Merge branch 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux...
[deliverable/linux.git] / drivers / net / hamachi.c
1 /* hamachi.c: A Packet Engines GNIC-II Gigabit Ethernet driver for Linux. */
2 /*
3 Written 1998-2000 by Donald Becker.
4 Updates 2000 by Keith Underwood.
5
6 This software may be used and distributed according to the terms of
7 the GNU General Public License (GPL), incorporated herein by reference.
8 Drivers based on or derived from this code fall under the GPL and must
9 retain the authorship, copyright and license notice. This file is not
10 a complete program and may only be used when the entire operating
11 system is licensed under the GPL.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 This driver is for the Packet Engines GNIC-II PCI Gigabit Ethernet
19 adapter.
20
21 Support and updates available at
22 http://www.scyld.com/network/hamachi.html
23 [link no longer provides useful info -jgarzik]
24 or
25 http://www.parl.clemson.edu/~keithu/hamachi.html
26
27 */
28
29 #define DRV_NAME "hamachi"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "Sept 11, 2006"
32
33
34 /* A few user-configurable values. */
35
36 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
37 #define final_version
38 #define hamachi_debug debug
39 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
40 static int max_interrupt_work = 40;
41 static int mtu;
42 /* Default values selected by testing on a dual processor PIII-450 */
43 /* These six interrupt control parameters may be set directly when loading the
44 * module, or through the rx_params and tx_params variables
45 */
46 static int max_rx_latency = 0x11;
47 static int max_rx_gap = 0x05;
48 static int min_rx_pkt = 0x18;
49 static int max_tx_latency = 0x00;
50 static int max_tx_gap = 0x00;
51 static int min_tx_pkt = 0x30;
52
53 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
54 -Setting to > 1518 causes all frames to be copied
55 -Setting to 0 disables copies
56 */
57 static int rx_copybreak;
58
59 /* An override for the hardware detection of bus width.
60 Set to 1 to force 32 bit PCI bus detection. Set to 4 to force 64 bit.
61 Add 2 to disable parity detection.
62 */
63 static int force32;
64
65
66 /* Used to pass the media type, etc.
67 These exist for driver interoperability.
68 No media types are currently defined.
69 - The lower 4 bits are reserved for the media type.
70 - The next three bits may be set to one of the following:
71 0x00000000 : Autodetect PCI bus
72 0x00000010 : Force 32 bit PCI bus
73 0x00000020 : Disable parity detection
74 0x00000040 : Force 64 bit PCI bus
75 Default is autodetect
76 - The next bit can be used to force half-duplex. This is a bad
77 idea since no known implementations implement half-duplex, and,
78 in general, half-duplex for gigabit ethernet is a bad idea.
79 0x00000080 : Force half-duplex
80 Default is full-duplex.
81 - In the original driver, the ninth bit could be used to force
82 full-duplex. Maintain that for compatibility
83 0x00000200 : Force full-duplex
84 */
85 #define MAX_UNITS 8 /* More are supported, limit only on options */
86 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
87 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
88 /* The Hamachi chipset supports 3 parameters each for Rx and Tx
89 * interruput management. Parameters will be loaded as specified into
90 * the TxIntControl and RxIntControl registers.
91 *
92 * The registers are arranged as follows:
93 * 23 - 16 15 - 8 7 - 0
94 * _________________________________
95 * | min_pkt | max_gap | max_latency |
96 * ---------------------------------
97 * min_pkt : The minimum number of packets processed between
98 * interrupts.
99 * max_gap : The maximum inter-packet gap in units of 8.192 us
100 * max_latency : The absolute time between interrupts in units of 8.192 us
101 *
102 */
103 static int rx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
104 static int tx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
105
106 /* Operational parameters that are set at compile time. */
107
108 /* Keep the ring sizes a power of two for compile efficiency.
109 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
110 Making the Tx ring too large decreases the effectiveness of channel
111 bonding and packet priority.
112 There are no ill effects from too-large receive rings, except for
113 excessive memory usage */
114 /* Empirically it appears that the Tx ring needs to be a little bigger
115 for these Gbit adapters or you get into an overrun condition really
116 easily. Also, things appear to work a bit better in back-to-back
117 configurations if the Rx ring is 8 times the size of the Tx ring
118 */
119 #define TX_RING_SIZE 64
120 #define RX_RING_SIZE 512
121 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct hamachi_desc)
122 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct hamachi_desc)
123
124 /*
125 * Enable netdev_ioctl. Added interrupt coalescing parameter adjustment.
126 * 2/19/99 Pete Wyckoff <wyckoff@ca.sandia.gov>
127 */
128
129 /* play with 64-bit addrlen; seems to be a teensy bit slower --pw */
130 /* #define ADDRLEN 64 */
131
132 /*
133 * RX_CHECKSUM turns on card-generated receive checksum generation for
134 * TCP and UDP packets. Otherwise the upper layers do the calculation.
135 * TX_CHECKSUM won't do anything too useful, even if it works. There's no
136 * easy mechanism by which to tell the TCP/UDP stack that it need not
137 * generate checksums for this device. But if somebody can find a way
138 * to get that to work, most of the card work is in here already.
139 * 3/10/1999 Pete Wyckoff <wyckoff@ca.sandia.gov>
140 */
141 #undef TX_CHECKSUM
142 #define RX_CHECKSUM
143
144 /* Operational parameters that usually are not changed. */
145 /* Time in jiffies before concluding the transmitter is hung. */
146 #define TX_TIMEOUT (5*HZ)
147
148 #include <linux/capability.h>
149 #include <linux/module.h>
150 #include <linux/kernel.h>
151 #include <linux/string.h>
152 #include <linux/timer.h>
153 #include <linux/time.h>
154 #include <linux/errno.h>
155 #include <linux/ioport.h>
156 #include <linux/interrupt.h>
157 #include <linux/pci.h>
158 #include <linux/init.h>
159 #include <linux/ethtool.h>
160 #include <linux/mii.h>
161 #include <linux/netdevice.h>
162 #include <linux/etherdevice.h>
163 #include <linux/skbuff.h>
164 #include <linux/ip.h>
165 #include <linux/delay.h>
166 #include <linux/bitops.h>
167
168 #include <asm/uaccess.h>
169 #include <asm/processor.h> /* Processor type for cache alignment. */
170 #include <asm/io.h>
171 #include <asm/unaligned.h>
172 #include <asm/cache.h>
173
174 static const char version[] __devinitconst =
175 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n"
176 " Some modifications by Eric kasten <kasten@nscl.msu.edu>\n"
177 " Further modifications by Keith Underwood <keithu@parl.clemson.edu>\n";
178
179
180 /* IP_MF appears to be only defined in <netinet/ip.h>, however,
181 we need it for hardware checksumming support. FYI... some of
182 the definitions in <netinet/ip.h> conflict/duplicate those in
183 other linux headers causing many compiler warnings.
184 */
185 #ifndef IP_MF
186 #define IP_MF 0x2000 /* IP more frags from <netinet/ip.h> */
187 #endif
188
189 /* Define IP_OFFSET to be IPOPT_OFFSET */
190 #ifndef IP_OFFSET
191 #ifdef IPOPT_OFFSET
192 #define IP_OFFSET IPOPT_OFFSET
193 #else
194 #define IP_OFFSET 2
195 #endif
196 #endif
197
198 #define RUN_AT(x) (jiffies + (x))
199
200 #ifndef ADDRLEN
201 #define ADDRLEN 32
202 #endif
203
204 /* Condensed bus+endian portability operations. */
205 #if ADDRLEN == 64
206 #define cpu_to_leXX(addr) cpu_to_le64(addr)
207 #define leXX_to_cpu(addr) le64_to_cpu(addr)
208 #else
209 #define cpu_to_leXX(addr) cpu_to_le32(addr)
210 #define leXX_to_cpu(addr) le32_to_cpu(addr)
211 #endif
212
213
214 /*
215 Theory of Operation
216
217 I. Board Compatibility
218
219 This device driver is designed for the Packet Engines "Hamachi"
220 Gigabit Ethernet chip. The only PCA currently supported is the GNIC-II 64-bit
221 66Mhz PCI card.
222
223 II. Board-specific settings
224
225 No jumpers exist on the board. The chip supports software correction of
226 various motherboard wiring errors, however this driver does not support
227 that feature.
228
229 III. Driver operation
230
231 IIIa. Ring buffers
232
233 The Hamachi uses a typical descriptor based bus-master architecture.
234 The descriptor list is similar to that used by the Digital Tulip.
235 This driver uses two statically allocated fixed-size descriptor lists
236 formed into rings by a branch from the final descriptor to the beginning of
237 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
238
239 This driver uses a zero-copy receive and transmit scheme similar my other
240 network drivers.
241 The driver allocates full frame size skbuffs for the Rx ring buffers at
242 open() time and passes the skb->data field to the Hamachi as receive data
243 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
244 a fresh skbuff is allocated and the frame is copied to the new skbuff.
245 When the incoming frame is larger, the skbuff is passed directly up the
246 protocol stack and replaced by a newly allocated skbuff.
247
248 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
249 using a full-sized skbuff for small frames vs. the copying costs of larger
250 frames. Gigabit cards are typically used on generously configured machines
251 and the underfilled buffers have negligible impact compared to the benefit of
252 a single allocation size, so the default value of zero results in never
253 copying packets.
254
255 IIIb/c. Transmit/Receive Structure
256
257 The Rx and Tx descriptor structure are straight-forward, with no historical
258 baggage that must be explained. Unlike the awkward DBDMA structure, there
259 are no unused fields or option bits that had only one allowable setting.
260
261 Two details should be noted about the descriptors: The chip supports both 32
262 bit and 64 bit address structures, and the length field is overwritten on
263 the receive descriptors. The descriptor length is set in the control word
264 for each channel. The development driver uses 32 bit addresses only, however
265 64 bit addresses may be enabled for 64 bit architectures e.g. the Alpha.
266
267 IIId. Synchronization
268
269 This driver is very similar to my other network drivers.
270 The driver runs as two independent, single-threaded flows of control. One
271 is the send-packet routine, which enforces single-threaded use by the
272 dev->tbusy flag. The other thread is the interrupt handler, which is single
273 threaded by the hardware and other software.
274
275 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
276 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
277 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
278 the 'hmp->tx_full' flag.
279
280 The interrupt handler has exclusive control over the Rx ring and records stats
281 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
282 empty by incrementing the dirty_tx mark. Iff the 'hmp->tx_full' flag is set, it
283 clears both the tx_full and tbusy flags.
284
285 IV. Notes
286
287 Thanks to Kim Stearns of Packet Engines for providing a pair of GNIC-II boards.
288
289 IVb. References
290
291 Hamachi Engineering Design Specification, 5/15/97
292 (Note: This version was marked "Confidential".)
