[BNX2]: Fix default WoL setting.
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 *
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
32 * day be supported.
33 *
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
39 *
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
56 * skb.
57 *
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
66 */
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
110
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static void init_registers(struct net_device *dev);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *pdev);
128 static int gfar_remove(struct platform_device *pdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 extern int gfar_local_mdio_write(struct gfar_mii *regs, int mii_id, int regnum, u16 value);
134 extern int gfar_local_mdio_read(struct gfar_mii *regs, int mii_id, int regnum);
135 #ifdef CONFIG_GFAR_NAPI
136 static int gfar_poll(struct napi_struct *napi, int budget);
137 #endif
138 #ifdef CONFIG_NET_POLL_CONTROLLER
139 static void gfar_netpoll(struct net_device *dev);
140 #endif
141 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
142 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
143 static void gfar_vlan_rx_register(struct net_device *netdev,
144 struct vlan_group *grp);
145 void gfar_halt(struct net_device *dev);
146 void gfar_start(struct net_device *dev);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
149
150 extern const struct ethtool_ops gfar_ethtool_ops;
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 /* Returns 1 if incoming frames use an FCB */
157 static inline int gfar_uses_fcb(struct gfar_private *priv)
158 {
159 return (priv->vlan_enable || priv->rx_csum_enable);
160 }
161
162 /* Set up the ethernet device structure, private data,
163 * and anything else we need before we start */
164 static int gfar_probe(struct platform_device *pdev)
165 {
166 u32 tempval;
167 struct net_device *dev = NULL;
168 struct gfar_private *priv = NULL;
169 struct gianfar_platform_data *einfo;
170 struct resource *r;
171 int idx;
172 int err = 0;
173 DECLARE_MAC_BUF(mac);
174
175 einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
176
177 if (NULL == einfo) {
178 printk(KERN_ERR "gfar %d: Missing additional data!\n",
179 pdev->id);
180
181 return -ENODEV;
182 }
183
184 /* Create an ethernet device instance */
185 dev = alloc_etherdev(sizeof (*priv));
186
187 if (NULL == dev)
188 return -ENOMEM;
189
190 priv = netdev_priv(dev);
191 priv->dev = dev;
192
193 /* Set the info in the priv to the current info */
194 priv->einfo = einfo;
195
196 /* fill out IRQ fields */
197 if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
198 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
199 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
200 priv->interruptError = platform_get_irq_byname(pdev, "error");
201 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
202 goto regs_fail;
203 } else {
204 priv->interruptTransmit = platform_get_irq(pdev, 0);
205 if (priv->interruptTransmit < 0)
206 goto regs_fail;
207 }
208
209 /* get a pointer to the register memory */
210 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
211 priv->regs = ioremap(r->start, sizeof (struct gfar));
212
213 if (NULL == priv->regs) {
214 err = -ENOMEM;
215 goto regs_fail;
216 }
217
218 spin_lock_init(&priv->txlock);
219 spin_lock_init(&priv->rxlock);
220
221 platform_set_drvdata(pdev, dev);
222
223 /* Stop the DMA engine now, in case it was running before */
224 /* (The firmware could have used it, and left it running). */
225 /* To do this, we write Graceful Receive Stop and Graceful */
226 /* Transmit Stop, and then wait until the corresponding bits */
227 /* in IEVENT indicate the stops have completed. */
228 tempval = gfar_read(&priv->regs->dmactrl);
229 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
230 gfar_write(&priv->regs->dmactrl, tempval);
231
232 tempval = gfar_read(&priv->regs->dmactrl);
233 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
234 gfar_write(&priv->regs->dmactrl, tempval);
235
236 while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
237 cpu_relax();
238
239 /* Reset MAC layer */
240 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
241
242 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
243 gfar_write(&priv->regs->maccfg1, tempval);
244
245 /* Initialize MACCFG2. */
246 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
247
248 /* Initialize ECNTRL */
249 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
250
251 /* Copy the station address into the dev structure, */
252 memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
253
254 /* Set the dev->base_addr to the gfar reg region */
255 dev->base_addr = (unsigned long) (priv->regs);
256
257 SET_NETDEV_DEV(dev, &pdev->dev);
258
259 /* Fill in the dev structure */
260 dev->open = gfar_enet_open;
261 dev->hard_start_xmit = gfar_start_xmit;
262 dev->tx_timeout = gfar_timeout;
263 dev->watchdog_timeo = TX_TIMEOUT;
264 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
265 #ifdef CONFIG_NET_POLL_CONTROLLER
266 dev->poll_controller = gfar_netpoll;
267 #endif
268 dev->stop = gfar_close;
269 dev->change_mtu = gfar_change_mtu;
270 dev->mtu = 1500;
271 dev->set_multicast_list = gfar_set_multi;
272
273 dev->ethtool_ops = &gfar_ethtool_ops;
274
275 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
276 priv->rx_csum_enable = 1;
277 dev->features |= NETIF_F_IP_CSUM;
278 } else
279 priv->rx_csum_enable = 0;
280
281 priv->vlgrp = NULL;
282
283 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
284 dev->vlan_rx_register = gfar_vlan_rx_register;
285
286 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
287
288 priv->vlan_enable = 1;
289 }
290
291 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
292 priv->extended_hash = 1;
293 priv->hash_width = 9;
294
295 priv->hash_regs[0] = &priv->regs->igaddr0;
296 priv->hash_regs[1] = &priv->regs->igaddr1;
297 priv->hash_regs[2] = &priv->regs->igaddr2;
298 priv->hash_regs[3] = &priv->regs->igaddr3;
299 priv->hash_regs[4] = &priv->regs->igaddr4;
300 priv->hash_regs[5] = &priv->regs->igaddr5;
301 priv->hash_regs[6] = &priv->regs->igaddr6;
302 priv->hash_regs[7] = &priv->regs->igaddr7;
303 priv->hash_regs[8] = &priv->regs->gaddr0;
304 priv->hash_regs[9] = &priv->regs->gaddr1;
305 priv->hash_regs[10] = &priv->regs->gaddr2;
306 priv->hash_regs[11] = &priv->regs->gaddr3;
307 priv->hash_regs[12] = &priv->regs->gaddr4;
308 priv->hash_regs[13] = &priv->regs->gaddr5;
309 priv->hash_regs[14] = &priv->regs->gaddr6;
310 priv->hash_regs[15] = &priv->regs->gaddr7;
311
312 } else {
313 priv->extended_hash = 0;
314 priv->hash_width = 8;
315
316 priv->hash_regs[0] = &priv->regs->gaddr0;
317 priv->hash_regs[1] = &priv->regs->gaddr1;
318 priv->hash_regs[2] = &priv->regs->gaddr2;
319 priv->hash_regs[3] = &priv->regs->gaddr3;
320 priv->hash_regs[4] = &priv->regs->gaddr4;
321 priv->hash_regs[5] = &priv->regs->gaddr5;
322 priv->hash_regs[6] = &priv->regs->gaddr6;
323 priv->hash_regs[7] = &priv->regs->gaddr7;
324 }
325
326 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
327 priv->padding = DEFAULT_PADDING;
328 else
329 priv->padding = 0;
330
331 if (dev->features & NETIF_F_IP_CSUM)
332 dev->hard_header_len += GMAC_FCB_LEN;
333
334 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
335 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
336 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
337
338 priv->txcoalescing = DEFAULT_TX_COALESCE;
339 priv->txcount = DEFAULT_TXCOUNT;
340 priv->txtime = DEFAULT_TXTIME;
341 priv->rxcoalescing = DEFAULT_RX_COALESCE;
342 priv->rxcount = DEFAULT_RXCOUNT;
343 priv->rxtime = DEFAULT_RXTIME;
344
345 /* Enable most messages by default */
346 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
347
348 err = register_netdev(dev);
349
350 if (err) {
351 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
352 dev->name);
353 goto register_fail;
354 }
355
356 /* Create all the sysfs files */
357 gfar_init_sysfs(dev);
358
359 /* Print out the device info */
360 printk(KERN_INFO DEVICE_NAME "%s\n",
361 dev->name, print_mac(mac, dev->dev_addr));
362
363 /* Even more device info helps when determining which kernel */
364 /* provided which set of benchmarks. */
365 #ifdef CONFIG_GFAR_NAPI
366 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
367 #else
368 printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
369 #endif
370 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
371 dev->name, priv->rx_ring_size, priv->tx_ring_size);
372
373 return 0;
374
375 register_fail:
376 iounmap(priv->regs);
377 regs_fail:
378 free_netdev(dev);
379 return err;
380 }
381
382 static int gfar_remove(struct platform_device *pdev)
383 {
384 struct net_device *dev = platform_get_drvdata(pdev);
385 struct gfar_private *priv = netdev_priv(dev);
386
387 platform_set_drvdata(pdev, NULL);
388
389 iounmap(priv->regs);
390 free_netdev(dev);
391
392 return 0;
393 }
394
395
396 /* Reads the controller's registers to determine what interface
397 * connects it to the PHY.
