Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42 #define FORCEDETH_VERSION "0.64"
43 #define DRV_NAME "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/spinlock.h>
53 #include <linux/ethtool.h>
54 #include <linux/timer.h>
55 #include <linux/skbuff.h>
56 #include <linux/mii.h>
57 #include <linux/random.h>
58 #include <linux/init.h>
59 #include <linux/if_vlan.h>
60 #include <linux/dma-mapping.h>
61
62 #include <asm/irq.h>
63 #include <asm/io.h>
64 #include <asm/uaccess.h>
65 #include <asm/system.h>
66
67 #if 0
68 #define dprintk printk
69 #else
70 #define dprintk(x...) do { } while (0)
71 #endif
72
73 #define TX_WORK_PER_LOOP 64
74 #define RX_WORK_PER_LOOP 64
75
76 /*
77 * Hardware access:
78 */
79
80 #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
81 #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
82 #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
83 #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
84 #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
85 #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
86 #define DEV_HAS_MSI 0x000040 /* device supports MSI */
87 #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
88 #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
89 #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
90 #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */
91 #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */
92 #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
93 #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
94 #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
95 #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
96 #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
97 #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
98 #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
99 #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
100 #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
101
102 enum {
103 NvRegIrqStatus = 0x000,
104 #define NVREG_IRQSTAT_MIIEVENT 0x040
105 #define NVREG_IRQSTAT_MASK 0x83ff
106 NvRegIrqMask = 0x004,
107 #define NVREG_IRQ_RX_ERROR 0x0001
108 #define NVREG_IRQ_RX 0x0002
109 #define NVREG_IRQ_RX_NOBUF 0x0004
110 #define NVREG_IRQ_TX_ERR 0x0008
111 #define NVREG_IRQ_TX_OK 0x0010
112 #define NVREG_IRQ_TIMER 0x0020
113 #define NVREG_IRQ_LINK 0x0040
114 #define NVREG_IRQ_RX_FORCED 0x0080
115 #define NVREG_IRQ_TX_FORCED 0x0100
116 #define NVREG_IRQ_RECOVER_ERROR 0x8200
117 #define NVREG_IRQMASK_THROUGHPUT 0x00df
118 #define NVREG_IRQMASK_CPU 0x0060
119 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
120 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
121 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
122
123 NvRegUnknownSetupReg6 = 0x008,
124 #define NVREG_UNKSETUP6_VAL 3
125
126 /*
127 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
128 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
129 */
130 NvRegPollingInterval = 0x00c,
131 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
132 #define NVREG_POLL_DEFAULT_CPU 13
133 NvRegMSIMap0 = 0x020,
134 NvRegMSIMap1 = 0x024,
135 NvRegMSIIrqMask = 0x030,
136 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
137 NvRegMisc1 = 0x080,
138 #define NVREG_MISC1_PAUSE_TX 0x01
139 #define NVREG_MISC1_HD 0x02
140 #define NVREG_MISC1_FORCE 0x3b0f3c
141
142 NvRegMacReset = 0x34,
143 #define NVREG_MAC_RESET_ASSERT 0x0F3
144 NvRegTransmitterControl = 0x084,
145 #define NVREG_XMITCTL_START 0x01
146 #define NVREG_XMITCTL_MGMT_ST 0x40000000
147 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
148 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
149 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
150 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
151 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
152 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
153 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
154 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
155 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
156 #define NVREG_XMITCTL_DATA_START 0x00100000
157 #define NVREG_XMITCTL_DATA_READY 0x00010000
158 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
159 NvRegTransmitterStatus = 0x088,
160 #define NVREG_XMITSTAT_BUSY 0x01
161
162 NvRegPacketFilterFlags = 0x8c,
163 #define NVREG_PFF_PAUSE_RX 0x08
164 #define NVREG_PFF_ALWAYS 0x7F0000
165 #define NVREG_PFF_PROMISC 0x80
166 #define NVREG_PFF_MYADDR 0x20
167 #define NVREG_PFF_LOOPBACK 0x10
168
169 NvRegOffloadConfig = 0x90,
170 #define NVREG_OFFLOAD_HOMEPHY 0x601
171 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
172 NvRegReceiverControl = 0x094,
173 #define NVREG_RCVCTL_START 0x01
174 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
175 NvRegReceiverStatus = 0x98,
176 #define NVREG_RCVSTAT_BUSY 0x01
177
178 NvRegSlotTime = 0x9c,
179 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
180 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
181 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
182 #define NVREG_SLOTTIME_HALF 0x0000ff00
183 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
184 #define NVREG_SLOTTIME_MASK 0x000000ff
185
186 NvRegTxDeferral = 0xA0,
187 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
188 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
189 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
190 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
191 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
192 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
193 NvRegRxDeferral = 0xA4,
194 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
195 NvRegMacAddrA = 0xA8,
196 NvRegMacAddrB = 0xAC,
197 NvRegMulticastAddrA = 0xB0,
198 #define NVREG_MCASTADDRA_FORCE 0x01
199 NvRegMulticastAddrB = 0xB4,
200 NvRegMulticastMaskA = 0xB8,
201 #define NVREG_MCASTMASKA_NONE 0xffffffff
202 NvRegMulticastMaskB = 0xBC,
203 #define NVREG_MCASTMASKB_NONE 0xffff
204
205 NvRegPhyInterface = 0xC0,
206 #define PHY_RGMII 0x10000000
207 NvRegBackOffControl = 0xC4,
208 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
209 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
210 #define NVREG_BKOFFCTRL_SELECT 24
211 #define NVREG_BKOFFCTRL_GEAR 12
212
213 NvRegTxRingPhysAddr = 0x100,
214 NvRegRxRingPhysAddr = 0x104,
215 NvRegRingSizes = 0x108,
216 #define NVREG_RINGSZ_TXSHIFT 0
217 #define NVREG_RINGSZ_RXSHIFT 16
218 NvRegTransmitPoll = 0x10c,
219 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
220 NvRegLinkSpeed = 0x110,
221 #define NVREG_LINKSPEED_FORCE 0x10000
222 #define NVREG_LINKSPEED_10 1000
223 #define NVREG_LINKSPEED_100 100
224 #define NVREG_LINKSPEED_1000 50
225 #define NVREG_LINKSPEED_MASK (0xFFF)
226 NvRegUnknownSetupReg5 = 0x130,
227 #define NVREG_UNKSETUP5_BIT31 (1<<31)
228 NvRegTxWatermark = 0x13c,
229 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
230 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
231 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
232 NvRegTxRxControl = 0x144,
233 #define NVREG_TXRXCTL_KICK 0x0001
234 #define NVREG_TXRXCTL_BIT1 0x0002
235 #define NVREG_TXRXCTL_BIT2 0x0004
236 #define NVREG_TXRXCTL_IDLE 0x0008
237 #define NVREG_TXRXCTL_RESET 0x0010
238 #define NVREG_TXRXCTL_RXCHECK 0x0400
239 #define NVREG_TXRXCTL_DESC_1 0
240 #define NVREG_TXRXCTL_DESC_2 0x002100
241 #define NVREG_TXRXCTL_DESC_3 0xc02200
242 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
243 #define NVREG_TXRXCTL_VLANINS 0x00080
244 NvRegTxRingPhysAddrHigh = 0x148,
245 NvRegRxRingPhysAddrHigh = 0x14C,
246 NvRegTxPauseFrame = 0x170,
247 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
248 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
249 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
250 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
251 NvRegTxPauseFrameLimit = 0x174,
252 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
253 NvRegMIIStatus = 0x180,
254 #define NVREG_MIISTAT_ERROR 0x0001
255 #define NVREG_MIISTAT_LINKCHANGE 0x0008
256 #define NVREG_MIISTAT_MASK_RW 0x0007
257 #define NVREG_MIISTAT_MASK_ALL 0x000f
258 NvRegMIIMask = 0x184,
259 #define NVREG_MII_LINKCHANGE 0x0008
260
261 NvRegAdapterControl = 0x188,
262 #define NVREG_ADAPTCTL_START 0x02
263 #define NVREG_ADAPTCTL_LINKUP 0x04
264 #define NVREG_ADAPTCTL_PHYVALID 0x40000
265 #define NVREG_ADAPTCTL_RUNNING 0x100000
266 #define NVREG_ADAPTCTL_PHYSHIFT 24
267 NvRegMIISpeed = 0x18c,
268 #define NVREG_MIISPEED_BIT8 (1<<8)
269 #define NVREG_MIIDELAY 5
270 NvRegMIIControl = 0x190,
271 #define NVREG_MIICTL_INUSE 0x08000
272 #define NVREG_MIICTL_WRITE 0x00400
273 #define NVREG_MIICTL_ADDRSHIFT 5
274 NvRegMIIData = 0x194,
275 NvRegTxUnicast = 0x1a0,
276 NvRegTxMulticast = 0x1a4,
277 NvRegTxBroadcast = 0x1a8,
278 NvRegWakeUpFlags = 0x200,
279 #define NVREG_WAKEUPFLAGS_VAL 0x7770
280 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
281 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
282 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
283 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
284 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
285 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
286 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
287 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
288 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
289 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
290
291 NvRegMgmtUnitGetVersion = 0x204,
292 #define NVREG_MGMTUNITGETVERSION 0x01
293 NvRegMgmtUnitVersion = 0x208,
294 #define NVREG_MGMTUNITVERSION 0x08
295 NvRegPowerCap = 0x268,
296 #define NVREG_POWERCAP_D3SUPP (1<<30)
297 #define NVREG_POWERCAP_D2SUPP (1<<26)
298 #define NVREG_POWERCAP_D1SUPP (1<<25)
299 NvRegPowerState = 0x26c,
300 #define NVREG_POWERSTATE_POWEREDUP 0x8000
301 #define NVREG_POWERSTATE_VALID 0x0100
302 #define NVREG_POWERSTATE_MASK 0x0003
303 #define NVREG_POWERSTATE_D0 0x0000
304 #define NVREG_POWERSTATE_D1 0x0001
305 #define NVREG_POWERSTATE_D2 0x0002
306 #define NVREG_POWERSTATE_D3 0x0003
307 NvRegMgmtUnitControl = 0x278,
308 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
309 NvRegTxCnt = 0x280,
310 NvRegTxZeroReXmt = 0x284,
311 NvRegTxOneReXmt = 0x288,
312 NvRegTxManyReXmt = 0x28c,
313 NvRegTxLateCol = 0x290,
314 NvRegTxUnderflow = 0x294,
315 NvRegTxLossCarrier = 0x298,
316 NvRegTxExcessDef = 0x29c,
317 NvRegTxRetryErr = 0x2a0,
318 NvRegRxFrameErr = 0x2a4,
319 NvRegRxExtraByte = 0x2a8,
320 NvRegRxLateCol = 0x2ac,
321 NvRegRxRunt = 0x2b0,
322 NvRegRxFrameTooLong = 0x2b4,
323 NvRegRxOverflow = 0x2b8,
324 NvRegRxFCSErr = 0x2bc,
325 NvRegRxFrameAlignErr = 0x2c0,
326 NvRegRxLenErr = 0x2c4,
327 NvRegRxUnicast = 0x2c8,
328 NvRegRxMulticast = 0x2cc,
329 NvRegRxBroadcast = 0x2d0,
330 NvRegTxDef = 0x2d4,
331 NvRegTxFrame = 0x2d8,
332 NvRegRxCnt = 0x2dc,
333 NvRegTxPause = 0x2e0,
334 NvRegRxPause = 0x2e4,
335 NvRegRxDropFrame = 0x2e8,
336 NvRegVlanControl = 0x300,
337 #define NVREG_VLANCONTROL_ENABLE 0x2000
338 NvRegMSIXMap0 = 0x3e0,
339 NvRegMSIXMap1 = 0x3e4,
340 NvRegMSIXIrqStatus = 0x3f0,
341
342 NvRegPowerState2 = 0x600,
343 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
344 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
345 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
346 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
347 };
348
349 /* Big endian: should work, but is untested */
350 struct ring_desc {
351 __le32 buf;
352 __le32 flaglen;
353 };
354
355 struct ring_desc_ex {
356 __le32 bufhigh;
357 __le32 buflow;
358 __le32 txvlan;
359 __le32 flaglen;
360 };
361
362 union ring_type {
363 struct ring_desc* orig;
364 struct ring_desc_ex* ex;
365 };
366
367 #define FLAG_MASK_V1 0xffff0000
368 #define FLAG_MASK_V2 0xffffc000
369 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
370 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
371
372 #define NV_TX_LASTPACKET (1<<16)
373 #define NV_TX_RETRYERROR (1<<19)
374 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
375 #define NV_TX_FORCED_INTERRUPT (1<<24)
376 #define NV_TX_DEFERRED (1<<26)
377 #define NV_TX_CARRIERLOST (1<<27)
378 #define NV_TX_LATECOLLISION (1<<28)
379 #define NV_TX_UNDERFLOW (1<<29)
380 #define NV_TX_ERROR (1<<30)
381 #define NV_TX_VALID (1<<31)
382
383 #define NV_TX2_LASTPACKET (1<<29)
384 #define NV_TX2_RETRYERROR (1<<18)
385 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
386 #define NV_TX2_FORCED_INTERRUPT (1<<30)
387 #define NV_TX2_DEFERRED (1<<25)
388 #define NV_TX2_CARRIERLOST (1<<26)
389 #define NV_TX2_LATECOLLISION (1<<27)
390 #define NV_TX2_UNDERFLOW (1<<28)
391 /* error and valid are the same for both */
392 #define NV_TX2_ERROR (1<<30)
393 #define NV_TX2_VALID (1<<31)
394 #define NV_TX2_TSO (1<<28)
395 #define NV_TX2_TSO_SHIFT 14
396 #define NV_TX2_TSO_MAX_SHIFT 14
397 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
398 #define NV_TX2_CHECKSUM_L3 (1<<27)
399 #define NV_TX2_CHECKSUM_L4 (1<<26)
400
401 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
402
403 #define NV_RX_DESCRIPTORVALID (1<<16)
404 #define NV_RX_MISSEDFRAME (1<<17)
405 #define NV_RX_SUBSTRACT1 (1<<18)
406 #define NV_RX_ERROR1 (1<<23)
407 #define NV_RX_ERROR2 (1<<24)
408 #define NV_RX_ERROR3 (1<<25)
409 #define NV_RX_ERROR4 (1<<26)
410 #define NV_RX_CRCERR (1<<27)
411 #define NV_RX_OVERFLOW (1<<28)
412 #define NV_RX_FRAMINGERR (1<<29)
413 #define NV_RX_ERROR (1<<30)
414 #define NV_RX_AVAIL (1<<31)
415 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
416
417 #define NV_RX2_CHECKSUMMASK (0x1C000000)
418 #define NV_RX2_CHECKSUM_IP (0x10000000)
419 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
420 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
421 #define NV_RX2_DESCRIPTORVALID (1<<29)
422 #define NV_RX2_SUBSTRACT1 (1<<25)
423 #define NV_RX2_ERROR1 (1<<18)
424 #define NV_RX2_ERROR2 (1<<19)
425 #define NV_RX2_ERROR3 (1<<20)
426 #define NV_RX2_ERROR4 (1<<21)
427 #define NV_RX2_CRCERR (1<<22)
428 #define NV_RX2_OVERFLOW (1<<23)
429 #define NV_RX2_FRAMINGERR (1<<24)
430 /* error and avail are the same for both */
431 #define NV_RX2_ERROR (1<<30)
432 #define NV_RX2_AVAIL (1<<31)
433 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
434
435 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
436 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
437
438 /* Miscelaneous hardware related defines: */
439 #define NV_PCI_REGSZ_VER1 0x270
440 #define NV_PCI_REGSZ_VER2 0x2d4
441 #define NV_PCI_REGSZ_VER3 0x604
442 #define NV_PCI_REGSZ_MAX 0x604
443
444 /* various timeout delays: all in usec */
445 #define NV_TXRX_RESET_DELAY 4
446 #define NV_TXSTOP_DELAY1 10
447 #define NV_TXSTOP_DELAY1MAX 500000
448 #define NV_TXSTOP_DELAY2 100
449 #define NV_RXSTOP_DELAY1 10
450 #define NV_RXSTOP_DELAY1MAX 500000
451 #define NV_RXSTOP_DELAY2 100
452 #define NV_SETUP5_DELAY 5
453 #define NV_SETUP5_DELAYMAX 50000
454 #define NV_POWERUP_DELAY 5
455 #define NV_POWERUP_DELAYMAX 5000
456 #define NV_MIIBUSY_DELAY 50
457 #define NV_MIIPHY_DELAY 10
458 #define NV_MIIPHY_DELAYMAX 10000
459 #define NV_MAC_RESET_DELAY 64
460
461 #define NV_WAKEUPPATTERNS 5
462 #define NV_WAKEUPMASKENTRIES 4
463
464 /* General driver defaults */
465 #define NV_WATCHDOG_TIMEO (5*HZ)
466
467 #define RX_RING_DEFAULT 512
468 #define TX_RING_DEFAULT 256
469 #define RX_RING_MIN 128
470 #define TX_RING_MIN 64
471 #define RING_MAX_DESC_VER_1 1024
472 #define RING_MAX_DESC_VER_2_3 16384
473
474 /* rx/tx mac addr + type + vlan + align + slack*/
475 #define NV_RX_HEADERS (64)
476 /* even more slack. */
477 #define NV_RX_ALLOC_PAD (64)
478
479 /* maximum mtu size */
480 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
481 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
482
483 #define OOM_REFILL (1+HZ/20)
484 #define POLL_WAIT (1+HZ/100)
485 #define LINK_TIMEOUT (3*HZ)
486 #define STATS_INTERVAL (10*HZ)
487
488 /*
489 * desc_ver values:
490 * The nic supports three different descriptor types:
491 * - DESC_VER_1: Original
492 * - DESC_VER_2: support for jumbo frames.
493 * - DESC_VER_3: 64-bit format.
494 */
495 #define DESC_VER_1 1
496 #define DESC_VER_2 2
497 #define DESC_VER_3 3
498
499 /* PHY defines */
500 #define PHY_OUI_MARVELL 0x5043
501 #define PHY_OUI_CICADA 0x03f1
502 #define PHY_OUI_VITESSE 0x01c1
503 #define PHY_OUI_REALTEK 0x0732
504 #define PHY_OUI_REALTEK2 0x0020
505 #define PHYID1_OUI_MASK 0x03ff
506 #define PHYID1_OUI_SHFT 6
507 #define PHYID2_OUI_MASK 0xfc00
508 #define PHYID2_OUI_SHFT 10
509 #define PHYID2_MODEL_MASK 0x03f0
510 #define PHY_MODEL_REALTEK_8211 0x0110
511 #define PHY_REV_MASK 0x0001
512 #define PHY_REV_REALTEK_8211B 0x0000
513 #define PHY_REV_REALTEK_8211C 0x0001
514 #define PHY_MODEL_REALTEK_8201 0x0200
515 #define PHY_MODEL_MARVELL_E3016 0x0220
516 #define PHY_MARVELL_E3016_INITMASK 0x0300
517 #define PHY_CICADA_INIT1 0x0f000
518 #define PHY_CICADA_INIT2 0x0e00
519 #define PHY_CICADA_INIT3 0x01000
520 #define PHY_CICADA_INIT4 0x0200
521 #define PHY_CICADA_INIT5 0x0004
522 #define PHY_CICADA_INIT6 0x02000
523 #define PHY_VITESSE_INIT_REG1 0x1f
524 #define PHY_VITESSE_INIT_REG2 0x10
525 #define PHY_VITESSE_INIT_REG3 0x11
526 #define PHY_VITESSE_INIT_REG4 0x12
527 #define PHY_VITESSE_INIT_MSK1 0xc
528 #define PHY_VITESSE_INIT_MSK2 0x0180
529 #define PHY_VITESSE_INIT1 0x52b5
530 #define PHY_VITESSE_INIT2 0xaf8a
531 #define PHY_VITESSE_INIT3 0x8
532 #define PHY_VITESSE_INIT4 0x8f8a
533 #define PHY_VITESSE_INIT5 0xaf86
534 #define PHY_VITESSE_INIT6 0x8f86
535 #define PHY_VITESSE_INIT7 0xaf82
536 #define PHY_VITESSE_INIT8 0x0100
537 #define PHY_VITESSE_INIT9 0x8f82
538 #define PHY_VITESSE_INIT10 0x0
539 #define PHY_REALTEK_INIT_REG1 0x1f
540 #define PHY_REALTEK_INIT_REG2 0x19
541 #define PHY_REALTEK_INIT_REG3 0x13
542 #define PHY_REALTEK_INIT_REG4 0x14
543 #define PHY_REALTEK_INIT_REG5 0x18
544 #define PHY_REALTEK_INIT_REG6 0x11
545 #define PHY_REALTEK_INIT_REG7 0x01
546 #define PHY_REALTEK_INIT1 0x0000
547 #define PHY_REALTEK_INIT2 0x8e00
548 #define PHY_REALTEK_INIT3 0x0001
549 #define PHY_REALTEK_INIT4 0xad17
550 #define PHY_REALTEK_INIT5 0xfb54
551 #define PHY_REALTEK_INIT6 0xf5c7
552 #define PHY_REALTEK_INIT7 0x1000
553 #define PHY_REALTEK_INIT8 0x0003
554 #define PHY_REALTEK_INIT9 0x0008
555 #define PHY_REALTEK_INIT10 0x0005
556 #define PHY_REALTEK_INIT11 0x0200
557 #define PHY_REALTEK_INIT_MSK1 0x0003
558
559 #define PHY_GIGABIT 0x0100
560
561 #define PHY_TIMEOUT 0x1
562 #define PHY_ERROR 0x2
563
564 #define PHY_100 0x1
565 #define PHY_1000 0x2
566 #define PHY_HALF 0x100
567
568 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
569 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
570 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
571 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
572 #define NV_PAUSEFRAME_RX_REQ 0x0010
573 #define NV_PAUSEFRAME_TX_REQ 0x0020
574 #define NV_PAUSEFRAME_AUTONEG 0x0040
575
576 /* MSI/MSI-X defines */
577 #define NV_MSI_X_MAX_VECTORS 8
578 #define NV_MSI_X_VECTORS_MASK 0x000f
579 #define NV_MSI_CAPABLE 0x0010
580 #define NV_MSI_X_CAPABLE 0x0020
581 #define NV_MSI_ENABLED 0x0040
582 #define NV_MSI_X_ENABLED 0x0080
583
584 #define NV_MSI_X_VECTOR_ALL 0x0
585 #define NV_MSI_X_VECTOR_RX 0x0
586 #define NV_MSI_X_VECTOR_TX 0x1
587 #define NV_MSI_X_VECTOR_OTHER 0x2
588
589 #define NV_MSI_PRIV_OFFSET 0x68
590 #define NV_MSI_PRIV_VALUE 0xffffffff
591
592 #define NV_RESTART_TX 0x1
593 #define NV_RESTART_RX 0x2
594
595 #define NV_TX_LIMIT_COUNT 16
596
597 #define NV_DYNAMIC_THRESHOLD 4
598 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
599
600 /* statistics */
601 struct nv_ethtool_str {
602 char name[ETH_GSTRING_LEN];
603 };
604
605 static const struct nv_ethtool_str nv_estats_str[] = {
606 { "tx_bytes" },
607 { "tx_zero_rexmt" },
608 { "tx_one_rexmt" },
609 { "tx_many_rexmt" },
610 { "tx_late_collision" },
611 { "tx_fifo_errors" },
612 { "tx_carrier_errors" },
613 { "tx_excess_deferral" },
614 { "tx_retry_error" },
615 { "rx_frame_error" },
616 { "rx_extra_byte" },
617 { "rx_late_collision" },
618 { "rx_runt" },
619 { "rx_frame_too_long" },
620 { "rx_over_errors" },
621 { "rx_crc_errors" },
622 { "rx_frame_align_error" },
623 { "rx_length_error" },
624 { "rx_unicast" },
625 { "rx_multicast" },
626 { "rx_broadcast" },
627 { "rx_packets" },
628 { "rx_errors_total" },
629 { "tx_errors_total" },
630
631 /* version 2 stats */
632 { "tx_deferral" },
633 { "tx_packets" },
634 { "rx_bytes" },
635 { "tx_pause" },
636 { "rx_pause" },
637 { "rx_drop_frame" },
638
639 /* version 3 stats */
640 { "tx_unicast" },
641 { "tx_multicast" },
642 { "tx_broadcast" }
643 };
644
645 struct nv_ethtool_stats {
646 u64 tx_bytes;
647 u64 tx_zero_rexmt;
648 u64 tx_one_rexmt;
649 u64 tx_many_rexmt;
650 u64 tx_late_collision;
651 u64 tx_fifo_errors;
652 u64 tx_carrier_errors;
653 u64 tx_excess_deferral;
654 u64 tx_retry_error;
655 u64 rx_frame_error;
656 u64 rx_extra_byte;
657 u64 rx_late_collision;
658 u64 rx_runt;
659 u64 rx_frame_too_long;
660 u64 rx_over_errors;
661 u64 rx_crc_errors;
662 u64 rx_frame_align_error;
663 u64 rx_length_error;
664 u64 rx_unicast;
665 u64 rx_multicast;
666 u64 rx_broadcast;
667 u64 rx_packets;
668 u64 rx_errors_total;
669 u64 tx_errors_total;
670
671 /* version 2 stats */
672 u64 tx_deferral;
673 u64 tx_packets;
674 u64 rx_bytes;
675 u64 tx_pause;
676 u64 rx_pause;
677 u64 rx_drop_frame;
678
679 /* version 3 stats */
680 u64 tx_unicast;
681 u64 tx_multicast;
682 u64 tx_broadcast;
683 };
684
685 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
686 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
687 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
688
689 /* diagnostics */
690 #define NV_TEST_COUNT_BASE 3
691 #define NV_TEST_COUNT_EXTENDED 4
692
693 static const struct nv_ethtool_str nv_etests_str[] = {
694 { "link (online/offline)" },
695 { "register (offline) " },
696 { "interrupt (offline) " },
697 { "loopback (offline) " }
698 };
699
700 struct register_test {
701 __u32 reg;
702 __u32 mask;
703 };
704
705 static const struct register_test nv_registers_test[] = {
706 { NvRegUnknownSetupReg6, 0x01 },
707 { NvRegMisc1, 0x03c },
708 { NvRegOffloadConfig, 0x03ff },
709 { NvRegMulticastAddrA, 0xffffffff },
710 { NvRegTxWatermark, 0x0ff },
711 { NvRegWakeUpFlags, 0x07777 },
712 { 0,0 }
713 };
714
715 struct nv_skb_map {
716 struct sk_buff *skb;
717 dma_addr_t dma;
718 unsigned int dma_len;
719 struct ring_desc_ex *first_tx_desc;
720 struct nv_skb_map *next_tx_ctx;
721 };
722
723 /*
724 * SMP locking:
725 * All hardware access under netdev_priv(dev)->lock, except the performance
726 * critical parts:
727 * - rx is (pseudo-) lockless: it relies on the single-threading provided
728 * by the arch code for interrupts.