293
294 IVc. Errata
295
296 None noted.
297
298 V. Recent Changes
299
300 01/15/1999 EPK Enlargement of the TX and RX ring sizes. This appears
301 to help avoid some stall conditions -- this needs further research.
302
303 01/15/1999 EPK Creation of the hamachi_tx function. This function cleans
304 the Tx ring and is called from hamachi_start_xmit (this used to be
305 called from hamachi_interrupt but it tends to delay execution of the
306 interrupt handler and thus reduce bandwidth by reducing the latency
307 between hamachi_rx()'s). Notably, some modification has been made so
308 that the cleaning loop checks only to make sure that the DescOwn bit
309 isn't set in the status flag since the card is not required
310 to set the entire flag to zero after processing.
311
312 01/15/1999 EPK In the hamachi_start_tx function, the Tx ring full flag is
313 checked before attempting to add a buffer to the ring. If the ring is full
314 an attempt is made to free any dirty buffers and thus find space for
315 the new buffer or the function returns non-zero which should case the
316 scheduler to reschedule the buffer later.
317
318 01/15/1999 EPK Some adjustments were made to the chip initialization.
319 End-to-end flow control should now be fully active and the interrupt
320 algorithm vars have been changed. These could probably use further tuning.
321
322 01/15/1999 EPK Added the max_{rx,tx}_latency options. These are used to
323 set the rx and tx latencies for the Hamachi interrupts. If you're having
324 problems with network stalls, try setting these to higher values.
325 Valid values are 0x00 through 0xff.
326
327 01/15/1999 EPK In general, the overall bandwidth has increased and
328 latencies are better (sometimes by a factor of 2). Stalls are rare at
329 this point, however there still appears to be a bug somewhere between the
330 hardware and driver. TCP checksum errors under load also appear to be
331 eliminated at this point.
332
333 01/18/1999 EPK Ensured that the DescEndRing bit was being set on both the
334 Rx and Tx rings. This appears to have been affecting whether a particular
335 peer-to-peer connection would hang under high load. I believe the Rx
336 rings was typically getting set correctly, but the Tx ring wasn't getting
337 the DescEndRing bit set during initialization. ??? Does this mean the
338 hamachi card is using the DescEndRing in processing even if a particular
339 slot isn't in use -- hypothetically, the card might be searching the
340 entire Tx ring for slots with the DescOwn bit set and then processing
341 them. If the DescEndRing bit isn't set, then it might just wander off
342 through memory until it hits a chunk of data with that bit set
343 and then looping back.
344
345 02/09/1999 EPK Added Michel Mueller's TxDMA Interrupt and Tx-timeout
346 problem (TxCmd and RxCmd need only to be set when idle or stopped.
347
348 02/09/1999 EPK Added code to check/reset dev->tbusy in hamachi_interrupt.
349 (Michel Mueller pointed out the ``permanently busy'' potential
350 problem here).
351
352 02/22/1999 EPK Added Pete Wyckoff's ioctl to control the Tx/Rx latencies.
353
354 02/23/1999 EPK Verified that the interrupt status field bits for Tx were
355 incorrectly defined and corrected (as per Michel Mueller).
356
357 02/23/1999 EPK Corrected the Tx full check to check that at least 4 slots
358 were available before reseting the tbusy and tx_full flags
359 (as per Michel Mueller).
360
361 03/11/1999 EPK Added Pete Wyckoff's hardware checksumming support.
362
363 12/31/1999 KDU Cleaned up assorted things and added Don's code to force
364 32 bit.
365
366 02/20/2000 KDU Some of the control was just plain odd. Cleaned up the
367 hamachi_start_xmit() and hamachi_interrupt() code. There is still some
368 re-structuring I would like to do.
369
370 03/01/2000 KDU Experimenting with a WIDE range of interrupt mitigation
371 parameters on a dual P3-450 setup yielded the new default interrupt
372 mitigation parameters. Tx should interrupt VERY infrequently due to
373 Eric's scheme. Rx should be more often...
374
375 03/13/2000 KDU Added a patch to make the Rx Checksum code interact
376 nicely with non-linux machines.
377
378 03/13/2000 KDU Experimented with some of the configuration values:
379
380 -It seems that enabling PCI performance commands for descriptors
381 (changing RxDMACtrl and TxDMACtrl lower nibble from 5 to D) has minimal
382 performance impact for any of my tests. (ttcp, netpipe, netperf) I will
383 leave them that way until I hear further feedback.
384
385 -Increasing the PCI_LATENCY_TIMER to 130
386 (2 + (burst size of 128 * (0 wait states + 1))) seems to slightly
387 degrade performance. Leaving default at 64 pending further information.
388
389 03/14/2000 KDU Further tuning:
390
391 -adjusted boguscnt in hamachi_rx() to depend on interrupt
392 mitigation parameters chosen.
393
394 -Selected a set of interrupt parameters based on some extensive testing.
395 These may change with more testing.
396
397 TO DO:
398
399 -Consider borrowing from the acenic driver code to check PCI_COMMAND for
400 PCI_COMMAND_INVALIDATE. Set maximum burst size to cache line size in
401 that case.
402
403 -fix the reset procedure. It doesn't quite work.
404 */
405
406 /* A few values that may be tweaked. */
407 /* Size of each temporary Rx buffer, calculated as:
408 * 1518 bytes (ethernet packet) + 2 bytes (to get 8 byte alignment for
409 * the card) + 8 bytes of status info + 8 bytes for the Rx Checksum
410 */
411 #define PKT_BUF_SZ 1536
412
413 /* For now, this is going to be set to the maximum size of an ethernet
414 * packet. Eventually, we may want to make it a variable that is
415 * related to the MTU
416 */
417 #define MAX_FRAME_SIZE 1518
418
419 /* The rest of these values should never change. */
420
421 static void hamachi_timer(unsigned long data);
422
423 enum capability_flags {CanHaveMII=1, };
424 static const struct chip_info {
425 u16 vendor_id, device_id, device_id_mask, pad;
426 const char *name;
427 void (*media_timer)(unsigned long data);
428 int flags;
429 } chip_tbl[] = {
430 {0x1318, 0x0911, 0xffff, 0, "Hamachi GNIC-II", hamachi_timer, 0},
431 {0,},
432 };
433
434 /* Offsets to the Hamachi registers. Various sizes. */
435 enum hamachi_offsets {
436 TxDMACtrl=0x00, TxCmd=0x04, TxStatus=0x06, TxPtr=0x08, TxCurPtr=0x10,
437 RxDMACtrl=0x20, RxCmd=0x24, RxStatus=0x26, RxPtr=0x28, RxCurPtr=0x30,
438 PCIClkMeas=0x060, MiscStatus=0x066, ChipRev=0x68, ChipReset=0x06B,
439 LEDCtrl=0x06C, VirtualJumpers=0x06D, GPIO=0x6E,
440 TxChecksum=0x074, RxChecksum=0x076,
441 TxIntrCtrl=0x078, RxIntrCtrl=0x07C,
442 InterruptEnable=0x080, InterruptClear=0x084, IntrStatus=0x088,
443 EventStatus=0x08C,
444 MACCnfg=0x0A0, FrameGap0=0x0A2, FrameGap1=0x0A4,
445 /* See enum MII_offsets below. */
446 MACCnfg2=0x0B0, RxDepth=0x0B8, FlowCtrl=0x0BC, MaxFrameSize=0x0CE,
447 AddrMode=0x0D0, StationAddr=0x0D2,
448 /* Gigabit AutoNegotiation. */
449 ANCtrl=0x0E0, ANStatus=0x0E2, ANXchngCtrl=0x0E4, ANAdvertise=0x0E8,
450 ANLinkPartnerAbility=0x0EA,
451 EECmdStatus=0x0F0, EEData=0x0F1, EEAddr=0x0F2,
452 FIFOcfg=0x0F8,
453 };
454
455 /* Offsets to the MII-mode registers. */
456 enum MII_offsets {
457 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
458 MII_Status=0xAE,
459 };
460
461 /* Bits in the interrupt status/mask registers. */
462 enum intr_status_bits {
463 IntrRxDone=0x01, IntrRxPCIFault=0x02, IntrRxPCIErr=0x04,
464 IntrTxDone=0x100, IntrTxPCIFault=0x200, IntrTxPCIErr=0x400,
465 LinkChange=0x10000, NegotiationChange=0x20000, StatsMax=0x40000, };
466
467 /* The Hamachi Rx and Tx buffer descriptors. */
468 struct hamachi_desc {
469 __le32 status_n_length;
470 #if ADDRLEN == 64
471 u32 pad;
472 __le64 addr;
473 #else
474 __le32 addr;
475 #endif
476 };
477
478 /* Bits in hamachi_desc.status_n_length */
479 enum desc_status_bits {
480 DescOwn=0x80000000, DescEndPacket=0x40000000, DescEndRing=0x20000000,
481 DescIntr=0x10000000,
482 };
483
484 #define PRIV_ALIGN 15 /* Required alignment mask */