398 */
399 static phy_interface_t gfar_get_interface(struct net_device *dev)
400 {
401 struct gfar_private *priv = netdev_priv(dev);
402 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
403
404 if (ecntrl & ECNTRL_SGMII_MODE)
405 return PHY_INTERFACE_MODE_SGMII;
406
407 if (ecntrl & ECNTRL_TBI_MODE) {
408 if (ecntrl & ECNTRL_REDUCED_MODE)
409 return PHY_INTERFACE_MODE_RTBI;
410 else
411 return PHY_INTERFACE_MODE_TBI;
412 }
413
414 if (ecntrl & ECNTRL_REDUCED_MODE) {
415 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
416 return PHY_INTERFACE_MODE_RMII;
417 else {
418 phy_interface_t interface = priv->einfo->interface;
419
420 /*
421 * This isn't autodetected right now, so it must
422 * be set by the device tree or platform code.
423 */
424 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
425 return PHY_INTERFACE_MODE_RGMII_ID;
426
427 return PHY_INTERFACE_MODE_RGMII;
428 }
429 }
430
431 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
432 return PHY_INTERFACE_MODE_GMII;
433
434 return PHY_INTERFACE_MODE_MII;
435 }
436
437
438 /* Initializes driver's PHY state, and attaches to the PHY.
439 * Returns 0 on success.
440 */
441 static int init_phy(struct net_device *dev)
442 {
443 struct gfar_private *priv = netdev_priv(dev);
444 uint gigabit_support =
445 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
446 SUPPORTED_1000baseT_Full : 0;
447 struct phy_device *phydev;
448 char phy_id[BUS_ID_SIZE];
449 phy_interface_t interface;
450
451 priv->oldlink = 0;
452 priv->oldspeed = 0;
453 priv->oldduplex = -1;
454
455 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
456
457 interface = gfar_get_interface(dev);
458
459 phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
460
461 if (interface == PHY_INTERFACE_MODE_SGMII)
462 gfar_configure_serdes(dev);
463
464 if (IS_ERR(phydev)) {
465 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
466 return PTR_ERR(phydev);
467 }
468
469 /* Remove any features not supported by the controller */
470 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
471 phydev->advertising = phydev->supported;
472
473 priv->phydev = phydev;
474
475 return 0;
476 }
477
478 static void gfar_configure_serdes(struct net_device *dev)
479 {
480 struct gfar_private *priv = netdev_priv(dev);
481 struct gfar_mii __iomem *regs =
482 (void __iomem *)&priv->regs->gfar_mii_regs;
483
484 /* Initialise TBI i/f to communicate with serdes (lynx phy) */
485
486 /* Single clk mode, mii mode off(for aerdes communication) */
487 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT);
488
489 /* Supported pause and full-duplex, no half-duplex */
490 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE,
491 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
492 ADVERTISE_1000XPSE_ASYM);
493
494 /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */
495 gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE |
496 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
497 }
498
499 static void init_registers(struct net_device *dev)
500 {
501 struct gfar_private *priv = netdev_priv(dev);
502
503 /* Clear IEVENT */
504 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
505
506 /* Initialize IMASK */
507 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
508
509 /* Init hash registers to zero */
510 gfar_write(&priv->regs->igaddr0, 0);
511 gfar_write(&priv->regs->igaddr1, 0);
512 gfar_write(&priv->regs->igaddr2, 0);
513 gfar_write(&priv->regs->igaddr3, 0);
514 gfar_write(&priv->regs->igaddr4, 0);
515 gfar_write(&priv->regs->igaddr5, 0);
516 gfar_write(&priv->regs->igaddr6, 0);
517 gfar_write(&priv->regs->igaddr7, 0);
518
519 gfar_write(&priv->regs->gaddr0, 0);
520 gfar_write(&priv->regs->gaddr1, 0);
521 gfar_write(&priv->regs->gaddr2, 0);
522 gfar_write(&priv->regs->gaddr3, 0);
523 gfar_write(&priv->regs->gaddr4, 0);
524 gfar_write(&priv->regs->gaddr5, 0);
525 gfar_write(&priv->regs->gaddr6, 0);
526 gfar_write(&priv->regs->gaddr7, 0);
527
528 /* Zero out the rmon mib registers if it has them */
529 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
530 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
531
532 /* Mask off the CAM interrupts */
533 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
534 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
535 }
536
537 /* Initialize the max receive buffer length */
538 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
539
540 /* Initialize the Minimum Frame Length Register */
541 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
542
543 /* Assign the TBI an address which won't conflict with the PHYs */
544 gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
545 }
546
547
548 /* Halt the receive and transmit queues */
549 void gfar_halt(struct net_device *dev)
550 {
551 struct gfar_private *priv = netdev_priv(dev);
552 struct gfar __iomem *regs = priv->regs;
553 u32 tempval;
554
555 /* Mask all interrupts */
556 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
557
558 /* Clear all interrupts */
559 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
560
561 /* Stop the DMA, and wait for it to stop */
562 tempval = gfar_read(&priv->regs->dmactrl);
563 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
564 != (DMACTRL_GRS | DMACTRL_GTS)) {
565 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
566 gfar_write(&priv->regs->dmactrl, tempval);
567
568 while (!(gfar_read(&priv->regs->ievent) &
569 (IEVENT_GRSC | IEVENT_GTSC)))
570 cpu_relax();
571 }
572
573 /* Disable Rx and Tx */
574 tempval = gfar_read(&regs->maccfg1);
575 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
576 gfar_write(&regs->maccfg1, tempval);
577 }
578
579 void stop_gfar(struct net_device *dev)
580 {
581 struct gfar_private *priv = netdev_priv(dev);
582 struct gfar __iomem *regs = priv->regs;
583 unsigned long flags;
584
585 phy_stop(priv->phydev);
586
587 /* Lock it down */
588 spin_lock_irqsave(&priv->txlock, flags);
589 spin_lock(&priv->rxlock);
590
591 gfar_halt(dev);
592
593 spin_unlock(&priv->rxlock);
594 spin_unlock_irqrestore(&priv->txlock, flags);
595
596 /* Free the IRQs */
597 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
598 free_irq(priv->interruptError, dev);
599 free_irq(priv->interruptTransmit, dev);
600 free_irq(priv->interruptReceive, dev);
601 } else {
602 free_irq(priv->interruptTransmit, dev);
603 }
604
605 free_skb_resources(priv);
606
607 dma_free_coherent(NULL,
608 sizeof(struct txbd8)*priv->tx_ring_size
609 + sizeof(struct rxbd8)*priv->rx_ring_size,
610 priv->tx_bd_base,
611 gfar_read(&regs->tbase0));
612 }
613
614 /* If there are any tx skbs or rx skbs still around, free them.
