igb: Add support for DH89xxCC
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/if_ether.h>
47 #include <linux/aer.h>
48 #ifdef CONFIG_IGB_DCA
49 #include <linux/dca.h>
50 #endif
51 #include "igb.h"
52
53 #define DRV_VERSION "2.1.0-k2"
54 char igb_driver_name[] = "igb";
55 char igb_driver_version[] = DRV_VERSION;
56 static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
58 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59
60 static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62 };
63
64 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
87 /* required last entry */
88 {0, }
89 };
90
91 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
92
93 void igb_reset(struct igb_adapter *);
94 static int igb_setup_all_tx_resources(struct igb_adapter *);
95 static int igb_setup_all_rx_resources(struct igb_adapter *);
96 static void igb_free_all_tx_resources(struct igb_adapter *);
97 static void igb_free_all_rx_resources(struct igb_adapter *);
98 static void igb_setup_mrqc(struct igb_adapter *);
99 void igb_update_stats(struct igb_adapter *);
100 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
101 static void __devexit igb_remove(struct pci_dev *pdev);
102 static int igb_sw_init(struct igb_adapter *);
103 static int igb_open(struct net_device *);
104 static int igb_close(struct net_device *);
105 static void igb_configure_tx(struct igb_adapter *);
106 static void igb_configure_rx(struct igb_adapter *);
107 static void igb_clean_all_tx_rings(struct igb_adapter *);
108 static void igb_clean_all_rx_rings(struct igb_adapter *);
109 static void igb_clean_tx_ring(struct igb_ring *);
110 static void igb_clean_rx_ring(struct igb_ring *);
111 static void igb_set_rx_mode(struct net_device *);
112 static void igb_update_phy_info(unsigned long);
113 static void igb_watchdog(unsigned long);
114 static void igb_watchdog_task(struct work_struct *);
115 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
116 static struct net_device_stats *igb_get_stats(struct net_device *);
117 static int igb_change_mtu(struct net_device *, int);
118 static int igb_set_mac(struct net_device *, void *);
119 static void igb_set_uta(struct igb_adapter *adapter);
120 static irqreturn_t igb_intr(int irq, void *);
121 static irqreturn_t igb_intr_msi(int irq, void *);
122 static irqreturn_t igb_msix_other(int irq, void *);
123 static irqreturn_t igb_msix_ring(int irq, void *);
124 #ifdef CONFIG_IGB_DCA
125 static void igb_update_dca(struct igb_q_vector *);
126 static void igb_setup_dca(struct igb_adapter *);
127 #endif /* CONFIG_IGB_DCA */
128 static bool igb_clean_tx_irq(struct igb_q_vector *);
129 static int igb_poll(struct napi_struct *, int);
130 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
131 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
132 static void igb_tx_timeout(struct net_device *);
133 static void igb_reset_task(struct work_struct *);
134 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
135 static void igb_vlan_rx_add_vid(struct net_device *, u16);
136 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
137 static void igb_restore_vlan(struct igb_adapter *);
138 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
139 static void igb_ping_all_vfs(struct igb_adapter *);
140 static void igb_msg_task(struct igb_adapter *);
141 static void igb_vmm_control(struct igb_adapter *);
142 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
143 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
144 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
145 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
146 int vf, u16 vlan, u8 qos);
147 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
148 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
149 struct ifla_vf_info *ivi);
150
151 #ifdef CONFIG_PM
152 static int igb_suspend(struct pci_dev *, pm_message_t);
153 static int igb_resume(struct pci_dev *);
154 #endif
155 static void igb_shutdown(struct pci_dev *);
156 #ifdef CONFIG_IGB_DCA
157 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