729 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
730 * needs netdev_priv(dev)->lock :-(
731 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
732 */
733
734 /* in dev: base, irq */
735 struct fe_priv {
736 spinlock_t lock;
737
738 struct net_device *dev;
739 struct napi_struct napi;
740
741 /* General data:
742 * Locking: spin_lock(&np->lock); */
743 struct nv_ethtool_stats estats;
744 int in_shutdown;
745 u32 linkspeed;
746 int duplex;
747 int autoneg;
748 int fixed_mode;
749 int phyaddr;
750 int wolenabled;
751 unsigned int phy_oui;
752 unsigned int phy_model;
753 unsigned int phy_rev;
754 u16 gigabit;
755 int intr_test;
756 int recover_error;
757 int quiet_count;
758
759 /* General data: RO fields */
760 dma_addr_t ring_addr;
761 struct pci_dev *pci_dev;
762 u32 orig_mac[2];
763 u32 events;
764 u32 irqmask;
765 u32 desc_ver;
766 u32 txrxctl_bits;
767 u32 vlanctl_bits;
768 u32 driver_data;
769 u32 device_id;
770 u32 register_size;
771 int rx_csum;
772 u32 mac_in_use;
773 int mgmt_version;
774 int mgmt_sema;
775
776 void __iomem *base;
777
778 /* rx specific fields.
779 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
780 */
781 union ring_type get_rx, put_rx, first_rx, last_rx;
782 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
783 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
784 struct nv_skb_map *rx_skb;
785
786 union ring_type rx_ring;
787 unsigned int rx_buf_sz;
788 unsigned int pkt_limit;
789 struct timer_list oom_kick;
790 struct timer_list nic_poll;
791 struct timer_list stats_poll;
792 u32 nic_poll_irq;
793 int rx_ring_size;
794
795 /* media detection workaround.
796 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
797 */
798 int need_linktimer;
799 unsigned long link_timeout;
800 /*
801 * tx specific fields.
802 */
803 union ring_type get_tx, put_tx, first_tx, last_tx;
804 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
805 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
806 struct nv_skb_map *tx_skb;
807
808 union ring_type tx_ring;
809 u32 tx_flags;
810 int tx_ring_size;
811 int tx_limit;
812 u32 tx_pkts_in_progress;
813 struct nv_skb_map *tx_change_owner;
814 struct nv_skb_map *tx_end_flip;
815 int tx_stop;
816
817 /* vlan fields */
818 struct vlan_group *vlangrp;
819
820 /* msi/msi-x fields */
821 u32 msi_flags;
822 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
823
824 /* flow control */
825 u32 pause_flags;
826
827 /* power saved state */
828 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
829
830 /* for different msi-x irq type */
831 char name_rx[IFNAMSIZ + 3]; /* -rx */
832 char name_tx[IFNAMSIZ + 3]; /* -tx */
833 char name_other[IFNAMSIZ + 6]; /* -other */
834 };
835
836 /*
837 * Maximum number of loops until we assume that a bit in the irq mask
838 * is stuck. Overridable with module param.
839 */
840 static int max_interrupt_work = 4;
841
842 /*
843 * Optimization can be either throuput mode or cpu mode
844 *
845 * Throughput Mode: Every tx and rx packet will generate an interrupt.
846 * CPU Mode: Interrupts are controlled by a timer.
847 */
848 enum {
849 NV_OPTIMIZATION_MODE_THROUGHPUT,
850 NV_OPTIMIZATION_MODE_CPU,
851 NV_OPTIMIZATION_MODE_DYNAMIC
852 };
853 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
854
855 /*
856 * Poll interval for timer irq
857 *
858 * This interval determines how frequent an interrupt is generated.
859 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
860 * Min = 0, and Max = 65535
861 */
862 static int poll_interval = -1;
863
864 /*
865 * MSI interrupts
866 */
867 enum {
868 NV_MSI_INT_DISABLED,
869 NV_MSI_INT_ENABLED
870 };
871 static int msi = NV_MSI_INT_ENABLED;
872
873 /*
874 * MSIX interrupts
875 */
876 enum {
877 NV_MSIX_INT_DISABLED,
878 NV_MSIX_INT_ENABLED
879 };
880 static int msix = NV_MSIX_INT_ENABLED;
881
882 /*
883 * DMA 64bit
884 */
885 enum {
886 NV_DMA_64BIT_DISABLED,
887 NV_DMA_64BIT_ENABLED
888 };
889 static int dma_64bit = NV_DMA_64BIT_ENABLED;
890
891 /*
892 * Crossover Detection
893 * Realtek 8201 phy + some OEM boards do not work properly.
894 */
895 enum {
896 NV_CROSSOVER_DETECTION_DISABLED,
897 NV_CROSSOVER_DETECTION_ENABLED
898 };
899 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
900
901 /*
902 * Power down phy when interface is down (persists through reboot;
903 * older Linux and other OSes may not power it up again)
904 */
905 static int phy_power_down = 0;
906
907 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
908 {
909 return netdev_priv(dev);
910 }
911
912 static inline u8 __iomem *get_hwbase(struct net_device *dev)
913 {
914 return ((struct fe_priv *)netdev_priv(dev))->base;
915 }
916
917 static inline void pci_push(u8 __iomem *base)
918 {
919 /* force out pending posted writes */
920 readl(base);
921 }
922
923 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
924 {
925 return le32_to_cpu(prd->flaglen)
926 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
927 }
928
929 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
930 {
931 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
932 }
933
934 static bool nv_optimized(struct fe_priv *np)
935 {
936 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
937 return false;
938 return true;
939 }
940
941 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
942 int delay, int delaymax, const char *msg)
943 {
944 u8 __iomem *base = get_hwbase(dev);
945
946 pci_push(base);
947 do {
948 udelay(delay);
949 delaymax -= delay;
950 if (delaymax < 0) {
951 if (msg)
952 printk("%s", msg);
953 return 1;
954 }
955 } while ((readl(base + offset) & mask) != target);
956 return 0;
957 }
958
959 #define NV_SETUP_RX_RING 0x01
960 #define NV_SETUP_TX_RING 0x02
961
962 static inline u32 dma_low(dma_addr_t addr)
963 {
964 return addr;
965 }
966
967 static inline u32 dma_high(dma_addr_t addr)
968 {
969 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
970 }
971
972 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
973 {
974 struct fe_priv *np = get_nvpriv(dev);
975 u8 __iomem *base = get_hwbase(dev);
976
977 if (!nv_optimized(np)) {
978 if (rxtx_flags & NV_SETUP_RX_RING) {
979 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
980 }
981 if (rxtx_flags & NV_SETUP_TX_RING) {
982 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
983 }
984 } else {
985 if (rxtx_flags & NV_SETUP_RX_RING) {
986 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
987 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
988 }
989 if (rxtx_flags & NV_SETUP_TX_RING) {
990 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
991 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
992 }
993 }
994 }
995
996 static void free_rings(struct net_device *dev)
997 {
998 struct fe_priv *np = get_nvpriv(dev);
999
1000 if (!nv_optimized(np)) {
1001 if (np->rx_ring.orig)
1002 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
1003 np->rx_ring.orig, np->ring_addr);
1004 } else {
1005 if (np->rx_ring.ex)
1006 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1007 np->rx_ring.ex, np->ring_addr);
1008 }
1009 if (np->rx_skb)
1010 kfree(np->rx_skb);
1011 if (np->tx_skb)
1012 kfree(np->tx_skb);
1013 }
1014
1015 static int using_multi_irqs(struct net_device *dev)
1016 {
1017 struct fe_priv *np = get_nvpriv(dev);
1018
1019 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1020 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1021 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1022 return 0;
1023 else
1024 return 1;
1025 }
1026
1027 static void nv_txrx_gate(struct net_device *dev, bool gate)
1028 {
1029 struct fe_priv *np = get_nvpriv(dev);
1030 u8 __iomem *base = get_hwbase(dev);
1031 u32 powerstate;
1032
1033 if (!np->mac_in_use &&
1034 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1035 powerstate = readl(base + NvRegPowerState2);
1036 if (gate)
1037 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1038 else
1039 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1040 writel(powerstate, base + NvRegPowerState2);
1041 }
1042 }
1043
1044 static void nv_enable_irq(struct net_device *dev)
1045 {
1046 struct fe_priv *np = get_nvpriv(dev);
1047
1048 if (!using_multi_irqs(dev)) {
1049 if (np->msi_flags & NV_MSI_X_ENABLED)
1050 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1051 else
1052 enable_irq(np->pci_dev->irq);
1053 } else {
1054 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1055 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1056 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1057 }
1058 }
1059
1060 static void nv_disable_irq(struct net_device *dev)
1061 {
1062 struct fe_priv *np = get_nvpriv(dev);
1063
1064 if (!using_multi_irqs(dev)) {
1065 if (np->msi_flags & NV_MSI_X_ENABLED)
1066 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1067 else
1068 disable_irq(np->pci_dev->irq);
1069 } else {
1070 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1071 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1072 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1073 }
1074 }
1075
1076 /* In MSIX mode, a write to irqmask behaves as XOR */
1077 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1078 {
1079 u8 __iomem *base = get_hwbase(dev);
1080
1081 writel(mask, base + NvRegIrqMask);
1082 }
1083
1084 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1085 {
1086 struct fe_priv *np = get_nvpriv(dev);
1087 u8 __iomem *base = get_hwbase(dev);
1088
1089 if (np->msi_flags & NV_MSI_X_ENABLED) {
1090 writel(mask, base + NvRegIrqMask);
1091 } else {
1092 if (np->msi_flags & NV_MSI_ENABLED)
1093 writel(0, base + NvRegMSIIrqMask);
1094 writel(0, base + NvRegIrqMask);
1095 }
1096 }
1097
1098 static void nv_napi_enable(struct net_device *dev)
1099 {
1100 #ifdef CONFIG_FORCEDETH_NAPI
1101 struct fe_priv *np = get_nvpriv(dev);
1102
1103 napi_enable(&np->napi);
1104 #endif
1105 }
1106
1107 static void nv_napi_disable(struct net_device *dev)
1108 {
1109 #ifdef CONFIG_FORCEDETH_NAPI
1110 struct fe_priv *np = get_nvpriv(dev);
1111
1112 napi_disable(&np->napi);
1113 #endif
1114 }
1115
1116 #define MII_READ (-1)
1117 /* mii_rw: read/write a register on the PHY.
1118 *
1119 * Caller must guarantee serialization
1120 */
1121 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1122 {
1123 u8 __iomem *base = get_hwbase(dev);
1124 u32 reg;
1125 int retval;
1126
1127 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1128
1129 reg = readl(base + NvRegMIIControl);
1130 if (reg & NVREG_MIICTL_INUSE) {
1131 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1132 udelay(NV_MIIBUSY_DELAY);
1133 }
1134
1135 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1136 if (value != MII_READ) {
1137 writel(value, base + NvRegMIIData);
1138 reg |= NVREG_MIICTL_WRITE;
1139 }
1140 writel(reg, base + NvRegMIIControl);
1141
1142 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1143 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1144 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1145 dev->name, miireg, addr);
1146 retval = -1;
1147 } else if (value != MII_READ) {
1148 /* it was a write operation - fewer failures are detectable */
1149 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1150 dev->name, value, miireg, addr);
1151 retval = 0;
1152 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1153 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1154 dev->name, miireg, addr);
1155 retval = -1;
1156 } else {
1157 retval = readl(base + NvRegMIIData);
1158 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1159 dev->name, miireg, addr, retval);
1160 }
1161
1162 return retval;
1163 }
1164
1165 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1166 {
1167 struct fe_priv *np = netdev_priv(dev);
1168 u32 miicontrol;
1169 unsigned int tries = 0;
1170
1171 miicontrol = BMCR_RESET | bmcr_setup;
1172 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1173 return -1;
1174 }
1175
1176 /* wait for 500ms */
1177 msleep(500);
1178
1179 /* must wait till reset is deasserted */
1180 while (miicontrol & BMCR_RESET) {
1181 msleep(10);
1182 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1183 /* FIXME: 100 tries seem excessive */
1184 if (tries++ > 100)
1185 return -1;
1186 }
1187 return 0;
1188 }
1189
1190 static int phy_init(struct net_device *dev)
1191 {
1192 struct fe_priv *np = get_nvpriv(dev);
1193 u8 __iomem *base = get_hwbase(dev);
1194 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1195
1196 /* phy errata for E3016 phy */
1197 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1198 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1199 reg &= ~PHY_MARVELL_E3016_INITMASK;
1200 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1201 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1202 return PHY_ERROR;
1203 }
1204 }
1205 if (np->phy_oui == PHY_OUI_REALTEK) {
1206 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1207 np->phy_rev == PHY_REV_REALTEK_8211B) {
1208 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1209 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1210 return PHY_ERROR;
1211 }
1212 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1213 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1214 return PHY_ERROR;
1215 }
1216 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1217 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1218 return PHY_ERROR;
1219 }
1220 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1221 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1222 return PHY_ERROR;
1223 }
1224 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1225 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1226 return PHY_ERROR;
1227 }
1228 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1229 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1230 return PHY_ERROR;
1231 }
1232 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1233 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1234 return PHY_ERROR;
1235 }
1236 }
1237 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1238 np->phy_rev == PHY_REV_REALTEK_8211C) {
1239 u32 powerstate = readl(base + NvRegPowerState2);
1240
1241 /* need to perform hw phy reset */
1242 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1243 writel(powerstate, base + NvRegPowerState2);
1244 msleep(25);
1245
1246 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1247 writel(powerstate, base + NvRegPowerState2);
1248 msleep(25);
1249
1250 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1251 reg |= PHY_REALTEK_INIT9;
1252 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
1253 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1254 return PHY_ERROR;
1255 }
1256 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
1257 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1258 return PHY_ERROR;
1259 }
1260 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1261 if (!(reg & PHY_REALTEK_INIT11)) {
1262 reg |= PHY_REALTEK_INIT11;
1263 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
1264 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1265 return PHY_ERROR;
1266 }
1267 }
1268 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1269 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1270 return PHY_ERROR;
1271 }
1272 }
1273 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1274 if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
1275 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
1276 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
1277 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
1278 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
1279 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
1280 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
1281 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
1282 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1283 phy_reserved |= PHY_REALTEK_INIT7;
1284 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1285 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1286 return PHY_ERROR;
1287 }
1288 }
1289 }
1290 }
1291
1292 /* set advertise register */
1293 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1294 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1295 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1296 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1297 return PHY_ERROR;
1298 }
1299
1300 /* get phy interface type */
1301 phyinterface = readl(base + NvRegPhyInterface);
1302
1303 /* see if gigabit phy */
1304 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1305 if (mii_status & PHY_GIGABIT) {
1306 np->gigabit = PHY_GIGABIT;
1307 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1308 mii_control_1000 &= ~ADVERTISE_1000HALF;
1309 if (phyinterface & PHY_RGMII)
1310 mii_control_1000 |= ADVERTISE_1000FULL;
1311 else
1312 mii_control_1000 &= ~ADVERTISE_1000FULL;
1313
1314 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1315 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1316 return PHY_ERROR;
1317 }
1318 }
1319 else
1320 np->gigabit = 0;
1321
1322 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1323 mii_control |= BMCR_ANENABLE;
1324
1325 if (np->phy_oui == PHY_OUI_REALTEK &&
1326 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1327 np->phy_rev == PHY_REV_REALTEK_8211C) {
1328 /* start autoneg since we already performed hw reset above */
1329 mii_control |= BMCR_ANRESTART;
1330 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1331 printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
1332 return PHY_ERROR;
1333 }
1334 } else {
1335 /* reset the phy
1336 * (certain phys need bmcr to be setup with reset)
1337 */
1338 if (phy_reset(dev, mii_control)) {
1339 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1340 return PHY_ERROR;
1341 }
1342 }
1343
1344 /* phy vendor specific configuration */
1345 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1346 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1347 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1348 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1349 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1350 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1351 return PHY_ERROR;
1352 }
1353 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1354 phy_reserved |= PHY_CICADA_INIT5;
1355 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1356 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1357 return PHY_ERROR;
1358 }
1359 }
1360 if (np->phy_oui == PHY_OUI_CICADA) {
1361 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1362 phy_reserved |= PHY_CICADA_INIT6;
1363 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1364 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1365 return PHY_ERROR;
1366 }
1367 }
1368 if (np->phy_oui == PHY_OUI_VITESSE) {
1369 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1370 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1371 return PHY_ERROR;
1372 }
1373 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1374 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1375 return PHY_ERROR;
1376 }
1377 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1378 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1379 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1380 return PHY_ERROR;
1381 }
1382 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1383 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1384 phy_reserved |= PHY_VITESSE_INIT3;
1385 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1386 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1387 return PHY_ERROR;
1388 }
1389 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1390 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1391 return PHY_ERROR;
1392 }
1393 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1394 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1395 return PHY_ERROR;
1396 }
1397 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1398 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1399 phy_reserved |= PHY_VITESSE_INIT3;
1400 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1401 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1402 return PHY_ERROR;
1403 }
1404 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1405 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1406 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1407 return PHY_ERROR;
1408 }
1409 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1410 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1411 return PHY_ERROR;
1412 }
1413 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1414 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1415 return PHY_ERROR;
1416 }
1417 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1418 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1419 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1420 return PHY_ERROR;
1421 }
1422 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1423 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1424 phy_reserved |= PHY_VITESSE_INIT8;
1425 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1426 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1427 return PHY_ERROR;
1428 }
1429 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1430 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1431 return PHY_ERROR;
1432 }
1433 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1434 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1435 return PHY_ERROR;
1436 }
1437 }
1438 if (np->phy_oui == PHY_OUI_REALTEK) {
1439 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1440 np->phy_rev == PHY_REV_REALTEK_8211B) {
1441 /* reset could have cleared these out, set them back */
1442 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1443 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1444 return PHY_ERROR;
1445 }
1446 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1447 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1448 return PHY_ERROR;
1449 }
1450 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1451 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1452 return PHY_ERROR;
1453 }
1454 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1455 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1456 return PHY_ERROR;
1457 }
1458 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1459 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1460 return PHY_ERROR;
1461 }
1462 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1463 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1464 return PHY_ERROR;
1465 }
1466 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1467 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1468 return PHY_ERROR;
1469 }
1470 }
1471 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1472 if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
1473 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
1474 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
1475 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
1476 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
1477 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
1478 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
1479 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
1480 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1481 phy_reserved |= PHY_REALTEK_INIT7;
1482 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1483 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1484 return PHY_ERROR;
1485 }
1486 }
1487 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1488 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1489 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1490 return PHY_ERROR;
1491 }
1492 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
1493 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1494 phy_reserved |= PHY_REALTEK_INIT3;
1495 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
1496 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1497 return PHY_ERROR;
1498 }
1499 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1500 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1501 return PHY_ERROR;
1502 }
1503 }
1504 }
1505 }
1506
1507 /* some phys clear out pause advertisment on reset, set it back */
1508 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1509
1510 /* restart auto negotiation, power down phy */
1511 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1512 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1513 if (phy_power_down) {
1514 mii_control |= BMCR_PDOWN;
1515 }
1516 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1517 return PHY_ERROR;
1518 }
1519
1520 return 0;
1521 }
1522
1523 static void nv_start_rx(struct net_device *dev)
1524 {
1525 struct fe_priv *np = netdev_priv(dev);
1526 u8 __iomem *base = get_hwbase(dev);
1527 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1528
1529 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1530 /* Already running? Stop it. */
1531 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1532 rx_ctrl &= ~NVREG_RCVCTL_START;
1533 writel(rx_ctrl, base + NvRegReceiverControl);
1534 pci_push(base);
1535 }
1536 writel(np->linkspeed, base + NvRegLinkSpeed);
1537 pci_push(base);
1538 rx_ctrl |= NVREG_RCVCTL_START;
1539 if (np->mac_in_use)
1540 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1541 writel(rx_ctrl, base + NvRegReceiverControl);
1542 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1543 dev->name, np->duplex, np->linkspeed);
1544 pci_push(base);
1545 }
1546
1547 static void nv_stop_rx(struct net_device *dev)
1548 {
1549 struct fe_priv *np = netdev_priv(dev);
1550 u8 __iomem *base = get_hwbase(dev);
1551 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1552
1553 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1554 if (!np->mac_in_use)
1555 rx_ctrl &= ~NVREG_RCVCTL_START;
1556 else
1557 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1558 writel(rx_ctrl, base + NvRegReceiverControl);
1559 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1560 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1561 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1562
1563 udelay(NV_RXSTOP_DELAY2);
1564 if (!np->mac_in_use)
1565 writel(0, base + NvRegLinkSpeed);
1566 }
1567
1568 static void nv_start_tx(struct net_device *dev)
1569 {
1570 struct fe_priv *np = netdev_priv(dev);
1571 u8 __iomem *base = get_hwbase(dev);
1572 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1573
1574 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1575 tx_ctrl |= NVREG_XMITCTL_START;
1576 if (np->mac_in_use)
1577 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1578 writel(tx_ctrl, base + NvRegTransmitterControl);
1579 pci_push(base);
1580 }
1581
1582 static void nv_stop_tx(struct net_device *dev)
1583 {
1584 struct fe_priv *np = netdev_priv(dev);
1585 u8 __iomem *base = get_hwbase(dev);
1586 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1587
1588 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1589 if (!np->mac_in_use)
1590 tx_ctrl &= ~NVREG_XMITCTL_START;
1591 else
1592 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1593 writel(tx_ctrl, base + NvRegTransmitterControl);
1594 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1595 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1596 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1597
1598 udelay(NV_TXSTOP_DELAY2);
1599 if (!np->mac_in_use)
1600 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1601 base + NvRegTransmitPoll);
1602 }
1603
1604 static void nv_start_rxtx(struct net_device *dev)
1605 {
1606 nv_start_rx(dev);
1607 nv_start_tx(dev);
1608 }
1609
1610 static void nv_stop_rxtx(struct net_device *dev)
1611 {
1612 nv_stop_rx(dev);
1613 nv_stop_tx(dev);
1614 }
1615
1616 static void nv_txrx_reset(struct net_device *dev)
1617 {
1618 struct fe_priv *np = netdev_priv(dev);
1619 u8 __iomem *base = get_hwbase(dev);
1620
1621 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1622 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1623 pci_push(base);
1624 udelay(NV_TXRX_RESET_DELAY);
1625 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1626 pci_push(base);
1627 }
1628
1629 static void nv_mac_reset(struct net_device *dev)
1630 {
1631 struct fe_priv *np = netdev_priv(dev);
1632 u8 __iomem *base = get_hwbase(dev);
1633 u32 temp1, temp2, temp3;
1634
1635 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1636
1637 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1638 pci_push(base);
1639
1640 /* save registers since they will be cleared on reset */
1641 temp1 = readl(base + NvRegMacAddrA);
1642 temp2 = readl(base + NvRegMacAddrB);
1643 temp3 = readl(base + NvRegTransmitPoll);
1644
1645 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1646 pci_push(base);
1647 udelay(NV_MAC_RESET_DELAY);
1648 writel(0, base + NvRegMacReset);
1649 pci_push(base);
1650 udelay(NV_MAC_RESET_DELAY);
1651
1652 /* restore saved registers */
1653 writel(temp1, base + NvRegMacAddrA);
1654 writel(temp2, base + NvRegMacAddrB);
1655 writel(temp3, base + NvRegTransmitPoll);
1656
1657 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1658 pci_push(base);
1659 }
1660
1661 static void nv_get_hw_stats(struct net_device *dev)
1662 {
1663 struct fe_priv *np = netdev_priv(dev);
1664 u8 __iomem *base = get_hwbase(dev);
1665
1666 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1667 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1668 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1669 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1670 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1671 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1672 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1673 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1674 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1675 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1676 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1677 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1678 np->estats.rx_runt += readl(base + NvRegRxRunt);
1679 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1680 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1681 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1682 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1683 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1684 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1685 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1686 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1687 np->estats.rx_packets =
1688 np->estats.rx_unicast +
1689 np->estats.rx_multicast +
1690 np->estats.rx_broadcast;
1691 np->estats.rx_errors_total =
1692 np->estats.rx_crc_errors +
1693 np->estats.rx_over_errors +
1694 np->estats.rx_frame_error +
1695 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1696 np->estats.rx_late_collision +
1697 np->estats.rx_runt +
1698 np->estats.rx_frame_too_long;
1699 np->estats.tx_errors_total =
1700 np->estats.tx_late_collision +
1701 np->estats.tx_fifo_errors +
1702 np->estats.tx_carrier_errors +
1703 np->estats.tx_excess_deferral +
1704 np->estats.tx_retry_error;
1705
1706 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1707 np->estats.tx_deferral += readl(base + NvRegTxDef);
1708 np->estats.tx_packets += readl(base + NvRegTxFrame);
1709 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1710 np->estats.tx_pause += readl(base + NvRegTxPause);
1711 np->estats.rx_pause += readl(base + NvRegRxPause);
1712 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1713 }
1714
1715 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1716 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1717 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1718 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1719 }
1720 }
1721
1722 /*
1723 * nv_get_stats: dev->get_stats function
1724 * Get latest stats value from the nic.
