.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/crc-ccitt.h>
83 #include <linux/crc32.h>
84
85 #include "via-velocity.h"
86
87 enum velocity_bus_type {
88 BUS_PCI,
89 BUS_PLATFORM,
90 };
91
92 static int velocity_nics;
93 static int msglevel = MSG_LEVEL_INFO;
94
95 static void velocity_set_power_state(struct velocity_info *vptr, char state)
96 {
97 void *addr = vptr->mac_regs;
98
99 if (vptr->pdev)
100 pci_set_power_state(vptr->pdev, state);
101 else
102 writeb(state, addr + 0x154);
103 }
104
105 /**
106 * mac_get_cam_mask - Read a CAM mask
107 * @regs: register block for this velocity
108 * @mask: buffer to store mask
109 *
110 * Fetch the mask bits of the selected CAM and store them into the
111 * provided mask buffer.
112 */
113 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
114 {
115 int i;
116
117 /* Select CAM mask */
118 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119
120 writeb(0, &regs->CAMADDR);
121
122 /* read mask */
123 for (i = 0; i < 8; i++)
124 *mask++ = readb(&(regs->MARCAM[i]));
125
126 /* disable CAMEN */
127 writeb(0, &regs->CAMADDR);
128
129 /* Select mar */
130 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131 }
132
133 /**
134 * mac_set_cam_mask - Set a CAM mask
135 * @regs: register block for this velocity
136 * @mask: CAM mask to load
137 *
138 * Store a new mask into a CAM
139 */
140 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141 {
142 int i;
143 /* Select CAM mask */
144 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145
146 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
147
148 for (i = 0; i < 8; i++)
149 writeb(*mask++, &(regs->MARCAM[i]));
150
151 /* disable CAMEN */
152 writeb(0, &regs->CAMADDR);
153
154 /* Select mar */
155 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156 }
157
158 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
159 {
160 int i;
161 /* Select CAM mask */
162 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163
164 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
165
166 for (i = 0; i < 8; i++)
167 writeb(*mask++, &(regs->MARCAM[i]));
168
169 /* disable CAMEN */
170 writeb(0, &regs->CAMADDR);
171
172 /* Select mar */
173 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174 }
175
176 /**
177 * mac_set_cam - set CAM data
178 * @regs: register block of this velocity
179 * @idx: Cam index
180 * @addr: 2 or 6 bytes of CAM data
181 *
182 * Load an address or vlan tag into a CAM
183 */
184 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
185 {
186 int i;
187
188 /* Select CAM mask */
189 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190
191 idx &= (64 - 1);
192
193 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
194
195 for (i = 0; i < 6; i++)
196 writeb(*addr++, &(regs->MARCAM[i]));
197
198 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
199
200 udelay(10);
201
202 writeb(0, &regs->CAMADDR);
203
204 /* Select mar */
205 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
206 }
207
208 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
209 const u8 *addr)
210 {
211
212 /* Select CAM mask */
213 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214
215 idx &= (64 - 1);
216
217 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
218 writew(*((u16 *) addr), &regs->MARCAM[0]);
219
220 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
221
222 udelay(10);
223
224 writeb(0, &regs->CAMADDR);
225
226 /* Select mar */
227 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
228 }
229
230
231 /**
232 * mac_wol_reset - reset WOL after exiting low power
233 * @regs: register block of this velocity
234 *
235 * Called after we drop out of wake on lan mode in order to
236 * reset the Wake on lan features. This function doesn't restore
237 * the rest of the logic from the result of sleep/wakeup
238 */
239 static void mac_wol_reset(struct mac_regs __iomem *regs)
240 {
241
242 /* Turn off SWPTAG right after leaving power mode */
243 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
244 /* clear sticky bits */
245 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
246
247 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
248 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
249 /* disable force PME-enable */
250 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
251 /* disable power-event config bit */
252 writew(0xFFFF, &regs->WOLCRClr);
253 /* clear power status */
254 writew(0xFFFF, &regs->WOLSRClr);
255 }
256
257 static const struct ethtool_ops velocity_ethtool_ops;
258
259 /*
260 Define module options
261 */
262
263 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
264 MODULE_LICENSE("GPL");
265 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
266
267 #define VELOCITY_PARAM(N, D) \
268 static int N[MAX_UNITS] = OPTION_DEFAULT;\
269 module_param_array(N, int, NULL, 0); \
270 MODULE_PARM_DESC(N, D);
271
272 #define RX_DESC_MIN 64
273 #define RX_DESC_MAX 255
274 #define RX_DESC_DEF 64
275 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
276
277 #define TX_DESC_MIN 16
278 #define TX_DESC_MAX 256
279 #define TX_DESC_DEF 64
280 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
281
282 #define RX_THRESH_MIN 0
283 #define RX_THRESH_MAX 3
284 #define RX_THRESH_DEF 0
285 /* rx_thresh[] is used for controlling the receive fifo threshold.
286 0: indicate the rxfifo threshold is 128 bytes.
287 1: indicate the rxfifo threshold is 512 bytes.
288 2: indicate the rxfifo threshold is 1024 bytes.
289 3: indicate the rxfifo threshold is store & forward.
290 */
291 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
292
293 #define DMA_LENGTH_MIN 0
294 #define DMA_LENGTH_MAX 7
295 #define DMA_LENGTH_DEF 6
296
297 /* DMA_length[] is used for controlling the DMA length
298 0: 8 DWORDs
299 1: 16 DWORDs
300 2: 32 DWORDs
301 3: 64 DWORDs
302 4: 128 DWORDs
303 5: 256 DWORDs
304 6: SF(flush till emply)
305 7: SF(flush till emply)
306 */
307 VELOCITY_PARAM(DMA_length, "DMA length");
308
309 #define IP_ALIG_DEF 0
310 /* IP_byte_align[] is used for IP header DWORD byte aligned
311 0: indicate the IP header won't be DWORD byte aligned.(Default) .
312 1: indicate the IP header will be DWORD byte aligned.
313 In some environment, the IP header should be DWORD byte aligned,
314 or the packet will be droped when we receive it. (eg: IPVS)
315 */
316 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
317
318 #define FLOW_CNTL_DEF 1
319 #define FLOW_CNTL_MIN 1
320 #define FLOW_CNTL_MAX 5
321
322 /* flow_control[] is used for setting the flow control ability of NIC.
323 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
324 2: enable TX flow control.
325 3: enable RX flow control.
326 4: enable RX/TX flow control.
327 5: disable
328 */
329 VELOCITY_PARAM(flow_control, "Enable flow control ability");
330
331 #define MED_LNK_DEF 0
332 #define MED_LNK_MIN 0
333 #define MED_LNK_MAX 5
334 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
335 0: indicate autonegotiation for both speed and duplex mode
336 1: indicate 100Mbps half duplex mode
337 2: indicate 100Mbps full duplex mode
338 3: indicate 10Mbps half duplex mode
339 4: indicate 10Mbps full duplex mode
340 5: indicate 1000Mbps full duplex mode
341
342 Note:
343 if EEPROM have been set to the force mode, this option is ignored
344 by driver.
345 */
346 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
347
348 #define VAL_PKT_LEN_DEF 0
349 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
350 0: Receive frame with invalid layer 2 length (Default)
351 1: Drop frame with invalid layer 2 length
352 */
353 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
354
355 #define WOL_OPT_DEF 0
356 #define WOL_OPT_MIN 0
357 #define WOL_OPT_MAX 7
358 /* wol_opts[] is used for controlling wake on lan behavior.
359 0: Wake up if recevied a magic packet. (Default)
360 1: Wake up if link status is on/off.
361 2: Wake up if recevied an arp packet.
362 4: Wake up if recevied any unicast packet.
363 Those value can be sumed up to support more than one option.
364 */
365 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
366
367 static int rx_copybreak = 200;
368 module_param(rx_copybreak, int, 0644);
369 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
370
371 /*
372 * Internal board variants. At the moment we have only one
373 */
374 static struct velocity_info_tbl chip_info_table[] = {
375 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
376 { }
377 };
378
379 /*
380 * Describe the PCI device identifiers that we support in this
381 * device driver. Used for hotplug autoloading.
382 */
383
384 static DEFINE_PCI_DEVICE_TABLE(velocity_pci_id_table) = {
385 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
386 { }
387 };
388
389 MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
390
391 /**
392 * Describe the OF device identifiers that we support in this
393 * device driver. Used for devicetree nodes.
394 */
395 static struct of_device_id velocity_of_ids[] = {
396 { .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
397 { /* Sentinel */ },
398 };
399 MODULE_DEVICE_TABLE(of, velocity_of_ids);
400
401 /**
402 * get_chip_name - identifier to name
403 * @id: chip identifier
404 *
405 * Given a chip identifier return a suitable description. Returns
406 * a pointer a static string valid while the driver is loaded.
407 */
408 static const char *get_chip_name(enum chip_type chip_id)
409 {
410 int i;
411 for (i = 0; chip_info_table[i].name != NULL; i++)
412 if (chip_info_table[i].chip_id == chip_id)
413 break;
414 return chip_info_table[i].name;
415 }
416
417 /**
418 * velocity_set_int_opt - parser for integer options
419 * @opt: pointer to option value
420 * @val: value the user requested (or -1 for default)
421 * @min: lowest value allowed
422 * @max: highest value allowed
423 * @def: default value
424 * @name: property name
425 * @dev: device name
426 *
427 * Set an integer property in the module options. This function does
428 * all the verification and checking as well as reporting so that
429 * we don't duplicate code for each option.
430 */
431 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
432 char *name, const char *devname)
433 {
434 if (val == -1)
435 *opt = def;
436 else if (val < min || val > max) {
437 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
438 devname, name, min, max);
439 *opt = def;
440 } else {
441 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
442 devname, name, val);
443 *opt = val;
444 }
445 }
446
447 /**
448 * velocity_set_bool_opt - parser for boolean options
449 * @opt: pointer to option value
450 * @val: value the user requested (or -1 for default)
451 * @def: default value (yes/no)
452 * @flag: numeric value to set for true.
453 * @name: property name
454 * @dev: device name
455 *
456 * Set a boolean property in the module options. This function does
457 * all the verification and checking as well as reporting so that
458 * we don't duplicate code for each option.
459 */
460 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
461 char *name, const char *devname)
462 {
463 (*opt) &= (~flag);
464 if (val == -1)
465 *opt |= (def ? flag : 0);
466 else if (val < 0 || val > 1) {
467 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
468 devname, name);
469 *opt |= (def ? flag : 0);
470 } else {
471 printk(KERN_INFO "%s: set parameter %s to %s\n",
472 devname, name, val ? "TRUE" : "FALSE");
473 *opt |= (val ? flag : 0);
474 }
475 }
476
477 /**
478 * velocity_get_options - set options on device
479 * @opts: option structure for the device
480 * @index: index of option to use in module options array
481 * @devname: device name
482 *
483 * Turn the module and command options into a single structure
484 * for the current device
485 */
486 static void velocity_get_options(struct velocity_opt *opts, int index,
487 const char *devname)
488 {
489
490 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
491 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
492 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
493 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
494
495 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
496 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
497 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
498 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
499 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
500 opts->numrx = (opts->numrx & ~3);
501 }
502
503 /**
504 * velocity_init_cam_filter - initialise CAM
505 * @vptr: velocity to program
506 *
507 * Initialize the content addressable memory used for filters. Load
508 * appropriately according to the presence of VLAN
509 */
510 static void velocity_init_cam_filter(struct velocity_info *vptr)
511 {
512 struct mac_regs __iomem *regs = vptr->mac_regs;
513 unsigned int vid, i = 0;
514
515 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
516 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
517 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
518
519 /* Disable all CAMs */
520 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
521 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
522 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
523 mac_set_cam_mask(regs, vptr->mCAMmask);
524
525 /* Enable VCAMs */
526 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
527 mac_set_vlan_cam(regs, i, (u8 *) &vid);
528 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
529 if (++i >= VCAM_SIZE)
530 break;
531 }
532 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
533 }
534
535 static int velocity_vlan_rx_add_vid(struct net_device *dev,
536 __be16 proto, u16 vid)
537 {
538 struct velocity_info *vptr = netdev_priv(dev);
539
540 spin_lock_irq(&vptr->lock);
541 set_bit(vid, vptr->active_vlans);
542 velocity_init_cam_filter(vptr);
543 spin_unlock_irq(&vptr->lock);
544 return 0;
545 }
546
547 static int velocity_vlan_rx_kill_vid(struct net_device *dev,
548 __be16 proto, u16 vid)
549 {
550 struct velocity_info *vptr = netdev_priv(dev);
551
552 spin_lock_irq(&vptr->lock);
553 clear_bit(vid, vptr->active_vlans);
554 velocity_init_cam_filter(vptr);
555 spin_unlock_irq(&vptr->lock);
556 return 0;
557 }
558
559 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
560 {
561 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
562 }
563
564 /**
565 * velocity_rx_reset - handle a receive reset
566 * @vptr: velocity we are resetting
567 *
568 * Reset the ownership and status for the receive ring side.
