Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
20 *
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
26 *
27 * Theory of operation
28 *
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
31 *
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
37 *
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
54 *
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
63 */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85
86 #include <asm/io.h>
87 #include <asm/irq.h>
88 #include <asm/uaccess.h>
89 #include <linux/module.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h>
92 #include <linux/mii.h>
93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h>
95 #include <linux/of.h>
96
97 #include "gianfar.h"
98 #include "fsl_pq_mdio.h"
99
100 #define TX_TIMEOUT (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
103
104 const char gfar_driver_name[] = "Gianfar Ethernet";
105 const char gfar_driver_version[] = "1.3";
106
107 static int gfar_enet_open(struct net_device *dev);
108 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
109 static void gfar_reset_task(struct work_struct *work);
110 static void gfar_timeout(struct net_device *dev);
111 static int gfar_close(struct net_device *dev);
112 struct sk_buff *gfar_new_skb(struct net_device *dev);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
114 struct sk_buff *skb);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static void init_registers(struct net_device *dev);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct of_device *ofdev,
124 const struct of_device_id *match);
125 static int gfar_remove(struct of_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 int amount_pull);
138 static void gfar_vlan_rx_register(struct net_device *netdev,
139 struct vlan_group *grp);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152 dma_addr_t buf)
153 {
154 u32 lstatus;
155
156 bdp->bufPtr = buf;
157
158 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160 lstatus |= BD_LFLAG(RXBD_WRAP);
161
162 eieio();
163
164 bdp->lstatus = lstatus;
165 }
166
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169 struct gfar_private *priv = netdev_priv(ndev);
170 struct gfar_priv_tx_q *tx_queue = NULL;
171 struct gfar_priv_rx_q *rx_queue = NULL;
172 struct txbd8 *txbdp;
173 struct rxbd8 *rxbdp;
174 int i, j;
175
176 for (i = 0; i < priv->num_tx_queues; i++) {
177 tx_queue = priv->tx_queue[i];
178 /* Initialize some variables in our dev structure */
179 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180 tx_queue->dirty_tx = tx_queue->tx_bd_base;
181 tx_queue->cur_tx = tx_queue->tx_bd_base;
182 tx_queue->skb_curtx = 0;
183 tx_queue->skb_dirtytx = 0;
184
185 /* Initialize Transmit Descriptor Ring */
186 txbdp = tx_queue->tx_bd_base;
187 for (j = 0; j < tx_queue->tx_ring_size; j++) {
188 txbdp->lstatus = 0;
189 txbdp->bufPtr = 0;
190 txbdp++;
191 }
192
193 /* Set the last descriptor in the ring to indicate wrap */
194 txbdp--;
195 txbdp->status |= TXBD_WRAP;
196 }
197
198 for (i = 0; i < priv->num_rx_queues; i++) {
199 rx_queue = priv->rx_queue[i];
200 rx_queue->cur_rx = rx_queue->rx_bd_base;
201 rx_queue->skb_currx = 0;
202 rxbdp = rx_queue->rx_bd_base;
203
204 for (j = 0; j < rx_queue->rx_ring_size; j++) {
205 struct sk_buff *skb = rx_queue->rx_skbuff[j];
206
207 if (skb) {
208 gfar_init_rxbdp(rx_queue, rxbdp,
209 rxbdp->bufPtr);
210 } else {
211 skb = gfar_new_skb(ndev);
212 if (!skb) {
213 pr_err("%s: Can't allocate RX buffers\n",
214 ndev->name);
215 goto err_rxalloc_fail;
216 }
217 rx_queue->rx_skbuff[j] = skb;
218
219 gfar_new_rxbdp(rx_queue, rxbdp, skb);
220 }
221
222 rxbdp++;
223 }
224
225 }
226
227 return 0;
228
229 err_rxalloc_fail:
230 free_skb_resources(priv);
231 return -ENOMEM;
232 }
233
234 static int gfar_alloc_skb_resources(struct net_device *ndev)
235 {
236 void *vaddr;
237 dma_addr_t addr;
238 int i, j, k;
239 struct gfar_private *priv = netdev_priv(ndev);
240 struct device *dev = &priv->ofdev->dev;
241 struct gfar_priv_tx_q *tx_queue = NULL;
242 struct gfar_priv_rx_q *rx_queue = NULL;
243
244 priv->total_tx_ring_size = 0;
245 for (i = 0; i < priv->num_tx_queues; i++)
246 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
247
248 priv->total_rx_ring_size = 0;
249 for (i = 0; i < priv->num_rx_queues; i++)
250 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
251
252 /* Allocate memory for the buffer descriptors */
253 vaddr = dma_alloc_coherent(dev,
254 sizeof(struct txbd8) * priv->total_tx_ring_size +
255 sizeof(struct rxbd8) * priv->total_rx_ring_size,
256 &addr, GFP_KERNEL);
257 if (!vaddr) {
258 if (netif_msg_ifup(priv))
259 pr_err("%s: Could not allocate buffer descriptors!\n",
260 ndev->name);
261 return -ENOMEM;
262 }
263
264 for (i = 0; i < priv->num_tx_queues; i++) {
265 tx_queue = priv->tx_queue[i];
266 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
267 tx_queue->tx_bd_dma_base = addr;
268 tx_queue->dev = ndev;
269 /* enet DMA only understands physical addresses */
270 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
271 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272 }
273
274 /* Start the rx descriptor ring where the tx ring leaves off */
275 for (i = 0; i < priv->num_rx_queues; i++) {
276 rx_queue = priv->rx_queue[i];
277 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
278 rx_queue->rx_bd_dma_base = addr;
279 rx_queue->dev = ndev;
280 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
281 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282 }
283
284 /* Setup the skbuff rings */
285 for (i = 0; i < priv->num_tx_queues; i++) {
286 tx_queue = priv->tx_queue[i];
287 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
288 tx_queue->tx_ring_size, GFP_KERNEL);
289 if (!tx_queue->tx_skbuff) {
290 if (netif_msg_ifup(priv))
291 pr_err("%s: Could not allocate tx_skbuff\n",
292 ndev->name);
293 goto cleanup;
294 }
295
296 for (k = 0; k < tx_queue->tx_ring_size; k++)
297 tx_queue->tx_skbuff[k] = NULL;
298 }
299
300 for (i = 0; i < priv->num_rx_queues; i++) {
301 rx_queue = priv->rx_queue[i];
302 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
303 rx_queue->rx_ring_size, GFP_KERNEL);
304
305 if (!rx_queue->rx_skbuff) {
306 if (netif_msg_ifup(priv))
307 pr_err("%s: Could not allocate rx_skbuff\n",
308 ndev->name);
309 goto cleanup;
310 }
311
312 for (j = 0; j < rx_queue->rx_ring_size; j++)
313 rx_queue->rx_skbuff[j] = NULL;
314 }
315
316 if (gfar_init_bds(ndev))
317 goto cleanup;
318
319 return 0;
320
321 cleanup:
322 free_skb_resources(priv);
323 return -ENOMEM;
324 }
325
326 static void gfar_init_tx_rx_base(struct gfar_private *priv)
327 {
328 struct gfar __iomem *regs = priv->gfargrp[0].regs;
329 u32 __iomem *baddr;
330 int i;
331
332 baddr = &regs->tbase0;
333 for(i = 0; i < priv->num_tx_queues; i++) {
334 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
335 baddr += 2;
336 }
337
338 baddr = &regs->rbase0;
339 for(i = 0; i < priv->num_rx_queues; i++) {
340 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
341 baddr += 2;
342 }
343 }
344
345 static void gfar_init_mac(struct net_device *ndev)
346 {
347 struct gfar_private *priv = netdev_priv(ndev);
348 struct gfar __iomem *regs = priv->gfargrp[0].regs;
349 u32 rctrl = 0;
350 u32 tctrl = 0;
351 u32 attrs = 0;
352
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv);
355
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv, 0xFF, 0xFF);
358
359 if (priv->rx_filer_enable) {
360 rctrl |= RCTRL_FILREN;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(&regs->rir0, DEFAULT_RIR0);
363 }
364
365 if (priv->rx_csum_enable)
366 rctrl |= RCTRL_CHECKSUMMING;
367
368 if (priv->extended_hash) {
369 rctrl |= RCTRL_EXTHASH;
370
371 gfar_clear_exact_match(ndev);
372 rctrl |= RCTRL_EMEN;
373 }
374
375 if (priv->padding) {
376 rctrl &= ~RCTRL_PAL_MASK;
377 rctrl |= RCTRL_PADDING(priv->padding);
378 }
379
380 /* keep vlan related bits if it's enabled */
381 if (priv->vlgrp) {
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 tctrl |= TCTRL_VLINS;
384 }
385
386 /* Init rctrl based on our settings */
387 gfar_write(&regs->rctrl, rctrl);
388
389 if (ndev->features & NETIF_F_IP_CSUM)
390 tctrl |= TCTRL_INIT_CSUM;
391
392 tctrl |= TCTRL_TXSCHED_PRIO;
393
394 gfar_write(&regs->tctrl, tctrl);
395
396 /* Set the extraction length and index */
397 attrs = ATTRELI_EL(priv->rx_stash_size) |
398 ATTRELI_EI(priv->rx_stash_index);
399
400 gfar_write(&regs->attreli, attrs);
401
402 /* Start with defaults, and add stashing or locking
403 * depending on the approprate variables */
404 attrs = ATTR_INIT_SETTINGS;
405
406 if (priv->bd_stash_en)
407 attrs |= ATTR_BDSTASH;
408
409 if (priv->rx_stash_size != 0)
410 attrs |= ATTR_BUFSTASH;
411
412 gfar_write(&regs->attr, attrs);
413
414 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
415 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
416 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
417 }
418
419 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
420 {
421 struct gfar_private *priv = netdev_priv(dev);
422 struct netdev_queue *txq;
423 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
424 unsigned long tx_packets = 0, tx_bytes = 0;
425 int i = 0;
426
427 for (i = 0; i < priv->num_rx_queues; i++) {
428 rx_packets += priv->rx_queue[i]->stats.rx_packets;
429 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
430 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
431 }
432
433 dev->stats.rx_packets = rx_packets;
434 dev->stats.rx_bytes = rx_bytes;
435 dev->stats.rx_dropped = rx_dropped;
436
437 for (i = 0; i < priv->num_tx_queues; i++) {
438 txq = netdev_get_tx_queue(dev, i);
439 tx_bytes += txq->tx_bytes;
440 tx_packets += txq->tx_packets;
441 }
442
443 dev->stats.tx_bytes = tx_bytes;
444 dev->stats.tx_packets = tx_packets;
445
446 return &dev->stats;
447 }
448
449 static const struct net_device_ops gfar_netdev_ops = {
450 .ndo_open = gfar_enet_open,
451 .ndo_start_xmit = gfar_start_xmit,
452 .ndo_stop = gfar_close,
453 .ndo_change_mtu = gfar_change_mtu,
454 .ndo_set_multicast_list = gfar_set_multi,
455 .ndo_tx_timeout = gfar_timeout,
456 .ndo_do_ioctl = gfar_ioctl,
457 .ndo_get_stats = gfar_get_stats,
458 .ndo_vlan_rx_register = gfar_vlan_rx_register,
459 .ndo_set_mac_address = eth_mac_addr,
460 .ndo_validate_addr = eth_validate_addr,
461 #ifdef CONFIG_NET_POLL_CONTROLLER
462 .ndo_poll_controller = gfar_netpoll,
463 #endif
464 };
465
466 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
467 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
468
469 void lock_rx_qs(struct gfar_private *priv)
470 {
471 int i = 0x0;
472
473 for (i = 0; i < priv->num_rx_queues; i++)
474 spin_lock(&priv->rx_queue[i]->rxlock);
475 }
476
477 void lock_tx_qs(struct gfar_private *priv)
478 {
479 int i = 0x0;
480
481 for (i = 0; i < priv->num_tx_queues; i++)
482 spin_lock(&priv->tx_queue[i]->txlock);
483 }
484
485 void unlock_rx_qs(struct gfar_private *priv)
486 {
487 int i = 0x0;
488
489 for (i = 0; i < priv->num_rx_queues; i++)
490 spin_unlock(&priv->rx_queue[i]->rxlock);
491 }
492
493 void unlock_tx_qs(struct gfar_private *priv)
494 {
495 int i = 0x0;
496
