Merge branch 'for-next' into for-linus
[deliverable/linux.git] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
62
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
66
67 static void fs_set_multicast_list(struct net_device *dev)
68 {
69 struct fs_enet_private *fep = netdev_priv(dev);
70
71 (*fep->ops->set_multicast_list)(dev);
72 }
73
74 static void skb_align(struct sk_buff *skb, int align)
75 {
76 int off = ((unsigned long)skb->data) & (align - 1);
77
78 if (off)
79 skb_reserve(skb, align - off);
80 }
81
82 /* NAPI receive function */
83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84 {
85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 struct net_device *dev = fep->ndev;
87 const struct fs_platform_info *fpi = fep->fpi;
88 cbd_t __iomem *bdp;
89 struct sk_buff *skb, *skbn, *skbt;
90 int received = 0;
91 u16 pkt_len, sc;
92 int curidx;
93
94 /*
95 * First, grab all of the stats for the incoming packet.
96 * These get messed up if we get called due to a busy condition.
97 */
98 bdp = fep->cur_rx;
99
100 /* clear RX status bits for napi*/
101 (*fep->ops->napi_clear_rx_event)(dev);
102
103 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
104 curidx = bdp - fep->rx_bd_base;
105
106 /*
107 * Since we have allocated space to hold a complete frame,
108 * the last indicator should be set.
109 */
110 if ((sc & BD_ENET_RX_LAST) == 0)
111 dev_warn(fep->dev, "rcv is not +last\n");
112
113 /*
114 * Check for errors.
115 */
116 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
117 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
118 fep->stats.rx_errors++;
119 /* Frame too long or too short. */
120 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
121 fep->stats.rx_length_errors++;
122 /* Frame alignment */
123 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
124 fep->stats.rx_frame_errors++;
125 /* CRC Error */
126 if (sc & BD_ENET_RX_CR)
127 fep->stats.rx_crc_errors++;
128 /* FIFO overrun */
129 if (sc & BD_ENET_RX_OV)
130 fep->stats.rx_crc_errors++;
131
132 skb = fep->rx_skbuff[curidx];
133
134 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
135 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
136 DMA_FROM_DEVICE);
137
138 skbn = skb;
139
140 } else {
141 skb = fep->rx_skbuff[curidx];
142
143 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
144 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
145 DMA_FROM_DEVICE);
146
147 /*
148 * Process the incoming frame.
149 */
150 fep->stats.rx_packets++;
151 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
152 fep->stats.rx_bytes += pkt_len + 4;
153
154 if (pkt_len <= fpi->rx_copybreak) {
155 /* +2 to make IP header L1 cache aligned */
156 skbn = dev_alloc_skb(pkt_len + 2);
157 if (skbn != NULL) {
158 skb_reserve(skbn, 2); /* align IP header */
159 skb_copy_from_linear_data(skb,
160 skbn->data, pkt_len);
161 /* swap */
162 skbt = skb;
163 skb = skbn;
164 skbn = skbt;
165 }
166 } else {
167 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
168
169 if (skbn)
170 skb_align(skbn, ENET_RX_ALIGN);
171 }
172
173 if (skbn != NULL) {
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
176 received++;
177 netif_receive_skb(skb);
178 } else {
179 dev_warn(fep->dev,
180 "Memory squeeze, dropping packet.\n");
181 fep->stats.rx_dropped++;
182 skbn = skb;
183 }
184 }
185
186 fep->rx_skbuff[curidx] = skbn;
187 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
188 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
189 DMA_FROM_DEVICE));
190 CBDW_DATLEN(bdp, 0);
191 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
192
193 /*
194 * Update BD pointer to next entry.
195 */
196 if ((sc & BD_ENET_RX_WRAP) == 0)
197 bdp++;
198 else
199 bdp = fep->rx_bd_base;
200
201 (*fep->ops->rx_bd_done)(dev);
202
203 if (received >= budget)
204 break;
205 }
206
207 fep->cur_rx = bdp;
208
209 if (received < budget) {
210 /* done */
211 napi_complete(napi);
212 (*fep->ops->napi_enable_rx)(dev);
213 }
214 return received;
215 }
216
217 /* non NAPI receive function */
218 static int fs_enet_rx_non_napi(struct net_device *dev)
219 {
220 struct fs_enet_private *fep = netdev_priv(dev);
221 const struct fs_platform_info *fpi = fep->fpi;
222 cbd_t __iomem *bdp;
223 struct sk_buff *skb, *skbn, *skbt;
224 int received = 0;
225 u16 pkt_len, sc;
226 int curidx;
227 /*
228 * First, grab all of the stats for the incoming packet.