569 * Hand all the receive queue to the NIC.
570 */
571 static void velocity_rx_reset(struct velocity_info *vptr)
572 {
573
574 struct mac_regs __iomem *regs = vptr->mac_regs;
575 int i;
576
577 velocity_init_rx_ring_indexes(vptr);
578
579 /*
580 * Init state, all RD entries belong to the NIC
581 */
582 for (i = 0; i < vptr->options.numrx; ++i)
583 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
584
585 writew(vptr->options.numrx, &regs->RBRDU);
586 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
587 writew(0, &regs->RDIdx);
588 writew(vptr->options.numrx - 1, &regs->RDCSize);
589 }
590
591 /**
592 * velocity_get_opt_media_mode - get media selection
593 * @vptr: velocity adapter
594 *
595 * Get the media mode stored in EEPROM or module options and load
596 * mii_status accordingly. The requested link state information
597 * is also returned.
598 */
599 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
600 {
601 u32 status = 0;
602
603 switch (vptr->options.spd_dpx) {
604 case SPD_DPX_AUTO:
605 status = VELOCITY_AUTONEG_ENABLE;
606 break;
607 case SPD_DPX_100_FULL:
608 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
609 break;
610 case SPD_DPX_10_FULL:
611 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
612 break;
613 case SPD_DPX_100_HALF:
614 status = VELOCITY_SPEED_100;
615 break;
616 case SPD_DPX_10_HALF:
617 status = VELOCITY_SPEED_10;
618 break;
619 case SPD_DPX_1000_FULL:
620 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
621 break;
622 }
623 vptr->mii_status = status;
624 return status;
625 }
626
627 /**
628 * safe_disable_mii_autopoll - autopoll off
629 * @regs: velocity registers
630 *
631 * Turn off the autopoll and wait for it to disable on the chip
632 */
633 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
634 {
635 u16 ww;
636
637 /* turn off MAUTO */
638 writeb(0, &regs->MIICR);
639 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
640 udelay(1);
641 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
642 break;
643 }
644 }
645
646 /**
647 * enable_mii_autopoll - turn on autopolling
648 * @regs: velocity registers
649 *
650 * Enable the MII link status autopoll feature on the Velocity
651 * hardware. Wait for it to enable.
652 */
653 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
654 {
655 int ii;
656
657 writeb(0, &(regs->MIICR));
658 writeb(MIIADR_SWMPL, &regs->MIIADR);
659
660 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661 udelay(1);
662 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663 break;
664 }
665
666 writeb(MIICR_MAUTO, &regs->MIICR);
667
668 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
669 udelay(1);
670 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
671 break;
672 }
673
674 }
675
676 /**
677 * velocity_mii_read - read MII data
678 * @regs: velocity registers
679 * @index: MII register index
680 * @data: buffer for received data
681 *
682 * Perform a single read of an MII 16bit register. Returns zero
683 * on success or -ETIMEDOUT if the PHY did not respond.
684 */
685 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
686 {
687 u16 ww;
688
689 /*
690 * Disable MIICR_MAUTO, so that mii addr can be set normally
691 */
692 safe_disable_mii_autopoll(regs);
693
694 writeb(index, &regs->MIIADR);
695
696 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
697
698 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
699 if (!(readb(&regs->MIICR) & MIICR_RCMD))
700 break;
701 }
702
703 *data = readw(&regs->MIIDATA);
704
705 enable_mii_autopoll(regs);
706 if (ww == W_MAX_TIMEOUT)
707 return -ETIMEDOUT;
708 return 0;
709 }
710
711 /**
712 * mii_check_media_mode - check media state
713 * @regs: velocity registers
714 *
715 * Check the current MII status and determine the link status
716 * accordingly
717 */
718 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
719 {
720 u32 status = 0;
721 u16 ANAR;
722
723 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
724 status |= VELOCITY_LINK_FAIL;
725
726 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
727 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
728 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
729 status |= (VELOCITY_SPEED_1000);
730 else {
731 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
732 if (ANAR & ADVERTISE_100FULL)
733 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
734 else if (ANAR & ADVERTISE_100HALF)
735 status |= VELOCITY_SPEED_100;
736 else if (ANAR & ADVERTISE_10FULL)
737 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
738 else
739 status |= (VELOCITY_SPEED_10);
740 }
741
742 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
743 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
744 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
745 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
746 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
747 status |= VELOCITY_AUTONEG_ENABLE;
748 }
749 }
750
751 return status;
752 }
753
754 /**
755 * velocity_mii_write - write MII data
756 * @regs: velocity registers
757 * @index: MII register index
758 * @data: 16bit data for the MII register
759 *
760 * Perform a single write to an MII 16bit register. Returns zero
761 * on success or -ETIMEDOUT if the PHY did not respond.
762 */
763 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
764 {
765 u16 ww;
766
767 /*
768 * Disable MIICR_MAUTO, so that mii addr can be set normally
769 */
770 safe_disable_mii_autopoll(regs);
771
772 /* MII reg offset */
773 writeb(mii_addr, &regs->MIIADR);
774 /* set MII data */
775 writew(data, &regs->MIIDATA);
776
777 /* turn on MIICR_WCMD */
778 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
779
780 /* W_MAX_TIMEOUT is the timeout period */
781 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
782 udelay(5);
783 if (!(readb(&regs->MIICR) & MIICR_WCMD))
784 break;
785 }
786 enable_mii_autopoll(regs);
787
788 if (ww == W_MAX_TIMEOUT)
789 return -ETIMEDOUT;
790 return 0;
791 }
792
793 /**
794 * set_mii_flow_control - flow control setup
795 * @vptr: velocity interface
796 *
797 * Set up the flow control on this interface according to
798 * the supplied user/eeprom options.
799 */
800 static void set_mii_flow_control(struct velocity_info *vptr)
801 {
802 /*Enable or Disable PAUSE in ANAR */
803 switch (vptr->options.flow_cntl) {
804 case FLOW_CNTL_TX:
805 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
806 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
807 break;
808
809 case FLOW_CNTL_RX:
810 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
811 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
812 break;
813
814 case FLOW_CNTL_TX_RX:
815 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
816 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
817 break;
818
819 case FLOW_CNTL_DISABLE:
820 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
821 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
822 break;
823 default:
824 break;
825 }
826 }
827
828 /**
829 * mii_set_auto_on - autonegotiate on
830 * @vptr: velocity
831 *
832 * Enable autonegotation on this interface
833 */
834 static void mii_set_auto_on(struct velocity_info *vptr)
835 {
836 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
837 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
838 else
839 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
840 }
841
842 static u32 check_connection_type(struct mac_regs __iomem *regs)
843 {
844 u32 status = 0;
845 u8 PHYSR0;
846 u16 ANAR;
847 PHYSR0 = readb(&regs->PHYSR0);
848
849 /*
850 if (!(PHYSR0 & PHYSR0_LINKGD))
851 status|=VELOCITY_LINK_FAIL;
852 */
853
854 if (PHYSR0 & PHYSR0_FDPX)
855 status |= VELOCITY_DUPLEX_FULL;
856
857 if (PHYSR0 & PHYSR0_SPDG)
858 status |= VELOCITY_SPEED_1000;
859 else if (PHYSR0 & PHYSR0_SPD10)
860 status |= VELOCITY_SPEED_10;
861 else
862 status |= VELOCITY_SPEED_100;
863
864 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
865 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
866 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
867 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
868 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
869 status |= VELOCITY_AUTONEG_ENABLE;
870 }
871 }
872
873 return status;
874 }
875
876 /**
877 * velocity_set_media_mode - set media mode
878 * @mii_status: old MII link state
879 *
880 * Check the media link state and configure the flow control
881 * PHY and also velocity hardware setup accordingly. In particular
882 * we need to set up CD polling and frame bursting.
883 */
884 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
885 {
886 u32 curr_status;
887 struct mac_regs __iomem *regs = vptr->mac_regs;
888
889 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
890 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
891
892 /* Set mii link status */
893 set_mii_flow_control(vptr);
894
895 /*
896 Check if new status is consistent with current status
897 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
898 (mii_status==curr_status)) {
899 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
900 vptr->mii_status=check_connection_type(vptr->mac_regs);
901 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
902 return 0;
903 }
904 */
905
906 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
907 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
908
909 /*
910 * If connection type is AUTO
911 */
912 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
913 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
914 /* clear force MAC mode bit */
915 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
916 /* set duplex mode of MAC according to duplex mode of MII */
917 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
918 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
919 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
920
921 /* enable AUTO-NEGO mode */
922 mii_set_auto_on(vptr);
923 } else {
924 u16 CTRL1000;
925 u16 ANAR;
926 u8 CHIPGCR;
927
928 /*
929 * 1. if it's 3119, disable frame bursting in halfduplex mode
930 * and enable it in fullduplex mode
931 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
932 * 3. only enable CD heart beat counter in 10HD mode
933 */
934
935 /* set force MAC mode bit */
936 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
937
938 CHIPGCR = readb(&regs->CHIPGCR);
939
940 if (mii_status & VELOCITY_SPEED_1000)
941 CHIPGCR |= CHIPGCR_FCGMII;
942 else
943 CHIPGCR &= ~CHIPGCR_FCGMII;
944
945 if (mii_status & VELOCITY_DUPLEX_FULL) {
946 CHIPGCR |= CHIPGCR_FCFDX;
947 writeb(CHIPGCR, &regs->CHIPGCR);
948 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
949 if (vptr->rev_id < REV_ID_VT3216_A0)
950 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
951 } else {
952 CHIPGCR &= ~CHIPGCR_FCFDX;
953 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
954 writeb(CHIPGCR, &regs->CHIPGCR);
955 if (vptr->rev_id < REV_ID_VT3216_A0)
956 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
957 }
958
959 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
960 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
961 if ((mii_status & VELOCITY_SPEED_1000) &&
962 (mii_status & VELOCITY_DUPLEX_FULL)) {
963 CTRL1000 |= ADVERTISE_1000FULL;
964 }
965 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
966
967 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
968 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
969 else
970 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
971
972 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
973 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
974 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
975 if (mii_status & VELOCITY_SPEED_100) {
976 if (mii_status & VELOCITY_DUPLEX_FULL)
977 ANAR |= ADVERTISE_100FULL;
978 else
979 ANAR |= ADVERTISE_100HALF;
980 } else if (mii_status & VELOCITY_SPEED_10) {
981 if (mii_status & VELOCITY_DUPLEX_FULL)
982 ANAR |= ADVERTISE_10FULL;
983 else
984 ANAR |= ADVERTISE_10HALF;
985 }
986 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
987 /* enable AUTO-NEGO mode */
988 mii_set_auto_on(vptr);
989 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
990 }
991 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
992 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
993 return VELOCITY_LINK_CHANGE;
994 }
995
996 /**
997 * velocity_print_link_status - link status reporting
998 * @vptr: velocity to report on
999 *
1000 * Turn the link status of the velocity card into a kernel log
1001 * description of the new link state, detailing speed and duplex
1002 * status
1003 */
1004 static void velocity_print_link_status(struct velocity_info *vptr)
1005 {
1006
1007 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1008 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1009 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1010 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1011
1012 if (vptr->mii_status & VELOCITY_SPEED_1000)
1013 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1014 else if (vptr->mii_status & VELOCITY_SPEED_100)
1015 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1016 else
1017 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1018
1019 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1020 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1021 else
1022 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1023 } else {
1024 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1025 switch (vptr->options.spd_dpx) {
1026 case SPD_DPX_1000_FULL:
1027 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1028 break;
1029 case SPD_DPX_100_HALF:
1030 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1031 break;
1032 case SPD_DPX_100_FULL:
1033 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1034 break;
1035 case SPD_DPX_10_HALF:
1036 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1037 break;
1038 case SPD_DPX_10_FULL:
1039 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1040 break;
1041 default:
1042 break;
1043 }
1044 }
1045 }
1046
1047 /**
1048 * enable_flow_control_ability - flow control
1049 * @vptr: veloity to configure
1050 *
1051 * Set up flow control according to the flow control options
1052 * determined by the eeprom/configuration.
1053 */
1054 static void enable_flow_control_ability(struct velocity_info *vptr)
1055 {
1056
1057 struct mac_regs __iomem *regs = vptr->mac_regs;
1058
1059 switch (vptr->options.flow_cntl) {
1060
1061 case FLOW_CNTL_DEFAULT:
1062 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1063 writel(CR0_FDXRFCEN, &regs->CR0Set);
1064 else
1065 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1066
1067 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1068 writel(CR0_FDXTFCEN, &regs->CR0Set);
1069 else
1070 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1071 break;
1072
1073 case FLOW_CNTL_TX:
1074 writel(CR0_FDXTFCEN, &regs->CR0Set);
1075 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1076 break;
1077
1078 case FLOW_CNTL_RX:
1079 writel(CR0_FDXRFCEN, &regs->CR0Set);
1080 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1081 break;
1082
1083 case FLOW_CNTL_TX_RX:
1084 writel(CR0_FDXTFCEN, &regs->CR0Set);
1085 writel(CR0_FDXRFCEN, &regs->CR0Set);
1086 break;
1087
1088 case FLOW_CNTL_DISABLE:
1089 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1090 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1091 break;
1092
1093 default:
1094 break;
1095 }
1096
1097 }
1098
1099 /**
1100 * velocity_soft_reset - soft reset
1101 * @vptr: velocity to reset
1102 *
1103 * Kick off a soft reset of the velocity adapter and then poll
1104 * until the reset sequence has completed before returning.
