gianfar: Basic Support for programming hash rules
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
20 *
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
26 *
27 * Theory of operation
28 *
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
31 *
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
37 *
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
54 *
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
63 */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85
86 #include <asm/io.h>
87 #include <asm/irq.h>
88 #include <asm/uaccess.h>
89 #include <linux/module.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h>
92 #include <linux/mii.h>
93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h>
95 #include <linux/of.h>
96
97 #include "gianfar.h"
98 #include "fsl_pq_mdio.h"
99
100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
103
104 const char gfar_driver_name[] = "Gianfar Ethernet";
105 const char gfar_driver_version[] = "1.3";
106
107 static int gfar_enet_open(struct net_device *dev);
108 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
109 static void gfar_reset_task(struct work_struct *work);
110 static void gfar_timeout(struct net_device *dev);
111 static int gfar_close(struct net_device *dev);
112 struct sk_buff *gfar_new_skb(struct net_device *dev);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
114 struct sk_buff *skb);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static void init_registers(struct net_device *dev);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct of_device *ofdev,
124 const struct of_device_id *match);
125 static int gfar_remove(struct of_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 int amount_pull);
138 static void gfar_vlan_rx_register(struct net_device *netdev,
139 struct vlan_group *grp);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 u16 gfar_select_queue(struct net_device *dev, struct sk_buff *skb);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153 dma_addr_t buf)
154 {
155 u32 lstatus;
156
157 bdp->bufPtr = buf;
158
159 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163 eieio();
164
165 bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170 struct gfar_private *priv = netdev_priv(ndev);
171 struct gfar_priv_tx_q *tx_queue = NULL;
172 struct gfar_priv_rx_q *rx_queue = NULL;
173 struct txbd8 *txbdp;
174 struct rxbd8 *rxbdp;
175 int i, j;
176
177 for (i = 0; i < priv->num_tx_queues; i++) {
178 tx_queue = priv->tx_queue[i];
179 /* Initialize some variables in our dev structure */
180 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182 tx_queue->cur_tx = tx_queue->tx_bd_base;
183 tx_queue->skb_curtx = 0;
184 tx_queue->skb_dirtytx = 0;
185
186 /* Initialize Transmit Descriptor Ring */
187 txbdp = tx_queue->tx_bd_base;
188 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189 txbdp->lstatus = 0;
190 txbdp->bufPtr = 0;
191 txbdp++;
192 }
193
194 /* Set the last descriptor in the ring to indicate wrap */
195 txbdp--;
196 txbdp->status |= TXBD_WRAP;
197 }
198
199 for (i = 0; i < priv->num_rx_queues; i++) {
200 rx_queue = priv->rx_queue[i];
201 rx_queue->cur_rx = rx_queue->rx_bd_base;
202 rx_queue->skb_currx = 0;
203 rxbdp = rx_queue->rx_bd_base;
204
205 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206 struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208 if (skb) {
209 gfar_init_rxbdp(rx_queue, rxbdp,
210 rxbdp->bufPtr);
211 } else {
212 skb = gfar_new_skb(ndev);
213 if (!skb) {
214 pr_err("%s: Can't allocate RX buffers\n",
215 ndev->name);
216 goto err_rxalloc_fail;
217 }
218 rx_queue->rx_skbuff[j] = skb;
219
220 gfar_new_rxbdp(rx_queue, rxbdp, skb);
221 }
222
223 rxbdp++;
224 }
225
226 }
227
228 return 0;
229
230 err_rxalloc_fail:
231 free_skb_resources(priv);
232 return -ENOMEM;
233 }
234
235 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 {
237 void *vaddr;
238 dma_addr_t addr;
239 int i, j, k;
240 struct gfar_private *priv = netdev_priv(ndev);
241 struct device *dev = &priv->ofdev->dev;
242 struct gfar_priv_tx_q *tx_queue = NULL;
243 struct gfar_priv_rx_q *rx_queue = NULL;
244
245 priv->total_tx_ring_size = 0;
246 for (i = 0; i < priv->num_tx_queues; i++)
247 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248
249 priv->total_rx_ring_size = 0;
250 for (i = 0; i < priv->num_rx_queues; i++)
251 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252
253 /* Allocate memory for the buffer descriptors */
254 vaddr = dma_alloc_coherent(dev,
255 sizeof(struct txbd8) * priv->total_tx_ring_size +
256 sizeof(struct rxbd8) * priv->total_rx_ring_size,
257 &addr, GFP_KERNEL);
258 if (!vaddr) {
259 if (netif_msg_ifup(priv))
260 pr_err("%s: Could not allocate buffer descriptors!\n",
261 ndev->name);
262 return -ENOMEM;
263 }
264
265 for (i = 0; i < priv->num_tx_queues; i++) {
266 tx_queue = priv->tx_queue[i];
267 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
268 tx_queue->tx_bd_dma_base = addr;
269 tx_queue->dev = ndev;
270 /* enet DMA only understands physical addresses */
271 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273 }
274
275 /* Start the rx descriptor ring where the tx ring leaves off */
276 for (i = 0; i < priv->num_rx_queues; i++) {
277 rx_queue = priv->rx_queue[i];
278 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
279 rx_queue->rx_bd_dma_base = addr;
280 rx_queue->dev = ndev;
281 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283 }
284
285 /* Setup the skbuff rings */
286 for (i = 0; i < priv->num_tx_queues; i++) {
287 tx_queue = priv->tx_queue[i];
288 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
289 tx_queue->tx_ring_size, GFP_KERNEL);
290 if (!tx_queue->tx_skbuff) {
291 if (netif_msg_ifup(priv))
292 pr_err("%s: Could not allocate tx_skbuff\n",
293 ndev->name);
294 goto cleanup;
295 }
296
297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL;
299 }
300
301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304 rx_queue->rx_ring_size, GFP_KERNEL);
305
306 if (!rx_queue->rx_skbuff) {
307 if (netif_msg_ifup(priv))
308 pr_err("%s: Could not allocate rx_skbuff\n",
309 ndev->name);
310 goto cleanup;
311 }
312
313 for (j = 0; j < rx_queue->rx_ring_size; j++)
314 rx_queue->rx_skbuff[j] = NULL;
315 }
316
317 if (gfar_init_bds(ndev))
318 goto cleanup;
319
320 return 0;
321
322 cleanup:
323 free_skb_resources(priv);
324 return -ENOMEM;
325 }
326
327 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 {
329 struct gfar __iomem *regs = priv->gfargrp[0].regs;
330 u32 *baddr;
331 int i;
332
333 baddr = &regs->tbase0;
334 for(i = 0; i < priv->num_tx_queues; i++) {
335 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
336 baddr += 2;
337 }
338
339 baddr = &regs->rbase0;
340 for(i = 0; i < priv->num_rx_queues; i++) {
341 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
342 baddr += 2;
343 }
344 }
345
346 static void gfar_init_mac(struct net_device *ndev)
347 {
348 struct gfar_private *priv = netdev_priv(ndev);
349 struct gfar __iomem *regs = priv->gfargrp[0].regs;
350 u32 rctrl = 0;
351 u32 tctrl = 0;
352 u32 attrs = 0;
353
354 /* write the tx/rx base registers */
355 gfar_init_tx_rx_base(priv);
356
357 /* Configure the coalescing support */
358 gfar_configure_coalescing(priv, 0xFF, 0xFF);
359
360 if (priv->rx_filer_enable)
361 rctrl |= RCTRL_FILREN;
362
363 if (priv->rx_csum_enable)
364 rctrl |= RCTRL_CHECKSUMMING;
365
366 if (priv->extended_hash) {
367 rctrl |= RCTRL_EXTHASH;
368
369 gfar_clear_exact_match(ndev);
370 rctrl |= RCTRL_EMEN;
371 }
372
373 if (priv->padding) {
374 rctrl &= ~RCTRL_PAL_MASK;
375 rctrl |= RCTRL_PADDING(priv->padding);
376 }
377
378 /* keep vlan related bits if it's enabled */
379 if (priv->vlgrp) {
380 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
381 tctrl |= TCTRL_VLINS;
382 }
383
384 /* Init rctrl based on our settings */
385 gfar_write(&regs->rctrl, rctrl);
386
387 if (ndev->features & NETIF_F_IP_CSUM)
388 tctrl |= TCTRL_INIT_CSUM;
389
390 tctrl |= TCTRL_TXSCHED_PRIO;
391
392 gfar_write(&regs->tctrl, tctrl);
393
394 /* Set the extraction length and index */
395 attrs = ATTRELI_EL(priv->rx_stash_size) |
396 ATTRELI_EI(priv->rx_stash_index);
397
398 gfar_write(&regs->attreli, attrs);
399
400 /* Start with defaults, and add stashing or locking
401 * depending on the approprate variables */
402 attrs = ATTR_INIT_SETTINGS;
403
404 if (priv->bd_stash_en)
405 attrs |= ATTR_BDSTASH;
406
407 if (priv->rx_stash_size != 0)
408 attrs |= ATTR_BUFSTASH;
409
410 gfar_write(&regs->attr, attrs);
411
412 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
413 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
414 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
415 }
416
417 static const struct net_device_ops gfar_netdev_ops = {
418 .ndo_open = gfar_enet_open,
419 .ndo_start_xmit = gfar_start_xmit,
420 .ndo_stop = gfar_close,
421 .ndo_change_mtu = gfar_change_mtu,
422 .ndo_set_multicast_list = gfar_set_multi,
423 .ndo_tx_timeout = gfar_timeout,
424 .ndo_do_ioctl = gfar_ioctl,
425 .ndo_select_queue = gfar_select_queue,
426 .ndo_vlan_rx_register = gfar_vlan_rx_register,
427 .ndo_set_mac_address = eth_mac_addr,
428 .ndo_validate_addr = eth_validate_addr,
429 #ifdef CONFIG_NET_POLL_CONTROLLER
430 .ndo_poll_controller = gfar_netpoll,
431 #endif
432 };
433
434 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
435 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
436
437 void lock_rx_qs(struct gfar_private *priv)
438 {
439 int i = 0x0;
440
441 for (i = 0; i < priv->num_rx_queues; i++)
442 spin_lock(&priv->rx_queue[i]->rxlock);
443 }
444
445 void lock_tx_qs(struct gfar_private *priv)
446 {
447 int i = 0x0;
448
449 for (i = 0; i < priv->num_tx_queues; i++)
450 spin_lock(&priv->tx_queue[i]->txlock);
451 }
452
453 void unlock_rx_qs(struct gfar_private *priv)
454 {
455 int i = 0x0;
456
457 for (i = 0; i < priv->num_rx_queues; i++)
458 spin_unlock(&priv->rx_queue[i]->rxlock);
459 }
460
461 void unlock_tx_qs(struct gfar_private *priv)
462 {
463 int i = 0x0;
464
465 for (i = 0; i < priv->num_tx_queues; i++)
466 spin_unlock(&priv->tx_queue[i]->txlock);
467 }
468
469 /* Returns 1 if incoming frames use an FCB */
470 static inline int gfar_uses_fcb(struct gfar_private *priv)
471 {
472 return priv->vlgrp || priv->rx_csum_enable;
473 }
474
475 u16 gfar_select_queue(struct net_device *dev, struct sk_buff *skb)
476 {
477 return skb_get_queue_mapping(skb);
478 }
479 static void free_tx_pointers(struct gfar_private *priv)
480 {
481 int i = 0;
482
483 for (i = 0; i < priv->num_tx_queues; i++)
484 kfree(priv->tx_queue[i]);
485 }
486
487 static void free_rx_pointers(struct gfar_private *priv)
488 {
489 int i = 0;
490
491 for (i = 0; i < priv->num_rx_queues; i++)
492 kfree(priv->rx_queue[i]);
493 }
494
495 static void unmap_group_regs(struct gfar_private *priv)
