42d94edeee26f4106170a0385e6767a10fcf99f7
[deliverable/linux.git] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39
40 #include <linux/vmalloc.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
44
45 #ifdef CONFIG_PPC_CPM_NEW_BINDING
46 #include <asm/of_platform.h>
47 #endif
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 #ifndef CONFIG_PPC_CPM_NEW_BINDING
54 static char version[] __devinitdata =
55 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
56 #endif
57
58 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
59 MODULE_DESCRIPTION("Freescale Ethernet Driver");
60 MODULE_LICENSE("GPL");
61 MODULE_VERSION(DRV_MODULE_VERSION);
62
63 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
64 module_param(fs_enet_debug, int, 0);
65 MODULE_PARM_DESC(fs_enet_debug,
66 "Freescale bitmapped debugging message enable value");
67
68 #ifdef CONFIG_NET_POLL_CONTROLLER
69 static void fs_enet_netpoll(struct net_device *dev);
70 #endif
71
72 static void fs_set_multicast_list(struct net_device *dev)
73 {
74 struct fs_enet_private *fep = netdev_priv(dev);
75
76 (*fep->ops->set_multicast_list)(dev);
77 }
78
79 static void skb_align(struct sk_buff *skb, int align)
80 {
81 int off = ((unsigned long)skb->data) & (align - 1);
82
83 if (off)
84 skb_reserve(skb, align - off);
85 }
86
87 /* NAPI receive function */
88 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
89 {
90 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
91 struct net_device *dev = fep->ndev;
92 const struct fs_platform_info *fpi = fep->fpi;
93 cbd_t __iomem *bdp;
94 struct sk_buff *skb, *skbn, *skbt;
95 int received = 0;
96 u16 pkt_len, sc;
97 int curidx;
98
99 /*
100 * First, grab all of the stats for the incoming packet.
101 * These get messed up if we get called due to a busy condition.
102 */
103 bdp = fep->cur_rx;
104
105 /* clear RX status bits for napi*/
106 (*fep->ops->napi_clear_rx_event)(dev);
107
108 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
109 curidx = bdp - fep->rx_bd_base;
110
111 /*
112 * Since we have allocated space to hold a complete frame,
113 * the last indicator should be set.
114 */
115 if ((sc & BD_ENET_RX_LAST) == 0)
116 printk(KERN_WARNING DRV_MODULE_NAME
117 ": %s rcv is not +last\n",
118 dev->name);
119
120 /*
121 * Check for errors.
122 */
123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
124 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
125 fep->stats.rx_errors++;
126 /* Frame too long or too short. */
127 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
128 fep->stats.rx_length_errors++;
129 /* Frame alignment */
130 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
131 fep->stats.rx_frame_errors++;
132 /* CRC Error */
133 if (sc & BD_ENET_RX_CR)
134 fep->stats.rx_crc_errors++;
135 /* FIFO overrun */
136 if (sc & BD_ENET_RX_OV)
137 fep->stats.rx_crc_errors++;
138
139 skb = fep->rx_skbuff[curidx];
140
141 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
142 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
143 DMA_FROM_DEVICE);
144
145 skbn = skb;
146
147 } else {
148 skb = fep->rx_skbuff[curidx];
149
150 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
151 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
152 DMA_FROM_DEVICE);
153
154 /*
155 * Process the incoming frame.
156 */
157 fep->stats.rx_packets++;
158 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
159 fep->stats.rx_bytes += pkt_len + 4;
160
161 if (pkt_len <= fpi->rx_copybreak) {
162 /* +2 to make IP header L1 cache aligned */
163 skbn = dev_alloc_skb(pkt_len + 2);
164 if (skbn != NULL) {
165 skb_reserve(skbn, 2); /* align IP header */
166 skb_copy_from_linear_data(skb,
167 skbn->data, pkt_len);
168 /* swap */
169 skbt = skb;
170 skb = skbn;
171 skbn = skbt;
172 }
173 } else {
174 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
175
176 if (skbn)
177 skb_align(skbn, ENET_RX_ALIGN);
178 }
179
180 if (skbn != NULL) {
181 skb_put(skb, pkt_len); /* Make room */
182 skb->protocol = eth_type_trans(skb, dev);
183 received++;
184 netif_receive_skb(skb);
185 } else {
186 printk(KERN_WARNING DRV_MODULE_NAME
187 ": %s Memory squeeze, dropping packet.\n",
188 dev->name);
189 fep->stats.rx_dropped++;
190 skbn = skb;
191 }
192 }
193
194 fep->rx_skbuff[curidx] = skbn;
195 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
196 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
197 DMA_FROM_DEVICE));
198 CBDW_DATLEN(bdp, 0);
199 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
200
201 /*
202 * Update BD pointer to next entry.
203 */
204 if ((sc & BD_ENET_RX_WRAP) == 0)
205 bdp++;
206 else
207 bdp = fep->rx_bd_base;
208
209 (*fep->ops->rx_bd_done)(dev);
210
211 if (received >= budget)
212 break;
213 }
214
215 fep->cur_rx = bdp;
216
217 if (received < budget) {
218 /* done */
219 netif_rx_complete(dev, napi);
220 (*fep->ops->napi_enable_rx)(dev);
221 }
222 return received;
223 }
224
225 /* non NAPI receive function */
226 static int fs_enet_rx_non_napi(struct net_device *dev)
227 {
228 struct fs_enet_private *fep = netdev_priv(dev);
229 const struct fs_platform_info *fpi = fep->fpi;
230 cbd_t __iomem *bdp;
231 struct sk_buff *skb, *skbn, *skbt;
232 int received = 0;
233 u16 pkt_len, sc;
234 int curidx;
235 /*
236 * First, grab all of the stats for the incoming packet.