1105 */
1106 static int velocity_soft_reset(struct velocity_info *vptr)
1107 {
1108 struct mac_regs __iomem *regs = vptr->mac_regs;
1109 int i = 0;
1110
1111 writel(CR0_SFRST, &regs->CR0Set);
1112
1113 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1114 udelay(5);
1115 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1116 break;
1117 }
1118
1119 if (i == W_MAX_TIMEOUT) {
1120 writel(CR0_FORSRST, &regs->CR0Set);
1121 /* FIXME: PCI POSTING */
1122 /* delay 2ms */
1123 mdelay(2);
1124 }
1125 return 0;
1126 }
1127
1128 /**
1129 * velocity_set_multi - filter list change callback
1130 * @dev: network device
1131 *
1132 * Called by the network layer when the filter lists need to change
1133 * for a velocity adapter. Reload the CAMs with the new address
1134 * filter ruleset.
1135 */
1136 static void velocity_set_multi(struct net_device *dev)
1137 {
1138 struct velocity_info *vptr = netdev_priv(dev);
1139 struct mac_regs __iomem *regs = vptr->mac_regs;
1140 u8 rx_mode;
1141 int i;
1142 struct netdev_hw_addr *ha;
1143
1144 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1145 writel(0xffffffff, &regs->MARCAM[0]);
1146 writel(0xffffffff, &regs->MARCAM[4]);
1147 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1148 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1149 (dev->flags & IFF_ALLMULTI)) {
1150 writel(0xffffffff, &regs->MARCAM[0]);
1151 writel(0xffffffff, &regs->MARCAM[4]);
1152 rx_mode = (RCR_AM | RCR_AB);
1153 } else {
1154 int offset = MCAM_SIZE - vptr->multicast_limit;
1155 mac_get_cam_mask(regs, vptr->mCAMmask);
1156
1157 i = 0;
1158 netdev_for_each_mc_addr(ha, dev) {
1159 mac_set_cam(regs, i + offset, ha->addr);
1160 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1161 i++;
1162 }
1163
1164 mac_set_cam_mask(regs, vptr->mCAMmask);
1165 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1166 }
1167 if (dev->mtu > 1500)
1168 rx_mode |= RCR_AL;
1169
1170 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1171
1172 }
1173
1174 /*
1175 * MII access , media link mode setting functions
1176 */
1177
1178 /**
1179 * mii_init - set up MII
1180 * @vptr: velocity adapter
1181 * @mii_status: links tatus
1182 *
1183 * Set up the PHY for the current link state.
1184 */
1185 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1186 {
1187 u16 BMCR;
1188
1189 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1190 case PHYID_ICPLUS_IP101A:
1191 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1192 MII_ADVERTISE, vptr->mac_regs);
1193 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1195 vptr->mac_regs);
1196 else
1197 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1198 vptr->mac_regs);
1199 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1200 break;
1201 case PHYID_CICADA_CS8201:
1202 /*
1203 * Reset to hardware default
1204 */
1205 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1206 /*
1207 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1208 * off it in NWay-forced half mode for NWay-forced v.s.
1209 * legacy-forced issue.
1210 */
1211 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1212 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1213 else
1214 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215 /*
1216 * Turn on Link/Activity LED enable bit for CIS8201
1217 */
1218 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1219 break;
1220 case PHYID_VT3216_32BIT:
1221 case PHYID_VT3216_64BIT:
1222 /*
1223 * Reset to hardware default
1224 */
1225 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1226 /*
1227 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1228 * off it in NWay-forced half mode for NWay-forced v.s.
1229 * legacy-forced issue
1230 */
1231 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1232 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1233 else
1234 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1235 break;
1236
1237 case PHYID_MARVELL_1000:
1238 case PHYID_MARVELL_1000S:
1239 /*
1240 * Assert CRS on Transmit
1241 */
1242 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1243 /*
1244 * Reset to hardware default
1245 */
1246 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1247 break;
1248 default:
1249 ;
1250 }
1251 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1252 if (BMCR & BMCR_ISOLATE) {
1253 BMCR &= ~BMCR_ISOLATE;
1254 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1255 }
1256 }
1257
1258 /**
1259 * setup_queue_timers - Setup interrupt timers
1260 *
1261 * Setup interrupt frequency during suppression (timeout if the frame
1262 * count isn't filled).
1263 */
1264 static void setup_queue_timers(struct velocity_info *vptr)
1265 {
1266 /* Only for newer revisions */
1267 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1268 u8 txqueue_timer = 0;
1269 u8 rxqueue_timer = 0;
1270
1271 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1272 VELOCITY_SPEED_100)) {
1273 txqueue_timer = vptr->options.txqueue_timer;
1274 rxqueue_timer = vptr->options.rxqueue_timer;
1275 }
1276
1277 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1278 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1279 }
1280 }
1281
1282 /**
1283 * setup_adaptive_interrupts - Setup interrupt suppression
1284 *
1285 * @vptr velocity adapter
1286 *
1287 * The velocity is able to suppress interrupt during high interrupt load.
1288 * This function turns on that feature.
1289 */
1290 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1291 {
1292 struct mac_regs __iomem *regs = vptr->mac_regs;
1293 u16 tx_intsup = vptr->options.tx_intsup;
1294 u16 rx_intsup = vptr->options.rx_intsup;
1295
1296 /* Setup default interrupt mask (will be changed below) */
1297 vptr->int_mask = INT_MASK_DEF;
1298
1299 /* Set Tx Interrupt Suppression Threshold */
1300 writeb(CAMCR_PS0, &regs->CAMCR);
1301 if (tx_intsup != 0) {
1302 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1303 ISR_PTX2I | ISR_PTX3I);
1304 writew(tx_intsup, &regs->ISRCTL);
1305 } else
1306 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1307
1308 /* Set Rx Interrupt Suppression Threshold */
1309 writeb(CAMCR_PS1, &regs->CAMCR);
1310 if (rx_intsup != 0) {
1311 vptr->int_mask &= ~ISR_PRXI;
1312 writew(rx_intsup, &regs->ISRCTL);
1313 } else
1314 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1315
1316 /* Select page to interrupt hold timer */
1317 writeb(0, &regs->CAMCR);
1318 }
1319
1320 /**
1321 * velocity_init_registers - initialise MAC registers
1322 * @vptr: velocity to init
1323 * @type: type of initialisation (hot or cold)
1324 *
1325 * Initialise the MAC on a reset or on first set up on the
1326 * hardware.
1327 */
1328 static void velocity_init_registers(struct velocity_info *vptr,
1329 enum velocity_init_type type)
1330 {
1331 struct mac_regs __iomem *regs = vptr->mac_regs;
1332 struct net_device *netdev = vptr->netdev;
1333 int i, mii_status;
1334
1335 mac_wol_reset(regs);
1336
1337 switch (type) {
1338 case VELOCITY_INIT_RESET:
1339 case VELOCITY_INIT_WOL:
1340
1341 netif_stop_queue(netdev);
1342
1343 /*
1344 * Reset RX to prevent RX pointer not on the 4X location
1345 */
1346 velocity_rx_reset(vptr);
1347 mac_rx_queue_run(regs);
1348 mac_rx_queue_wake(regs);
1349
1350 mii_status = velocity_get_opt_media_mode(vptr);
1351 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1352 velocity_print_link_status(vptr);
1353 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1354 netif_wake_queue(netdev);
1355 }
1356
1357 enable_flow_control_ability(vptr);
1358
1359 mac_clear_isr(regs);
1360 writel(CR0_STOP, &regs->CR0Clr);
1361 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1362 &regs->CR0Set);
1363
1364 break;
1365
1366 case VELOCITY_INIT_COLD:
1367 default:
1368 /*
1369 * Do reset
1370 */
1371 velocity_soft_reset(vptr);
1372 mdelay(5);
1373
1374 if (!vptr->no_eeprom) {
1375 mac_eeprom_reload(regs);
1376 for (i = 0; i < 6; i++)
1377 writeb(netdev->dev_addr[i], regs->PAR + i);
1378 }
1379
1380 /*
1381 * clear Pre_ACPI bit.
1382 */
1383 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1384 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1385 mac_set_dma_length(regs, vptr->options.DMA_length);
1386
1387 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1388 /*
1389 * Back off algorithm use original IEEE standard
1390 */
1391 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1392
1393 /*
1394 * Init CAM filter
1395 */
1396 velocity_init_cam_filter(vptr);
1397
1398 /*
1399 * Set packet filter: Receive directed and broadcast address
1400 */
1401 velocity_set_multi(netdev);
1402
1403 /*
1404 * Enable MII auto-polling
1405 */
1406 enable_mii_autopoll(regs);
1407
1408 setup_adaptive_interrupts(vptr);
1409
1410 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1411 writew(vptr->options.numrx - 1, &regs->RDCSize);
1412 mac_rx_queue_run(regs);
1413 mac_rx_queue_wake(regs);
1414
1415 writew(vptr->options.numtx - 1, &regs->TDCSize);
1416
1417 for (i = 0; i < vptr->tx.numq; i++) {
1418 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1419 mac_tx_queue_run(regs, i);
1420 }
1421
1422 init_flow_control_register(vptr);
1423
1424 writel(CR0_STOP, &regs->CR0Clr);
1425 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1426
1427 mii_status = velocity_get_opt_media_mode(vptr);
1428 netif_stop_queue(netdev);
1429
1430 mii_init(vptr, mii_status);
1431
1432 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1433 velocity_print_link_status(vptr);
1434 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1435 netif_wake_queue(netdev);
1436 }
1437
1438 enable_flow_control_ability(vptr);
1439 mac_hw_mibs_init(regs);
1440 mac_write_int_mask(vptr->int_mask, regs);
1441 mac_clear_isr(regs);
1442
1443 }
1444 }
1445
1446 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1447 {
1448 struct mac_regs __iomem *regs = vptr->mac_regs;
1449 int avail, dirty, unusable;
1450
1451 /*
1452 * RD number must be equal to 4X per hardware spec
1453 * (programming guide rev 1.20, p.13)
1454 */
1455 if (vptr->rx.filled < 4)
1456 return;
1457
1458 wmb();
1459
1460 unusable = vptr->rx.filled & 0x0003;
1461 dirty = vptr->rx.dirty - unusable;
1462 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1463 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1464 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1465 }
1466
1467 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1468 vptr->rx.filled = unusable;
1469 }
1470
1471 /**
1472 * velocity_init_dma_rings - set up DMA rings
1473 * @vptr: Velocity to set up
1474 *
1475 * Allocate PCI mapped DMA rings for the receive and transmit layer
1476 * to use.
1477 */
1478 static int velocity_init_dma_rings(struct velocity_info *vptr)
1479 {
1480 struct velocity_opt *opt = &vptr->options;
1481 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1482 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1483 dma_addr_t pool_dma;
1484 void *pool;
1485 unsigned int i;
1486
1487 /*
1488 * Allocate all RD/TD rings a single pool.
1489 *
1490 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1491 * alignment
1492 */
1493 pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1494 rx_ring_size, &pool_dma, GFP_ATOMIC);
1495 if (!pool) {
1496 dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1497 vptr->netdev->name);
1498 return -ENOMEM;
1499 }
1500
1501 vptr->rx.ring = pool;
1502 vptr->rx.pool_dma = pool_dma;
1503
1504 pool += rx_ring_size;
1505 pool_dma += rx_ring_size;
1506
1507 for (i = 0; i < vptr->tx.numq; i++) {
1508 vptr->tx.rings[i] = pool;
1509 vptr->tx.pool_dma[i] = pool_dma;
1510 pool += tx_ring_size;
1511 pool_dma += tx_ring_size;
1512 }
1513
1514 return 0;
1515 }
1516
1517 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1518 {
1519 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1520 }
1521
1522 /**
1523 * velocity_alloc_rx_buf - allocate aligned receive buffer
1524 * @vptr: velocity
1525 * @idx: ring index
1526 *
1527 * Allocate a new full sized buffer for the reception of a frame and
1528 * map it into PCI space for the hardware to use. The hardware
1529 * requires *64* byte alignment of the buffer which makes life
1530 * less fun than would be ideal.
1531 */
1532 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1533 {
1534 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1535 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1536
1537 rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1538 if (rd_info->skb == NULL)
1539 return -ENOMEM;
1540
1541 /*
1542 * Do the gymnastics to get the buffer head for data at
1543 * 64byte alignment.