229 * These get messed up if we get called due to a busy condition.
230 */
231 bdp = fep->cur_rx;
232
233 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
234
235 curidx = bdp - fep->rx_bd_base;
236
237 /*
238 * Since we have allocated space to hold a complete frame,
239 * the last indicator should be set.
240 */
241 if ((sc & BD_ENET_RX_LAST) == 0)
242 dev_warn(fep->dev, "rcv is not +last\n");
243
244 /*
245 * Check for errors.
246 */
247 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
248 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
249 fep->stats.rx_errors++;
250 /* Frame too long or too short. */
251 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
252 fep->stats.rx_length_errors++;
253 /* Frame alignment */
254 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
255 fep->stats.rx_frame_errors++;
256 /* CRC Error */
257 if (sc & BD_ENET_RX_CR)
258 fep->stats.rx_crc_errors++;
259 /* FIFO overrun */
260 if (sc & BD_ENET_RX_OV)
261 fep->stats.rx_crc_errors++;
262
263 skb = fep->rx_skbuff[curidx];
264
265 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
266 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
267 DMA_FROM_DEVICE);
268
269 skbn = skb;
270
271 } else {
272
273 skb = fep->rx_skbuff[curidx];
274
275 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
276 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
277 DMA_FROM_DEVICE);
278
279 /*
280 * Process the incoming frame.
281 */
282 fep->stats.rx_packets++;
283 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
284 fep->stats.rx_bytes += pkt_len + 4;
285
286 if (pkt_len <= fpi->rx_copybreak) {
287 /* +2 to make IP header L1 cache aligned */
288 skbn = dev_alloc_skb(pkt_len + 2);
289 if (skbn != NULL) {
290 skb_reserve(skbn, 2); /* align IP header */
291 skb_copy_from_linear_data(skb,
292 skbn->data, pkt_len);
293 /* swap */
294 skbt = skb;
295 skb = skbn;
296 skbn = skbt;
297 }
298 } else {
299 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
300
301 if (skbn)
302 skb_align(skbn, ENET_RX_ALIGN);
303 }
304
305 if (skbn != NULL) {
306 skb_put(skb, pkt_len); /* Make room */
307 skb->protocol = eth_type_trans(skb, dev);
308 received++;
309 netif_rx(skb);
310 } else {
311 dev_warn(fep->dev,
312 "Memory squeeze, dropping packet.\n");
313 fep->stats.rx_dropped++;
314 skbn = skb;
315 }
316 }
317
318 fep->rx_skbuff[curidx] = skbn;
319 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
320 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
321 DMA_FROM_DEVICE));
322 CBDW_DATLEN(bdp, 0);
323 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
324
325 /*
326 * Update BD pointer to next entry.
327 */
328 if ((sc & BD_ENET_RX_WRAP) == 0)
329 bdp++;
330 else
331 bdp = fep->rx_bd_base;
332
333 (*fep->ops->rx_bd_done)(dev);
334 }
335
336 fep->cur_rx = bdp;
337
338 return 0;
339 }
340
341 static void fs_enet_tx(struct net_device *dev)
342 {
343 struct fs_enet_private *fep = netdev_priv(dev);
344 cbd_t __iomem *bdp;
345 struct sk_buff *skb;
346 int dirtyidx, do_wake, do_restart;
347 u16 sc;
348
349 spin_lock(&fep->tx_lock);
350 bdp = fep->dirty_tx;
351
352 do_wake = do_restart = 0;
353 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
354 dirtyidx = bdp - fep->tx_bd_base;
355
356 if (fep->tx_free == fep->tx_ring)
357 break;
358
359 skb = fep->tx_skbuff[dirtyidx];
360
361 /*
362 * Check for errors.