158 static struct notifier_block dca_notifier = {
159 .notifier_call = igb_notify_dca,
160 .next = NULL,
161 .priority = 0
162 };
163 #endif
164 #ifdef CONFIG_NET_POLL_CONTROLLER
165 /* for netdump / net console */
166 static void igb_netpoll(struct net_device *);
167 #endif
168 #ifdef CONFIG_PCI_IOV
169 static unsigned int max_vfs = 0;
170 module_param(max_vfs, uint, 0);
171 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
172 "per physical function");
173 #endif /* CONFIG_PCI_IOV */
174
175 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
176 pci_channel_state_t);
177 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
178 static void igb_io_resume(struct pci_dev *);
179
180 static struct pci_error_handlers igb_err_handler = {
181 .error_detected = igb_io_error_detected,
182 .slot_reset = igb_io_slot_reset,
183 .resume = igb_io_resume,
184 };
185
186
187 static struct pci_driver igb_driver = {
188 .name = igb_driver_name,
189 .id_table = igb_pci_tbl,
190 .probe = igb_probe,
191 .remove = __devexit_p(igb_remove),
192 #ifdef CONFIG_PM
193 /* Power Managment Hooks */
194 .suspend = igb_suspend,
195 .resume = igb_resume,
196 #endif
197 .shutdown = igb_shutdown,
198 .err_handler = &igb_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
202 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 struct igb_reg_info {
207 u32 ofs;
208 char *name;
209 };
210
211 static const struct igb_reg_info igb_reg_info_tbl[] = {
212
213 /* General Registers */
214 {E1000_CTRL, "CTRL"},
215 {E1000_STATUS, "STATUS"},
216 {E1000_CTRL_EXT, "CTRL_EXT"},
217
218 /* Interrupt Registers */
219 {E1000_ICR, "ICR"},
220
221 /* RX Registers */
222 {E1000_RCTL, "RCTL"},
223 {E1000_RDLEN(0), "RDLEN"},
224 {E1000_RDH(0), "RDH"},
225 {E1000_RDT(0), "RDT"},
226 {E1000_RXDCTL(0), "RXDCTL"},
227 {E1000_RDBAL(0), "RDBAL"},
228 {E1000_RDBAH(0), "RDBAH"},
229
230 /* TX Registers */
231 {E1000_TCTL, "TCTL"},
232 {E1000_TDBAL(0), "TDBAL"},
233 {E1000_TDBAH(0), "TDBAH"},
234 {E1000_TDLEN(0), "TDLEN"},
235 {E1000_TDH(0), "TDH"},
236 {E1000_TDT(0), "TDT"},
237 {E1000_TXDCTL(0), "TXDCTL"},
238 {E1000_TDFH, "TDFH"},
239 {E1000_TDFT, "TDFT"},
240 {E1000_TDFHS, "TDFHS"},
241 {E1000_TDFPC, "TDFPC"},
242
243 /* List Terminator */
244 {}
245 };
246
247 /*
248 * igb_regdump - register printout routine
249 */
250 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
251 {
252 int n = 0;
253 char rname[16];
254 u32 regs[8];
255
256 switch (reginfo->ofs) {
257 case E1000_RDLEN(0):
258 for (n = 0; n < 4; n++)
259 regs[n] = rd32(E1000_RDLEN(n));
260 break;
261 case E1000_RDH(0):
262 for (n = 0; n < 4; n++)
263 regs[n] = rd32(E1000_RDH(n));
264 break;
265 case E1000_RDT(0):
266 for (n = 0; n < 4; n++)
267 regs[n] = rd32(E1000_RDT(n));
268 break;
269 case E1000_RXDCTL(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RXDCTL(n));
272 break;
273 case E1000_RDBAL(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RDBAL(n));
276 break;
277 case E1000_RDBAH(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDBAH(n));
280 break;
281 case E1000_TDBAL(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RDBAL(n));
284 break;
285 case E1000_TDBAH(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_TDBAH(n));
288 break;
289 case E1000_TDLEN(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_TDLEN(n));
292 break;
293 case E1000_TDH(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_TDH(n));
296 break;
297 case E1000_TDT(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDT(n));
300 break;
301 case E1000_TXDCTL(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TXDCTL(n));
304 break;
305 default:
306 printk(KERN_INFO "%-15s %08x\n",
307 reginfo->name, rd32(reginfo->ofs));
308 return;
309 }
310
311 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
312 printk(KERN_INFO "%-15s ", rname);
313 for (n = 0; n < 4; n++)
314 printk(KERN_CONT "%08x ", regs[n]);
315 printk(KERN_CONT "\n");
316 }
317
318 /*
319 * igb_dump - Print registers, tx-rings and rx-rings
320 */
321 static void igb_dump(struct igb_adapter *adapter)