497 for (i = 0; i < priv->num_tx_queues; i++)
498 spin_unlock(&priv->tx_queue[i]->txlock);
499 }
500
501 /* Returns 1 if incoming frames use an FCB */
502 static inline int gfar_uses_fcb(struct gfar_private *priv)
503 {
504 return priv->vlgrp || priv->rx_csum_enable;
505 }
506
507 static void free_tx_pointers(struct gfar_private *priv)
508 {
509 int i = 0;
510
511 for (i = 0; i < priv->num_tx_queues; i++)
512 kfree(priv->tx_queue[i]);
513 }
514
515 static void free_rx_pointers(struct gfar_private *priv)
516 {
517 int i = 0;
518
519 for (i = 0; i < priv->num_rx_queues; i++)
520 kfree(priv->rx_queue[i]);
521 }
522
523 static void unmap_group_regs(struct gfar_private *priv)
524 {
525 int i = 0;
526
527 for (i = 0; i < MAXGROUPS; i++)
528 if (priv->gfargrp[i].regs)
529 iounmap(priv->gfargrp[i].regs);
530 }
531
532 static void disable_napi(struct gfar_private *priv)
533 {
534 int i = 0;
535
536 for (i = 0; i < priv->num_grps; i++)
537 napi_disable(&priv->gfargrp[i].napi);
538 }
539
540 static void enable_napi(struct gfar_private *priv)
541 {
542 int i = 0;
543
544 for (i = 0; i < priv->num_grps; i++)
545 napi_enable(&priv->gfargrp[i].napi);
546 }
547
548 static int gfar_parse_group(struct device_node *np,
549 struct gfar_private *priv, const char *model)
550 {
551 u32 *queue_mask;
552 u64 addr, size;
553
554 addr = of_translate_address(np,
555 of_get_address(np, 0, &size, NULL));
556 priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
557
558 if (!priv->gfargrp[priv->num_grps].regs)
559 return -ENOMEM;
560
561 priv->gfargrp[priv->num_grps].interruptTransmit =
562 irq_of_parse_and_map(np, 0);
563
564 /* If we aren't the FEC we have multiple interrupts */
565 if (model && strcasecmp(model, "FEC")) {
566 priv->gfargrp[priv->num_grps].interruptReceive =
567 irq_of_parse_and_map(np, 1);
568 priv->gfargrp[priv->num_grps].interruptError =
569 irq_of_parse_and_map(np,2);
570 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
571 priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
572 priv->gfargrp[priv->num_grps].interruptError < 0) {
573 return -EINVAL;
574 }
575 }
576
577 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
578 priv->gfargrp[priv->num_grps].priv = priv;
579 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
580 if(priv->mode == MQ_MG_MODE) {
581 queue_mask = (u32 *)of_get_property(np,
582 "fsl,rx-bit-map", NULL);
583 priv->gfargrp[priv->num_grps].rx_bit_map =
584 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
585 queue_mask = (u32 *)of_get_property(np,
586 "fsl,tx-bit-map", NULL);
587 priv->gfargrp[priv->num_grps].tx_bit_map =
588 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
589 } else {
590 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
591 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
592 }
593 priv->num_grps++;
594
595 return 0;
596 }
597
598 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
599 {
600 const char *model;
601 const char *ctype;
602 const void *mac_addr;
603 int err = 0, i;
604 struct net_device *dev = NULL;
605 struct gfar_private *priv = NULL;
606 struct device_node *np = ofdev->node;
607 struct device_node *child = NULL;
608 const u32 *stash;
609 const u32 *stash_len;
610 const u32 *stash_idx;
611 unsigned int num_tx_qs, num_rx_qs;
612 u32 *tx_queues, *rx_queues;
613
614 if (!np || !of_device_is_available(np))
615 return -ENODEV;
616
617 /* parse the num of tx and rx queues */
618 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
619 num_tx_qs = tx_queues ? *tx_queues : 1;
620
621 if (num_tx_qs > MAX_TX_QS) {
622 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
623 num_tx_qs, MAX_TX_QS);
624 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
625 return -EINVAL;
626 }
627
628 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
629 num_rx_qs = rx_queues ? *rx_queues : 1;
630
631 if (num_rx_qs > MAX_RX_QS) {
632 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
633 num_tx_qs, MAX_TX_QS);
634 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
635 return -EINVAL;
636 }
637
638 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
639 dev = *pdev;
640 if (NULL == dev)
641 return -ENOMEM;
642
643 priv = netdev_priv(dev);
644 priv->node = ofdev->node;
645 priv->ndev = dev;
646
647 dev->num_tx_queues = num_tx_qs;
648 dev->real_num_tx_queues = num_tx_qs;
649 priv->num_tx_queues = num_tx_qs;
650 priv->num_rx_queues = num_rx_qs;
651 priv->num_grps = 0x0;
652
653 model = of_get_property(np, "model", NULL);
654
655 for (i = 0; i < MAXGROUPS; i++)
656 priv->gfargrp[i].regs = NULL;
657
658 /* Parse and initialize group specific information */
659 if (of_device_is_compatible(np, "fsl,etsec2")) {
660 priv->mode = MQ_MG_MODE;
661 for_each_child_of_node(np, child) {
662 err = gfar_parse_group(child, priv, model);
663 if (err)
664 goto err_grp_init;
665 }
666 } else {
667 priv->mode = SQ_SG_MODE;
668 err = gfar_parse_group(np, priv, model);
669 if(err)
670 goto err_grp_init;
671 }
672
673 for (i = 0; i < priv->num_tx_queues; i++)
674 priv->tx_queue[i] = NULL;
675 for (i = 0; i < priv->num_rx_queues; i++)
676 priv->rx_queue[i] = NULL;
677
678 for (i = 0; i < priv->num_tx_queues; i++) {
679 priv->tx_queue[i] = (struct gfar_priv_tx_q *)kmalloc(
680 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
681 if (!priv->tx_queue[i]) {
682 err = -ENOMEM;
683 goto tx_alloc_failed;
684 }
685 priv->tx_queue[i]->tx_skbuff = NULL;
686 priv->tx_queue[i]->qindex = i;
687 priv->tx_queue[i]->dev = dev;
688 spin_lock_init(&(priv->tx_queue[i]->txlock));
689 }
690
691 for (i = 0; i < priv->num_rx_queues; i++) {
692 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kmalloc(
693 sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
694 if (!priv->rx_queue[i]) {
695 err = -ENOMEM;
696 goto rx_alloc_failed;
697 }
698 priv->rx_queue[i]->rx_skbuff = NULL;
699 priv->rx_queue[i]->qindex = i;
700 priv->rx_queue[i]->dev = dev;
701 spin_lock_init(&(priv->rx_queue[i]->rxlock));
702 }
703
704
705 stash = of_get_property(np, "bd-stash", NULL);
706
707 if (stash) {
708 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
709 priv->bd_stash_en = 1;
710 }
711
712 stash_len = of_get_property(np, "rx-stash-len", NULL);
713
714 if (stash_len)
715 priv->rx_stash_size = *stash_len;
716
717 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
718
719 if (stash_idx)
720 priv->rx_stash_index = *stash_idx;
721
722 if (stash_len || stash_idx)
723 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
724
725 mac_addr = of_get_mac_address(np);
726 if (mac_addr)
727 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
728
729 if (model && !strcasecmp(model, "TSEC"))
730 priv->device_flags =
731 FSL_GIANFAR_DEV_HAS_GIGABIT |
732 FSL_GIANFAR_DEV_HAS_COALESCE |
733 FSL_GIANFAR_DEV_HAS_RMON |
734 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
735 if (model && !strcasecmp(model, "eTSEC"))
736 priv->device_flags =
737 FSL_GIANFAR_DEV_HAS_GIGABIT |
738 FSL_GIANFAR_DEV_HAS_COALESCE |
739 FSL_GIANFAR_DEV_HAS_RMON |
740 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
741 FSL_GIANFAR_DEV_HAS_PADDING |
742 FSL_GIANFAR_DEV_HAS_CSUM |
743 FSL_GIANFAR_DEV_HAS_VLAN |
744 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
745 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
746
747 ctype = of_get_property(np, "phy-connection-type", NULL);
748
749 /* We only care about rgmii-id. The rest are autodetected */
750 if (ctype && !strcmp(ctype, "rgmii-id"))
751 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
752 else
753 priv->interface = PHY_INTERFACE_MODE_MII;
754
755 if (of_get_property(np, "fsl,magic-packet", NULL))
756 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
757
758 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
759
760 /* Find the TBI PHY. If it's not there, we don't support SGMII */
761 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
762
763 return 0;
764
765 rx_alloc_failed:
766 free_rx_pointers(priv);
767 tx_alloc_failed:
768 free_tx_pointers(priv);
769 err_grp_init:
770 unmap_group_regs(priv);
771 free_netdev(dev);
772 return err;
773 }
774
775 /* Ioctl MII Interface */
776 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
777 {
778 struct gfar_private *priv = netdev_priv(dev);
779
780 if (!netif_running(dev))
781 return -EINVAL;
782
783 if (!priv->phydev)
784 return -ENODEV;
785
786 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
787 }
788
789 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
790 {
791 unsigned int new_bit_map = 0x0;
792 int mask = 0x1 << (max_qs - 1), i;
793 for (i = 0; i < max_qs; i++) {
794 if (bit_map & mask)
795 new_bit_map = new_bit_map + (1 << i);
796 mask = mask >> 0x1;
797 }
798 return new_bit_map;
799 }
800
801 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
802 u32 class)
803 {
804 u32 rqfpr = FPR_FILER_MASK;
805 u32 rqfcr = 0x0;
806
807 rqfar--;
808 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
809 ftp_rqfpr[rqfar] = rqfpr;
810 ftp_rqfcr[rqfar] = rqfcr;
811 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
812
813 rqfar--;
814 rqfcr = RQFCR_CMP_NOMATCH;
815 ftp_rqfpr[rqfar] = rqfpr;
816 ftp_rqfcr[rqfar] = rqfcr;
817 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
818
819 rqfar--;
820 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
821 rqfpr = class;
822 ftp_rqfcr[rqfar] = rqfcr;
823 ftp_rqfpr[rqfar] = rqfpr;
824 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
825
826 rqfar--;
827 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
828 rqfpr = class;
829 ftp_rqfcr[rqfar] = rqfcr;
830 ftp_rqfpr[rqfar] = rqfpr;
831 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
832
833 return rqfar;
834 }
835
836 static void gfar_init_filer_table(struct gfar_private *priv)
837 {
838 int i = 0x0;
839 u32 rqfar = MAX_FILER_IDX;
840 u32 rqfcr = 0x0;
841 u32 rqfpr = FPR_FILER_MASK;
842
843 /* Default rule */
844 rqfcr = RQFCR_CMP_MATCH;
845 ftp_rqfcr[rqfar] = rqfcr;
846 ftp_rqfpr[rqfar] = rqfpr;
847 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
848
849 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
850 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
851 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
852 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
853 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
854 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
855
856 /* cur_filer_idx indicated the fisrt non-masked rule */
857 priv->cur_filer_idx = rqfar;
858
859 /* Rest are masked rules */
860 rqfcr = RQFCR_CMP_NOMATCH;
861 for (i = 0; i < rqfar; i++) {
862 ftp_rqfcr[i] = rqfcr;
863 ftp_rqfpr[i] = rqfpr;
864 gfar_write_filer(priv, i, rqfcr, rqfpr);
865 }
866 }
867
868 /* Set up the ethernet device structure, private data,
869 * and anything else we need before we start */
870 static int gfar_probe(struct of_device *ofdev,
871 const struct of_device_id *match)
872 {
873 u32 tempval;
874 struct net_device *dev = NULL;
875 struct gfar_private *priv = NULL;
876 struct gfar __iomem *regs = NULL;
877 int err = 0, i, grp_idx = 0;
878 int len_devname;
879 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
880 u32 isrg = 0;
881 u32 __iomem *baddr;
882