1725 * Called with read_lock(&dev_base_lock) held for read -
1726 * only synchronized against unregister_netdevice.
1727 */
1728 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1729 {
1730 struct fe_priv *np = netdev_priv(dev);
1731
1732 /* If the nic supports hw counters then retrieve latest values */
1733 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
1734 nv_get_hw_stats(dev);
1735
1736 /* copy to net_device stats */
1737 dev->stats.tx_bytes = np->estats.tx_bytes;
1738 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1739 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1740 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1741 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1742 dev->stats.rx_errors = np->estats.rx_errors_total;
1743 dev->stats.tx_errors = np->estats.tx_errors_total;
1744 }
1745
1746 return &dev->stats;
1747 }
1748
1749 /*
1750 * nv_alloc_rx: fill rx ring entries.
1751 * Return 1 if the allocations for the skbs failed and the
1752 * rx engine is without Available descriptors
1753 */
1754 static int nv_alloc_rx(struct net_device *dev)
1755 {
1756 struct fe_priv *np = netdev_priv(dev);
1757 struct ring_desc* less_rx;
1758
1759 less_rx = np->get_rx.orig;
1760 if (less_rx-- == np->first_rx.orig)
1761 less_rx = np->last_rx.orig;
1762
1763 while (np->put_rx.orig != less_rx) {
1764 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1765 if (skb) {
1766 np->put_rx_ctx->skb = skb;
1767 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1768 skb->data,
1769 skb_tailroom(skb),
1770 PCI_DMA_FROMDEVICE);
1771 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1772 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1773 wmb();
1774 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1775 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1776 np->put_rx.orig = np->first_rx.orig;
1777 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1778 np->put_rx_ctx = np->first_rx_ctx;
1779 } else {
1780 return 1;
1781 }
1782 }
1783 return 0;
1784 }
1785
1786 static int nv_alloc_rx_optimized(struct net_device *dev)
1787 {
1788 struct fe_priv *np = netdev_priv(dev);
1789 struct ring_desc_ex* less_rx;
1790
1791 less_rx = np->get_rx.ex;
1792 if (less_rx-- == np->first_rx.ex)
1793 less_rx = np->last_rx.ex;
1794
1795 while (np->put_rx.ex != less_rx) {
1796 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1797 if (skb) {
1798 np->put_rx_ctx->skb = skb;
1799 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1800 skb->data,
1801 skb_tailroom(skb),
1802 PCI_DMA_FROMDEVICE);
1803 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1804 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1805 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1806 wmb();
1807 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1808 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1809 np->put_rx.ex = np->first_rx.ex;
1810 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1811 np->put_rx_ctx = np->first_rx_ctx;
1812 } else {
1813 return 1;
1814 }
1815 }
1816 return 0;
1817 }
1818
1819 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1820 #ifdef CONFIG_FORCEDETH_NAPI
1821 static void nv_do_rx_refill(unsigned long data)
1822 {
1823 struct net_device *dev = (struct net_device *) data;
1824 struct fe_priv *np = netdev_priv(dev);
1825
1826 /* Just reschedule NAPI rx processing */
1827 napi_schedule(&np->napi);
1828 }
1829 #else
1830 static void nv_do_rx_refill(unsigned long data)
1831 {
1832 struct net_device *dev = (struct net_device *) data;
1833 struct fe_priv *np = netdev_priv(dev);
1834 int retcode;
1835
1836 if (!using_multi_irqs(dev)) {
1837 if (np->msi_flags & NV_MSI_X_ENABLED)
1838 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1839 else
1840 disable_irq(np->pci_dev->irq);
1841 } else {
1842 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1843 }
1844 if (!nv_optimized(np))
1845 retcode = nv_alloc_rx(dev);
1846 else
1847 retcode = nv_alloc_rx_optimized(dev);
1848 if (retcode) {
1849 spin_lock_irq(&np->lock);
1850 if (!np->in_shutdown)
1851 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1852 spin_unlock_irq(&np->lock);
1853 }
1854 if (!using_multi_irqs(dev)) {
1855 if (np->msi_flags & NV_MSI_X_ENABLED)
1856 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1857 else
1858 enable_irq(np->pci_dev->irq);
1859 } else {
1860 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1861 }
1862 }
1863 #endif
1864
1865 static void nv_init_rx(struct net_device *dev)
1866 {
1867 struct fe_priv *np = netdev_priv(dev);
1868 int i;
1869
1870 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1871
1872 if (!nv_optimized(np))
1873 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1874 else
1875 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1876 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1877 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1878
1879 for (i = 0; i < np->rx_ring_size; i++) {
1880 if (!nv_optimized(np)) {
1881 np->rx_ring.orig[i].flaglen = 0;
1882 np->rx_ring.orig[i].buf = 0;
1883 } else {
1884 np->rx_ring.ex[i].flaglen = 0;
1885 np->rx_ring.ex[i].txvlan = 0;
1886 np->rx_ring.ex[i].bufhigh = 0;
1887 np->rx_ring.ex[i].buflow = 0;
1888 }
1889 np->rx_skb[i].skb = NULL;
1890 np->rx_skb[i].dma = 0;
1891 }
1892 }
1893
1894 static void nv_init_tx(struct net_device *dev)
1895 {
1896 struct fe_priv *np = netdev_priv(dev);
1897 int i;
1898
1899 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1900
1901 if (!nv_optimized(np))
1902 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1903 else
1904 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1905 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1906 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1907 np->tx_pkts_in_progress = 0;
1908 np->tx_change_owner = NULL;
1909 np->tx_end_flip = NULL;
1910 np->tx_stop = 0;
1911
1912 for (i = 0; i < np->tx_ring_size; i++) {
1913 if (!nv_optimized(np)) {
1914 np->tx_ring.orig[i].flaglen = 0;
1915 np->tx_ring.orig[i].buf = 0;
1916 } else {
1917 np->tx_ring.ex[i].flaglen = 0;
1918 np->tx_ring.ex[i].txvlan = 0;
1919 np->tx_ring.ex[i].bufhigh = 0;
1920 np->tx_ring.ex[i].buflow = 0;
1921 }
1922 np->tx_skb[i].skb = NULL;
1923 np->tx_skb[i].dma = 0;
1924 np->tx_skb[i].dma_len = 0;
1925 np->tx_skb[i].first_tx_desc = NULL;
1926 np->tx_skb[i].next_tx_ctx = NULL;
1927 }
1928 }
1929
1930 static int nv_init_ring(struct net_device *dev)
1931 {
1932 struct fe_priv *np = netdev_priv(dev);
1933
1934 nv_init_tx(dev);
1935 nv_init_rx(dev);
1936
1937 if (!nv_optimized(np))
1938 return nv_alloc_rx(dev);
1939 else
1940 return nv_alloc_rx_optimized(dev);
1941 }
1942
1943 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1944 {
1945 struct fe_priv *np = netdev_priv(dev);
1946
1947 if (tx_skb->dma) {
1948 pci_unmap_page(np->pci_dev, tx_skb->dma,
1949 tx_skb->dma_len,
1950 PCI_DMA_TODEVICE);
1951 tx_skb->dma = 0;
1952 }
1953 if (tx_skb->skb) {
1954 dev_kfree_skb_any(tx_skb->skb);
1955 tx_skb->skb = NULL;
1956 return 1;
1957 } else {
1958 return 0;
1959 }
1960 }
1961
1962 static void nv_drain_tx(struct net_device *dev)
1963 {
1964 struct fe_priv *np = netdev_priv(dev);
1965 unsigned int i;
1966
1967 for (i = 0; i < np->tx_ring_size; i++) {
1968 if (!nv_optimized(np)) {
1969 np->tx_ring.orig[i].flaglen = 0;
1970 np->tx_ring.orig[i].buf = 0;
1971 } else {
1972 np->tx_ring.ex[i].flaglen = 0;
1973 np->tx_ring.ex[i].txvlan = 0;
1974 np->tx_ring.ex[i].bufhigh = 0;
1975 np->tx_ring.ex[i].buflow = 0;
1976 }
1977 if (nv_release_txskb(dev, &np->tx_skb[i]))
1978 dev->stats.tx_dropped++;
1979 np->tx_skb[i].dma = 0;
1980 np->tx_skb[i].dma_len = 0;
1981 np->tx_skb[i].first_tx_desc = NULL;
1982 np->tx_skb[i].next_tx_ctx = NULL;
1983 }
1984 np->tx_pkts_in_progress = 0;
1985 np->tx_change_owner = NULL;
1986 np->tx_end_flip = NULL;
1987 }
1988
1989 static void nv_drain_rx(struct net_device *dev)
1990 {
1991 struct fe_priv *np = netdev_priv(dev);
1992 int i;
1993
1994 for (i = 0; i < np->rx_ring_size; i++) {
1995 if (!nv_optimized(np)) {
1996 np->rx_ring.orig[i].flaglen = 0;
1997 np->rx_ring.orig[i].buf = 0;
1998 } else {
1999 np->rx_ring.ex[i].flaglen = 0;
2000 np->rx_ring.ex[i].txvlan = 0;
2001 np->rx_ring.ex[i].bufhigh = 0;
2002 np->rx_ring.ex[i].buflow = 0;
2003 }
2004 wmb();
2005 if (np->rx_skb[i].skb) {
2006 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
2007 (skb_end_pointer(np->rx_skb[i].skb) -
2008 np->rx_skb[i].skb->data),
2009 PCI_DMA_FROMDEVICE);
2010 dev_kfree_skb(np->rx_skb[i].skb);
2011 np->rx_skb[i].skb = NULL;
2012 }
2013 }
2014 }
2015
2016 static void nv_drain_rxtx(struct net_device *dev)
2017 {
2018 nv_drain_tx(dev);
2019 nv_drain_rx(dev);
2020 }
2021
2022 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2023 {
2024 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2025 }
2026
2027 static void nv_legacybackoff_reseed(struct net_device *dev)
2028 {
2029 u8 __iomem *base = get_hwbase(dev);
2030 u32 reg;
2031 u32 low;
2032 int tx_status = 0;
2033
2034 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2035 get_random_bytes(&low, sizeof(low));
2036 reg |= low & NVREG_SLOTTIME_MASK;
2037
2038 /* Need to stop tx before change takes effect.
2039 * Caller has already gained np->lock.
2040 */
2041 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2042 if (tx_status)
2043 nv_stop_tx(dev);
2044 nv_stop_rx(dev);
2045 writel(reg, base + NvRegSlotTime);
2046 if (tx_status)
2047 nv_start_tx(dev);
2048 nv_start_rx(dev);
2049 }
2050
2051 /* Gear Backoff Seeds */
2052 #define BACKOFF_SEEDSET_ROWS 8
2053 #define BACKOFF_SEEDSET_LFSRS 15
2054
2055 /* Known Good seed sets */
2056 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2057 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2058 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2059 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2060 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2061 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2062 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2063 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2064 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
2065
2066 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2067 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2068 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2069 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2070 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2071 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2072 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2073 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2074 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
2075
2076 static void nv_gear_backoff_reseed(struct net_device *dev)
2077 {
2078 u8 __iomem *base = get_hwbase(dev);
2079 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2080 u32 temp, seedset, combinedSeed;
2081 int i;
2082
2083 /* Setup seed for free running LFSR */
2084 /* We are going to read the time stamp counter 3 times
2085 and swizzle bits around to increase randomness */
2086 get_random_bytes(&miniseed1, sizeof(miniseed1));
2087 miniseed1 &= 0x0fff;
2088 if (miniseed1 == 0)
2089 miniseed1 = 0xabc;
2090
2091 get_random_bytes(&miniseed2, sizeof(miniseed2));
2092 miniseed2 &= 0x0fff;
2093 if (miniseed2 == 0)
2094 miniseed2 = 0xabc;
2095 miniseed2_reversed =
2096 ((miniseed2 & 0xF00) >> 8) |
2097 (miniseed2 & 0x0F0) |
2098 ((miniseed2 & 0x00F) << 8);
2099
2100 get_random_bytes(&miniseed3, sizeof(miniseed3));
2101 miniseed3 &= 0x0fff;
2102 if (miniseed3 == 0)
2103 miniseed3 = 0xabc;
2104 miniseed3_reversed =
2105 ((miniseed3 & 0xF00) >> 8) |
2106 (miniseed3 & 0x0F0) |
2107 ((miniseed3 & 0x00F) << 8);
2108
2109 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2110 (miniseed2 ^ miniseed3_reversed);
2111
2112 /* Seeds can not be zero */
2113 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2114 combinedSeed |= 0x08;
2115 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2116 combinedSeed |= 0x8000;
2117
2118 /* No need to disable tx here */
2119 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2120 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2121 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2122 writel(temp,base + NvRegBackOffControl);
2123
2124 /* Setup seeds for all gear LFSRs. */
2125 get_random_bytes(&seedset, sizeof(seedset));
2126 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2127 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
2128 {
2129 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2130 temp |= main_seedset[seedset][i-1] & 0x3ff;
2131 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2132 writel(temp, base + NvRegBackOffControl);
2133 }
2134 }
2135
2136 /*
2137 * nv_start_xmit: dev->hard_start_xmit function
2138 * Called with netif_tx_lock held.
2139 */
2140 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2141 {
2142 struct fe_priv *np = netdev_priv(dev);
2143 u32 tx_flags = 0;
2144 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2145 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2146 unsigned int i;
2147 u32 offset = 0;
2148 u32 bcnt;
2149 u32 size = skb->len-skb->data_len;
2150 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2151 u32 empty_slots;
2152 struct ring_desc* put_tx;
2153 struct ring_desc* start_tx;
2154 struct ring_desc* prev_tx;
2155 struct nv_skb_map* prev_tx_ctx;
2156 unsigned long flags;
2157
2158 /* add fragments to entries count */
2159 for (i = 0; i < fragments; i++) {
2160 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2161 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2162 }
2163
2164 spin_lock_irqsave(&np->lock, flags);
2165 empty_slots = nv_get_empty_tx_slots(np);
2166 if (unlikely(empty_slots <= entries)) {
2167 netif_stop_queue(dev);
2168 np->tx_stop = 1;
2169 spin_unlock_irqrestore(&np->lock, flags);
2170 return NETDEV_TX_BUSY;
2171 }
2172 spin_unlock_irqrestore(&np->lock, flags);
2173
2174 start_tx = put_tx = np->put_tx.orig;
2175
2176 /* setup the header buffer */
2177 do {
2178 prev_tx = put_tx;
2179 prev_tx_ctx = np->put_tx_ctx;
2180 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2181 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2182 PCI_DMA_TODEVICE);
2183 np->put_tx_ctx->dma_len = bcnt;
2184 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2185 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2186
2187 tx_flags = np->tx_flags;
2188 offset += bcnt;
2189 size -= bcnt;
2190 if (unlikely(put_tx++ == np->last_tx.orig))
2191 put_tx = np->first_tx.orig;
2192 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2193 np->put_tx_ctx = np->first_tx_ctx;
2194 } while (size);
2195
2196 /* setup the fragments */
2197 for (i = 0; i < fragments; i++) {
2198 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2199 u32 size = frag->size;
2200 offset = 0;
2201
2202 do {
2203 prev_tx = put_tx;
2204 prev_tx_ctx = np->put_tx_ctx;
2205 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2206 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2207 PCI_DMA_TODEVICE);
2208 np->put_tx_ctx->dma_len = bcnt;
2209 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2210 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2211
2212 offset += bcnt;
2213 size -= bcnt;
2214 if (unlikely(put_tx++ == np->last_tx.orig))
2215 put_tx = np->first_tx.orig;
2216 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2217 np->put_tx_ctx = np->first_tx_ctx;
2218 } while (size);
2219 }
2220
2221 /* set last fragment flag */
2222 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2223
2224 /* save skb in this slot's context area */
2225 prev_tx_ctx->skb = skb;
2226
2227 if (skb_is_gso(skb))
2228 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2229 else
2230 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2231 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2232
2233 spin_lock_irqsave(&np->lock, flags);
2234
2235 /* set tx flags */
2236 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2237 np->put_tx.orig = put_tx;
2238
2239 spin_unlock_irqrestore(&np->lock, flags);
2240
2241 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
2242 dev->name, entries, tx_flags_extra);
2243 {
2244 int j;
2245 for (j=0; j<64; j++) {
2246 if ((j%16) == 0)
2247 dprintk("\n%03x:", j);
2248 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2249 }
2250 dprintk("\n");
2251 }
2252
2253 dev->trans_start = jiffies;
2254 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2255 return NETDEV_TX_OK;
2256 }
2257
2258 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
2259 {
2260 struct fe_priv *np = netdev_priv(dev);
2261 u32 tx_flags = 0;
2262 u32 tx_flags_extra;
2263 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2264 unsigned int i;
2265 u32 offset = 0;
2266 u32 bcnt;
2267 u32 size = skb->len-skb->data_len;
2268 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2269 u32 empty_slots;
2270 struct ring_desc_ex* put_tx;
2271 struct ring_desc_ex* start_tx;
2272 struct ring_desc_ex* prev_tx;
2273 struct nv_skb_map* prev_tx_ctx;
2274 struct nv_skb_map* start_tx_ctx;
2275 unsigned long flags;
2276
2277 /* add fragments to entries count */
2278 for (i = 0; i < fragments; i++) {
2279 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2280 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2281 }
2282
2283 spin_lock_irqsave(&np->lock, flags);
2284 empty_slots = nv_get_empty_tx_slots(np);
2285 if (unlikely(empty_slots <= entries)) {
2286 netif_stop_queue(dev);
2287 np->tx_stop = 1;
2288 spin_unlock_irqrestore(&np->lock, flags);
2289 return NETDEV_TX_BUSY;
2290 }
2291 spin_unlock_irqrestore(&np->lock, flags);
2292
2293 start_tx = put_tx = np->put_tx.ex;
2294 start_tx_ctx = np->put_tx_ctx;
2295
2296 /* setup the header buffer */
2297 do {
2298 prev_tx = put_tx;
2299 prev_tx_ctx = np->put_tx_ctx;
2300 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2301 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2302 PCI_DMA_TODEVICE);
2303 np->put_tx_ctx->dma_len = bcnt;
2304 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2305 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2306 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2307
2308 tx_flags = NV_TX2_VALID;
2309 offset += bcnt;
2310 size -= bcnt;
2311 if (unlikely(put_tx++ == np->last_tx.ex))
2312 put_tx = np->first_tx.ex;
2313 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2314 np->put_tx_ctx = np->first_tx_ctx;
2315 } while (size);
2316
2317 /* setup the fragments */
2318 for (i = 0; i < fragments; i++) {
2319 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2320 u32 size = frag->size;
2321 offset = 0;
2322
2323 do {
2324 prev_tx = put_tx;
2325 prev_tx_ctx = np->put_tx_ctx;
2326 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2327 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2328 PCI_DMA_TODEVICE);
2329 np->put_tx_ctx->dma_len = bcnt;
2330 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2331 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2332 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2333
2334 offset += bcnt;
2335 size -= bcnt;
2336 if (unlikely(put_tx++ == np->last_tx.ex))
2337 put_tx = np->first_tx.ex;
2338 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2339 np->put_tx_ctx = np->first_tx_ctx;
2340 } while (size);
2341 }
2342
2343 /* set last fragment flag */
2344 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2345
2346 /* save skb in this slot's context area */
2347 prev_tx_ctx->skb = skb;
2348
2349 if (skb_is_gso(skb))
2350 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2351 else
2352 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2353 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2354
2355 /* vlan tag */
2356 if (likely(!np->vlangrp)) {
2357 start_tx->txvlan = 0;
2358 } else {
2359 if (vlan_tx_tag_present(skb))
2360 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2361 else
2362 start_tx->txvlan = 0;
2363 }
2364
2365 spin_lock_irqsave(&np->lock, flags);
2366
2367 if (np->tx_limit) {
2368 /* Limit the number of outstanding tx. Setup all fragments, but
2369 * do not set the VALID bit on the first descriptor. Save a pointer
2370 * to that descriptor and also for next skb_map element.