1544 */
1545 skb_reserve(rd_info->skb,
1546 64 - ((unsigned long) rd_info->skb->data & 63));
1547 rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1548 vptr->rx.buf_sz, DMA_FROM_DEVICE);
1549
1550 /*
1551 * Fill in the descriptor to match
1552 */
1553
1554 *((u32 *) & (rd->rdesc0)) = 0;
1555 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1556 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1557 rd->pa_high = 0;
1558 return 0;
1559 }
1560
1561
1562 static int velocity_rx_refill(struct velocity_info *vptr)
1563 {
1564 int dirty = vptr->rx.dirty, done = 0;
1565
1566 do {
1567 struct rx_desc *rd = vptr->rx.ring + dirty;
1568
1569 /* Fine for an all zero Rx desc at init time as well */
1570 if (rd->rdesc0.len & OWNED_BY_NIC)
1571 break;
1572
1573 if (!vptr->rx.info[dirty].skb) {
1574 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1575 break;
1576 }
1577 done++;
1578 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1579 } while (dirty != vptr->rx.curr);
1580
1581 if (done) {
1582 vptr->rx.dirty = dirty;
1583 vptr->rx.filled += done;
1584 }
1585
1586 return done;
1587 }
1588
1589 /**
1590 * velocity_free_rd_ring - free receive ring
1591 * @vptr: velocity to clean up
1592 *
1593 * Free the receive buffers for each ring slot and any
1594 * attached socket buffers that need to go away.
1595 */
1596 static void velocity_free_rd_ring(struct velocity_info *vptr)
1597 {
1598 int i;
1599
1600 if (vptr->rx.info == NULL)
1601 return;
1602
1603 for (i = 0; i < vptr->options.numrx; i++) {
1604 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1605 struct rx_desc *rd = vptr->rx.ring + i;
1606
1607 memset(rd, 0, sizeof(*rd));
1608
1609 if (!rd_info->skb)
1610 continue;
1611 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1612 DMA_FROM_DEVICE);
1613 rd_info->skb_dma = 0;
1614
1615 dev_kfree_skb(rd_info->skb);
1616 rd_info->skb = NULL;
1617 }
1618
1619 kfree(vptr->rx.info);
1620 vptr->rx.info = NULL;
1621 }
1622
1623 /**
1624 * velocity_init_rd_ring - set up receive ring
1625 * @vptr: velocity to configure
1626 *
1627 * Allocate and set up the receive buffers for each ring slot and
1628 * assign them to the network adapter.
1629 */
1630 static int velocity_init_rd_ring(struct velocity_info *vptr)
1631 {
1632 int ret = -ENOMEM;
1633
1634 vptr->rx.info = kcalloc(vptr->options.numrx,
1635 sizeof(struct velocity_rd_info), GFP_KERNEL);
1636 if (!vptr->rx.info)
1637 goto out;
1638
1639 velocity_init_rx_ring_indexes(vptr);
1640
1641 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1642 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1643 "%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1644 velocity_free_rd_ring(vptr);
1645 goto out;
1646 }
1647
1648 ret = 0;
1649 out:
1650 return ret;
1651 }
1652
1653 /**
1654 * velocity_init_td_ring - set up transmit ring
1655 * @vptr: velocity
1656 *
1657 * Set up the transmit ring and chain the ring pointers together.
1658 * Returns zero on success or a negative posix errno code for
1659 * failure.
1660 */
1661 static int velocity_init_td_ring(struct velocity_info *vptr)
1662 {
1663 int j;
1664
1665 /* Init the TD ring entries */
1666 for (j = 0; j < vptr->tx.numq; j++) {
1667
1668 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1669 sizeof(struct velocity_td_info),
1670 GFP_KERNEL);
1671 if (!vptr->tx.infos[j]) {
1672 while (--j >= 0)
1673 kfree(vptr->tx.infos[j]);
1674 return -ENOMEM;
1675 }
1676
1677 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1678 }
1679 return 0;
1680 }
1681
1682 /**
1683 * velocity_free_dma_rings - free PCI ring pointers
1684 * @vptr: Velocity to free from
1685 *
1686 * Clean up the PCI ring buffers allocated to this velocity.
1687 */
1688 static void velocity_free_dma_rings(struct velocity_info *vptr)
1689 {
1690 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1691 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1692
1693 dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1694 }
1695
1696 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1697 {
1698 int ret;
1699
1700 velocity_set_rxbufsize(vptr, mtu);
1701
1702 ret = velocity_init_dma_rings(vptr);
1703 if (ret < 0)
1704 goto out;
1705
1706 ret = velocity_init_rd_ring(vptr);
1707 if (ret < 0)
1708 goto err_free_dma_rings_0;
1709
1710 ret = velocity_init_td_ring(vptr);
1711 if (ret < 0)
1712 goto err_free_rd_ring_1;
1713 out:
1714 return ret;
1715
1716 err_free_rd_ring_1:
1717 velocity_free_rd_ring(vptr);
1718 err_free_dma_rings_0:
1719 velocity_free_dma_rings(vptr);
1720 goto out;
1721 }
1722
1723 /**
1724 * velocity_free_tx_buf - free transmit buffer
1725 * @vptr: velocity
1726 * @tdinfo: buffer
1727 *
1728 * Release an transmit buffer. If the buffer was preallocated then
1729 * recycle it, if not then unmap the buffer.
1730 */
1731 static void velocity_free_tx_buf(struct velocity_info *vptr,
1732 struct velocity_td_info *tdinfo, struct tx_desc *td)
1733 {
1734 struct sk_buff *skb = tdinfo->skb;
1735
1736 /*
1737 * Don't unmap the pre-allocated tx_bufs
1738 */
1739 if (tdinfo->skb_dma) {
1740 int i;
1741
1742 for (i = 0; i < tdinfo->nskb_dma; i++) {
1743 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1744
1745 /* For scatter-gather */
1746 if (skb_shinfo(skb)->nr_frags > 0)
1747 pktlen = max_t(size_t, pktlen,
1748 td->td_buf[i].size & ~TD_QUEUE);
1749
1750 dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1751 le16_to_cpu(pktlen), DMA_TO_DEVICE);
1752 }
1753 }
1754 dev_kfree_skb_irq(skb);
1755 tdinfo->skb = NULL;
1756 }
1757
1758 /*
1759 * FIXME: could we merge this with velocity_free_tx_buf ?
1760 */
1761 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1762 int q, int n)
1763 {
1764 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1765 int i;
1766
1767 if (td_info == NULL)
1768 return;
1769
1770 if (td_info->skb) {
1771 for (i = 0; i < td_info->nskb_dma; i++) {
1772 if (td_info->skb_dma[i]) {
1773 dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1774 td_info->skb->len, DMA_TO_DEVICE);
1775 td_info->skb_dma[i] = 0;
1776 }
1777 }
1778 dev_kfree_skb(td_info->skb);
1779 td_info->skb = NULL;
1780 }
1781 }
1782
1783 /**
1784 * velocity_free_td_ring - free td ring
1785 * @vptr: velocity
1786 *
1787 * Free up the transmit ring for this particular velocity adapter.
1788 * We free the ring contents but not the ring itself.
1789 */
1790 static void velocity_free_td_ring(struct velocity_info *vptr)
1791 {
1792 int i, j;
1793
1794 for (j = 0; j < vptr->tx.numq; j++) {
1795 if (vptr->tx.infos[j] == NULL)
1796 continue;
1797 for (i = 0; i < vptr->options.numtx; i++)
1798 velocity_free_td_ring_entry(vptr, j, i);
1799
1800 kfree(vptr->tx.infos[j]);
1801 vptr->tx.infos[j] = NULL;
1802 }
1803 }
1804
1805 static void velocity_free_rings(struct velocity_info *vptr)
1806 {
1807 velocity_free_td_ring(vptr);
1808 velocity_free_rd_ring(vptr);
1809 velocity_free_dma_rings(vptr);
1810 }
1811
1812 /**
1813 * velocity_error - handle error from controller
1814 * @vptr: velocity
1815 * @status: card status
1816 *
1817 * Process an error report from the hardware and attempt to recover
1818 * the card itself. At the moment we cannot recover from some
1819 * theoretically impossible errors but this could be fixed using
1820 * the pci_device_failed logic to bounce the hardware
1821 *
1822 */
1823 static void velocity_error(struct velocity_info *vptr, int status)
1824 {
1825
1826 if (status & ISR_TXSTLI) {
1827 struct mac_regs __iomem *regs = vptr->mac_regs;
1828
1829 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1830 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1831 writew(TRDCSR_RUN, &regs->TDCSRClr);
1832 netif_stop_queue(vptr->netdev);
1833
1834 /* FIXME: port over the pci_device_failed code and use it
1835 here */
1836 }
1837
1838 if (status & ISR_SRCI) {
1839 struct mac_regs __iomem *regs = vptr->mac_regs;
1840 int linked;
1841
1842 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1843 vptr->mii_status = check_connection_type(regs);
1844
1845 /*
1846 * If it is a 3119, disable frame bursting in
1847 * halfduplex mode and enable it in fullduplex
1848 * mode
1849 */
1850 if (vptr->rev_id < REV_ID_VT3216_A0) {
1851 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1852 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1853 else
1854 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1855 }
1856 /*
1857 * Only enable CD heart beat counter in 10HD mode
1858 */
1859 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1860 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1861 else
1862 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1863
1864 setup_queue_timers(vptr);
1865 }
1866 /*
1867 * Get link status from PHYSR0
1868 */
1869 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1870
1871 if (linked) {
1872 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1873 netif_carrier_on(vptr->netdev);
1874 } else {
1875 vptr->mii_status |= VELOCITY_LINK_FAIL;
1876 netif_carrier_off(vptr->netdev);
1877 }
1878
1879 velocity_print_link_status(vptr);
1880 enable_flow_control_ability(vptr);
1881
1882 /*
1883 * Re-enable auto-polling because SRCI will disable
1884 * auto-polling
1885 */
1886
1887 enable_mii_autopoll(regs);
1888
1889 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1890 netif_stop_queue(vptr->netdev);
1891 else
1892 netif_wake_queue(vptr->netdev);
1893
1894 }
1895 if (status & ISR_MIBFI)
1896 velocity_update_hw_mibs(vptr);
1897 if (status & ISR_LSTEI)
1898 mac_rx_queue_wake(vptr->mac_regs);
1899 }
1900
1901 /**
1902 * tx_srv - transmit interrupt service
1903 * @vptr; Velocity
1904 *
1905 * Scan the queues looking for transmitted packets that
1906 * we can complete and clean up. Update any statistics as
1907 * necessary/
1908 */
1909 static int velocity_tx_srv(struct velocity_info *vptr)
1910 {
1911 struct tx_desc *td;
1912 int qnum;
1913 int full = 0;
1914 int idx;
1915 int works = 0;
1916 struct velocity_td_info *tdinfo;
1917 struct net_device_stats *stats = &vptr->netdev->stats;
1918
1919 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1920 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1921 idx = (idx + 1) % vptr->options.numtx) {
1922
1923 /*
1924 * Get Tx Descriptor
1925 */
1926 td = &(vptr->tx.rings[qnum][idx]);
1927 tdinfo = &(vptr->tx.infos[qnum][idx]);
1928
1929 if (td->tdesc0.len & OWNED_BY_NIC)
1930 break;
1931
1932 if ((works++ > 15))
1933 break;
1934
1935 if (td->tdesc0.TSR & TSR0_TERR) {
1936 stats->tx_errors++;
1937 stats->tx_dropped++;
1938 if (td->tdesc0.TSR & TSR0_CDH)
1939 stats->tx_heartbeat_errors++;
1940 if (td->tdesc0.TSR & TSR0_CRS)
1941 stats->tx_carrier_errors++;
1942 if (td->tdesc0.TSR & TSR0_ABT)
1943 stats->tx_aborted_errors++;
1944 if (td->tdesc0.TSR & TSR0_OWC)
1945 stats->tx_window_errors++;
1946 } else {
1947 stats->tx_packets++;
1948 stats->tx_bytes += tdinfo->skb->len;
1949 }
1950 velocity_free_tx_buf(vptr, tdinfo, td);
1951 vptr->tx.used[qnum]--;
1952 }
1953 vptr->tx.tail[qnum] = idx;
1954
1955 if (AVAIL_TD(vptr, qnum) < 1)
1956 full = 1;
1957 }
1958 /*
1959 * Look to see if we should kick the transmit network
1960 * layer for more work.
1961 */
1962 if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1963 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1964 netif_wake_queue(vptr->netdev);
1965 }
1966 return works;
1967 }
1968
1969 /**
1970 * velocity_rx_csum - checksum process
1971 * @rd: receive packet descriptor
1972 * @skb: network layer packet buffer
1973 *
1974 * Process the status bits for the received packet and determine
1975 * if the checksum was computed and verified by the hardware
1976 */
1977 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1978 {
1979 skb_checksum_none_assert(skb);
1980
1981 if (rd->rdesc1.CSM & CSM_IPKT) {
1982 if (rd->rdesc1.CSM & CSM_IPOK) {
1983 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1984 (rd->rdesc1.CSM & CSM_UDPKT)) {
1985 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1986 return;
1987 }
1988 skb->ip_summed = CHECKSUM_UNNECESSARY;
1989 }
1990 }
1991 }
1992
1993 /**
1994 * velocity_rx_copy - in place Rx copy for small packets
1995 * @rx_skb: network layer packet buffer candidate
1996 * @pkt_size: received data size
1997 * @rd: receive packet descriptor
1998 * @dev: network device
1999 *
2000 * Replace the current skb that is scheduled for Rx processing by a
2001 * shorter, immediately allocated skb, if the received packet is small
2002 * enough. This function returns a negative value if the received
2003 * packet is too big or if memory is exhausted.