322 {
323 struct net_device *netdev = adapter->netdev;
324 struct e1000_hw *hw = &adapter->hw;
325 struct igb_reg_info *reginfo;
326 int n = 0;
327 struct igb_ring *tx_ring;
328 union e1000_adv_tx_desc *tx_desc;
329 struct my_u0 { u64 a; u64 b; } *u0;
330 struct igb_buffer *buffer_info;
331 struct igb_ring *rx_ring;
332 union e1000_adv_rx_desc *rx_desc;
333 u32 staterr;
334 int i = 0;
335
336 if (!netif_msg_hw(adapter))
337 return;
338
339 /* Print netdevice Info */
340 if (netdev) {
341 dev_info(&adapter->pdev->dev, "Net device Info\n");
342 printk(KERN_INFO "Device Name state "
343 "trans_start last_rx\n");
344 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
345 netdev->name,
346 netdev->state,
347 netdev->trans_start,
348 netdev->last_rx);
349 }
350
351 /* Print Registers */
352 dev_info(&adapter->pdev->dev, "Register Dump\n");
353 printk(KERN_INFO " Register Name Value\n");
354 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
355 reginfo->name; reginfo++) {
356 igb_regdump(hw, reginfo);
357 }
358
359 /* Print TX Ring Summary */
360 if (!netdev || !netif_running(netdev))
361 goto exit;
362
363 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
364 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
365 " leng ntw timestamp\n");
366 for (n = 0; n < adapter->num_tx_queues; n++) {
367 tx_ring = adapter->tx_ring[n];
368 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
369 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
370 n, tx_ring->next_to_use, tx_ring->next_to_clean,
371 (u64)buffer_info->dma,
372 buffer_info->length,
373 buffer_info->next_to_watch,
374 (u64)buffer_info->time_stamp);
375 }
376
377 /* Print TX Rings */
378 if (!netif_msg_tx_done(adapter))
379 goto rx_ring_summary;
380
381 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
382
383 /* Transmit Descriptor Formats
384 *
385 * Advanced Transmit Descriptor
386 * +--------------------------------------------------------------+
387 * 0 | Buffer Address [63:0] |
388 * +--------------------------------------------------------------+
389 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
390 * +--------------------------------------------------------------+
391 * 63 46 45 40 39 38 36 35 32 31 24 15 0
392 */
393
394 for (n = 0; n < adapter->num_tx_queues; n++) {
395 tx_ring = adapter->tx_ring[n];
396 printk(KERN_INFO "------------------------------------\n");
397 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
398 printk(KERN_INFO "------------------------------------\n");
399 printk(KERN_INFO "T [desc] [address 63:0 ] "
400 "[PlPOCIStDDM Ln] [bi->dma ] "
401 "leng ntw timestamp bi->skb\n");
402
403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
404 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
405 buffer_info = &tx_ring->buffer_info[i];
406 u0 = (struct my_u0 *)tx_desc;
407 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
408 " %04X %3X %016llX %p", i,
409 le64_to_cpu(u0->a),
410 le64_to_cpu(u0->b),
411 (u64)buffer_info->dma,
412 buffer_info->length,
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp,
415 buffer_info->skb);
416 if (i == tx_ring->next_to_use &&
417 i == tx_ring->next_to_clean)
418 printk(KERN_CONT " NTC/U\n");
419 else if (i == tx_ring->next_to_use)
420 printk(KERN_CONT " NTU\n");
421 else if (i == tx_ring->next_to_clean)
422 printk(KERN_CONT " NTC\n");
423 else
424 printk(KERN_CONT "\n");
425
426 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
427 print_hex_dump(KERN_INFO, "",
428 DUMP_PREFIX_ADDRESS,
429 16, 1, phys_to_virt(buffer_info->dma),
430 buffer_info->length, true);
431 }
432 }
433
434 /* Print RX Rings Summary */
435 rx_ring_summary:
436 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
437 printk(KERN_INFO "Queue [NTU] [NTC]\n");
438 for (n = 0; n < adapter->num_rx_queues; n++) {
439 rx_ring = adapter->rx_ring[n];
440 printk(KERN_INFO " %5d %5X %5X\n", n,
441 rx_ring->next_to_use, rx_ring->next_to_clean);
442 }
443
444 /* Print RX Rings */
445 if (!netif_msg_rx_status(adapter))
446 goto exit;