237 * These get messed up if we get called due to a busy condition.
238 */
239 bdp = fep->cur_rx;
240
241 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
242
243 curidx = bdp - fep->rx_bd_base;
244
245 /*
246 * Since we have allocated space to hold a complete frame,
247 * the last indicator should be set.
248 */
249 if ((sc & BD_ENET_RX_LAST) == 0)
250 printk(KERN_WARNING DRV_MODULE_NAME
251 ": %s rcv is not +last\n",
252 dev->name);
253
254 /*
255 * Check for errors.
256 */
257 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
258 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
259 fep->stats.rx_errors++;
260 /* Frame too long or too short. */
261 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
262 fep->stats.rx_length_errors++;
263 /* Frame alignment */
264 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
265 fep->stats.rx_frame_errors++;
266 /* CRC Error */
267 if (sc & BD_ENET_RX_CR)
268 fep->stats.rx_crc_errors++;
269 /* FIFO overrun */
270 if (sc & BD_ENET_RX_OV)
271 fep->stats.rx_crc_errors++;
272
273 skb = fep->rx_skbuff[curidx];
274
275 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
276 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
277 DMA_FROM_DEVICE);
278
279 skbn = skb;
280
281 } else {
282
283 skb = fep->rx_skbuff[curidx];
284
285 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
286 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
287 DMA_FROM_DEVICE);
288
289 /*
290 * Process the incoming frame.
291 */
292 fep->stats.rx_packets++;
293 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
294 fep->stats.rx_bytes += pkt_len + 4;
295
296 if (pkt_len <= fpi->rx_copybreak) {
297 /* +2 to make IP header L1 cache aligned */
298 skbn = dev_alloc_skb(pkt_len + 2);
299 if (skbn != NULL) {
300 skb_reserve(skbn, 2); /* align IP header */
301 skb_copy_from_linear_data(skb,
302 skbn->data, pkt_len);
303 /* swap */
304 skbt = skb;
305 skb = skbn;
306 skbn = skbt;
307 }
308 } else {
309 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
310
311 if (skbn)
312 skb_align(skbn, ENET_RX_ALIGN);
313 }
314
315 if (skbn != NULL) {
316 skb_put(skb, pkt_len); /* Make room */
317 skb->protocol = eth_type_trans(skb, dev);
318 received++;
319 netif_rx(skb);
320 } else {
321 printk(KERN_WARNING DRV_MODULE_NAME
322 ": %s Memory squeeze, dropping packet.\n",
323 dev->name);
324 fep->stats.rx_dropped++;
325 skbn = skb;
326 }
327 }
328
329 fep->rx_skbuff[curidx] = skbn;
330 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
331 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
332 DMA_FROM_DEVICE));
333 CBDW_DATLEN(bdp, 0);
334 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
335
336 /*
337 * Update BD pointer to next entry.
338 */
339 if ((sc & BD_ENET_RX_WRAP) == 0)
340 bdp++;
341 else
342 bdp = fep->rx_bd_base;
343
344 (*fep->ops->rx_bd_done)(dev);
345 }
346
347 fep->cur_rx = bdp;
348
349 return 0;
350 }
351
352 static void fs_enet_tx(struct net_device *dev)
353 {
354 struct fs_enet_private *fep = netdev_priv(dev);
355 cbd_t __iomem *bdp;
356 struct sk_buff *skb;
357 int dirtyidx, do_wake, do_restart;
358 u16 sc;
359
360 spin_lock(&fep->tx_lock);
361 bdp = fep->dirty_tx;
362
363 do_wake = do_restart = 0;
364 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
365 dirtyidx = bdp - fep->tx_bd_base;
366
367 if (fep->tx_free == fep->tx_ring)
368 break;
369
370 skb = fep->tx_skbuff[dirtyidx];
371
372 /*
373 * Check for errors.
374 */
375 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
376 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
377
378 if (sc & BD_ENET_TX_HB) /* No heartbeat */
379 fep->stats.tx_heartbeat_errors++;
380 if (sc & BD_ENET_TX_LC) /* Late collision */
381 fep->stats.tx_window_errors++;
382 if (sc & BD_ENET_TX_RL) /* Retrans limit */
383 fep->stats.tx_aborted_errors++;
384 if (sc & BD_ENET_TX_UN) /* Underrun */
385 fep->stats.tx_fifo_errors++;
386 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
387 fep->stats.tx_carrier_errors++;
388
389 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
390 fep->stats.tx_errors++;
391 do_restart = 1;
392 }
393 } else
394 fep->stats.tx_packets++;
395
396 if (sc & BD_ENET_TX_READY)
397 printk(KERN_WARNING DRV_MODULE_NAME
398 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
399 dev->name);
400
401 /*
402 * Deferred means some collisions occurred during transmit,
403 * but we eventually sent the packet OK.
404 */
405 if (sc & BD_ENET_TX_DEF)
406 fep->stats.collisions++;
407
408 /* unmap */
409 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
410 skb->len, DMA_TO_DEVICE);
411
412 /*
413 * Free the sk buffer associated with this last transmit.
414 */
415 dev_kfree_skb_irq(skb);
416 fep->tx_skbuff[dirtyidx] = NULL;
417
418 /*
419 * Update pointer to next buffer descriptor to be transmitted.
420 */
421 if ((sc & BD_ENET_TX_WRAP) == 0)
422 bdp++;
423 else
424 bdp = fep->tx_bd_base;
425
426 /*
427 * Since we have freed up a buffer, the ring is no longer
428 * full.