2004 */
2005 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2006 struct velocity_info *vptr)
2007 {
2008 int ret = -1;
2009 if (pkt_size < rx_copybreak) {
2010 struct sk_buff *new_skb;
2011
2012 new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2013 if (new_skb) {
2014 new_skb->ip_summed = rx_skb[0]->ip_summed;
2015 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2016 *rx_skb = new_skb;
2017 ret = 0;
2018 }
2019
2020 }
2021 return ret;
2022 }
2023
2024 /**
2025 * velocity_iph_realign - IP header alignment
2026 * @vptr: velocity we are handling
2027 * @skb: network layer packet buffer
2028 * @pkt_size: received data size
2029 *
2030 * Align IP header on a 2 bytes boundary. This behavior can be
2031 * configured by the user.
2032 */
2033 static inline void velocity_iph_realign(struct velocity_info *vptr,
2034 struct sk_buff *skb, int pkt_size)
2035 {
2036 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2037 memmove(skb->data + 2, skb->data, pkt_size);
2038 skb_reserve(skb, 2);
2039 }
2040 }
2041
2042 /**
2043 * velocity_receive_frame - received packet processor
2044 * @vptr: velocity we are handling
2045 * @idx: ring index
2046 *
2047 * A packet has arrived. We process the packet and if appropriate
2048 * pass the frame up the network stack
2049 */
2050 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2051 {
2052 struct net_device_stats *stats = &vptr->netdev->stats;
2053 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2054 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2055 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2056 struct sk_buff *skb;
2057
2058 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2059 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->netdev->name);
2060 stats->rx_length_errors++;
2061 return -EINVAL;
2062 }
2063
2064 if (rd->rdesc0.RSR & RSR_MAR)
2065 stats->multicast++;
2066
2067 skb = rd_info->skb;
2068
2069 dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2070 vptr->rx.buf_sz, DMA_FROM_DEVICE);
2071
2072 /*
2073 * Drop frame not meeting IEEE 802.3
2074 */
2075
2076 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2077 if (rd->rdesc0.RSR & RSR_RL) {
2078 stats->rx_length_errors++;
2079 return -EINVAL;
2080 }
2081 }
2082
2083 velocity_rx_csum(rd, skb);
2084
2085 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2086 velocity_iph_realign(vptr, skb, pkt_len);
2087 rd_info->skb = NULL;
2088 dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2089 DMA_FROM_DEVICE);
2090 } else {
2091 dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2092 vptr->rx.buf_sz, DMA_FROM_DEVICE);
2093 }
2094
2095 skb_put(skb, pkt_len - 4);
2096 skb->protocol = eth_type_trans(skb, vptr->netdev);
2097
2098 if (rd->rdesc0.RSR & RSR_DETAG) {
2099 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2100
2101 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2102 }
2103 netif_receive_skb(skb);
2104
2105 stats->rx_bytes += pkt_len;
2106 stats->rx_packets++;
2107
2108 return 0;
2109 }
2110
2111 /**
2112 * velocity_rx_srv - service RX interrupt
2113 * @vptr: velocity
2114 *
2115 * Walk the receive ring of the velocity adapter and remove
2116 * any received packets from the receive queue. Hand the ring
2117 * slots back to the adapter for reuse.
2118 */
2119 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2120 {
2121 struct net_device_stats *stats = &vptr->netdev->stats;
2122 int rd_curr = vptr->rx.curr;
2123 int works = 0;
2124
2125 while (works < budget_left) {
2126 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2127
2128 if (!vptr->rx.info[rd_curr].skb)
2129 break;
2130
2131 if (rd->rdesc0.len & OWNED_BY_NIC)
2132 break;
2133
2134 rmb();
2135
2136 /*
2137 * Don't drop CE or RL error frame although RXOK is off
2138 */
2139 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2140 if (velocity_receive_frame(vptr, rd_curr) < 0)
2141 stats->rx_dropped++;
2142 } else {
2143 if (rd->rdesc0.RSR & RSR_CRC)
2144 stats->rx_crc_errors++;
2145 if (rd->rdesc0.RSR & RSR_FAE)
2146 stats->rx_frame_errors++;
2147
2148 stats->rx_dropped++;
2149 }
2150
2151 rd->size |= RX_INTEN;
2152
2153 rd_curr++;
2154 if (rd_curr >= vptr->options.numrx)
2155 rd_curr = 0;
2156 works++;
2157 }
2158
2159 vptr->rx.curr = rd_curr;
2160
2161 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2162 velocity_give_many_rx_descs(vptr);
2163
2164 VAR_USED(stats);
2165 return works;
2166 }
2167
2168 static int velocity_poll(struct napi_struct *napi, int budget)
2169 {
2170 struct velocity_info *vptr = container_of(napi,
2171 struct velocity_info, napi);
2172 unsigned int rx_done;
2173 unsigned long flags;
2174
2175 spin_lock_irqsave(&vptr->lock, flags);
2176 /*
2177 * Do rx and tx twice for performance (taken from the VIA
2178 * out-of-tree driver).
2179 */
2180 rx_done = velocity_rx_srv(vptr, budget / 2);
2181 velocity_tx_srv(vptr);
2182 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2183 velocity_tx_srv(vptr);
2184
2185 /* If budget not fully consumed, exit the polling mode */
2186 if (rx_done < budget) {
2187 napi_complete(napi);
2188 mac_enable_int(vptr->mac_regs);
2189 }
2190 spin_unlock_irqrestore(&vptr->lock, flags);
2191
2192 return rx_done;
2193 }
2194
2195 /**
2196 * velocity_intr - interrupt callback
2197 * @irq: interrupt number
2198 * @dev_instance: interrupting device
2199 *
2200 * Called whenever an interrupt is generated by the velocity
2201 * adapter IRQ line. We may not be the source of the interrupt
2202 * and need to identify initially if we are, and if not exit as
2203 * efficiently as possible.
2204 */
2205 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2206 {
2207 struct net_device *dev = dev_instance;
2208 struct velocity_info *vptr = netdev_priv(dev);
2209 u32 isr_status;
2210
2211 spin_lock(&vptr->lock);
2212 isr_status = mac_read_isr(vptr->mac_regs);
2213
2214 /* Not us ? */
2215 if (isr_status == 0) {
2216 spin_unlock(&vptr->lock);
2217 return IRQ_NONE;
2218 }
2219
2220 /* Ack the interrupt */
2221 mac_write_isr(vptr->mac_regs, isr_status);
2222
2223 if (likely(napi_schedule_prep(&vptr->napi))) {
2224 mac_disable_int(vptr->mac_regs);
2225 __napi_schedule(&vptr->napi);
2226 }
2227
2228 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2229 velocity_error(vptr, isr_status);
2230
2231 spin_unlock(&vptr->lock);
2232
2233 return IRQ_HANDLED;
2234 }
2235
2236 /**
2237 * velocity_open - interface activation callback
2238 * @dev: network layer device to open
2239 *
2240 * Called when the network layer brings the interface up. Returns
2241 * a negative posix error code on failure, or zero on success.
2242 *
2243 * All the ring allocation and set up is done on open for this
2244 * adapter to minimise memory usage when inactive
2245 */
2246 static int velocity_open(struct net_device *dev)
2247 {
2248 struct velocity_info *vptr = netdev_priv(dev);
2249 int ret;
2250
2251 ret = velocity_init_rings(vptr, dev->mtu);
2252 if (ret < 0)
2253 goto out;
2254
2255 /* Ensure chip is running */
2256 velocity_set_power_state(vptr, PCI_D0);
2257
2258 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2259
2260 ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2261 dev->name, dev);
2262 if (ret < 0) {
2263 /* Power down the chip */
2264 velocity_set_power_state(vptr, PCI_D3hot);
2265 velocity_free_rings(vptr);
2266 goto out;
2267 }
2268
2269 velocity_give_many_rx_descs(vptr);
2270
2271 mac_enable_int(vptr->mac_regs);
2272 netif_start_queue(dev);
2273 napi_enable(&vptr->napi);
2274 vptr->flags |= VELOCITY_FLAGS_OPENED;
2275 out:
2276 return ret;
2277 }
2278
2279 /**
2280 * velocity_shutdown - shut down the chip
2281 * @vptr: velocity to deactivate
2282 *
2283 * Shuts down the internal operations of the velocity and
2284 * disables interrupts, autopolling, transmit and receive
2285 */
2286 static void velocity_shutdown(struct velocity_info *vptr)
2287 {
2288 struct mac_regs __iomem *regs = vptr->mac_regs;
2289 mac_disable_int(regs);
2290 writel(CR0_STOP, &regs->CR0Set);
2291 writew(0xFFFF, &regs->TDCSRClr);
2292 writeb(0xFF, &regs->RDCSRClr);
2293 safe_disable_mii_autopoll(regs);
2294 mac_clear_isr(regs);
2295 }
2296
2297 /**
2298 * velocity_change_mtu - MTU change callback
2299 * @dev: network device
2300 * @new_mtu: desired MTU
2301 *
2302 * Handle requests from the networking layer for MTU change on
2303 * this interface. It gets called on a change by the network layer.
2304 * Return zero for success or negative posix error code.
2305 */
2306 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2307 {
2308 struct velocity_info *vptr = netdev_priv(dev);
2309 int ret = 0;
2310
2311 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2312 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2313 vptr->netdev->name);
2314 ret = -EINVAL;
2315 goto out_0;
2316 }
2317
2318 if (!netif_running(dev)) {
2319 dev->mtu = new_mtu;
2320 goto out_0;
2321 }
2322
2323 if (dev->mtu != new_mtu) {
2324 struct velocity_info *tmp_vptr;
2325 unsigned long flags;
2326 struct rx_info rx;
2327 struct tx_info tx;
2328
2329 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2330 if (!tmp_vptr) {
2331 ret = -ENOMEM;
2332 goto out_0;
2333 }
2334
2335 tmp_vptr->netdev = dev;
2336 tmp_vptr->pdev = vptr->pdev;
2337 tmp_vptr->dev = vptr->dev;
2338 tmp_vptr->options = vptr->options;
2339 tmp_vptr->tx.numq = vptr->tx.numq;
2340
2341 ret = velocity_init_rings(tmp_vptr, new_mtu);
2342 if (ret < 0)
2343 goto out_free_tmp_vptr_1;
2344
2345 spin_lock_irqsave(&vptr->lock, flags);
2346
2347 netif_stop_queue(dev);
2348 velocity_shutdown(vptr);
2349
2350 rx = vptr->rx;
2351 tx = vptr->tx;
2352
2353 vptr->rx = tmp_vptr->rx;
2354 vptr->tx = tmp_vptr->tx;
2355
2356 tmp_vptr->rx = rx;
2357 tmp_vptr->tx = tx;
2358
2359 dev->mtu = new_mtu;
2360
2361 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2362
2363 velocity_give_many_rx_descs(vptr);
2364
2365 mac_enable_int(vptr->mac_regs);
2366 netif_start_queue(dev);
2367
2368 spin_unlock_irqrestore(&vptr->lock, flags);
2369
2370 velocity_free_rings(tmp_vptr);
2371
2372 out_free_tmp_vptr_1:
2373 kfree(tmp_vptr);
2374 }
2375 out_0:
2376 return ret;
2377 }
2378
2379 /**
2380 * velocity_mii_ioctl - MII ioctl handler
2381 * @dev: network device
2382 * @ifr: the ifreq block for the ioctl
2383 * @cmd: the command
2384 *
2385 * Process MII requests made via ioctl from the network layer. These
2386 * are used by tools like kudzu to interrogate the link state of the
2387 * hardware
2388 */
2389 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2390 {
2391 struct velocity_info *vptr = netdev_priv(dev);
2392 struct mac_regs __iomem *regs = vptr->mac_regs;
2393 unsigned long flags;
2394 struct mii_ioctl_data *miidata = if_mii(ifr);
2395 int err;
2396
2397 switch (cmd) {
2398 case SIOCGMIIPHY:
2399 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2400 break;
2401 case SIOCGMIIREG:
2402 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2403 return -ETIMEDOUT;
2404 break;
2405 case SIOCSMIIREG:
2406 spin_lock_irqsave(&vptr->lock, flags);
2407 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2408 spin_unlock_irqrestore(&vptr->lock, flags);
2409 check_connection_type(vptr->mac_regs);
2410 if (err)
2411 return err;
2412 break;
2413 default:
2414 return -EOPNOTSUPP;
2415 }
2416 return 0;
2417 }
2418
2419 /**
2420 * velocity_ioctl - ioctl entry point
2421 * @dev: network device
2422 * @rq: interface request ioctl
2423 * @cmd: command code
2424 *
2425 * Called when the user issues an ioctl request to the network
2426 * device in question. The velocity interface supports MII.