363 */
364 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
365 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
366
367 if (sc & BD_ENET_TX_HB) /* No heartbeat */
368 fep->stats.tx_heartbeat_errors++;
369 if (sc & BD_ENET_TX_LC) /* Late collision */
370 fep->stats.tx_window_errors++;
371 if (sc & BD_ENET_TX_RL) /* Retrans limit */
372 fep->stats.tx_aborted_errors++;
373 if (sc & BD_ENET_TX_UN) /* Underrun */
374 fep->stats.tx_fifo_errors++;
375 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
376 fep->stats.tx_carrier_errors++;
377
378 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
379 fep->stats.tx_errors++;
380 do_restart = 1;
381 }
382 } else
383 fep->stats.tx_packets++;
384
385 if (sc & BD_ENET_TX_READY) {
386 dev_warn(fep->dev,
387 "HEY! Enet xmit interrupt and TX_READY.\n");
388 }
389
390 /*
391 * Deferred means some collisions occurred during transmit,
392 * but we eventually sent the packet OK.
393 */
394 if (sc & BD_ENET_TX_DEF)
395 fep->stats.collisions++;
396
397 /* unmap */
398 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
399 skb->len, DMA_TO_DEVICE);
400
401 /*
402 * Free the sk buffer associated with this last transmit.
403 */
404 dev_kfree_skb_irq(skb);
405 fep->tx_skbuff[dirtyidx] = NULL;
406
407 /*
408 * Update pointer to next buffer descriptor to be transmitted.
409 */
410 if ((sc & BD_ENET_TX_WRAP) == 0)
411 bdp++;
412 else
413 bdp = fep->tx_bd_base;
414
415 /*
416 * Since we have freed up a buffer, the ring is no longer
417 * full.
418 */
419 if (!fep->tx_free++)
420 do_wake = 1;
421 }
422
423 fep->dirty_tx = bdp;
424
425 if (do_restart)
426 (*fep->ops->tx_restart)(dev);
427
428 spin_unlock(&fep->tx_lock);
429
430 if (do_wake)
431 netif_wake_queue(dev);
432 }
433
434 /*
435 * The interrupt handler.
436 * This is called from the MPC core interrupt.
437 */
438 static irqreturn_t
439 fs_enet_interrupt(int irq, void *dev_id)
440 {
441 struct net_device *dev = dev_id;
442 struct fs_enet_private *fep;
443 const struct fs_platform_info *fpi;
444 u32 int_events;
445 u32 int_clr_events;
446 int nr, napi_ok;
447 int handled;
448
449 fep = netdev_priv(dev);
450 fpi = fep->fpi;
451
452 nr = 0;
453 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
454 nr++;
455
456 int_clr_events = int_events;
457 if (fpi->use_napi)
458 int_clr_events &= ~fep->ev_napi_rx;
459
460 (*fep->ops->clear_int_events)(dev, int_clr_events);
461
462 if (int_events & fep->ev_err)
463 (*fep->ops->ev_error)(dev, int_events);
464
465 if (int_events & fep->ev_rx) {
466 if (!fpi->use_napi)
467 fs_enet_rx_non_napi(dev);
468 else {
469 napi_ok = napi_schedule_prep(&fep->napi);
470
471 (*fep->ops->napi_disable_rx)(dev);
472 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
473
474 /* NOTE: it is possible for FCCs in NAPI mode */
475 /* to submit a spurious interrupt while in poll */
476 if (napi_ok)
477 __napi_schedule(&fep->napi);
478 }
479 }
480
481 if (int_events & fep->ev_tx)
482 fs_enet_tx(dev);
483 }
484
485 handled = nr > 0;
486 return IRQ_RETVAL(handled);
487 }
488
489 void fs_init_bds(struct net_device *dev)
490 {
491 struct fs_enet_private *fep = netdev_priv(dev);
492 cbd_t __iomem *bdp;
493 struct sk_buff *skb;
494 int i;
495
496 fs_cleanup_bds(dev);
497
498 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
499 fep->tx_free = fep->tx_ring;
500 fep->cur_rx = fep->rx_bd_base;
501
502 /*
503 * Initialize the receive buffer descriptors.