429 */
430 if (!fep->tx_free++)
431 do_wake = 1;
432 }
433
434 fep->dirty_tx = bdp;
435
436 if (do_restart)
437 (*fep->ops->tx_restart)(dev);
438
439 spin_unlock(&fep->tx_lock);
440
441 if (do_wake)
442 netif_wake_queue(dev);
443 }
444
445 /*
446 * The interrupt handler.
447 * This is called from the MPC core interrupt.
448 */
449 static irqreturn_t
450 fs_enet_interrupt(int irq, void *dev_id)
451 {
452 struct net_device *dev = dev_id;
453 struct fs_enet_private *fep;
454 const struct fs_platform_info *fpi;
455 u32 int_events;
456 u32 int_clr_events;
457 int nr, napi_ok;
458 int handled;
459
460 fep = netdev_priv(dev);
461 fpi = fep->fpi;
462
463 nr = 0;
464 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
465 nr++;
466
467 int_clr_events = int_events;
468 if (fpi->use_napi)
469 int_clr_events &= ~fep->ev_napi_rx;
470
471 (*fep->ops->clear_int_events)(dev, int_clr_events);
472
473 if (int_events & fep->ev_err)
474 (*fep->ops->ev_error)(dev, int_events);
475
476 if (int_events & fep->ev_rx) {
477 if (!fpi->use_napi)
478 fs_enet_rx_non_napi(dev);
479 else {
480 napi_ok = napi_schedule_prep(&fep->napi);
481
482 (*fep->ops->napi_disable_rx)(dev);
483 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
484
485 /* NOTE: it is possible for FCCs in NAPI mode */
486 /* to submit a spurious interrupt while in poll */
487 if (napi_ok)
488 __netif_rx_schedule(dev, &fep->napi);
489 }
490 }
491
492 if (int_events & fep->ev_tx)
493 fs_enet_tx(dev);
494 }
495
496 handled = nr > 0;
497 return IRQ_RETVAL(handled);
498 }
499
500 void fs_init_bds(struct net_device *dev)
501 {
502 struct fs_enet_private *fep = netdev_priv(dev);
503 cbd_t __iomem *bdp;
504 struct sk_buff *skb;
505 int i;
506
507 fs_cleanup_bds(dev);
508
509 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
510 fep->tx_free = fep->tx_ring;
511 fep->cur_rx = fep->rx_bd_base;
512
513 /*
514 * Initialize the receive buffer descriptors.
515 */
516 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
517 skb = dev_alloc_skb(ENET_RX_FRSIZE);
518 if (skb == NULL) {
519 printk(KERN_WARNING DRV_MODULE_NAME
520 ": %s Memory squeeze, unable to allocate skb\n",
521 dev->name);
522 break;
523 }
524 skb_align(skb, ENET_RX_ALIGN);
525 fep->rx_skbuff[i] = skb;
526 CBDW_BUFADDR(bdp,
527 dma_map_single(fep->dev, skb->data,
528 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
529 DMA_FROM_DEVICE));
530 CBDW_DATLEN(bdp, 0); /* zero */
531 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
532 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
533 }
534 /*
535 * if we failed, fillup remainder
536 */
537 for (; i < fep->rx_ring; i++, bdp++) {
538 fep->rx_skbuff[i] = NULL;
539 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
540 }
541
542 /*
543 * ...and the same for transmit.
544 */
545 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
546 fep->tx_skbuff[i] = NULL;
547 CBDW_BUFADDR(bdp, 0);
548 CBDW_DATLEN(bdp, 0);
549 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
550 }
551 }
552
553 void fs_cleanup_bds(struct net_device *dev)
554 {
555 struct fs_enet_private *fep = netdev_priv(dev);
556 struct sk_buff *skb;
557 cbd_t __iomem *bdp;
558 int i;
559
560 /*
561 * Reset SKB transmit buffers.
562 */
563 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
564 if ((skb = fep->tx_skbuff[i]) == NULL)
565 continue;
566
567 /* unmap */
568 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
569 skb->len, DMA_TO_DEVICE);
570
571 fep->tx_skbuff[i] = NULL;
572 dev_kfree_skb(skb);
573 }
574
575 /*
576 * Reset SKB receive buffers
577 */
578 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
579 if ((skb = fep->rx_skbuff[i]) == NULL)
580 continue;
581
582 /* unmap */
583 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
584 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
585 DMA_FROM_DEVICE);
586
587 fep->rx_skbuff[i] = NULL;
588
589 dev_kfree_skb(skb);
590 }
591 }
592
593 /**********************************************************************************/
594
595 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
596 {
597 struct fs_enet_private *fep = netdev_priv(dev);
598 cbd_t __iomem *bdp;
599 int curidx;
600 u16 sc;
601 unsigned long flags;
602
603 spin_lock_irqsave(&fep->tx_lock, flags);
604
605 /*
606 * Fill in a Tx ring entry
607 */
608 bdp = fep->cur_tx;
609
610 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
611 netif_stop_queue(dev);
612 spin_unlock_irqrestore(&fep->tx_lock, flags);
613
614 /*
615 * Ooops. All transmit buffers are full. Bail out.
616 * This should not happen, since the tx queue should be stopped.
617 */
618 printk(KERN_WARNING DRV_MODULE_NAME
619 ": %s tx queue full!.\n", dev->name);
620 return NETDEV_TX_BUSY;
621 }
622
623 curidx = bdp - fep->tx_bd_base;
624 /*
625 * Clear all of the status flags.
626 */
627 CBDC_SC(bdp, BD_ENET_TX_STATS);
628
629 /*
630 * Save skb pointer.