485 #define MII_CNT 4
486 struct hamachi_private {
487 /* Descriptor rings first for alignment. Tx requires a second descriptor
488 for status. */
489 struct hamachi_desc *rx_ring;
490 struct hamachi_desc *tx_ring;
491 struct sk_buff* rx_skbuff[RX_RING_SIZE];
492 struct sk_buff* tx_skbuff[TX_RING_SIZE];
493 dma_addr_t tx_ring_dma;
494 dma_addr_t rx_ring_dma;
495 struct timer_list timer; /* Media selection timer. */
496 /* Frequently used and paired value: keep adjacent for cache effect. */
497 spinlock_t lock;
498 int chip_id;
499 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
500 unsigned int cur_tx, dirty_tx;
501 unsigned int rx_buf_sz; /* Based on MTU+slack. */
502 unsigned int tx_full:1; /* The Tx queue is full. */
503 unsigned int duplex_lock:1;
504 unsigned int default_port:4; /* Last dev->if_port value. */
505 /* MII transceiver section. */
506 int mii_cnt; /* MII device addresses. */
507 struct mii_if_info mii_if; /* MII lib hooks/info */
508 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
509 u32 rx_int_var, tx_int_var; /* interrupt control variables */
510 u32 option; /* Hold on to a copy of the options */
511 struct pci_dev *pci_dev;
512 void __iomem *base;
513 };
514
515 MODULE_AUTHOR("Donald Becker <becker@scyld.com>, Eric Kasten <kasten@nscl.msu.edu>, Keith Underwood <keithu@parl.clemson.edu>");
516 MODULE_DESCRIPTION("Packet Engines 'Hamachi' GNIC-II Gigabit Ethernet driver");
517 MODULE_LICENSE("GPL");
518
519 module_param(max_interrupt_work, int, 0);
520 module_param(mtu, int, 0);
521 module_param(debug, int, 0);
522 module_param(min_rx_pkt, int, 0);
523 module_param(max_rx_gap, int, 0);
524 module_param(max_rx_latency, int, 0);
525 module_param(min_tx_pkt, int, 0);
526 module_param(max_tx_gap, int, 0);
527 module_param(max_tx_latency, int, 0);
528 module_param(rx_copybreak, int, 0);
529 module_param_array(rx_params, int, NULL, 0);
530 module_param_array(tx_params, int, NULL, 0);
531 module_param_array(options, int, NULL, 0);
532 module_param_array(full_duplex, int, NULL, 0);
533 module_param(force32, int, 0);
534 MODULE_PARM_DESC(max_interrupt_work, "GNIC-II maximum events handled per interrupt");
535 MODULE_PARM_DESC(mtu, "GNIC-II MTU (all boards)");
536 MODULE_PARM_DESC(debug, "GNIC-II debug level (0-7)");
537 MODULE_PARM_DESC(min_rx_pkt, "GNIC-II minimum Rx packets processed between interrupts");
538 MODULE_PARM_DESC(max_rx_gap, "GNIC-II maximum Rx inter-packet gap in 8.192 microsecond units");
539 MODULE_PARM_DESC(max_rx_latency, "GNIC-II time between Rx interrupts in 8.192 microsecond units");
540 MODULE_PARM_DESC(min_tx_pkt, "GNIC-II minimum Tx packets processed between interrupts");
541 MODULE_PARM_DESC(max_tx_gap, "GNIC-II maximum Tx inter-packet gap in 8.192 microsecond units");
542 MODULE_PARM_DESC(max_tx_latency, "GNIC-II time between Tx interrupts in 8.192 microsecond units");
543 MODULE_PARM_DESC(rx_copybreak, "GNIC-II copy breakpoint for copy-only-tiny-frames");
544 MODULE_PARM_DESC(rx_params, "GNIC-II min_rx_pkt+max_rx_gap+max_rx_latency");
545 MODULE_PARM_DESC(tx_params, "GNIC-II min_tx_pkt+max_tx_gap+max_tx_latency");
546 MODULE_PARM_DESC(options, "GNIC-II Bits 0-3: media type, bits 4-6: as force32, bit 7: half duplex, bit 9 full duplex");
547 MODULE_PARM_DESC(full_duplex, "GNIC-II full duplex setting(s) (1)");
548 MODULE_PARM_DESC(force32, "GNIC-II: Bit 0: 32 bit PCI, bit 1: disable parity, bit 2: 64 bit PCI (all boards)");
549
550 static int read_eeprom(void __iomem *ioaddr, int location);
551 static int mdio_read(struct net_device *dev, int phy_id, int location);
552 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
553 static int hamachi_open(struct net_device *dev);
554 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
555 static void hamachi_timer(unsigned long data);
556 static void hamachi_tx_timeout(struct net_device *dev);
557 static void hamachi_init_ring(struct net_device *dev);
558 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb,
559 struct net_device *dev);
560 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance);
561 static int hamachi_rx(struct net_device *dev);
562 static inline int hamachi_tx(struct net_device *dev);
563 static void hamachi_error(struct net_device *dev, int intr_status);
564 static int hamachi_close(struct net_device *dev);
565 static struct net_device_stats *hamachi_get_stats(struct net_device *dev);
566 static void set_rx_mode(struct net_device *dev);
567 static const struct ethtool_ops ethtool_ops;
568 static const struct ethtool_ops ethtool_ops_no_mii;
569
570 static const struct net_device_ops hamachi_netdev_ops = {
571 .ndo_open = hamachi_open,
572 .ndo_stop = hamachi_close,
573 .ndo_start_xmit = hamachi_start_xmit,
574 .ndo_get_stats = hamachi_get_stats,
575 .ndo_set_multicast_list = set_rx_mode,
576 .ndo_change_mtu = eth_change_mtu,
577 .ndo_validate_addr = eth_validate_addr,
578 .ndo_set_mac_address = eth_mac_addr,
579 .ndo_tx_timeout = hamachi_tx_timeout,
580 .ndo_do_ioctl = netdev_ioctl,
581 };
582
583
584 static int __devinit hamachi_init_one (struct pci_dev *pdev,
585 const struct pci_device_id *ent)
586 {
587 struct hamachi_private *hmp;
588 int option, i, rx_int_var, tx_int_var, boguscnt;
589 int chip_id = ent->driver_data;
590 int irq;
591 void __iomem *ioaddr;
592 unsigned long base;
593 static int card_idx;
594 struct net_device *dev;
595 void *ring_space;
596 dma_addr_t ring_dma;
597 int ret = -ENOMEM;
598
599 /* when built into the kernel, we only print version if device is found */
600 #ifndef MODULE
601 static int printed_version;
602 if (!printed_version++)
603 printk(version);
604 #endif
605
606 if (pci_enable_device(pdev)) {
607 ret = -EIO;
608 goto err_out;
609 }
610
611 base = pci_resource_start(pdev, 0);
612 #ifdef __alpha__ /* Really "64 bit addrs" */
613 base |= (pci_resource_start(pdev, 1) << 32);
614 #endif
615
616 pci_set_master(pdev);
617
618 i = pci_request_regions(pdev, DRV_NAME);
619 if (i)
620 return i;
621
622 irq = pdev->irq;
623 ioaddr = ioremap(base, 0x400);
624 if (!ioaddr)
625 goto err_out_release;
626
627 dev = alloc_etherdev(sizeof(struct hamachi_private));
628 if (!dev)
629 goto err_out_iounmap;
630
631 SET_NETDEV_DEV(dev, &pdev->dev);
632
633 #ifdef TX_CHECKSUM
634 printk("check that skbcopy in ip_queue_xmit isn't happening\n");
635 dev->hard_header_len += 8; /* for cksum tag */
636 #endif
637
638 for (i = 0; i < 6; i++)
639 dev->dev_addr[i] = 1 ? read_eeprom(ioaddr, 4 + i)
640 : readb(ioaddr + StationAddr + i);
641
642 #if ! defined(final_version)
643 if (hamachi_debug > 4)
644 for (i = 0; i < 0x10; i++)
645 printk("%2.2x%s",
646 read_eeprom(ioaddr, i), i % 16 != 15 ? " " : "\n");
647 #endif
648
649 hmp = netdev_priv(dev);
650 spin_lock_init(&hmp->lock);
651
652 hmp->mii_if.dev = dev;
653 hmp->mii_if.mdio_read = mdio_read;
654 hmp->mii_if.mdio_write = mdio_write;
655 hmp->mii_if.phy_id_mask = 0x1f;
656 hmp->mii_if.reg_num_mask = 0x1f;
657
658 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
659 if (!ring_space)
660 goto err_out_cleardev;
661 hmp->tx_ring = (struct hamachi_desc *)ring_space;
662 hmp->tx_ring_dma = ring_dma;
663
664 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
665 if (!ring_space)
666 goto err_out_unmap_tx;
667 hmp->rx_ring = (struct hamachi_desc *)ring_space;
668 hmp->rx_ring_dma = ring_dma;
669
670 /* Check for options being passed in */
671 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
672 if (dev->mem_start)
673 option = dev->mem_start;
674
675 /* If the bus size is misidentified, do the following. */
676 force32 = force32 ? force32 :
677 ((option >= 0) ? ((option & 0x00000070) >> 4) : 0 );
678 if (force32)
679 writeb(force32, ioaddr + VirtualJumpers);
680
681 /* Hmmm, do we really need to reset the chip???. */
682 writeb(0x01, ioaddr + ChipReset);
683
684 /* After a reset, the clock speed measurement of the PCI bus will not
685 * be valid for a moment. Wait for a little while until it is. If
686 * it takes more than 10ms, forget it.