496 {
497 int i = 0;
498
499 for (i = 0; i < MAXGROUPS; i++)
500 if (priv->gfargrp[i].regs)
501 iounmap(priv->gfargrp[i].regs);
502 }
503
504 static void disable_napi(struct gfar_private *priv)
505 {
506 int i = 0;
507
508 for (i = 0; i < priv->num_grps; i++)
509 napi_disable(&priv->gfargrp[i].napi);
510 }
511
512 static void enable_napi(struct gfar_private *priv)
513 {
514 int i = 0;
515
516 for (i = 0; i < priv->num_grps; i++)
517 napi_enable(&priv->gfargrp[i].napi);
518 }
519
520 static int gfar_parse_group(struct device_node *np,
521 struct gfar_private *priv, const char *model)
522 {
523 u32 *queue_mask;
524 u64 addr, size;
525
526 addr = of_translate_address(np,
527 of_get_address(np, 0, &size, NULL));
528 priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
529
530 if (!priv->gfargrp[priv->num_grps].regs)
531 return -ENOMEM;
532
533 priv->gfargrp[priv->num_grps].interruptTransmit =
534 irq_of_parse_and_map(np, 0);
535
536 /* If we aren't the FEC we have multiple interrupts */
537 if (model && strcasecmp(model, "FEC")) {
538 priv->gfargrp[priv->num_grps].interruptReceive =
539 irq_of_parse_and_map(np, 1);
540 priv->gfargrp[priv->num_grps].interruptError =
541 irq_of_parse_and_map(np,2);
542 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
543 priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
544 priv->gfargrp[priv->num_grps].interruptError < 0) {
545 return -EINVAL;
546 }
547 }
548
549 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
550 priv->gfargrp[priv->num_grps].priv = priv;
551 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
552 if(priv->mode == MQ_MG_MODE) {
553 queue_mask = (u32 *)of_get_property(np,
554 "fsl,rx-bit-map", NULL);
555 priv->gfargrp[priv->num_grps].rx_bit_map =
556 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
557 queue_mask = (u32 *)of_get_property(np,
558 "fsl,tx-bit-map", NULL);
559 priv->gfargrp[priv->num_grps].tx_bit_map =
560 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
561 } else {
562 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
563 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
564 }
565 priv->num_grps++;
566
567 return 0;
568 }
569
570 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
571 {
572 const char *model;
573 const char *ctype;
574 const void *mac_addr;
575 int err = 0, i;
576 struct net_device *dev = NULL;
577 struct gfar_private *priv = NULL;
578 struct device_node *np = ofdev->node;
579 struct device_node *child = NULL;
580 const u32 *stash;
581 const u32 *stash_len;
582 const u32 *stash_idx;
583 unsigned int num_tx_qs, num_rx_qs;
584 u32 *tx_queues, *rx_queues;
585
586 if (!np || !of_device_is_available(np))
587 return -ENODEV;
588
589 /* parse the num of tx and rx queues */
590 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
591 num_tx_qs = tx_queues ? *tx_queues : 1;
592
593 if (num_tx_qs > MAX_TX_QS) {
594 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
595 num_tx_qs, MAX_TX_QS);
596 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
597 return -EINVAL;
598 }
599
600 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
601 num_rx_qs = rx_queues ? *rx_queues : 1;
602
603 if (num_rx_qs > MAX_RX_QS) {
604 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
605 num_tx_qs, MAX_TX_QS);
606 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
607 return -EINVAL;
608 }
609
610 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
611 dev = *pdev;
612 if (NULL == dev)
613 return -ENOMEM;
614
615 priv = netdev_priv(dev);
616 priv->node = ofdev->node;
617 priv->ndev = dev;
618
619 dev->num_tx_queues = num_tx_qs;
620 dev->real_num_tx_queues = num_tx_qs;
621 priv->num_tx_queues = num_tx_qs;
622 priv->num_rx_queues = num_rx_qs;
623 priv->num_grps = 0x0;
624
625 model = of_get_property(np, "model", NULL);
626
627 for (i = 0; i < MAXGROUPS; i++)
628 priv->gfargrp[i].regs = NULL;
629
630 /* Parse and initialize group specific information */
631 if (of_device_is_compatible(np, "fsl,etsec2")) {
632 priv->mode = MQ_MG_MODE;
633 for_each_child_of_node(np, child) {
634 err = gfar_parse_group(child, priv, model);
635 if (err)
636 goto err_grp_init;
637 }
638 } else {
639 priv->mode = SQ_SG_MODE;
640 err = gfar_parse_group(np, priv, model);
641 if(err)
642 goto err_grp_init;
643 }
644
645 for (i = 0; i < priv->num_tx_queues; i++)
646 priv->tx_queue[i] = NULL;
647 for (i = 0; i < priv->num_rx_queues; i++)
648 priv->rx_queue[i] = NULL;
649
650 for (i = 0; i < priv->num_tx_queues; i++) {
651 priv->tx_queue[i] = (struct gfar_priv_tx_q *)kmalloc(
652 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
653 if (!priv->tx_queue[i]) {
654 err = -ENOMEM;
655 goto tx_alloc_failed;
656 }
657 priv->tx_queue[i]->tx_skbuff = NULL;
658 priv->tx_queue[i]->qindex = i;
659 priv->tx_queue[i]->dev = dev;
660 spin_lock_init(&(priv->tx_queue[i]->txlock));
661 }
662
663 for (i = 0; i < priv->num_rx_queues; i++) {
664 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kmalloc(
665 sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
666 if (!priv->rx_queue[i]) {
667 err = -ENOMEM;
668 goto rx_alloc_failed;
669 }
670 priv->rx_queue[i]->rx_skbuff = NULL;
671 priv->rx_queue[i]->qindex = i;
672 priv->rx_queue[i]->dev = dev;
673 spin_lock_init(&(priv->rx_queue[i]->rxlock));
674 }
675
676
677 stash = of_get_property(np, "bd-stash", NULL);
678
679 if (stash) {
680 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
681 priv->bd_stash_en = 1;
682 }
683
684 stash_len = of_get_property(np, "rx-stash-len", NULL);
685
686 if (stash_len)
687 priv->rx_stash_size = *stash_len;
688
689 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
690
691 if (stash_idx)
692 priv->rx_stash_index = *stash_idx;
693
694 if (stash_len || stash_idx)
695 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
696
697 mac_addr = of_get_mac_address(np);
698 if (mac_addr)
699 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
700
701 if (model && !strcasecmp(model, "TSEC"))
702 priv->device_flags =
703 FSL_GIANFAR_DEV_HAS_GIGABIT |
704 FSL_GIANFAR_DEV_HAS_COALESCE |
705 FSL_GIANFAR_DEV_HAS_RMON |
706 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
707 if (model && !strcasecmp(model, "eTSEC"))
708 priv->device_flags =
709 FSL_GIANFAR_DEV_HAS_GIGABIT |
710 FSL_GIANFAR_DEV_HAS_COALESCE |
711 FSL_GIANFAR_DEV_HAS_RMON |
712 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
713 FSL_GIANFAR_DEV_HAS_PADDING |
714 FSL_GIANFAR_DEV_HAS_CSUM |
715 FSL_GIANFAR_DEV_HAS_VLAN |
716 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
717 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
718
719 ctype = of_get_property(np, "phy-connection-type", NULL);
720
721 /* We only care about rgmii-id. The rest are autodetected */
722 if (ctype && !strcmp(ctype, "rgmii-id"))
723 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
724 else
725 priv->interface = PHY_INTERFACE_MODE_MII;
726
727 if (of_get_property(np, "fsl,magic-packet", NULL))
728 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
729
730 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
731
732 /* Find the TBI PHY. If it's not there, we don't support SGMII */
733 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
734
735 return 0;
736
737 rx_alloc_failed:
738 free_rx_pointers(priv);
739 tx_alloc_failed:
740 free_tx_pointers(priv);
741 err_grp_init:
742 unmap_group_regs(priv);
743 free_netdev(dev);
744 return err;
745 }
746
747 /* Ioctl MII Interface */
748 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
749 {
750 struct gfar_private *priv = netdev_priv(dev);
751
752 if (!netif_running(dev))
753 return -EINVAL;
754
755 if (!priv->phydev)
756 return -ENODEV;
757
758 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
759 }
760
761 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
762 {
763 unsigned int new_bit_map = 0x0;
764 int mask = 0x1 << (max_qs - 1), i;
765 for (i = 0; i < max_qs; i++) {
766 if (bit_map & mask)
767 new_bit_map = new_bit_map + (1 << i);
768 mask = mask >> 0x1;
769 }
770 return new_bit_map;
771 }
772
773 u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, u32 class)
774 {
775 u32 rqfpr = FPR_FILER_MASK;
776 u32 rqfcr = 0x0;
777
778 rqfar--;
779 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
780 ftp_rqfpr[rqfar] = rqfpr;
781 ftp_rqfcr[rqfar] = rqfcr;
782 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
783
784 rqfar--;
785 rqfcr = RQFCR_CMP_NOMATCH;
786 ftp_rqfpr[rqfar] = rqfpr;
787 ftp_rqfcr[rqfar] = rqfcr;
788 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
789
790 rqfar--;
791 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
792 rqfpr = class;
793 ftp_rqfcr[rqfar] = rqfcr;
794 ftp_rqfpr[rqfar] = rqfpr;
795 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
796
797 rqfar--;
798 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
799 rqfpr = class;
800 ftp_rqfcr[rqfar] = rqfcr;
801 ftp_rqfpr[rqfar] = rqfpr;
802 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
803
804 return rqfar;
805 }
806
807 static void gfar_init_filer_table(struct gfar_private *priv)
808 {
809 int i = 0x0;
810 u32 rqfar = MAX_FILER_IDX;
811 u32 rqfcr = 0x0;
812 u32 rqfpr = FPR_FILER_MASK;
813
814 /* Default rule */
815 rqfcr = RQFCR_CMP_MATCH;
816 ftp_rqfcr[rqfar] = rqfcr;
817 ftp_rqfpr[rqfar] = rqfpr;
818 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
819
820 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
821 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
822 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
823 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
824 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
825 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
826
827 /* cur_filer_idx indicated the fisrt non-masked rule */
828 priv->cur_filer_idx = rqfar;
829
830 /* Rest are masked rules */
831 rqfcr = RQFCR_CMP_NOMATCH;
832 for (i = 0; i < rqfar; i++) {
833 ftp_rqfcr[i] = rqfcr;
834 ftp_rqfpr[i] = rqfpr;
835 gfar_write_filer(priv, i, rqfcr, rqfpr);
836 }
837 }
838
839 /* Set up the ethernet device structure, private data,
840 * and anything else we need before we start */
841 static int gfar_probe(struct of_device *ofdev,
842 const struct of_device_id *match)
843 {
844 u32 tempval;
845 struct net_device *dev = NULL;
846 struct gfar_private *priv = NULL;
847 struct gfar __iomem *regs = NULL;
848 int err = 0, i, grp_idx = 0;
849 int len_devname;
850 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
851 u32 isrg = 0;
852 u32 *baddr;
853
854 err = gfar_of_init(ofdev, &dev);
855
856 if (err)
857 return err;
858
859 priv = netdev_priv(dev);
860 priv->ndev = dev;
861 priv->ofdev = ofdev;
862 priv->node = ofdev->node;
863 SET_NETDEV_DEV(dev, &ofdev->dev);
864
865 spin_lock_init(&priv->bflock);