883 err = gfar_of_init(ofdev, &dev);
884
885 if (err)
886 return err;
887
888 priv = netdev_priv(dev);
889 priv->ndev = dev;
890 priv->ofdev = ofdev;
891 priv->node = ofdev->node;
892 SET_NETDEV_DEV(dev, &ofdev->dev);
893
894 spin_lock_init(&priv->bflock);
895 INIT_WORK(&priv->reset_task, gfar_reset_task);
896
897 dev_set_drvdata(&ofdev->dev, priv);
898 regs = priv->gfargrp[0].regs;
899
900 /* Stop the DMA engine now, in case it was running before */
901 /* (The firmware could have used it, and left it running). */
902 gfar_halt(dev);
903
904 /* Reset MAC layer */
905 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
906
907 /* We need to delay at least 3 TX clocks */
908 udelay(2);
909
910 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
911 gfar_write(&regs->maccfg1, tempval);
912
913 /* Initialize MACCFG2. */
914 gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
915
916 /* Initialize ECNTRL */
917 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
918
919 /* Set the dev->base_addr to the gfar reg region */
920 dev->base_addr = (unsigned long) regs;
921
922 SET_NETDEV_DEV(dev, &ofdev->dev);
923
924 /* Fill in the dev structure */
925 dev->watchdog_timeo = TX_TIMEOUT;
926 dev->mtu = 1500;
927 dev->netdev_ops = &gfar_netdev_ops;
928 dev->ethtool_ops = &gfar_ethtool_ops;
929
930 /* Register for napi ...We are registering NAPI for each grp */
931 for (i = 0; i < priv->num_grps; i++)
932 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
933
934 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
935 priv->rx_csum_enable = 1;
936 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
937 } else
938 priv->rx_csum_enable = 0;
939
940 priv->vlgrp = NULL;
941
942 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
943 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
944
945 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
946 priv->extended_hash = 1;
947 priv->hash_width = 9;
948
949 priv->hash_regs[0] = &regs->igaddr0;
950 priv->hash_regs[1] = &regs->igaddr1;
951 priv->hash_regs[2] = &regs->igaddr2;
952 priv->hash_regs[3] = &regs->igaddr3;
953 priv->hash_regs[4] = &regs->igaddr4;
954 priv->hash_regs[5] = &regs->igaddr5;
955 priv->hash_regs[6] = &regs->igaddr6;
956 priv->hash_regs[7] = &regs->igaddr7;
957 priv->hash_regs[8] = &regs->gaddr0;
958 priv->hash_regs[9] = &regs->gaddr1;
959 priv->hash_regs[10] = &regs->gaddr2;
960 priv->hash_regs[11] = &regs->gaddr3;
961 priv->hash_regs[12] = &regs->gaddr4;
962 priv->hash_regs[13] = &regs->gaddr5;
963 priv->hash_regs[14] = &regs->gaddr6;
964 priv->hash_regs[15] = &regs->gaddr7;
965
966 } else {
967 priv->extended_hash = 0;
968 priv->hash_width = 8;
969
970 priv->hash_regs[0] = &regs->gaddr0;
971 priv->hash_regs[1] = &regs->gaddr1;
972 priv->hash_regs[2] = &regs->gaddr2;
973 priv->hash_regs[3] = &regs->gaddr3;
974 priv->hash_regs[4] = &regs->gaddr4;
975 priv->hash_regs[5] = &regs->gaddr5;
976 priv->hash_regs[6] = &regs->gaddr6;
977 priv->hash_regs[7] = &regs->gaddr7;
978 }
979
980 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
981 priv->padding = DEFAULT_PADDING;
982 else
983 priv->padding = 0;
984
985 if (dev->features & NETIF_F_IP_CSUM)
986 dev->hard_header_len += GMAC_FCB_LEN;
987
988 /* Program the isrg regs only if number of grps > 1 */
989 if (priv->num_grps > 1) {
990 baddr = &regs->isrg0;
991 for (i = 0; i < priv->num_grps; i++) {
992 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
993 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
994 gfar_write(baddr, isrg);
995 baddr++;
996 isrg = 0x0;
997 }
998 }
999
1000 /* Need to reverse the bit maps as bit_map's MSB is q0
1001 * but, for_each_set_bit parses from right to left, which
1002 * basically reverses the queue numbers */
1003 for (i = 0; i< priv->num_grps; i++) {
1004 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1005 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1006 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1007 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1008 }
1009
1010 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1011 * also assign queues to groups */
1012 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1013 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1014 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1015 priv->num_rx_queues) {
1016 priv->gfargrp[grp_idx].num_rx_queues++;
1017 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1018 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1019 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1020 }
1021 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1022 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1023 priv->num_tx_queues) {
1024 priv->gfargrp[grp_idx].num_tx_queues++;
1025 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1026 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1027 tqueue = tqueue | (TQUEUE_EN0 >> i);
1028 }
1029 priv->gfargrp[grp_idx].rstat = rstat;
1030 priv->gfargrp[grp_idx].tstat = tstat;
1031 rstat = tstat =0;
1032 }
1033
1034 gfar_write(&regs->rqueue, rqueue);
1035 gfar_write(&regs->tqueue, tqueue);
1036
1037 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1038
1039 /* Initializing some of the rx/tx queue level parameters */
1040 for (i = 0; i < priv->num_tx_queues; i++) {
1041 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1042 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1043 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1044 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1045 }
1046
1047 for (i = 0; i < priv->num_rx_queues; i++) {
1048 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1049 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1050 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1051 }
1052
1053 /* enable filer if using multiple RX queues*/
1054 if(priv->num_rx_queues > 1)
1055 priv->rx_filer_enable = 1;
1056 /* Enable most messages by default */
1057 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1058
1059 /* Carrier starts down, phylib will bring it up */
1060 netif_carrier_off(dev);
1061
1062 err = register_netdev(dev);
1063
1064 if (err) {
1065 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1066 dev->name);
1067 goto register_fail;
1068 }
1069
1070 device_init_wakeup(&dev->dev,
1071 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1072
1073 /* fill out IRQ number and name fields */
1074 len_devname = strlen(dev->name);
1075 for (i = 0; i < priv->num_grps; i++) {
1076 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1077 len_devname);
1078 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1079 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1080 "_g", sizeof("_g"));
1081 priv->gfargrp[i].int_name_tx[
1082 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1083 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1084 priv->gfargrp[i].int_name_tx)],
1085 "_tx", sizeof("_tx") + 1);
1086
1087 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1088 len_devname);
1089 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1090 "_g", sizeof("_g"));
1091 priv->gfargrp[i].int_name_rx[
1092 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1093 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1094 priv->gfargrp[i].int_name_rx)],
1095 "_rx", sizeof("_rx") + 1);
1096
1097 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1098 len_devname);
1099 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1100 "_g", sizeof("_g"));
1101 priv->gfargrp[i].int_name_er[strlen(
1102 priv->gfargrp[i].int_name_er)] = i+48;
1103 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1104 priv->gfargrp[i].int_name_er)],
1105 "_er", sizeof("_er") + 1);
1106 } else
1107 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1108 }
1109
1110 /* Initialize the filer table */
1111 gfar_init_filer_table(priv);
1112
1113 /* Create all the sysfs files */
1114 gfar_init_sysfs(dev);
1115
1116 /* Print out the device info */
1117 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1118
1119 /* Even more device info helps when determining which kernel */
1120 /* provided which set of benchmarks. */
1121 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1122 for (i = 0; i < priv->num_rx_queues; i++)
1123 printk(KERN_INFO "%s: :RX BD ring size for Q[%d]: %d\n",
1124 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1125 for(i = 0; i < priv->num_tx_queues; i++)
1126 printk(KERN_INFO "%s:TX BD ring size for Q[%d]: %d\n",
1127 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1128
1129 return 0;
1130
1131 register_fail:
1132 unmap_group_regs(priv);
1133 free_tx_pointers(priv);
1134 free_rx_pointers(priv);
1135 if (priv->phy_node)
1136 of_node_put(priv->phy_node);
1137 if (priv->tbi_node)
1138 of_node_put(priv->tbi_node);
1139 free_netdev(dev);
1140 return err;
1141 }
1142
1143 static int gfar_remove(struct of_device *ofdev)
1144 {
1145 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1146
1147 if (priv->phy_node)
1148 of_node_put(priv->phy_node);
1149 if (priv->tbi_node)
1150 of_node_put(priv->tbi_node);
1151
1152 dev_set_drvdata(&ofdev->dev, NULL);
1153
1154 unregister_netdev(priv->ndev);
1155 unmap_group_regs(priv);
1156 free_netdev(priv->ndev);
1157
1158 return 0;
1159 }
1160
1161 #ifdef CONFIG_PM
1162
1163 static int gfar_suspend(struct device *dev)
1164 {
1165 struct gfar_private *priv = dev_get_drvdata(dev);
1166 struct net_device *ndev = priv->ndev;
1167 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1168 unsigned long flags;
1169 u32 tempval;
1170
1171 int magic_packet = priv->wol_en &&
1172 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1173
1174 netif_device_detach(ndev);
1175
1176 if (netif_running(ndev)) {
1177
1178 local_irq_save(flags);
1179 lock_tx_qs(priv);
1180 lock_rx_qs(priv);
1181
1182 gfar_halt_nodisable(ndev);
1183
1184 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1185 tempval = gfar_read(&regs->maccfg1);
1186
1187 tempval &= ~MACCFG1_TX_EN;
1188
1189 if (!magic_packet)
1190 tempval &= ~MACCFG1_RX_EN;
1191
1192 gfar_write(&regs->maccfg1, tempval);
1193
1194 unlock_rx_qs(priv);
1195 unlock_tx_qs(priv);
1196 local_irq_restore(flags);
1197
1198 disable_napi(priv);
1199
1200 if (magic_packet) {
1201 /* Enable interrupt on Magic Packet */
1202 gfar_write(&regs->imask, IMASK_MAG);
1203
1204 /* Enable Magic Packet mode */
1205 tempval = gfar_read(&regs->maccfg2);
1206 tempval |= MACCFG2_MPEN;
1207 gfar_write(&regs->maccfg2, tempval);
1208 } else {
1209 phy_stop(priv->phydev);
1210 }
1211 }
1212
1213 return 0;
1214 }
1215
1216 static int gfar_resume(struct device *dev)
1217 {
1218 struct gfar_private *priv = dev_get_drvdata(dev);
1219 struct net_device *ndev = priv->ndev;
1220 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1221 unsigned long flags;
1222 u32 tempval;
1223 int magic_packet = priv->wol_en &&
1224 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1225
1226 if (!netif_running(ndev)) {
1227 netif_device_attach(ndev);
1228 return 0;
1229 }
1230
1231 if (!magic_packet && priv->phydev)
1232 phy_start(priv->phydev);
1233
1234 /* Disable Magic Packet mode, in case something
1235 * else woke us up.