687 */
688 udelay(10);
689 i = readb(ioaddr + PCIClkMeas);
690 for (boguscnt = 0; (!(i & 0x080)) && boguscnt < 1000; boguscnt++){
691 udelay(10);
692 i = readb(ioaddr + PCIClkMeas);
693 }
694
695 hmp->base = ioaddr;
696 dev->base_addr = (unsigned long)ioaddr;
697 dev->irq = irq;
698 pci_set_drvdata(pdev, dev);
699
700 hmp->chip_id = chip_id;
701 hmp->pci_dev = pdev;
702
703 /* The lower four bits are the media type. */
704 if (option > 0) {
705 hmp->option = option;
706 if (option & 0x200)
707 hmp->mii_if.full_duplex = 1;
708 else if (option & 0x080)
709 hmp->mii_if.full_duplex = 0;
710 hmp->default_port = option & 15;
711 if (hmp->default_port)
712 hmp->mii_if.force_media = 1;
713 }
714 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
715 hmp->mii_if.full_duplex = 1;
716
717 /* lock the duplex mode if someone specified a value */
718 if (hmp->mii_if.full_duplex || (option & 0x080))
719 hmp->duplex_lock = 1;
720
721 /* Set interrupt tuning parameters */
722 max_rx_latency = max_rx_latency & 0x00ff;
723 max_rx_gap = max_rx_gap & 0x00ff;
724 min_rx_pkt = min_rx_pkt & 0x00ff;
725 max_tx_latency = max_tx_latency & 0x00ff;
726 max_tx_gap = max_tx_gap & 0x00ff;
727 min_tx_pkt = min_tx_pkt & 0x00ff;
728
729 rx_int_var = card_idx < MAX_UNITS ? rx_params[card_idx] : -1;
730 tx_int_var = card_idx < MAX_UNITS ? tx_params[card_idx] : -1;
731 hmp->rx_int_var = rx_int_var >= 0 ? rx_int_var :
732 (min_rx_pkt << 16 | max_rx_gap << 8 | max_rx_latency);
733 hmp->tx_int_var = tx_int_var >= 0 ? tx_int_var :
734 (min_tx_pkt << 16 | max_tx_gap << 8 | max_tx_latency);
735
736
737 /* The Hamachi-specific entries in the device structure. */
738 dev->netdev_ops = &hamachi_netdev_ops;
739 if (chip_tbl[hmp->chip_id].flags & CanHaveMII)
740 SET_ETHTOOL_OPS(dev, &ethtool_ops);
741 else
742 SET_ETHTOOL_OPS(dev, &ethtool_ops_no_mii);
743 dev->watchdog_timeo = TX_TIMEOUT;
744 if (mtu)
745 dev->mtu = mtu;
746
747 i = register_netdev(dev);
748 if (i) {
749 ret = i;
750 goto err_out_unmap_rx;
751 }
752
753 printk(KERN_INFO "%s: %s type %x at %p, %pM, IRQ %d.\n",
754 dev->name, chip_tbl[chip_id].name, readl(ioaddr + ChipRev),
755 ioaddr, dev->dev_addr, irq);
756 i = readb(ioaddr + PCIClkMeas);
757 printk(KERN_INFO "%s: %d-bit %d Mhz PCI bus (%d), Virtual Jumpers "
758 "%2.2x, LPA %4.4x.\n",
759 dev->name, readw(ioaddr + MiscStatus) & 1 ? 64 : 32,
760 i ? 2000/(i&0x7f) : 0, i&0x7f, (int)readb(ioaddr + VirtualJumpers),
761 readw(ioaddr + ANLinkPartnerAbility));
762
763 if (chip_tbl[hmp->chip_id].flags & CanHaveMII) {
764 int phy, phy_idx = 0;
765 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
766 int mii_status = mdio_read(dev, phy, MII_BMSR);
767 if (mii_status != 0xffff &&
768 mii_status != 0x0000) {
769 hmp->phys[phy_idx++] = phy;
770 hmp->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
771 printk(KERN_INFO "%s: MII PHY found at address %d, status "
772 "0x%4.4x advertising %4.4x.\n",
773 dev->name, phy, mii_status, hmp->mii_if.advertising);
774 }
775 }
776 hmp->mii_cnt = phy_idx;
777 if (hmp->mii_cnt > 0)
778 hmp->mii_if.phy_id = hmp->phys[0];
779 else
780 memset(&hmp->mii_if, 0, sizeof(hmp->mii_if));
781 }
782 /* Configure gigabit autonegotiation. */
783 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */
784 writew(0x08e0, ioaddr + ANAdvertise); /* Set our advertise word. */
785 writew(0x1000, ioaddr + ANCtrl); /* Enable negotiation */
786
787 card_idx++;
788 return 0;
789
790 err_out_unmap_rx:
791 pci_free_consistent(pdev, RX_TOTAL_SIZE, hmp->rx_ring,
792 hmp->rx_ring_dma);
793 err_out_unmap_tx:
794 pci_free_consistent(pdev, TX_TOTAL_SIZE, hmp->tx_ring,
795 hmp->tx_ring_dma);
796 err_out_cleardev:
797 free_netdev (dev);
798 err_out_iounmap:
799 iounmap(ioaddr);
800 err_out_release:
801 pci_release_regions(pdev);
802 err_out:
803 return ret;
804 }
805
806 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
807 {
808 int bogus_cnt = 1000;
809
810 /* We should check busy first - per docs -KDU */
811 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0);
812 writew(location, ioaddr + EEAddr);
813 writeb(0x02, ioaddr + EECmdStatus);
814 bogus_cnt = 1000;
815 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0);
816 if (hamachi_debug > 5)
817 printk(" EEPROM status is %2.2x after %d ticks.\n",
818 (int)readb(ioaddr + EECmdStatus), 1000- bogus_cnt);
819 return readb(ioaddr + EEData);
820 }
821
822 /* MII Managemen Data I/O accesses.
823 These routines assume the MDIO controller is idle, and do not exit until
824 the command is finished. */
825
826 static int mdio_read(struct net_device *dev, int phy_id, int location)
827 {
828 struct hamachi_private *hmp = netdev_priv(dev);
829 void __iomem *ioaddr = hmp->base;
830 int i;
831
832 /* We should check busy first - per docs -KDU */
833 for (i = 10000; i >= 0; i--)
834 if ((readw(ioaddr + MII_Status) & 1) == 0)
835 break;
836 writew((phy_id<<8) + location, ioaddr + MII_Addr);
837 writew(0x0001, ioaddr + MII_Cmd);
838 for (i = 10000; i >= 0; i--)
839 if ((readw(ioaddr + MII_Status) & 1) == 0)
840 break;
841 return readw(ioaddr + MII_Rd_Data);
842 }
843
844 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
845 {
846 struct hamachi_private *hmp = netdev_priv(dev);
847 void __iomem *ioaddr = hmp->base;
848 int i;
849
850 /* We should check busy first - per docs -KDU */
851 for (i = 10000; i >= 0; i--)
852 if ((readw(ioaddr + MII_Status) & 1) == 0)
853 break;
854 writew((phy_id<<8) + location, ioaddr + MII_Addr);
855 writew(value, ioaddr + MII_Wr_Data);
856
857 /* Wait for the command to finish. */
858 for (i = 10000; i >= 0; i--)
859 if ((readw(ioaddr + MII_Status) & 1) == 0)
860 break;
861 }
862
863
864 static int hamachi_open(struct net_device *dev)
865 {
866 struct hamachi_private *hmp = netdev_priv(dev);
867 void __iomem *ioaddr = hmp->base;
868 int i;
869 u32 rx_int_var, tx_int_var;
870 u16 fifo_info;
871
872 i = request_irq(dev->irq, hamachi_interrupt, IRQF_SHARED, dev->name, dev);
873 if (i)
874 return i;
875
876 if (hamachi_debug > 1)
877 printk(KERN_DEBUG "%s: hamachi_open() irq %d.\n",
878 dev->name, dev->irq);
879
880 hamachi_init_ring(dev);
881
882 #if ADDRLEN == 64
883 /* writellll anyone ? */
884 writel(hmp->rx_ring_dma, ioaddr + RxPtr);
885 writel(hmp->rx_ring_dma >> 32, ioaddr + RxPtr + 4);
886 writel(hmp->tx_ring_dma, ioaddr + TxPtr);
887 writel(hmp->tx_ring_dma >> 32, ioaddr + TxPtr + 4);
888 #else
889 writel(hmp->rx_ring_dma, ioaddr + RxPtr);
890 writel(hmp->tx_ring_dma, ioaddr + TxPtr);
891 #endif
892
893 /* TODO: It would make sense to organize this as words since the card
894 * documentation does. -KDU
895 */
896 for (i = 0; i < 6; i++)
897 writeb(dev->dev_addr[i], ioaddr + StationAddr + i);
898
899 /* Initialize other registers: with so many this eventually this will
900 converted to an offset/value list. */
901
902 /* Configure the FIFO */
903 fifo_info = (readw(ioaddr + GPIO) & 0x00C0) >> 6;
904 switch (fifo_info){
905 case 0 :
906 /* No FIFO */
907 writew(0x0000, ioaddr + FIFOcfg);
908 break;
909 case 1 :
910 /* Configure the FIFO for 512K external, 16K used for Tx. */
911 writew(0x0028, ioaddr + FIFOcfg);
912 break;
913 case 2 :
914 /* Configure the FIFO for 1024 external, 32K used for Tx. */
915 writew(0x004C, ioaddr + FIFOcfg);
916 break;
917 case 3 :
918 /* Configure the FIFO for 2048 external, 32K used for Tx. */
919 writew(0x006C, ioaddr + FIFOcfg);
920 break;
921 default :
922 printk(KERN_WARNING "%s: Unsupported external memory config!\n",
923 dev->name);
924 /* Default to no FIFO */
925 writew(0x0000, ioaddr + FIFOcfg);
926 break;
927 }
928
929 if (dev->if_port == 0)
930 dev->if_port = hmp->default_port;
931
932
933 /* Setting the Rx mode will start the Rx process. */
934 /* If someone didn't choose a duplex, default to full-duplex */
935 if (hmp->duplex_lock != 1)
936 hmp->mii_if.full_duplex = 1;
937
938 /* always 1, takes no more time to do it */
939 writew(0x0001, ioaddr + RxChecksum);
940 #ifdef TX_CHECKSUM
941 writew(0x0001, ioaddr + TxChecksum);
942 #else
943 writew(0x0000, ioaddr + TxChecksum);
944 #endif
945 writew(0x8000, ioaddr + MACCnfg); /* Soft reset the MAC */
946 writew(0x215F, ioaddr + MACCnfg);
947 writew(0x000C, ioaddr + FrameGap0);
948 /* WHAT?!?!? Why isn't this documented somewhere? -KDU */
949 writew(0x1018, ioaddr + FrameGap1);
950 /* Why do we enable receives/transmits here? -KDU */
951 writew(0x0780, ioaddr + MACCnfg2); /* Upper 16 bits control LEDs. */
952 /* Enable automatic generation of flow control frames, period 0xffff. */
953 writel(0x0030FFFF, ioaddr + FlowCtrl);
954 writew(MAX_FRAME_SIZE, ioaddr + MaxFrameSize); /* dev->mtu+14 ??? */
955
956 /* Enable legacy links. */
957 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */
958 /* Initial Link LED to blinking red. */
959 writeb(0x03, ioaddr + LEDCtrl);
960
961 /* Configure interrupt mitigation. This has a great effect on
962 performance, so systems tuning should start here!. */
963
964 rx_int_var = hmp->rx_int_var;
965 tx_int_var = hmp->tx_int_var;
966
967 if (hamachi_debug > 1) {
968 printk("max_tx_latency: %d, max_tx_gap: %d, min_tx_pkt: %d\n",
969 tx_int_var & 0x00ff, (tx_int_var & 0x00ff00) >> 8,
970 (tx_int_var & 0x00ff0000) >> 16);
971 printk("max_rx_latency: %d, max_rx_gap: %d, min_rx_pkt: %d\n",
972 rx_int_var & 0x00ff, (rx_int_var & 0x00ff00) >> 8,
973 (rx_int_var & 0x00ff0000) >> 16);
974 printk("rx_int_var: %x, tx_int_var: %x\n", rx_int_var, tx_int_var);
975 }
976
977 writel(tx_int_var, ioaddr + TxIntrCtrl);
978 writel(rx_int_var, ioaddr + RxIntrCtrl);
979
980 set_rx_mode(dev);
981
982 netif_start_queue(dev);
983
984 /* Enable interrupts by setting the interrupt mask. */