2427 */
2428 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2429 {
2430 struct velocity_info *vptr = netdev_priv(dev);
2431 int ret;
2432
2433 /* If we are asked for information and the device is power
2434 saving then we need to bring the device back up to talk to it */
2435
2436 if (!netif_running(dev))
2437 velocity_set_power_state(vptr, PCI_D0);
2438
2439 switch (cmd) {
2440 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2441 case SIOCGMIIREG: /* Read MII PHY register. */
2442 case SIOCSMIIREG: /* Write to MII PHY register. */
2443 ret = velocity_mii_ioctl(dev, rq, cmd);
2444 break;
2445
2446 default:
2447 ret = -EOPNOTSUPP;
2448 }
2449 if (!netif_running(dev))
2450 velocity_set_power_state(vptr, PCI_D3hot);
2451
2452
2453 return ret;
2454 }
2455
2456 /**
2457 * velocity_get_status - statistics callback
2458 * @dev: network device
2459 *
2460 * Callback from the network layer to allow driver statistics
2461 * to be resynchronized with hardware collected state. In the
2462 * case of the velocity we need to pull the MIB counters from
2463 * the hardware into the counters before letting the network
2464 * layer display them.
2465 */
2466 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2467 {
2468 struct velocity_info *vptr = netdev_priv(dev);
2469
2470 /* If the hardware is down, don't touch MII */
2471 if (!netif_running(dev))
2472 return &dev->stats;
2473
2474 spin_lock_irq(&vptr->lock);
2475 velocity_update_hw_mibs(vptr);
2476 spin_unlock_irq(&vptr->lock);
2477
2478 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2479 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2480 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2481
2482 // unsigned long rx_dropped; /* no space in linux buffers */
2483 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2484 /* detailed rx_errors: */
2485 // unsigned long rx_length_errors;
2486 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2487 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2488 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2489 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2490 // unsigned long rx_missed_errors; /* receiver missed packet */
2491
2492 /* detailed tx_errors */
2493 // unsigned long tx_fifo_errors;
2494
2495 return &dev->stats;
2496 }
2497
2498 /**
2499 * velocity_close - close adapter callback
2500 * @dev: network device
2501 *
2502 * Callback from the network layer when the velocity is being
2503 * deactivated by the network layer
2504 */
2505 static int velocity_close(struct net_device *dev)
2506 {
2507 struct velocity_info *vptr = netdev_priv(dev);
2508
2509 napi_disable(&vptr->napi);
2510 netif_stop_queue(dev);
2511 velocity_shutdown(vptr);
2512
2513 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2514 velocity_get_ip(vptr);
2515
2516 free_irq(dev->irq, dev);
2517
2518 velocity_free_rings(vptr);
2519
2520 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2521 return 0;
2522 }
2523
2524 /**
2525 * velocity_xmit - transmit packet callback
2526 * @skb: buffer to transmit
2527 * @dev: network device
2528 *
2529 * Called by the networ layer to request a packet is queued to
2530 * the velocity. Returns zero on success.
2531 */
2532 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2533 struct net_device *dev)
2534 {
2535 struct velocity_info *vptr = netdev_priv(dev);
2536 int qnum = 0;
2537 struct tx_desc *td_ptr;
2538 struct velocity_td_info *tdinfo;
2539 unsigned long flags;
2540 int pktlen;
2541 int index, prev;
2542 int i = 0;
2543
2544 if (skb_padto(skb, ETH_ZLEN))
2545 goto out;
2546
2547 /* The hardware can handle at most 7 memory segments, so merge
2548 * the skb if there are more */
2549 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2550 kfree_skb(skb);
2551 return NETDEV_TX_OK;
2552 }
2553
2554 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2555 max_t(unsigned int, skb->len, ETH_ZLEN) :
2556 skb_headlen(skb);
2557
2558 spin_lock_irqsave(&vptr->lock, flags);
2559
2560 index = vptr->tx.curr[qnum];
2561 td_ptr = &(vptr->tx.rings[qnum][index]);
2562 tdinfo = &(vptr->tx.infos[qnum][index]);
2563
2564 td_ptr->tdesc1.TCR = TCR0_TIC;
2565 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2566
2567 /*
2568 * Map the linear network buffer into PCI space and
2569 * add it to the transmit ring.
2570 */
2571 tdinfo->skb = skb;
2572 tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2573 DMA_TO_DEVICE);
2574 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2575 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2576 td_ptr->td_buf[0].pa_high = 0;
2577 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2578
2579 /* Handle fragments */
2580 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582
2583 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2584 frag, 0,
2585 skb_frag_size(frag),
2586 DMA_TO_DEVICE);
2587
2588 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2589 td_ptr->td_buf[i + 1].pa_high = 0;
2590 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2591 }
2592 tdinfo->nskb_dma = i + 1;
2593
2594 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2595
2596 if (vlan_tx_tag_present(skb)) {
2597 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2598 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2599 }
2600
2601 /*
2602 * Handle hardware checksum
2603 */
2604 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2605 const struct iphdr *ip = ip_hdr(skb);
2606 if (ip->protocol == IPPROTO_TCP)
2607 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2608 else if (ip->protocol == IPPROTO_UDP)
2609 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2610 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2611 }
2612
2613 prev = index - 1;
2614 if (prev < 0)
2615 prev = vptr->options.numtx - 1;
2616 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2617 vptr->tx.used[qnum]++;
2618 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2619
2620 if (AVAIL_TD(vptr, qnum) < 1)
2621 netif_stop_queue(dev);
2622
2623 td_ptr = &(vptr->tx.rings[qnum][prev]);
2624 td_ptr->td_buf[0].size |= TD_QUEUE;
2625 mac_tx_queue_wake(vptr->mac_regs, qnum);
2626
2627 spin_unlock_irqrestore(&vptr->lock, flags);
2628 out:
2629 return NETDEV_TX_OK;
2630 }
2631
2632 static const struct net_device_ops velocity_netdev_ops = {
2633 .ndo_open = velocity_open,
2634 .ndo_stop = velocity_close,
2635 .ndo_start_xmit = velocity_xmit,
2636 .ndo_get_stats = velocity_get_stats,
2637 .ndo_validate_addr = eth_validate_addr,
2638 .ndo_set_mac_address = eth_mac_addr,
2639 .ndo_set_rx_mode = velocity_set_multi,
2640 .ndo_change_mtu = velocity_change_mtu,
2641 .ndo_do_ioctl = velocity_ioctl,
2642 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2643 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2644 };
2645
2646 /**
2647 * velocity_init_info - init private data
2648 * @pdev: PCI device
2649 * @vptr: Velocity info
2650 * @info: Board type
2651 *
2652 * Set up the initial velocity_info struct for the device that has been
2653 * discovered.
2654 */
2655 static void velocity_init_info(struct velocity_info *vptr,
2656 const struct velocity_info_tbl *info)
2657 {
2658 vptr->chip_id = info->chip_id;
2659 vptr->tx.numq = info->txqueue;
2660 vptr->multicast_limit = MCAM_SIZE;
2661 spin_lock_init(&vptr->lock);
2662 }
2663
2664 /**
2665 * velocity_get_pci_info - retrieve PCI info for device
2666 * @vptr: velocity device
2667 * @pdev: PCI device it matches
2668 *
2669 * Retrieve the PCI configuration space data that interests us from
2670 * the kernel PCI layer
2671 */
2672 static int velocity_get_pci_info(struct velocity_info *vptr)
2673 {
2674 struct pci_dev *pdev = vptr->pdev;
2675
2676 pci_set_master(pdev);
2677
2678 vptr->ioaddr = pci_resource_start(pdev, 0);
2679 vptr->memaddr = pci_resource_start(pdev, 1);
2680
2681 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2682 dev_err(&pdev->dev,
2683 "region #0 is not an I/O resource, aborting.\n");
2684 return -EINVAL;
2685 }
2686
2687 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2688 dev_err(&pdev->dev,
2689 "region #1 is an I/O resource, aborting.\n");
2690 return -EINVAL;
2691 }
2692
2693 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2694 dev_err(&pdev->dev, "region #1 is too small.\n");
2695 return -EINVAL;
2696 }
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * velocity_get_platform_info - retrieve platform info for device
2703 * @vptr: velocity device
2704 * @pdev: platform device it matches
2705 *
2706 * Retrieve the Platform configuration data that interests us
2707 */
2708 static int velocity_get_platform_info(struct velocity_info *vptr)
2709 {
2710 struct resource res;
2711 int ret;
2712
2713 if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2714 vptr->no_eeprom = 1;
2715
2716 ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2717 if (ret) {
2718 dev_err(vptr->dev, "unable to find memory address\n");
2719 return ret;
2720 }
2721
2722 vptr->memaddr = res.start;
2723
2724 if (resource_size(&res) < VELOCITY_IO_SIZE) {
2725 dev_err(vptr->dev, "memory region is too small.\n");
2726 return -EINVAL;
2727 }
2728
2729 return 0;
2730 }
2731
2732 /**
2733 * velocity_print_info - per driver data
2734 * @vptr: velocity
2735 *
2736 * Print per driver data as the kernel driver finds Velocity
2737 * hardware
2738 */
2739 static void velocity_print_info(struct velocity_info *vptr)
2740 {
2741 struct net_device *dev = vptr->netdev;
2742
2743 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2744 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2745 dev->name, dev->dev_addr);
2746 }
2747
2748 static u32 velocity_get_link(struct net_device *dev)
2749 {
2750 struct velocity_info *vptr = netdev_priv(dev);
2751 struct mac_regs __iomem *regs = vptr->mac_regs;
2752 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2753 }
2754
2755 /**
2756 * velocity_probe - set up discovered velocity device
2757 * @pdev: PCI device
2758 * @ent: PCI device table entry that matched
2759 * @bustype: bus that device is connected to
2760 *
2761 * Configure a discovered adapter from scratch. Return a negative
2762 * errno error code on failure paths.
2763 */
2764 static int velocity_probe(struct device *dev, int irq,
2765 const struct velocity_info_tbl *info,
2766 enum velocity_bus_type bustype)
2767 {
2768 static int first = 1;
2769 struct net_device *netdev;
2770 int i;
2771 const char *drv_string;
2772 struct velocity_info *vptr;
2773 struct mac_regs __iomem *regs;
2774 int ret = -ENOMEM;
2775
2776 /* FIXME: this driver, like almost all other ethernet drivers,
2777 * can support more than MAX_UNITS.