615 * Then free tx_skbuff and rx_skbuff */
616 static void free_skb_resources(struct gfar_private *priv)
617 {
618 struct rxbd8 *rxbdp;
619 struct txbd8 *txbdp;
620 int i;
621
622 /* Go through all the buffer descriptors and free their data buffers */
623 txbdp = priv->tx_bd_base;
624
625 for (i = 0; i < priv->tx_ring_size; i++) {
626
627 if (priv->tx_skbuff[i]) {
628 dma_unmap_single(NULL, txbdp->bufPtr,
629 txbdp->length,
630 DMA_TO_DEVICE);
631 dev_kfree_skb_any(priv->tx_skbuff[i]);
632 priv->tx_skbuff[i] = NULL;
633 }
634 }
635
636 kfree(priv->tx_skbuff);
637
638 rxbdp = priv->rx_bd_base;
639
640 /* rx_skbuff is not guaranteed to be allocated, so only
641 * free it and its contents if it is allocated */
642 if(priv->rx_skbuff != NULL) {
643 for (i = 0; i < priv->rx_ring_size; i++) {
644 if (priv->rx_skbuff[i]) {
645 dma_unmap_single(NULL, rxbdp->bufPtr,
646 priv->rx_buffer_size,
647 DMA_FROM_DEVICE);
648
649 dev_kfree_skb_any(priv->rx_skbuff[i]);
650 priv->rx_skbuff[i] = NULL;
651 }
652
653 rxbdp->status = 0;
654 rxbdp->length = 0;
655 rxbdp->bufPtr = 0;
656
657 rxbdp++;
658 }
659
660 kfree(priv->rx_skbuff);
661 }
662 }
663
664 void gfar_start(struct net_device *dev)
665 {
666 struct gfar_private *priv = netdev_priv(dev);
667 struct gfar __iomem *regs = priv->regs;
668 u32 tempval;
669
670 /* Enable Rx and Tx in MACCFG1 */
671 tempval = gfar_read(&regs->maccfg1);
672 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
673 gfar_write(&regs->maccfg1, tempval);
674
675 /* Initialize DMACTRL to have WWR and WOP */
676 tempval = gfar_read(&priv->regs->dmactrl);
677 tempval |= DMACTRL_INIT_SETTINGS;
678 gfar_write(&priv->regs->dmactrl, tempval);
679
680 /* Make sure we aren't stopped */
681 tempval = gfar_read(&priv->regs->dmactrl);
682 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
683 gfar_write(&priv->regs->dmactrl, tempval);
684
685 /* Clear THLT/RHLT, so that the DMA starts polling now */
686 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
687 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
688
689 /* Unmask the interrupts we look for */
690 gfar_write(&regs->imask, IMASK_DEFAULT);
691 }
692
693 /* Bring the controller up and running */
694 int startup_gfar(struct net_device *dev)
695 {
696 struct txbd8 *txbdp;
697 struct rxbd8 *rxbdp;
698 dma_addr_t addr;
699 unsigned long vaddr;
700 int i;
701 struct gfar_private *priv = netdev_priv(dev);
702 struct gfar __iomem *regs = priv->regs;
703 int err = 0;
704 u32 rctrl = 0;
705 u32 attrs = 0;
706
707 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
708
709 /* Allocate memory for the buffer descriptors */
710 vaddr = (unsigned long) dma_alloc_coherent(NULL,
711 sizeof (struct txbd8) * priv->tx_ring_size +
712 sizeof (struct rxbd8) * priv->rx_ring_size,
713 &addr, GFP_KERNEL);
714
715 if (vaddr == 0) {
716 if (netif_msg_ifup(priv))
717 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
718 dev->name);
719 return -ENOMEM;
720 }
721
722 priv->tx_bd_base = (struct txbd8 *) vaddr;
723
724 /* enet DMA only understands physical addresses */
725 gfar_write(&regs->tbase0, addr);
726
727 /* Start the rx descriptor ring where the tx ring leaves off */
728 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
729 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
730 priv->rx_bd_base = (struct rxbd8 *) vaddr;
731 gfar_write(&regs->rbase0, addr);
732
733 /* Setup the skbuff rings */
734 priv->tx_skbuff =
735 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
736 priv->tx_ring_size, GFP_KERNEL);
737
738 if (NULL == priv->tx_skbuff) {
739 if (netif_msg_ifup(priv))
740 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
741 dev->name);
742 err = -ENOMEM;
743 goto tx_skb_fail;
744 }
745
746 for (i = 0; i < priv->tx_ring_size; i++)
747 priv->tx_skbuff[i] = NULL;
748
749 priv->rx_skbuff =
750 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
751 priv->rx_ring_size, GFP_KERNEL);
752
753 if (NULL == priv->rx_skbuff) {
754 if (netif_msg_ifup(priv))
755 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
756 dev->name);
757 err = -ENOMEM;
758 goto rx_skb_fail;
759 }
760
761 for (i = 0; i < priv->rx_ring_size; i++)
762 priv->rx_skbuff[i] = NULL;
763
764 /* Initialize some variables in our dev structure */
765 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
766 priv->cur_rx = priv->rx_bd_base;
767 priv->skb_curtx = priv->skb_dirtytx = 0;
768 priv->skb_currx = 0;
769
770 /* Initialize Transmit Descriptor Ring */
771 txbdp = priv->tx_bd_base;
772 for (i = 0; i < priv->tx_ring_size; i++) {
773 txbdp->status = 0;
774 txbdp->length = 0;
775 txbdp->bufPtr = 0;
776 txbdp++;
777 }
778
779 /* Set the last descriptor in the ring to indicate wrap */
780 txbdp--;
781 txbdp->status |= TXBD_WRAP;
782
783 rxbdp = priv->rx_bd_base;
784 for (i = 0; i < priv->rx_ring_size; i++) {
785 struct sk_buff *skb = NULL;
786
787 rxbdp->status = 0;
788
789 skb = gfar_new_skb(dev, rxbdp);
790
791 priv->rx_skbuff[i] = skb;
792
793 rxbdp++;
794 }
795
796 /* Set the last descriptor in the ring to wrap */
797 rxbdp--;
798 rxbdp->status |= RXBD_WRAP;
799
800 /* If the device has multiple interrupts, register for
801 * them. Otherwise, only register for the one */
802 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
803 /* Install our interrupt handlers for Error,
804 * Transmit, and Receive */
805 if (request_irq(priv->interruptError, gfar_error,
806 0, "enet_error", dev) < 0) {
807 if (netif_msg_intr(priv))
808 printk(KERN_ERR "%s: Can't get IRQ %d\n",
809 dev->name, priv->interruptError);
810
811 err = -1;
812 goto err_irq_fail;
813 }
814
815 if (request_irq(priv->interruptTransmit, gfar_transmit,
816 0, "enet_tx", dev) < 0) {
817 if (netif_msg_intr(priv))
818 printk(KERN_ERR "%s: Can't get IRQ %d\n",
819 dev->name, priv->interruptTransmit);
820
821 err = -1;
822
823 goto tx_irq_fail;
824 }
825
826 if (request_irq(priv->interruptReceive, gfar_receive,
827 0, "enet_rx", dev) < 0) {
828 if (netif_msg_intr(priv))
829 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
830 dev->name, priv->interruptReceive);
831
832 err = -1;
833 goto rx_irq_fail;
834 }
835 } else {
836 if (request_irq(priv->interruptTransmit, gfar_interrupt,
837 0, "gfar_interrupt", dev) < 0) {
838 if (netif_msg_intr(priv))