866 INIT_WORK(&priv->reset_task, gfar_reset_task);
867
868 dev_set_drvdata(&ofdev->dev, priv);
869 regs = priv->gfargrp[0].regs;
870
871 /* Stop the DMA engine now, in case it was running before */
872 /* (The firmware could have used it, and left it running). */
873 gfar_halt(dev);
874
875 /* Reset MAC layer */
876 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
877
878 /* We need to delay at least 3 TX clocks */
879 udelay(2);
880
881 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
882 gfar_write(&regs->maccfg1, tempval);
883
884 /* Initialize MACCFG2. */
885 gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
886
887 /* Initialize ECNTRL */
888 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
889
890 /* Set the dev->base_addr to the gfar reg region */
891 dev->base_addr = (unsigned long) regs;
892
893 SET_NETDEV_DEV(dev, &ofdev->dev);
894
895 /* Fill in the dev structure */
896 dev->watchdog_timeo = TX_TIMEOUT;
897 dev->mtu = 1500;
898 dev->netdev_ops = &gfar_netdev_ops;
899 dev->ethtool_ops = &gfar_ethtool_ops;
900
901 /* Register for napi ...We are registering NAPI for each grp */
902 for (i = 0; i < priv->num_grps; i++)
903 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
904
905 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
906 priv->rx_csum_enable = 1;
907 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
908 } else
909 priv->rx_csum_enable = 0;
910
911 priv->vlgrp = NULL;
912
913 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
914 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
915
916 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
917 priv->extended_hash = 1;
918 priv->hash_width = 9;
919
920 priv->hash_regs[0] = &regs->igaddr0;
921 priv->hash_regs[1] = &regs->igaddr1;
922 priv->hash_regs[2] = &regs->igaddr2;
923 priv->hash_regs[3] = &regs->igaddr3;
924 priv->hash_regs[4] = &regs->igaddr4;
925 priv->hash_regs[5] = &regs->igaddr5;
926 priv->hash_regs[6] = &regs->igaddr6;
927 priv->hash_regs[7] = &regs->igaddr7;
928 priv->hash_regs[8] = &regs->gaddr0;
929 priv->hash_regs[9] = &regs->gaddr1;
930 priv->hash_regs[10] = &regs->gaddr2;
931 priv->hash_regs[11] = &regs->gaddr3;
932 priv->hash_regs[12] = &regs->gaddr4;
933 priv->hash_regs[13] = &regs->gaddr5;
934 priv->hash_regs[14] = &regs->gaddr6;
935 priv->hash_regs[15] = &regs->gaddr7;
936
937 } else {
938 priv->extended_hash = 0;
939 priv->hash_width = 8;
940
941 priv->hash_regs[0] = &regs->gaddr0;
942 priv->hash_regs[1] = &regs->gaddr1;
943 priv->hash_regs[2] = &regs->gaddr2;
944 priv->hash_regs[3] = &regs->gaddr3;
945 priv->hash_regs[4] = &regs->gaddr4;
946 priv->hash_regs[5] = &regs->gaddr5;
947 priv->hash_regs[6] = &regs->gaddr6;
948 priv->hash_regs[7] = &regs->gaddr7;
949 }
950
951 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
952 priv->padding = DEFAULT_PADDING;
953 else
954 priv->padding = 0;
955
956 if (dev->features & NETIF_F_IP_CSUM)
957 dev->hard_header_len += GMAC_FCB_LEN;
958
959 /* Program the isrg regs only if number of grps > 1 */
960 if (priv->num_grps > 1) {
961 baddr = &regs->isrg0;
962 for (i = 0; i < priv->num_grps; i++) {
963 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
964 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
965 gfar_write(baddr, isrg);
966 baddr++;
967 isrg = 0x0;
968 }
969 }
970
971 /* Need to reverse the bit maps as bit_map's MSB is q0
972 * but, for_each_bit parses from right to left, which
973 * basically reverses the queue numbers */
974 for (i = 0; i< priv->num_grps; i++) {
975 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
976 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
977 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
978 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
979 }
980
981 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
982 * also assign queues to groups */
983 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
984 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
985 for_each_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
986 priv->num_rx_queues) {
987 priv->gfargrp[grp_idx].num_rx_queues++;
988 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
989 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
990 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
991 }
992 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
993 for_each_bit (i, &priv->gfargrp[grp_idx].tx_bit_map,
994 priv->num_tx_queues) {
995 priv->gfargrp[grp_idx].num_tx_queues++;
996 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
997 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
998 tqueue = tqueue | (TQUEUE_EN0 >> i);
999 }
1000 priv->gfargrp[grp_idx].rstat = rstat;
1001 priv->gfargrp[grp_idx].tstat = tstat;
1002 rstat = tstat =0;
1003 }
1004
1005 gfar_write(&regs->rqueue, rqueue);
1006 gfar_write(&regs->tqueue, tqueue);
1007
1008 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1009
1010 /* Initializing some of the rx/tx queue level parameters */
1011 for (i = 0; i < priv->num_tx_queues; i++) {
1012 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1013 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1014 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1015 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1016 }
1017
1018 for (i = 0; i < priv->num_rx_queues; i++) {
1019 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1020 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1021 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1022 }
1023
1024 /* Enable most messages by default */
1025 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1026
1027 /* Carrier starts down, phylib will bring it up */
1028 netif_carrier_off(dev);
1029
1030 err = register_netdev(dev);
1031
1032 if (err) {
1033 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1034 dev->name);
1035 goto register_fail;
1036 }
1037
1038 device_init_wakeup(&dev->dev,
1039 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1040
1041 /* fill out IRQ number and name fields */
1042 len_devname = strlen(dev->name);
1043 for (i = 0; i < priv->num_grps; i++) {
1044 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1045 len_devname);
1046 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1047 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1048 "_g", sizeof("_g"));
1049 priv->gfargrp[i].int_name_tx[
1050 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1051 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1052 priv->gfargrp[i].int_name_tx)],
1053 "_tx", sizeof("_tx") + 1);
1054
1055 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1056 len_devname);
1057 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1058 "_g", sizeof("_g"));
1059 priv->gfargrp[i].int_name_rx[
1060 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1061 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1062 priv->gfargrp[i].int_name_rx)],
1063 "_rx", sizeof("_rx") + 1);
1064
1065 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1066 len_devname);
1067 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1068 "_g", sizeof("_g"));
1069 priv->gfargrp[i].int_name_er[strlen(
1070 priv->gfargrp[i].int_name_er)] = i+48;
1071 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1072 priv->gfargrp[i].int_name_er)],
1073 "_er", sizeof("_er") + 1);
1074 } else
1075 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1076 }
1077
1078 /* Initialize the filer table */
1079 gfar_init_filer_table(priv);
1080
1081 /* Create all the sysfs files */
1082 gfar_init_sysfs(dev);
1083
1084 /* Print out the device info */
1085 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1086
1087 /* Even more device info helps when determining which kernel */
1088 /* provided which set of benchmarks. */
1089 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1090 for (i = 0; i < priv->num_rx_queues; i++)
1091 printk(KERN_INFO "%s: :RX BD ring size for Q[%d]: %d\n",
1092 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1093 for(i = 0; i < priv->num_tx_queues; i++)
1094 printk(KERN_INFO "%s:TX BD ring size for Q[%d]: %d\n",
1095 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1096
1097 return 0;
1098
1099 register_fail:
1100 unmap_group_regs(priv);
1101 free_tx_pointers(priv);
1102 free_rx_pointers(priv);
1103 if (priv->phy_node)
1104 of_node_put(priv->phy_node);
1105 if (priv->tbi_node)
1106 of_node_put(priv->tbi_node);
1107 free_netdev(dev);
1108 return err;
1109 }
1110
1111 static int gfar_remove(struct of_device *ofdev)
1112 {
1113 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1114
1115 if (priv->phy_node)
1116 of_node_put(priv->phy_node);
1117 if (priv->tbi_node)
1118 of_node_put(priv->tbi_node);
1119
1120 dev_set_drvdata(&ofdev->dev, NULL);
1121
1122 unregister_netdev(priv->ndev);
1123 unmap_group_regs(priv);
1124 free_netdev(priv->ndev);
1125
1126 return 0;
1127 }
1128
1129 #ifdef CONFIG_PM
1130
1131 static int gfar_suspend(struct device *dev)
1132 {
1133 struct gfar_private *priv = dev_get_drvdata(dev);
1134 struct net_device *ndev = priv->ndev;
1135 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1136 unsigned long flags;
1137 u32 tempval;
1138
1139 int magic_packet = priv->wol_en &&
1140 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1141
1142 netif_device_detach(ndev);
1143
1144 if (netif_running(ndev)) {
1145
1146 local_irq_save(flags);
1147 lock_tx_qs(priv);
1148 lock_rx_qs(priv);
1149
1150 gfar_halt_nodisable(ndev);
1151
1152 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1153 tempval = gfar_read(&regs->maccfg1);
1154
1155 tempval &= ~MACCFG1_TX_EN;
1156
1157 if (!magic_packet)
1158 tempval &= ~MACCFG1_RX_EN;
1159
1160 gfar_write(&regs->maccfg1, tempval);
1161
1162 unlock_rx_qs(priv);
1163 unlock_tx_qs(priv);
1164 local_irq_restore(flags);
1165
1166 disable_napi(priv);
1167
1168 if (magic_packet) {
1169 /* Enable interrupt on Magic Packet */
1170 gfar_write(&regs->imask, IMASK_MAG);
1171
1172 /* Enable Magic Packet mode */
1173 tempval = gfar_read(&regs->maccfg2);
1174 tempval |= MACCFG2_MPEN;
1175 gfar_write(&regs->maccfg2, tempval);
1176 } else {
1177 phy_stop(priv->phydev);
1178 }
1179 }
1180
1181 return 0;
1182 }
1183
1184 static int gfar_resume(struct device *dev)
1185 {
1186 struct gfar_private *priv = dev_get_drvdata(dev);
1187 struct net_device *ndev = priv->ndev;
1188 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1189 unsigned long flags;
1190 u32 tempval;
1191 int magic_packet = priv->wol_en &&
1192 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1193
1194 if (!netif_running(ndev)) {
1195 netif_device_attach(ndev);
1196 return 0;
1197 }
1198
1199 if (!magic_packet && priv->phydev)
1200 phy_start(priv->phydev);
1201
1202 /* Disable Magic Packet mode, in case something
1203 * else woke us up.