2371 */
2372
2373 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2374 if (!np->tx_change_owner)
2375 np->tx_change_owner = start_tx_ctx;
2376
2377 /* remove VALID bit */
2378 tx_flags &= ~NV_TX2_VALID;
2379 start_tx_ctx->first_tx_desc = start_tx;
2380 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2381 np->tx_end_flip = np->put_tx_ctx;
2382 } else {
2383 np->tx_pkts_in_progress++;
2384 }
2385 }
2386
2387 /* set tx flags */
2388 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2389 np->put_tx.ex = put_tx;
2390
2391 spin_unlock_irqrestore(&np->lock, flags);
2392
2393 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2394 dev->name, entries, tx_flags_extra);
2395 {
2396 int j;
2397 for (j=0; j<64; j++) {
2398 if ((j%16) == 0)
2399 dprintk("\n%03x:", j);
2400 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2401 }
2402 dprintk("\n");
2403 }
2404
2405 dev->trans_start = jiffies;
2406 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2407 return NETDEV_TX_OK;
2408 }
2409
2410 static inline void nv_tx_flip_ownership(struct net_device *dev)
2411 {
2412 struct fe_priv *np = netdev_priv(dev);
2413
2414 np->tx_pkts_in_progress--;
2415 if (np->tx_change_owner) {
2416 np->tx_change_owner->first_tx_desc->flaglen |=
2417 cpu_to_le32(NV_TX2_VALID);
2418 np->tx_pkts_in_progress++;
2419
2420 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2421 if (np->tx_change_owner == np->tx_end_flip)
2422 np->tx_change_owner = NULL;
2423
2424 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2425 }
2426 }
2427
2428 /*
2429 * nv_tx_done: check for completed packets, release the skbs.
2430 *
2431 * Caller must own np->lock.
2432 */
2433 static int nv_tx_done(struct net_device *dev, int limit)
2434 {
2435 struct fe_priv *np = netdev_priv(dev);
2436 u32 flags;
2437 int tx_work = 0;
2438 struct ring_desc* orig_get_tx = np->get_tx.orig;
2439
2440 while ((np->get_tx.orig != np->put_tx.orig) &&
2441 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2442 (tx_work < limit)) {
2443
2444 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2445 dev->name, flags);
2446
2447 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2448 np->get_tx_ctx->dma_len,
2449 PCI_DMA_TODEVICE);
2450 np->get_tx_ctx->dma = 0;
2451
2452 if (np->desc_ver == DESC_VER_1) {
2453 if (flags & NV_TX_LASTPACKET) {
2454 if (flags & NV_TX_ERROR) {
2455 if (flags & NV_TX_UNDERFLOW)
2456 dev->stats.tx_fifo_errors++;
2457 if (flags & NV_TX_CARRIERLOST)
2458 dev->stats.tx_carrier_errors++;
2459 if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
2460 nv_legacybackoff_reseed(dev);
2461 dev->stats.tx_errors++;
2462 } else {
2463 dev->stats.tx_packets++;
2464 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2465 }
2466 dev_kfree_skb_any(np->get_tx_ctx->skb);
2467 np->get_tx_ctx->skb = NULL;
2468 tx_work++;
2469 }
2470 } else {
2471 if (flags & NV_TX2_LASTPACKET) {
2472 if (flags & NV_TX2_ERROR) {
2473 if (flags & NV_TX2_UNDERFLOW)
2474 dev->stats.tx_fifo_errors++;
2475 if (flags & NV_TX2_CARRIERLOST)
2476 dev->stats.tx_carrier_errors++;
2477 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
2478 nv_legacybackoff_reseed(dev);
2479 dev->stats.tx_errors++;
2480 } else {
2481 dev->stats.tx_packets++;
2482 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2483 }
2484 dev_kfree_skb_any(np->get_tx_ctx->skb);
2485 np->get_tx_ctx->skb = NULL;
2486 tx_work++;
2487 }
2488 }
2489 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2490 np->get_tx.orig = np->first_tx.orig;
2491 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2492 np->get_tx_ctx = np->first_tx_ctx;
2493 }
2494 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2495 np->tx_stop = 0;
2496 netif_wake_queue(dev);
2497 }
2498 return tx_work;
2499 }
2500
2501 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2502 {
2503 struct fe_priv *np = netdev_priv(dev);
2504 u32 flags;
2505 int tx_work = 0;
2506 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2507
2508 while ((np->get_tx.ex != np->put_tx.ex) &&
2509 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2510 (tx_work < limit)) {
2511
2512 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2513 dev->name, flags);
2514
2515 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2516 np->get_tx_ctx->dma_len,
2517 PCI_DMA_TODEVICE);
2518 np->get_tx_ctx->dma = 0;
2519
2520 if (flags & NV_TX2_LASTPACKET) {
2521 if (!(flags & NV_TX2_ERROR))
2522 dev->stats.tx_packets++;
2523 else {
2524 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2525 if (np->driver_data & DEV_HAS_GEAR_MODE)
2526 nv_gear_backoff_reseed(dev);
2527 else
2528 nv_legacybackoff_reseed(dev);
2529 }
2530 }
2531
2532 dev_kfree_skb_any(np->get_tx_ctx->skb);
2533 np->get_tx_ctx->skb = NULL;
2534 tx_work++;
2535
2536 if (np->tx_limit) {
2537 nv_tx_flip_ownership(dev);
2538 }
2539 }
2540 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2541 np->get_tx.ex = np->first_tx.ex;
2542 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2543 np->get_tx_ctx = np->first_tx_ctx;
2544 }
2545 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2546 np->tx_stop = 0;
2547 netif_wake_queue(dev);
2548 }
2549 return tx_work;
2550 }
2551
2552 /*
2553 * nv_tx_timeout: dev->tx_timeout function
2554 * Called with netif_tx_lock held.
2555 */
2556 static void nv_tx_timeout(struct net_device *dev)
2557 {
2558 struct fe_priv *np = netdev_priv(dev);
2559 u8 __iomem *base = get_hwbase(dev);
2560 u32 status;
2561 union ring_type put_tx;
2562 int saved_tx_limit;
2563
2564 if (np->msi_flags & NV_MSI_X_ENABLED)
2565 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2566 else
2567 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2568
2569 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2570
2571 {
2572 int i;
2573
2574 printk(KERN_INFO "%s: Ring at %lx\n",
2575 dev->name, (unsigned long)np->ring_addr);
2576 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2577 for (i=0;i<=np->register_size;i+= 32) {
2578 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2579 i,
2580 readl(base + i + 0), readl(base + i + 4),
2581 readl(base + i + 8), readl(base + i + 12),
2582 readl(base + i + 16), readl(base + i + 20),
2583 readl(base + i + 24), readl(base + i + 28));
2584 }
2585 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2586 for (i=0;i<np->tx_ring_size;i+= 4) {
2587 if (!nv_optimized(np)) {
2588 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2589 i,
2590 le32_to_cpu(np->tx_ring.orig[i].buf),
2591 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2592 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2593 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2594 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2595 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2596 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2597 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2598 } else {
2599 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2600 i,
2601 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2602 le32_to_cpu(np->tx_ring.ex[i].buflow),
2603 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2604 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2605 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2606 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2607 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2608 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2609 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2610 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2611 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2612 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2613 }
2614 }
2615 }
2616
2617 spin_lock_irq(&np->lock);
2618
2619 /* 1) stop tx engine */
2620 nv_stop_tx(dev);
2621
2622 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2623 saved_tx_limit = np->tx_limit;
2624 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2625 np->tx_stop = 0; /* prevent waking tx queue */
2626 if (!nv_optimized(np))
2627 nv_tx_done(dev, np->tx_ring_size);
2628 else
2629 nv_tx_done_optimized(dev, np->tx_ring_size);
2630
2631 /* save current HW postion */
2632 if (np->tx_change_owner)
2633 put_tx.ex = np->tx_change_owner->first_tx_desc;
2634 else
2635 put_tx = np->put_tx;
2636
2637 /* 3) clear all tx state */
2638 nv_drain_tx(dev);
2639 nv_init_tx(dev);
2640
2641 /* 4) restore state to current HW position */
2642 np->get_tx = np->put_tx = put_tx;
2643 np->tx_limit = saved_tx_limit;
2644
2645 /* 5) restart tx engine */
2646 nv_start_tx(dev);
2647 netif_wake_queue(dev);
2648 spin_unlock_irq(&np->lock);
2649 }
2650
2651 /*
2652 * Called when the nic notices a mismatch between the actual data len on the
2653 * wire and the len indicated in the 802 header
2654 */
2655 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2656 {
2657 int hdrlen; /* length of the 802 header */
2658 int protolen; /* length as stored in the proto field */
2659
2660 /* 1) calculate len according to header */
2661 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2662 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2663 hdrlen = VLAN_HLEN;
2664 } else {
2665 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2666 hdrlen = ETH_HLEN;
2667 }
2668 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2669 dev->name, datalen, protolen, hdrlen);
2670 if (protolen > ETH_DATA_LEN)
2671 return datalen; /* Value in proto field not a len, no checks possible */
2672
2673 protolen += hdrlen;
2674 /* consistency checks: */
2675 if (datalen > ETH_ZLEN) {
2676 if (datalen >= protolen) {
2677 /* more data on wire than in 802 header, trim of
2678 * additional data.
2679 */
2680 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2681 dev->name, protolen);
2682 return protolen;
2683 } else {
2684 /* less data on wire than mentioned in header.
2685 * Discard the packet.
2686 */
2687 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2688 dev->name);
2689 return -1;
2690 }
2691 } else {
2692 /* short packet. Accept only if 802 values are also short */
2693 if (protolen > ETH_ZLEN) {
2694 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2695 dev->name);
2696 return -1;
2697 }
2698 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2699 dev->name, datalen);
2700 return datalen;
2701 }
2702 }
2703
2704 static int nv_rx_process(struct net_device *dev, int limit)
2705 {
2706 struct fe_priv *np = netdev_priv(dev);
2707 u32 flags;
2708 int rx_work = 0;
2709 struct sk_buff *skb;
2710 int len;
2711
2712 while((np->get_rx.orig != np->put_rx.orig) &&
2713 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2714 (rx_work < limit)) {
2715
2716 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2717 dev->name, flags);
2718
2719 /*
2720 * the packet is for us - immediately tear down the pci mapping.
2721 * TODO: check if a prefetch of the first cacheline improves
2722 * the performance.
2723 */
2724 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2725 np->get_rx_ctx->dma_len,
2726 PCI_DMA_FROMDEVICE);
2727 skb = np->get_rx_ctx->skb;
2728 np->get_rx_ctx->skb = NULL;
2729
2730 {
2731 int j;
2732 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2733 for (j=0; j<64; j++) {
2734 if ((j%16) == 0)
2735 dprintk("\n%03x:", j);
2736 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2737 }
2738 dprintk("\n");
2739 }
2740 /* look at what we actually got: */
2741 if (np->desc_ver == DESC_VER_1) {
2742 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2743 len = flags & LEN_MASK_V1;
2744 if (unlikely(flags & NV_RX_ERROR)) {
2745 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2746 len = nv_getlen(dev, skb->data, len);
2747 if (len < 0) {
2748 dev->stats.rx_errors++;
2749 dev_kfree_skb(skb);
2750 goto next_pkt;
2751 }
2752 }
2753 /* framing errors are soft errors */
2754 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2755 if (flags & NV_RX_SUBSTRACT1) {
2756 len--;
2757 }
2758 }
2759 /* the rest are hard errors */
2760 else {
2761 if (flags & NV_RX_MISSEDFRAME)
2762 dev->stats.rx_missed_errors++;
2763 if (flags & NV_RX_CRCERR)
2764 dev->stats.rx_crc_errors++;
2765 if (flags & NV_RX_OVERFLOW)
2766 dev->stats.rx_over_errors++;
2767 dev->stats.rx_errors++;
2768 dev_kfree_skb(skb);
2769 goto next_pkt;
2770 }
2771 }
2772 } else {
2773 dev_kfree_skb(skb);
2774 goto next_pkt;
2775 }
2776 } else {
2777 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2778 len = flags & LEN_MASK_V2;
2779 if (unlikely(flags & NV_RX2_ERROR)) {
2780 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2781 len = nv_getlen(dev, skb->data, len);
2782 if (len < 0) {
2783 dev->stats.rx_errors++;
2784 dev_kfree_skb(skb);
2785 goto next_pkt;
2786 }
2787 }
2788 /* framing errors are soft errors */
2789 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2790 if (flags & NV_RX2_SUBSTRACT1) {
2791 len--;
2792 }
2793 }
2794 /* the rest are hard errors */
2795 else {
2796 if (flags & NV_RX2_CRCERR)
2797 dev->stats.rx_crc_errors++;
2798 if (flags & NV_RX2_OVERFLOW)
2799 dev->stats.rx_over_errors++;
2800 dev->stats.rx_errors++;
2801 dev_kfree_skb(skb);
2802 goto next_pkt;
2803 }
2804 }
2805 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2806 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2807 skb->ip_summed = CHECKSUM_UNNECESSARY;
2808 } else {
2809 dev_kfree_skb(skb);
2810 goto next_pkt;
2811 }
2812 }
2813 /* got a valid packet - forward it to the network core */
2814 skb_put(skb, len);
2815 skb->protocol = eth_type_trans(skb, dev);
2816 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2817 dev->name, len, skb->protocol);
2818 #ifdef CONFIG_FORCEDETH_NAPI
2819 netif_receive_skb(skb);
2820 #else
2821 netif_rx(skb);
2822 #endif
2823 dev->stats.rx_packets++;
2824 dev->stats.rx_bytes += len;
2825 next_pkt:
2826 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2827 np->get_rx.orig = np->first_rx.orig;
2828 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2829 np->get_rx_ctx = np->first_rx_ctx;
2830
2831 rx_work++;
2832 }
2833
2834 return rx_work;
2835 }
2836
2837 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2838 {
2839 struct fe_priv *np = netdev_priv(dev);
2840 u32 flags;
2841 u32 vlanflags = 0;
2842 int rx_work = 0;
2843 struct sk_buff *skb;
2844 int len;
2845
2846 while((np->get_rx.ex != np->put_rx.ex) &&
2847 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2848 (rx_work < limit)) {
2849
2850 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2851 dev->name, flags);
2852
2853 /*
2854 * the packet is for us - immediately tear down the pci mapping.
2855 * TODO: check if a prefetch of the first cacheline improves
2856 * the performance.
2857 */
2858 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2859 np->get_rx_ctx->dma_len,
2860 PCI_DMA_FROMDEVICE);
2861 skb = np->get_rx_ctx->skb;
2862 np->get_rx_ctx->skb = NULL;
2863
2864 {
2865 int j;
2866 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2867 for (j=0; j<64; j++) {
2868 if ((j%16) == 0)
2869 dprintk("\n%03x:", j);
2870 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2871 }
2872 dprintk("\n");
2873 }
2874 /* look at what we actually got: */
2875 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2876 len = flags & LEN_MASK_V2;
2877 if (unlikely(flags & NV_RX2_ERROR)) {
2878 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2879 len = nv_getlen(dev, skb->data, len);
2880 if (len < 0) {
2881 dev_kfree_skb(skb);
2882 goto next_pkt;
2883 }
2884 }
2885 /* framing errors are soft errors */
2886 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2887 if (flags & NV_RX2_SUBSTRACT1) {
2888 len--;
2889 }
2890 }
2891 /* the rest are hard errors */
2892 else {
2893 dev_kfree_skb(skb);
2894 goto next_pkt;
2895 }
2896 }
2897
2898 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2899 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2900 skb->ip_summed = CHECKSUM_UNNECESSARY;
2901
2902 /* got a valid packet - forward it to the network core */
2903 skb_put(skb, len);
2904 skb->protocol = eth_type_trans(skb, dev);
2905 prefetch(skb->data);
2906
2907 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2908 dev->name, len, skb->protocol);
2909
2910 if (likely(!np->vlangrp)) {
2911 #ifdef CONFIG_FORCEDETH_NAPI
2912 netif_receive_skb(skb);
2913 #else
2914 netif_rx(skb);
2915 #endif
2916 } else {
2917 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2918 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2919 #ifdef CONFIG_FORCEDETH_NAPI
2920 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2921 vlanflags & NV_RX3_VLAN_TAG_MASK);
2922 #else
2923 vlan_hwaccel_rx(skb, np->vlangrp,
2924 vlanflags & NV_RX3_VLAN_TAG_MASK);
2925 #endif
2926 } else {
2927 #ifdef CONFIG_FORCEDETH_NAPI
2928 netif_receive_skb(skb);
2929 #else
2930 netif_rx(skb);
2931 #endif
2932 }
2933 }
2934
2935 dev->stats.rx_packets++;
2936 dev->stats.rx_bytes += len;
2937 } else {
2938 dev_kfree_skb(skb);
2939 }
2940 next_pkt:
2941 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2942 np->get_rx.ex = np->first_rx.ex;
2943 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2944 np->get_rx_ctx = np->first_rx_ctx;
2945
2946 rx_work++;
2947 }
2948
2949 return rx_work;
2950 }
2951
2952 static void set_bufsize(struct net_device *dev)
2953 {
2954 struct fe_priv *np = netdev_priv(dev);
2955
2956 if (dev->mtu <= ETH_DATA_LEN)
2957 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2958 else
2959 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2960 }
2961
2962 /*
2963 * nv_change_mtu: dev->change_mtu function
2964 * Called with dev_base_lock held for read.
2965 */
2966 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2967 {
2968 struct fe_priv *np = netdev_priv(dev);
2969 int old_mtu;
2970
2971 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2972 return -EINVAL;
2973
2974 old_mtu = dev->mtu;
2975 dev->mtu = new_mtu;
2976
2977 /* return early if the buffer sizes will not change */
2978 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2979 return 0;
2980 if (old_mtu == new_mtu)
2981 return 0;
2982
2983 /* synchronized against open : rtnl_lock() held by caller */
2984 if (netif_running(dev)) {
2985 u8 __iomem *base = get_hwbase(dev);
2986 /*
2987 * It seems that the nic preloads valid ring entries into an
2988 * internal buffer. The procedure for flushing everything is
2989 * guessed, there is probably a simpler approach.
2990 * Changing the MTU is a rare event, it shouldn't matter.
2991 */
2992 nv_disable_irq(dev);
2993 nv_napi_disable(dev);
2994 netif_tx_lock_bh(dev);
2995 netif_addr_lock(dev);
2996 spin_lock(&np->lock);
2997 /* stop engines */
2998 nv_stop_rxtx(dev);
2999 nv_txrx_reset(dev);
3000 /* drain rx queue */
3001 nv_drain_rxtx(dev);
3002 /* reinit driver view of the rx queue */
3003 set_bufsize(dev);
3004 if (nv_init_ring(dev)) {
3005 if (!np->in_shutdown)
3006 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3007 }
3008 /* reinit nic view of the rx queue */
3009 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3010 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3011 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3012 base + NvRegRingSizes);
3013 pci_push(base);
3014 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3015 pci_push(base);
3016
3017 /* restart rx engine */
3018 nv_start_rxtx(dev);
3019 spin_unlock(&np->lock);
3020 netif_addr_unlock(dev);
3021 netif_tx_unlock_bh(dev);
3022 nv_napi_enable(dev);
3023 nv_enable_irq(dev);
3024 }
3025 return 0;
3026 }
3027
3028 static void nv_copy_mac_to_hw(struct net_device *dev)
3029 {
3030 u8 __iomem *base = get_hwbase(dev);
3031 u32 mac[2];
3032
3033 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3034 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3035 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3036
3037 writel(mac[0], base + NvRegMacAddrA);
3038 writel(mac[1], base + NvRegMacAddrB);
3039 }
3040
3041 /*
3042 * nv_set_mac_address: dev->set_mac_address function
3043 * Called with rtnl_lock() held.
3044 */
3045 static int nv_set_mac_address(struct net_device *dev, void *addr)
3046 {
3047 struct fe_priv *np = netdev_priv(dev);
3048 struct sockaddr *macaddr = (struct sockaddr*)addr;
3049
3050 if (!is_valid_ether_addr(macaddr->sa_data))
3051 return -EADDRNOTAVAIL;
3052
3053 /* synchronized against open : rtnl_lock() held by caller */
3054 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3055
3056 if (netif_running(dev)) {
3057 netif_tx_lock_bh(dev);
3058 netif_addr_lock(dev);
3059 spin_lock_irq(&np->lock);
3060
3061 /* stop rx engine */
3062 nv_stop_rx(dev);
3063
3064 /* set mac address */
3065 nv_copy_mac_to_hw(dev);
3066
3067 /* restart rx engine */
3068 nv_start_rx(dev);
3069 spin_unlock_irq(&np->lock);
3070 netif_addr_unlock(dev);
3071 netif_tx_unlock_bh(dev);
3072 } else {
3073 nv_copy_mac_to_hw(dev);
3074 }
3075 return 0;
3076 }
3077
3078 /*
3079 * nv_set_multicast: dev->set_multicast function
3080 * Called with netif_tx_lock held.