839 printk(KERN_ERR "%s: Can't get IRQ %d\n",
840 dev->name, priv->interruptError);
841
842 err = -1;
843 goto err_irq_fail;
844 }
845 }
846
847 phy_start(priv->phydev);
848
849 /* Configure the coalescing support */
850 if (priv->txcoalescing)
851 gfar_write(&regs->txic,
852 mk_ic_value(priv->txcount, priv->txtime));
853 else
854 gfar_write(&regs->txic, 0);
855
856 if (priv->rxcoalescing)
857 gfar_write(&regs->rxic,
858 mk_ic_value(priv->rxcount, priv->rxtime));
859 else
860 gfar_write(&regs->rxic, 0);
861
862 if (priv->rx_csum_enable)
863 rctrl |= RCTRL_CHECKSUMMING;
864
865 if (priv->extended_hash) {
866 rctrl |= RCTRL_EXTHASH;
867
868 gfar_clear_exact_match(dev);
869 rctrl |= RCTRL_EMEN;
870 }
871
872 if (priv->vlan_enable)
873 rctrl |= RCTRL_VLAN;
874
875 if (priv->padding) {
876 rctrl &= ~RCTRL_PAL_MASK;
877 rctrl |= RCTRL_PADDING(priv->padding);
878 }
879
880 /* Init rctrl based on our settings */
881 gfar_write(&priv->regs->rctrl, rctrl);
882
883 if (dev->features & NETIF_F_IP_CSUM)
884 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
885
886 /* Set the extraction length and index */
887 attrs = ATTRELI_EL(priv->rx_stash_size) |
888 ATTRELI_EI(priv->rx_stash_index);
889
890 gfar_write(&priv->regs->attreli, attrs);
891
892 /* Start with defaults, and add stashing or locking
893 * depending on the approprate variables */
894 attrs = ATTR_INIT_SETTINGS;
895
896 if (priv->bd_stash_en)
897 attrs |= ATTR_BDSTASH;
898
899 if (priv->rx_stash_size != 0)
900 attrs |= ATTR_BUFSTASH;
901
902 gfar_write(&priv->regs->attr, attrs);
903
904 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
905 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
906 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
907
908 /* Start the controller */
909 gfar_start(dev);
910
911 return 0;
912
913 rx_irq_fail:
914 free_irq(priv->interruptTransmit, dev);
915 tx_irq_fail:
916 free_irq(priv->interruptError, dev);
917 err_irq_fail:
918 rx_skb_fail:
919 free_skb_resources(priv);
920 tx_skb_fail:
921 dma_free_coherent(NULL,
922 sizeof(struct txbd8)*priv->tx_ring_size
923 + sizeof(struct rxbd8)*priv->rx_ring_size,
924 priv->tx_bd_base,
925 gfar_read(&regs->tbase0));
926
927 return err;
928 }
929
930 /* Called when something needs to use the ethernet device */
931 /* Returns 0 for success. */
932 static int gfar_enet_open(struct net_device *dev)
933 {
934 int err;
935
936 napi_enable(&priv->napi);
937
938 /* Initialize a bunch of registers */
939 init_registers(dev);
940
941 gfar_set_mac_address(dev);
942
943 err = init_phy(dev);
944
945 if(err) {
946 napi_disable(&priv->napi);
947 return err;
948 }
949
950 err = startup_gfar(dev);
951 if (err)
952 napi_disable(&priv->napi);
953
954 netif_start_queue(dev);
955
956 return err;
957 }
958
959 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
960 {
961 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
962
963 memset(fcb, 0, GMAC_FCB_LEN);
964
965 return fcb;
966 }
967
968 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
969 {
970 u8 flags = 0;
971
972 /* If we're here, it's a IP packet with a TCP or UDP
973 * payload. We set it to checksum, using a pseudo-header
974 * we provide
975 */
976 flags = TXFCB_DEFAULT;
977
978 /* Tell the controller what the protocol is */
979 /* And provide the already calculated phcs */
980 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
981 flags |= TXFCB_UDP;
982 fcb->phcs = udp_hdr(skb)->check;
983 } else
984 fcb->phcs = tcp_hdr(skb)->check;
985
986 /* l3os is the distance between the start of the
987 * frame (skb->data) and the start of the IP hdr.
988 * l4os is the distance between the start of the
989 * l3 hdr and the l4 hdr */
990 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
991 fcb->l4os = skb_network_header_len(skb);
992
993 fcb->flags = flags;
994 }
995
996 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
997 {
998 fcb->flags |= TXFCB_VLN;
999 fcb->vlctl = vlan_tx_tag_get(skb);
1000 }
1001
1002 /* This is called by the kernel when a frame is ready for transmission. */
1003 /* It is pointed to by the dev->hard_start_xmit function pointer */
1004 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1005 {
1006 struct gfar_private *priv = netdev_priv(dev);
1007 struct txfcb *fcb = NULL;
1008 struct txbd8 *txbdp;
1009 u16 status;
1010 unsigned long flags;
1011
1012 /* Update transmit stats */
1013 dev->stats.tx_bytes += skb->len;
1014
1015 /* Lock priv now */
1016 spin_lock_irqsave(&priv->txlock, flags);
1017
1018 /* Point at the first free tx descriptor */
1019 txbdp = priv->cur_tx;
1020
1021 /* Clear all but the WRAP status flags */
1022 status = txbdp->status & TXBD_WRAP;
1023
1024 /* Set up checksumming */
1025 if (likely((dev->features & NETIF_F_IP_CSUM)
1026 && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1027 fcb = gfar_add_fcb(skb, txbdp);
1028 status |= TXBD_TOE;
1029 gfar_tx_checksum(skb, fcb);
1030 }
1031
1032 if (priv->vlan_enable &&
1033 unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1034 if (unlikely(NULL == fcb)) {
1035 fcb = gfar_add_fcb(skb, txbdp);
1036 status |= TXBD_TOE;
1037 }
1038
1039 gfar_tx_vlan(skb, fcb);
1040 }
1041
1042 /* Set buffer length and pointer */
1043 txbdp->length = skb->len;
1044 txbdp->bufPtr = dma_map_single(NULL, skb->data,
1045 skb->len, DMA_TO_DEVICE);
1046
1047 /* Save the skb pointer so we can free it later */
1048 priv->tx_skbuff[priv->skb_curtx] = skb;
1049
1050 /* Update the current skb pointer (wrapping if this was the last) */
1051 priv->skb_curtx =
1052 (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1053
1054 /* Flag the BD as interrupt-causing */
1055 status |= TXBD_INTERRUPT;
1056
1057 /* Flag the BD as ready to go, last in frame, and */
1058 /* in need of CRC */
1059 status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1060
1061 dev->trans_start = jiffies;
1062
1063 /* The powerpc-specific eieio() is used, as wmb() has too strong
1064 * semantics (it requires synchronization between cacheable and
1065 * uncacheable mappings, which eieio doesn't provide and which we
1066 * don't need), thus requiring a more expensive sync instruction. At
1067 * some point, the set of architecture-independent barrier functions
1068 * should be expanded to include weaker barriers.