985 writel(0x80878787, ioaddr + InterruptEnable);
986 writew(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
987
988 /* Configure and start the DMA channels. */
989 /* Burst sizes are in the low three bits: size = 4<<(val&7) */
990 #if ADDRLEN == 64
991 writew(0x005D, ioaddr + RxDMACtrl); /* 128 dword bursts */
992 writew(0x005D, ioaddr + TxDMACtrl);
993 #else
994 writew(0x001D, ioaddr + RxDMACtrl);
995 writew(0x001D, ioaddr + TxDMACtrl);
996 #endif
997 writew(0x0001, ioaddr + RxCmd);
998
999 if (hamachi_debug > 2) {
1000 printk(KERN_DEBUG "%s: Done hamachi_open(), status: Rx %x Tx %x.\n",
1001 dev->name, readw(ioaddr + RxStatus), readw(ioaddr + TxStatus));
1002 }
1003 /* Set the timer to check for link beat. */
1004 init_timer(&hmp->timer);
1005 hmp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
1006 hmp->timer.data = (unsigned long)dev;
1007 hmp->timer.function = hamachi_timer; /* timer handler */
1008 add_timer(&hmp->timer);
1009
1010 return 0;
1011 }
1012
1013 static inline int hamachi_tx(struct net_device *dev)
1014 {
1015 struct hamachi_private *hmp = netdev_priv(dev);
1016
1017 /* Update the dirty pointer until we find an entry that is
1018 still owned by the card */
1019 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++) {
1020 int entry = hmp->dirty_tx % TX_RING_SIZE;
1021 struct sk_buff *skb;
1022
1023 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn))
1024 break;
1025 /* Free the original skb. */
1026 skb = hmp->tx_skbuff[entry];
1027 if (skb) {
1028 pci_unmap_single(hmp->pci_dev,
1029 leXX_to_cpu(hmp->tx_ring[entry].addr),
1030 skb->len, PCI_DMA_TODEVICE);
1031 dev_kfree_skb(skb);
1032 hmp->tx_skbuff[entry] = NULL;
1033 }
1034 hmp->tx_ring[entry].status_n_length = 0;
1035 if (entry >= TX_RING_SIZE-1)
1036 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |=
1037 cpu_to_le32(DescEndRing);
1038 dev->stats.tx_packets++;
1039 }
1040
1041 return 0;
1042 }
1043
1044 static void hamachi_timer(unsigned long data)
1045 {
1046 struct net_device *dev = (struct net_device *)data;
1047 struct hamachi_private *hmp = netdev_priv(dev);
1048 void __iomem *ioaddr = hmp->base;
1049 int next_tick = 10*HZ;
1050
1051 if (hamachi_debug > 2) {
1052 printk(KERN_INFO "%s: Hamachi Autonegotiation status %4.4x, LPA "
1053 "%4.4x.\n", dev->name, readw(ioaddr + ANStatus),
1054 readw(ioaddr + ANLinkPartnerAbility));
1055 printk(KERN_INFO "%s: Autonegotiation regs %4.4x %4.4x %4.4x "
1056 "%4.4x %4.4x %4.4x.\n", dev->name,
1057 readw(ioaddr + 0x0e0),
1058 readw(ioaddr + 0x0e2),
1059 readw(ioaddr + 0x0e4),
1060 readw(ioaddr + 0x0e6),
1061 readw(ioaddr + 0x0e8),
1062 readw(ioaddr + 0x0eA));
1063 }
1064 /* We could do something here... nah. */
1065 hmp->timer.expires = RUN_AT(next_tick);
1066 add_timer(&hmp->timer);
1067 }
1068
1069 static void hamachi_tx_timeout(struct net_device *dev)
1070 {
1071 int i;
1072 struct hamachi_private *hmp = netdev_priv(dev);
1073 void __iomem *ioaddr = hmp->base;
1074
1075 printk(KERN_WARNING "%s: Hamachi transmit timed out, status %8.8x,"
1076 " resetting...\n", dev->name, (int)readw(ioaddr + TxStatus));
1077
1078 {
1079 printk(KERN_DEBUG " Rx ring %p: ", hmp->rx_ring);
1080 for (i = 0; i < RX_RING_SIZE; i++)
1081 printk(KERN_CONT " %8.8x",
1082 le32_to_cpu(hmp->rx_ring[i].status_n_length));
1083 printk(KERN_CONT "\n");
1084 printk(KERN_DEBUG" Tx ring %p: ", hmp->tx_ring);
1085 for (i = 0; i < TX_RING_SIZE; i++)
1086 printk(KERN_CONT " %4.4x",
1087 le32_to_cpu(hmp->tx_ring[i].status_n_length));
1088 printk(KERN_CONT "\n");
1089 }
1090
1091 /* Reinit the hardware and make sure the Rx and Tx processes
1092 are up and running.
1093 */
1094 dev->if_port = 0;
1095 /* The right way to do Reset. -KDU
1096 * -Clear OWN bit in all Rx/Tx descriptors
1097 * -Wait 50 uS for channels to go idle
1098 * -Turn off MAC receiver
1099 * -Issue Reset
1100 */
1101
1102 for (i = 0; i < RX_RING_SIZE; i++)
1103 hmp->rx_ring[i].status_n_length &= cpu_to_le32(~DescOwn);
1104
1105 /* Presume that all packets in the Tx queue are gone if we have to
1106 * re-init the hardware.
1107 */
1108 for (i = 0; i < TX_RING_SIZE; i++){
1109 struct sk_buff *skb;
1110
1111 if (i >= TX_RING_SIZE - 1)
1112 hmp->tx_ring[i].status_n_length =
1113 cpu_to_le32(DescEndRing) |
1114 (hmp->tx_ring[i].status_n_length &
1115 cpu_to_le32(0x0000ffff));
1116 else
1117 hmp->tx_ring[i].status_n_length &= cpu_to_le32(0x0000ffff);
1118 skb = hmp->tx_skbuff[i];
1119 if (skb){
1120 pci_unmap_single(hmp->pci_dev, leXX_to_cpu(hmp->tx_ring[i].addr),
1121 skb->len, PCI_DMA_TODEVICE);
1122 dev_kfree_skb(skb);
1123 hmp->tx_skbuff[i] = NULL;
1124 }
1125 }
1126
1127 udelay(60); /* Sleep 60 us just for safety sake */
1128 writew(0x0002, ioaddr + RxCmd); /* STOP Rx */
1129
1130 writeb(0x01, ioaddr + ChipReset); /* Reinit the hardware */
1131
1132 hmp->tx_full = 0;
1133 hmp->cur_rx = hmp->cur_tx = 0;
1134 hmp->dirty_rx = hmp->dirty_tx = 0;
1135 /* Rx packets are also presumed lost; however, we need to make sure a
1136 * ring of buffers is in tact. -KDU
1137 */
1138 for (i = 0; i < RX_RING_SIZE; i++){
1139 struct sk_buff *skb = hmp->rx_skbuff[i];
1140
1141 if (skb){
1142 pci_unmap_single(hmp->pci_dev,
1143 leXX_to_cpu(hmp->rx_ring[i].addr),
1144 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1145 dev_kfree_skb(skb);
1146 hmp->rx_skbuff[i] = NULL;
1147 }
1148 }
1149 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1150 for (i = 0; i < RX_RING_SIZE; i++) {
1151 struct sk_buff *skb;
1152
1153 skb = netdev_alloc_skb_ip_align(dev, hmp->rx_buf_sz);
1154 hmp->rx_skbuff[i] = skb;
1155 if (skb == NULL)
1156 break;
1157
1158 hmp->rx_ring[i].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1159 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1160 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn |
1161 DescEndPacket | DescIntr | (hmp->rx_buf_sz - 2));
1162 }
1163 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1164 /* Mark the last entry as wrapping the ring. */
1165 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1166
1167 /* Trigger an immediate transmit demand. */
1168 dev->trans_start = jiffies; /* prevent tx timeout */
1169 dev->stats.tx_errors++;
1170
1171 /* Restart the chip's Tx/Rx processes . */
1172 writew(0x0002, ioaddr + TxCmd); /* STOP Tx */
1173 writew(0x0001, ioaddr + TxCmd); /* START Tx */
1174 writew(0x0001, ioaddr + RxCmd); /* START Rx */
1175
1176 netif_wake_queue(dev);
1177 }
1178
1179
1180 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1181 static void hamachi_init_ring(struct net_device *dev)
1182 {
1183 struct hamachi_private *hmp = netdev_priv(dev);
1184 int i;
1185
1186 hmp->tx_full = 0;
1187 hmp->cur_rx = hmp->cur_tx = 0;
1188 hmp->dirty_rx = hmp->dirty_tx = 0;
1189
1190 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1191 * card needs room to do 8 byte alignment, +2 so we can reserve
1192 * the first 2 bytes, and +16 gets room for the status word from the
1193 * card. -KDU
1194 */
1195 hmp->rx_buf_sz = (dev->mtu <= 1492 ? PKT_BUF_SZ :
1196 (((dev->mtu+26+7) & ~7) + 16));
1197
1198 /* Initialize all Rx descriptors. */
1199 for (i = 0; i < RX_RING_SIZE; i++) {
1200 hmp->rx_ring[i].status_n_length = 0;
1201 hmp->rx_skbuff[i] = NULL;
1202 }
1203 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1204 for (i = 0; i < RX_RING_SIZE; i++) {
1205 struct sk_buff *skb = dev_alloc_skb(hmp->rx_buf_sz);
1206 hmp->rx_skbuff[i] = skb;
1207 if (skb == NULL)
1208 break;
1209 skb->dev = dev; /* Mark as being used by this device. */
1210 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1211 hmp->rx_ring[i].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1212 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1213 /* -2 because it doesn't REALLY have that first 2 bytes -KDU */
1214 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn |
1215 DescEndPacket | DescIntr | (hmp->rx_buf_sz -2));
1216 }
1217 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1218 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1219
1220 for (i = 0; i < TX_RING_SIZE; i++) {
1221 hmp->tx_skbuff[i] = NULL;
1222 hmp->tx_ring[i].status_n_length = 0;
1223 }
1224 /* Mark the last entry of the ring */
1225 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1226 }
1227
1228
1229 #ifdef TX_CHECKSUM
1230 #define csum_add(it, val) \
1231 do { \
1232 it += (u16) (val); \
1233 if (it & 0xffff0000) { \
1234 it &= 0xffff; \
1235 ++it; \
1236 } \
1237 } while (0)
1238 /* printk("add %04x --> %04x\n", val, it); \ */
1239
1240 /* uh->len already network format, do not swap */
1241 #define pseudo_csum_udp(sum,ih,uh) do { \
1242 sum = 0; \
1243 csum_add(sum, (ih)->saddr >> 16); \
1244 csum_add(sum, (ih)->saddr & 0xffff); \
1245 csum_add(sum, (ih)->daddr >> 16); \
1246 csum_add(sum, (ih)->daddr & 0xffff); \
1247 csum_add(sum, cpu_to_be16(IPPROTO_UDP)); \
1248 csum_add(sum, (uh)->len); \
1249 } while (0)
1250
1251 /* swap len */
1252 #define pseudo_csum_tcp(sum,ih,len) do { \
1253 sum = 0; \
1254 csum_add(sum, (ih)->saddr >> 16); \
1255 csum_add(sum, (ih)->saddr & 0xffff); \
1256 csum_add(sum, (ih)->daddr >> 16); \
1257 csum_add(sum, (ih)->daddr & 0xffff); \
1258 csum_add(sum, cpu_to_be16(IPPROTO_TCP)); \
1259 csum_add(sum, htons(len)); \
1260 } while (0)
1261 #endif
1262
1263 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb,
1264 struct net_device *dev)
1265 {
1266 struct hamachi_private *hmp = netdev_priv(dev);
1267 unsigned entry;
1268 u16 status;
1269
1270 /* Ok, now make sure that the queue has space before trying to
1271 add another skbuff. if we return non-zero the scheduler
1272 should interpret this as a queue full and requeue the buffer
1273 for later.