3081 */
3082 static void nv_set_multicast(struct net_device *dev)
3083 {
3084 struct fe_priv *np = netdev_priv(dev);
3085 u8 __iomem *base = get_hwbase(dev);
3086 u32 addr[2];
3087 u32 mask[2];
3088 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3089
3090 memset(addr, 0, sizeof(addr));
3091 memset(mask, 0, sizeof(mask));
3092
3093 if (dev->flags & IFF_PROMISC) {
3094 pff |= NVREG_PFF_PROMISC;
3095 } else {
3096 pff |= NVREG_PFF_MYADDR;
3097
3098 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
3099 u32 alwaysOff[2];
3100 u32 alwaysOn[2];
3101
3102 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3103 if (dev->flags & IFF_ALLMULTI) {
3104 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3105 } else {
3106 struct dev_mc_list *walk;
3107
3108 walk = dev->mc_list;
3109 while (walk != NULL) {
3110 u32 a, b;
3111 a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
3112 b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
3113 alwaysOn[0] &= a;
3114 alwaysOff[0] &= ~a;
3115 alwaysOn[1] &= b;
3116 alwaysOff[1] &= ~b;
3117 walk = walk->next;
3118 }
3119 }
3120 addr[0] = alwaysOn[0];
3121 addr[1] = alwaysOn[1];
3122 mask[0] = alwaysOn[0] | alwaysOff[0];
3123 mask[1] = alwaysOn[1] | alwaysOff[1];
3124 } else {
3125 mask[0] = NVREG_MCASTMASKA_NONE;
3126 mask[1] = NVREG_MCASTMASKB_NONE;
3127 }
3128 }
3129 addr[0] |= NVREG_MCASTADDRA_FORCE;
3130 pff |= NVREG_PFF_ALWAYS;
3131 spin_lock_irq(&np->lock);
3132 nv_stop_rx(dev);
3133 writel(addr[0], base + NvRegMulticastAddrA);
3134 writel(addr[1], base + NvRegMulticastAddrB);
3135 writel(mask[0], base + NvRegMulticastMaskA);
3136 writel(mask[1], base + NvRegMulticastMaskB);
3137 writel(pff, base + NvRegPacketFilterFlags);
3138 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
3139 dev->name);
3140 nv_start_rx(dev);
3141 spin_unlock_irq(&np->lock);
3142 }
3143
3144 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3145 {
3146 struct fe_priv *np = netdev_priv(dev);
3147 u8 __iomem *base = get_hwbase(dev);
3148
3149 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3150
3151 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3152 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3153 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3154 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3155 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3156 } else {
3157 writel(pff, base + NvRegPacketFilterFlags);
3158 }
3159 }
3160 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3161 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3162 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3163 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3164 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3165 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3166 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3167 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3168 /* limit the number of tx pause frames to a default of 8 */
3169 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3170 }
3171 writel(pause_enable, base + NvRegTxPauseFrame);
3172 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3173 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3174 } else {
3175 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3176 writel(regmisc, base + NvRegMisc1);
3177 }
3178 }
3179 }
3180
3181 /**
3182 * nv_update_linkspeed: Setup the MAC according to the link partner
3183 * @dev: Network device to be configured
3184 *
3185 * The function queries the PHY and checks if there is a link partner.
3186 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3187 * set to 10 MBit HD.
3188 *
3189 * The function returns 0 if there is no link partner and 1 if there is
3190 * a good link partner.
3191 */
3192 static int nv_update_linkspeed(struct net_device *dev)
3193 {
3194 struct fe_priv *np = netdev_priv(dev);
3195 u8 __iomem *base = get_hwbase(dev);
3196 int adv = 0;
3197 int lpa = 0;
3198 int adv_lpa, adv_pause, lpa_pause;
3199 int newls = np->linkspeed;
3200 int newdup = np->duplex;
3201 int mii_status;
3202 int retval = 0;
3203 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3204 u32 txrxFlags = 0;
3205 u32 phy_exp;
3206
3207 /* BMSR_LSTATUS is latched, read it twice:
3208 * we want the current value.
3209 */
3210 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3211 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3212
3213 if (!(mii_status & BMSR_LSTATUS)) {
3214 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
3215 dev->name);
3216 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3217 newdup = 0;
3218 retval = 0;
3219 goto set_speed;
3220 }
3221
3222 if (np->autoneg == 0) {
3223 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
3224 dev->name, np->fixed_mode);
3225 if (np->fixed_mode & LPA_100FULL) {
3226 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3227 newdup = 1;
3228 } else if (np->fixed_mode & LPA_100HALF) {
3229 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3230 newdup = 0;
3231 } else if (np->fixed_mode & LPA_10FULL) {
3232 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3233 newdup = 1;
3234 } else {
3235 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3236 newdup = 0;
3237 }
3238 retval = 1;
3239 goto set_speed;
3240 }
3241 /* check auto negotiation is complete */
3242 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3243 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3244 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3245 newdup = 0;
3246 retval = 0;
3247 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
3248 goto set_speed;
3249 }
3250
3251 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3252 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3253 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
3254 dev->name, adv, lpa);
3255
3256 retval = 1;
3257 if (np->gigabit == PHY_GIGABIT) {
3258 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3259 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3260
3261 if ((control_1000 & ADVERTISE_1000FULL) &&
3262 (status_1000 & LPA_1000FULL)) {
3263 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
3264 dev->name);
3265 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3266 newdup = 1;
3267 goto set_speed;
3268 }
3269 }
3270
3271 /* FIXME: handle parallel detection properly */
3272 adv_lpa = lpa & adv;
3273 if (adv_lpa & LPA_100FULL) {
3274 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3275 newdup = 1;
3276 } else if (adv_lpa & LPA_100HALF) {
3277 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3278 newdup = 0;
3279 } else if (adv_lpa & LPA_10FULL) {
3280 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3281 newdup = 1;
3282 } else if (adv_lpa & LPA_10HALF) {
3283 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3284 newdup = 0;
3285 } else {
3286 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
3287 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3288 newdup = 0;
3289 }
3290
3291 set_speed:
3292 if (np->duplex == newdup && np->linkspeed == newls)
3293 return retval;
3294
3295 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
3296 dev->name, np->linkspeed, np->duplex, newls, newdup);
3297
3298 np->duplex = newdup;
3299 np->linkspeed = newls;
3300
3301 /* The transmitter and receiver must be restarted for safe update */
3302 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3303 txrxFlags |= NV_RESTART_TX;
3304 nv_stop_tx(dev);
3305 }
3306 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3307 txrxFlags |= NV_RESTART_RX;
3308 nv_stop_rx(dev);
3309 }
3310
3311 if (np->gigabit == PHY_GIGABIT) {
3312 phyreg = readl(base + NvRegSlotTime);
3313 phyreg &= ~(0x3FF00);
3314 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3315 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3316 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3317 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3318 phyreg |= NVREG_SLOTTIME_1000_FULL;
3319 writel(phyreg, base + NvRegSlotTime);
3320 }
3321
3322 phyreg = readl(base + NvRegPhyInterface);
3323 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3324 if (np->duplex == 0)
3325 phyreg |= PHY_HALF;
3326 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3327 phyreg |= PHY_100;
3328 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3329 phyreg |= PHY_1000;
3330 writel(phyreg, base + NvRegPhyInterface);
3331
3332 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3333 if (phyreg & PHY_RGMII) {
3334 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3335 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3336 } else {
3337 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3338 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3339 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3340 else
3341 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3342 } else {
3343 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3344 }
3345 }
3346 } else {
3347 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3348 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3349 else
3350 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3351 }
3352 writel(txreg, base + NvRegTxDeferral);
3353
3354 if (np->desc_ver == DESC_VER_1) {
3355 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3356 } else {
3357 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3358 txreg = NVREG_TX_WM_DESC2_3_1000;
3359 else
3360 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3361 }
3362 writel(txreg, base + NvRegTxWatermark);
3363
3364 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3365 base + NvRegMisc1);
3366 pci_push(base);
3367 writel(np->linkspeed, base + NvRegLinkSpeed);
3368 pci_push(base);
3369
3370 pause_flags = 0;
3371 /* setup pause frame */
3372 if (np->duplex != 0) {
3373 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3374 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3375 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3376
3377 switch (adv_pause) {
3378 case ADVERTISE_PAUSE_CAP:
3379 if (lpa_pause & LPA_PAUSE_CAP) {
3380 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3381 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3382 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3383 }
3384 break;
3385 case ADVERTISE_PAUSE_ASYM:
3386 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3387 {
3388 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3389 }
3390 break;
3391 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3392 if (lpa_pause & LPA_PAUSE_CAP)
3393 {
3394 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3395 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3396 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3397 }
3398 if (lpa_pause == LPA_PAUSE_ASYM)
3399 {
3400 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3401 }
3402 break;
3403 }
3404 } else {
3405 pause_flags = np->pause_flags;
3406 }
3407 }
3408 nv_update_pause(dev, pause_flags);
3409
3410 if (txrxFlags & NV_RESTART_TX)
3411 nv_start_tx(dev);
3412 if (txrxFlags & NV_RESTART_RX)
3413 nv_start_rx(dev);
3414
3415 return retval;
3416 }
3417
3418 static void nv_linkchange(struct net_device *dev)
3419 {
3420 if (nv_update_linkspeed(dev)) {
3421 if (!netif_carrier_ok(dev)) {
3422 netif_carrier_on(dev);
3423 printk(KERN_INFO "%s: link up.\n", dev->name);
3424 nv_txrx_gate(dev, false);
3425 nv_start_rx(dev);
3426 }
3427 } else {
3428 if (netif_carrier_ok(dev)) {
3429 netif_carrier_off(dev);
3430 printk(KERN_INFO "%s: link down.\n", dev->name);
3431 nv_txrx_gate(dev, true);
3432 nv_stop_rx(dev);
3433 }
3434 }
3435 }
3436
3437 static void nv_link_irq(struct net_device *dev)
3438 {
3439 u8 __iomem *base = get_hwbase(dev);
3440 u32 miistat;
3441
3442 miistat = readl(base + NvRegMIIStatus);
3443 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3444 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3445
3446 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3447 nv_linkchange(dev);
3448 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3449 }
3450
3451 static void nv_msi_workaround(struct fe_priv *np)
3452 {
3453
3454 /* Need to toggle the msi irq mask within the ethernet device,
3455 * otherwise, future interrupts will not be detected.
3456 */
3457 if (np->msi_flags & NV_MSI_ENABLED) {
3458 u8 __iomem *base = np->base;
3459
3460 writel(0, base + NvRegMSIIrqMask);
3461 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3462 }
3463 }
3464
3465 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3466 {
3467 struct fe_priv *np = netdev_priv(dev);
3468
3469 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3470 if (total_work > NV_DYNAMIC_THRESHOLD) {
3471 /* transition to poll based interrupts */
3472 np->quiet_count = 0;
3473 if (np->irqmask != NVREG_IRQMASK_CPU) {
3474 np->irqmask = NVREG_IRQMASK_CPU;
3475 return 1;
3476 }
3477 } else {
3478 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3479 np->quiet_count++;
3480 } else {
3481 /* reached a period of low activity, switch
3482 to per tx/rx packet interrupts */
3483 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3484 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3485 return 1;
3486 }
3487 }
3488 }
3489 }
3490 return 0;
3491 }
3492
3493 static irqreturn_t nv_nic_irq(int foo, void *data)
3494 {
3495 struct net_device *dev = (struct net_device *) data;
3496 struct fe_priv *np = netdev_priv(dev);
3497 u8 __iomem *base = get_hwbase(dev);
3498 #ifndef CONFIG_FORCEDETH_NAPI
3499 int total_work = 0;
3500 int loop_count = 0;
3501 #endif
3502
3503 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3504
3505 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3506 np->events = readl(base + NvRegIrqStatus);
3507 writel(np->events, base + NvRegIrqStatus);
3508 } else {
3509 np->events = readl(base + NvRegMSIXIrqStatus);
3510 writel(np->events, base + NvRegMSIXIrqStatus);
3511 }
3512 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3513 if (!(np->events & np->irqmask))
3514 return IRQ_NONE;
3515
3516 nv_msi_workaround(np);
3517
3518 #ifdef CONFIG_FORCEDETH_NAPI
3519 napi_schedule(&np->napi);
3520
3521 /* Disable furthur irq's
3522 (msix not enabled with napi) */
3523 writel(0, base + NvRegIrqMask);
3524
3525 #else
3526 do
3527 {
3528 int work = 0;
3529 if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
3530 if (unlikely(nv_alloc_rx(dev))) {
3531 spin_lock(&np->lock);
3532 if (!np->in_shutdown)
3533 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3534 spin_unlock(&np->lock);
3535 }
3536 }
3537
3538 spin_lock(&np->lock);
3539 work += nv_tx_done(dev, TX_WORK_PER_LOOP);
3540 spin_unlock(&np->lock);
3541
3542 if (!work)
3543 break;
3544
3545 total_work += work;
3546
3547 loop_count++;
3548 }
3549 while (loop_count < max_interrupt_work);
3550
3551 if (nv_change_interrupt_mode(dev, total_work)) {
3552 /* setup new irq mask */
3553 writel(np->irqmask, base + NvRegIrqMask);
3554 }
3555
3556 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3557 spin_lock(&np->lock);
3558 nv_link_irq(dev);
3559 spin_unlock(&np->lock);
3560 }
3561 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3562 spin_lock(&np->lock);
3563 nv_linkchange(dev);
3564 spin_unlock(&np->lock);
3565 np->link_timeout = jiffies + LINK_TIMEOUT;
3566 }
3567 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3568 spin_lock(&np->lock);
3569 /* disable interrupts on the nic */
3570 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3571 writel(0, base + NvRegIrqMask);
3572 else
3573 writel(np->irqmask, base + NvRegIrqMask);
3574 pci_push(base);
3575
3576 if (!np->in_shutdown) {
3577 np->nic_poll_irq = np->irqmask;
3578 np->recover_error = 1;
3579 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3580 }
3581 spin_unlock(&np->lock);
3582 }
3583 #endif
3584 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3585
3586 return IRQ_HANDLED;
3587 }
3588
3589 /**
3590 * All _optimized functions are used to help increase performance
3591 * (reduce CPU and increase throughput). They use descripter version 3,
3592 * compiler directives, and reduce memory accesses.
3593 */
3594 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3595 {
3596 struct net_device *dev = (struct net_device *) data;
3597 struct fe_priv *np = netdev_priv(dev);
3598 u8 __iomem *base = get_hwbase(dev);
3599 #ifndef CONFIG_FORCEDETH_NAPI
3600 int total_work = 0;
3601 int loop_count = 0;
3602 #endif
3603
3604 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3605
3606 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3607 np->events = readl(base + NvRegIrqStatus);
3608 writel(np->events, base + NvRegIrqStatus);
3609 } else {
3610 np->events = readl(base + NvRegMSIXIrqStatus);
3611 writel(np->events, base + NvRegMSIXIrqStatus);
3612 }
3613 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3614 if (!(np->events & np->irqmask))
3615 return IRQ_NONE;
3616
3617 nv_msi_workaround(np);
3618
3619 #ifdef CONFIG_FORCEDETH_NAPI
3620 napi_schedule(&np->napi);
3621
3622 /* Disable furthur irq's
3623 (msix not enabled with napi) */
3624 writel(0, base + NvRegIrqMask);
3625
3626 #else
3627 do
3628 {
3629 int work = 0;
3630 if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
3631 if (unlikely(nv_alloc_rx_optimized(dev))) {
3632 spin_lock(&np->lock);
3633 if (!np->in_shutdown)
3634 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3635 spin_unlock(&np->lock);
3636 }
3637 }
3638
3639 spin_lock(&np->lock);
3640 work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3641 spin_unlock(&np->lock);
3642
3643 if (!work)
3644 break;
3645
3646 total_work += work;
3647
3648 loop_count++;
3649 }
3650 while (loop_count < max_interrupt_work);
3651
3652 if (nv_change_interrupt_mode(dev, total_work)) {
3653 /* setup new irq mask */
3654 writel(np->irqmask, base + NvRegIrqMask);
3655 }
3656
3657 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3658 spin_lock(&np->lock);
3659 nv_link_irq(dev);
3660 spin_unlock(&np->lock);
3661 }
3662 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3663 spin_lock(&np->lock);
3664 nv_linkchange(dev);
3665 spin_unlock(&np->lock);
3666 np->link_timeout = jiffies + LINK_TIMEOUT;
3667 }
3668 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3669 spin_lock(&np->lock);
3670 /* disable interrupts on the nic */
3671 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3672 writel(0, base + NvRegIrqMask);
3673 else
3674 writel(np->irqmask, base + NvRegIrqMask);
3675 pci_push(base);
3676
3677 if (!np->in_shutdown) {
3678 np->nic_poll_irq = np->irqmask;
3679 np->recover_error = 1;
3680 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3681 }
3682 spin_unlock(&np->lock);
3683 }
3684
3685 #endif
3686 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3687
3688 return IRQ_HANDLED;
3689 }
3690
3691 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3692 {
3693 struct net_device *dev = (struct net_device *) data;
3694 struct fe_priv *np = netdev_priv(dev);
3695 u8 __iomem *base = get_hwbase(dev);
3696 u32 events;
3697 int i;
3698 unsigned long flags;
3699
3700 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3701
3702 for (i=0; ; i++) {
3703 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3704 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3705 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3706 if (!(events & np->irqmask))
3707 break;
3708
3709 spin_lock_irqsave(&np->lock, flags);
3710 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3711 spin_unlock_irqrestore(&np->lock, flags);
3712
3713 if (unlikely(i > max_interrupt_work)) {
3714 spin_lock_irqsave(&np->lock, flags);
3715 /* disable interrupts on the nic */
3716 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3717 pci_push(base);
3718
3719 if (!np->in_shutdown) {
3720 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3721 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3722 }
3723 spin_unlock_irqrestore(&np->lock, flags);
3724 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3725 break;
3726 }
3727
3728 }
3729 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3730
3731 return IRQ_RETVAL(i);
3732 }
3733
3734 #ifdef CONFIG_FORCEDETH_NAPI
3735 static int nv_napi_poll(struct napi_struct *napi, int budget)
3736 {
3737 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3738 struct net_device *dev = np->dev;
3739 u8 __iomem *base = get_hwbase(dev);
3740 unsigned long flags;
3741 int retcode;
3742 int tx_work, rx_work;
3743
3744 if (!nv_optimized(np)) {
3745 spin_lock_irqsave(&np->lock, flags);
3746 tx_work = nv_tx_done(dev, np->tx_ring_size);
3747 spin_unlock_irqrestore(&np->lock, flags);
3748
3749 rx_work = nv_rx_process(dev, budget);
3750 retcode = nv_alloc_rx(dev);
3751 } else {
3752 spin_lock_irqsave(&np->lock, flags);
3753 tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
3754 spin_unlock_irqrestore(&np->lock, flags);
3755
3756 rx_work = nv_rx_process_optimized(dev, budget);
3757 retcode = nv_alloc_rx_optimized(dev);
3758 }
3759
3760 if (retcode) {
3761 spin_lock_irqsave(&np->lock, flags);
3762 if (!np->in_shutdown)
3763 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3764 spin_unlock_irqrestore(&np->lock, flags);
3765 }
3766
3767 nv_change_interrupt_mode(dev, tx_work + rx_work);
3768
3769 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3770 spin_lock_irqsave(&np->lock, flags);
3771 nv_link_irq(dev);
3772 spin_unlock_irqrestore(&np->lock, flags);
3773 }
3774 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3775 spin_lock_irqsave(&np->lock, flags);
3776 nv_linkchange(dev);
3777 spin_unlock_irqrestore(&np->lock, flags);
3778 np->link_timeout = jiffies + LINK_TIMEOUT;
3779 }
3780 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3781 spin_lock_irqsave(&np->lock, flags);
3782 if (!np->in_shutdown) {
3783 np->nic_poll_irq = np->irqmask;
3784 np->recover_error = 1;
3785 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3786 }
3787 spin_unlock_irqrestore(&np->lock, flags);
3788 napi_complete(napi);
3789 return rx_work;
3790 }
3791
3792 if (rx_work < budget) {
3793 /* re-enable interrupts
3794 (msix not enabled in napi) */
3795 napi_complete(napi);
3796
3797 writel(np->irqmask, base + NvRegIrqMask);
3798 }
3799 return rx_work;
3800 }
3801 #endif
3802
3803 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3804 {
3805 struct net_device *dev = (struct net_device *) data;
3806 struct fe_priv *np = netdev_priv(dev);
3807 u8 __iomem *base = get_hwbase(dev);
3808 u32 events;
3809 int i;
3810 unsigned long flags;
3811
3812 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3813
3814 for (i=0; ; i++) {
3815 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3816 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3817 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3818 if (!(events & np->irqmask))
3819 break;
3820
3821 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3822 if (unlikely(nv_alloc_rx_optimized(dev))) {
3823 spin_lock_irqsave(&np->lock, flags);
3824 if (!np->in_shutdown)
3825 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3826 spin_unlock_irqrestore(&np->lock, flags);
3827 }
3828 }
3829
3830 if (unlikely(i > max_interrupt_work)) {
3831 spin_lock_irqsave(&np->lock, flags);
3832 /* disable interrupts on the nic */
3833 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3834 pci_push(base);
3835
3836 if (!np->in_shutdown) {
3837 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3838 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3839 }
3840 spin_unlock_irqrestore(&np->lock, flags);
3841 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3842 break;
3843 }
3844 }
3845 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3846
3847 return IRQ_RETVAL(i);
3848 }
3849
3850 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3851 {
3852 struct net_device *dev = (struct net_device *) data;
3853 struct fe_priv *np = netdev_priv(dev);
3854 u8 __iomem *base = get_hwbase(dev);
3855 u32 events;
3856 int i;
3857 unsigned long flags;
3858
3859 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3860
3861 for (i=0; ; i++) {
3862 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3863 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3864 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3865 if (!(events & np->irqmask))
3866 break;
3867
3868 /* check tx in case we reached max loop limit in tx isr */
3869 spin_lock_irqsave(&np->lock, flags);
3870 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3871 spin_unlock_irqrestore(&np->lock, flags);
3872
3873 if (events & NVREG_IRQ_LINK) {
3874 spin_lock_irqsave(&np->lock, flags);
3875 nv_link_irq(dev);
3876 spin_unlock_irqrestore(&np->lock, flags);
3877 }
3878 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3879 spin_lock_irqsave(&np->lock, flags);
3880 nv_linkchange(dev);
3881 spin_unlock_irqrestore(&np->lock, flags);
3882 np->link_timeout = jiffies + LINK_TIMEOUT;
3883 }
3884 if (events & NVREG_IRQ_RECOVER_ERROR) {
3885 spin_lock_irq(&np->lock);
3886 /* disable interrupts on the nic */
3887 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3888 pci_push(base);
3889
3890 if (!np->in_shutdown) {
3891 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3892 np->recover_error = 1;
3893 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3894 }
3895 spin_unlock_irq(&np->lock);
3896 break;
3897 }
3898 if (unlikely(i > max_interrupt_work)) {
3899 spin_lock_irqsave(&np->lock, flags);
3900 /* disable interrupts on the nic */
3901 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3902 pci_push(base);
3903
3904 if (!np->in_shutdown) {
3905 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3906 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3907 }
3908 spin_unlock_irqrestore(&np->lock, flags);
3909 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3910 break;
3911 }
3912
3913 }
3914 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3915
3916 return IRQ_RETVAL(i);
3917 }
3918
3919 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3920 {
3921 struct net_device *dev = (struct net_device *) data;
3922 struct fe_priv *np = netdev_priv(dev);
3923 u8 __iomem *base = get_hwbase(dev);
3924 u32 events;
3925
3926 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3927
3928 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3929 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3930 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3931 } else {
3932 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3933 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3934 }
3935 pci_push(base);
3936 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3937 if (!(events & NVREG_IRQ_TIMER))
3938 return IRQ_RETVAL(0);
3939
3940 nv_msi_workaround(np);
3941
3942 spin_lock(&np->lock);
3943 np->intr_test = 1;
3944 spin_unlock(&np->lock);
3945
3946 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3947
3948 return IRQ_RETVAL(1);
3949 }
3950
3951 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3952 {
3953 u8 __iomem *base = get_hwbase(dev);
3954 int i;
3955 u32 msixmap = 0;
3956
3957 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3958 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3959 * the remaining 8 interrupts.