1069 */
1070
1071 eieio();
1072 txbdp->status = status;
1073
1074 /* If this was the last BD in the ring, the next one */
1075 /* is at the beginning of the ring */
1076 if (txbdp->status & TXBD_WRAP)
1077 txbdp = priv->tx_bd_base;
1078 else
1079 txbdp++;
1080
1081 /* If the next BD still needs to be cleaned up, then the bds
1082 are full. We need to tell the kernel to stop sending us stuff. */
1083 if (txbdp == priv->dirty_tx) {
1084 netif_stop_queue(dev);
1085
1086 dev->stats.tx_fifo_errors++;
1087 }
1088
1089 /* Update the current txbd to the next one */
1090 priv->cur_tx = txbdp;
1091
1092 /* Tell the DMA to go go go */
1093 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1094
1095 /* Unlock priv */
1096 spin_unlock_irqrestore(&priv->txlock, flags);
1097
1098 return 0;
1099 }
1100
1101 /* Stops the kernel queue, and halts the controller */
1102 static int gfar_close(struct net_device *dev)
1103 {
1104 struct gfar_private *priv = netdev_priv(dev);
1105
1106 napi_disable(&priv->napi);
1107
1108 stop_gfar(dev);
1109
1110 /* Disconnect from the PHY */
1111 phy_disconnect(priv->phydev);
1112 priv->phydev = NULL;
1113
1114 netif_stop_queue(dev);
1115
1116 return 0;
1117 }
1118
1119 /* Changes the mac address if the controller is not running. */
1120 int gfar_set_mac_address(struct net_device *dev)
1121 {
1122 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1123
1124 return 0;
1125 }
1126
1127
1128 /* Enables and disables VLAN insertion/extraction */
1129 static void gfar_vlan_rx_register(struct net_device *dev,
1130 struct vlan_group *grp)
1131 {
1132 struct gfar_private *priv = netdev_priv(dev);
1133 unsigned long flags;
1134 u32 tempval;
1135
1136 spin_lock_irqsave(&priv->rxlock, flags);
1137
1138 priv->vlgrp = grp;
1139
1140 if (grp) {
1141 /* Enable VLAN tag insertion */
1142 tempval = gfar_read(&priv->regs->tctrl);
1143 tempval |= TCTRL_VLINS;
1144
1145 gfar_write(&priv->regs->tctrl, tempval);
1146
1147 /* Enable VLAN tag extraction */
1148 tempval = gfar_read(&priv->regs->rctrl);
1149 tempval |= RCTRL_VLEX;
1150 gfar_write(&priv->regs->rctrl, tempval);
1151 } else {
1152 /* Disable VLAN tag insertion */
1153 tempval = gfar_read(&priv->regs->tctrl);
1154 tempval &= ~TCTRL_VLINS;
1155 gfar_write(&priv->regs->tctrl, tempval);
1156
1157 /* Disable VLAN tag extraction */
1158 tempval = gfar_read(&priv->regs->rctrl);
1159 tempval &= ~RCTRL_VLEX;
1160 gfar_write(&priv->regs->rctrl, tempval);
1161 }
1162
1163 spin_unlock_irqrestore(&priv->rxlock, flags);
1164 }
1165
1166 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1167 {
1168 int tempsize, tempval;
1169 struct gfar_private *priv = netdev_priv(dev);
1170 int oldsize = priv->rx_buffer_size;
1171 int frame_size = new_mtu + ETH_HLEN;
1172
1173 if (priv->vlan_enable)
1174 frame_size += VLAN_ETH_HLEN;
1175
1176 if (gfar_uses_fcb(priv))
1177 frame_size += GMAC_FCB_LEN;
1178
1179 frame_size += priv->padding;
1180
1181 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1182 if (netif_msg_drv(priv))
1183 printk(KERN_ERR "%s: Invalid MTU setting\n",
1184 dev->name);
1185 return -EINVAL;
1186 }
1187
1188 tempsize =
1189 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1190 INCREMENTAL_BUFFER_SIZE;
1191
1192 /* Only stop and start the controller if it isn't already
1193 * stopped, and we changed something */
1194 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1195 stop_gfar(dev);
1196
1197 priv->rx_buffer_size = tempsize;
1198
1199 dev->mtu = new_mtu;
1200
1201 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1202 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1203
1204 /* If the mtu is larger than the max size for standard
1205 * ethernet frames (ie, a jumbo frame), then set maccfg2
1206 * to allow huge frames, and to check the length */
1207 tempval = gfar_read(&priv->regs->maccfg2);
1208
1209 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1210 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1211 else
1212 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1213
1214 gfar_write(&priv->regs->maccfg2, tempval);
1215
1216 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1217 startup_gfar(dev);
1218
1219 return 0;
1220 }
1221
1222 /* gfar_timeout gets called when a packet has not been
1223 * transmitted after a set amount of time.
1224 * For now, assume that clearing out all the structures, and
1225 * starting over will fix the problem. */
1226 static void gfar_timeout(struct net_device *dev)
1227 {
1228 struct gfar_private *priv = netdev_priv(dev);
1229
1230 dev->stats.tx_errors++;
1231
1232 if (dev->flags & IFF_UP) {
1233 stop_gfar(dev);
1234 startup_gfar(dev);
1235 }
1236
1237 netif_schedule(dev);
1238 }
1239
1240 /* Interrupt Handler for Transmit complete */
1241 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1242 {
1243 struct net_device *dev = (struct net_device *) dev_id;
1244 struct gfar_private *priv = netdev_priv(dev);
1245 struct txbd8 *bdp;
1246
1247 /* Clear IEVENT */
1248 gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1249
1250 /* Lock priv */
1251 spin_lock(&priv->txlock);
1252 bdp = priv->dirty_tx;
1253 while ((bdp->status & TXBD_READY) == 0) {
1254 /* If dirty_tx and cur_tx are the same, then either the */
1255 /* ring is empty or full now (it could only be full in the beginning, */
1256 /* obviously). If it is empty, we are done. */
1257 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1258 break;
1259
1260 dev->stats.tx_packets++;
1261
1262 /* Deferred means some collisions occurred during transmit, */
1263 /* but we eventually sent the packet. */
1264 if (bdp->status & TXBD_DEF)
1265 dev->stats.collisions++;
1266
1267 /* Free the sk buffer associated with this TxBD */
1268 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1269 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1270 priv->skb_dirtytx =
1271 (priv->skb_dirtytx +
1272 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1273
1274 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1275 if (bdp->status & TXBD_WRAP)
1276 bdp = priv->tx_bd_base;
1277 else
1278 bdp++;
1279
1280 /* Move dirty_tx to be the next bd */
1281 priv->dirty_tx = bdp;
1282
1283 /* We freed a buffer, so now we can restart transmission */
1284 if (netif_queue_stopped(dev))
1285 netif_wake_queue(dev);
1286 } /* while ((bdp->status & TXBD_READY) == 0) */
1287
1288 /* If we are coalescing the interrupts, reset the timer */
1289 /* Otherwise, clear it */
1290 if (priv->txcoalescing)
1291 gfar_write(&priv->regs->txic,
1292 mk_ic_value(priv->txcount, priv->txtime));
1293 else
1294 gfar_write(&priv->regs->txic, 0);
1295
1296 spin_unlock(&priv->txlock);
1297
1298 return IRQ_HANDLED;
1299 }
1300
1301 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1302 {
1303 unsigned int alignamount;
1304 struct gfar_private *priv = netdev_priv(dev);
1305 struct sk_buff *skb = NULL;
1306 unsigned int timeout = SKB_ALLOC_TIMEOUT;
1307
1308 /* We have to allocate the skb, so keep trying till we succeed */
1309 while ((!skb) && timeout--)
1310 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1311
1312 if (NULL == skb)
1313 return NULL;
1314
1315 alignamount = RXBUF_ALIGNMENT -
1316 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1317
1318 /* We need the data buffer to be aligned properly. We will reserve
1319 * as many bytes as needed to align the data properly
1320 */
1321 skb_reserve(skb, alignamount);
1322
1323 bdp->bufPtr = dma_map_single(NULL, skb->data,
1324 priv->rx_buffer_size, DMA_FROM_DEVICE);
1325