1274 */
1275 if (hmp->tx_full) {
1276 /* We should NEVER reach this point -KDU */
1277 printk(KERN_WARNING "%s: Hamachi transmit queue full at slot %d.\n",dev->name, hmp->cur_tx);
1278
1279 /* Wake the potentially-idle transmit channel. */
1280 /* If we don't need to read status, DON'T -KDU */
1281 status=readw(hmp->base + TxStatus);
1282 if( !(status & 0x0001) || (status & 0x0002))
1283 writew(0x0001, hmp->base + TxCmd);
1284 return NETDEV_TX_BUSY;
1285 }
1286
1287 /* Caution: the write order is important here, set the field
1288 with the "ownership" bits last. */
1289
1290 /* Calculate the next Tx descriptor entry. */
1291 entry = hmp->cur_tx % TX_RING_SIZE;
1292
1293 hmp->tx_skbuff[entry] = skb;
1294
1295 #ifdef TX_CHECKSUM
1296 {
1297 /* tack on checksum tag */
1298 u32 tagval = 0;
1299 struct ethhdr *eh = (struct ethhdr *)skb->data;
1300 if (eh->h_proto == cpu_to_be16(ETH_P_IP)) {
1301 struct iphdr *ih = (struct iphdr *)((char *)eh + ETH_HLEN);
1302 if (ih->protocol == IPPROTO_UDP) {
1303 struct udphdr *uh
1304 = (struct udphdr *)((char *)ih + ih->ihl*4);
1305 u32 offset = ((unsigned char *)uh + 6) - skb->data;
1306 u32 pseudo;
1307 pseudo_csum_udp(pseudo, ih, uh);
1308 pseudo = htons(pseudo);
1309 printk("udp cksum was %04x, sending pseudo %04x\n",
1310 uh->check, pseudo);
1311 uh->check = 0; /* zero out uh->check before card calc */
1312 /*
1313 * start at 14 (skip ethhdr), store at offset (uh->check),
1314 * use pseudo value given.
1315 */
1316 tagval = (14 << 24) | (offset << 16) | pseudo;
1317 } else if (ih->protocol == IPPROTO_TCP) {
1318 printk("tcp, no auto cksum\n");
1319 }
1320 }
1321 *(u32 *)skb_push(skb, 8) = tagval;
1322 }
1323 #endif
1324
1325 hmp->tx_ring[entry].addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1326 skb->data, skb->len, PCI_DMA_TODEVICE));
1327
1328 /* Hmmmm, could probably put a DescIntr on these, but the way
1329 the driver is currently coded makes Tx interrupts unnecessary
1330 since the clearing of the Tx ring is handled by the start_xmit
1331 routine. This organization helps mitigate the interrupts a
1332 bit and probably renders the max_tx_latency param useless.
1333
1334 Update: Putting a DescIntr bit on all of the descriptors and
1335 mitigating interrupt frequency with the tx_min_pkt parameter. -KDU
1336 */
1337 if (entry >= TX_RING_SIZE-1) /* Wrap ring */
1338 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn |
1339 DescEndPacket | DescEndRing | DescIntr | skb->len);
1340 else
1341 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn |
1342 DescEndPacket | DescIntr | skb->len);
1343 hmp->cur_tx++;
1344
1345 /* Non-x86 Todo: explicitly flush cache lines here. */
1346
1347 /* Wake the potentially-idle transmit channel. */
1348 /* If we don't need to read status, DON'T -KDU */
1349 status=readw(hmp->base + TxStatus);
1350 if( !(status & 0x0001) || (status & 0x0002))
1351 writew(0x0001, hmp->base + TxCmd);
1352
1353 /* Immediately before returning, let's clear as many entries as we can. */
1354 hamachi_tx(dev);
1355
1356 /* We should kick the bottom half here, since we are not accepting
1357 * interrupts with every packet. i.e. realize that Gigabit ethernet
1358 * can transmit faster than ordinary machines can load packets;
1359 * hence, any packet that got put off because we were in the transmit
1360 * routine should IMMEDIATELY get a chance to be re-queued. -KDU
1361 */
1362 if ((hmp->cur_tx - hmp->dirty_tx) < (TX_RING_SIZE - 4))
1363 netif_wake_queue(dev); /* Typical path */
1364 else {
1365 hmp->tx_full = 1;
1366 netif_stop_queue(dev);
1367 }
1368
1369 if (hamachi_debug > 4) {
1370 printk(KERN_DEBUG "%s: Hamachi transmit frame #%d queued in slot %d.\n",
1371 dev->name, hmp->cur_tx, entry);
1372 }
1373 return NETDEV_TX_OK;
1374 }
1375
1376 /* The interrupt handler does all of the Rx thread work and cleans up
1377 after the Tx thread. */
1378 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance)
1379 {
1380 struct net_device *dev = dev_instance;
1381 struct hamachi_private *hmp = netdev_priv(dev);
1382 void __iomem *ioaddr = hmp->base;
1383 long boguscnt = max_interrupt_work;
1384 int handled = 0;
1385
1386 #ifndef final_version /* Can never occur. */
1387 if (dev == NULL) {
1388 printk (KERN_ERR "hamachi_interrupt(): irq %d for unknown device.\n", irq);
1389 return IRQ_NONE;
1390 }
1391 #endif
1392
1393 spin_lock(&hmp->lock);
1394
1395 do {
1396 u32 intr_status = readl(ioaddr + InterruptClear);
1397
1398 if (hamachi_debug > 4)
1399 printk(KERN_DEBUG "%s: Hamachi interrupt, status %4.4x.\n",
1400 dev->name, intr_status);
1401
1402 if (intr_status == 0)
1403 break;
1404
1405 handled = 1;
1406
1407 if (intr_status & IntrRxDone)
1408 hamachi_rx(dev);
1409
1410 if (intr_status & IntrTxDone){
1411 /* This code should RARELY need to execute. After all, this is
1412 * a gigabit link, it should consume packets as fast as we put
1413 * them in AND we clear the Tx ring in hamachi_start_xmit().
1414 */
1415 if (hmp->tx_full){
1416 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++){
1417 int entry = hmp->dirty_tx % TX_RING_SIZE;
1418 struct sk_buff *skb;
1419
1420 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn))
1421 break;
1422 skb = hmp->tx_skbuff[entry];
1423 /* Free the original skb. */
1424 if (skb){
1425 pci_unmap_single(hmp->pci_dev,
1426 leXX_to_cpu(hmp->tx_ring[entry].addr),
1427 skb->len,
1428 PCI_DMA_TODEVICE);
1429 dev_kfree_skb_irq(skb);
1430 hmp->tx_skbuff[entry] = NULL;
1431 }
1432 hmp->tx_ring[entry].status_n_length = 0;
1433 if (entry >= TX_RING_SIZE-1)
1434 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |=
1435 cpu_to_le32(DescEndRing);
1436 dev->stats.tx_packets++;
1437 }
1438 if (hmp->cur_tx - hmp->dirty_tx < TX_RING_SIZE - 4){
1439 /* The ring is no longer full */
1440 hmp->tx_full = 0;
1441 netif_wake_queue(dev);
1442 }
1443 } else {
1444 netif_wake_queue(dev);
1445 }
1446 }
1447
1448
1449 /* Abnormal error summary/uncommon events handlers. */
1450 if (intr_status &
1451 (IntrTxPCIFault | IntrTxPCIErr | IntrRxPCIFault | IntrRxPCIErr |
1452 LinkChange | NegotiationChange | StatsMax))
1453 hamachi_error(dev, intr_status);
1454
1455 if (--boguscnt < 0) {
1456 printk(KERN_WARNING "%s: Too much work at interrupt, status=0x%4.4x.\n",
1457 dev->name, intr_status);
1458 break;
1459 }
1460 } while (1);
1461
1462 if (hamachi_debug > 3)
1463 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1464 dev->name, readl(ioaddr + IntrStatus));
1465
1466 #ifndef final_version
1467 /* Code that should never be run! Perhaps remove after testing.. */
1468 {
1469 static int stopit = 10;
1470 if (dev->start == 0 && --stopit < 0) {
1471 printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n",
1472 dev->name);
1473 free_irq(irq, dev);
1474 }
1475 }
1476 #endif
1477
1478 spin_unlock(&hmp->lock);
1479 return IRQ_RETVAL(handled);
1480 }
1481
1482 /* This routine is logically part of the interrupt handler, but separated
1483 for clarity and better register allocation. */
1484 static int hamachi_rx(struct net_device *dev)
1485 {
1486 struct hamachi_private *hmp = netdev_priv(dev);
1487 int entry = hmp->cur_rx % RX_RING_SIZE;
1488 int boguscnt = (hmp->dirty_rx + RX_RING_SIZE) - hmp->cur_rx;
1489
1490 if (hamachi_debug > 4) {
1491 printk(KERN_DEBUG " In hamachi_rx(), entry %d status %4.4x.\n",
1492 entry, hmp->rx_ring[entry].status_n_length);
1493 }
1494
1495 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1496 while (1) {
1497 struct hamachi_desc *desc = &(hmp->rx_ring[entry]);
1498 u32 desc_status = le32_to_cpu(desc->status_n_length);
1499 u16 data_size = desc_status; /* Implicit truncate */
1500 u8 *buf_addr;
1501 s32 frame_status;
1502
1503 if (desc_status & DescOwn)
1504 break;
1505 pci_dma_sync_single_for_cpu(hmp->pci_dev,
1506 leXX_to_cpu(desc->addr),
1507 hmp->rx_buf_sz,
1508 PCI_DMA_FROMDEVICE);
1509 buf_addr = (u8 *) hmp->rx_skbuff[entry]->data;
1510 frame_status = get_unaligned_le32(&(buf_addr[data_size - 12]));
1511 if (hamachi_debug > 4)
1512 printk(KERN_DEBUG " hamachi_rx() status was %8.8x.\n",
1513 frame_status);
1514 if (--boguscnt < 0)
1515 break;
1516 if ( ! (desc_status & DescEndPacket)) {
1517 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1518 "multiple buffers, entry %#x length %d status %4.4x!\n",
1519 dev->name, hmp->cur_rx, data_size, desc_status);
1520 printk(KERN_WARNING "%s: Oversized Ethernet frame %p vs %p.\n",
1521 dev->name, desc, &hmp->rx_ring[hmp->cur_rx % RX_RING_SIZE]);
1522 printk(KERN_WARNING "%s: Oversized Ethernet frame -- next status %x/%x last status %x.\n",
1523 dev->name,
1524 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0xffff0000,
1525 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0x0000ffff,
1526 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx-1) % RX_RING_SIZE].status_n_length));
1527 dev->stats.rx_length_errors++;
1528 } /* else Omit for prototype errata??? */
1529 if (frame_status & 0x00380000) {
1530 /* There was an error. */
1531 if (hamachi_debug > 2)
1532 printk(KERN_DEBUG " hamachi_rx() Rx error was %8.8x.\n",
1533 frame_status);
1534 dev->stats.rx_errors++;
1535 if (frame_status & 0x00600000)
1536 dev->stats.rx_length_errors++;
1537 if (frame_status & 0x00080000)
1538 dev->stats.rx_frame_errors++;
1539 if (frame_status & 0x00100000)
1540 dev->stats.rx_crc_errors++;
1541 if (frame_status < 0)
1542 dev->stats.rx_dropped++;
1543 } else {
1544 struct sk_buff *skb;
1545 /* Omit CRC */