447
448 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
449
450 /* Advanced Receive Descriptor (Read) Format
451 * 63 1 0
452 * +-----------------------------------------------------+
453 * 0 | Packet Buffer Address [63:1] |A0/NSE|
454 * +----------------------------------------------+------+
455 * 8 | Header Buffer Address [63:1] | DD |
456 * +-----------------------------------------------------+
457 *
458 *
459 * Advanced Receive Descriptor (Write-Back) Format
460 *
461 * 63 48 47 32 31 30 21 20 17 16 4 3 0
462 * +------------------------------------------------------+
463 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
464 * | Checksum Ident | | | | Type | Type |
465 * +------------------------------------------------------+
466 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
467 * +------------------------------------------------------+
468 * 63 48 47 32 31 20 19 0
469 */
470
471 for (n = 0; n < adapter->num_rx_queues; n++) {
472 rx_ring = adapter->rx_ring[n];
473 printk(KERN_INFO "------------------------------------\n");
474 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
475 printk(KERN_INFO "------------------------------------\n");
476 printk(KERN_INFO "R [desc] [ PktBuf A0] "
477 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
478 "<-- Adv Rx Read format\n");
479 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
480 "[vl er S cks ln] ---------------- [bi->skb] "
481 "<-- Adv Rx Write-Back format\n");
482
483 for (i = 0; i < rx_ring->count; i++) {
484 buffer_info = &rx_ring->buffer_info[i];
485 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
486 u0 = (struct my_u0 *)rx_desc;
487 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
488 if (staterr & E1000_RXD_STAT_DD) {
489 /* Descriptor Done */
490 printk(KERN_INFO "RWB[0x%03X] %016llX "
491 "%016llX ---------------- %p", i,
492 le64_to_cpu(u0->a),
493 le64_to_cpu(u0->b),
494 buffer_info->skb);
495 } else {
496 printk(KERN_INFO "R [0x%03X] %016llX "
497 "%016llX %016llX %p", i,
498 le64_to_cpu(u0->a),
499 le64_to_cpu(u0->b),
500 (u64)buffer_info->dma,
501 buffer_info->skb);
502
503 if (netif_msg_pktdata(adapter)) {
504 print_hex_dump(KERN_INFO, "",
505 DUMP_PREFIX_ADDRESS,
506 16, 1,
507 phys_to_virt(buffer_info->dma),
508 rx_ring->rx_buffer_len, true);
509 if (rx_ring->rx_buffer_len
510 < IGB_RXBUFFER_1024)
511 print_hex_dump(KERN_INFO, "",
512 DUMP_PREFIX_ADDRESS,
513 16, 1,
514 phys_to_virt(
515 buffer_info->page_dma +
516 buffer_info->page_offset),
517 PAGE_SIZE/2, true);
518 }
519 }
520
521 if (i == rx_ring->next_to_use)
522 printk(KERN_CONT " NTU\n");
523 else if (i == rx_ring->next_to_clean)
524 printk(KERN_CONT " NTC\n");
525 else
526 printk(KERN_CONT "\n");
527
528 }
529 }
530
531 exit:
532 return;
533 }
534
535
536 /**
537 * igb_read_clock - read raw cycle counter (to be used by time counter)
538 */
539 static cycle_t igb_read_clock(const struct cyclecounter *tc)
540 {
541 struct igb_adapter *adapter =
542 container_of(tc, struct igb_adapter, cycles);
543 struct e1000_hw *hw = &adapter->hw;
544 u64 stamp = 0;
545 int shift = 0;
546
547 /*
548 * The timestamp latches on lowest register read. For the 82580
549 * the lowest register is SYSTIMR instead of SYSTIML. However we never
550 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
551 */
552 if (hw->mac.type == e1000_82580) {
553 stamp = rd32(E1000_SYSTIMR) >> 8;
554 shift = IGB_82580_TSYNC_SHIFT;
555 }
556
557 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
558 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
559 return stamp;
560 }
561
562 /**
563 * igb_get_hw_dev - return device
564 * used by hardware layer to print debugging information
565 **/
566 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
567 {
568 struct igb_adapter *adapter = hw->back;
569 return adapter->netdev;
570 }
571
572 /**
573 * igb_init_module - Driver Registration Routine
574 *
575 * igb_init_module is the first routine called when the driver is
576 * loaded. All it does is register with the PCI subsystem.