1236 */
1237 local_irq_save(flags);
1238 lock_tx_qs(priv);
1239 lock_rx_qs(priv);
1240
1241 tempval = gfar_read(&regs->maccfg2);
1242 tempval &= ~MACCFG2_MPEN;
1243 gfar_write(&regs->maccfg2, tempval);
1244
1245 gfar_start(ndev);
1246
1247 unlock_rx_qs(priv);
1248 unlock_tx_qs(priv);
1249 local_irq_restore(flags);
1250
1251 netif_device_attach(ndev);
1252
1253 enable_napi(priv);
1254
1255 return 0;
1256 }
1257
1258 static int gfar_restore(struct device *dev)
1259 {
1260 struct gfar_private *priv = dev_get_drvdata(dev);
1261 struct net_device *ndev = priv->ndev;
1262
1263 if (!netif_running(ndev))
1264 return 0;
1265
1266 gfar_init_bds(ndev);
1267 init_registers(ndev);
1268 gfar_set_mac_address(ndev);
1269 gfar_init_mac(ndev);
1270 gfar_start(ndev);
1271
1272 priv->oldlink = 0;
1273 priv->oldspeed = 0;
1274 priv->oldduplex = -1;
1275
1276 if (priv->phydev)
1277 phy_start(priv->phydev);
1278
1279 netif_device_attach(ndev);
1280 enable_napi(priv);
1281
1282 return 0;
1283 }
1284
1285 static struct dev_pm_ops gfar_pm_ops = {
1286 .suspend = gfar_suspend,
1287 .resume = gfar_resume,
1288 .freeze = gfar_suspend,
1289 .thaw = gfar_resume,
1290 .restore = gfar_restore,
1291 };
1292
1293 #define GFAR_PM_OPS (&gfar_pm_ops)
1294
1295 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1296 {
1297 return gfar_suspend(&ofdev->dev);
1298 }
1299
1300 static int gfar_legacy_resume(struct of_device *ofdev)
1301 {
1302 return gfar_resume(&ofdev->dev);
1303 }
1304
1305 #else
1306
1307 #define GFAR_PM_OPS NULL
1308 #define gfar_legacy_suspend NULL
1309 #define gfar_legacy_resume NULL
1310
1311 #endif
1312
1313 /* Reads the controller's registers to determine what interface
1314 * connects it to the PHY.
1315 */
1316 static phy_interface_t gfar_get_interface(struct net_device *dev)
1317 {
1318 struct gfar_private *priv = netdev_priv(dev);
1319 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1320 u32 ecntrl;
1321
1322 ecntrl = gfar_read(&regs->ecntrl);
1323
1324 if (ecntrl & ECNTRL_SGMII_MODE)
1325 return PHY_INTERFACE_MODE_SGMII;
1326
1327 if (ecntrl & ECNTRL_TBI_MODE) {
1328 if (ecntrl & ECNTRL_REDUCED_MODE)
1329 return PHY_INTERFACE_MODE_RTBI;
1330 else
1331 return PHY_INTERFACE_MODE_TBI;
1332 }
1333
1334 if (ecntrl & ECNTRL_REDUCED_MODE) {
1335 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1336 return PHY_INTERFACE_MODE_RMII;
1337 else {
1338 phy_interface_t interface = priv->interface;
1339
1340 /*
1341 * This isn't autodetected right now, so it must
1342 * be set by the device tree or platform code.
1343 */
1344 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1345 return PHY_INTERFACE_MODE_RGMII_ID;
1346
1347 return PHY_INTERFACE_MODE_RGMII;
1348 }
1349 }
1350
1351 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1352 return PHY_INTERFACE_MODE_GMII;
1353
1354 return PHY_INTERFACE_MODE_MII;
1355 }
1356
1357
1358 /* Initializes driver's PHY state, and attaches to the PHY.
1359 * Returns 0 on success.
1360 */
1361 static int init_phy(struct net_device *dev)
1362 {
1363 struct gfar_private *priv = netdev_priv(dev);
1364 uint gigabit_support =
1365 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1366 SUPPORTED_1000baseT_Full : 0;
1367 phy_interface_t interface;
1368
1369 priv->oldlink = 0;
1370 priv->oldspeed = 0;
1371 priv->oldduplex = -1;
1372
1373 interface = gfar_get_interface(dev);
1374
1375 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1376 interface);
1377 if (!priv->phydev)
1378 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1379 interface);
1380 if (!priv->phydev) {
1381 dev_err(&dev->dev, "could not attach to PHY\n");
1382 return -ENODEV;
1383 }
1384
1385 if (interface == PHY_INTERFACE_MODE_SGMII)
1386 gfar_configure_serdes(dev);
1387
1388 /* Remove any features not supported by the controller */
1389 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1390 priv->phydev->advertising = priv->phydev->supported;
1391
1392 return 0;
1393 }
1394
1395 /*
1396 * Initialize TBI PHY interface for communicating with the
1397 * SERDES lynx PHY on the chip. We communicate with this PHY
1398 * through the MDIO bus on each controller, treating it as a
1399 * "normal" PHY at the address found in the TBIPA register. We assume
1400 * that the TBIPA register is valid. Either the MDIO bus code will set
1401 * it to a value that doesn't conflict with other PHYs on the bus, or the
1402 * value doesn't matter, as there are no other PHYs on the bus.
1403 */
1404 static void gfar_configure_serdes(struct net_device *dev)
1405 {
1406 struct gfar_private *priv = netdev_priv(dev);
1407 struct phy_device *tbiphy;
1408
1409 if (!priv->tbi_node) {
1410 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1411 "device tree specify a tbi-handle\n");
1412 return;
1413 }
1414
1415 tbiphy = of_phy_find_device(priv->tbi_node);
1416 if (!tbiphy) {
1417 dev_err(&dev->dev, "error: Could not get TBI device\n");
1418 return;
1419 }
1420
1421 /*
1422 * If the link is already up, we must already be ok, and don't need to
1423 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1424 * everything for us? Resetting it takes the link down and requires
1425 * several seconds for it to come back.
1426 */
1427 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1428 return;
1429
1430 /* Single clk mode, mii mode off(for serdes communication) */
1431 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1432
1433 phy_write(tbiphy, MII_ADVERTISE,
1434 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1435 ADVERTISE_1000XPSE_ASYM);
1436
1437 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1438 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1439 }
1440
1441 static void init_registers(struct net_device *dev)
1442 {
1443 struct gfar_private *priv = netdev_priv(dev);
1444 struct gfar __iomem *regs = NULL;
1445 int i = 0;
1446
1447 for (i = 0; i < priv->num_grps; i++) {
1448 regs = priv->gfargrp[i].regs;
1449 /* Clear IEVENT */
1450 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1451
1452 /* Initialize IMASK */
1453 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1454 }
1455
1456 regs = priv->gfargrp[0].regs;
1457 /* Init hash registers to zero */
1458 gfar_write(&regs->igaddr0, 0);
1459 gfar_write(&regs->igaddr1, 0);
1460 gfar_write(&regs->igaddr2, 0);
1461 gfar_write(&regs->igaddr3, 0);
1462 gfar_write(&regs->igaddr4, 0);
1463 gfar_write(&regs->igaddr5, 0);
1464 gfar_write(&regs->igaddr6, 0);
1465 gfar_write(&regs->igaddr7, 0);
1466
1467 gfar_write(&regs->gaddr0, 0);
1468 gfar_write(&regs->gaddr1, 0);
1469 gfar_write(&regs->gaddr2, 0);
1470 gfar_write(&regs->gaddr3, 0);
1471 gfar_write(&regs->gaddr4, 0);
1472 gfar_write(&regs->gaddr5, 0);
1473 gfar_write(&regs->gaddr6, 0);
1474 gfar_write(&regs->gaddr7, 0);
1475
1476 /* Zero out the rmon mib registers if it has them */
1477 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1478 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1479
1480 /* Mask off the CAM interrupts */
1481 gfar_write(&regs->rmon.cam1, 0xffffffff);
1482 gfar_write(&regs->rmon.cam2, 0xffffffff);
1483 }
1484
1485 /* Initialize the max receive buffer length */
1486 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1487
1488 /* Initialize the Minimum Frame Length Register */
1489 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1490 }
1491
1492
1493 /* Halt the receive and transmit queues */
1494 static void gfar_halt_nodisable(struct net_device *dev)
1495 {
1496 struct gfar_private *priv = netdev_priv(dev);
1497 struct gfar __iomem *regs = NULL;
1498 u32 tempval;
1499 int i = 0;
1500
1501 for (i = 0; i < priv->num_grps; i++) {
1502 regs = priv->gfargrp[i].regs;
1503 /* Mask all interrupts */
1504 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1505
1506 /* Clear all interrupts */
1507 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1508 }
1509
1510 regs = priv->gfargrp[0].regs;
1511 /* Stop the DMA, and wait for it to stop */
1512 tempval = gfar_read(&regs->dmactrl);
1513 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1514 != (DMACTRL_GRS | DMACTRL_GTS)) {
1515 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1516 gfar_write(&regs->dmactrl, tempval);
1517
1518 while (!(gfar_read(&regs->ievent) &
1519 (IEVENT_GRSC | IEVENT_GTSC)))
1520 cpu_relax();
1521 }
1522 }
1523
1524 /* Halt the receive and transmit queues */
1525 void gfar_halt(struct net_device *dev)
1526 {
1527 struct gfar_private *priv = netdev_priv(dev);
1528 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1529 u32 tempval;
1530
1531 gfar_halt_nodisable(dev);
1532
1533 /* Disable Rx and Tx */
1534 tempval = gfar_read(&regs->maccfg1);
1535 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1536 gfar_write(&regs->maccfg1, tempval);
1537 }
1538
1539 static void free_grp_irqs(struct gfar_priv_grp *grp)
1540 {
1541 free_irq(grp->interruptError, grp);
1542 free_irq(grp->interruptTransmit, grp);
1543 free_irq(grp->interruptReceive, grp);
1544 }
1545
1546 void stop_gfar(struct net_device *dev)
1547 {
1548 struct gfar_private *priv = netdev_priv(dev);
1549 unsigned long flags;
1550 int i;
1551
1552 phy_stop(priv->phydev);
1553
1554
1555 /* Lock it down */
1556 local_irq_save(flags);
1557 lock_tx_qs(priv);
1558 lock_rx_qs(priv);
1559
1560 gfar_halt(dev);
1561
1562 unlock_rx_qs(priv);
1563 unlock_tx_qs(priv);
1564 local_irq_restore(flags);
1565
1566 /* Free the IRQs */
1567 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1568 for (i = 0; i < priv->num_grps; i++)
1569 free_grp_irqs(&priv->gfargrp[i]);
1570 } else {
1571 for (i = 0; i < priv->num_grps; i++)
1572 free_irq(priv->gfargrp[i].interruptTransmit,
1573 &priv->gfargrp[i]);
1574 }
1575
1576 free_skb_resources(priv);
1577 }
1578
1579 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1580 {
1581 struct txbd8 *txbdp;
1582 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1583 int i, j;
1584
1585 txbdp = tx_queue->tx_bd_base;
1586
1587 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1588 if (!tx_queue->tx_skbuff[i])
1589 continue;
1590
1591 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1592 txbdp->length, DMA_TO_DEVICE);
1593 txbdp->lstatus = 0;
1594 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1595 j++) {
1596 txbdp++;
1597 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1598 txbdp->length, DMA_TO_DEVICE);
1599 }
1600 txbdp++;
1601 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1602 tx_queue->tx_skbuff[i] = NULL;
1603 }
1604 kfree(tx_queue->tx_skbuff);
1605 }
1606
1607 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1608 {
1609 struct rxbd8 *rxbdp;
1610 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1611 int i;
1612
1613 rxbdp = rx_queue->rx_bd_base;
1614
1615 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1616 if (rx_queue->rx_skbuff[i]) {
1617 dma_unmap_single(&priv->ofdev->dev,
1618 rxbdp->bufPtr, priv->rx_buffer_size,
1619 DMA_FROM_DEVICE);
1620 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1621 rx_queue->rx_skbuff[i] = NULL;
1622 }
1623 rxbdp->lstatus = 0;
1624 rxbdp->bufPtr = 0;
1625 rxbdp++;
1626 }
1627 kfree(rx_queue->rx_skbuff);
1628 }
1629
1630 /* If there are any tx skbs or rx skbs still around, free them.