1326 bdp->length = 0;
1327
1328 /* Mark the buffer empty */
1329 eieio();
1330 bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1331
1332 return skb;
1333 }
1334
1335 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1336 {
1337 struct net_device_stats *stats = &dev->stats;
1338 struct gfar_extra_stats *estats = &priv->extra_stats;
1339
1340 /* If the packet was truncated, none of the other errors
1341 * matter */
1342 if (status & RXBD_TRUNCATED) {
1343 stats->rx_length_errors++;
1344
1345 estats->rx_trunc++;
1346
1347 return;
1348 }
1349 /* Count the errors, if there were any */
1350 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1351 stats->rx_length_errors++;
1352
1353 if (status & RXBD_LARGE)
1354 estats->rx_large++;
1355 else
1356 estats->rx_short++;
1357 }
1358 if (status & RXBD_NONOCTET) {
1359 stats->rx_frame_errors++;
1360 estats->rx_nonoctet++;
1361 }
1362 if (status & RXBD_CRCERR) {
1363 estats->rx_crcerr++;
1364 stats->rx_crc_errors++;
1365 }
1366 if (status & RXBD_OVERRUN) {
1367 estats->rx_overrun++;
1368 stats->rx_crc_errors++;
1369 }
1370 }
1371
1372 irqreturn_t gfar_receive(int irq, void *dev_id)
1373 {
1374 struct net_device *dev = (struct net_device *) dev_id;
1375 struct gfar_private *priv = netdev_priv(dev);
1376 #ifdef CONFIG_GFAR_NAPI
1377 u32 tempval;
1378 #else
1379 unsigned long flags;
1380 #endif
1381
1382 /* Clear IEVENT, so rx interrupt isn't called again
1383 * because of this interrupt */
1384 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1385
1386 /* support NAPI */
1387 #ifdef CONFIG_GFAR_NAPI
1388 if (netif_rx_schedule_prep(dev, &priv->napi)) {
1389 tempval = gfar_read(&priv->regs->imask);
1390 tempval &= IMASK_RX_DISABLED;
1391 gfar_write(&priv->regs->imask, tempval);
1392
1393 __netif_rx_schedule(dev, &priv->napi);
1394 } else {
1395 if (netif_msg_rx_err(priv))
1396 printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1397 dev->name, gfar_read(&priv->regs->ievent),
1398 gfar_read(&priv->regs->imask));
1399 }
1400 #else
1401
1402 spin_lock_irqsave(&priv->rxlock, flags);
1403 gfar_clean_rx_ring(dev, priv->rx_ring_size);
1404
1405 /* If we are coalescing interrupts, update the timer */
1406 /* Otherwise, clear it */
1407 if (priv->rxcoalescing)
1408 gfar_write(&priv->regs->rxic,
1409 mk_ic_value(priv->rxcount, priv->rxtime));
1410 else
1411 gfar_write(&priv->regs->rxic, 0);
1412
1413 spin_unlock_irqrestore(&priv->rxlock, flags);
1414 #endif
1415
1416 return IRQ_HANDLED;
1417 }
1418
1419 static inline int gfar_rx_vlan(struct sk_buff *skb,
1420 struct vlan_group *vlgrp, unsigned short vlctl)
1421 {
1422 #ifdef CONFIG_GFAR_NAPI
1423 return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1424 #else
1425 return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1426 #endif
1427 }
1428
1429 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1430 {
1431 /* If valid headers were found, and valid sums
1432 * were verified, then we tell the kernel that no
1433 * checksumming is necessary. Otherwise, it is */
1434 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1435 skb->ip_summed = CHECKSUM_UNNECESSARY;
1436 else
1437 skb->ip_summed = CHECKSUM_NONE;
1438 }
1439
1440
1441 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1442 {
1443 struct rxfcb *fcb = (struct rxfcb *)skb->data;
1444
1445 /* Remove the FCB from the skb */
1446 skb_pull(skb, GMAC_FCB_LEN);
1447
1448 return fcb;
1449 }
1450
1451 /* gfar_process_frame() -- handle one incoming packet if skb
1452 * isn't NULL. */
1453 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1454 int length)
1455 {
1456 struct gfar_private *priv = netdev_priv(dev);
1457 struct rxfcb *fcb = NULL;
1458
1459 if (NULL == skb) {
1460 if (netif_msg_rx_err(priv))
1461 printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1462 dev->stats.rx_dropped++;
1463 priv->extra_stats.rx_skbmissing++;
1464 } else {
1465 int ret;
1466
1467 /* Prep the skb for the packet */
1468 skb_put(skb, length);
1469
1470 /* Grab the FCB if there is one */
1471 if (gfar_uses_fcb(priv))
1472 fcb = gfar_get_fcb(skb);
1473
1474 /* Remove the padded bytes, if there are any */
1475 if (priv->padding)
1476 skb_pull(skb, priv->padding);
1477
1478 if (priv->rx_csum_enable)
1479 gfar_rx_checksum(skb, fcb);
1480
1481 /* Tell the skb what kind of packet this is */
1482 skb->protocol = eth_type_trans(skb, dev);
1483
1484 /* Send the packet up the stack */
1485 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1486 ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1487 else
1488 ret = RECEIVE(skb);
1489
1490 if (NET_RX_DROP == ret)
1491 priv->extra_stats.kernel_dropped++;
1492 }
1493
1494 return 0;
1495 }
1496
1497 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1498 * until the budget/quota has been reached. Returns the number
1499 * of frames handled
1500 */
1501 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1502 {
1503 struct rxbd8 *bdp;
1504 struct sk_buff *skb;
1505 u16 pkt_len;
1506 int howmany = 0;
1507 struct gfar_private *priv = netdev_priv(dev);
1508
1509 /* Get the first full descriptor */
1510 bdp = priv->cur_rx;
1511
1512 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1513 rmb();
1514 skb = priv->rx_skbuff[priv->skb_currx];
1515
1516 if (!(bdp->status &
1517 (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1518 | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1519 /* Increment the number of packets */
1520 dev->stats.rx_packets++;
1521 howmany++;
1522
1523 /* Remove the FCS from the packet length */
1524 pkt_len = bdp->length - 4;
1525
1526 gfar_process_frame(dev, skb, pkt_len);
1527
1528 dev->stats.rx_bytes += pkt_len;
1529 } else {
1530 count_errors(bdp->status, priv);
1531
1532 if (skb)
1533 dev_kfree_skb_any(skb);
1534
1535 priv->rx_skbuff[priv->skb_currx] = NULL;
1536 }
1537
1538 dev->last_rx = jiffies;
1539
1540 /* Clear the status flags for this buffer */
1541 bdp->status &= ~RXBD_STATS;
1542
1543 /* Add another skb for the future */
1544 skb = gfar_new_skb(dev, bdp);
1545 priv->rx_skbuff[priv->skb_currx] = skb;
1546
1547 /* Update to the next pointer */
1548 if (bdp->status & RXBD_WRAP)
1549 bdp = priv->rx_bd_base;
1550 else
1551 bdp++;
1552
1553 /* update to point at the next skb */
1554 priv->skb_currx =
1555 (priv->skb_currx +
1556 1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1557
1558 }
1559
1560 /* Update the current rxbd pointer to be the next one */
1561 priv->cur_rx = bdp;
1562
1563 return howmany;
1564 }
1565
1566 #ifdef CONFIG_GFAR_NAPI
1567 static int gfar_poll(struct napi_struct *napi, int budget)
1568 {
1569 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1570 struct net_device *dev = priv->dev;
1571 int howmany;
1572
1573 howmany = gfar_clean_rx_ring(dev, budget);
1574
1575 if (howmany < budget) {
1576 netif_rx_complete(dev, napi);
1577
1578 /* Clear the halt bit in RSTAT */
1579 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1580
1581 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1582
1583 /* If we are coalescing interrupts, update the timer */
1584 /* Otherwise, clear it */
1585 if (priv->rxcoalescing)
1586 gfar_write(&priv->regs->rxic,
1587 mk_ic_value(priv->rxcount, priv->rxtime));
1588 else
1589 gfar_write(&priv->regs->rxic, 0);
1590 }
1591
1592 return howmany;
1593 }
1594 #endif
1595
1596 #ifdef CONFIG_NET_POLL_CONTROLLER
1597 /*
1598 * Polling 'interrupt' - used by things like netconsole to send skbs
1599 * without having to re-enable interrupts. It's not called while
1600 * the interrupt routine is executing.