631 */
632 fep->tx_skbuff[curidx] = skb;
633
634 fep->stats.tx_bytes += skb->len;
635
636 /*
637 * Push the data cache so the CPM does not get stale memory data.
638 */
639 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
640 skb->data, skb->len, DMA_TO_DEVICE));
641 CBDW_DATLEN(bdp, skb->len);
642
643 dev->trans_start = jiffies;
644
645 /*
646 * If this was the last BD in the ring, start at the beginning again.
647 */
648 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
649 fep->cur_tx++;
650 else
651 fep->cur_tx = fep->tx_bd_base;
652
653 if (!--fep->tx_free)
654 netif_stop_queue(dev);
655
656 /* Trigger transmission start */
657 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
658 BD_ENET_TX_LAST | BD_ENET_TX_TC;
659
660 /* note that while FEC does not have this bit
661 * it marks it as available for software use
662 * yay for hw reuse :) */
663 if (skb->len <= 60)
664 sc |= BD_ENET_TX_PAD;
665 CBDS_SC(bdp, sc);
666
667 (*fep->ops->tx_kickstart)(dev);
668
669 spin_unlock_irqrestore(&fep->tx_lock, flags);
670
671 return NETDEV_TX_OK;
672 }
673
674 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
675 irq_handler_t irqf)
676 {
677 struct fs_enet_private *fep = netdev_priv(dev);
678
679 (*fep->ops->pre_request_irq)(dev, irq);
680 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
681 }
682
683 static void fs_free_irq(struct net_device *dev, int irq)
684 {
685 struct fs_enet_private *fep = netdev_priv(dev);
686
687 free_irq(irq, dev);
688 (*fep->ops->post_free_irq)(dev, irq);
689 }
690
691 static void fs_timeout(struct net_device *dev)
692 {
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695 int wake = 0;
696
697 fep->stats.tx_errors++;
698
699 spin_lock_irqsave(&fep->lock, flags);
700
701 if (dev->flags & IFF_UP) {
702 phy_stop(fep->phydev);
703 (*fep->ops->stop)(dev);
704 (*fep->ops->restart)(dev);
705 phy_start(fep->phydev);
706 }
707
708 phy_start(fep->phydev);
709 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
710 spin_unlock_irqrestore(&fep->lock, flags);
711
712 if (wake)
713 netif_wake_queue(dev);
714 }
715
716 /*-----------------------------------------------------------------------------
717 * generic link-change handler - should be sufficient for most cases
718 *-----------------------------------------------------------------------------*/
719 static void generic_adjust_link(struct net_device *dev)
720 {
721 struct fs_enet_private *fep = netdev_priv(dev);
722 struct phy_device *phydev = fep->phydev;
723 int new_state = 0;
724
725 if (phydev->link) {
726 /* adjust to duplex mode */
727 if (phydev->duplex != fep->oldduplex) {
728 new_state = 1;
729 fep->oldduplex = phydev->duplex;
730 }
731
732 if (phydev->speed != fep->oldspeed) {
733 new_state = 1;
734 fep->oldspeed = phydev->speed;
735 }
736
737 if (!fep->oldlink) {
738 new_state = 1;
739 fep->oldlink = 1;
740 netif_schedule(dev);
741 netif_carrier_on(dev);
742 netif_start_queue(dev);
743 }
744
745 if (new_state)
746 fep->ops->restart(dev);
747 } else if (fep->oldlink) {
748 new_state = 1;
749 fep->oldlink = 0;
750 fep->oldspeed = 0;
751 fep->oldduplex = -1;
752 netif_carrier_off(dev);
753 netif_stop_queue(dev);
754 }
755
756 if (new_state && netif_msg_link(fep))
757 phy_print_status(phydev);
758 }
759
760
761 static void fs_adjust_link(struct net_device *dev)
762 {
763 struct fs_enet_private *fep = netdev_priv(dev);
764 unsigned long flags;
765
766 spin_lock_irqsave(&fep->lock, flags);
767
768 if(fep->ops->adjust_link)
769 fep->ops->adjust_link(dev);
770 else
771 generic_adjust_link(dev);
772
773 spin_unlock_irqrestore(&fep->lock, flags);
774 }
775
776 static int fs_init_phy(struct net_device *dev)
777 {
778 struct fs_enet_private *fep = netdev_priv(dev);
779 struct phy_device *phydev;
780
781 fep->oldlink = 0;
782 fep->oldspeed = 0;
783 fep->oldduplex = -1;
784 if(fep->fpi->bus_id)
785 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
786 PHY_INTERFACE_MODE_MII);
787 else {
788 printk("No phy bus ID specified in BSP code\n");
789 return -EINVAL;
790 }
791 if (IS_ERR(phydev)) {
792 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
793 return PTR_ERR(phydev);
794 }
795
796 fep->phydev = phydev;
797
798 return 0;
799 }
800
801 static int fs_enet_open(struct net_device *dev)
802 {
803 struct fs_enet_private *fep = netdev_priv(dev);
804 int r;
805 int err;
806
807 if (fep->fpi->use_napi)
808 napi_enable(&fep->napi);
809
810 /* Install our interrupt handler. */
811 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
812 if (r != 0) {
813 printk(KERN_ERR DRV_MODULE_NAME
814 ": %s Could not allocate FS_ENET IRQ!", dev->name);
815 if (fep->fpi->use_napi)
816 napi_disable(&fep->napi);
817 return -EINVAL;
818 }
819
820 err = fs_init_phy(dev);
821 if (err) {
822 if (fep->fpi->use_napi)
823 napi_disable(&fep->napi);
824 return err;
825 }
826 phy_start(fep->phydev);
827
828 return 0;
829 }
830
831 static int fs_enet_close(struct net_device *dev)
832 {
833 struct fs_enet_private *fep = netdev_priv(dev);
834 unsigned long flags;
835
836 netif_stop_queue(dev);
837 netif_carrier_off(dev);