3960 */
3961 for (i = 0; i < 8; i++) {
3962 if ((irqmask >> i) & 0x1) {
3963 msixmap |= vector << (i << 2);
3964 }
3965 }
3966 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3967
3968 msixmap = 0;
3969 for (i = 0; i < 8; i++) {
3970 if ((irqmask >> (i + 8)) & 0x1) {
3971 msixmap |= vector << (i << 2);
3972 }
3973 }
3974 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3975 }
3976
3977 static int nv_request_irq(struct net_device *dev, int intr_test)
3978 {
3979 struct fe_priv *np = get_nvpriv(dev);
3980 u8 __iomem *base = get_hwbase(dev);
3981 int ret = 1;
3982 int i;
3983 irqreturn_t (*handler)(int foo, void *data);
3984
3985 if (intr_test) {
3986 handler = nv_nic_irq_test;
3987 } else {
3988 if (nv_optimized(np))
3989 handler = nv_nic_irq_optimized;
3990 else
3991 handler = nv_nic_irq;
3992 }
3993
3994 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3995 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3996 np->msi_x_entry[i].entry = i;
3997 }
3998 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3999 np->msi_flags |= NV_MSI_X_ENABLED;
4000 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
4001 /* Request irq for rx handling */
4002 sprintf(np->name_rx, "%s-rx", dev->name);
4003 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
4004 &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
4005 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
4006 pci_disable_msix(np->pci_dev);
4007 np->msi_flags &= ~NV_MSI_X_ENABLED;
4008 goto out_err;
4009 }
4010 /* Request irq for tx handling */
4011 sprintf(np->name_tx, "%s-tx", dev->name);
4012 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
4013 &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
4014 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
4015 pci_disable_msix(np->pci_dev);
4016 np->msi_flags &= ~NV_MSI_X_ENABLED;
4017 goto out_free_rx;
4018 }
4019 /* Request irq for link and timer handling */
4020 sprintf(np->name_other, "%s-other", dev->name);
4021 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
4022 &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
4023 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
4024 pci_disable_msix(np->pci_dev);
4025 np->msi_flags &= ~NV_MSI_X_ENABLED;
4026 goto out_free_tx;
4027 }
4028 /* map interrupts to their respective vector */
4029 writel(0, base + NvRegMSIXMap0);
4030 writel(0, base + NvRegMSIXMap1);
4031 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
4032 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
4033 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
4034 } else {
4035 /* Request irq for all interrupts */
4036 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
4037 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4038 pci_disable_msix(np->pci_dev);
4039 np->msi_flags &= ~NV_MSI_X_ENABLED;
4040 goto out_err;
4041 }
4042
4043 /* map interrupts to vector 0 */
4044 writel(0, base + NvRegMSIXMap0);
4045 writel(0, base + NvRegMSIXMap1);
4046 }
4047 }
4048 }
4049 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
4050 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
4051 np->msi_flags |= NV_MSI_ENABLED;
4052 dev->irq = np->pci_dev->irq;
4053 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
4054 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4055 pci_disable_msi(np->pci_dev);
4056 np->msi_flags &= ~NV_MSI_ENABLED;
4057 dev->irq = np->pci_dev->irq;
4058 goto out_err;
4059 }
4060
4061 /* map interrupts to vector 0 */
4062 writel(0, base + NvRegMSIMap0);
4063 writel(0, base + NvRegMSIMap1);
4064 /* enable msi vector 0 */
4065 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4066 }
4067 }
4068 if (ret != 0) {
4069 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4070 goto out_err;
4071
4072 }
4073
4074 return 0;
4075 out_free_tx:
4076 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4077 out_free_rx:
4078 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4079 out_err:
4080 return 1;
4081 }
4082
4083 static void nv_free_irq(struct net_device *dev)
4084 {
4085 struct fe_priv *np = get_nvpriv(dev);
4086 int i;
4087
4088 if (np->msi_flags & NV_MSI_X_ENABLED) {
4089 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
4090 free_irq(np->msi_x_entry[i].vector, dev);
4091 }
4092 pci_disable_msix(np->pci_dev);
4093 np->msi_flags &= ~NV_MSI_X_ENABLED;
4094 } else {
4095 free_irq(np->pci_dev->irq, dev);
4096 if (np->msi_flags & NV_MSI_ENABLED) {
4097 pci_disable_msi(np->pci_dev);
4098 np->msi_flags &= ~NV_MSI_ENABLED;
4099 }
4100 }
4101 }
4102
4103 static void nv_do_nic_poll(unsigned long data)
4104 {
4105 struct net_device *dev = (struct net_device *) data;
4106 struct fe_priv *np = netdev_priv(dev);
4107 u8 __iomem *base = get_hwbase(dev);
4108 u32 mask = 0;
4109
4110 /*
4111 * First disable irq(s) and then
4112 * reenable interrupts on the nic, we have to do this before calling
4113 * nv_nic_irq because that may decide to do otherwise
4114 */
4115
4116 if (!using_multi_irqs(dev)) {
4117 if (np->msi_flags & NV_MSI_X_ENABLED)
4118 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4119 else
4120 disable_irq_lockdep(np->pci_dev->irq);
4121 mask = np->irqmask;
4122 } else {
4123 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4124 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4125 mask |= NVREG_IRQ_RX_ALL;
4126 }
4127 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4128 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4129 mask |= NVREG_IRQ_TX_ALL;
4130 }
4131 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4132 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4133 mask |= NVREG_IRQ_OTHER;
4134 }
4135 }
4136 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4137
4138 if (np->recover_error) {
4139 np->recover_error = 0;
4140 printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
4141 if (netif_running(dev)) {
4142 netif_tx_lock_bh(dev);
4143 netif_addr_lock(dev);
4144 spin_lock(&np->lock);
4145 /* stop engines */
4146 nv_stop_rxtx(dev);
4147 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4148 nv_mac_reset(dev);
4149 nv_txrx_reset(dev);
4150 /* drain rx queue */
4151 nv_drain_rxtx(dev);
4152 /* reinit driver view of the rx queue */
4153 set_bufsize(dev);
4154 if (nv_init_ring(dev)) {
4155 if (!np->in_shutdown)
4156 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4157 }
4158 /* reinit nic view of the rx queue */
4159 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4160 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4161 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4162 base + NvRegRingSizes);
4163 pci_push(base);
4164 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4165 pci_push(base);
4166 /* clear interrupts */
4167 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4168 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4169 else
4170 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4171
4172 /* restart rx engine */
4173 nv_start_rxtx(dev);
4174 spin_unlock(&np->lock);
4175 netif_addr_unlock(dev);
4176 netif_tx_unlock_bh(dev);
4177 }
4178 }
4179
4180 writel(mask, base + NvRegIrqMask);
4181 pci_push(base);
4182
4183 if (!using_multi_irqs(dev)) {
4184 np->nic_poll_irq = 0;
4185 if (nv_optimized(np))
4186 nv_nic_irq_optimized(0, dev);
4187 else
4188 nv_nic_irq(0, dev);
4189 if (np->msi_flags & NV_MSI_X_ENABLED)
4190 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4191 else
4192 enable_irq_lockdep(np->pci_dev->irq);
4193 } else {
4194 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4195 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4196 nv_nic_irq_rx(0, dev);
4197 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4198 }
4199 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4200 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4201 nv_nic_irq_tx(0, dev);
4202 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4203 }
4204 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4205 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4206 nv_nic_irq_other(0, dev);
4207 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4208 }
4209 }
4210
4211 }
4212
4213 #ifdef CONFIG_NET_POLL_CONTROLLER
4214 static void nv_poll_controller(struct net_device *dev)
4215 {
4216 nv_do_nic_poll((unsigned long) dev);
4217 }
4218 #endif
4219
4220 static void nv_do_stats_poll(unsigned long data)
4221 {
4222 struct net_device *dev = (struct net_device *) data;
4223 struct fe_priv *np = netdev_priv(dev);
4224
4225 nv_get_hw_stats(dev);
4226
4227 if (!np->in_shutdown)
4228 mod_timer(&np->stats_poll,
4229 round_jiffies(jiffies + STATS_INTERVAL));
4230 }
4231
4232 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4233 {
4234 struct fe_priv *np = netdev_priv(dev);
4235 strcpy(info->driver, DRV_NAME);
4236 strcpy(info->version, FORCEDETH_VERSION);
4237 strcpy(info->bus_info, pci_name(np->pci_dev));
4238 }
4239
4240 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4241 {
4242 struct fe_priv *np = netdev_priv(dev);
4243 wolinfo->supported = WAKE_MAGIC;
4244
4245 spin_lock_irq(&np->lock);
4246 if (np->wolenabled)
4247 wolinfo->wolopts = WAKE_MAGIC;
4248 spin_unlock_irq(&np->lock);
4249 }
4250
4251 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4252 {
4253 struct fe_priv *np = netdev_priv(dev);
4254 u8 __iomem *base = get_hwbase(dev);
4255 u32 flags = 0;
4256
4257 if (wolinfo->wolopts == 0) {
4258 np->wolenabled = 0;
4259 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4260 np->wolenabled = 1;
4261 flags = NVREG_WAKEUPFLAGS_ENABLE;
4262 }
4263 if (netif_running(dev)) {
4264 spin_lock_irq(&np->lock);
4265 writel(flags, base + NvRegWakeUpFlags);
4266 spin_unlock_irq(&np->lock);
4267 }
4268 return 0;
4269 }
4270
4271 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4272 {
4273 struct fe_priv *np = netdev_priv(dev);
4274 int adv;
4275
4276 spin_lock_irq(&np->lock);
4277 ecmd->port = PORT_MII;
4278 if (!netif_running(dev)) {
4279 /* We do not track link speed / duplex setting if the
4280 * interface is disabled. Force a link check */
4281 if (nv_update_linkspeed(dev)) {
4282 if (!netif_carrier_ok(dev))
4283 netif_carrier_on(dev);
4284 } else {
4285 if (netif_carrier_ok(dev))
4286 netif_carrier_off(dev);
4287 }
4288 }
4289
4290 if (netif_carrier_ok(dev)) {
4291 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4292 case NVREG_LINKSPEED_10:
4293 ecmd->speed = SPEED_10;
4294 break;
4295 case NVREG_LINKSPEED_100:
4296 ecmd->speed = SPEED_100;
4297 break;
4298 case NVREG_LINKSPEED_1000:
4299 ecmd->speed = SPEED_1000;
4300 break;
4301 }
4302 ecmd->duplex = DUPLEX_HALF;
4303 if (np->duplex)
4304 ecmd->duplex = DUPLEX_FULL;
4305 } else {
4306 ecmd->speed = -1;
4307 ecmd->duplex = -1;
4308 }
4309
4310 ecmd->autoneg = np->autoneg;
4311
4312 ecmd->advertising = ADVERTISED_MII;
4313 if (np->autoneg) {
4314 ecmd->advertising |= ADVERTISED_Autoneg;
4315 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4316 if (adv & ADVERTISE_10HALF)
4317 ecmd->advertising |= ADVERTISED_10baseT_Half;
4318 if (adv & ADVERTISE_10FULL)
4319 ecmd->advertising |= ADVERTISED_10baseT_Full;
4320 if (adv & ADVERTISE_100HALF)
4321 ecmd->advertising |= ADVERTISED_100baseT_Half;
4322 if (adv & ADVERTISE_100FULL)
4323 ecmd->advertising |= ADVERTISED_100baseT_Full;
4324 if (np->gigabit == PHY_GIGABIT) {
4325 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4326 if (adv & ADVERTISE_1000FULL)
4327 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4328 }
4329 }
4330 ecmd->supported = (SUPPORTED_Autoneg |
4331 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4332 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4333 SUPPORTED_MII);
4334 if (np->gigabit == PHY_GIGABIT)
4335 ecmd->supported |= SUPPORTED_1000baseT_Full;
4336
4337 ecmd->phy_address = np->phyaddr;
4338 ecmd->transceiver = XCVR_EXTERNAL;
4339
4340 /* ignore maxtxpkt, maxrxpkt for now */
4341 spin_unlock_irq(&np->lock);
4342 return 0;
4343 }
4344
4345 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4346 {
4347 struct fe_priv *np = netdev_priv(dev);
4348
4349 if (ecmd->port != PORT_MII)
4350 return -EINVAL;
4351 if (ecmd->transceiver != XCVR_EXTERNAL)
4352 return -EINVAL;
4353 if (ecmd->phy_address != np->phyaddr) {
4354 /* TODO: support switching between multiple phys. Should be
4355 * trivial, but not enabled due to lack of test hardware. */
4356 return -EINVAL;
4357 }
4358 if (ecmd->autoneg == AUTONEG_ENABLE) {
4359 u32 mask;
4360
4361 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4362 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4363 if (np->gigabit == PHY_GIGABIT)
4364 mask |= ADVERTISED_1000baseT_Full;
4365
4366 if ((ecmd->advertising & mask) == 0)
4367 return -EINVAL;
4368
4369 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4370 /* Note: autonegotiation disable, speed 1000 intentionally
4371 * forbidden - noone should need that. */
4372
4373 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4374 return -EINVAL;
4375 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4376 return -EINVAL;
4377 } else {
4378 return -EINVAL;
4379 }
4380
4381 netif_carrier_off(dev);
4382 if (netif_running(dev)) {
4383 unsigned long flags;
4384
4385 nv_disable_irq(dev);
4386 netif_tx_lock_bh(dev);
4387 netif_addr_lock(dev);
4388 /* with plain spinlock lockdep complains */
4389 spin_lock_irqsave(&np->lock, flags);
4390 /* stop engines */
4391 /* FIXME:
4392 * this can take some time, and interrupts are disabled
4393 * due to spin_lock_irqsave, but let's hope no daemon
4394 * is going to change the settings very often...
4395 * Worst case:
4396 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4397 * + some minor delays, which is up to a second approximately
4398 */
4399 nv_stop_rxtx(dev);
4400 spin_unlock_irqrestore(&np->lock, flags);
4401 netif_addr_unlock(dev);
4402 netif_tx_unlock_bh(dev);
4403 }
4404
4405 if (ecmd->autoneg == AUTONEG_ENABLE) {
4406 int adv, bmcr;
4407
4408 np->autoneg = 1;
4409
4410 /* advertise only what has been requested */
4411 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4412 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4413 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4414 adv |= ADVERTISE_10HALF;
4415 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4416 adv |= ADVERTISE_10FULL;
4417 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4418 adv |= ADVERTISE_100HALF;
4419 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4420 adv |= ADVERTISE_100FULL;
4421 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4422 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4423 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4424 adv |= ADVERTISE_PAUSE_ASYM;
4425 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4426
4427 if (np->gigabit == PHY_GIGABIT) {
4428 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4429 adv &= ~ADVERTISE_1000FULL;
4430 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4431 adv |= ADVERTISE_1000FULL;
4432 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4433 }
4434
4435 if (netif_running(dev))
4436 printk(KERN_INFO "%s: link down.\n", dev->name);
4437 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4438 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4439 bmcr |= BMCR_ANENABLE;
4440 /* reset the phy in order for settings to stick,
4441 * and cause autoneg to start */
4442 if (phy_reset(dev, bmcr)) {
4443 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4444 return -EINVAL;
4445 }
4446 } else {
4447 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4448 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4449 }
4450 } else {
4451 int adv, bmcr;
4452
4453 np->autoneg = 0;
4454
4455 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4456 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4457 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4458 adv |= ADVERTISE_10HALF;
4459 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4460 adv |= ADVERTISE_10FULL;
4461 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4462 adv |= ADVERTISE_100HALF;
4463 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4464 adv |= ADVERTISE_100FULL;
4465 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4466 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4467 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4468 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4469 }
4470 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4471 adv |= ADVERTISE_PAUSE_ASYM;
4472 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4473 }
4474 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4475 np->fixed_mode = adv;
4476
4477 if (np->gigabit == PHY_GIGABIT) {
4478 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4479 adv &= ~ADVERTISE_1000FULL;
4480 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4481 }
4482
4483 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4484 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4485 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4486 bmcr |= BMCR_FULLDPLX;
4487 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4488 bmcr |= BMCR_SPEED100;
4489 if (np->phy_oui == PHY_OUI_MARVELL) {
4490 /* reset the phy in order for forced mode settings to stick */
4491 if (phy_reset(dev, bmcr)) {
4492 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4493 return -EINVAL;
4494 }
4495 } else {
4496 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4497 if (netif_running(dev)) {
4498 /* Wait a bit and then reconfigure the nic. */
4499 udelay(10);
4500 nv_linkchange(dev);
4501 }
4502 }
4503 }
4504
4505 if (netif_running(dev)) {
4506 nv_start_rxtx(dev);
4507 nv_enable_irq(dev);
4508 }
4509
4510 return 0;
4511 }
4512
4513 #define FORCEDETH_REGS_VER 1
4514
4515 static int nv_get_regs_len(struct net_device *dev)
4516 {
4517 struct fe_priv *np = netdev_priv(dev);
4518 return np->register_size;
4519 }
4520
4521 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4522 {
4523 struct fe_priv *np = netdev_priv(dev);
4524 u8 __iomem *base = get_hwbase(dev);
4525 u32 *rbuf = buf;
4526 int i;
4527
4528 regs->version = FORCEDETH_REGS_VER;
4529 spin_lock_irq(&np->lock);
4530 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4531 rbuf[i] = readl(base + i*sizeof(u32));
4532 spin_unlock_irq(&np->lock);
4533 }
4534
4535 static int nv_nway_reset(struct net_device *dev)
4536 {
4537 struct fe_priv *np = netdev_priv(dev);
4538 int ret;
4539
4540 if (np->autoneg) {
4541 int bmcr;
4542
4543 netif_carrier_off(dev);
4544 if (netif_running(dev)) {
4545 nv_disable_irq(dev);
4546 netif_tx_lock_bh(dev);
4547 netif_addr_lock(dev);
4548 spin_lock(&np->lock);
4549 /* stop engines */
4550 nv_stop_rxtx(dev);
4551 spin_unlock(&np->lock);
4552 netif_addr_unlock(dev);
4553 netif_tx_unlock_bh(dev);
4554 printk(KERN_INFO "%s: link down.\n", dev->name);
4555 }
4556
4557 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4558 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4559 bmcr |= BMCR_ANENABLE;
4560 /* reset the phy in order for settings to stick*/
4561 if (phy_reset(dev, bmcr)) {
4562 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4563 return -EINVAL;
4564 }
4565 } else {
4566 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4567 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4568 }
4569
4570 if (netif_running(dev)) {
4571 nv_start_rxtx(dev);
4572 nv_enable_irq(dev);
4573 }
4574 ret = 0;
4575 } else {
4576 ret = -EINVAL;
4577 }
4578
4579 return ret;
4580 }
4581
4582 static int nv_set_tso(struct net_device *dev, u32 value)
4583 {
4584 struct fe_priv *np = netdev_priv(dev);
4585
4586 if ((np->driver_data & DEV_HAS_CHECKSUM))
4587 return ethtool_op_set_tso(dev, value);
4588 else
4589 return -EOPNOTSUPP;
4590 }
4591
4592 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4593 {
4594 struct fe_priv *np = netdev_priv(dev);
4595
4596 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4597 ring->rx_mini_max_pending = 0;
4598 ring->rx_jumbo_max_pending = 0;
4599 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4600
4601 ring->rx_pending = np->rx_ring_size;
4602 ring->rx_mini_pending = 0;
4603 ring->rx_jumbo_pending = 0;
4604 ring->tx_pending = np->tx_ring_size;
4605 }
4606
4607 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4608 {
4609 struct fe_priv *np = netdev_priv(dev);
4610 u8 __iomem *base = get_hwbase(dev);
4611 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4612 dma_addr_t ring_addr;
4613
4614 if (ring->rx_pending < RX_RING_MIN ||
4615 ring->tx_pending < TX_RING_MIN ||
4616 ring->rx_mini_pending != 0 ||
4617 ring->rx_jumbo_pending != 0 ||
4618 (np->desc_ver == DESC_VER_1 &&
4619 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4620 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4621 (np->desc_ver != DESC_VER_1 &&
4622 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4623 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4624 return -EINVAL;
4625 }
4626
4627 /* allocate new rings */
4628 if (!nv_optimized(np)) {
4629 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4630 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4631 &ring_addr);
4632 } else {
4633 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4634 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4635 &ring_addr);
4636 }
4637 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4638 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4639 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4640 /* fall back to old rings */
4641 if (!nv_optimized(np)) {
4642 if (rxtx_ring)
4643 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4644 rxtx_ring, ring_addr);
4645 } else {
4646 if (rxtx_ring)
4647 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4648 rxtx_ring, ring_addr);
4649 }
4650 if (rx_skbuff)
4651 kfree(rx_skbuff);
4652 if (tx_skbuff)
4653 kfree(tx_skbuff);
4654 goto exit;
4655 }
4656
4657 if (netif_running(dev)) {
4658 nv_disable_irq(dev);
4659 nv_napi_disable(dev);
4660 netif_tx_lock_bh(dev);
4661 netif_addr_lock(dev);
4662 spin_lock(&np->lock);
4663 /* stop engines */
4664 nv_stop_rxtx(dev);
4665 nv_txrx_reset(dev);
4666 /* drain queues */
4667 nv_drain_rxtx(dev);
4668 /* delete queues */
4669 free_rings(dev);
4670 }
4671
4672 /* set new values */
4673 np->rx_ring_size = ring->rx_pending;
4674 np->tx_ring_size = ring->tx_pending;
4675
4676 if (!nv_optimized(np)) {
4677 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4678 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4679 } else {
4680 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4681 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4682 }
4683 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4684 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4685 np->ring_addr = ring_addr;
4686
4687 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4688 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4689
4690 if (netif_running(dev)) {
4691 /* reinit driver view of the queues */
4692 set_bufsize(dev);
4693 if (nv_init_ring(dev)) {
4694 if (!np->in_shutdown)
4695 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4696 }
4697
4698 /* reinit nic view of the queues */