1204 */
1205 local_irq_save(flags);
1206 lock_tx_qs(priv);
1207 lock_rx_qs(priv);
1208
1209 tempval = gfar_read(&regs->maccfg2);
1210 tempval &= ~MACCFG2_MPEN;
1211 gfar_write(&regs->maccfg2, tempval);
1212
1213 gfar_start(ndev);
1214
1215 unlock_rx_qs(priv);
1216 unlock_tx_qs(priv);
1217 local_irq_restore(flags);
1218
1219 netif_device_attach(ndev);
1220
1221 enable_napi(priv);
1222
1223 return 0;
1224 }
1225
1226 static int gfar_restore(struct device *dev)
1227 {
1228 struct gfar_private *priv = dev_get_drvdata(dev);
1229 struct net_device *ndev = priv->ndev;
1230
1231 if (!netif_running(ndev))
1232 return 0;
1233
1234 gfar_init_bds(ndev);
1235 init_registers(ndev);
1236 gfar_set_mac_address(ndev);
1237 gfar_init_mac(ndev);
1238 gfar_start(ndev);
1239
1240 priv->oldlink = 0;
1241 priv->oldspeed = 0;
1242 priv->oldduplex = -1;
1243
1244 if (priv->phydev)
1245 phy_start(priv->phydev);
1246
1247 netif_device_attach(ndev);
1248 napi_enable(&priv->gfargrp.napi);
1249
1250 return 0;
1251 }
1252
1253 static struct dev_pm_ops gfar_pm_ops = {
1254 .suspend = gfar_suspend,
1255 .resume = gfar_resume,
1256 .freeze = gfar_suspend,
1257 .thaw = gfar_resume,
1258 .restore = gfar_restore,
1259 };
1260
1261 #define GFAR_PM_OPS (&gfar_pm_ops)
1262
1263 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1264 {
1265 return gfar_suspend(&ofdev->dev);
1266 }
1267
1268 static int gfar_legacy_resume(struct of_device *ofdev)
1269 {
1270 return gfar_resume(&ofdev->dev);
1271 }
1272
1273 #else
1274
1275 #define GFAR_PM_OPS NULL
1276 #define gfar_legacy_suspend NULL
1277 #define gfar_legacy_resume NULL
1278
1279 #endif
1280
1281 /* Reads the controller's registers to determine what interface
1282 * connects it to the PHY.
1283 */
1284 static phy_interface_t gfar_get_interface(struct net_device *dev)
1285 {
1286 struct gfar_private *priv = netdev_priv(dev);
1287 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1288 u32 ecntrl;
1289
1290 ecntrl = gfar_read(&regs->ecntrl);
1291
1292 if (ecntrl & ECNTRL_SGMII_MODE)
1293 return PHY_INTERFACE_MODE_SGMII;
1294
1295 if (ecntrl & ECNTRL_TBI_MODE) {
1296 if (ecntrl & ECNTRL_REDUCED_MODE)
1297 return PHY_INTERFACE_MODE_RTBI;
1298 else
1299 return PHY_INTERFACE_MODE_TBI;
1300 }
1301
1302 if (ecntrl & ECNTRL_REDUCED_MODE) {
1303 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1304 return PHY_INTERFACE_MODE_RMII;
1305 else {
1306 phy_interface_t interface = priv->interface;
1307
1308 /*
1309 * This isn't autodetected right now, so it must
1310 * be set by the device tree or platform code.
1311 */
1312 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1313 return PHY_INTERFACE_MODE_RGMII_ID;
1314
1315 return PHY_INTERFACE_MODE_RGMII;
1316 }
1317 }
1318
1319 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1320 return PHY_INTERFACE_MODE_GMII;
1321
1322 return PHY_INTERFACE_MODE_MII;
1323 }
1324
1325
1326 /* Initializes driver's PHY state, and attaches to the PHY.
1327 * Returns 0 on success.
1328 */
1329 static int init_phy(struct net_device *dev)
1330 {
1331 struct gfar_private *priv = netdev_priv(dev);
1332 uint gigabit_support =
1333 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1334 SUPPORTED_1000baseT_Full : 0;
1335 phy_interface_t interface;
1336
1337 priv->oldlink = 0;
1338 priv->oldspeed = 0;
1339 priv->oldduplex = -1;
1340
1341 interface = gfar_get_interface(dev);
1342
1343 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1344 interface);
1345 if (!priv->phydev)
1346 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1347 interface);
1348 if (!priv->phydev) {
1349 dev_err(&dev->dev, "could not attach to PHY\n");
1350 return -ENODEV;
1351 }
1352
1353 if (interface == PHY_INTERFACE_MODE_SGMII)
1354 gfar_configure_serdes(dev);
1355
1356 /* Remove any features not supported by the controller */
1357 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1358 priv->phydev->advertising = priv->phydev->supported;
1359
1360 return 0;
1361 }
1362
1363 /*
1364 * Initialize TBI PHY interface for communicating with the
1365 * SERDES lynx PHY on the chip. We communicate with this PHY
1366 * through the MDIO bus on each controller, treating it as a
1367 * "normal" PHY at the address found in the TBIPA register. We assume
1368 * that the TBIPA register is valid. Either the MDIO bus code will set
1369 * it to a value that doesn't conflict with other PHYs on the bus, or the
1370 * value doesn't matter, as there are no other PHYs on the bus.
1371 */
1372 static void gfar_configure_serdes(struct net_device *dev)
1373 {
1374 struct gfar_private *priv = netdev_priv(dev);
1375 struct phy_device *tbiphy;
1376
1377 if (!priv->tbi_node) {
1378 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1379 "device tree specify a tbi-handle\n");
1380 return;
1381 }
1382
1383 tbiphy = of_phy_find_device(priv->tbi_node);
1384 if (!tbiphy) {
1385 dev_err(&dev->dev, "error: Could not get TBI device\n");
1386 return;
1387 }
1388
1389 /*
1390 * If the link is already up, we must already be ok, and don't need to
1391 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1392 * everything for us? Resetting it takes the link down and requires
1393 * several seconds for it to come back.
1394 */
1395 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1396 return;
1397
1398 /* Single clk mode, mii mode off(for serdes communication) */
1399 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1400
1401 phy_write(tbiphy, MII_ADVERTISE,
1402 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1403 ADVERTISE_1000XPSE_ASYM);
1404
1405 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1406 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1407 }
1408
1409 static void init_registers(struct net_device *dev)
1410 {
1411 struct gfar_private *priv = netdev_priv(dev);
1412 struct gfar __iomem *regs = NULL;
1413 int i = 0;
1414
1415 for (i = 0; i < priv->num_grps; i++) {
1416 regs = priv->gfargrp[i].regs;
1417 /* Clear IEVENT */
1418 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1419
1420 /* Initialize IMASK */
1421 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1422 }
1423
1424 regs = priv->gfargrp[0].regs;
1425 /* Init hash registers to zero */
1426 gfar_write(&regs->igaddr0, 0);
1427 gfar_write(&regs->igaddr1, 0);
1428 gfar_write(&regs->igaddr2, 0);
1429 gfar_write(&regs->igaddr3, 0);
1430 gfar_write(&regs->igaddr4, 0);
1431 gfar_write(&regs->igaddr5, 0);
1432 gfar_write(&regs->igaddr6, 0);
1433 gfar_write(&regs->igaddr7, 0);
1434
1435 gfar_write(&regs->gaddr0, 0);
1436 gfar_write(&regs->gaddr1, 0);
1437 gfar_write(&regs->gaddr2, 0);
1438 gfar_write(&regs->gaddr3, 0);
1439 gfar_write(&regs->gaddr4, 0);
1440 gfar_write(&regs->gaddr5, 0);
1441 gfar_write(&regs->gaddr6, 0);
1442 gfar_write(&regs->gaddr7, 0);
1443
1444 /* Zero out the rmon mib registers if it has them */
1445 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1446 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1447
1448 /* Mask off the CAM interrupts */
1449 gfar_write(&regs->rmon.cam1, 0xffffffff);
1450 gfar_write(&regs->rmon.cam2, 0xffffffff);
1451 }
1452
1453 /* Initialize the max receive buffer length */
1454 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1455
1456 /* Initialize the Minimum Frame Length Register */
1457 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1458 }
1459
1460
1461 /* Halt the receive and transmit queues */
1462 static void gfar_halt_nodisable(struct net_device *dev)
1463 {
1464 struct gfar_private *priv = netdev_priv(dev);
1465 struct gfar __iomem *regs = NULL;
1466 u32 tempval;
1467 int i = 0;
1468
1469 for (i = 0; i < priv->num_grps; i++) {
1470 regs = priv->gfargrp[i].regs;
1471 /* Mask all interrupts */
1472 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1473
1474 /* Clear all interrupts */
1475 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1476 }
1477
1478 regs = priv->gfargrp[0].regs;
1479 /* Stop the DMA, and wait for it to stop */
1480 tempval = gfar_read(&regs->dmactrl);
1481 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1482 != (DMACTRL_GRS | DMACTRL_GTS)) {
1483 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1484 gfar_write(&regs->dmactrl, tempval);
1485
1486 while (!(gfar_read(&regs->ievent) &
1487 (IEVENT_GRSC | IEVENT_GTSC)))
1488 cpu_relax();
1489 }
1490 }
1491
1492 /* Halt the receive and transmit queues */
1493 void gfar_halt(struct net_device *dev)
1494 {
1495 struct gfar_private *priv = netdev_priv(dev);
1496 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1497 u32 tempval;
1498
1499 gfar_halt_nodisable(dev);
1500
1501 /* Disable Rx and Tx */
1502 tempval = gfar_read(&regs->maccfg1);
1503 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1504 gfar_write(&regs->maccfg1, tempval);
1505 }
1506
1507 static void free_grp_irqs(struct gfar_priv_grp *grp)
1508 {
1509 free_irq(grp->interruptError, grp);
1510 free_irq(grp->interruptTransmit, grp);
1511 free_irq(grp->interruptReceive, grp);
1512 }
1513
1514 void stop_gfar(struct net_device *dev)
1515 {
1516 struct gfar_private *priv = netdev_priv(dev);
1517 unsigned long flags;
1518 int i;
1519
1520 phy_stop(priv->phydev);
1521
1522
1523 /* Lock it down */
1524 local_irq_save(flags);
1525 lock_tx_qs(priv);
1526 lock_rx_qs(priv);
1527
1528 gfar_halt(dev);
1529
1530 unlock_rx_qs(priv);
1531 unlock_tx_qs(priv);
1532 local_irq_restore(flags);
1533
1534 /* Free the IRQs */
1535 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1536 for (i = 0; i < priv->num_grps; i++)
1537 free_grp_irqs(&priv->gfargrp[i]);
1538 } else {
1539 for (i = 0; i < priv->num_grps; i++)
1540 free_irq(priv->gfargrp[i].interruptTransmit,
1541 &priv->gfargrp[i]);
1542 }
1543
1544 free_skb_resources(priv);
1545 }
1546
1547 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1548 {
1549 struct txbd8 *txbdp;
1550 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1551 int i, j;
1552
1553 txbdp = tx_queue->tx_bd_base;
1554
1555 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1556 if (!tx_queue->tx_skbuff[i])
1557 continue;
1558
1559 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1560 txbdp->length, DMA_TO_DEVICE);
1561 txbdp->lstatus = 0;
1562 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1563 j++) {
1564 txbdp++;
1565 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1566 txbdp->length, DMA_TO_DEVICE);
1567 }
1568 txbdp++;
1569 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1570 tx_queue->tx_skbuff[i] = NULL;
1571 }
1572 kfree(tx_queue->tx_skbuff);
1573 }
1574
1575 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1576 {
1577 struct rxbd8 *rxbdp;
1578 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1579 int i;
1580
1581 rxbdp = rx_queue->rx_bd_base;
1582
1583 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1584 if (rx_queue->rx_skbuff[i]) {
1585 dma_unmap_single(&priv->ofdev->dev,
1586 rxbdp->bufPtr, priv->rx_buffer_size,
1587 DMA_FROM_DEVICE);
1588 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1589 rx_queue->rx_skbuff[i] = NULL;
1590 }
1591 rxbdp->lstatus = 0;
1592 rxbdp->bufPtr = 0;
1593 rxbdp++;
1594 }
1595 kfree(rx_queue->rx_skbuff);
1596 }
1597
1598 /* If there are any tx skbs or rx skbs still around, free them.