838 napi_disable(&fep->napi);
839 phy_stop(fep->phydev);
840
841 spin_lock_irqsave(&fep->lock, flags);
842 spin_lock(&fep->tx_lock);
843 (*fep->ops->stop)(dev);
844 spin_unlock(&fep->tx_lock);
845 spin_unlock_irqrestore(&fep->lock, flags);
846
847 /* release any irqs */
848 phy_disconnect(fep->phydev);
849 fep->phydev = NULL;
850 fs_free_irq(dev, fep->interrupt);
851
852 return 0;
853 }
854
855 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
856 {
857 struct fs_enet_private *fep = netdev_priv(dev);
858 return &fep->stats;
859 }
860
861 /*************************************************************************/
862
863 static void fs_get_drvinfo(struct net_device *dev,
864 struct ethtool_drvinfo *info)
865 {
866 strcpy(info->driver, DRV_MODULE_NAME);
867 strcpy(info->version, DRV_MODULE_VERSION);
868 }
869
870 static int fs_get_regs_len(struct net_device *dev)
871 {
872 struct fs_enet_private *fep = netdev_priv(dev);
873
874 return (*fep->ops->get_regs_len)(dev);
875 }
876
877 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
878 void *p)
879 {
880 struct fs_enet_private *fep = netdev_priv(dev);
881 unsigned long flags;
882 int r, len;
883
884 len = regs->len;
885
886 spin_lock_irqsave(&fep->lock, flags);
887 r = (*fep->ops->get_regs)(dev, p, &len);
888 spin_unlock_irqrestore(&fep->lock, flags);
889
890 if (r == 0)
891 regs->version = 0;
892 }
893
894 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
895 {
896 struct fs_enet_private *fep = netdev_priv(dev);
897
898 if (!fep->phydev)
899 return -ENODEV;
900
901 return phy_ethtool_gset(fep->phydev, cmd);
902 }
903
904 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
905 {
906 struct fs_enet_private *fep = netdev_priv(dev);
907
908 if (!fep->phydev)
909 return -ENODEV;
910
911 return phy_ethtool_sset(fep->phydev, cmd);
912 }
913
914 static int fs_nway_reset(struct net_device *dev)
915 {
916 return 0;
917 }
918
919 static u32 fs_get_msglevel(struct net_device *dev)
920 {
921 struct fs_enet_private *fep = netdev_priv(dev);
922 return fep->msg_enable;
923 }
924
925 static void fs_set_msglevel(struct net_device *dev, u32 value)
926 {
927 struct fs_enet_private *fep = netdev_priv(dev);
928 fep->msg_enable = value;
929 }
930
931 static const struct ethtool_ops fs_ethtool_ops = {
932 .get_drvinfo = fs_get_drvinfo,
933 .get_regs_len = fs_get_regs_len,
934 .get_settings = fs_get_settings,
935 .set_settings = fs_set_settings,
936 .nway_reset = fs_nway_reset,
937 .get_link = ethtool_op_get_link,
938 .get_msglevel = fs_get_msglevel,
939 .set_msglevel = fs_set_msglevel,
940 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
941 .set_sg = ethtool_op_set_sg,
942 .get_regs = fs_get_regs,
943 };
944
945 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
946 {
947 struct fs_enet_private *fep = netdev_priv(dev);
948 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
949 unsigned long flags;
950 int rc;
951
952 if (!netif_running(dev))
953 return -EINVAL;
954
955 spin_lock_irqsave(&fep->lock, flags);
956 rc = phy_mii_ioctl(fep->phydev, mii, cmd);
957 spin_unlock_irqrestore(&fep->lock, flags);
958 return rc;
959 }
960
961 extern int fs_mii_connect(struct net_device *dev);
962 extern void fs_mii_disconnect(struct net_device *dev);
963
964 #ifndef CONFIG_PPC_CPM_NEW_BINDING
965 static struct net_device *fs_init_instance(struct device *dev,
966 struct fs_platform_info *fpi)
967 {
968 struct net_device *ndev = NULL;
969 struct fs_enet_private *fep = NULL;
970 int privsize, i, r, err = 0, registered = 0;
971
972 fpi->fs_no = fs_get_id(fpi);
973 /* guard */
974 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
975 return ERR_PTR(-EINVAL);
976
977 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
978 (fpi->rx_ring + fpi->tx_ring));
979
980 ndev = alloc_etherdev(privsize);
981 if (!ndev) {
982 err = -ENOMEM;
983 goto err;
984 }
985
986 fep = netdev_priv(ndev);
987
988 fep->dev = dev;
989 dev_set_drvdata(dev, ndev);
990 fep->fpi = fpi;
991 if (fpi->init_ioports)
992 fpi->init_ioports((struct fs_platform_info *)fpi);
993
994 #ifdef CONFIG_FS_ENET_HAS_FEC
995 if (fs_get_fec_index(fpi->fs_no) >= 0)
996 fep->ops = &fs_fec_ops;
997 #endif
998
999 #ifdef CONFIG_FS_ENET_HAS_SCC
1000 if (fs_get_scc_index(fpi->fs_no) >=0)
1001 fep->ops = &fs_scc_ops;
1002 #endif
1003
1004 #ifdef CONFIG_FS_ENET_HAS_FCC
1005 if (fs_get_fcc_index(fpi->fs_no) >= 0)
1006 fep->ops = &fs_fcc_ops;
1007 #endif
1008
1009 if (fep->ops == NULL) {
1010 printk(KERN_ERR DRV_MODULE_NAME
1011 ": %s No matching ops found (%d).\n",
1012 ndev->name, fpi->fs_no);
1013 err = -EINVAL;
1014 goto err;
1015 }
1016
1017 r = (*fep->ops->setup_data)(ndev);
1018 if (r != 0) {
1019 printk(KERN_ERR DRV_MODULE_NAME
1020 ": %s setup_data failed\n",
1021 ndev->name);
1022 err = r;
1023 goto err;
1024 }
1025
1026 /* point rx_skbuff, tx_skbuff */
1027 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1028 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1029
1030 /* init locks */
1031 spin_lock_init(&fep->lock);
1032 spin_lock_init(&fep->tx_lock);
1033
1034 /*
1035 * Set the Ethernet address.