504 */
505 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
506 skb = dev_alloc_skb(ENET_RX_FRSIZE);
507 if (skb == NULL) {
508 dev_warn(fep->dev,
509 "Memory squeeze, unable to allocate skb\n");
510 break;
511 }
512 skb_align(skb, ENET_RX_ALIGN);
513 fep->rx_skbuff[i] = skb;
514 CBDW_BUFADDR(bdp,
515 dma_map_single(fep->dev, skb->data,
516 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
517 DMA_FROM_DEVICE));
518 CBDW_DATLEN(bdp, 0); /* zero */
519 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
520 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
521 }
522 /*
523 * if we failed, fillup remainder
524 */
525 for (; i < fep->rx_ring; i++, bdp++) {
526 fep->rx_skbuff[i] = NULL;
527 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
528 }
529
530 /*
531 * ...and the same for transmit.
532 */
533 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
534 fep->tx_skbuff[i] = NULL;
535 CBDW_BUFADDR(bdp, 0);
536 CBDW_DATLEN(bdp, 0);
537 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
538 }
539 }
540
541 void fs_cleanup_bds(struct net_device *dev)
542 {
543 struct fs_enet_private *fep = netdev_priv(dev);
544 struct sk_buff *skb;
545 cbd_t __iomem *bdp;
546 int i;
547
548 /*
549 * Reset SKB transmit buffers.
550 */
551 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
552 if ((skb = fep->tx_skbuff[i]) == NULL)
553 continue;
554
555 /* unmap */
556 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
557 skb->len, DMA_TO_DEVICE);
558
559 fep->tx_skbuff[i] = NULL;
560 dev_kfree_skb(skb);
561 }
562
563 /*
564 * Reset SKB receive buffers
565 */
566 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
567 if ((skb = fep->rx_skbuff[i]) == NULL)
568 continue;
569
570 /* unmap */
571 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
572 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
573 DMA_FROM_DEVICE);
574
575 fep->rx_skbuff[i] = NULL;
576
577 dev_kfree_skb(skb);
578 }
579 }
580
581 /**********************************************************************************/
582
583 #ifdef CONFIG_FS_ENET_MPC5121_FEC
584 /*
585 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
586 */
587 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
588 struct sk_buff *skb)
589 {
590 struct sk_buff *new_skb;
591 struct fs_enet_private *fep = netdev_priv(dev);
592
593 /* Alloc new skb */
594 new_skb = dev_alloc_skb(skb->len + 4);
595 if (!new_skb) {
596 if (net_ratelimit()) {
597 dev_warn(fep->dev,
598 "Memory squeeze, dropping tx packet.\n");
599 }
600 return NULL;
601 }
602
603 /* Make sure new skb is properly aligned */
604 skb_align(new_skb, 4);
605
606 /* Copy data to new skb ... */
607 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
608 skb_put(new_skb, skb->len);
609
610 /* ... and free an old one */
611 dev_kfree_skb_any(skb);
612
613 return new_skb;
614 }
615 #endif
616
617 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
618 {
619 struct fs_enet_private *fep = netdev_priv(dev);
620 cbd_t __iomem *bdp;
621 int curidx;
622 u16 sc;
623 unsigned long flags;
624
625 #ifdef CONFIG_FS_ENET_MPC5121_FEC
626 if (((unsigned long)skb->data) & 0x3) {
627 skb = tx_skb_align_workaround(dev, skb);
628 if (!skb) {
629 /*
630 * We have lost packet due to memory allocation error
631 * in tx_skb_align_workaround(). Hopefully original
632 * skb is still valid, so try transmit it later.
633 */
634 return NETDEV_TX_BUSY;
635 }
636 }
637 #endif
638 spin_lock_irqsave(&fep->tx_lock, flags);
639
640 /*
641 * Fill in a Tx ring entry
642 */
643 bdp = fep->cur_tx;
644
645 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
646 netif_stop_queue(dev);
647 spin_unlock_irqrestore(&fep->tx_lock, flags);
648
649 /*
650 * Ooops. All transmit buffers are full. Bail out.
651 * This should not happen, since the tx queue should be stopped.
652 */
653 dev_warn(fep->dev, "tx queue full!.\n");
654 return NETDEV_TX_BUSY;
655 }
656
657 curidx = bdp - fep->tx_bd_base;
658 /*
659 * Clear all of the status flags.