1631 * Then free tx_skbuff and rx_skbuff */
1632 static void free_skb_resources(struct gfar_private *priv)
1633 {
1634 struct gfar_priv_tx_q *tx_queue = NULL;
1635 struct gfar_priv_rx_q *rx_queue = NULL;
1636 int i;
1637
1638 /* Go through all the buffer descriptors and free their data buffers */
1639 for (i = 0; i < priv->num_tx_queues; i++) {
1640 tx_queue = priv->tx_queue[i];
1641 if(!tx_queue->tx_skbuff)
1642 free_skb_tx_queue(tx_queue);
1643 }
1644
1645 for (i = 0; i < priv->num_rx_queues; i++) {
1646 rx_queue = priv->rx_queue[i];
1647 if(!rx_queue->rx_skbuff)
1648 free_skb_rx_queue(rx_queue);
1649 }
1650
1651 dma_free_coherent(&priv->ofdev->dev,
1652 sizeof(struct txbd8) * priv->total_tx_ring_size +
1653 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1654 priv->tx_queue[0]->tx_bd_base,
1655 priv->tx_queue[0]->tx_bd_dma_base);
1656 }
1657
1658 void gfar_start(struct net_device *dev)
1659 {
1660 struct gfar_private *priv = netdev_priv(dev);
1661 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1662 u32 tempval;
1663 int i = 0;
1664
1665 /* Enable Rx and Tx in MACCFG1 */
1666 tempval = gfar_read(&regs->maccfg1);
1667 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1668 gfar_write(&regs->maccfg1, tempval);
1669
1670 /* Initialize DMACTRL to have WWR and WOP */
1671 tempval = gfar_read(&regs->dmactrl);
1672 tempval |= DMACTRL_INIT_SETTINGS;
1673 gfar_write(&regs->dmactrl, tempval);
1674
1675 /* Make sure we aren't stopped */
1676 tempval = gfar_read(&regs->dmactrl);
1677 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1678 gfar_write(&regs->dmactrl, tempval);
1679
1680 for (i = 0; i < priv->num_grps; i++) {
1681 regs = priv->gfargrp[i].regs;
1682 /* Clear THLT/RHLT, so that the DMA starts polling now */
1683 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1684 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1685 /* Unmask the interrupts we look for */
1686 gfar_write(&regs->imask, IMASK_DEFAULT);
1687 }
1688
1689 dev->trans_start = jiffies;
1690 }
1691
1692 void gfar_configure_coalescing(struct gfar_private *priv,
1693 unsigned long tx_mask, unsigned long rx_mask)
1694 {
1695 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1696 u32 __iomem *baddr;
1697 int i = 0;
1698
1699 /* Backward compatible case ---- even if we enable
1700 * multiple queues, there's only single reg to program
1701 */
1702 gfar_write(&regs->txic, 0);
1703 if(likely(priv->tx_queue[0]->txcoalescing))
1704 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1705
1706 gfar_write(&regs->rxic, 0);
1707 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1708 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1709
1710 if (priv->mode == MQ_MG_MODE) {
1711 baddr = &regs->txic0;
1712 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1713 if (likely(priv->tx_queue[i]->txcoalescing)) {
1714 gfar_write(baddr + i, 0);
1715 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1716 }
1717 }
1718
1719 baddr = &regs->rxic0;
1720 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1721 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1722 gfar_write(baddr + i, 0);
1723 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1724 }
1725 }
1726 }
1727 }
1728
1729 static int register_grp_irqs(struct gfar_priv_grp *grp)
1730 {
1731 struct gfar_private *priv = grp->priv;
1732 struct net_device *dev = priv->ndev;
1733 int err;
1734
1735 /* If the device has multiple interrupts, register for
1736 * them. Otherwise, only register for the one */
1737 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1738 /* Install our interrupt handlers for Error,
1739 * Transmit, and Receive */
1740 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1741 grp->int_name_er,grp)) < 0) {
1742 if (netif_msg_intr(priv))
1743 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1744 dev->name, grp->interruptError);
1745
1746 goto err_irq_fail;
1747 }
1748
1749 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1750 0, grp->int_name_tx, grp)) < 0) {
1751 if (netif_msg_intr(priv))
1752 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1753 dev->name, grp->interruptTransmit);
1754 goto tx_irq_fail;
1755 }
1756
1757 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1758 grp->int_name_rx, grp)) < 0) {
1759 if (netif_msg_intr(priv))
1760 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1761 dev->name, grp->interruptReceive);
1762 goto rx_irq_fail;
1763 }
1764 } else {
1765 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1766 grp->int_name_tx, grp)) < 0) {
1767 if (netif_msg_intr(priv))
1768 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1769 dev->name, grp->interruptTransmit);
1770 goto err_irq_fail;
1771 }
1772 }
1773
1774 return 0;
1775
1776 rx_irq_fail:
1777 free_irq(grp->interruptTransmit, grp);
1778 tx_irq_fail:
1779 free_irq(grp->interruptError, grp);
1780 err_irq_fail:
1781 return err;
1782
1783 }
1784
1785 /* Bring the controller up and running */
1786 int startup_gfar(struct net_device *ndev)
1787 {
1788 struct gfar_private *priv = netdev_priv(ndev);
1789 struct gfar __iomem *regs = NULL;
1790 int err, i, j;
1791
1792 for (i = 0; i < priv->num_grps; i++) {
1793 regs= priv->gfargrp[i].regs;
1794 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1795 }
1796
1797 regs= priv->gfargrp[0].regs;
1798 err = gfar_alloc_skb_resources(ndev);
1799 if (err)
1800 return err;
1801
1802 gfar_init_mac(ndev);
1803
1804 for (i = 0; i < priv->num_grps; i++) {
1805 err = register_grp_irqs(&priv->gfargrp[i]);
1806 if (err) {
1807 for (j = 0; j < i; j++)
1808 free_grp_irqs(&priv->gfargrp[j]);
1809 goto irq_fail;
1810 }
1811 }
1812
1813 /* Start the controller */
1814 gfar_start(ndev);
1815
1816 phy_start(priv->phydev);
1817
1818 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1819
1820 return 0;
1821
1822 irq_fail:
1823 free_skb_resources(priv);
1824 return err;
1825 }
1826
1827 /* Called when something needs to use the ethernet device */
1828 /* Returns 0 for success. */
1829 static int gfar_enet_open(struct net_device *dev)
1830 {
1831 struct gfar_private *priv = netdev_priv(dev);
1832 int err;
1833
1834 enable_napi(priv);
1835
1836 skb_queue_head_init(&priv->rx_recycle);
1837
1838 /* Initialize a bunch of registers */
1839 init_registers(dev);
1840
1841 gfar_set_mac_address(dev);
1842
1843 err = init_phy(dev);
1844
1845 if (err) {
1846 disable_napi(priv);
1847 return err;
1848 }
1849
1850 err = startup_gfar(dev);
1851 if (err) {
1852 disable_napi(priv);
1853 return err;
1854 }
1855
1856 netif_tx_start_all_queues(dev);
1857
1858 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1859
1860 return err;
1861 }
1862
1863 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1864 {
1865 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1866
1867 memset(fcb, 0, GMAC_FCB_LEN);
1868
1869 return fcb;
1870 }
1871
1872 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1873 {
1874 u8 flags = 0;
1875
1876 /* If we're here, it's a IP packet with a TCP or UDP
1877 * payload. We set it to checksum, using a pseudo-header
1878 * we provide
1879 */
1880 flags = TXFCB_DEFAULT;
1881
1882 /* Tell the controller what the protocol is */
1883 /* And provide the already calculated phcs */
1884 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1885 flags |= TXFCB_UDP;
1886 fcb->phcs = udp_hdr(skb)->check;
1887 } else
1888 fcb->phcs = tcp_hdr(skb)->check;
1889
1890 /* l3os is the distance between the start of the
1891 * frame (skb->data) and the start of the IP hdr.
1892 * l4os is the distance between the start of the
1893 * l3 hdr and the l4 hdr */
1894 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1895 fcb->l4os = skb_network_header_len(skb);
1896
1897 fcb->flags = flags;
1898 }
1899
1900 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1901 {
1902 fcb->flags |= TXFCB_VLN;
1903 fcb->vlctl = vlan_tx_tag_get(skb);
1904 }
1905
1906 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1907 struct txbd8 *base, int ring_size)
1908 {
1909 struct txbd8 *new_bd = bdp + stride;
1910
1911 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1912 }
1913
1914 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1915 int ring_size)
1916 {
1917 return skip_txbd(bdp, 1, base, ring_size);
1918 }
1919
1920 /* This is called by the kernel when a frame is ready for transmission. */
1921 /* It is pointed to by the dev->hard_start_xmit function pointer */
1922 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1923 {
1924 struct gfar_private *priv = netdev_priv(dev);
1925 struct gfar_priv_tx_q *tx_queue = NULL;
1926 struct netdev_queue *txq;
1927 struct gfar __iomem *regs = NULL;
1928 struct txfcb *fcb = NULL;
1929 struct txbd8 *txbdp, *txbdp_start, *base;
1930 u32 lstatus;
1931 int i, rq = 0;
1932 u32 bufaddr;
1933 unsigned long flags;
1934 unsigned int nr_frags, length;
1935
1936
1937 rq = skb->queue_mapping;
1938 tx_queue = priv->tx_queue[rq];
1939 txq = netdev_get_tx_queue(dev, rq);
1940 base = tx_queue->tx_bd_base;
1941 regs = tx_queue->grp->regs;
1942
1943 /* make space for additional header when fcb is needed */
1944 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1945 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1946 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1947 struct sk_buff *skb_new;
1948
1949 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1950 if (!skb_new) {
1951 dev->stats.tx_errors++;
1952 kfree_skb(skb);
1953 return NETDEV_TX_OK;
1954 }
1955 kfree_skb(skb);
1956 skb = skb_new;
1957 }
1958
1959 /* total number of fragments in the SKB */
1960 nr_frags = skb_shinfo(skb)->nr_frags;
1961
1962 /* check if there is space to queue this packet */
1963 if ((nr_frags+1) > tx_queue->num_txbdfree) {
1964 /* no space, stop the queue */
1965 netif_tx_stop_queue(txq);
1966 dev->stats.tx_fifo_errors++;
1967 return NETDEV_TX_BUSY;
1968 }
1969
1970 /* Update transmit stats */
1971 txq->tx_bytes += skb->len;
1972 txq->tx_packets ++;
1973
1974 txbdp = txbdp_start = tx_queue->cur_tx;
1975
1976 if (nr_frags == 0) {
1977 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1978 } else {
1979 /* Place the fragment addresses and lengths into the TxBDs */
1980 for (i = 0; i < nr_frags; i++) {
1981 /* Point at the next BD, wrapping as needed */
1982 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1983
1984 length = skb_shinfo(skb)->frags[i].size;
1985
1986 lstatus = txbdp->lstatus | length |
1987 BD_LFLAG(TXBD_READY);
1988
1989 /* Handle the last BD specially */
1990 if (i == nr_frags - 1)
1991 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1992
1993 bufaddr = dma_map_page(&priv->ofdev->dev,
1994 skb_shinfo(skb)->frags[i].page,
1995 skb_shinfo(skb)->frags[i].page_offset,
1996 length,
1997 DMA_TO_DEVICE);
1998
1999 /* set the TxBD length and buffer pointer */
2000 txbdp->bufPtr = bufaddr;
2001 txbdp->lstatus = lstatus;
2002 }
2003
2004 lstatus = txbdp_start->lstatus;
2005 }
2006
2007 /* Set up checksumming */
2008 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2009 fcb = gfar_add_fcb(skb);
2010 lstatus |= BD_LFLAG(TXBD_TOE);
2011 gfar_tx_checksum(skb, fcb);
2012 }
2013
2014 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2015 if (unlikely(NULL == fcb)) {
2016 fcb = gfar_add_fcb(skb);
2017 lstatus |= BD_LFLAG(TXBD_TOE);
2018 }
2019
2020 gfar_tx_vlan(skb, fcb);
2021 }
2022
2023 /* setup the TxBD length and buffer pointer for the first BD */
2024 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2025 skb_headlen(skb), DMA_TO_DEVICE);
2026
2027 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2028
2029 /*
2030 * We can work in parallel with gfar_clean_tx_ring(), except
2031 * when modifying num_txbdfree. Note that we didn't grab the lock
2032 * when we were reading the num_txbdfree and checking for available
2033 * space, that's because outside of this function it can only grow,
2034 * and once we've got needed space, it cannot suddenly disappear.