4699 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4700 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4701 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4702 base + NvRegRingSizes);
4703 pci_push(base);
4704 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4705 pci_push(base);
4706
4707 /* restart engines */
4708 nv_start_rxtx(dev);
4709 spin_unlock(&np->lock);
4710 netif_addr_unlock(dev);
4711 netif_tx_unlock_bh(dev);
4712 nv_napi_enable(dev);
4713 nv_enable_irq(dev);
4714 }
4715 return 0;
4716 exit:
4717 return -ENOMEM;
4718 }
4719
4720 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4721 {
4722 struct fe_priv *np = netdev_priv(dev);
4723
4724 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4725 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4726 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4727 }
4728
4729 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4730 {
4731 struct fe_priv *np = netdev_priv(dev);
4732 int adv, bmcr;
4733
4734 if ((!np->autoneg && np->duplex == 0) ||
4735 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4736 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4737 dev->name);
4738 return -EINVAL;
4739 }
4740 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4741 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4742 return -EINVAL;
4743 }
4744
4745 netif_carrier_off(dev);
4746 if (netif_running(dev)) {
4747 nv_disable_irq(dev);
4748 netif_tx_lock_bh(dev);
4749 netif_addr_lock(dev);
4750 spin_lock(&np->lock);
4751 /* stop engines */
4752 nv_stop_rxtx(dev);
4753 spin_unlock(&np->lock);
4754 netif_addr_unlock(dev);
4755 netif_tx_unlock_bh(dev);
4756 }
4757
4758 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4759 if (pause->rx_pause)
4760 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4761 if (pause->tx_pause)
4762 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4763
4764 if (np->autoneg && pause->autoneg) {
4765 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4766
4767 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4768 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4769 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4770 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4771 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4772 adv |= ADVERTISE_PAUSE_ASYM;
4773 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4774
4775 if (netif_running(dev))
4776 printk(KERN_INFO "%s: link down.\n", dev->name);
4777 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4778 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4779 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4780 } else {
4781 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4782 if (pause->rx_pause)
4783 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4784 if (pause->tx_pause)
4785 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4786
4787 if (!netif_running(dev))
4788 nv_update_linkspeed(dev);
4789 else
4790 nv_update_pause(dev, np->pause_flags);
4791 }
4792
4793 if (netif_running(dev)) {
4794 nv_start_rxtx(dev);
4795 nv_enable_irq(dev);
4796 }
4797 return 0;
4798 }
4799
4800 static u32 nv_get_rx_csum(struct net_device *dev)
4801 {
4802 struct fe_priv *np = netdev_priv(dev);
4803 return (np->rx_csum) != 0;
4804 }
4805
4806 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4807 {
4808 struct fe_priv *np = netdev_priv(dev);
4809 u8 __iomem *base = get_hwbase(dev);
4810 int retcode = 0;
4811
4812 if (np->driver_data & DEV_HAS_CHECKSUM) {
4813 if (data) {
4814 np->rx_csum = 1;
4815 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4816 } else {
4817 np->rx_csum = 0;
4818 /* vlan is dependent on rx checksum offload */
4819 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4820 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4821 }
4822 if (netif_running(dev)) {
4823 spin_lock_irq(&np->lock);
4824 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4825 spin_unlock_irq(&np->lock);
4826 }
4827 } else {
4828 return -EINVAL;
4829 }
4830
4831 return retcode;
4832 }
4833
4834 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4835 {
4836 struct fe_priv *np = netdev_priv(dev);
4837
4838 if (np->driver_data & DEV_HAS_CHECKSUM)
4839 return ethtool_op_set_tx_csum(dev, data);
4840 else
4841 return -EOPNOTSUPP;
4842 }
4843
4844 static int nv_set_sg(struct net_device *dev, u32 data)
4845 {
4846 struct fe_priv *np = netdev_priv(dev);
4847
4848 if (np->driver_data & DEV_HAS_CHECKSUM)
4849 return ethtool_op_set_sg(dev, data);
4850 else
4851 return -EOPNOTSUPP;
4852 }
4853
4854 static int nv_get_sset_count(struct net_device *dev, int sset)
4855 {
4856 struct fe_priv *np = netdev_priv(dev);
4857
4858 switch (sset) {
4859 case ETH_SS_TEST:
4860 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4861 return NV_TEST_COUNT_EXTENDED;
4862 else
4863 return NV_TEST_COUNT_BASE;
4864 case ETH_SS_STATS:
4865 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4866 return NV_DEV_STATISTICS_V3_COUNT;
4867 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4868 return NV_DEV_STATISTICS_V2_COUNT;
4869 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4870 return NV_DEV_STATISTICS_V1_COUNT;
4871 else
4872 return 0;
4873 default:
4874 return -EOPNOTSUPP;
4875 }
4876 }
4877
4878 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4879 {
4880 struct fe_priv *np = netdev_priv(dev);
4881
4882 /* update stats */
4883 nv_do_stats_poll((unsigned long)dev);
4884
4885 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4886 }
4887
4888 static int nv_link_test(struct net_device *dev)
4889 {
4890 struct fe_priv *np = netdev_priv(dev);
4891 int mii_status;
4892
4893 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4894 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4895
4896 /* check phy link status */
4897 if (!(mii_status & BMSR_LSTATUS))
4898 return 0;
4899 else
4900 return 1;
4901 }
4902
4903 static int nv_register_test(struct net_device *dev)
4904 {
4905 u8 __iomem *base = get_hwbase(dev);
4906 int i = 0;
4907 u32 orig_read, new_read;
4908
4909 do {
4910 orig_read = readl(base + nv_registers_test[i].reg);
4911
4912 /* xor with mask to toggle bits */
4913 orig_read ^= nv_registers_test[i].mask;
4914
4915 writel(orig_read, base + nv_registers_test[i].reg);
4916
4917 new_read = readl(base + nv_registers_test[i].reg);
4918
4919 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4920 return 0;
4921
4922 /* restore original value */
4923 orig_read ^= nv_registers_test[i].mask;
4924 writel(orig_read, base + nv_registers_test[i].reg);
4925
4926 } while (nv_registers_test[++i].reg != 0);
4927
4928 return 1;
4929 }
4930
4931 static int nv_interrupt_test(struct net_device *dev)
4932 {
4933 struct fe_priv *np = netdev_priv(dev);
4934 u8 __iomem *base = get_hwbase(dev);
4935 int ret = 1;
4936 int testcnt;
4937 u32 save_msi_flags, save_poll_interval = 0;
4938
4939 if (netif_running(dev)) {
4940 /* free current irq */
4941 nv_free_irq(dev);
4942 save_poll_interval = readl(base+NvRegPollingInterval);
4943 }
4944
4945 /* flag to test interrupt handler */
4946 np->intr_test = 0;
4947
4948 /* setup test irq */
4949 save_msi_flags = np->msi_flags;
4950 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4951 np->msi_flags |= 0x001; /* setup 1 vector */
4952 if (nv_request_irq(dev, 1))
4953 return 0;
4954
4955 /* setup timer interrupt */
4956 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4957 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4958
4959 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4960
4961 /* wait for at least one interrupt */
4962 msleep(100);
4963
4964 spin_lock_irq(&np->lock);
4965
4966 /* flag should be set within ISR */
4967 testcnt = np->intr_test;
4968 if (!testcnt)
4969 ret = 2;
4970
4971 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4972 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4973 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4974 else
4975 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4976
4977 spin_unlock_irq(&np->lock);
4978
4979 nv_free_irq(dev);
4980
4981 np->msi_flags = save_msi_flags;
4982
4983 if (netif_running(dev)) {
4984 writel(save_poll_interval, base + NvRegPollingInterval);
4985 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4986 /* restore original irq */
4987 if (nv_request_irq(dev, 0))
4988 return 0;
4989 }
4990
4991 return ret;
4992 }
4993
4994 static int nv_loopback_test(struct net_device *dev)
4995 {
4996 struct fe_priv *np = netdev_priv(dev);
4997 u8 __iomem *base = get_hwbase(dev);
4998 struct sk_buff *tx_skb, *rx_skb;
4999 dma_addr_t test_dma_addr;
5000 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
5001 u32 flags;
5002 int len, i, pkt_len;
5003 u8 *pkt_data;
5004 u32 filter_flags = 0;
5005 u32 misc1_flags = 0;
5006 int ret = 1;
5007
5008 if (netif_running(dev)) {
5009 nv_disable_irq(dev);
5010 filter_flags = readl(base + NvRegPacketFilterFlags);
5011 misc1_flags = readl(base + NvRegMisc1);
5012 } else {
5013 nv_txrx_reset(dev);
5014 }
5015
5016 /* reinit driver view of the rx queue */
5017 set_bufsize(dev);
5018 nv_init_ring(dev);
5019
5020 /* setup hardware for loopback */
5021 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
5022 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
5023
5024 /* reinit nic view of the rx queue */
5025 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5026 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5027 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5028 base + NvRegRingSizes);
5029 pci_push(base);
5030
5031 /* restart rx engine */
5032 nv_start_rxtx(dev);
5033
5034 /* setup packet for tx */
5035 pkt_len = ETH_DATA_LEN;
5036 tx_skb = dev_alloc_skb(pkt_len);
5037 if (!tx_skb) {
5038 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
5039 " of %s\n", dev->name);
5040 ret = 0;
5041 goto out;
5042 }
5043 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
5044 skb_tailroom(tx_skb),
5045 PCI_DMA_FROMDEVICE);
5046 pkt_data = skb_put(tx_skb, pkt_len);
5047 for (i = 0; i < pkt_len; i++)
5048 pkt_data[i] = (u8)(i & 0xff);
5049
5050 if (!nv_optimized(np)) {
5051 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5052 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5053 } else {
5054 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5055 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5056 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5057 }
5058 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5059 pci_push(get_hwbase(dev));
5060
5061 msleep(500);
5062
5063 /* check for rx of the packet */
5064 if (!nv_optimized(np)) {
5065 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5066 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5067
5068 } else {
5069 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5070 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5071 }
5072
5073 if (flags & NV_RX_AVAIL) {
5074 ret = 0;
5075 } else if (np->desc_ver == DESC_VER_1) {
5076 if (flags & NV_RX_ERROR)
5077 ret = 0;
5078 } else {
5079 if (flags & NV_RX2_ERROR) {
5080 ret = 0;
5081 }
5082 }
5083
5084 if (ret) {
5085 if (len != pkt_len) {
5086 ret = 0;
5087 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
5088 dev->name, len, pkt_len);
5089 } else {
5090 rx_skb = np->rx_skb[0].skb;
5091 for (i = 0; i < pkt_len; i++) {
5092 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5093 ret = 0;
5094 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
5095 dev->name, i);
5096 break;
5097 }
5098 }
5099 }
5100 } else {
5101 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
5102 }
5103
5104 pci_unmap_page(np->pci_dev, test_dma_addr,
5105 (skb_end_pointer(tx_skb) - tx_skb->data),
5106 PCI_DMA_TODEVICE);
5107 dev_kfree_skb_any(tx_skb);
5108 out:
5109 /* stop engines */
5110 nv_stop_rxtx(dev);
5111 nv_txrx_reset(dev);
5112 /* drain rx queue */
5113 nv_drain_rxtx(dev);
5114
5115 if (netif_running(dev)) {
5116 writel(misc1_flags, base + NvRegMisc1);
5117 writel(filter_flags, base + NvRegPacketFilterFlags);
5118 nv_enable_irq(dev);
5119 }
5120
5121 return ret;
5122 }
5123
5124 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5125 {
5126 struct fe_priv *np = netdev_priv(dev);
5127 u8 __iomem *base = get_hwbase(dev);
5128 int result;
5129 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5130
5131 if (!nv_link_test(dev)) {
5132 test->flags |= ETH_TEST_FL_FAILED;
5133 buffer[0] = 1;
5134 }
5135
5136 if (test->flags & ETH_TEST_FL_OFFLINE) {
5137 if (netif_running(dev)) {
5138 netif_stop_queue(dev);
5139 nv_napi_disable(dev);
5140 netif_tx_lock_bh(dev);
5141 netif_addr_lock(dev);
5142 spin_lock_irq(&np->lock);
5143 nv_disable_hw_interrupts(dev, np->irqmask);
5144 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
5145 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5146 } else {
5147 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5148 }
5149 /* stop engines */
5150 nv_stop_rxtx(dev);
5151 nv_txrx_reset(dev);
5152 /* drain rx queue */
5153 nv_drain_rxtx(dev);
5154 spin_unlock_irq(&np->lock);
5155 netif_addr_unlock(dev);
5156 netif_tx_unlock_bh(dev);
5157 }
5158
5159 if (!nv_register_test(dev)) {
5160 test->flags |= ETH_TEST_FL_FAILED;
5161 buffer[1] = 1;
5162 }
5163
5164 result = nv_interrupt_test(dev);
5165 if (result != 1) {
5166 test->flags |= ETH_TEST_FL_FAILED;
5167 buffer[2] = 1;
5168 }
5169 if (result == 0) {
5170 /* bail out */
5171 return;
5172 }
5173
5174 if (!nv_loopback_test(dev)) {
5175 test->flags |= ETH_TEST_FL_FAILED;
5176 buffer[3] = 1;
5177 }
5178
5179 if (netif_running(dev)) {
5180 /* reinit driver view of the rx queue */
5181 set_bufsize(dev);
5182 if (nv_init_ring(dev)) {
5183 if (!np->in_shutdown)
5184 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5185 }
5186 /* reinit nic view of the rx queue */
5187 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5188 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5189 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5190 base + NvRegRingSizes);
5191 pci_push(base);
5192 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5193 pci_push(base);
5194 /* restart rx engine */
5195 nv_start_rxtx(dev);
5196 netif_start_queue(dev);
5197 nv_napi_enable(dev);
5198 nv_enable_hw_interrupts(dev, np->irqmask);
5199 }
5200 }
5201 }
5202
5203 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5204 {
5205 switch (stringset) {
5206 case ETH_SS_STATS:
5207 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5208 break;
5209 case ETH_SS_TEST:
5210 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5211 break;
5212 }
5213 }
5214
5215 static const struct ethtool_ops ops = {
5216 .get_drvinfo = nv_get_drvinfo,
5217 .get_link = ethtool_op_get_link,
5218 .get_wol = nv_get_wol,
5219 .set_wol = nv_set_wol,
5220 .get_settings = nv_get_settings,
5221 .set_settings = nv_set_settings,
5222 .get_regs_len = nv_get_regs_len,
5223 .get_regs = nv_get_regs,
5224 .nway_reset = nv_nway_reset,
5225 .set_tso = nv_set_tso,
5226 .get_ringparam = nv_get_ringparam,
5227 .set_ringparam = nv_set_ringparam,
5228 .get_pauseparam = nv_get_pauseparam,
5229 .set_pauseparam = nv_set_pauseparam,
5230 .get_rx_csum = nv_get_rx_csum,
5231 .set_rx_csum = nv_set_rx_csum,
5232 .set_tx_csum = nv_set_tx_csum,
5233 .set_sg = nv_set_sg,
5234 .get_strings = nv_get_strings,
5235 .get_ethtool_stats = nv_get_ethtool_stats,
5236 .get_sset_count = nv_get_sset_count,
5237 .self_test = nv_self_test,
5238 };
5239
5240 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
5241 {
5242 struct fe_priv *np = get_nvpriv(dev);
5243
5244 spin_lock_irq(&np->lock);
5245
5246 /* save vlan group */
5247 np->vlangrp = grp;
5248
5249 if (grp) {
5250 /* enable vlan on MAC */
5251 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
5252 } else {
5253 /* disable vlan on MAC */
5254 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
5255 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
5256 }
5257
5258 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5259
5260 spin_unlock_irq(&np->lock);
5261 }
5262
5263 /* The mgmt unit and driver use a semaphore to access the phy during init */
5264 static int nv_mgmt_acquire_sema(struct net_device *dev)
5265 {
5266 struct fe_priv *np = netdev_priv(dev);
5267 u8 __iomem *base = get_hwbase(dev);
5268 int i;
5269 u32 tx_ctrl, mgmt_sema;
5270
5271 for (i = 0; i < 10; i++) {
5272 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5273 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5274 break;
5275 msleep(500);
5276 }
5277
5278 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5279 return 0;
5280
5281 for (i = 0; i < 2; i++) {
5282 tx_ctrl = readl(base + NvRegTransmitterControl);
5283 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5284 writel(tx_ctrl, base + NvRegTransmitterControl);
5285
5286 /* verify that semaphore was acquired */
5287 tx_ctrl = readl(base + NvRegTransmitterControl);
5288 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5289 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5290 np->mgmt_sema = 1;
5291 return 1;
5292 }
5293 else
5294 udelay(50);
5295 }
5296
5297 return 0;
5298 }
5299
5300 static void nv_mgmt_release_sema(struct net_device *dev)
5301 {
5302 struct fe_priv *np = netdev_priv(dev);
5303 u8 __iomem *base = get_hwbase(dev);
5304 u32 tx_ctrl;
5305
5306 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5307 if (np->mgmt_sema) {
5308 tx_ctrl = readl(base + NvRegTransmitterControl);
5309 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5310 writel(tx_ctrl, base + NvRegTransmitterControl);
5311 }
5312 }
5313 }
5314
5315
5316 static int nv_mgmt_get_version(struct net_device *dev)
5317 {
5318 struct fe_priv *np = netdev_priv(dev);
5319 u8 __iomem *base = get_hwbase(dev);
5320 u32 data_ready = readl(base + NvRegTransmitterControl);
5321 u32 data_ready2 = 0;
5322 unsigned long start;
5323 int ready = 0;
5324
5325 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5326 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5327 start = jiffies;
5328 while (time_before(jiffies, start + 5*HZ)) {
5329 data_ready2 = readl(base + NvRegTransmitterControl);
5330 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5331 ready = 1;
5332 break;
5333 }
5334 schedule_timeout_uninterruptible(1);
5335 }
5336
5337 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5338 return 0;
5339
5340 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5341
5342 return 1;
5343 }
5344
5345 static int nv_open(struct net_device *dev)
5346 {
5347 struct fe_priv *np = netdev_priv(dev);
5348 u8 __iomem *base = get_hwbase(dev);
5349 int ret = 1;
5350 int oom, i;
5351 u32 low;
5352
5353 dprintk(KERN_DEBUG "nv_open: begin\n");
5354
5355 /* power up phy */
5356 mii_rw(dev, np->phyaddr, MII_BMCR,
5357 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5358
5359 nv_txrx_gate(dev, false);
5360 /* erase previous misconfiguration */
5361 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5362 nv_mac_reset(dev);
5363 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5364 writel(0, base + NvRegMulticastAddrB);
5365 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5366 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5367 writel(0, base + NvRegPacketFilterFlags);
5368
5369 writel(0, base + NvRegTransmitterControl);
5370 writel(0, base + NvRegReceiverControl);
5371
5372 writel(0, base + NvRegAdapterControl);
5373
5374 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5375 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5376
5377 /* initialize descriptor rings */
5378 set_bufsize(dev);
5379 oom = nv_init_ring(dev);
5380
5381 writel(0, base + NvRegLinkSpeed);
5382 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5383 nv_txrx_reset(dev);
5384 writel(0, base + NvRegUnknownSetupReg6);
5385
5386 np->in_shutdown = 0;
5387
5388 /* give hw rings */
5389 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5390 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5391 base + NvRegRingSizes);
5392
5393 writel(np->linkspeed, base + NvRegLinkSpeed);
5394 if (np->desc_ver == DESC_VER_1)
5395 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5396 else
5397 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5398 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5399 writel(np->vlanctl_bits, base + NvRegVlanControl);
5400 pci_push(base);
5401 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5402 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5403 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
5404 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
5405
5406 writel(0, base + NvRegMIIMask);
5407 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5408 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5409
5410 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5411 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5412 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5413 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5414
5415 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5416
5417 get_random_bytes(&low, sizeof(low));
5418 low &= NVREG_SLOTTIME_MASK;
5419 if (np->desc_ver == DESC_VER_1) {
5420 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5421 } else {
5422 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5423 /* setup legacy backoff */
5424 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5425 } else {
5426 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5427 nv_gear_backoff_reseed(dev);
5428 }
5429 }
5430 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5431 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5432 if (poll_interval == -1) {
5433 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5434 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5435 else
5436 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5437 }
5438 else
5439 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5440 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5441 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5442 base + NvRegAdapterControl);
5443 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5444 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5445 if (np->wolenabled)
5446 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5447
5448 i = readl(base + NvRegPowerState);
5449 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5450 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5451
5452 pci_push(base);
5453 udelay(10);
5454 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5455
5456 nv_disable_hw_interrupts(dev, np->irqmask);
5457 pci_push(base);
5458 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5459 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5460 pci_push(base);
5461
5462 if (nv_request_irq(dev, 0)) {
5463 goto out_drain;
5464 }
5465
5466 /* ask for interrupts */
5467 nv_enable_hw_interrupts(dev, np->irqmask);
5468
5469 spin_lock_irq(&np->lock);
5470 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5471 writel(0, base + NvRegMulticastAddrB);
5472 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5473 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5474 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5475 /* One manual link speed update: Interrupts are enabled, future link
5476 * speed changes cause interrupts and are handled by nv_link_irq().