660 */
661 CBDC_SC(bdp, BD_ENET_TX_STATS);
662
663 /*
664 * Save skb pointer.
665 */
666 fep->tx_skbuff[curidx] = skb;
667
668 fep->stats.tx_bytes += skb->len;
669
670 /*
671 * Push the data cache so the CPM does not get stale memory data.
672 */
673 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
674 skb->data, skb->len, DMA_TO_DEVICE));
675 CBDW_DATLEN(bdp, skb->len);
676
677 dev->trans_start = jiffies;
678
679 /*
680 * If this was the last BD in the ring, start at the beginning again.
681 */
682 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
683 fep->cur_tx++;
684 else
685 fep->cur_tx = fep->tx_bd_base;
686
687 if (!--fep->tx_free)
688 netif_stop_queue(dev);
689
690 /* Trigger transmission start */
691 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
692 BD_ENET_TX_LAST | BD_ENET_TX_TC;
693
694 /* note that while FEC does not have this bit
695 * it marks it as available for software use
696 * yay for hw reuse :) */
697 if (skb->len <= 60)
698 sc |= BD_ENET_TX_PAD;
699 CBDS_SC(bdp, sc);
700
701 (*fep->ops->tx_kickstart)(dev);
702
703 spin_unlock_irqrestore(&fep->tx_lock, flags);
704
705 return NETDEV_TX_OK;
706 }
707
708 static void fs_timeout(struct net_device *dev)
709 {
710 struct fs_enet_private *fep = netdev_priv(dev);
711 unsigned long flags;
712 int wake = 0;
713
714 fep->stats.tx_errors++;
715
716 spin_lock_irqsave(&fep->lock, flags);
717
718 if (dev->flags & IFF_UP) {
719 phy_stop(fep->phydev);
720 (*fep->ops->stop)(dev);
721 (*fep->ops->restart)(dev);
722 phy_start(fep->phydev);
723 }
724
725 phy_start(fep->phydev);
726 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
727 spin_unlock_irqrestore(&fep->lock, flags);
728
729 if (wake)
730 netif_wake_queue(dev);
731 }
732
733 /*-----------------------------------------------------------------------------
734 * generic link-change handler - should be sufficient for most cases
735 *-----------------------------------------------------------------------------*/
736 static void generic_adjust_link(struct net_device *dev)
737 {
738 struct fs_enet_private *fep = netdev_priv(dev);
739 struct phy_device *phydev = fep->phydev;
740 int new_state = 0;
741
742 if (phydev->link) {
743 /* adjust to duplex mode */
744 if (phydev->duplex != fep->oldduplex) {
745 new_state = 1;
746 fep->oldduplex = phydev->duplex;
747 }
748
749 if (phydev->speed != fep->oldspeed) {
750 new_state = 1;
751 fep->oldspeed = phydev->speed;
752 }
753
754 if (!fep->oldlink) {
755 new_state = 1;
756 fep->oldlink = 1;
757 }
758
759 if (new_state)
760 fep->ops->restart(dev);
761 } else if (fep->oldlink) {
762 new_state = 1;
763 fep->oldlink = 0;
764 fep->oldspeed = 0;
765 fep->oldduplex = -1;
766 }
767
768 if (new_state && netif_msg_link(fep))
769 phy_print_status(phydev);
770 }
771
772
773 static void fs_adjust_link(struct net_device *dev)
774 {
775 struct fs_enet_private *fep = netdev_priv(dev);
776 unsigned long flags;
777
778 spin_lock_irqsave(&fep->lock, flags);
779
780 if(fep->ops->adjust_link)
781 fep->ops->adjust_link(dev);
782 else
783 generic_adjust_link(dev);
784
785 spin_unlock_irqrestore(&fep->lock, flags);
786 }
787
788 static int fs_init_phy(struct net_device *dev)
789 {
790 struct fs_enet_private *fep = netdev_priv(dev);
791 struct phy_device *phydev;
792
793 fep->oldlink = 0;
794 fep->oldspeed = 0;
795 fep->oldduplex = -1;
796
797 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