2035 *
2036 * The lock also protects us from gfar_error(), which can modify
2037 * regs->tstat and thus retrigger the transfers, which is why we
2038 * also must grab the lock before setting ready bit for the first
2039 * to be transmitted BD.
2040 */
2041 spin_lock_irqsave(&tx_queue->txlock, flags);
2042
2043 /*
2044 * The powerpc-specific eieio() is used, as wmb() has too strong
2045 * semantics (it requires synchronization between cacheable and
2046 * uncacheable mappings, which eieio doesn't provide and which we
2047 * don't need), thus requiring a more expensive sync instruction. At
2048 * some point, the set of architecture-independent barrier functions
2049 * should be expanded to include weaker barriers.
2050 */
2051 eieio();
2052
2053 txbdp_start->lstatus = lstatus;
2054
2055 eieio(); /* force lstatus write before tx_skbuff */
2056
2057 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2058
2059 /* Update the current skb pointer to the next entry we will use
2060 * (wrapping if necessary) */
2061 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2062 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2063
2064 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2065
2066 /* reduce TxBD free count */
2067 tx_queue->num_txbdfree -= (nr_frags + 1);
2068
2069 dev->trans_start = jiffies;
2070
2071 /* If the next BD still needs to be cleaned up, then the bds
2072 are full. We need to tell the kernel to stop sending us stuff. */
2073 if (!tx_queue->num_txbdfree) {
2074 netif_tx_stop_queue(txq);
2075
2076 dev->stats.tx_fifo_errors++;
2077 }
2078
2079 /* Tell the DMA to go go go */
2080 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2081
2082 /* Unlock priv */
2083 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2084
2085 return NETDEV_TX_OK;
2086 }
2087
2088 /* Stops the kernel queue, and halts the controller */
2089 static int gfar_close(struct net_device *dev)
2090 {
2091 struct gfar_private *priv = netdev_priv(dev);
2092
2093 disable_napi(priv);
2094
2095 skb_queue_purge(&priv->rx_recycle);
2096 cancel_work_sync(&priv->reset_task);
2097 stop_gfar(dev);
2098
2099 /* Disconnect from the PHY */
2100 phy_disconnect(priv->phydev);
2101 priv->phydev = NULL;
2102
2103 netif_tx_stop_all_queues(dev);
2104
2105 return 0;
2106 }
2107
2108 /* Changes the mac address if the controller is not running. */
2109 static int gfar_set_mac_address(struct net_device *dev)
2110 {
2111 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2112
2113 return 0;
2114 }
2115
2116
2117 /* Enables and disables VLAN insertion/extraction */
2118 static void gfar_vlan_rx_register(struct net_device *dev,
2119 struct vlan_group *grp)
2120 {
2121 struct gfar_private *priv = netdev_priv(dev);
2122 struct gfar __iomem *regs = NULL;
2123 unsigned long flags;
2124 u32 tempval;
2125
2126 regs = priv->gfargrp[0].regs;
2127 local_irq_save(flags);
2128 lock_rx_qs(priv);
2129
2130 priv->vlgrp = grp;
2131
2132 if (grp) {
2133 /* Enable VLAN tag insertion */
2134 tempval = gfar_read(&regs->tctrl);
2135 tempval |= TCTRL_VLINS;
2136
2137 gfar_write(&regs->tctrl, tempval);
2138
2139 /* Enable VLAN tag extraction */
2140 tempval = gfar_read(&regs->rctrl);
2141 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2142 gfar_write(&regs->rctrl, tempval);
2143 } else {
2144 /* Disable VLAN tag insertion */
2145 tempval = gfar_read(&regs->tctrl);
2146 tempval &= ~TCTRL_VLINS;
2147 gfar_write(&regs->tctrl, tempval);
2148
2149 /* Disable VLAN tag extraction */
2150 tempval = gfar_read(&regs->rctrl);
2151 tempval &= ~RCTRL_VLEX;
2152 /* If parse is no longer required, then disable parser */
2153 if (tempval & RCTRL_REQ_PARSER)
2154 tempval |= RCTRL_PRSDEP_INIT;
2155 else
2156 tempval &= ~RCTRL_PRSDEP_INIT;
2157 gfar_write(&regs->rctrl, tempval);
2158 }
2159
2160 gfar_change_mtu(dev, dev->mtu);
2161
2162 unlock_rx_qs(priv);
2163 local_irq_restore(flags);
2164 }
2165
2166 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2167 {
2168 int tempsize, tempval;
2169 struct gfar_private *priv = netdev_priv(dev);
2170 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2171 int oldsize = priv->rx_buffer_size;
2172 int frame_size = new_mtu + ETH_HLEN;
2173
2174 if (priv->vlgrp)
2175 frame_size += VLAN_HLEN;
2176
2177 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2178 if (netif_msg_drv(priv))
2179 printk(KERN_ERR "%s: Invalid MTU setting\n",
2180 dev->name);
2181 return -EINVAL;
2182 }
2183
2184 if (gfar_uses_fcb(priv))
2185 frame_size += GMAC_FCB_LEN;
2186
2187 frame_size += priv->padding;
2188
2189 tempsize =
2190 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2191 INCREMENTAL_BUFFER_SIZE;
2192
2193 /* Only stop and start the controller if it isn't already
2194 * stopped, and we changed something */
2195 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2196 stop_gfar(dev);
2197
2198 priv->rx_buffer_size = tempsize;
2199
2200 dev->mtu = new_mtu;
2201
2202 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2203 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2204
2205 /* If the mtu is larger than the max size for standard
2206 * ethernet frames (ie, a jumbo frame), then set maccfg2
2207 * to allow huge frames, and to check the length */
2208 tempval = gfar_read(&regs->maccfg2);
2209
2210 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2211 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2212 else
2213 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2214
2215 gfar_write(&regs->maccfg2, tempval);
2216
2217 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2218 startup_gfar(dev);
2219
2220 return 0;
2221 }
2222
2223 /* gfar_reset_task gets scheduled when a packet has not been
2224 * transmitted after a set amount of time.
2225 * For now, assume that clearing out all the structures, and
2226 * starting over will fix the problem.
2227 */
2228 static void gfar_reset_task(struct work_struct *work)
2229 {
2230 struct gfar_private *priv = container_of(work, struct gfar_private,
2231 reset_task);
2232 struct net_device *dev = priv->ndev;
2233
2234 if (dev->flags & IFF_UP) {
2235 netif_tx_stop_all_queues(dev);
2236 stop_gfar(dev);
2237 startup_gfar(dev);
2238 netif_tx_start_all_queues(dev);
2239 }
2240
2241 netif_tx_schedule_all(dev);
2242 }
2243
2244 static void gfar_timeout(struct net_device *dev)
2245 {
2246 struct gfar_private *priv = netdev_priv(dev);
2247
2248 dev->stats.tx_errors++;
2249 schedule_work(&priv->reset_task);
2250 }
2251
2252 /* Interrupt Handler for Transmit complete */
2253 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2254 {
2255 struct net_device *dev = tx_queue->dev;
2256 struct gfar_private *priv = netdev_priv(dev);
2257 struct gfar_priv_rx_q *rx_queue = NULL;
2258 struct txbd8 *bdp;
2259 struct txbd8 *lbdp = NULL;
2260 struct txbd8 *base = tx_queue->tx_bd_base;
2261 struct sk_buff *skb;
2262 int skb_dirtytx;
2263 int tx_ring_size = tx_queue->tx_ring_size;
2264 int frags = 0;
2265 int i;
2266 int howmany = 0;
2267 u32 lstatus;
2268
2269 rx_queue = priv->rx_queue[tx_queue->qindex];
2270 bdp = tx_queue->dirty_tx;
2271 skb_dirtytx = tx_queue->skb_dirtytx;
2272
2273 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2274 unsigned long flags;
2275
2276 frags = skb_shinfo(skb)->nr_frags;
2277 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
2278
2279 lstatus = lbdp->lstatus;
2280
2281 /* Only clean completed frames */
2282 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2283 (lstatus & BD_LENGTH_MASK))
2284 break;
2285
2286 dma_unmap_single(&priv->ofdev->dev,
2287 bdp->bufPtr,
2288 bdp->length,
2289 DMA_TO_DEVICE);
2290
2291 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2292 bdp = next_txbd(bdp, base, tx_ring_size);
2293
2294 for (i = 0; i < frags; i++) {
2295 dma_unmap_page(&priv->ofdev->dev,
2296 bdp->bufPtr,
2297 bdp->length,
2298 DMA_TO_DEVICE);
2299 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2300 bdp = next_txbd(bdp, base, tx_ring_size);
2301 }
2302
2303 /*
2304 * If there's room in the queue (limit it to rx_buffer_size)
2305 * we add this skb back into the pool, if it's the right size
2306 */
2307 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2308 skb_recycle_check(skb, priv->rx_buffer_size +
2309 RXBUF_ALIGNMENT))
2310 __skb_queue_head(&priv->rx_recycle, skb);
2311 else
2312 dev_kfree_skb_any(skb);
2313
2314 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2315
2316 skb_dirtytx = (skb_dirtytx + 1) &
2317 TX_RING_MOD_MASK(tx_ring_size);
2318
2319 howmany++;
2320 spin_lock_irqsave(&tx_queue->txlock, flags);
2321 tx_queue->num_txbdfree += frags + 1;
2322 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2323 }
2324
2325 /* If we freed a buffer, we can restart transmission, if necessary */
2326 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2327 netif_wake_subqueue(dev, tx_queue->qindex);
2328
2329 /* Update dirty indicators */
2330 tx_queue->skb_dirtytx = skb_dirtytx;
2331 tx_queue->dirty_tx = bdp;
2332
2333 return howmany;
2334 }
2335
2336 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2337 {
2338 unsigned long flags;
2339
2340 spin_lock_irqsave(&gfargrp->grplock, flags);
2341 if (napi_schedule_prep(&gfargrp->napi)) {
2342 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2343 __napi_schedule(&gfargrp->napi);
2344 } else {
2345 /*
2346 * Clear IEVENT, so interrupts aren't called again
2347 * because of the packets that have already arrived.