1599 * Then free tx_skbuff and rx_skbuff */
1600 static void free_skb_resources(struct gfar_private *priv)
1601 {
1602 struct gfar_priv_tx_q *tx_queue = NULL;
1603 struct gfar_priv_rx_q *rx_queue = NULL;
1604 int i;
1605
1606 /* Go through all the buffer descriptors and free their data buffers */
1607 for (i = 0; i < priv->num_tx_queues; i++) {
1608 tx_queue = priv->tx_queue[i];
1609 if(!tx_queue->tx_skbuff)
1610 free_skb_tx_queue(tx_queue);
1611 }
1612
1613 for (i = 0; i < priv->num_rx_queues; i++) {
1614 rx_queue = priv->rx_queue[i];
1615 if(!rx_queue->rx_skbuff)
1616 free_skb_rx_queue(rx_queue);
1617 }
1618
1619 dma_free_coherent(&priv->ofdev->dev,
1620 sizeof(struct txbd8) * priv->total_tx_ring_size +
1621 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1622 priv->tx_queue[0]->tx_bd_base,
1623 priv->tx_queue[0]->tx_bd_dma_base);
1624 }
1625
1626 void gfar_start(struct net_device *dev)
1627 {
1628 struct gfar_private *priv = netdev_priv(dev);
1629 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1630 u32 tempval;
1631 int i = 0;
1632
1633 /* Enable Rx and Tx in MACCFG1 */
1634 tempval = gfar_read(&regs->maccfg1);
1635 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1636 gfar_write(&regs->maccfg1, tempval);
1637
1638 /* Initialize DMACTRL to have WWR and WOP */
1639 tempval = gfar_read(&regs->dmactrl);
1640 tempval |= DMACTRL_INIT_SETTINGS;
1641 gfar_write(&regs->dmactrl, tempval);
1642
1643 /* Make sure we aren't stopped */
1644 tempval = gfar_read(&regs->dmactrl);
1645 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1646 gfar_write(&regs->dmactrl, tempval);
1647
1648 for (i = 0; i < priv->num_grps; i++) {
1649 regs = priv->gfargrp[i].regs;
1650 /* Clear THLT/RHLT, so that the DMA starts polling now */
1651 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1652 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1653 /* Unmask the interrupts we look for */
1654 gfar_write(&regs->imask, IMASK_DEFAULT);
1655 }
1656
1657 dev->trans_start = jiffies;
1658 }
1659
1660 void gfar_configure_coalescing(struct gfar_private *priv,
1661 unsigned int tx_mask, unsigned int rx_mask)
1662 {
1663 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1664 u32 *baddr;
1665 int i = 0;
1666
1667 /* Backward compatible case ---- even if we enable
1668 * multiple queues, there's only single reg to program
1669 */
1670 gfar_write(&regs->txic, 0);
1671 if(likely(priv->tx_queue[0]->txcoalescing))
1672 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1673
1674 gfar_write(&regs->rxic, 0);
1675 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1676 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1677
1678 if (priv->mode == MQ_MG_MODE) {
1679 baddr = &regs->txic0;
1680 for_each_bit (i, &tx_mask, priv->num_tx_queues) {
1681 if (likely(priv->tx_queue[i]->txcoalescing)) {
1682 gfar_write(baddr + i, 0);
1683 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1684 }
1685 }
1686
1687 baddr = &regs->rxic0;
1688 for_each_bit (i, &rx_mask, priv->num_rx_queues) {
1689 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1690 gfar_write(baddr + i, 0);
1691 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1692 }
1693 }
1694 }
1695 }
1696
1697 static int register_grp_irqs(struct gfar_priv_grp *grp)
1698 {
1699 struct gfar_private *priv = grp->priv;
1700 struct net_device *dev = priv->ndev;
1701 int err;
1702
1703 /* If the device has multiple interrupts, register for
1704 * them. Otherwise, only register for the one */
1705 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1706 /* Install our interrupt handlers for Error,
1707 * Transmit, and Receive */
1708 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1709 grp->int_name_er,grp)) < 0) {
1710 if (netif_msg_intr(priv))
1711 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1712 dev->name, grp->interruptError);
1713
1714 goto err_irq_fail;
1715 }
1716
1717 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1718 0, grp->int_name_tx, grp)) < 0) {
1719 if (netif_msg_intr(priv))
1720 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1721 dev->name, grp->interruptTransmit);
1722 goto tx_irq_fail;
1723 }
1724
1725 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1726 grp->int_name_rx, grp)) < 0) {
1727 if (netif_msg_intr(priv))
1728 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1729 dev->name, grp->interruptReceive);
1730 goto rx_irq_fail;
1731 }
1732 } else {
1733 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1734 grp->int_name_tx, grp)) < 0) {
1735 if (netif_msg_intr(priv))
1736 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1737 dev->name, grp->interruptTransmit);
1738 goto err_irq_fail;
1739 }
1740 }
1741
1742 return 0;
1743
1744 rx_irq_fail:
1745 free_irq(grp->interruptTransmit, grp);
1746 tx_irq_fail:
1747 free_irq(grp->interruptError, grp);
1748 err_irq_fail:
1749 return err;
1750
1751 }
1752
1753 /* Bring the controller up and running */
1754 int startup_gfar(struct net_device *ndev)
1755 {
1756 struct gfar_private *priv = netdev_priv(ndev);
1757 struct gfar __iomem *regs = NULL;
1758 int err, i, j;
1759
1760 for (i = 0; i < priv->num_grps; i++) {
1761 regs= priv->gfargrp[i].regs;
1762 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1763 }
1764
1765 regs= priv->gfargrp[0].regs;
1766 err = gfar_alloc_skb_resources(ndev);
1767 if (err)
1768 return err;
1769
1770 gfar_init_mac(ndev);
1771
1772 for (i = 0; i < priv->num_grps; i++) {
1773 err = register_grp_irqs(&priv->gfargrp[i]);
1774 if (err) {
1775 for (j = 0; j < i; j++)
1776 free_grp_irqs(&priv->gfargrp[j]);
1777 goto irq_fail;
1778 }
1779 }
1780
1781 /* Start the controller */
1782 gfar_start(ndev);
1783
1784 phy_start(priv->phydev);
1785
1786 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1787
1788 return 0;
1789
1790 irq_fail:
1791 free_skb_resources(priv);
1792 return err;
1793 }
1794
1795 /* Called when something needs to use the ethernet device */
1796 /* Returns 0 for success. */
1797 static int gfar_enet_open(struct net_device *dev)
1798 {
1799 struct gfar_private *priv = netdev_priv(dev);
1800 int err;
1801
1802 enable_napi(priv);
1803
1804 skb_queue_head_init(&priv->rx_recycle);
1805
1806 /* Initialize a bunch of registers */
1807 init_registers(dev);
1808
1809 gfar_set_mac_address(dev);
1810
1811 err = init_phy(dev);
1812
1813 if (err) {
1814 disable_napi(priv);
1815 return err;
1816 }
1817
1818 err = startup_gfar(dev);
1819 if (err) {
1820 disable_napi(priv);
1821 return err;
1822 }
1823
1824 netif_tx_start_all_queues(dev);
1825
1826 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1827
1828 return err;
1829 }
1830
1831 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1832 {
1833 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1834
1835 memset(fcb, 0, GMAC_FCB_LEN);
1836
1837 return fcb;
1838 }
1839
1840 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1841 {
1842 u8 flags = 0;
1843
1844 /* If we're here, it's a IP packet with a TCP or UDP
1845 * payload. We set it to checksum, using a pseudo-header
1846 * we provide
1847 */
1848 flags = TXFCB_DEFAULT;
1849
1850 /* Tell the controller what the protocol is */
1851 /* And provide the already calculated phcs */
1852 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1853 flags |= TXFCB_UDP;
1854 fcb->phcs = udp_hdr(skb)->check;
1855 } else
1856 fcb->phcs = tcp_hdr(skb)->check;
1857
1858 /* l3os is the distance between the start of the
1859 * frame (skb->data) and the start of the IP hdr.
1860 * l4os is the distance between the start of the
1861 * l3 hdr and the l4 hdr */
1862 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1863 fcb->l4os = skb_network_header_len(skb);
1864
1865 fcb->flags = flags;
1866 }
1867
1868 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1869 {
1870 fcb->flags |= TXFCB_VLN;
1871 fcb->vlctl = vlan_tx_tag_get(skb);
1872 }
1873
1874 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1875 struct txbd8 *base, int ring_size)
1876 {
1877 struct txbd8 *new_bd = bdp + stride;
1878
1879 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1880 }
1881
1882 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1883 int ring_size)
1884 {
1885 return skip_txbd(bdp, 1, base, ring_size);
1886 }
1887
1888 /* This is called by the kernel when a frame is ready for transmission. */
1889 /* It is pointed to by the dev->hard_start_xmit function pointer */
1890 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1891 {
1892 struct gfar_private *priv = netdev_priv(dev);
1893 struct gfar_priv_tx_q *tx_queue = NULL;
1894 struct netdev_queue *txq;
1895 struct gfar __iomem *regs = NULL;
1896 struct txfcb *fcb = NULL;
1897 struct txbd8 *txbdp, *txbdp_start, *base;
1898 u32 lstatus;
1899 int i, rq = 0;
1900 u32 bufaddr;
1901 unsigned long flags;
1902 unsigned int nr_frags, length;
1903
1904
1905 rq = skb->queue_mapping;
1906 tx_queue = priv->tx_queue[rq];
1907 txq = netdev_get_tx_queue(dev, rq);
1908 base = tx_queue->tx_bd_base;
1909 regs = tx_queue->grp->regs;
1910
1911 /* make space for additional header when fcb is needed */
1912 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1913 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1914 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1915 struct sk_buff *skb_new;
1916
1917 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1918 if (!skb_new) {
1919 dev->stats.tx_errors++;
1920 kfree_skb(skb);
1921 return NETDEV_TX_OK;
1922 }
1923 kfree_skb(skb);
1924 skb = skb_new;
1925 }
1926
1927 /* total number of fragments in the SKB */
1928 nr_frags = skb_shinfo(skb)->nr_frags;
1929
1930 spin_lock_irqsave(&tx_queue->txlock, flags);
1931
1932 /* check if there is space to queue this packet */
1933 if ((nr_frags+1) > tx_queue->num_txbdfree) {
1934 /* no space, stop the queue */
1935 netif_tx_stop_queue(txq);
1936 dev->stats.tx_fifo_errors++;
1937 spin_unlock_irqrestore(&tx_queue->txlock, flags);
1938 return NETDEV_TX_BUSY;
1939 }
1940
1941 /* Update transmit stats */
1942 dev->stats.tx_bytes += skb->len;
1943
1944 txbdp = txbdp_start = tx_queue->cur_tx;
1945
1946 if (nr_frags == 0) {
1947 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1948 } else {
1949 /* Place the fragment addresses and lengths into the TxBDs */
1950 for (i = 0; i < nr_frags; i++) {
1951 /* Point at the next BD, wrapping as needed */
1952 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1953
1954 length = skb_shinfo(skb)->frags[i].size;
1955
1956 lstatus = txbdp->lstatus | length |
1957 BD_LFLAG(TXBD_READY);
1958
1959 /* Handle the last BD specially */
1960 if (i == nr_frags - 1)
1961 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1962
1963 bufaddr = dma_map_page(&priv->ofdev->dev,
1964 skb_shinfo(skb)->frags[i].page,
1965 skb_shinfo(skb)->frags[i].page_offset,
1966 length,
1967 DMA_TO_DEVICE);
1968
1969 /* set the TxBD length and buffer pointer */
1970 txbdp->bufPtr = bufaddr;
1971 txbdp->lstatus = lstatus;
1972 }
1973
1974 lstatus = txbdp_start->lstatus;
1975 }
1976
1977 /* Set up checksumming */
1978 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1979 fcb = gfar_add_fcb(skb);
1980 lstatus |= BD_LFLAG(TXBD_TOE);
1981 gfar_tx_checksum(skb, fcb);
1982 }
1983
1984 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1985 if (unlikely(NULL == fcb)) {
1986 fcb = gfar_add_fcb(skb);
1987 lstatus |= BD_LFLAG(TXBD_TOE);
1988 }
1989
1990 gfar_tx_vlan(skb, fcb);
1991 }
1992
1993 /* setup the TxBD length and buffer pointer for the first BD */
1994 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1995 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1996 skb_headlen(skb), DMA_TO_DEVICE);
1997
1998 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1999
2000 /*
2001 * The powerpc-specific eieio() is used, as wmb() has too strong
2002 * semantics (it requires synchronization between cacheable and
2003 * uncacheable mappings, which eieio doesn't provide and which we
2004 * don't need), thus requiring a more expensive sync instruction. At
2005 * some point, the set of architecture-independent barrier functions
2006 * should be expanded to include weaker barriers.