1546 u16 pkt_len = (frame_status & 0x07ff) - 4;
1547 #ifdef RX_CHECKSUM
1548 u32 pfck = *(u32 *) &buf_addr[data_size - 8];
1549 #endif
1550
1551
1552 #ifndef final_version
1553 if (hamachi_debug > 4)
1554 printk(KERN_DEBUG " hamachi_rx() normal Rx pkt length %d"
1555 " of %d, bogus_cnt %d.\n",
1556 pkt_len, data_size, boguscnt);
1557 if (hamachi_debug > 5)
1558 printk(KERN_DEBUG"%s: rx status %8.8x %8.8x %8.8x %8.8x %8.8x.\n",
1559 dev->name,
1560 *(s32*)&(buf_addr[data_size - 20]),
1561 *(s32*)&(buf_addr[data_size - 16]),
1562 *(s32*)&(buf_addr[data_size - 12]),
1563 *(s32*)&(buf_addr[data_size - 8]),
1564 *(s32*)&(buf_addr[data_size - 4]));
1565 #endif
1566 /* Check if the packet is long enough to accept without copying
1567 to a minimally-sized skbuff. */
1568 if (pkt_len < rx_copybreak &&
1569 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1570 #ifdef RX_CHECKSUM
1571 printk(KERN_ERR "%s: rx_copybreak non-zero "
1572 "not good with RX_CHECKSUM\n", dev->name);
1573 #endif
1574 skb_reserve(skb, 2); /* 16 byte align the IP header */
1575 pci_dma_sync_single_for_cpu(hmp->pci_dev,
1576 leXX_to_cpu(hmp->rx_ring[entry].addr),
1577 hmp->rx_buf_sz,
1578 PCI_DMA_FROMDEVICE);
1579 /* Call copy + cksum if available. */
1580 #if 1 || USE_IP_COPYSUM
1581 skb_copy_to_linear_data(skb,
1582 hmp->rx_skbuff[entry]->data, pkt_len);
1583 skb_put(skb, pkt_len);
1584 #else
1585 memcpy(skb_put(skb, pkt_len), hmp->rx_ring_dma
1586 + entry*sizeof(*desc), pkt_len);
1587 #endif
1588 pci_dma_sync_single_for_device(hmp->pci_dev,
1589 leXX_to_cpu(hmp->rx_ring[entry].addr),
1590 hmp->rx_buf_sz,
1591 PCI_DMA_FROMDEVICE);
1592 } else {
1593 pci_unmap_single(hmp->pci_dev,
1594 leXX_to_cpu(hmp->rx_ring[entry].addr),
1595 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1596 skb_put(skb = hmp->rx_skbuff[entry], pkt_len);
1597 hmp->rx_skbuff[entry] = NULL;
1598 }
1599 skb->protocol = eth_type_trans(skb, dev);
1600
1601
1602 #ifdef RX_CHECKSUM
1603 /* TCP or UDP on ipv4, DIX encoding */
1604 if (pfck>>24 == 0x91 || pfck>>24 == 0x51) {
1605 struct iphdr *ih = (struct iphdr *) skb->data;
1606 /* Check that IP packet is at least 46 bytes, otherwise,
1607 * there may be pad bytes included in the hardware checksum.
1608 * This wouldn't happen if everyone padded with 0.
1609 */
1610 if (ntohs(ih->tot_len) >= 46){
1611 /* don't worry about frags */
1612 if (!(ih->frag_off & cpu_to_be16(IP_MF|IP_OFFSET))) {
1613 u32 inv = *(u32 *) &buf_addr[data_size - 16];
1614 u32 *p = (u32 *) &buf_addr[data_size - 20];
1615 register u32 crc, p_r, p_r1;
1616
1617 if (inv & 4) {
1618 inv &= ~4;
1619 --p;
1620 }
1621 p_r = *p;
1622 p_r1 = *(p-1);
1623 switch (inv) {
1624 case 0:
1625 crc = (p_r & 0xffff) + (p_r >> 16);
1626 break;
1627 case 1:
1628 crc = (p_r >> 16) + (p_r & 0xffff)
1629 + (p_r1 >> 16 & 0xff00);
1630 break;
1631 case 2:
1632 crc = p_r + (p_r1 >> 16);
1633 break;
1634 case 3:
1635 crc = p_r + (p_r1 & 0xff00) + (p_r1 >> 16);
1636 break;
1637 default: /*NOTREACHED*/ crc = 0;
1638 }
1639 if (crc & 0xffff0000) {
1640 crc &= 0xffff;
1641 ++crc;
1642 }
1643 /* tcp/udp will add in pseudo */
1644 skb->csum = ntohs(pfck & 0xffff);
1645 if (skb->csum > crc)
1646 skb->csum -= crc;
1647 else
1648 skb->csum += (~crc & 0xffff);
1649 /*
1650 * could do the pseudo myself and return
1651 * CHECKSUM_UNNECESSARY
1652 */
1653 skb->ip_summed = CHECKSUM_COMPLETE;
1654 }
1655 }
1656 }
1657 #endif /* RX_CHECKSUM */
1658
1659 netif_rx(skb);
1660 dev->stats.rx_packets++;
1661 }
1662 entry = (++hmp->cur_rx) % RX_RING_SIZE;
1663 }
1664
1665 /* Refill the Rx ring buffers. */
1666 for (; hmp->cur_rx - hmp->dirty_rx > 0; hmp->dirty_rx++) {
1667 struct hamachi_desc *desc;
1668
1669 entry = hmp->dirty_rx % RX_RING_SIZE;
1670 desc = &(hmp->rx_ring[entry]);
1671 if (hmp->rx_skbuff[entry] == NULL) {
1672 struct sk_buff *skb = dev_alloc_skb(hmp->rx_buf_sz);
1673
1674 hmp->rx_skbuff[entry] = skb;
1675 if (skb == NULL)
1676 break; /* Better luck next round. */
1677 skb->dev = dev; /* Mark as being used by this device. */
1678 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1679 desc->addr = cpu_to_leXX(pci_map_single(hmp->pci_dev,
1680 skb->data, hmp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1681 }
1682 desc->status_n_length = cpu_to_le32(hmp->rx_buf_sz);
1683 if (entry >= RX_RING_SIZE-1)
1684 desc->status_n_length |= cpu_to_le32(DescOwn |
1685 DescEndPacket | DescEndRing | DescIntr);
1686 else
1687 desc->status_n_length |= cpu_to_le32(DescOwn |
1688 DescEndPacket | DescIntr);
1689 }
1690
1691 /* Restart Rx engine if stopped. */
1692 /* If we don't need to check status, don't. -KDU */
1693 if (readw(hmp->base + RxStatus) & 0x0002)
1694 writew(0x0001, hmp->base + RxCmd);
1695
1696 return 0;
1697 }
1698
1699 /* This is more properly named "uncommon interrupt events", as it covers more
1700 than just errors. */
1701 static void hamachi_error(struct net_device *dev, int intr_status)
1702 {
1703 struct hamachi_private *hmp = netdev_priv(dev);
1704 void __iomem *ioaddr = hmp->base;
1705
1706 if (intr_status & (LinkChange|NegotiationChange)) {
1707 if (hamachi_debug > 1)
1708 printk(KERN_INFO "%s: Link changed: AutoNegotiation Ctrl"
1709 " %4.4x, Status %4.4x %4.4x Intr status %4.4x.\n",
1710 dev->name, readw(ioaddr + 0x0E0), readw(ioaddr + 0x0E2),
1711 readw(ioaddr + ANLinkPartnerAbility),
1712 readl(ioaddr + IntrStatus));
1713 if (readw(ioaddr + ANStatus) & 0x20)
1714 writeb(0x01, ioaddr + LEDCtrl);
1715 else
1716 writeb(0x03, ioaddr + LEDCtrl);
1717 }
1718 if (intr_status & StatsMax) {
1719 hamachi_get_stats(dev);
1720 /* Read the overflow bits to clear. */
1721 readl(ioaddr + 0x370);
1722 readl(ioaddr + 0x3F0);
1723 }
1724 if ((intr_status & ~(LinkChange|StatsMax|NegotiationChange|IntrRxDone|IntrTxDone)) &&
1725 hamachi_debug)
1726 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1727 dev->name, intr_status);
1728 /* Hmmmmm, it's not clear how to recover from PCI faults. */
1729 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1730 dev->stats.tx_fifo_errors++;
1731 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1732 dev->stats.rx_fifo_errors++;
1733 }
1734
1735 static int hamachi_close(struct net_device *dev)
1736 {
1737 struct hamachi_private *hmp = netdev_priv(dev);
1738 void __iomem *ioaddr = hmp->base;
1739 struct sk_buff *skb;
1740 int i;
1741
1742 netif_stop_queue(dev);
1743
1744 if (hamachi_debug > 1) {
1745 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x Rx %4.4x Int %2.2x.\n",
1746 dev->name, readw(ioaddr + TxStatus),
1747 readw(ioaddr + RxStatus), readl(ioaddr + IntrStatus));
1748 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1749 dev->name, hmp->cur_tx, hmp->dirty_tx, hmp->cur_rx, hmp->dirty_rx);
1750 }
1751
1752 /* Disable interrupts by clearing the interrupt mask. */
1753 writel(0x0000, ioaddr + InterruptEnable);
1754
1755 /* Stop the chip's Tx and Rx processes. */
1756 writel(2, ioaddr + RxCmd);
1757 writew(2, ioaddr + TxCmd);
1758
1759 #ifdef __i386__
1760 if (hamachi_debug > 2) {
1761 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1762 (int)hmp->tx_ring_dma);
1763 for (i = 0; i < TX_RING_SIZE; i++)
1764 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x.\n",
1765 readl(ioaddr + TxCurPtr) == (long)&hmp->tx_ring[i] ? '>' : ' ',
1766 i, hmp->tx_ring[i].status_n_length, hmp->tx_ring[i].addr);
1767 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1768 (int)hmp->rx_ring_dma);
1769 for (i = 0; i < RX_RING_SIZE; i++) {
1770 printk(KERN_DEBUG " %c #%d desc. %4.4x %8.8x\n",
1771 readl(ioaddr + RxCurPtr) == (long)&hmp->rx_ring[i] ? '>' : ' ',
1772 i, hmp->rx_ring[i].status_n_length, hmp->rx_ring[i].addr);
1773 if (hamachi_debug > 6) {
1774 if (*(u8*)hmp->rx_skbuff[i]->data != 0x69) {
1775 u16 *addr = (u16 *)
1776 hmp->rx_skbuff[i]->data;
1777 int j;
1778 printk(KERN_DEBUG "Addr: ");
1779 for (j = 0; j < 0x50; j++)
1780 printk(" %4.4x", addr[j]);
1781 printk("\n");
1782 }
1783 }
1784 }
1785 }
1786 #endif /* __i386__ debugging only */
1787
1788 free_irq(dev->irq, dev);
1789
1790 del_timer_sync(&hmp->timer);
1791
1792 /* Free all the skbuffs in the Rx queue. */
1793 for (i = 0; i < RX_RING_SIZE; i++) {
1794 skb = hmp->rx_skbuff[i];
1795 hmp->rx_ring[i].status_n_length = 0;
1796 if (skb) {
1797 pci_unmap_single(hmp->pci_dev,
1798 leXX_to_cpu(hmp->rx_ring[i].addr),
1799 hmp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1800 dev_kfree_skb(skb);
1801 hmp->rx_skbuff[i] = NULL;
1802 }
1803 hmp->rx_ring[i].addr = cpu_to_leXX(0xBADF00D0); /* An invalid address. */
1804 }
1805 for (i = 0; i < TX_RING_SIZE; i++) {
1806 skb = hmp->tx_skbuff[i];
1807 if (skb) {
1808 pci_unmap_single(hmp->pci_dev,
1809 leXX_to_cpu(hmp->tx_ring[i].addr),
1810 skb->len, PCI_DMA_TODEVICE);
1811 dev_kfree_skb(skb);
1812 hmp->tx_skbuff[i] = NULL;
1813 }
1814 }
1815
1816 writeb(0x00, ioaddr + LEDCtrl);
1817
1818 return 0;
1819 }
1820
1821 static struct net_device_stats *hamachi_get_stats(struct net_device *dev)
1822 {
1823 struct hamachi_private *hmp = netdev_priv(dev);
1824 void __iomem *ioaddr = hmp->base;
1825
1826 /* We should lock this segment of code for SMP eventually, although
1827 the vulnerability window is very small and statistics are
1828 non-critical. */
1829 /* Ok, what goes here? This appears to be stuck at 21 packets
1830 according to ifconfig. It does get incremented in hamachi_tx(),
1831 so I think I'll comment it out here and see if better things
1832 happen.