2348 */
2349 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2350 }
2351 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2352
2353 }
2354
2355 /* Interrupt Handler for Transmit complete */
2356 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2357 {
2358 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2359 return IRQ_HANDLED;
2360 }
2361
2362 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2363 struct sk_buff *skb)
2364 {
2365 struct net_device *dev = rx_queue->dev;
2366 struct gfar_private *priv = netdev_priv(dev);
2367 dma_addr_t buf;
2368
2369 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2370 priv->rx_buffer_size, DMA_FROM_DEVICE);
2371 gfar_init_rxbdp(rx_queue, bdp, buf);
2372 }
2373
2374
2375 struct sk_buff * gfar_new_skb(struct net_device *dev)
2376 {
2377 unsigned int alignamount;
2378 struct gfar_private *priv = netdev_priv(dev);
2379 struct sk_buff *skb = NULL;
2380
2381 skb = __skb_dequeue(&priv->rx_recycle);
2382 if (!skb)
2383 skb = netdev_alloc_skb(dev,
2384 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2385
2386 if (!skb)
2387 return NULL;
2388
2389 alignamount = RXBUF_ALIGNMENT -
2390 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2391
2392 /* We need the data buffer to be aligned properly. We will reserve
2393 * as many bytes as needed to align the data properly
2394 */
2395 skb_reserve(skb, alignamount);
2396 GFAR_CB(skb)->alignamount = alignamount;
2397
2398 return skb;
2399 }
2400
2401 static inline void count_errors(unsigned short status, struct net_device *dev)
2402 {
2403 struct gfar_private *priv = netdev_priv(dev);
2404 struct net_device_stats *stats = &dev->stats;
2405 struct gfar_extra_stats *estats = &priv->extra_stats;
2406
2407 /* If the packet was truncated, none of the other errors
2408 * matter */
2409 if (status & RXBD_TRUNCATED) {
2410 stats->rx_length_errors++;
2411
2412 estats->rx_trunc++;
2413
2414 return;
2415 }
2416 /* Count the errors, if there were any */
2417 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2418 stats->rx_length_errors++;
2419
2420 if (status & RXBD_LARGE)
2421 estats->rx_large++;
2422 else
2423 estats->rx_short++;
2424 }
2425 if (status & RXBD_NONOCTET) {
2426 stats->rx_frame_errors++;
2427 estats->rx_nonoctet++;
2428 }
2429 if (status & RXBD_CRCERR) {
2430 estats->rx_crcerr++;
2431 stats->rx_crc_errors++;
2432 }
2433 if (status & RXBD_OVERRUN) {
2434 estats->rx_overrun++;
2435 stats->rx_crc_errors++;
2436 }
2437 }
2438
2439 irqreturn_t gfar_receive(int irq, void *grp_id)
2440 {
2441 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2442 return IRQ_HANDLED;
2443 }
2444
2445 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2446 {
2447 /* If valid headers were found, and valid sums
2448 * were verified, then we tell the kernel that no
2449 * checksumming is necessary. Otherwise, it is */
2450 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2451 skb->ip_summed = CHECKSUM_UNNECESSARY;
2452 else
2453 skb->ip_summed = CHECKSUM_NONE;
2454 }
2455
2456
2457 /* gfar_process_frame() -- handle one incoming packet if skb
2458 * isn't NULL. */
2459 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2460 int amount_pull)
2461 {
2462 struct gfar_private *priv = netdev_priv(dev);
2463 struct rxfcb *fcb = NULL;
2464
2465 int ret;
2466
2467 /* fcb is at the beginning if exists */
2468 fcb = (struct rxfcb *)skb->data;
2469
2470 /* Remove the FCB from the skb */
2471 /* Remove the padded bytes, if there are any */
2472 if (amount_pull) {
2473 skb_record_rx_queue(skb, fcb->rq);
2474 skb_pull(skb, amount_pull);
2475 }
2476
2477 if (priv->rx_csum_enable)
2478 gfar_rx_checksum(skb, fcb);
2479
2480 /* Tell the skb what kind of packet this is */
2481 skb->protocol = eth_type_trans(skb, dev);
2482
2483 /* Send the packet up the stack */
2484 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2485 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2486 else
2487 ret = netif_receive_skb(skb);
2488
2489 if (NET_RX_DROP == ret)
2490 priv->extra_stats.kernel_dropped++;
2491
2492 return 0;
2493 }
2494
2495 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2496 * until the budget/quota has been reached. Returns the number
2497 * of frames handled
2498 */
2499 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2500 {
2501 struct net_device *dev = rx_queue->dev;
2502 struct rxbd8 *bdp, *base;
2503 struct sk_buff *skb;
2504 int pkt_len;
2505 int amount_pull;
2506 int howmany = 0;
2507 struct gfar_private *priv = netdev_priv(dev);
2508
2509 /* Get the first full descriptor */
2510 bdp = rx_queue->cur_rx;
2511 base = rx_queue->rx_bd_base;
2512
2513 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
2514 priv->padding;
2515
2516 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2517 struct sk_buff *newskb;
2518 rmb();
2519
2520 /* Add another skb for the future */
2521 newskb = gfar_new_skb(dev);
2522
2523 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2524
2525 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2526 priv->rx_buffer_size, DMA_FROM_DEVICE);
2527
2528 /* We drop the frame if we failed to allocate a new buffer */
2529 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2530 bdp->status & RXBD_ERR)) {
2531 count_errors(bdp->status, dev);
2532
2533 if (unlikely(!newskb))
2534 newskb = skb;
2535 else if (skb) {
2536 /*
2537 * We need to un-reserve() the skb to what it
2538 * was before gfar_new_skb() re-aligned
2539 * it to an RXBUF_ALIGNMENT boundary
2540 * before we put the skb back on the
2541 * recycle list.
2542 */
2543 skb_reserve(skb, -GFAR_CB(skb)->alignamount);
2544 __skb_queue_head(&priv->rx_recycle, skb);
2545 }
2546 } else {
2547 /* Increment the number of packets */
2548 rx_queue->stats.rx_packets++;
2549 howmany++;
2550
2551 if (likely(skb)) {
2552 pkt_len = bdp->length - ETH_FCS_LEN;
2553 /* Remove the FCS from the packet length */
2554 skb_put(skb, pkt_len);
2555 rx_queue->stats.rx_bytes += pkt_len;
2556 skb_record_rx_queue(skb, rx_queue->qindex);
2557 gfar_process_frame(dev, skb, amount_pull);
2558
2559 } else {
2560 if (netif_msg_rx_err(priv))
2561 printk(KERN_WARNING
2562 "%s: Missing skb!\n", dev->name);
2563 rx_queue->stats.rx_dropped++;
2564 priv->extra_stats.rx_skbmissing++;
2565 }
2566
2567 }
2568
2569 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2570
2571 /* Setup the new bdp */
2572 gfar_new_rxbdp(rx_queue, bdp, newskb);
2573
2574 /* Update to the next pointer */
2575 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2576
2577 /* update to point at the next skb */
2578 rx_queue->skb_currx =
2579 (rx_queue->skb_currx + 1) &
2580 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2581 }
2582
2583 /* Update the current rxbd pointer to be the next one */
2584 rx_queue->cur_rx = bdp;
2585
2586 return howmany;
2587 }
2588
2589 static int gfar_poll(struct napi_struct *napi, int budget)
2590 {
2591 struct gfar_priv_grp *gfargrp = container_of(napi,
2592 struct gfar_priv_grp, napi);
2593 struct gfar_private *priv = gfargrp->priv;
2594 struct gfar __iomem *regs = gfargrp->regs;
2595 struct gfar_priv_tx_q *tx_queue = NULL;
2596 struct gfar_priv_rx_q *rx_queue = NULL;
2597 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2598 int tx_cleaned = 0, i, left_over_budget = budget;
2599 unsigned long serviced_queues = 0;
2600 int num_queues = 0;
2601
2602 num_queues = gfargrp->num_rx_queues;
2603 budget_per_queue = budget/num_queues;
2604
2605 /* Clear IEVENT, so interrupts aren't called again
2606 * because of the packets that have already arrived */
2607 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2608
2609 while (num_queues && left_over_budget) {
2610
2611 budget_per_queue = left_over_budget/num_queues;
2612 left_over_budget = 0;
2613
2614 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2615 if (test_bit(i, &serviced_queues))
2616 continue;
2617 rx_queue = priv->rx_queue[i];
2618 tx_queue = priv->tx_queue[rx_queue->qindex];
2619
2620 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2621 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2622 budget_per_queue);
2623 rx_cleaned += rx_cleaned_per_queue;
2624 if(rx_cleaned_per_queue < budget_per_queue) {
2625 left_over_budget = left_over_budget +
2626 (budget_per_queue - rx_cleaned_per_queue);
2627 set_bit(i, &serviced_queues);
2628 num_queues--;
2629 }
2630 }
2631 }
2632
2633 if (tx_cleaned)
2634 return budget;
2635
2636 if (rx_cleaned < budget) {
2637 napi_complete(napi);
2638
2639 /* Clear the halt bit in RSTAT */
2640 gfar_write(&regs->rstat, gfargrp->rstat);
2641
2642 gfar_write(&regs->imask, IMASK_DEFAULT);
2643
2644 /* If we are coalescing interrupts, update the timer */
2645 /* Otherwise, clear it */
2646 gfar_configure_coalescing(priv,
2647 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2648 }
2649
2650 return rx_cleaned;
2651 }
2652
2653 #ifdef CONFIG_NET_POLL_CONTROLLER
2654 /*
2655 * Polling 'interrupt' - used by things like netconsole to send skbs
2656 * without having to re-enable interrupts. It's not called while
2657 * the interrupt routine is executing.
2658 */
2659 static void gfar_netpoll(struct net_device *dev)
2660 {
2661 struct gfar_private *priv = netdev_priv(dev);
2662 int i = 0;
2663
2664 /* If the device has multiple interrupts, run tx/rx */
2665 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2666 for (i = 0; i < priv->num_grps; i++) {
2667 disable_irq(priv->gfargrp[i].interruptTransmit);
2668 disable_irq(priv->gfargrp[i].interruptReceive);
2669 disable_irq(priv->gfargrp[i].interruptError);
2670 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2671 &priv->gfargrp[i]);
2672 enable_irq(priv->gfargrp[i].interruptError);
2673 enable_irq(priv->gfargrp[i].interruptReceive);
2674 enable_irq(priv->gfargrp[i].interruptTransmit);
2675 }
2676 } else {
2677 for (i = 0; i < priv->num_grps; i++) {
2678 disable_irq(priv->gfargrp[i].interruptTransmit);
2679 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2680 &priv->gfargrp[i]);
2681 enable_irq(priv->gfargrp[i].interruptTransmit);
2682 }
2683 }
2684 }
2685 #endif
2686
2687 /* The interrupt handler for devices with one interrupt */
2688 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2689 {
2690 struct gfar_priv_grp *gfargrp = grp_id;
2691
2692 /* Save ievent for future reference */
2693 u32 events = gfar_read(&gfargrp->regs->ievent);
2694
2695 /* Check for reception */
2696 if (events & IEVENT_RX_MASK)
2697 gfar_receive(irq, grp_id);
2698
2699 /* Check for transmit completion */
2700 if (events & IEVENT_TX_MASK)
2701 gfar_transmit(irq, grp_id);
2702
2703 /* Check for errors */
2704 if (events & IEVENT_ERR_MASK)
2705 gfar_error(irq, grp_id);
2706
2707 return IRQ_HANDLED;
2708 }
2709
2710 /* Called every time the controller might need to be made
2711 * aware of new link state. The PHY code conveys this
2712 * information through variables in the phydev structure, and this
2713 * function converts those variables into the appropriate
2714 * register values, and can bring down the device if needed.
2715 */
2716 static void adjust_link(struct net_device *dev)
2717 {
2718 struct gfar_private *priv = netdev_priv(dev);
2719 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2720 unsigned long flags;
2721 struct phy_device *phydev = priv->phydev;
2722 int new_state = 0;
2723
2724 local_irq_save(flags);
2725 lock_tx_qs(priv);
2726
2727 if (phydev->link) {
2728 u32 tempval = gfar_read(&regs->maccfg2);
2729 u32 ecntrl = gfar_read(&regs->ecntrl);
2730
2731 /* Now we make sure that we can be in full duplex mode.