2007 */
2008 eieio();
2009
2010 txbdp_start->lstatus = lstatus;
2011
2012 /* Update the current skb pointer to the next entry we will use
2013 * (wrapping if necessary) */
2014 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2015 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2016
2017 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2018
2019 /* reduce TxBD free count */
2020 tx_queue->num_txbdfree -= (nr_frags + 1);
2021
2022 dev->trans_start = jiffies;
2023
2024 /* If the next BD still needs to be cleaned up, then the bds
2025 are full. We need to tell the kernel to stop sending us stuff. */
2026 if (!tx_queue->num_txbdfree) {
2027 netif_tx_stop_queue(txq);
2028
2029 dev->stats.tx_fifo_errors++;
2030 }
2031
2032 /* Tell the DMA to go go go */
2033 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2034
2035 /* Unlock priv */
2036 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2037
2038 return NETDEV_TX_OK;
2039 }
2040
2041 /* Stops the kernel queue, and halts the controller */
2042 static int gfar_close(struct net_device *dev)
2043 {
2044 struct gfar_private *priv = netdev_priv(dev);
2045
2046 disable_napi(priv);
2047
2048 skb_queue_purge(&priv->rx_recycle);
2049 cancel_work_sync(&priv->reset_task);
2050 stop_gfar(dev);
2051
2052 /* Disconnect from the PHY */
2053 phy_disconnect(priv->phydev);
2054 priv->phydev = NULL;
2055
2056 netif_tx_stop_all_queues(dev);
2057
2058 return 0;
2059 }
2060
2061 /* Changes the mac address if the controller is not running. */
2062 static int gfar_set_mac_address(struct net_device *dev)
2063 {
2064 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2065
2066 return 0;
2067 }
2068
2069
2070 /* Enables and disables VLAN insertion/extraction */
2071 static void gfar_vlan_rx_register(struct net_device *dev,
2072 struct vlan_group *grp)
2073 {
2074 struct gfar_private *priv = netdev_priv(dev);
2075 struct gfar __iomem *regs = NULL;
2076 unsigned long flags;
2077 u32 tempval;
2078
2079 regs = priv->gfargrp[0].regs;
2080 local_irq_save(flags);
2081 lock_rx_qs(priv);
2082
2083 priv->vlgrp = grp;
2084
2085 if (grp) {
2086 /* Enable VLAN tag insertion */
2087 tempval = gfar_read(&regs->tctrl);
2088 tempval |= TCTRL_VLINS;
2089
2090 gfar_write(&regs->tctrl, tempval);
2091
2092 /* Enable VLAN tag extraction */
2093 tempval = gfar_read(&regs->rctrl);
2094 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2095 gfar_write(&regs->rctrl, tempval);
2096 } else {
2097 /* Disable VLAN tag insertion */
2098 tempval = gfar_read(&regs->tctrl);
2099 tempval &= ~TCTRL_VLINS;
2100 gfar_write(&regs->tctrl, tempval);
2101
2102 /* Disable VLAN tag extraction */
2103 tempval = gfar_read(&regs->rctrl);
2104 tempval &= ~RCTRL_VLEX;
2105 /* If parse is no longer required, then disable parser */
2106 if (tempval & RCTRL_REQ_PARSER)
2107 tempval |= RCTRL_PRSDEP_INIT;
2108 else
2109 tempval &= ~RCTRL_PRSDEP_INIT;
2110 gfar_write(&regs->rctrl, tempval);
2111 }
2112
2113 gfar_change_mtu(dev, dev->mtu);
2114
2115 unlock_rx_qs(priv);
2116 local_irq_restore(flags);
2117 }
2118
2119 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2120 {
2121 int tempsize, tempval;
2122 struct gfar_private *priv = netdev_priv(dev);
2123 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2124 int oldsize = priv->rx_buffer_size;
2125 int frame_size = new_mtu + ETH_HLEN;
2126
2127 if (priv->vlgrp)
2128 frame_size += VLAN_HLEN;
2129
2130 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2131 if (netif_msg_drv(priv))
2132 printk(KERN_ERR "%s: Invalid MTU setting\n",
2133 dev->name);
2134 return -EINVAL;
2135 }
2136
2137 if (gfar_uses_fcb(priv))
2138 frame_size += GMAC_FCB_LEN;
2139
2140 frame_size += priv->padding;
2141
2142 tempsize =
2143 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2144 INCREMENTAL_BUFFER_SIZE;
2145
2146 /* Only stop and start the controller if it isn't already
2147 * stopped, and we changed something */
2148 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2149 stop_gfar(dev);
2150
2151 priv->rx_buffer_size = tempsize;
2152
2153 dev->mtu = new_mtu;
2154
2155 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2156 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2157
2158 /* If the mtu is larger than the max size for standard
2159 * ethernet frames (ie, a jumbo frame), then set maccfg2
2160 * to allow huge frames, and to check the length */
2161 tempval = gfar_read(&regs->maccfg2);
2162
2163 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2164 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2165 else
2166 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2167
2168 gfar_write(&regs->maccfg2, tempval);
2169
2170 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2171 startup_gfar(dev);
2172
2173 return 0;
2174 }
2175
2176 /* gfar_reset_task gets scheduled when a packet has not been
2177 * transmitted after a set amount of time.
2178 * For now, assume that clearing out all the structures, and
2179 * starting over will fix the problem.
2180 */
2181 static void gfar_reset_task(struct work_struct *work)
2182 {
2183 struct gfar_private *priv = container_of(work, struct gfar_private,
2184 reset_task);
2185 struct net_device *dev = priv->ndev;
2186
2187 if (dev->flags & IFF_UP) {
2188 netif_tx_stop_all_queues(dev);
2189 stop_gfar(dev);
2190 startup_gfar(dev);
2191 netif_tx_start_all_queues(dev);
2192 }
2193
2194 netif_tx_schedule_all(dev);
2195 }
2196
2197 static void gfar_timeout(struct net_device *dev)
2198 {
2199 struct gfar_private *priv = netdev_priv(dev);
2200
2201 dev->stats.tx_errors++;
2202 schedule_work(&priv->reset_task);
2203 }
2204
2205 /* Interrupt Handler for Transmit complete */
2206 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2207 {
2208 struct net_device *dev = tx_queue->dev;
2209 struct gfar_private *priv = netdev_priv(dev);
2210 struct gfar_priv_rx_q *rx_queue = NULL;
2211 struct txbd8 *bdp;
2212 struct txbd8 *lbdp = NULL;
2213 struct txbd8 *base = tx_queue->tx_bd_base;
2214 struct sk_buff *skb;
2215 int skb_dirtytx;
2216 int tx_ring_size = tx_queue->tx_ring_size;
2217 int frags = 0;
2218 int i;
2219 int howmany = 0;
2220 u32 lstatus;
2221
2222 rx_queue = priv->rx_queue[tx_queue->qindex];
2223 bdp = tx_queue->dirty_tx;
2224 skb_dirtytx = tx_queue->skb_dirtytx;
2225
2226 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2227 frags = skb_shinfo(skb)->nr_frags;
2228 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
2229
2230 lstatus = lbdp->lstatus;
2231
2232 /* Only clean completed frames */
2233 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2234 (lstatus & BD_LENGTH_MASK))
2235 break;
2236
2237 dma_unmap_single(&priv->ofdev->dev,
2238 bdp->bufPtr,
2239 bdp->length,
2240 DMA_TO_DEVICE);
2241
2242 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2243 bdp = next_txbd(bdp, base, tx_ring_size);
2244
2245 for (i = 0; i < frags; i++) {
2246 dma_unmap_page(&priv->ofdev->dev,
2247 bdp->bufPtr,
2248 bdp->length,
2249 DMA_TO_DEVICE);
2250 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2251 bdp = next_txbd(bdp, base, tx_ring_size);
2252 }
2253
2254 /*
2255 * If there's room in the queue (limit it to rx_buffer_size)
2256 * we add this skb back into the pool, if it's the right size
2257 */
2258 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2259 skb_recycle_check(skb, priv->rx_buffer_size +
2260 RXBUF_ALIGNMENT))
2261 __skb_queue_head(&priv->rx_recycle, skb);
2262 else
2263 dev_kfree_skb_any(skb);
2264
2265 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2266
2267 skb_dirtytx = (skb_dirtytx + 1) &
2268 TX_RING_MOD_MASK(tx_ring_size);
2269
2270 howmany++;
2271 tx_queue->num_txbdfree += frags + 1;
2272 }
2273
2274 /* If we freed a buffer, we can restart transmission, if necessary */
2275 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2276 netif_wake_subqueue(dev, tx_queue->qindex);
2277
2278 /* Update dirty indicators */
2279 tx_queue->skb_dirtytx = skb_dirtytx;
2280 tx_queue->dirty_tx = bdp;
2281
2282 dev->stats.tx_packets += howmany;
2283
2284 return howmany;
2285 }
2286
2287 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2288 {
2289 unsigned long flags;
2290
2291 spin_lock_irqsave(&gfargrp->grplock, flags);
2292 if (napi_schedule_prep(&gfargrp->napi)) {
2293 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2294 __napi_schedule(&gfargrp->napi);
2295 } else {
2296 /*
2297 * Clear IEVENT, so interrupts aren't called again
2298 * because of the packets that have already arrived.