1601 */
1602 static void gfar_netpoll(struct net_device *dev)
1603 {
1604 struct gfar_private *priv = netdev_priv(dev);
1605
1606 /* If the device has multiple interrupts, run tx/rx */
1607 if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1608 disable_irq(priv->interruptTransmit);
1609 disable_irq(priv->interruptReceive);
1610 disable_irq(priv->interruptError);
1611 gfar_interrupt(priv->interruptTransmit, dev);
1612 enable_irq(priv->interruptError);
1613 enable_irq(priv->interruptReceive);
1614 enable_irq(priv->interruptTransmit);
1615 } else {
1616 disable_irq(priv->interruptTransmit);
1617 gfar_interrupt(priv->interruptTransmit, dev);
1618 enable_irq(priv->interruptTransmit);
1619 }
1620 }
1621 #endif
1622
1623 /* The interrupt handler for devices with one interrupt */
1624 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1625 {
1626 struct net_device *dev = dev_id;
1627 struct gfar_private *priv = netdev_priv(dev);
1628
1629 /* Save ievent for future reference */
1630 u32 events = gfar_read(&priv->regs->ievent);
1631
1632 /* Check for reception */
1633 if (events & IEVENT_RX_MASK)
1634 gfar_receive(irq, dev_id);
1635
1636 /* Check for transmit completion */
1637 if (events & IEVENT_TX_MASK)
1638 gfar_transmit(irq, dev_id);
1639
1640 /* Check for errors */
1641 if (events & IEVENT_ERR_MASK)
1642 gfar_error(irq, dev_id);
1643
1644 return IRQ_HANDLED;
1645 }
1646
1647 /* Called every time the controller might need to be made
1648 * aware of new link state. The PHY code conveys this
1649 * information through variables in the phydev structure, and this
1650 * function converts those variables into the appropriate
1651 * register values, and can bring down the device if needed.
1652 */
1653 static void adjust_link(struct net_device *dev)
1654 {
1655 struct gfar_private *priv = netdev_priv(dev);
1656 struct gfar __iomem *regs = priv->regs;
1657 unsigned long flags;
1658 struct phy_device *phydev = priv->phydev;
1659 int new_state = 0;
1660
1661 spin_lock_irqsave(&priv->txlock, flags);
1662 if (phydev->link) {
1663 u32 tempval = gfar_read(&regs->maccfg2);
1664 u32 ecntrl = gfar_read(&regs->ecntrl);
1665
1666 /* Now we make sure that we can be in full duplex mode.
1667 * If not, we operate in half-duplex mode. */
1668 if (phydev->duplex != priv->oldduplex) {
1669 new_state = 1;
1670 if (!(phydev->duplex))
1671 tempval &= ~(MACCFG2_FULL_DUPLEX);
1672 else
1673 tempval |= MACCFG2_FULL_DUPLEX;
1674
1675 priv->oldduplex = phydev->duplex;
1676 }
1677
1678 if (phydev->speed != priv->oldspeed) {
1679 new_state = 1;
1680 switch (phydev->speed) {
1681 case 1000:
1682 tempval =
1683 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1684 break;
1685 case 100:
1686 case 10:
1687 tempval =
1688 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1689
1690 /* Reduced mode distinguishes
1691 * between 10 and 100 */
1692 if (phydev->speed == SPEED_100)
1693 ecntrl |= ECNTRL_R100;
1694 else
1695 ecntrl &= ~(ECNTRL_R100);
1696 break;
1697 default:
1698 if (netif_msg_link(priv))
1699 printk(KERN_WARNING
1700 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1701 dev->name, phydev->speed);
1702 break;
1703 }
1704
1705 priv->oldspeed = phydev->speed;
1706 }
1707
1708 gfar_write(&regs->maccfg2, tempval);
1709 gfar_write(&regs->ecntrl, ecntrl);
1710
1711 if (!priv->oldlink) {
1712 new_state = 1;
1713 priv->oldlink = 1;
1714 netif_schedule(dev);
1715 }
1716 } else if (priv->oldlink) {
1717 new_state = 1;
1718 priv->oldlink = 0;
1719 priv->oldspeed = 0;
1720 priv->oldduplex = -1;
1721 }
1722
1723 if (new_state && netif_msg_link(priv))
1724 phy_print_status(phydev);
1725
1726 spin_unlock_irqrestore(&priv->txlock, flags);
1727 }
1728
1729 /* Update the hash table based on the current list of multicast
1730 * addresses we subscribe to. Also, change the promiscuity of
1731 * the device based on the flags (this function is called
1732 * whenever dev->flags is changed */
1733 static void gfar_set_multi(struct net_device *dev)
1734 {
1735 struct dev_mc_list *mc_ptr;
1736 struct gfar_private *priv = netdev_priv(dev);
1737 struct gfar __iomem *regs = priv->regs;
1738 u32 tempval;
1739
1740 if(dev->flags & IFF_PROMISC) {
1741 /* Set RCTRL to PROM */
1742 tempval = gfar_read(&regs->rctrl);
1743 tempval |= RCTRL_PROM;
1744 gfar_write(&regs->rctrl, tempval);
1745 } else {
1746 /* Set RCTRL to not PROM */
1747 tempval = gfar_read(&regs->rctrl);
1748 tempval &= ~(RCTRL_PROM);
1749 gfar_write(&regs->rctrl, tempval);
1750 }
1751
1752 if(dev->flags & IFF_ALLMULTI) {
1753 /* Set the hash to rx all multicast frames */
1754 gfar_write(&regs->igaddr0, 0xffffffff);
1755 gfar_write(&regs->igaddr1, 0xffffffff);
1756 gfar_write(&regs->igaddr2, 0xffffffff);
1757 gfar_write(&regs->igaddr3, 0xffffffff);
1758 gfar_write(&regs->igaddr4, 0xffffffff);
1759 gfar_write(&regs->igaddr5, 0xffffffff);
1760 gfar_write(&regs->igaddr6, 0xffffffff);
1761 gfar_write(&regs->igaddr7, 0xffffffff);
1762 gfar_write(&regs->gaddr0, 0xffffffff);
1763 gfar_write(&regs->gaddr1, 0xffffffff);
1764 gfar_write(&regs->gaddr2, 0xffffffff);
1765 gfar_write(&regs->gaddr3, 0xffffffff);
1766 gfar_write(&regs->gaddr4, 0xffffffff);
1767 gfar_write(&regs->gaddr5, 0xffffffff);
1768 gfar_write(&regs->gaddr6, 0xffffffff);
1769 gfar_write(&regs->gaddr7, 0xffffffff);
1770 } else {
1771 int em_num;
1772 int idx;
1773
1774 /* zero out the hash */
1775 gfar_write(&regs->igaddr0, 0x0);
1776 gfar_write(&regs->igaddr1, 0x0);
1777 gfar_write(&regs->igaddr2, 0x0);
1778 gfar_write(&regs->igaddr3, 0x0);
1779 gfar_write(&regs->igaddr4, 0x0);
1780 gfar_write(&regs->igaddr5, 0x0);
1781 gfar_write(&regs->igaddr6, 0x0);
1782 gfar_write(&regs->igaddr7, 0x0);
1783 gfar_write(&regs->gaddr0, 0x0);
1784 gfar_write(&regs->gaddr1, 0x0);
1785 gfar_write(&regs->gaddr2, 0x0);
1786 gfar_write(&regs->gaddr3, 0x0);
1787 gfar_write(&regs->gaddr4, 0x0);
1788 gfar_write(&regs->gaddr5, 0x0);
1789 gfar_write(&regs->gaddr6, 0x0);
1790 gfar_write(&regs->gaddr7, 0x0);
1791
1792 /* If we have extended hash tables, we need to
1793 * clear the exact match registers to prepare for