1036 */
1037 for (i = 0; i < 6; i++)
1038 ndev->dev_addr[i] = fpi->macaddr[i];
1039
1040 r = (*fep->ops->allocate_bd)(ndev);
1041
1042 if (fep->ring_base == NULL) {
1043 printk(KERN_ERR DRV_MODULE_NAME
1044 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1045 err = r;
1046 goto err;
1047 }
1048
1049 /*
1050 * Set receive and transmit descriptor base.
1051 */
1052 fep->rx_bd_base = fep->ring_base;
1053 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1054
1055 /* initialize ring size variables */
1056 fep->tx_ring = fpi->tx_ring;
1057 fep->rx_ring = fpi->rx_ring;
1058
1059 /*
1060 * The FEC Ethernet specific entries in the device structure.
1061 */
1062 ndev->open = fs_enet_open;
1063 ndev->hard_start_xmit = fs_enet_start_xmit;
1064 ndev->tx_timeout = fs_timeout;
1065 ndev->watchdog_timeo = 2 * HZ;
1066 ndev->stop = fs_enet_close;
1067 ndev->get_stats = fs_enet_get_stats;
1068 ndev->set_multicast_list = fs_set_multicast_list;
1069
1070 #ifdef CONFIG_NET_POLL_CONTROLLER
1071 ndev->poll_controller = fs_enet_netpoll;
1072 #endif
1073
1074 netif_napi_add(ndev, &fep->napi,
1075 fs_enet_rx_napi, fpi->napi_weight);
1076
1077 ndev->ethtool_ops = &fs_ethtool_ops;
1078 ndev->do_ioctl = fs_ioctl;
1079
1080 init_timer(&fep->phy_timer_list);
1081
1082 netif_carrier_off(ndev);
1083
1084 err = register_netdev(ndev);
1085 if (err != 0) {
1086 printk(KERN_ERR DRV_MODULE_NAME
1087 ": %s register_netdev failed.\n", ndev->name);
1088 goto err;
1089 }
1090 registered = 1;
1091
1092
1093 return ndev;
1094
1095 err:
1096 if (ndev != NULL) {
1097 if (registered)
1098 unregister_netdev(ndev);
1099
1100 if (fep != NULL) {
1101 (*fep->ops->free_bd)(ndev);
1102 (*fep->ops->cleanup_data)(ndev);
1103 }
1104
1105 free_netdev(ndev);
1106 }
1107
1108 dev_set_drvdata(dev, NULL);
1109
1110 return ERR_PTR(err);
1111 }
1112
1113 static int fs_cleanup_instance(struct net_device *ndev)
1114 {
1115 struct fs_enet_private *fep;
1116 const struct fs_platform_info *fpi;
1117 struct device *dev;
1118
1119 if (ndev == NULL)
1120 return -EINVAL;
1121
1122 fep = netdev_priv(ndev);
1123 if (fep == NULL)
1124 return -EINVAL;
1125
1126 fpi = fep->fpi;
1127
1128 unregister_netdev(ndev);
1129
1130 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1131 (void __force *)fep->ring_base, fep->ring_mem_addr);
1132
1133 /* reset it */
1134 (*fep->ops->cleanup_data)(ndev);
1135
1136 dev = fep->dev;
1137 if (dev != NULL) {
1138 dev_set_drvdata(dev, NULL);
1139 fep->dev = NULL;
1140 }
1141
1142 free_netdev(ndev);
1143
1144 return 0;
1145 }
1146 #endif
1147
1148 /**************************************************************************************/
1149
1150 /* handy pointer to the immap */
1151 void __iomem *fs_enet_immap = NULL;
1152
1153 static int setup_immap(void)
1154 {
1155 #ifdef CONFIG_CPM1
1156 fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
1157 WARN_ON(!fs_enet_immap);
1158 #elif defined(CONFIG_CPM2)
1159 fs_enet_immap = cpm2_immr;
1160 #endif
1161
1162 return 0;
1163 }
1164
1165 static void cleanup_immap(void)
1166 {
1167 #if defined(CONFIG_CPM1)
1168 iounmap(fs_enet_immap);
1169 #endif
1170 }
1171
1172 /**************************************************************************************/
1173
1174 #ifdef CONFIG_PPC_CPM_NEW_BINDING
1175 static int __devinit find_phy(struct device_node *np,
1176 struct fs_platform_info *fpi)
1177 {
1178 struct device_node *phynode, *mdionode;
1179 struct resource res;
1180 int ret = 0, len;
1181 const u32 *data;
1182
1183 data = of_get_property(np, "fixed-link", NULL);
1184 if (data) {
1185 snprintf(fpi->bus_id, 16, PHY_ID_FMT, 0, *data);
1186 return 0;
1187 }
1188
1189 data = of_get_property(np, "phy-handle", &len);
1190 if (!data || len != 4)
1191 return -EINVAL;
1192
1193 phynode = of_find_node_by_phandle(*data);
1194 if (!phynode)
1195 return -EINVAL;
1196
1197 mdionode = of_get_parent(phynode);
1198 if (!mdionode)
1199 goto out_put_phy;
1200
1201 ret = of_address_to_resource(mdionode, 0, &res);
1202 if (ret)
1203 goto out_put_mdio;