2299 */
2300 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2301 }
2302 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2303
2304 }
2305
2306 /* Interrupt Handler for Transmit complete */
2307 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2308 {
2309 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2310 return IRQ_HANDLED;
2311 }
2312
2313 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2314 struct sk_buff *skb)
2315 {
2316 struct net_device *dev = rx_queue->dev;
2317 struct gfar_private *priv = netdev_priv(dev);
2318 dma_addr_t buf;
2319
2320 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2321 priv->rx_buffer_size, DMA_FROM_DEVICE);
2322 gfar_init_rxbdp(rx_queue, bdp, buf);
2323 }
2324
2325
2326 struct sk_buff * gfar_new_skb(struct net_device *dev)
2327 {
2328 unsigned int alignamount;
2329 struct gfar_private *priv = netdev_priv(dev);
2330 struct sk_buff *skb = NULL;
2331
2332 skb = __skb_dequeue(&priv->rx_recycle);
2333 if (!skb)
2334 skb = netdev_alloc_skb(dev,
2335 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2336
2337 if (!skb)
2338 return NULL;
2339
2340 alignamount = RXBUF_ALIGNMENT -
2341 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2342
2343 /* We need the data buffer to be aligned properly. We will reserve
2344 * as many bytes as needed to align the data properly
2345 */
2346 skb_reserve(skb, alignamount);
2347
2348 return skb;
2349 }
2350
2351 static inline void count_errors(unsigned short status, struct net_device *dev)
2352 {
2353 struct gfar_private *priv = netdev_priv(dev);
2354 struct net_device_stats *stats = &dev->stats;
2355 struct gfar_extra_stats *estats = &priv->extra_stats;
2356
2357 /* If the packet was truncated, none of the other errors
2358 * matter */
2359 if (status & RXBD_TRUNCATED) {
2360 stats->rx_length_errors++;
2361
2362 estats->rx_trunc++;
2363
2364 return;
2365 }
2366 /* Count the errors, if there were any */
2367 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2368 stats->rx_length_errors++;
2369
2370 if (status & RXBD_LARGE)
2371 estats->rx_large++;
2372 else
2373 estats->rx_short++;
2374 }
2375 if (status & RXBD_NONOCTET) {
2376 stats->rx_frame_errors++;
2377 estats->rx_nonoctet++;
2378 }
2379 if (status & RXBD_CRCERR) {
2380 estats->rx_crcerr++;
2381 stats->rx_crc_errors++;
2382 }
2383 if (status & RXBD_OVERRUN) {
2384 estats->rx_overrun++;
2385 stats->rx_crc_errors++;
2386 }
2387 }
2388
2389 irqreturn_t gfar_receive(int irq, void *grp_id)
2390 {
2391 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2392 return IRQ_HANDLED;
2393 }
2394
2395 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2396 {
2397 /* If valid headers were found, and valid sums
2398 * were verified, then we tell the kernel that no
2399 * checksumming is necessary. Otherwise, it is */
2400 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2401 skb->ip_summed = CHECKSUM_UNNECESSARY;
2402 else
2403 skb->ip_summed = CHECKSUM_NONE;
2404 }
2405
2406
2407 /* gfar_process_frame() -- handle one incoming packet if skb
2408 * isn't NULL. */
2409 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2410 int amount_pull)
2411 {
2412 struct gfar_private *priv = netdev_priv(dev);
2413 struct rxfcb *fcb = NULL;
2414
2415 int ret;
2416
2417 /* fcb is at the beginning if exists */
2418 fcb = (struct rxfcb *)skb->data;
2419
2420 /* Remove the FCB from the skb */
2421 skb_set_queue_mapping(skb, fcb->rq);
2422 /* Remove the padded bytes, if there are any */
2423 if (amount_pull)
2424 skb_pull(skb, amount_pull);
2425
2426 if (priv->rx_csum_enable)
2427 gfar_rx_checksum(skb, fcb);
2428
2429 /* Tell the skb what kind of packet this is */
2430 skb->protocol = eth_type_trans(skb, dev);
2431
2432 /* Send the packet up the stack */
2433 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2434 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2435 else
2436 ret = netif_receive_skb(skb);
2437
2438 if (NET_RX_DROP == ret)
2439 priv->extra_stats.kernel_dropped++;
2440
2441 return 0;
2442 }
2443
2444 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2445 * until the budget/quota has been reached. Returns the number
2446 * of frames handled
2447 */
2448 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2449 {
2450 struct net_device *dev = rx_queue->dev;
2451 struct rxbd8 *bdp, *base;
2452 struct sk_buff *skb;
2453 int pkt_len;
2454 int amount_pull;
2455 int howmany = 0;
2456 struct gfar_private *priv = netdev_priv(dev);
2457
2458 /* Get the first full descriptor */
2459 bdp = rx_queue->cur_rx;
2460 base = rx_queue->rx_bd_base;
2461
2462 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
2463 priv->padding;
2464
2465 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2466 struct sk_buff *newskb;
2467 rmb();
2468
2469 /* Add another skb for the future */
2470 newskb = gfar_new_skb(dev);
2471
2472 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2473
2474 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2475 priv->rx_buffer_size, DMA_FROM_DEVICE);
2476
2477 /* We drop the frame if we failed to allocate a new buffer */
2478 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2479 bdp->status & RXBD_ERR)) {
2480 count_errors(bdp->status, dev);
2481
2482 if (unlikely(!newskb))
2483 newskb = skb;
2484 else if (skb) {
2485 /*
2486 * We need to reset ->data to what it
2487 * was before gfar_new_skb() re-aligned
2488 * it to an RXBUF_ALIGNMENT boundary
2489 * before we put the skb back on the
2490 * recycle list.
2491 */
2492 skb->data = skb->head + NET_SKB_PAD;
2493 __skb_queue_head(&priv->rx_recycle, skb);
2494 }
2495 } else {
2496 /* Increment the number of packets */
2497 dev->stats.rx_packets++;
2498 howmany++;
2499
2500 if (likely(skb)) {
2501 pkt_len = bdp->length - ETH_FCS_LEN;
2502 /* Remove the FCS from the packet length */
2503 skb_put(skb, pkt_len);
2504 dev->stats.rx_bytes += pkt_len;
2505
2506 if (in_irq() || irqs_disabled())
2507 printk("Interrupt problem!\n");
2508 gfar_process_frame(dev, skb, amount_pull);
2509
2510 } else {
2511 if (netif_msg_rx_err(priv))
2512 printk(KERN_WARNING
2513 "%s: Missing skb!\n", dev->name);
2514 dev->stats.rx_dropped++;
2515 priv->extra_stats.rx_skbmissing++;
2516 }
2517
2518 }
2519
2520 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2521
2522 /* Setup the new bdp */
2523 gfar_new_rxbdp(rx_queue, bdp, newskb);
2524
2525 /* Update to the next pointer */
2526 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2527
2528 /* update to point at the next skb */
2529 rx_queue->skb_currx =
2530 (rx_queue->skb_currx + 1) &
2531 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2532 }
2533
2534 /* Update the current rxbd pointer to be the next one */
2535 rx_queue->cur_rx = bdp;
2536
2537 return howmany;
2538 }
2539
2540 static int gfar_poll(struct napi_struct *napi, int budget)
2541 {
2542 struct gfar_priv_grp *gfargrp = container_of(napi,
2543 struct gfar_priv_grp, napi);
2544 struct gfar_private *priv = gfargrp->priv;
2545 struct gfar __iomem *regs = gfargrp->regs;
2546 struct gfar_priv_tx_q *tx_queue = NULL;
2547 struct gfar_priv_rx_q *rx_queue = NULL;
2548 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2549 int tx_cleaned = 0, i, left_over_budget = budget, serviced_queues = 0;
2550 int num_queues = 0;
2551 unsigned long flags;
2552
2553 num_queues = gfargrp->num_rx_queues;
2554 budget_per_queue = budget/num_queues;
2555
2556 /* Clear IEVENT, so interrupts aren't called again
2557 * because of the packets that have already arrived */
2558 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2559
2560 while (num_queues && left_over_budget) {
2561
2562 budget_per_queue = left_over_budget/num_queues;
2563 left_over_budget = 0;
2564
2565 for_each_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2566 if (test_bit(i, &serviced_queues))
2567 continue;
2568 rx_queue = priv->rx_queue[i];
2569 tx_queue = priv->tx_queue[rx_queue->qindex];
2570
2571 /* If we fail to get the lock,
2572 * don't bother with the TX BDs */
2573 if (spin_trylock_irqsave(&tx_queue->txlock, flags)) {
2574 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2575 spin_unlock_irqrestore(&tx_queue->txlock,
2576 flags);
2577 }
2578
2579 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2580 budget_per_queue);
2581 rx_cleaned += rx_cleaned_per_queue;
2582 if(rx_cleaned_per_queue < budget_per_queue) {
2583 left_over_budget = left_over_budget +
2584 (budget_per_queue - rx_cleaned_per_queue);
2585 set_bit(i, &serviced_queues);
2586 num_queues--;
2587 }
2588 }
2589 }
2590
2591 if (tx_cleaned)
2592 return budget;
2593
2594 if (rx_cleaned < budget) {
2595 napi_complete(napi);
2596
2597 /* Clear the halt bit in RSTAT */
2598 gfar_write(&regs->rstat, gfargrp->rstat);
2599
2600 gfar_write(&regs->imask, IMASK_DEFAULT);
2601
2602 /* If we are coalescing interrupts, update the timer */
2603 /* Otherwise, clear it */
2604 gfar_configure_coalescing(priv,
2605 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2606 }
2607
2608 return rx_cleaned;
2609 }
2610
2611 #ifdef CONFIG_NET_POLL_CONTROLLER
2612 /*
2613 * Polling 'interrupt' - used by things like netconsole to send skbs
2614 * without having to re-enable interrupts. It's not called while
2615 * the interrupt routine is executing.
2616 */
2617 static void gfar_netpoll(struct net_device *dev)
2618 {
2619 struct gfar_private *priv = netdev_priv(dev);
2620 int i = 0;
2621
2622 /* If the device has multiple interrupts, run tx/rx */
2623 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2624 for (i = 0; i < priv->num_grps; i++) {
2625 disable_irq(priv->gfargrp[i].interruptTransmit);
2626 disable_irq(priv->gfargrp[i].interruptReceive);
2627 disable_irq(priv->gfargrp[i].interruptError);
2628 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2629 &priv->gfargrp[i]);
2630 enable_irq(priv->gfargrp[i].interruptError);
2631 enable_irq(priv->gfargrp[i].interruptReceive);
2632 enable_irq(priv->gfargrp[i].interruptTransmit);
2633 }
2634 } else {
2635 for (i = 0; i < priv->num_grps; i++) {
2636 disable_irq(priv->gfargrp[i].interruptTransmit);
2637 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2638 &priv->gfargrp[i]);
2639 enable_irq(priv->gfargrp[i].interruptTransmit);
2640 }
2641 }
2642 #endif
2643
2644 /* The interrupt handler for devices with one interrupt */
2645 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2646 {
2647 struct gfar_priv_grp *gfargrp = grp_id;
2648
2649 /* Save ievent for future reference */
2650 u32 events = gfar_read(&gfargrp->regs->ievent);
2651
2652 /* Check for reception */
2653 if (events & IEVENT_RX_MASK)
2654 gfar_receive(irq, grp_id);
2655
2656 /* Check for transmit completion */
2657 if (events & IEVENT_TX_MASK)
2658 gfar_transmit(irq, grp_id);
2659
2660 /* Check for errors */
2661 if (events & IEVENT_ERR_MASK)
2662 gfar_error(irq, grp_id);
2663
2664 return IRQ_HANDLED;
2665 }
2666
2667 /* Called every time the controller might need to be made
2668 * aware of new link state. The PHY code conveys this
2669 * information through variables in the phydev structure, and this
2670 * function converts those variables into the appropriate
2671 * register values, and can bring down the device if needed.
2672 */
2673 static void adjust_link(struct net_device *dev)
2674 {
2675 struct gfar_private *priv = netdev_priv(dev);
2676 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2677 unsigned long flags;
2678 struct phy_device *phydev = priv->phydev;
2679 int new_state = 0;
2680
2681 local_irq_save(flags);
2682 lock_tx_qs(priv);
2683
2684 if (phydev->link) {
2685 u32 tempval = gfar_read(&regs->maccfg2);
2686 u32 ecntrl = gfar_read(&regs->ecntrl);
2687
2688 /* Now we make sure that we can be in full duplex mode.