1794 * setting them */
1795 if (priv->extended_hash) {
1796 em_num = GFAR_EM_NUM + 1;
1797 gfar_clear_exact_match(dev);
1798 idx = 1;
1799 } else {
1800 idx = 0;
1801 em_num = 0;
1802 }
1803
1804 if(dev->mc_count == 0)
1805 return;
1806
1807 /* Parse the list, and set the appropriate bits */
1808 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1809 if (idx < em_num) {
1810 gfar_set_mac_for_addr(dev, idx,
1811 mc_ptr->dmi_addr);
1812 idx++;
1813 } else
1814 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1815 }
1816 }
1817
1818 return;
1819 }
1820
1821
1822 /* Clears each of the exact match registers to zero, so they
1823 * don't interfere with normal reception */
1824 static void gfar_clear_exact_match(struct net_device *dev)
1825 {
1826 int idx;
1827 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1828
1829 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1830 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1831 }
1832
1833 /* Set the appropriate hash bit for the given addr */
1834 /* The algorithm works like so:
1835 * 1) Take the Destination Address (ie the multicast address), and
1836 * do a CRC on it (little endian), and reverse the bits of the
1837 * result.
1838 * 2) Use the 8 most significant bits as a hash into a 256-entry
1839 * table. The table is controlled through 8 32-bit registers:
1840 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1841 * gaddr7. This means that the 3 most significant bits in the
1842 * hash index which gaddr register to use, and the 5 other bits
1843 * indicate which bit (assuming an IBM numbering scheme, which
1844 * for PowerPC (tm) is usually the case) in the register holds
1845 * the entry. */
1846 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1847 {
1848 u32 tempval;
1849 struct gfar_private *priv = netdev_priv(dev);
1850 u32 result = ether_crc(MAC_ADDR_LEN, addr);
1851 int width = priv->hash_width;
1852 u8 whichbit = (result >> (32 - width)) & 0x1f;
1853 u8 whichreg = result >> (32 - width + 5);
1854 u32 value = (1 << (31-whichbit));
1855
1856 tempval = gfar_read(priv->hash_regs[whichreg]);
1857 tempval |= value;
1858 gfar_write(priv->hash_regs[whichreg], tempval);
1859
1860 return;
1861 }
1862
1863
1864 /* There are multiple MAC Address register pairs on some controllers
1865 * This function sets the numth pair to a given address
1866 */
1867 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1868 {
1869 struct gfar_private *priv = netdev_priv(dev);
1870 int idx;
1871 char tmpbuf[MAC_ADDR_LEN];
1872 u32 tempval;
1873 u32 __iomem *macptr = &priv->regs->macstnaddr1;
1874
1875 macptr += num*2;
1876
1877 /* Now copy it into the mac registers backwards, cuz */
1878 /* little endian is silly */
1879 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1880 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1881
1882 gfar_write(macptr, *((u32 *) (tmpbuf)));
1883
1884 tempval = *((u32 *) (tmpbuf + 4));
1885
1886 gfar_write(macptr+1, tempval);
1887 }
1888
1889 /* GFAR error interrupt handler */
1890 static irqreturn_t gfar_error(int irq, void *dev_id)
1891 {
1892 struct net_device *dev = dev_id;
1893 struct gfar_private *priv = netdev_priv(dev);
1894
1895 /* Save ievent for future reference */
1896 u32 events = gfar_read(&priv->regs->ievent);
1897
1898 /* Clear IEVENT */
1899 gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1900
1901 /* Hmm... */
1902 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1903 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1904 dev->name, events, gfar_read(&priv->regs->imask));
1905
1906 /* Update the error counters */
1907 if (events & IEVENT_TXE) {
1908 dev->stats.tx_errors++;
1909
1910 if (events & IEVENT_LC)
1911 dev->stats.tx_window_errors++;
1912 if (events & IEVENT_CRL)
1913 dev->stats.tx_aborted_errors++;
1914 if (events & IEVENT_XFUN) {
1915 if (netif_msg_tx_err(priv))
1916 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1917 "packet dropped.\n", dev->name);
1918 dev->stats.tx_dropped++;
1919 priv->extra_stats.tx_underrun++;
1920
1921 /* Reactivate the Tx Queues */
1922 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1923 }
1924 if (netif_msg_tx_err(priv))
1925 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1926 }
1927 if (events & IEVENT_BSY) {
1928 dev->stats.rx_errors++;
1929 priv->extra_stats.rx_bsy++;
1930
1931 gfar_receive(irq, dev_id);
1932
1933 #ifndef CONFIG_GFAR_NAPI
1934 /* Clear the halt bit in RSTAT */
1935 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1936 #endif
1937
1938 if (netif_msg_rx_err(priv))
1939 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
1940 dev->name, gfar_read(&priv->regs->rstat));
1941 }
1942 if (events & IEVENT_BABR) {
1943 dev->stats.rx_errors++;
1944 priv->extra_stats.rx_babr++;
1945
1946 if (netif_msg_rx_err(priv))
1947 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
1948 }
1949 if (events & IEVENT_EBERR) {
1950 priv->extra_stats.eberr++;
1951 if (netif_msg_rx_err(priv))
1952 printk(KERN_DEBUG "%s: bus error\n", dev->name);
1953 }
1954 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1955 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1956
1957 if (events & IEVENT_BABT) {
1958 priv->extra_stats.tx_babt++;
1959 if (netif_msg_tx_err(priv))
1960 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
1961 }
1962 return IRQ_HANDLED;
1963 }
1964
1965 /* Structure for a device driver */
1966 static struct platform_driver gfar_driver = {
1967 .probe = gfar_probe,
1968 .remove = gfar_remove,
1969 .driver = {
1970 .name = "fsl-gianfar",
1971 },
1972 };
1973
1974 static int __init gfar_init(void)
1975 {
1976 int err = gfar_mdio_init();
1977
1978 if (err)
1979 return err;
1980
1981 err = platform_driver_register(&gfar_driver);
1982
1983 if (err)
1984 gfar_mdio_exit();
1985
1986 return err;
1987 }
1988
1989 static void __exit gfar_exit(void)
1990 {
1991 platform_driver_unregister(&gfar_driver);
1992 gfar_mdio_exit();
1993 }
1994
1995 module_init(gfar_init);
1996 module_exit(gfar_exit);
1997
This page took 0.076985 seconds and 5 git commands to generate.