2732 * If not, we operate in half-duplex mode. */
2733 if (phydev->duplex != priv->oldduplex) {
2734 new_state = 1;
2735 if (!(phydev->duplex))
2736 tempval &= ~(MACCFG2_FULL_DUPLEX);
2737 else
2738 tempval |= MACCFG2_FULL_DUPLEX;
2739
2740 priv->oldduplex = phydev->duplex;
2741 }
2742
2743 if (phydev->speed != priv->oldspeed) {
2744 new_state = 1;
2745 switch (phydev->speed) {
2746 case 1000:
2747 tempval =
2748 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2749
2750 ecntrl &= ~(ECNTRL_R100);
2751 break;
2752 case 100:
2753 case 10:
2754 tempval =
2755 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2756
2757 /* Reduced mode distinguishes
2758 * between 10 and 100 */
2759 if (phydev->speed == SPEED_100)
2760 ecntrl |= ECNTRL_R100;
2761 else
2762 ecntrl &= ~(ECNTRL_R100);
2763 break;
2764 default:
2765 if (netif_msg_link(priv))
2766 printk(KERN_WARNING
2767 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2768 dev->name, phydev->speed);
2769 break;
2770 }
2771
2772 priv->oldspeed = phydev->speed;
2773 }
2774
2775 gfar_write(&regs->maccfg2, tempval);
2776 gfar_write(&regs->ecntrl, ecntrl);
2777
2778 if (!priv->oldlink) {
2779 new_state = 1;
2780 priv->oldlink = 1;
2781 }
2782 } else if (priv->oldlink) {
2783 new_state = 1;
2784 priv->oldlink = 0;
2785 priv->oldspeed = 0;
2786 priv->oldduplex = -1;
2787 }
2788
2789 if (new_state && netif_msg_link(priv))
2790 phy_print_status(phydev);
2791 unlock_tx_qs(priv);
2792 local_irq_restore(flags);
2793 }
2794
2795 /* Update the hash table based on the current list of multicast
2796 * addresses we subscribe to. Also, change the promiscuity of
2797 * the device based on the flags (this function is called
2798 * whenever dev->flags is changed */
2799 static void gfar_set_multi(struct net_device *dev)
2800 {
2801 struct dev_mc_list *mc_ptr;
2802 struct gfar_private *priv = netdev_priv(dev);
2803 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2804 u32 tempval;
2805
2806 if (dev->flags & IFF_PROMISC) {
2807 /* Set RCTRL to PROM */
2808 tempval = gfar_read(&regs->rctrl);
2809 tempval |= RCTRL_PROM;
2810 gfar_write(&regs->rctrl, tempval);
2811 } else {
2812 /* Set RCTRL to not PROM */
2813 tempval = gfar_read(&regs->rctrl);
2814 tempval &= ~(RCTRL_PROM);
2815 gfar_write(&regs->rctrl, tempval);
2816 }
2817
2818 if (dev->flags & IFF_ALLMULTI) {
2819 /* Set the hash to rx all multicast frames */
2820 gfar_write(&regs->igaddr0, 0xffffffff);
2821 gfar_write(&regs->igaddr1, 0xffffffff);
2822 gfar_write(&regs->igaddr2, 0xffffffff);
2823 gfar_write(&regs->igaddr3, 0xffffffff);
2824 gfar_write(&regs->igaddr4, 0xffffffff);
2825 gfar_write(&regs->igaddr5, 0xffffffff);
2826 gfar_write(&regs->igaddr6, 0xffffffff);
2827 gfar_write(&regs->igaddr7, 0xffffffff);
2828 gfar_write(&regs->gaddr0, 0xffffffff);
2829 gfar_write(&regs->gaddr1, 0xffffffff);
2830 gfar_write(&regs->gaddr2, 0xffffffff);
2831 gfar_write(&regs->gaddr3, 0xffffffff);
2832 gfar_write(&regs->gaddr4, 0xffffffff);
2833 gfar_write(&regs->gaddr5, 0xffffffff);
2834 gfar_write(&regs->gaddr6, 0xffffffff);
2835 gfar_write(&regs->gaddr7, 0xffffffff);
2836 } else {
2837 int em_num;
2838 int idx;
2839
2840 /* zero out the hash */
2841 gfar_write(&regs->igaddr0, 0x0);
2842 gfar_write(&regs->igaddr1, 0x0);
2843 gfar_write(&regs->igaddr2, 0x0);
2844 gfar_write(&regs->igaddr3, 0x0);
2845 gfar_write(&regs->igaddr4, 0x0);
2846 gfar_write(&regs->igaddr5, 0x0);
2847 gfar_write(&regs->igaddr6, 0x0);
2848 gfar_write(&regs->igaddr7, 0x0);
2849 gfar_write(&regs->gaddr0, 0x0);
2850 gfar_write(&regs->gaddr1, 0x0);
2851 gfar_write(&regs->gaddr2, 0x0);
2852 gfar_write(&regs->gaddr3, 0x0);
2853 gfar_write(&regs->gaddr4, 0x0);
2854 gfar_write(&regs->gaddr5, 0x0);
2855 gfar_write(&regs->gaddr6, 0x0);
2856 gfar_write(&regs->gaddr7, 0x0);
2857
2858 /* If we have extended hash tables, we need to
2859 * clear the exact match registers to prepare for
2860 * setting them */
2861 if (priv->extended_hash) {
2862 em_num = GFAR_EM_NUM + 1;
2863 gfar_clear_exact_match(dev);
2864 idx = 1;
2865 } else {
2866 idx = 0;
2867 em_num = 0;
2868 }
2869
2870 if (netdev_mc_empty(dev))
2871 return;
2872
2873 /* Parse the list, and set the appropriate bits */
2874 netdev_for_each_mc_addr(mc_ptr, dev) {
2875 if (idx < em_num) {
2876 gfar_set_mac_for_addr(dev, idx,
2877 mc_ptr->dmi_addr);
2878 idx++;
2879 } else
2880 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2881 }
2882 }
2883
2884 return;
2885 }
2886
2887
2888 /* Clears each of the exact match registers to zero, so they
2889 * don't interfere with normal reception */
2890 static void gfar_clear_exact_match(struct net_device *dev)
2891 {
2892 int idx;
2893 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2894
2895 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2896 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2897 }
2898
2899 /* Set the appropriate hash bit for the given addr */
2900 /* The algorithm works like so:
2901 * 1) Take the Destination Address (ie the multicast address), and
2902 * do a CRC on it (little endian), and reverse the bits of the
2903 * result.
2904 * 2) Use the 8 most significant bits as a hash into a 256-entry
2905 * table. The table is controlled through 8 32-bit registers:
2906 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2907 * gaddr7. This means that the 3 most significant bits in the
2908 * hash index which gaddr register to use, and the 5 other bits
2909 * indicate which bit (assuming an IBM numbering scheme, which
2910 * for PowerPC (tm) is usually the case) in the register holds
2911 * the entry. */
2912 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2913 {
2914 u32 tempval;
2915 struct gfar_private *priv = netdev_priv(dev);
2916 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2917 int width = priv->hash_width;
2918 u8 whichbit = (result >> (32 - width)) & 0x1f;
2919 u8 whichreg = result >> (32 - width + 5);
2920 u32 value = (1 << (31-whichbit));
2921
2922 tempval = gfar_read(priv->hash_regs[whichreg]);
2923 tempval |= value;
2924 gfar_write(priv->hash_regs[whichreg], tempval);
2925
2926 return;
2927 }
2928
2929
2930 /* There are multiple MAC Address register pairs on some controllers
2931 * This function sets the numth pair to a given address
2932 */
2933 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2934 {
2935 struct gfar_private *priv = netdev_priv(dev);
2936 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2937 int idx;
2938 char tmpbuf[MAC_ADDR_LEN];
2939 u32 tempval;
2940 u32 __iomem *macptr = &regs->macstnaddr1;
2941
2942 macptr += num*2;
2943
2944 /* Now copy it into the mac registers backwards, cuz */
2945 /* little endian is silly */
2946 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2947 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2948
2949 gfar_write(macptr, *((u32 *) (tmpbuf)));
2950
2951 tempval = *((u32 *) (tmpbuf + 4));
2952
2953 gfar_write(macptr+1, tempval);
2954 }
2955
2956 /* GFAR error interrupt handler */
2957 static irqreturn_t gfar_error(int irq, void *grp_id)
2958 {
2959 struct gfar_priv_grp *gfargrp = grp_id;
2960 struct gfar __iomem *regs = gfargrp->regs;
2961 struct gfar_private *priv= gfargrp->priv;
2962 struct net_device *dev = priv->ndev;
2963
2964 /* Save ievent for future reference */
2965 u32 events = gfar_read(&regs->ievent);
2966
2967 /* Clear IEVENT */
2968 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2969
2970 /* Magic Packet is not an error. */
2971 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2972 (events & IEVENT_MAG))
2973 events &= ~IEVENT_MAG;
2974
2975 /* Hmm... */
2976 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2977 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2978 dev->name, events, gfar_read(&regs->imask));
2979
2980 /* Update the error counters */
2981 if (events & IEVENT_TXE) {
2982 dev->stats.tx_errors++;
2983
2984 if (events & IEVENT_LC)
2985 dev->stats.tx_window_errors++;
2986 if (events & IEVENT_CRL)
2987 dev->stats.tx_aborted_errors++;
2988 if (events & IEVENT_XFUN) {
2989 unsigned long flags;
2990
2991 if (netif_msg_tx_err(priv))
2992 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2993 "packet dropped.\n", dev->name);
2994 dev->stats.tx_dropped++;
2995 priv->extra_stats.tx_underrun++;
2996
2997 local_irq_save(flags);
2998 lock_tx_qs(priv);
2999
3000 /* Reactivate the Tx Queues */
3001 gfar_write(&regs->tstat, gfargrp->tstat);
3002
3003 unlock_tx_qs(priv);
3004 local_irq_restore(flags);
3005 }
3006 if (netif_msg_tx_err(priv))
3007 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3008 }
3009 if (events & IEVENT_BSY) {
3010 dev->stats.rx_errors++;
3011 priv->extra_stats.rx_bsy++;
3012
3013 gfar_receive(irq, grp_id);
3014
3015 if (netif_msg_rx_err(priv))
3016 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3017 dev->name, gfar_read(&regs->rstat));
3018 }
3019 if (events & IEVENT_BABR) {
3020 dev->stats.rx_errors++;
3021 priv->extra_stats.rx_babr++;
3022
3023 if (netif_msg_rx_err(priv))
3024 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3025 }
3026 if (events & IEVENT_EBERR) {
3027 priv->extra_stats.eberr++;
3028 if (netif_msg_rx_err(priv))
3029 printk(KERN_DEBUG "%s: bus error\n", dev->name);
3030 }
3031 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3032 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3033
3034 if (events & IEVENT_BABT) {
3035 priv->extra_stats.tx_babt++;
3036 if (netif_msg_tx_err(priv))
3037 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3038 }
3039 return IRQ_HANDLED;
3040 }
3041
3042 static struct of_device_id gfar_match[] =
3043 {
3044 {
3045 .type = "network",
3046 .compatible = "gianfar",
3047 },
3048 {
3049 .compatible = "fsl,etsec2",
3050 },
3051 {},
3052 };
3053 MODULE_DEVICE_TABLE(of, gfar_match);
3054
3055 /* Structure for a device driver */
3056 static struct of_platform_driver gfar_driver = {
3057 .name = "fsl-gianfar",
3058 .match_table = gfar_match,
3059
3060 .probe = gfar_probe,
3061 .remove = gfar_remove,
3062 .suspend = gfar_legacy_suspend,
3063 .resume = gfar_legacy_resume,
3064 .driver.pm = GFAR_PM_OPS,
3065 };
3066
3067 static int __init gfar_init(void)
3068 {
3069 return of_register_platform_driver(&gfar_driver);
3070 }
3071
3072 static void __exit gfar_exit(void)
3073 {
3074 of_unregister_platform_driver(&gfar_driver);
3075 }
3076
3077 module_init(gfar_init);
3078 module_exit(gfar_exit);
3079
This page took 0.092706 seconds and 6 git commands to generate.