2778 */
2779 if (velocity_nics >= MAX_UNITS) {
2780 dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2781 return -ENODEV;
2782 }
2783
2784 netdev = alloc_etherdev(sizeof(struct velocity_info));
2785 if (!netdev)
2786 goto out;
2787
2788 /* Chain it all together */
2789
2790 SET_NETDEV_DEV(netdev, dev);
2791 vptr = netdev_priv(netdev);
2792
2793 if (first) {
2794 printk(KERN_INFO "%s Ver. %s\n",
2795 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2796 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2797 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2798 first = 0;
2799 }
2800
2801 netdev->irq = irq;
2802 vptr->netdev = netdev;
2803 vptr->dev = dev;
2804
2805 velocity_init_info(vptr, info);
2806
2807 if (bustype == BUS_PCI) {
2808 vptr->pdev = to_pci_dev(dev);
2809
2810 ret = velocity_get_pci_info(vptr);
2811 if (ret < 0)
2812 goto err_free_dev;
2813 } else {
2814 vptr->pdev = NULL;
2815 ret = velocity_get_platform_info(vptr);
2816 if (ret < 0)
2817 goto err_free_dev;
2818 }
2819
2820 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2821 if (regs == NULL) {
2822 ret = -EIO;
2823 goto err_free_dev;
2824 }
2825
2826 vptr->mac_regs = regs;
2827 vptr->rev_id = readb(&regs->rev_id);
2828
2829 mac_wol_reset(regs);
2830
2831 for (i = 0; i < 6; i++)
2832 netdev->dev_addr[i] = readb(&regs->PAR[i]);
2833
2834
2835 drv_string = dev_driver_string(dev);
2836
2837 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2838
2839 /*
2840 * Mask out the options cannot be set to the chip
2841 */
2842
2843 vptr->options.flags &= info->flags;
2844
2845 /*
2846 * Enable the chip specified capbilities
2847 */
2848
2849 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2850
2851 vptr->wol_opts = vptr->options.wol_opts;
2852 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2853
2854 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2855
2856 netdev->netdev_ops = &velocity_netdev_ops;
2857 netdev->ethtool_ops = &velocity_ethtool_ops;
2858 netif_napi_add(netdev, &vptr->napi, velocity_poll,
2859 VELOCITY_NAPI_WEIGHT);
2860
2861 netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2862 NETIF_F_HW_VLAN_CTAG_TX;
2863 netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2864 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2865 NETIF_F_IP_CSUM;
2866
2867 ret = register_netdev(netdev);
2868 if (ret < 0)
2869 goto err_iounmap;
2870
2871 if (!velocity_get_link(netdev)) {
2872 netif_carrier_off(netdev);
2873 vptr->mii_status |= VELOCITY_LINK_FAIL;
2874 }
2875
2876 velocity_print_info(vptr);
2877 dev_set_drvdata(vptr->dev, netdev);
2878
2879 /* and leave the chip powered down */
2880
2881 velocity_set_power_state(vptr, PCI_D3hot);
2882 velocity_nics++;
2883 out:
2884 return ret;
2885
2886 err_iounmap:
2887 netif_napi_del(&vptr->napi);
2888 iounmap(regs);
2889 err_free_dev:
2890 free_netdev(netdev);
2891 goto out;
2892 }
2893
2894 /**
2895 * velocity_remove - device unplug
2896 * @dev: device being removed
2897 *
2898 * Device unload callback. Called on an unplug or on module
2899 * unload for each active device that is present. Disconnects
2900 * the device from the network layer and frees all the resources
2901 */
2902 static int velocity_remove(struct device *dev)
2903 {
2904 struct net_device *netdev = dev_get_drvdata(dev);
2905 struct velocity_info *vptr = netdev_priv(netdev);
2906
2907 unregister_netdev(netdev);
2908 netif_napi_del(&vptr->napi);
2909 iounmap(vptr->mac_regs);
2910 free_netdev(netdev);
2911 velocity_nics--;
2912
2913 return 0;
2914 }
2915
2916 static int velocity_pci_probe(struct pci_dev *pdev,
2917 const struct pci_device_id *ent)
2918 {
2919 const struct velocity_info_tbl *info =
2920 &chip_info_table[ent->driver_data];
2921 int ret;
2922
2923 ret = pci_enable_device(pdev);
2924 if (ret < 0)
2925 return ret;
2926
2927 ret = pci_request_regions(pdev, VELOCITY_NAME);
2928 if (ret < 0) {
2929 dev_err(&pdev->dev, "No PCI resources.\n");
2930 goto fail1;
2931 }
2932
2933 ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2934 if (ret == 0)
2935 return 0;
2936
2937 pci_release_regions(pdev);
2938 fail1:
2939 pci_disable_device(pdev);
2940 return ret;
2941 }
2942
2943 static void velocity_pci_remove(struct pci_dev *pdev)
2944 {
2945 velocity_remove(&pdev->dev);
2946
2947 pci_release_regions(pdev);
2948 pci_disable_device(pdev);
2949 }
2950
2951 static int velocity_platform_probe(struct platform_device *pdev)
2952 {
2953 const struct of_device_id *of_id;
2954 const struct velocity_info_tbl *info;
2955 int irq;
2956
2957 of_id = of_match_device(velocity_of_ids, &pdev->dev);
2958 if (!of_id)
2959 return -EINVAL;
2960 info = of_id->data;
2961
2962 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2963 if (!irq)
2964 return -EINVAL;
2965
2966 return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2967 }
2968
2969 static int velocity_platform_remove(struct platform_device *pdev)
2970 {
2971 velocity_remove(&pdev->dev);
2972
2973 return 0;
2974 }
2975
2976 #ifdef CONFIG_PM_SLEEP
2977 /**
2978 * wol_calc_crc - WOL CRC
2979 * @pattern: data pattern
2980 * @mask_pattern: mask
2981 *
2982 * Compute the wake on lan crc hashes for the packet header
2983 * we are interested in.
2984 */
2985 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2986 {
2987 u16 crc = 0xFFFF;
2988 u8 mask;
2989 int i, j;
2990
2991 for (i = 0; i < size; i++) {
2992 mask = mask_pattern[i];
2993
2994 /* Skip this loop if the mask equals to zero */
2995 if (mask == 0x00)
2996 continue;
2997
2998 for (j = 0; j < 8; j++) {
2999 if ((mask & 0x01) == 0) {
3000 mask >>= 1;
3001 continue;
3002 }
3003 mask >>= 1;
3004 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3005 }
3006 }
3007 /* Finally, invert the result once to get the correct data */
3008 crc = ~crc;
3009 return bitrev32(crc) >> 16;
3010 }
3011
3012 /**
3013 * velocity_set_wol - set up for wake on lan
3014 * @vptr: velocity to set WOL status on
3015 *
3016 * Set a card up for wake on lan either by unicast or by
3017 * ARP packet.
3018 *
3019 * FIXME: check static buffer is safe here
3020 */
3021 static int velocity_set_wol(struct velocity_info *vptr)
3022 {
3023 struct mac_regs __iomem *regs = vptr->mac_regs;
3024 enum speed_opt spd_dpx = vptr->options.spd_dpx;
3025 static u8 buf[256];
3026 int i;
3027
3028 static u32 mask_pattern[2][4] = {
3029 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3030 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3031 };
3032
3033 writew(0xFFFF, &regs->WOLCRClr);
3034 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3035 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3036
3037 /*
3038 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3039 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3040 */
3041
3042 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3043 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3044
3045 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3046 struct arp_packet *arp = (struct arp_packet *) buf;
3047 u16 crc;
3048 memset(buf, 0, sizeof(struct arp_packet) + 7);
3049
3050 for (i = 0; i < 4; i++)
3051 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3052
3053 arp->type = htons(ETH_P_ARP);
3054 arp->ar_op = htons(1);
3055
3056 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3057
3058 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3059 (u8 *) & mask_pattern[0][0]);
3060
3061 writew(crc, &regs->PatternCRC[0]);
3062 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3063 }
3064
3065 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3066 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3067
3068 writew(0x0FFF, &regs->WOLSRClr);
3069
3070 if (spd_dpx == SPD_DPX_1000_FULL)
3071 goto mac_done;
3072
3073 if (spd_dpx != SPD_DPX_AUTO)
3074 goto advertise_done;
3075
3076 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3077 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3078 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3079
3080 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3081 }
3082
3083 if (vptr->mii_status & VELOCITY_SPEED_1000)
3084 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3085
3086 advertise_done:
3087 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3088
3089 {
3090 u8 GCR;
3091 GCR = readb(&regs->CHIPGCR);
3092 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3093 writeb(GCR, &regs->CHIPGCR);
3094 }
3095
3096 mac_done:
3097 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3098 /* Turn on SWPTAG just before entering power mode */
3099 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3100 /* Go to bed ..... */
3101 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3102
3103 return 0;
3104 }
3105
3106 /**
3107 * velocity_save_context - save registers
3108 * @vptr: velocity
3109 * @context: buffer for stored context
3110 *
3111 * Retrieve the current configuration from the velocity hardware
3112 * and stash it in the context structure, for use by the context
3113 * restore functions. This allows us to save things we need across
3114 * power down states
3115 */
3116 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3117 {
3118 struct mac_regs __iomem *regs = vptr->mac_regs;
3119 u16 i;
3120 u8 __iomem *ptr = (u8 __iomem *)regs;
3121
3122 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3123 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3124
3125 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3126 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3127
3128 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3129 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3130
3131 }
3132
3133 static int velocity_suspend(struct device *dev)
3134 {
3135 struct net_device *netdev = dev_get_drvdata(dev);
3136 struct velocity_info *vptr = netdev_priv(netdev);
3137 unsigned long flags;
3138
3139 if (!netif_running(vptr->netdev))
3140 return 0;
3141
3142 netif_device_detach(vptr->netdev);
3143
3144 spin_lock_irqsave(&vptr->lock, flags);
3145 if (vptr->pdev)
3146 pci_save_state(vptr->pdev);
3147
3148 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3149 velocity_get_ip(vptr);
3150 velocity_save_context(vptr, &vptr->context);
3151 velocity_shutdown(vptr);
3152 velocity_set_wol(vptr);
3153 if (vptr->pdev)
3154 pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3155 velocity_set_power_state(vptr, PCI_D3hot);
3156 } else {
3157 velocity_save_context(vptr, &vptr->context);
3158 velocity_shutdown(vptr);
3159 if (vptr->pdev)
3160 pci_disable_device(vptr->pdev);
3161 velocity_set_power_state(vptr, PCI_D3hot);
3162 }
3163
3164 spin_unlock_irqrestore(&vptr->lock, flags);
3165 return 0;
3166 }
3167
3168 /**
3169 * velocity_restore_context - restore registers
3170 * @vptr: velocity
3171 * @context: buffer for stored context
3172 *
3173 * Reload the register configuration from the velocity context
3174 * created by velocity_save_context.
3175 */
3176 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3177 {
3178 struct mac_regs __iomem *regs = vptr->mac_regs;
3179 int i;
3180 u8 __iomem *ptr = (u8 __iomem *)regs;
3181
3182 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3183 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3184
3185 /* Just skip cr0 */
3186 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3187 /* Clear */
3188 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3189 /* Set */
3190 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3191 }
3192
3193 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3194 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3195
3196 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3197 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3198
3199 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3200 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3201 }
3202
3203 static int velocity_resume(struct device *dev)
3204 {
3205 struct net_device *netdev = dev_get_drvdata(dev);
3206 struct velocity_info *vptr = netdev_priv(netdev);
3207 unsigned long flags;
3208 int i;
3209
3210 if (!netif_running(vptr->netdev))
3211 return 0;
3212
3213 velocity_set_power_state(vptr, PCI_D0);
3214
3215 if (vptr->pdev) {
3216 pci_enable_wake(vptr->pdev, PCI_D0, 0);
3217 pci_restore_state(vptr->pdev);
3218 }
3219
3220 mac_wol_reset(vptr->mac_regs);
3221
3222 spin_lock_irqsave(&vptr->lock, flags);
3223 velocity_restore_context(vptr, &vptr->context);
3224 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3225 mac_disable_int(vptr->mac_regs);
3226
3227 velocity_tx_srv(vptr);
3228
3229 for (i = 0; i < vptr->tx.numq; i++) {
3230 if (vptr->tx.used[i])
3231 mac_tx_queue_wake(vptr->mac_regs, i);
3232 }
3233
3234 mac_enable_int(vptr->mac_regs);
3235 spin_unlock_irqrestore(&vptr->lock, flags);
3236 netif_device_attach(vptr->netdev);
3237
3238 return 0;
3239 }
3240 #endif /* CONFIG_PM_SLEEP */
3241
3242 static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3243
3244 /*
3245 * Definition for our device driver. The PCI layer interface
3246 * uses this to handle all our card discover and plugging
3247 */
3248 static struct pci_driver velocity_pci_driver = {
3249 .name = VELOCITY_NAME,
3250 .id_table = velocity_pci_id_table,
3251 .probe = velocity_pci_probe,
3252 .remove = velocity_pci_remove,
3253 .driver = {
3254 .pm = &velocity_pm_ops,
3255 },
3256 };
3257
3258 static struct platform_driver velocity_platform_driver = {
3259 .probe = velocity_platform_probe,
3260 .remove = velocity_platform_remove,
3261 .driver = {
3262 .name = "via-velocity",
3263 .owner = THIS_MODULE,
3264 .of_match_table = velocity_of_ids,
3265 .pm = &velocity_pm_ops,
3266 },
3267 };
3268
3269 /**
3270 * velocity_ethtool_up - pre hook for ethtool
3271 * @dev: network device
3272 *
3273 * Called before an ethtool operation. We need to make sure the
3274 * chip is out of D3 state before we poke at it.
3275 */
3276 static int velocity_ethtool_up(struct net_device *dev)
3277 {
3278 struct velocity_info *vptr = netdev_priv(dev);
3279 if (!netif_running(dev))
3280 velocity_set_power_state(vptr, PCI_D0);
3281 return 0;
3282 }
3283
3284 /**
3285 * velocity_ethtool_down - post hook for ethtool
3286 * @dev: network device
3287 *
3288 * Called after an ethtool operation. Restore the chip back to D3
3289 * state if it isn't running.