2689 * If not, we operate in half-duplex mode. */
2690 if (phydev->duplex != priv->oldduplex) {
2691 new_state = 1;
2692 if (!(phydev->duplex))
2693 tempval &= ~(MACCFG2_FULL_DUPLEX);
2694 else
2695 tempval |= MACCFG2_FULL_DUPLEX;
2696
2697 priv->oldduplex = phydev->duplex;
2698 }
2699
2700 if (phydev->speed != priv->oldspeed) {
2701 new_state = 1;
2702 switch (phydev->speed) {
2703 case 1000:
2704 tempval =
2705 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2706
2707 ecntrl &= ~(ECNTRL_R100);
2708 break;
2709 case 100:
2710 case 10:
2711 tempval =
2712 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2713
2714 /* Reduced mode distinguishes
2715 * between 10 and 100 */
2716 if (phydev->speed == SPEED_100)
2717 ecntrl |= ECNTRL_R100;
2718 else
2719 ecntrl &= ~(ECNTRL_R100);
2720 break;
2721 default:
2722 if (netif_msg_link(priv))
2723 printk(KERN_WARNING
2724 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2725 dev->name, phydev->speed);
2726 break;
2727 }
2728
2729 priv->oldspeed = phydev->speed;
2730 }
2731
2732 gfar_write(&regs->maccfg2, tempval);
2733 gfar_write(&regs->ecntrl, ecntrl);
2734
2735 if (!priv->oldlink) {
2736 new_state = 1;
2737 priv->oldlink = 1;
2738 }
2739 } else if (priv->oldlink) {
2740 new_state = 1;
2741 priv->oldlink = 0;
2742 priv->oldspeed = 0;
2743 priv->oldduplex = -1;
2744 }
2745
2746 if (new_state && netif_msg_link(priv))
2747 phy_print_status(phydev);
2748 unlock_tx_qs(priv);
2749 local_irq_restore(flags);
2750 }
2751
2752 /* Update the hash table based on the current list of multicast
2753 * addresses we subscribe to. Also, change the promiscuity of
2754 * the device based on the flags (this function is called
2755 * whenever dev->flags is changed */
2756 static void gfar_set_multi(struct net_device *dev)
2757 {
2758 struct dev_mc_list *mc_ptr;
2759 struct gfar_private *priv = netdev_priv(dev);
2760 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2761 u32 tempval;
2762
2763 if (dev->flags & IFF_PROMISC) {
2764 /* Set RCTRL to PROM */
2765 tempval = gfar_read(&regs->rctrl);
2766 tempval |= RCTRL_PROM;
2767 gfar_write(&regs->rctrl, tempval);
2768 } else {
2769 /* Set RCTRL to not PROM */
2770 tempval = gfar_read(&regs->rctrl);
2771 tempval &= ~(RCTRL_PROM);
2772 gfar_write(&regs->rctrl, tempval);
2773 }
2774
2775 if (dev->flags & IFF_ALLMULTI) {
2776 /* Set the hash to rx all multicast frames */
2777 gfar_write(&regs->igaddr0, 0xffffffff);
2778 gfar_write(&regs->igaddr1, 0xffffffff);
2779 gfar_write(&regs->igaddr2, 0xffffffff);
2780 gfar_write(&regs->igaddr3, 0xffffffff);
2781 gfar_write(&regs->igaddr4, 0xffffffff);
2782 gfar_write(&regs->igaddr5, 0xffffffff);
2783 gfar_write(&regs->igaddr6, 0xffffffff);
2784 gfar_write(&regs->igaddr7, 0xffffffff);
2785 gfar_write(&regs->gaddr0, 0xffffffff);
2786 gfar_write(&regs->gaddr1, 0xffffffff);
2787 gfar_write(&regs->gaddr2, 0xffffffff);
2788 gfar_write(&regs->gaddr3, 0xffffffff);
2789 gfar_write(&regs->gaddr4, 0xffffffff);
2790 gfar_write(&regs->gaddr5, 0xffffffff);
2791 gfar_write(&regs->gaddr6, 0xffffffff);
2792 gfar_write(&regs->gaddr7, 0xffffffff);
2793 } else {
2794 int em_num;
2795 int idx;
2796
2797 /* zero out the hash */
2798 gfar_write(&regs->igaddr0, 0x0);
2799 gfar_write(&regs->igaddr1, 0x0);
2800 gfar_write(&regs->igaddr2, 0x0);
2801 gfar_write(&regs->igaddr3, 0x0);
2802 gfar_write(&regs->igaddr4, 0x0);
2803 gfar_write(&regs->igaddr5, 0x0);
2804 gfar_write(&regs->igaddr6, 0x0);
2805 gfar_write(&regs->igaddr7, 0x0);
2806 gfar_write(&regs->gaddr0, 0x0);
2807 gfar_write(&regs->gaddr1, 0x0);
2808 gfar_write(&regs->gaddr2, 0x0);
2809 gfar_write(&regs->gaddr3, 0x0);
2810 gfar_write(&regs->gaddr4, 0x0);
2811 gfar_write(&regs->gaddr5, 0x0);
2812 gfar_write(&regs->gaddr6, 0x0);
2813 gfar_write(&regs->gaddr7, 0x0);
2814
2815 /* If we have extended hash tables, we need to
2816 * clear the exact match registers to prepare for
2817 * setting them */
2818 if (priv->extended_hash) {
2819 em_num = GFAR_EM_NUM + 1;
2820 gfar_clear_exact_match(dev);
2821 idx = 1;
2822 } else {
2823 idx = 0;
2824 em_num = 0;
2825 }
2826
2827 if (dev->mc_count == 0)
2828 return;
2829
2830 /* Parse the list, and set the appropriate bits */
2831 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2832 if (idx < em_num) {
2833 gfar_set_mac_for_addr(dev, idx,
2834 mc_ptr->dmi_addr);
2835 idx++;
2836 } else
2837 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2838 }
2839 }
2840
2841 return;
2842 }
2843
2844
2845 /* Clears each of the exact match registers to zero, so they
2846 * don't interfere with normal reception */
2847 static void gfar_clear_exact_match(struct net_device *dev)
2848 {
2849 int idx;
2850 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2851
2852 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2853 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2854 }
2855
2856 /* Set the appropriate hash bit for the given addr */
2857 /* The algorithm works like so:
2858 * 1) Take the Destination Address (ie the multicast address), and
2859 * do a CRC on it (little endian), and reverse the bits of the
2860 * result.
2861 * 2) Use the 8 most significant bits as a hash into a 256-entry
2862 * table. The table is controlled through 8 32-bit registers:
2863 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2864 * gaddr7. This means that the 3 most significant bits in the
2865 * hash index which gaddr register to use, and the 5 other bits
2866 * indicate which bit (assuming an IBM numbering scheme, which
2867 * for PowerPC (tm) is usually the case) in the register holds
2868 * the entry. */
2869 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2870 {
2871 u32 tempval;
2872 struct gfar_private *priv = netdev_priv(dev);
2873 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2874 int width = priv->hash_width;
2875 u8 whichbit = (result >> (32 - width)) & 0x1f;
2876 u8 whichreg = result >> (32 - width + 5);
2877 u32 value = (1 << (31-whichbit));
2878
2879 tempval = gfar_read(priv->hash_regs[whichreg]);
2880 tempval |= value;
2881 gfar_write(priv->hash_regs[whichreg], tempval);
2882
2883 return;
2884 }
2885
2886
2887 /* There are multiple MAC Address register pairs on some controllers
2888 * This function sets the numth pair to a given address
2889 */
2890 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2891 {
2892 struct gfar_private *priv = netdev_priv(dev);
2893 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2894 int idx;
2895 char tmpbuf[MAC_ADDR_LEN];
2896 u32 tempval;
2897 u32 __iomem *macptr = &regs->macstnaddr1;
2898
2899 macptr += num*2;
2900
2901 /* Now copy it into the mac registers backwards, cuz */
2902 /* little endian is silly */
2903 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2904 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2905
2906 gfar_write(macptr, *((u32 *) (tmpbuf)));
2907
2908 tempval = *((u32 *) (tmpbuf + 4));
2909
2910 gfar_write(macptr+1, tempval);
2911 }
2912
2913 /* GFAR error interrupt handler */
2914 static irqreturn_t gfar_error(int irq, void *grp_id)
2915 {
2916 struct gfar_priv_grp *gfargrp = grp_id;
2917 struct gfar __iomem *regs = gfargrp->regs;
2918 struct gfar_private *priv= gfargrp->priv;
2919 struct net_device *dev = priv->ndev;
2920
2921 /* Save ievent for future reference */
2922 u32 events = gfar_read(&regs->ievent);
2923
2924 /* Clear IEVENT */
2925 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2926
2927 /* Magic Packet is not an error. */
2928 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2929 (events & IEVENT_MAG))
2930 events &= ~IEVENT_MAG;
2931
2932 /* Hmm... */
2933 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2934 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2935 dev->name, events, gfar_read(&regs->imask));
2936
2937 /* Update the error counters */
2938 if (events & IEVENT_TXE) {
2939 dev->stats.tx_errors++;
2940
2941 if (events & IEVENT_LC)
2942 dev->stats.tx_window_errors++;
2943 if (events & IEVENT_CRL)
2944 dev->stats.tx_aborted_errors++;
2945 if (events & IEVENT_XFUN) {
2946 if (netif_msg_tx_err(priv))
2947 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2948 "packet dropped.\n", dev->name);
2949 dev->stats.tx_dropped++;
2950 priv->extra_stats.tx_underrun++;
2951
2952 /* Reactivate the Tx Queues */
2953 gfar_write(&regs->tstat, gfargrp->tstat);
2954 }
2955 if (netif_msg_tx_err(priv))
2956 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2957 }
2958 if (events & IEVENT_BSY) {
2959 dev->stats.rx_errors++;
2960 priv->extra_stats.rx_bsy++;
2961
2962 gfar_receive(irq, grp_id);
2963
2964 if (netif_msg_rx_err(priv))
2965 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2966 dev->name, gfar_read(&regs->rstat));
2967 }
2968 if (events & IEVENT_BABR) {
2969 dev->stats.rx_errors++;
2970 priv->extra_stats.rx_babr++;
2971
2972 if (netif_msg_rx_err(priv))
2973 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2974 }
2975 if (events & IEVENT_EBERR) {
2976 priv->extra_stats.eberr++;
2977 if (netif_msg_rx_err(priv))
2978 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2979 }
2980 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2981 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2982
2983 if (events & IEVENT_BABT) {
2984 priv->extra_stats.tx_babt++;
2985 if (netif_msg_tx_err(priv))
2986 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2987 }
2988 return IRQ_HANDLED;
2989 }
2990
2991 static struct of_device_id gfar_match[] =
2992 {
2993 {
2994 .type = "network",
2995 .compatible = "gianfar",
2996 },
2997 {
2998 .compatible = "fsl,etsec2",
2999 },
3000 {},
3001 };
3002 MODULE_DEVICE_TABLE(of, gfar_match);
3003
3004 /* Structure for a device driver */
3005 static struct of_platform_driver gfar_driver = {
3006 .name = "fsl-gianfar",
3007 .match_table = gfar_match,
3008
3009 .probe = gfar_probe,
3010 .remove = gfar_remove,
3011 .suspend = gfar_legacy_suspend,
3012 .resume = gfar_legacy_resume,
3013 .driver.pm = GFAR_PM_OPS,
3014 };
3015
3016 static int __init gfar_init(void)
3017 {
3018 return of_register_platform_driver(&gfar_driver);
3019 }
3020
3021 static void __exit gfar_exit(void)
3022 {
3023 of_unregister_platform_driver(&gfar_driver);
3024 }
3025
3026 module_init(gfar_init);
3027 module_exit(gfar_exit);
3028
This page took 0.13591 seconds and 5 git commands to generate.