1204
1205 data = of_get_property(phynode, "reg", &len);
1206 if (!data || len != 4)
1207 goto out_put_mdio;
1208
1209 snprintf(fpi->bus_id, 16, PHY_ID_FMT, res.start, *data);
1210
1211 out_put_mdio:
1212 of_node_put(mdionode);
1213 out_put_phy:
1214 of_node_put(phynode);
1215 return ret;
1216 }
1217
1218 #ifdef CONFIG_FS_ENET_HAS_FEC
1219 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1220 #else
1221 #define IS_FEC(match) 0
1222 #endif
1223
1224 static int __devinit fs_enet_probe(struct of_device *ofdev,
1225 const struct of_device_id *match)
1226 {
1227 struct net_device *ndev;
1228 struct fs_enet_private *fep;
1229 struct fs_platform_info *fpi;
1230 const u32 *data;
1231 const u8 *mac_addr;
1232 int privsize, len, ret = -ENODEV;
1233
1234 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1235 if (!fpi)
1236 return -ENOMEM;
1237
1238 if (!IS_FEC(match)) {
1239 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1240 if (!data || len != 4)
1241 goto out_free_fpi;
1242
1243 fpi->cp_command = *data;
1244 }
1245
1246 fpi->rx_ring = 32;
1247 fpi->tx_ring = 32;
1248 fpi->rx_copybreak = 240;
1249 fpi->use_napi = 1;
1250 fpi->napi_weight = 17;
1251
1252 ret = find_phy(ofdev->node, fpi);
1253 if (ret)
1254 goto out_free_fpi;
1255
1256 privsize = sizeof(*fep) +
1257 sizeof(struct sk_buff **) *
1258 (fpi->rx_ring + fpi->tx_ring);
1259
1260 ndev = alloc_etherdev(privsize);
1261 if (!ndev) {
1262 ret = -ENOMEM;
1263 goto out_free_fpi;
1264 }
1265
1266 dev_set_drvdata(&ofdev->dev, ndev);
1267
1268 fep = netdev_priv(ndev);
1269 fep->dev = &ofdev->dev;
1270 fep->ndev = ndev;
1271 fep->fpi = fpi;
1272 fep->ops = match->data;
1273
1274 ret = fep->ops->setup_data(ndev);
1275 if (ret)
1276 goto out_free_dev;
1277
1278 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1279 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1280
1281 spin_lock_init(&fep->lock);
1282 spin_lock_init(&fep->tx_lock);
1283
1284 mac_addr = of_get_mac_address(ofdev->node);
1285 if (mac_addr)
1286 memcpy(ndev->dev_addr, mac_addr, 6);
1287
1288 ret = fep->ops->allocate_bd(ndev);
1289 if (ret)
1290 goto out_cleanup_data;
1291
1292 fep->rx_bd_base = fep->ring_base;
1293 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1294
1295 fep->tx_ring = fpi->tx_ring;
1296 fep->rx_ring = fpi->rx_ring;
1297
1298 ndev->open = fs_enet_open;
1299 ndev->hard_start_xmit = fs_enet_start_xmit;
1300 ndev->tx_timeout = fs_timeout;
1301 ndev->watchdog_timeo = 2 * HZ;
1302 ndev->stop = fs_enet_close;
1303 ndev->get_stats = fs_enet_get_stats;
1304 ndev->set_multicast_list = fs_set_multicast_list;
1305
1306 if (fpi->use_napi)
1307 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1308 fpi->napi_weight);
1309
1310 ndev->ethtool_ops = &fs_ethtool_ops;
1311 ndev->do_ioctl = fs_ioctl;
1312
1313 init_timer(&fep->phy_timer_list);
1314
1315 netif_carrier_off(ndev);
1316
1317 ret = register_netdev(ndev);
1318 if (ret)
1319 goto out_free_bd;
1320
1321 printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
1322 ndev->name,
1323 ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1324 ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1325
1326 return 0;
1327
1328 out_free_bd:
1329 fep->ops->free_bd(ndev);
1330 out_cleanup_data:
1331 fep->ops->cleanup_data(ndev);
1332 out_free_dev:
1333 free_netdev(ndev);
1334 dev_set_drvdata(&ofdev->dev, NULL);
1335 out_free_fpi:
1336 kfree(fpi);
1337 return ret;
1338 }
1339
1340 static int fs_enet_remove(struct of_device *ofdev)
1341 {
1342 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1343 struct fs_enet_private *fep = netdev_priv(ndev);
1344
1345 unregister_netdev(ndev);
1346
1347 fep->ops->free_bd(ndev);
1348 fep->ops->cleanup_data(ndev);
1349 dev_set_drvdata(fep->dev, NULL);
1350
1351 free_netdev(ndev);
1352 return 0;
1353 }
1354
1355 static struct of_device_id fs_enet_match[] = {
1356 #ifdef CONFIG_FS_ENET_HAS_SCC
1357 {
1358 .compatible = "fsl,cpm1-scc-enet",
1359 .data = (void *)&fs_scc_ops,
1360 },
1361 #endif
1362 #ifdef CONFIG_FS_ENET_HAS_FCC