798 PHY_INTERFACE_MODE_MII);
799 if (!phydev) {
800 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
801 PHY_INTERFACE_MODE_MII);
802 }
803 if (!phydev) {
804 dev_err(&dev->dev, "Could not attach to PHY\n");
805 return -ENODEV;
806 }
807
808 fep->phydev = phydev;
809
810 return 0;
811 }
812
813 static int fs_enet_open(struct net_device *dev)
814 {
815 struct fs_enet_private *fep = netdev_priv(dev);
816 int r;
817 int err;
818
819 /* to initialize the fep->cur_rx,... */
820 /* not doing this, will cause a crash in fs_enet_rx_napi */
821 fs_init_bds(fep->ndev);
822
823 if (fep->fpi->use_napi)
824 napi_enable(&fep->napi);
825
826 /* Install our interrupt handler. */
827 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
828 "fs_enet-mac", dev);
829 if (r != 0) {
830 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
831 if (fep->fpi->use_napi)
832 napi_disable(&fep->napi);
833 return -EINVAL;
834 }
835
836 err = fs_init_phy(dev);
837 if (err) {
838 free_irq(fep->interrupt, dev);
839 if (fep->fpi->use_napi)
840 napi_disable(&fep->napi);
841 return err;
842 }
843 phy_start(fep->phydev);
844
845 netif_start_queue(dev);
846
847 return 0;
848 }
849
850 static int fs_enet_close(struct net_device *dev)
851 {
852 struct fs_enet_private *fep = netdev_priv(dev);
853 unsigned long flags;
854
855 netif_stop_queue(dev);
856 netif_carrier_off(dev);
857 if (fep->fpi->use_napi)
858 napi_disable(&fep->napi);
859 phy_stop(fep->phydev);
860
861 spin_lock_irqsave(&fep->lock, flags);
862 spin_lock(&fep->tx_lock);
863 (*fep->ops->stop)(dev);
864 spin_unlock(&fep->tx_lock);
865 spin_unlock_irqrestore(&fep->lock, flags);
866
867 /* release any irqs */
868 phy_disconnect(fep->phydev);
869 fep->phydev = NULL;
870 free_irq(fep->interrupt, dev);
871
872 return 0;
873 }
874
875 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
876 {
877 struct fs_enet_private *fep = netdev_priv(dev);
878 return &fep->stats;
879 }
880
881 /*************************************************************************/
882
883 static void fs_get_drvinfo(struct net_device *dev,
884 struct ethtool_drvinfo *info)
885 {
886 strcpy(info->driver, DRV_MODULE_NAME);
887 strcpy(info->version, DRV_MODULE_VERSION);
888 }
889
890 static int fs_get_regs_len(struct net_device *dev)
891 {
892 struct fs_enet_private *fep = netdev_priv(dev);
893
894 return (*fep->ops->get_regs_len)(dev);
895 }
896
897 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
898 void *p)
899 {
900 struct fs_enet_private *fep = netdev_priv(dev);
901 unsigned long flags;
902 int r, len;
903
904 len = regs->len;
905
906 spin_lock_irqsave(&fep->lock, flags);
907 r = (*fep->ops->get_regs)(dev, p, &len);
908 spin_unlock_irqrestore(&fep->lock, flags);
909
910 if (r == 0)
911 regs->version = 0;
912 }
913
914 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
915 {
916 struct fs_enet_private *fep = netdev_priv(dev);
917
918 if (!fep->phydev)
919 return -ENODEV;
920
921 return phy_ethtool_gset(fep->phydev, cmd);
922 }
923
924 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
925 {
926 struct fs_enet_private *fep = netdev_priv(dev);
927
928 if (!fep->phydev)
929 return -ENODEV;
930
931 return phy_ethtool_sset(fep->phydev, cmd);
932 }
933
934 static int fs_nway_reset(struct net_device *dev)
935 {
936 return 0;
937 }
938
939 static u32 fs_get_msglevel(struct net_device *dev)