3290 */
3291 static void velocity_ethtool_down(struct net_device *dev)
3292 {
3293 struct velocity_info *vptr = netdev_priv(dev);
3294 if (!netif_running(dev))
3295 velocity_set_power_state(vptr, PCI_D3hot);
3296 }
3297
3298 static int velocity_get_settings(struct net_device *dev,
3299 struct ethtool_cmd *cmd)
3300 {
3301 struct velocity_info *vptr = netdev_priv(dev);
3302 struct mac_regs __iomem *regs = vptr->mac_regs;
3303 u32 status;
3304 status = check_connection_type(vptr->mac_regs);
3305
3306 cmd->supported = SUPPORTED_TP |
3307 SUPPORTED_Autoneg |
3308 SUPPORTED_10baseT_Half |
3309 SUPPORTED_10baseT_Full |
3310 SUPPORTED_100baseT_Half |
3311 SUPPORTED_100baseT_Full |
3312 SUPPORTED_1000baseT_Half |
3313 SUPPORTED_1000baseT_Full;
3314
3315 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3316 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3317 cmd->advertising |=
3318 ADVERTISED_10baseT_Half |
3319 ADVERTISED_10baseT_Full |
3320 ADVERTISED_100baseT_Half |
3321 ADVERTISED_100baseT_Full |
3322 ADVERTISED_1000baseT_Half |
3323 ADVERTISED_1000baseT_Full;
3324 } else {
3325 switch (vptr->options.spd_dpx) {
3326 case SPD_DPX_1000_FULL:
3327 cmd->advertising |= ADVERTISED_1000baseT_Full;
3328 break;
3329 case SPD_DPX_100_HALF:
3330 cmd->advertising |= ADVERTISED_100baseT_Half;
3331 break;
3332 case SPD_DPX_100_FULL:
3333 cmd->advertising |= ADVERTISED_100baseT_Full;
3334 break;
3335 case SPD_DPX_10_HALF:
3336 cmd->advertising |= ADVERTISED_10baseT_Half;
3337 break;
3338 case SPD_DPX_10_FULL:
3339 cmd->advertising |= ADVERTISED_10baseT_Full;
3340 break;
3341 default:
3342 break;
3343 }
3344 }
3345
3346 if (status & VELOCITY_SPEED_1000)
3347 ethtool_cmd_speed_set(cmd, SPEED_1000);
3348 else if (status & VELOCITY_SPEED_100)
3349 ethtool_cmd_speed_set(cmd, SPEED_100);
3350 else
3351 ethtool_cmd_speed_set(cmd, SPEED_10);
3352
3353 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3354 cmd->port = PORT_TP;
3355 cmd->transceiver = XCVR_INTERNAL;
3356 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3357
3358 if (status & VELOCITY_DUPLEX_FULL)
3359 cmd->duplex = DUPLEX_FULL;
3360 else
3361 cmd->duplex = DUPLEX_HALF;
3362
3363 return 0;
3364 }
3365
3366 static int velocity_set_settings(struct net_device *dev,
3367 struct ethtool_cmd *cmd)
3368 {
3369 struct velocity_info *vptr = netdev_priv(dev);
3370 u32 speed = ethtool_cmd_speed(cmd);
3371 u32 curr_status;
3372 u32 new_status = 0;
3373 int ret = 0;
3374
3375 curr_status = check_connection_type(vptr->mac_regs);
3376 curr_status &= (~VELOCITY_LINK_FAIL);
3377
3378 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3379 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3380 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3381 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3382 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3383
3384 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3385 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3386 ret = -EINVAL;
3387 } else {
3388 enum speed_opt spd_dpx;
3389
3390 if (new_status & VELOCITY_AUTONEG_ENABLE)
3391 spd_dpx = SPD_DPX_AUTO;
3392 else if ((new_status & VELOCITY_SPEED_1000) &&
3393 (new_status & VELOCITY_DUPLEX_FULL)) {
3394 spd_dpx = SPD_DPX_1000_FULL;
3395 } else if (new_status & VELOCITY_SPEED_100)
3396 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3397 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3398 else if (new_status & VELOCITY_SPEED_10)
3399 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3400 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3401 else
3402 return -EOPNOTSUPP;
3403
3404 vptr->options.spd_dpx = spd_dpx;
3405
3406 velocity_set_media_mode(vptr, new_status);
3407 }
3408
3409 return ret;
3410 }
3411
3412 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3413 {
3414 struct velocity_info *vptr = netdev_priv(dev);
3415
3416 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3417 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3418 if (vptr->pdev)
3419 strlcpy(info->bus_info, pci_name(vptr->pdev),
3420 sizeof(info->bus_info));
3421 else
3422 strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3423 }
3424
3425 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3426 {
3427 struct velocity_info *vptr = netdev_priv(dev);
3428 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3429 wol->wolopts |= WAKE_MAGIC;
3430 /*
3431 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3432 wol.wolopts|=WAKE_PHY;
3433 */
3434 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3435 wol->wolopts |= WAKE_UCAST;
3436 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3437 wol->wolopts |= WAKE_ARP;
3438 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3439 }
3440
3441 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3442 {
3443 struct velocity_info *vptr = netdev_priv(dev);
3444
3445 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3446 return -EFAULT;
3447 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3448
3449 /*
3450 if (wol.wolopts & WAKE_PHY) {
3451 vptr->wol_opts|=VELOCITY_WOL_PHY;
3452 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3453 }
3454 */
3455
3456 if (wol->wolopts & WAKE_MAGIC) {
3457 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3458 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3459 }
3460 if (wol->wolopts & WAKE_UCAST) {
3461 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3462 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3463 }
3464 if (wol->wolopts & WAKE_ARP) {
3465 vptr->wol_opts |= VELOCITY_WOL_ARP;
3466 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3467 }
3468 memcpy(vptr->wol_passwd, wol->sopass, 6);
3469 return 0;
3470 }
3471
3472 static u32 velocity_get_msglevel(struct net_device *dev)
3473 {
3474 return msglevel;
3475 }
3476
3477 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3478 {
3479 msglevel = value;
3480 }
3481
3482 static int get_pending_timer_val(int val)
3483 {
3484 int mult_bits = val >> 6;
3485 int mult = 1;
3486
3487 switch (mult_bits)
3488 {
3489 case 1:
3490 mult = 4; break;
3491 case 2:
3492 mult = 16; break;
3493 case 3:
3494 mult = 64; break;
3495 case 0:
3496 default:
3497 break;
3498 }
3499
3500 return (val & 0x3f) * mult;
3501 }
3502
3503 static void set_pending_timer_val(int *val, u32 us)
3504 {
3505 u8 mult = 0;
3506 u8 shift = 0;
3507
3508 if (us >= 0x3f) {
3509 mult = 1; /* mult with 4 */
3510 shift = 2;
3511 }
3512 if (us >= 0x3f * 4) {
3513 mult = 2; /* mult with 16 */
3514 shift = 4;
3515 }
3516 if (us >= 0x3f * 16) {
3517 mult = 3; /* mult with 64 */
3518 shift = 6;
3519 }
3520
3521 *val = (mult << 6) | ((us >> shift) & 0x3f);
3522 }
3523
3524
3525 static int velocity_get_coalesce(struct net_device *dev,
3526 struct ethtool_coalesce *ecmd)
3527 {
3528 struct velocity_info *vptr = netdev_priv(dev);
3529
3530 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3531 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3532
3533 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3534 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3535
3536 return 0;
3537 }
3538
3539 static int velocity_set_coalesce(struct net_device *dev,
3540 struct ethtool_coalesce *ecmd)
3541 {
3542 struct velocity_info *vptr = netdev_priv(dev);
3543 int max_us = 0x3f * 64;
3544 unsigned long flags;
3545
3546 /* 6 bits of */
3547 if (ecmd->tx_coalesce_usecs > max_us)
3548 return -EINVAL;
3549 if (ecmd->rx_coalesce_usecs > max_us)
3550 return -EINVAL;
3551
3552 if (ecmd->tx_max_coalesced_frames > 0xff)
3553 return -EINVAL;
3554 if (ecmd->rx_max_coalesced_frames > 0xff)
3555 return -EINVAL;
3556
3557 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3558 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3559
3560 set_pending_timer_val(&vptr->options.rxqueue_timer,
3561 ecmd->rx_coalesce_usecs);
3562 set_pending_timer_val(&vptr->options.txqueue_timer,
3563 ecmd->tx_coalesce_usecs);
3564
3565 /* Setup the interrupt suppression and queue timers */
3566 spin_lock_irqsave(&vptr->lock, flags);
3567 mac_disable_int(vptr->mac_regs);
3568 setup_adaptive_interrupts(vptr);
3569 setup_queue_timers(vptr);
3570
3571 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3572 mac_clear_isr(vptr->mac_regs);
3573 mac_enable_int(vptr->mac_regs);
3574 spin_unlock_irqrestore(&vptr->lock, flags);
3575
3576 return 0;
3577 }
3578
3579 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3580 "rx_all",
3581 "rx_ok",
3582 "tx_ok",
3583 "rx_error",
3584 "rx_runt_ok",
3585 "rx_runt_err",
3586 "rx_64",
3587 "tx_64",
3588 "rx_65_to_127",
3589 "tx_65_to_127",
3590 "rx_128_to_255",
3591 "tx_128_to_255",
3592 "rx_256_to_511",
3593 "tx_256_to_511",
3594 "rx_512_to_1023",
3595 "tx_512_to_1023",
3596 "rx_1024_to_1518",
3597 "tx_1024_to_1518",
3598 "tx_ether_collisions",
3599 "rx_crc_errors",
3600 "rx_jumbo",
3601 "tx_jumbo",
3602 "rx_mac_control_frames",
3603 "tx_mac_control_frames",
3604 "rx_frame_alignement_errors",
3605 "rx_long_ok",
3606 "rx_long_err",
3607 "tx_sqe_errors",
3608 "rx_no_buf",
3609 "rx_symbol_errors",
3610 "in_range_length_errors",
3611 "late_collisions"
3612 };
3613
3614 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3615 {
3616 switch (sset) {
3617 case ETH_SS_STATS:
3618 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3619 break;
3620 }
3621 }
3622
3623 static int velocity_get_sset_count(struct net_device *dev, int sset)
3624 {
3625 switch (sset) {
3626 case ETH_SS_STATS:
3627 return ARRAY_SIZE(velocity_gstrings);
3628 default:
3629 return -EOPNOTSUPP;
3630 }
3631 }
3632
3633 static void velocity_get_ethtool_stats(struct net_device *dev,
3634 struct ethtool_stats *stats, u64 *data)
3635 {
3636 if (netif_running(dev)) {
3637 struct velocity_info *vptr = netdev_priv(dev);
3638 u32 *p = vptr->mib_counter;
3639 int i;
3640
3641 spin_lock_irq(&vptr->lock);
3642 velocity_update_hw_mibs(vptr);
3643 spin_unlock_irq(&vptr->lock);
3644
3645 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3646 *data++ = *p++;
3647 }
3648 }
3649
3650 static const struct ethtool_ops velocity_ethtool_ops = {
3651 .get_settings = velocity_get_settings,
3652 .set_settings = velocity_set_settings,
3653 .get_drvinfo = velocity_get_drvinfo,
3654 .get_wol = velocity_ethtool_get_wol,
3655 .set_wol = velocity_ethtool_set_wol,
3656 .get_msglevel = velocity_get_msglevel,
3657 .set_msglevel = velocity_set_msglevel,
3658 .get_link = velocity_get_link,
3659 .get_strings = velocity_get_strings,
3660 .get_sset_count = velocity_get_sset_count,
3661 .get_ethtool_stats = velocity_get_ethtool_stats,
3662 .get_coalesce = velocity_get_coalesce,
3663 .set_coalesce = velocity_set_coalesce,
3664 .begin = velocity_ethtool_up,
3665 .complete = velocity_ethtool_down
3666 };
3667
3668 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3669 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3670 {
3671 struct in_ifaddr *ifa = ptr;
3672 struct net_device *dev = ifa->ifa_dev->dev;
3673
3674 if (dev_net(dev) == &init_net &&
3675 dev->netdev_ops == &velocity_netdev_ops)
3676 velocity_get_ip(netdev_priv(dev));
3677
3678 return NOTIFY_DONE;
3679 }
3680
3681 static struct notifier_block velocity_inetaddr_notifier = {
3682 .notifier_call = velocity_netdev_event,
3683 };
3684
3685 static void velocity_register_notifier(void)
3686 {
3687 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3688 }
3689
3690 static void velocity_unregister_notifier(void)
3691 {
3692 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3693 }
3694
3695 #else
3696
3697 #define velocity_register_notifier() do {} while (0)
3698 #define velocity_unregister_notifier() do {} while (0)
3699
3700 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3701
3702 /**
3703 * velocity_init_module - load time function
3704 *
3705 * Called when the velocity module is loaded. The PCI driver
3706 * is registered with the PCI layer, and in turn will call
3707 * the probe functions for each velocity adapter installed
3708 * in the system.
3709 */
3710 static int __init velocity_init_module(void)
3711 {
3712 int ret_pci, ret_platform;
3713
3714 velocity_register_notifier();
3715
3716 ret_pci = pci_register_driver(&velocity_pci_driver);
3717 ret_platform = platform_driver_register(&velocity_platform_driver);
3718
3719 /* if both_registers failed, remove the notifier */
3720 if ((ret_pci < 0) && (ret_platform < 0)) {
3721 velocity_unregister_notifier();
3722 return ret_pci;
3723 }
3724
3725 return 0;
3726 }
3727
3728 /**
3729 * velocity_cleanup - module unload
3730 *
3731 * When the velocity hardware is unloaded this function is called.
3732 * It will clean up the notifiers and the unregister the PCI
3733 * driver interface for this hardware. This in turn cleans up
3734 * all discovered interfaces before returning from the function
3735 */
3736 static void __exit velocity_cleanup_module(void)
3737 {
3738 velocity_unregister_notifier();
3739
3740 pci_unregister_driver(&velocity_pci_driver);
3741 platform_driver_unregister(&velocity_platform_driver);
3742 }
3743
3744 module_init(velocity_init_module);
3745 module_exit(velocity_cleanup_module);
This page took 0.2073 seconds and 5 git commands to generate.