1363 {
1364 .compatible = "fsl,cpm2-fcc-enet",
1365 .data = (void *)&fs_fcc_ops,
1366 },
1367 #endif
1368 #ifdef CONFIG_FS_ENET_HAS_FEC
1369 {
1370 .compatible = "fsl,pq1-fec-enet",
1371 .data = (void *)&fs_fec_ops,
1372 },
1373 #endif
1374 {}
1375 };
1376
1377 static struct of_platform_driver fs_enet_driver = {
1378 .name = "fs_enet",
1379 .match_table = fs_enet_match,
1380 .probe = fs_enet_probe,
1381 .remove = fs_enet_remove,
1382 };
1383
1384 static int __init fs_init(void)
1385 {
1386 int r = setup_immap();
1387 if (r != 0)
1388 return r;
1389
1390 r = of_register_platform_driver(&fs_enet_driver);
1391 if (r != 0)
1392 goto out;
1393
1394 return 0;
1395
1396 out:
1397 cleanup_immap();
1398 return r;
1399 }
1400
1401 static void __exit fs_cleanup(void)
1402 {
1403 of_unregister_platform_driver(&fs_enet_driver);
1404 cleanup_immap();
1405 }
1406 #else
1407 static int __devinit fs_enet_probe(struct device *dev)
1408 {
1409 struct net_device *ndev;
1410
1411 /* no fixup - no device */
1412 if (dev->platform_data == NULL) {
1413 printk(KERN_INFO "fs_enet: "
1414 "probe called with no platform data; "
1415 "remove unused devices\n");
1416 return -ENODEV;
1417 }
1418
1419 ndev = fs_init_instance(dev, dev->platform_data);
1420 if (IS_ERR(ndev))
1421 return PTR_ERR(ndev);
1422 return 0;
1423 }
1424
1425 static int fs_enet_remove(struct device *dev)
1426 {
1427 return fs_cleanup_instance(dev_get_drvdata(dev));
1428 }
1429
1430 static struct device_driver fs_enet_fec_driver = {
1431 .name = "fsl-cpm-fec",
1432 .bus = &platform_bus_type,
1433 .probe = fs_enet_probe,
1434 .remove = fs_enet_remove,
1435 #ifdef CONFIG_PM
1436 /* .suspend = fs_enet_suspend, TODO */
1437 /* .resume = fs_enet_resume, TODO */
1438 #endif
1439 };
1440
1441 static struct device_driver fs_enet_scc_driver = {
1442 .name = "fsl-cpm-scc",
1443 .bus = &platform_bus_type,
1444 .probe = fs_enet_probe,
1445 .remove = fs_enet_remove,
1446 #ifdef CONFIG_PM
1447 /* .suspend = fs_enet_suspend, TODO */
1448 /* .resume = fs_enet_resume, TODO */
1449 #endif
1450 };
1451
1452 static struct device_driver fs_enet_fcc_driver = {
1453 .name = "fsl-cpm-fcc",
1454 .bus = &platform_bus_type,
1455 .probe = fs_enet_probe,
1456 .remove = fs_enet_remove,
1457 #ifdef CONFIG_PM
1458 /* .suspend = fs_enet_suspend, TODO */
1459 /* .resume = fs_enet_resume, TODO */
1460 #endif
1461 };
1462
1463 static int __init fs_init(void)
1464 {
1465 int r;
1466
1467 printk(KERN_INFO
1468 "%s", version);
1469
1470 r = setup_immap();
1471 if (r != 0)
1472 return r;
1473
1474 #ifdef CONFIG_FS_ENET_HAS_FCC
1475 /* let's insert mii stuff */
1476 r = fs_enet_mdio_bb_init();
1477
1478 if (r != 0) {
1479 printk(KERN_ERR DRV_MODULE_NAME
1480 "BB PHY init failed.\n");
1481 return r;
1482 }
1483 r = driver_register(&fs_enet_fcc_driver);
1484 if (r != 0)
1485 goto err;
1486 #endif
1487
1488 #ifdef CONFIG_FS_ENET_HAS_FEC
1489 r = fs_enet_mdio_fec_init();
1490 if (r != 0) {
1491 printk(KERN_ERR DRV_MODULE_NAME
1492 "FEC PHY init failed.\n");
1493 return r;
1494 }
1495
1496 r = driver_register(&fs_enet_fec_driver);
1497 if (r != 0)
1498 goto err;
1499 #endif
1500
1501 #ifdef CONFIG_FS_ENET_HAS_SCC
1502 r = driver_register(&fs_enet_scc_driver);
1503 if (r != 0)
1504 goto err;
1505 #endif
1506
1507 return 0;
1508 err:
1509 cleanup_immap();
1510 return r;
1511 }
1512
1513 static void __exit fs_cleanup(void)
1514 {
1515 driver_unregister(&fs_enet_fec_driver);
1516 driver_unregister(&fs_enet_fcc_driver);
1517 driver_unregister(&fs_enet_scc_driver);
1518 cleanup_immap();
1519 }
1520 #endif
1521
1522 #ifdef CONFIG_NET_POLL_CONTROLLER
1523 static void fs_enet_netpoll(struct net_device *dev)
1524 {
1525 disable_irq(dev->irq);
1526 fs_enet_interrupt(dev->irq, dev, NULL);
1527 enable_irq(dev->irq);
1528 }
1529 #endif
1530
1531 /**************************************************************************************/
1532
1533 module_init(fs_init);
1534 module_exit(fs_cleanup);
This page took 0.071606 seconds and 4 git commands to generate.