940 {
941 struct fs_enet_private *fep = netdev_priv(dev);
942 return fep->msg_enable;
943 }
944
945 static void fs_set_msglevel(struct net_device *dev, u32 value)
946 {
947 struct fs_enet_private *fep = netdev_priv(dev);
948 fep->msg_enable = value;
949 }
950
951 static const struct ethtool_ops fs_ethtool_ops = {
952 .get_drvinfo = fs_get_drvinfo,
953 .get_regs_len = fs_get_regs_len,
954 .get_settings = fs_get_settings,
955 .set_settings = fs_set_settings,
956 .nway_reset = fs_nway_reset,
957 .get_link = ethtool_op_get_link,
958 .get_msglevel = fs_get_msglevel,
959 .set_msglevel = fs_set_msglevel,
960 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
961 .set_sg = ethtool_op_set_sg,
962 .get_regs = fs_get_regs,
963 };
964
965 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
966 {
967 struct fs_enet_private *fep = netdev_priv(dev);
968 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
969
970 if (!netif_running(dev))
971 return -EINVAL;
972
973 return phy_mii_ioctl(fep->phydev, mii, cmd);
974 }
975
976 extern int fs_mii_connect(struct net_device *dev);
977 extern void fs_mii_disconnect(struct net_device *dev);
978
979 /**************************************************************************************/
980
981 #ifdef CONFIG_FS_ENET_HAS_FEC
982 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
983 #else
984 #define IS_FEC(match) 0
985 #endif
986
987 static const struct net_device_ops fs_enet_netdev_ops = {
988 .ndo_open = fs_enet_open,
989 .ndo_stop = fs_enet_close,
990 .ndo_get_stats = fs_enet_get_stats,
991 .ndo_start_xmit = fs_enet_start_xmit,
992 .ndo_tx_timeout = fs_timeout,
993 .ndo_set_multicast_list = fs_set_multicast_list,
994 .ndo_do_ioctl = fs_ioctl,
995 .ndo_validate_addr = eth_validate_addr,
996 .ndo_set_mac_address = eth_mac_addr,
997 .ndo_change_mtu = eth_change_mtu,
998 #ifdef CONFIG_NET_POLL_CONTROLLER
999 .ndo_poll_controller = fs_enet_netpoll,
1000 #endif
1001 };
1002
1003 static int __devinit fs_enet_probe(struct of_device *ofdev,
1004 const struct of_device_id *match)
1005 {
1006 struct net_device *ndev;
1007 struct fs_enet_private *fep;
1008 struct fs_platform_info *fpi;
1009 const u32 *data;
1010 const u8 *mac_addr;
1011 int privsize, len, ret = -ENODEV;
1012
1013 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1014 if (!fpi)
1015 return -ENOMEM;
1016
1017 if (!IS_FEC(match)) {
1018 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1019 if (!data || len != 4)
1020 goto out_free_fpi;
1021
1022 fpi->cp_command = *data;
1023 }
1024
1025 fpi->rx_ring = 32;
1026 fpi->tx_ring = 32;
1027 fpi->rx_copybreak = 240;
1028 fpi->use_napi = 1;
1029 fpi->napi_weight = 17;
1030 fpi->phy_node = of_parse_phandle(ofdev->node, "phy-handle", 0);
1031 if ((!fpi->phy_node) && (!of_get_property(ofdev->node, "fixed-link",
1032 NULL)))
1033 goto out_free_fpi;
1034
1035 privsize = sizeof(*fep) +
1036 sizeof(struct sk_buff **) *
1037 (fpi->rx_ring + fpi->tx_ring);
1038
1039 ndev = alloc_etherdev(privsize);
1040 if (!ndev) {
1041 ret = -ENOMEM;
1042 goto out_free_fpi;
1043 }
1044
1045 SET_NETDEV_DEV(ndev, &ofdev->dev);
1046 dev_set_drvdata(&ofdev->dev, ndev);
1047
1048 fep = netdev_priv(ndev);
1049 fep->dev = &ofdev->dev;
1050 fep->ndev = ndev;
1051 fep->fpi = fpi;
1052 fep->ops = match->data;
1053
1054 ret = fep->ops->setup_data(ndev);
1055 if (ret)
1056 goto out_free_dev;
1057