1833 */
1834 /* dev->stats.tx_packets = readl(ioaddr + 0x000); */
1835
1836 /* Total Uni+Brd+Multi */
1837 dev->stats.rx_bytes = readl(ioaddr + 0x330);
1838 /* Total Uni+Brd+Multi */
1839 dev->stats.tx_bytes = readl(ioaddr + 0x3B0);
1840 /* Multicast Rx */
1841 dev->stats.multicast = readl(ioaddr + 0x320);
1842
1843 /* Over+Undersized */
1844 dev->stats.rx_length_errors = readl(ioaddr + 0x368);
1845 /* Jabber */
1846 dev->stats.rx_over_errors = readl(ioaddr + 0x35C);
1847 /* Jabber */
1848 dev->stats.rx_crc_errors = readl(ioaddr + 0x360);
1849 /* Symbol Errs */
1850 dev->stats.rx_frame_errors = readl(ioaddr + 0x364);
1851 /* Dropped */
1852 dev->stats.rx_missed_errors = readl(ioaddr + 0x36C);
1853
1854 return &dev->stats;
1855 }
1856
1857 static void set_rx_mode(struct net_device *dev)
1858 {
1859 struct hamachi_private *hmp = netdev_priv(dev);
1860 void __iomem *ioaddr = hmp->base;
1861
1862 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1863 writew(0x000F, ioaddr + AddrMode);
1864 } else if ((netdev_mc_count(dev) > 63) || (dev->flags & IFF_ALLMULTI)) {
1865 /* Too many to match, or accept all multicasts. */
1866 writew(0x000B, ioaddr + AddrMode);
1867 } else if (!netdev_mc_empty(dev)) { /* Must use the CAM filter. */
1868 struct netdev_hw_addr *ha;
1869 int i = 0;
1870
1871 netdev_for_each_mc_addr(ha, dev) {
1872 writel(*(u32 *)(ha->addr), ioaddr + 0x100 + i*8);
1873 writel(0x20000 | (*(u16 *)&ha->addr[4]),
1874 ioaddr + 0x104 + i*8);
1875 i++;
1876 }
1877 /* Clear remaining entries. */
1878 for (; i < 64; i++)
1879 writel(0, ioaddr + 0x104 + i*8);
1880 writew(0x0003, ioaddr + AddrMode);
1881 } else { /* Normal, unicast/broadcast-only mode. */
1882 writew(0x0001, ioaddr + AddrMode);
1883 }
1884 }
1885
1886 static int check_if_running(struct net_device *dev)
1887 {
1888 if (!netif_running(dev))
1889 return -EINVAL;
1890 return 0;
1891 }
1892
1893 static void hamachi_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1894 {
1895 struct hamachi_private *np = netdev_priv(dev);
1896 strcpy(info->driver, DRV_NAME);
1897 strcpy(info->version, DRV_VERSION);
1898 strcpy(info->bus_info, pci_name(np->pci_dev));
1899 }
1900
1901 static int hamachi_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1902 {
1903 struct hamachi_private *np = netdev_priv(dev);
1904 spin_lock_irq(&np->lock);
1905 mii_ethtool_gset(&np->mii_if, ecmd);
1906 spin_unlock_irq(&np->lock);
1907 return 0;
1908 }
1909
1910 static int hamachi_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1911 {
1912 struct hamachi_private *np = netdev_priv(dev);
1913 int res;
1914 spin_lock_irq(&np->lock);
1915 res = mii_ethtool_sset(&np->mii_if, ecmd);
1916 spin_unlock_irq(&np->lock);
1917 return res;
1918 }
1919
1920 static int hamachi_nway_reset(struct net_device *dev)
1921 {
1922 struct hamachi_private *np = netdev_priv(dev);
1923 return mii_nway_restart(&np->mii_if);
1924 }
1925
1926 static u32 hamachi_get_link(struct net_device *dev)
1927 {
1928 struct hamachi_private *np = netdev_priv(dev);
1929 return mii_link_ok(&np->mii_if);
1930 }
1931
1932 static const struct ethtool_ops ethtool_ops = {
1933 .begin = check_if_running,
1934 .get_drvinfo = hamachi_get_drvinfo,
1935 .get_settings = hamachi_get_settings,
1936 .set_settings = hamachi_set_settings,
1937 .nway_reset = hamachi_nway_reset,
1938 .get_link = hamachi_get_link,
1939 };
1940
1941 static const struct ethtool_ops ethtool_ops_no_mii = {
1942 .begin = check_if_running,
1943 .get_drvinfo = hamachi_get_drvinfo,
1944 };
1945
1946 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1947 {
1948 struct hamachi_private *np = netdev_priv(dev);
1949 struct mii_ioctl_data *data = if_mii(rq);
1950 int rc;
1951
1952 if (!netif_running(dev))
1953 return -EINVAL;
1954
1955 if (cmd == (SIOCDEVPRIVATE+3)) { /* set rx,tx intr params */
1956 u32 *d = (u32 *)&rq->ifr_ifru;
1957 /* Should add this check here or an ordinary user can do nasty
1958 * things. -KDU
1959 *
1960 * TODO: Shut down the Rx and Tx engines while doing this.
1961 */
1962 if (!capable(CAP_NET_ADMIN))
1963 return -EPERM;
1964 writel(d[0], np->base + TxIntrCtrl);
1965 writel(d[1], np->base + RxIntrCtrl);
1966 printk(KERN_NOTICE "%s: tx %08x, rx %08x intr\n", dev->name,
1967 (u32) readl(np->base + TxIntrCtrl),
1968 (u32) readl(np->base + RxIntrCtrl));
1969 rc = 0;
1970 }
1971
1972 else {
1973 spin_lock_irq(&np->lock);
1974 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1975 spin_unlock_irq(&np->lock);
1976 }
1977
1978 return rc;
1979 }
1980
1981
1982 static void __devexit hamachi_remove_one (struct pci_dev *pdev)
1983 {
1984 struct net_device *dev = pci_get_drvdata(pdev);
1985
1986 if (dev) {
1987 struct hamachi_private *hmp = netdev_priv(dev);
1988
1989 pci_free_consistent(pdev, RX_TOTAL_SIZE, hmp->rx_ring,
1990 hmp->rx_ring_dma);
1991 pci_free_consistent(pdev, TX_TOTAL_SIZE, hmp->tx_ring,
1992 hmp->tx_ring_dma);
1993 unregister_netdev(dev);
1994 iounmap(hmp->base);
1995 free_netdev(dev);
1996 pci_release_regions(pdev);
1997 pci_set_drvdata(pdev, NULL);
1998 }
1999 }
2000
2001 static DEFINE_PCI_DEVICE_TABLE(hamachi_pci_tbl) = {
2002 { 0x1318, 0x0911, PCI_ANY_ID, PCI_ANY_ID, },
2003 { 0, }
2004 };
2005 MODULE_DEVICE_TABLE(pci, hamachi_pci_tbl);
2006
2007 static struct pci_driver hamachi_driver = {
2008 .name = DRV_NAME,
2009 .id_table = hamachi_pci_tbl,
2010 .probe = hamachi_init_one,
2011 .remove = __devexit_p(hamachi_remove_one),
2012 };
2013
2014 static int __init hamachi_init (void)
2015 {
2016 /* when a module, this is printed whether or not devices are found in probe */
2017 #ifdef MODULE
2018 printk(version);
2019 #endif
2020 return pci_register_driver(&hamachi_driver);
2021 }
2022
2023 static void __exit hamachi_exit (void)
2024 {
2025 pci_unregister_driver(&hamachi_driver);
2026 }
2027
2028
2029 module_init(hamachi_init);
2030 module_exit(hamachi_exit);
This page took 0.082568 seconds and 6 git commands to generate.