5477 */
5478 {
5479 u32 miistat;
5480 miistat = readl(base + NvRegMIIStatus);
5481 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5482 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5483 }
5484 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5485 * to init hw */
5486 np->linkspeed = 0;
5487 ret = nv_update_linkspeed(dev);
5488 nv_start_rxtx(dev);
5489 netif_start_queue(dev);
5490 nv_napi_enable(dev);
5491
5492 if (ret) {
5493 netif_carrier_on(dev);
5494 } else {
5495 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5496 netif_carrier_off(dev);
5497 }
5498 if (oom)
5499 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5500
5501 /* start statistics timer */
5502 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5503 mod_timer(&np->stats_poll,
5504 round_jiffies(jiffies + STATS_INTERVAL));
5505
5506 spin_unlock_irq(&np->lock);
5507
5508 return 0;
5509 out_drain:
5510 nv_drain_rxtx(dev);
5511 return ret;
5512 }
5513
5514 static int nv_close(struct net_device *dev)
5515 {
5516 struct fe_priv *np = netdev_priv(dev);
5517 u8 __iomem *base;
5518
5519 spin_lock_irq(&np->lock);
5520 np->in_shutdown = 1;
5521 spin_unlock_irq(&np->lock);
5522 nv_napi_disable(dev);
5523 synchronize_irq(np->pci_dev->irq);
5524
5525 del_timer_sync(&np->oom_kick);
5526 del_timer_sync(&np->nic_poll);
5527 del_timer_sync(&np->stats_poll);
5528
5529 netif_stop_queue(dev);
5530 spin_lock_irq(&np->lock);
5531 nv_stop_rxtx(dev);
5532 nv_txrx_reset(dev);
5533
5534 /* disable interrupts on the nic or we will lock up */
5535 base = get_hwbase(dev);
5536 nv_disable_hw_interrupts(dev, np->irqmask);
5537 pci_push(base);
5538 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5539
5540 spin_unlock_irq(&np->lock);
5541
5542 nv_free_irq(dev);
5543
5544 nv_drain_rxtx(dev);
5545
5546 if (np->wolenabled || !phy_power_down) {
5547 nv_txrx_gate(dev, false);
5548 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5549 nv_start_rx(dev);
5550 } else {
5551 /* power down phy */
5552 mii_rw(dev, np->phyaddr, MII_BMCR,
5553 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5554 nv_txrx_gate(dev, true);
5555 }
5556
5557 /* FIXME: power down nic */
5558
5559 return 0;
5560 }
5561
5562 static const struct net_device_ops nv_netdev_ops = {
5563 .ndo_open = nv_open,
5564 .ndo_stop = nv_close,
5565 .ndo_get_stats = nv_get_stats,
5566 .ndo_start_xmit = nv_start_xmit,
5567 .ndo_tx_timeout = nv_tx_timeout,
5568 .ndo_change_mtu = nv_change_mtu,
5569 .ndo_validate_addr = eth_validate_addr,
5570 .ndo_set_mac_address = nv_set_mac_address,
5571 .ndo_set_multicast_list = nv_set_multicast,
5572 .ndo_vlan_rx_register = nv_vlan_rx_register,
5573 #ifdef CONFIG_NET_POLL_CONTROLLER
5574 .ndo_poll_controller = nv_poll_controller,
5575 #endif
5576 };
5577
5578 static const struct net_device_ops nv_netdev_ops_optimized = {
5579 .ndo_open = nv_open,
5580 .ndo_stop = nv_close,
5581 .ndo_get_stats = nv_get_stats,
5582 .ndo_start_xmit = nv_start_xmit_optimized,
5583 .ndo_tx_timeout = nv_tx_timeout,
5584 .ndo_change_mtu = nv_change_mtu,
5585 .ndo_validate_addr = eth_validate_addr,
5586 .ndo_set_mac_address = nv_set_mac_address,
5587 .ndo_set_multicast_list = nv_set_multicast,
5588 .ndo_vlan_rx_register = nv_vlan_rx_register,
5589 #ifdef CONFIG_NET_POLL_CONTROLLER
5590 .ndo_poll_controller = nv_poll_controller,
5591 #endif
5592 };
5593
5594 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5595 {
5596 struct net_device *dev;
5597 struct fe_priv *np;
5598 unsigned long addr;
5599 u8 __iomem *base;
5600 int err, i;
5601 u32 powerstate, txreg;
5602 u32 phystate_orig = 0, phystate;
5603 int phyinitialized = 0;
5604 static int printed_version;
5605
5606 if (!printed_version++)
5607 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5608 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5609
5610 dev = alloc_etherdev(sizeof(struct fe_priv));
5611 err = -ENOMEM;
5612 if (!dev)
5613 goto out;
5614
5615 np = netdev_priv(dev);
5616 np->dev = dev;
5617 np->pci_dev = pci_dev;
5618 spin_lock_init(&np->lock);
5619 SET_NETDEV_DEV(dev, &pci_dev->dev);
5620
5621 init_timer(&np->oom_kick);
5622 np->oom_kick.data = (unsigned long) dev;
5623 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5624 init_timer(&np->nic_poll);
5625 np->nic_poll.data = (unsigned long) dev;
5626 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5627 init_timer(&np->stats_poll);
5628 np->stats_poll.data = (unsigned long) dev;
5629 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5630
5631 err = pci_enable_device(pci_dev);
5632 if (err)
5633 goto out_free;
5634
5635 pci_set_master(pci_dev);
5636
5637 err = pci_request_regions(pci_dev, DRV_NAME);
5638 if (err < 0)
5639 goto out_disable;
5640
5641 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5642 np->register_size = NV_PCI_REGSZ_VER3;
5643 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5644 np->register_size = NV_PCI_REGSZ_VER2;
5645 else
5646 np->register_size = NV_PCI_REGSZ_VER1;
5647
5648 err = -EINVAL;
5649 addr = 0;
5650 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5651 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5652 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5653 pci_resource_len(pci_dev, i),
5654 pci_resource_flags(pci_dev, i));
5655 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5656 pci_resource_len(pci_dev, i) >= np->register_size) {
5657 addr = pci_resource_start(pci_dev, i);
5658 break;
5659 }
5660 }
5661 if (i == DEVICE_COUNT_RESOURCE) {
5662 dev_printk(KERN_INFO, &pci_dev->dev,
5663 "Couldn't find register window\n");
5664 goto out_relreg;
5665 }
5666
5667 /* copy of driver data */
5668 np->driver_data = id->driver_data;
5669 /* copy of device id */
5670 np->device_id = id->device;
5671
5672 /* handle different descriptor versions */
5673 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5674 /* packet format 3: supports 40-bit addressing */
5675 np->desc_ver = DESC_VER_3;
5676 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5677 if (dma_64bit) {
5678 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5679 dev_printk(KERN_INFO, &pci_dev->dev,
5680 "64-bit DMA failed, using 32-bit addressing\n");
5681 else
5682 dev->features |= NETIF_F_HIGHDMA;
5683 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5684 dev_printk(KERN_INFO, &pci_dev->dev,
5685 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5686 }
5687 }
5688 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5689 /* packet format 2: supports jumbo frames */
5690 np->desc_ver = DESC_VER_2;
5691 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5692 } else {
5693 /* original packet format */
5694 np->desc_ver = DESC_VER_1;
5695 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5696 }
5697
5698 np->pkt_limit = NV_PKTLIMIT_1;
5699 if (id->driver_data & DEV_HAS_LARGEDESC)
5700 np->pkt_limit = NV_PKTLIMIT_2;
5701
5702 if (id->driver_data & DEV_HAS_CHECKSUM) {
5703 np->rx_csum = 1;
5704 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5705 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
5706 dev->features |= NETIF_F_TSO;
5707 }
5708
5709 np->vlanctl_bits = 0;
5710 if (id->driver_data & DEV_HAS_VLAN) {
5711 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5712 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5713 }
5714
5715 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5716 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5717 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5718 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5719 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5720 }
5721
5722
5723 err = -ENOMEM;
5724 np->base = ioremap(addr, np->register_size);
5725 if (!np->base)
5726 goto out_relreg;
5727 dev->base_addr = (unsigned long)np->base;
5728
5729 dev->irq = pci_dev->irq;
5730
5731 np->rx_ring_size = RX_RING_DEFAULT;
5732 np->tx_ring_size = TX_RING_DEFAULT;
5733
5734 if (!nv_optimized(np)) {
5735 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5736 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5737 &np->ring_addr);
5738 if (!np->rx_ring.orig)
5739 goto out_unmap;
5740 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5741 } else {
5742 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5743 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5744 &np->ring_addr);
5745 if (!np->rx_ring.ex)
5746 goto out_unmap;
5747 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5748 }
5749 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5750 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5751 if (!np->rx_skb || !np->tx_skb)
5752 goto out_freering;
5753
5754 if (!nv_optimized(np))
5755 dev->netdev_ops = &nv_netdev_ops;
5756 else
5757 dev->netdev_ops = &nv_netdev_ops_optimized;
5758
5759 #ifdef CONFIG_FORCEDETH_NAPI
5760 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5761 #endif
5762 SET_ETHTOOL_OPS(dev, &ops);
5763 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5764
5765 pci_set_drvdata(pci_dev, dev);
5766
5767 /* read the mac address */
5768 base = get_hwbase(dev);
5769 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5770 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5771
5772 /* check the workaround bit for correct mac address order */
5773 txreg = readl(base + NvRegTransmitPoll);
5774 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5775 /* mac address is already in correct order */
5776 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5777 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5778 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5779 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5780 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5781 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5782 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5783 /* mac address is already in correct order */
5784 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5785 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5786 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5787 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5788 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5789 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5790 /*
5791 * Set orig mac address back to the reversed version.
5792 * This flag will be cleared during low power transition.
5793 * Therefore, we should always put back the reversed address.
5794 */
5795 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5796 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5797 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5798 } else {
5799 /* need to reverse mac address to correct order */
5800 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5801 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5802 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5803 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5804 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5805 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5806 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5807 printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
5808 }
5809 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5810
5811 if (!is_valid_ether_addr(dev->perm_addr)) {
5812 /*
5813 * Bad mac address. At least one bios sets the mac address
5814 * to 01:23:45:67:89:ab
5815 */
5816 dev_printk(KERN_ERR, &pci_dev->dev,
5817 "Invalid Mac address detected: %pM\n",
5818 dev->dev_addr);
5819 dev_printk(KERN_ERR, &pci_dev->dev,
5820 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5821 dev->dev_addr[0] = 0x00;
5822 dev->dev_addr[1] = 0x00;
5823 dev->dev_addr[2] = 0x6c;
5824 get_random_bytes(&dev->dev_addr[3], 3);
5825 }
5826
5827 dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
5828 pci_name(pci_dev), dev->dev_addr);
5829
5830 /* set mac address */
5831 nv_copy_mac_to_hw(dev);
5832
5833 /* Workaround current PCI init glitch: wakeup bits aren't
5834 * being set from PCI PM capability.
5835 */
5836 device_init_wakeup(&pci_dev->dev, 1);
5837
5838 /* disable WOL */
5839 writel(0, base + NvRegWakeUpFlags);
5840 np->wolenabled = 0;
5841
5842 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5843
5844 /* take phy and nic out of low power mode */
5845 powerstate = readl(base + NvRegPowerState2);
5846 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5847 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5848 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5849 pci_dev->revision >= 0xA3)
5850 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5851 writel(powerstate, base + NvRegPowerState2);
5852 }
5853
5854 if (np->desc_ver == DESC_VER_1) {
5855 np->tx_flags = NV_TX_VALID;
5856 } else {
5857 np->tx_flags = NV_TX2_VALID;
5858 }
5859
5860 np->msi_flags = 0;
5861 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5862 np->msi_flags |= NV_MSI_CAPABLE;
5863 }
5864 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5865 /* msix has had reported issues when modifying irqmask
5866 as in the case of napi, therefore, disable for now
5867 */
5868 #ifndef CONFIG_FORCEDETH_NAPI
5869 np->msi_flags |= NV_MSI_X_CAPABLE;
5870 #endif
5871 }
5872
5873 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5874 np->irqmask = NVREG_IRQMASK_CPU;
5875 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5876 np->msi_flags |= 0x0001;
5877 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5878 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5879 /* start off in throughput mode */
5880 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5881 /* remove support for msix mode */
5882 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5883 } else {
5884 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5885 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5886 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5887 np->msi_flags |= 0x0003;
5888 }
5889
5890 if (id->driver_data & DEV_NEED_TIMERIRQ)
5891 np->irqmask |= NVREG_IRQ_TIMER;
5892 if (id->driver_data & DEV_NEED_LINKTIMER) {
5893 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5894 np->need_linktimer = 1;
5895 np->link_timeout = jiffies + LINK_TIMEOUT;
5896 } else {
5897 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5898 np->need_linktimer = 0;
5899 }
5900
5901 /* Limit the number of tx's outstanding for hw bug */
5902 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5903 np->tx_limit = 1;
5904 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
5905 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
5906 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
5907 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
5908 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
5909 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
5910 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
5911 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
5912 pci_dev->revision >= 0xA2)
5913 np->tx_limit = 0;
5914 }
5915
5916 /* clear phy state and temporarily halt phy interrupts */
5917 writel(0, base + NvRegMIIMask);
5918 phystate = readl(base + NvRegAdapterControl);
5919 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5920 phystate_orig = 1;
5921 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5922 writel(phystate, base + NvRegAdapterControl);
5923 }
5924 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5925
5926 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5927 /* management unit running on the mac? */
5928 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5929 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5930 nv_mgmt_acquire_sema(dev) &&
5931 nv_mgmt_get_version(dev)) {
5932 np->mac_in_use = 1;
5933 if (np->mgmt_version > 0) {
5934 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5935 }
5936 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
5937 pci_name(pci_dev), np->mac_in_use);
5938 /* management unit setup the phy already? */
5939 if (np->mac_in_use &&
5940 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5941 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5942 /* phy is inited by mgmt unit */
5943 phyinitialized = 1;
5944 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
5945 pci_name(pci_dev));
5946 } else {
5947 /* we need to init the phy */
5948 }
5949 }
5950 }
5951
5952 /* find a suitable phy */
5953 for (i = 1; i <= 32; i++) {
5954 int id1, id2;
5955 int phyaddr = i & 0x1F;
5956
5957 spin_lock_irq(&np->lock);
5958 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5959 spin_unlock_irq(&np->lock);
5960 if (id1 < 0 || id1 == 0xffff)
5961 continue;
5962 spin_lock_irq(&np->lock);
5963 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5964 spin_unlock_irq(&np->lock);
5965 if (id2 < 0 || id2 == 0xffff)
5966 continue;
5967
5968 np->phy_model = id2 & PHYID2_MODEL_MASK;
5969 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5970 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5971 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5972 pci_name(pci_dev), id1, id2, phyaddr);
5973 np->phyaddr = phyaddr;
5974 np->phy_oui = id1 | id2;
5975
5976 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5977 if (np->phy_oui == PHY_OUI_REALTEK2)
5978 np->phy_oui = PHY_OUI_REALTEK;
5979 /* Setup phy revision for Realtek */
5980 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5981 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5982
5983 break;
5984 }
5985 if (i == 33) {
5986 dev_printk(KERN_INFO, &pci_dev->dev,
5987 "open: Could not find a valid PHY.\n");
5988 goto out_error;
5989 }
5990
5991 if (!phyinitialized) {
5992 /* reset it */
5993 phy_init(dev);
5994 } else {
5995 /* see if it is a gigabit phy */
5996 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5997 if (mii_status & PHY_GIGABIT) {
5998 np->gigabit = PHY_GIGABIT;
5999 }
6000 }
6001
6002 /* set default link speed settings */
6003 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
6004 np->duplex = 0;
6005 np->autoneg = 1;
6006
6007 err = register_netdev(dev);
6008 if (err) {
6009 dev_printk(KERN_INFO, &pci_dev->dev,
6010 "unable to register netdev: %d\n", err);
6011 goto out_error;
6012 }
6013
6014 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
6015 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
6016 dev->name,
6017 np->phy_oui,
6018 np->phyaddr,
6019 dev->dev_addr[0],
6020 dev->dev_addr[1],
6021 dev->dev_addr[2],
6022 dev->dev_addr[3],
6023 dev->dev_addr[4],
6024 dev->dev_addr[5]);
6025
6026 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
6027 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
6028 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
6029 "csum " : "",
6030 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
6031 "vlan " : "",
6032 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
6033 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
6034 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
6035 np->gigabit == PHY_GIGABIT ? "gbit " : "",
6036 np->need_linktimer ? "lnktim " : "",
6037 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
6038 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
6039 np->desc_ver);
6040
6041 return 0;
6042
6043 out_error:
6044 if (phystate_orig)
6045 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
6046 pci_set_drvdata(pci_dev, NULL);
6047 out_freering:
6048 free_rings(dev);
6049 out_unmap:
6050 iounmap(get_hwbase(dev));
6051 out_relreg:
6052 pci_release_regions(pci_dev);
6053 out_disable:
6054 pci_disable_device(pci_dev);
6055 out_free:
6056 free_netdev(dev);
6057 out:
6058 return err;
6059 }
6060
6061 static void nv_restore_phy(struct net_device *dev)
6062 {
6063 struct fe_priv *np = netdev_priv(dev);
6064 u16 phy_reserved, mii_control;
6065
6066 if (np->phy_oui == PHY_OUI_REALTEK &&
6067 np->phy_model == PHY_MODEL_REALTEK_8201 &&
6068 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
6069 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
6070 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
6071 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
6072 phy_reserved |= PHY_REALTEK_INIT8;
6073 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6074 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6075
6076 /* restart auto negotiation */
6077 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6078 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6079 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6080 }
6081 }
6082
6083 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6084 {
6085 struct net_device *dev = pci_get_drvdata(pci_dev);
6086 struct fe_priv *np = netdev_priv(dev);
6087 u8 __iomem *base = get_hwbase(dev);
6088
6089 /* special op: write back the misordered MAC address - otherwise
6090 * the next nv_probe would see a wrong address.
6091 */
6092 writel(np->orig_mac[0], base + NvRegMacAddrA);
6093 writel(np->orig_mac[1], base + NvRegMacAddrB);
6094 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6095 base + NvRegTransmitPoll);
6096 }
6097
6098 static void __devexit nv_remove(struct pci_dev *pci_dev)
6099 {
6100 struct net_device *dev = pci_get_drvdata(pci_dev);
6101
6102 unregister_netdev(dev);
6103
6104 nv_restore_mac_addr(pci_dev);
6105
6106 /* restore any phy related changes */
6107 nv_restore_phy(dev);
6108
6109 nv_mgmt_release_sema(dev);
6110
6111 /* free all structures */
6112 free_rings(dev);
6113 iounmap(get_hwbase(dev));
6114 pci_release_regions(pci_dev);
6115 pci_disable_device(pci_dev);
6116 free_netdev(dev);
6117 pci_set_drvdata(pci_dev, NULL);
6118 }
6119
6120 #ifdef CONFIG_PM
6121 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
6122 {
6123 struct net_device *dev = pci_get_drvdata(pdev);
6124 struct fe_priv *np = netdev_priv(dev);
6125 u8 __iomem *base = get_hwbase(dev);
6126 int i;
6127
6128 if (netif_running(dev)) {
6129 // Gross.
6130 nv_close(dev);
6131 }
6132 netif_device_detach(dev);
6133
6134 /* save non-pci configuration space */
6135 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6136 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6137
6138 pci_save_state(pdev);
6139 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
6140 pci_disable_device(pdev);
6141 pci_set_power_state(pdev, pci_choose_state(pdev, state));
6142 return 0;
6143 }
6144
6145 static int nv_resume(struct pci_dev *pdev)
6146 {
6147 struct net_device *dev = pci_get_drvdata(pdev);
6148 struct fe_priv *np = netdev_priv(dev);
6149 u8 __iomem *base = get_hwbase(dev);
6150 int i, rc = 0;
6151
6152 pci_set_power_state(pdev, PCI_D0);
6153 pci_restore_state(pdev);
6154 /* ack any pending wake events, disable PME */
6155 pci_enable_wake(pdev, PCI_D0, 0);
6156
6157 /* restore non-pci configuration space */
6158 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6159 writel(np->saved_config_space[i], base+i*sizeof(u32));
6160
6161 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6162
6163 /* restore phy state, including autoneg */
6164 phy_init(dev);
6165
6166 netif_device_attach(dev);
6167 if (netif_running(dev)) {
6168 rc = nv_open(dev);
6169 nv_set_multicast(dev);
6170 }
6171 return rc;
6172 }
6173
6174 static void nv_shutdown(struct pci_dev *pdev)
6175 {
6176 struct net_device *dev = pci_get_drvdata(pdev);
6177 struct fe_priv *np = netdev_priv(dev);
6178
6179 if (netif_running(dev))
6180 nv_close(dev);
6181
6182 /*
6183 * Restore the MAC so a kernel started by kexec won't get confused.
6184 * If we really go for poweroff, we must not restore the MAC,
6185 * otherwise the MAC for WOL will be reversed at least on some boards.
6186 */
6187 if (system_state != SYSTEM_POWER_OFF) {
6188 nv_restore_mac_addr(pdev);
6189 }
6190
6191 pci_disable_device(pdev);
6192 /*
6193 * Apparently it is not possible to reinitialise from D3 hot,
6194 * only put the device into D3 if we really go for poweroff.
6195 */
6196 if (system_state == SYSTEM_POWER_OFF) {
6197 if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
6198 pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
6199 pci_set_power_state(pdev, PCI_D3hot);
6200 }
6201 }
6202 #else
6203 #define nv_suspend NULL
6204 #define nv_shutdown NULL
6205 #define nv_resume NULL
6206 #endif /* CONFIG_PM */
6207
6208 static struct pci_device_id pci_tbl[] = {
6209 { /* nForce Ethernet Controller */
6210 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
6211 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6212 },
6213 { /* nForce2 Ethernet Controller */
6214 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
6215 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6216 },
6217 { /* nForce3 Ethernet Controller */
6218 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
6219 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6220 },
6221 { /* nForce3 Ethernet Controller */
6222 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
6223 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6224 },
6225 { /* nForce3 Ethernet Controller */
6226 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
6227 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6228 },
6229 { /* nForce3 Ethernet Controller */
6230 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
6231 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6232 },
6233 { /* nForce3 Ethernet Controller */
6234 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
6235 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6236 },
6237 { /* CK804 Ethernet Controller */
6238 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
6239 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6240 },
6241 { /* CK804 Ethernet Controller */
6242 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
6243 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6244 },
6245 { /* MCP04 Ethernet Controller */
6246 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
6247 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6248 },
6249 { /* MCP04 Ethernet Controller */
6250 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
6251 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6252 },
6253 { /* MCP51 Ethernet Controller */
6254 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
6255 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
6256 },
6257 { /* MCP51 Ethernet Controller */
6258 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
6259 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
6260 },
6261 { /* MCP55 Ethernet Controller */
6262 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
6263 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
6264 },
6265 { /* MCP55 Ethernet Controller */
6266 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
6267 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
6268 },
6269 { /* MCP61 Ethernet Controller */
6270 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
6271 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
6272 },
6273 { /* MCP61 Ethernet Controller */
6274 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
6275 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
6276 },
6277 { /* MCP61 Ethernet Controller */
6278 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
6279 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
6280 },
6281 { /* MCP61 Ethernet Controller */
6282 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
6283 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
6284 },
6285 { /* MCP65 Ethernet Controller */
6286 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
6287 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6288 },
6289 { /* MCP65 Ethernet Controller */
6290 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
6291 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6292 },
6293 { /* MCP65 Ethernet Controller */
6294 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
6295 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6296 },
6297 { /* MCP65 Ethernet Controller */
6298 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
6299 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6300 },
6301 { /* MCP67 Ethernet Controller */
6302 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
6303 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
6304 },
6305 { /* MCP67 Ethernet Controller */
6306 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
6307 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
6308 },
6309 { /* MCP67 Ethernet Controller */
6310 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
6311 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
6312 },
6313 { /* MCP67 Ethernet Controller */
6314 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
6315 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
6316 },
6317 { /* MCP73 Ethernet Controller */
6318 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
6319 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
6320 },
6321 { /* MCP73 Ethernet Controller */
6322 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
6323 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
6324 },
6325 { /* MCP73 Ethernet Controller */
6326 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
6327 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
6328 },
6329 { /* MCP73 Ethernet Controller */
6330 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
6331 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
6332 },
6333 { /* MCP77 Ethernet Controller */
6334 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
6335 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6336 },
6337 { /* MCP77 Ethernet Controller */
6338 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
6339 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6340 },
6341 { /* MCP77 Ethernet Controller */
6342 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
6343 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6344 },
6345 { /* MCP77 Ethernet Controller */
6346 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
6347 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6348 },
6349 { /* MCP79 Ethernet Controller */
6350 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
6351 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6352 },
6353 { /* MCP79 Ethernet Controller */
6354 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
6355 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6356 },
6357 { /* MCP79 Ethernet Controller */
6358 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
6359 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6360 },
6361 { /* MCP79 Ethernet Controller */
6362 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
6363 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6364 },
6365 {0,},
6366 };
6367
6368 static struct pci_driver driver = {
6369 .name = DRV_NAME,
6370 .id_table = pci_tbl,
6371 .probe = nv_probe,
6372 .remove = __devexit_p(nv_remove),
6373 .suspend = nv_suspend,
6374 .resume = nv_resume,
6375 .shutdown = nv_shutdown,
6376 };
6377
6378 static int __init init_nic(void)
6379 {
6380 return pci_register_driver(&driver);
6381 }
6382
6383 static void __exit exit_nic(void)
6384 {
6385 pci_unregister_driver(&driver);
6386 }
6387
6388 module_param(max_interrupt_work, int, 0);
6389 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6390 module_param(optimization_mode, int, 0);
6391 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6392 module_param(poll_interval, int, 0);
6393 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6394 module_param(msi, int, 0);
6395 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6396 module_param(msix, int, 0);
6397 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6398 module_param(dma_64bit, int, 0);
6399 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6400 module_param(phy_cross, int, 0);
6401 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6402 module_param(phy_power_down, int, 0);
6403 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6404
6405 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6406 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6407 MODULE_LICENSE("GPL");
6408
6409 MODULE_DEVICE_TABLE(pci, pci_tbl);
6410
6411 module_init(init_nic);
6412 module_exit(exit_nic);
This page took 0.231124 seconds and 6 git commands to generate.