1058 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1059 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1060
1061 spin_lock_init(&fep->lock);
1062 spin_lock_init(&fep->tx_lock);
1063
1064 mac_addr = of_get_mac_address(ofdev->node);
1065 if (mac_addr)
1066 memcpy(ndev->dev_addr, mac_addr, 6);
1067
1068 ret = fep->ops->allocate_bd(ndev);
1069 if (ret)
1070 goto out_cleanup_data;
1071
1072 fep->rx_bd_base = fep->ring_base;
1073 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1074
1075 fep->tx_ring = fpi->tx_ring;
1076 fep->rx_ring = fpi->rx_ring;
1077
1078 ndev->netdev_ops = &fs_enet_netdev_ops;
1079 ndev->watchdog_timeo = 2 * HZ;
1080 if (fpi->use_napi)
1081 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1082 fpi->napi_weight);
1083
1084 ndev->ethtool_ops = &fs_ethtool_ops;
1085
1086 init_timer(&fep->phy_timer_list);
1087
1088 netif_carrier_off(ndev);
1089
1090 ret = register_netdev(ndev);
1091 if (ret)
1092 goto out_free_bd;
1093
1094 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1095
1096 return 0;
1097
1098 out_free_bd:
1099 fep->ops->free_bd(ndev);
1100 out_cleanup_data:
1101 fep->ops->cleanup_data(ndev);
1102 out_free_dev:
1103 free_netdev(ndev);
1104 dev_set_drvdata(&ofdev->dev, NULL);
1105 of_node_put(fpi->phy_node);
1106 out_free_fpi:
1107 kfree(fpi);
1108 return ret;
1109 }
1110
1111 static int fs_enet_remove(struct of_device *ofdev)
1112 {
1113 struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1114 struct fs_enet_private *fep = netdev_priv(ndev);
1115
1116 unregister_netdev(ndev);
1117
1118 fep->ops->free_bd(ndev);
1119 fep->ops->cleanup_data(ndev);
1120 dev_set_drvdata(fep->dev, NULL);
1121 of_node_put(fep->fpi->phy_node);
1122 free_netdev(ndev);
1123 return 0;
1124 }
1125
1126 static struct of_device_id fs_enet_match[] = {
1127 #ifdef CONFIG_FS_ENET_HAS_SCC
1128 {
1129 .compatible = "fsl,cpm1-scc-enet",
1130 .data = (void *)&fs_scc_ops,
1131 },
1132 {
1133 .compatible = "fsl,cpm2-scc-enet",
1134 .data = (void *)&fs_scc_ops,
1135 },
1136 #endif
1137 #ifdef CONFIG_FS_ENET_HAS_FCC
1138 {
1139 .compatible = "fsl,cpm2-fcc-enet",
1140 .data = (void *)&fs_fcc_ops,
1141 },
1142 #endif
1143 #ifdef CONFIG_FS_ENET_HAS_FEC
1144 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1145 {
1146 .compatible = "fsl,mpc5121-fec",
1147 .data = (void *)&fs_fec_ops,
1148 },
1149 #else
1150 {
1151 .compatible = "fsl,pq1-fec-enet",
1152 .data = (void *)&fs_fec_ops,
1153 },
1154 #endif
1155 #endif
1156 {}
1157 };
1158 MODULE_DEVICE_TABLE(of, fs_enet_match);
1159
1160 static struct of_platform_driver fs_enet_driver = {
1161 .name = "fs_enet",
1162 .match_table = fs_enet_match,
1163 .probe = fs_enet_probe,
1164 .remove = fs_enet_remove,
1165 };
1166
1167 static int __init fs_init(void)
1168 {
1169 return of_register_platform_driver(&fs_enet_driver);
1170 }
1171
1172 static void __exit fs_cleanup(void)
1173 {
1174 of_unregister_platform_driver(&fs_enet_driver);
1175 }
1176
1177 #ifdef CONFIG_NET_POLL_CONTROLLER
1178 static void fs_enet_netpoll(struct net_device *dev)
1179 {
1180 disable_irq(dev->irq);
1181 fs_enet_interrupt(dev->irq, dev);
1182 enable_irq(dev->irq);
1183 }
1184 #endif
1185
1186 /**************************************************************************************/
1187
1188 module_init(fs_init);
1189 module_exit(fs_cleanup);
This page took 0.055043 seconds and 6 git commands to generate.