577 **/
578 static int __init igb_init_module(void)
579 {
580 int ret;
581 printk(KERN_INFO "%s - version %s\n",
582 igb_driver_string, igb_driver_version);
583
584 printk(KERN_INFO "%s\n", igb_copyright);
585
586 #ifdef CONFIG_IGB_DCA
587 dca_register_notify(&dca_notifier);
588 #endif
589 ret = pci_register_driver(&igb_driver);
590 return ret;
591 }
592
593 module_init(igb_init_module);
594
595 /**
596 * igb_exit_module - Driver Exit Cleanup Routine
597 *
598 * igb_exit_module is called just before the driver is removed
599 * from memory.
600 **/
601 static void __exit igb_exit_module(void)
602 {
603 #ifdef CONFIG_IGB_DCA
604 dca_unregister_notify(&dca_notifier);
605 #endif
606 pci_unregister_driver(&igb_driver);
607 }
608
609 module_exit(igb_exit_module);
610
611 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
612 /**
613 * igb_cache_ring_register - Descriptor ring to register mapping
614 * @adapter: board private structure to initialize
615 *
616 * Once we know the feature-set enabled for the device, we'll cache
617 * the register offset the descriptor ring is assigned to.
618 **/
619 static void igb_cache_ring_register(struct igb_adapter *adapter)
620 {
621 int i = 0, j = 0;
622 u32 rbase_offset = adapter->vfs_allocated_count;
623
624 switch (adapter->hw.mac.type) {
625 case e1000_82576:
626 /* The queues are allocated for virtualization such that VF 0
627 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
628 * In order to avoid collision we start at the first free queue
629 * and continue consuming queues in the same sequence
630 */
631 if (adapter->vfs_allocated_count) {
632 for (; i < adapter->rss_queues; i++)
633 adapter->rx_ring[i]->reg_idx = rbase_offset +
634 Q_IDX_82576(i);
635 }
636 case e1000_82575:
637 case e1000_82580:
638 case e1000_i350:
639 default:
640 for (; i < adapter->num_rx_queues; i++)
641 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
642 for (; j < adapter->num_tx_queues; j++)
643 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
644 break;
645 }
646 }
647
648 static void igb_free_queues(struct igb_adapter *adapter)
649 {
650 int i;
651
652 for (i = 0; i < adapter->num_tx_queues; i++) {
653 kfree(adapter->tx_ring[i]);
654 adapter->tx_ring[i] = NULL;
655 }
656 for (i = 0; i < adapter->num_rx_queues; i++) {
657 kfree(adapter->rx_ring[i]);
658 adapter->rx_ring[i] = NULL;
659 }
660 adapter->num_rx_queues = 0;
661 adapter->num_tx_queues = 0;
662 }
663
664 /**
665 * igb_alloc_queues - Allocate memory for all rings
666 * @adapter: board private structure to initialize
667 *
668 * We allocate one ring per queue at run-time since we don't know the
669 * number of queues at compile-time.
670 **/
671 static int igb_alloc_queues(struct igb_adapter *adapter)
672 {
673 struct igb_ring *ring;
674 int i;
675
676 for (i = 0; i < adapter->num_tx_queues; i++) {
677 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
678 if (!ring)
679 goto err;
680 ring->count = adapter->tx_ring_count;
681 ring->queue_index = i;
682 ring->dev = &adapter->pdev->dev;
683 ring->netdev = adapter->netdev;
684 /* For 82575, context index must be unique per ring. */
685 if (adapter->hw.mac.type == e1000_82575)
686 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
687 adapter->tx_ring[i] = ring;
688 }
689
690 for (i = 0; i < adapter->num_rx_queues; i++) {
691 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
692 if (!ring)
693 goto err;
694 ring->count = adapter->rx_ring_count;
695 ring->queue_index = i;
696 ring->dev = &adapter->pdev->dev;
697 ring->netdev = adapter->netdev;
698 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
699 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
700 /* set flag indicating ring supports SCTP checksum offload */
701 if (adapter->hw.mac.type >= e1000_82576)
702 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
703 adapter->rx_ring[i] = ring;
704 }
705
706 igb_cache_ring_register(adapter);
707
708 return 0;
709
710 err:
711 igb_free_queues(adapter);
712
713 return -ENOMEM;
714 }
715
716 #define IGB_N0_QUEUE -1
717 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
718 {
719 u32 msixbm = 0;
720 struct igb_adapter *adapter = q_vector->adapter;
721 struct e1000_hw *hw = &adapter->hw;
722 u32 ivar, index;
723 int rx_queue = IGB_N0_QUEUE;
724 int tx_queue = IGB_N0_QUEUE;
725
726 if (q_vector->rx_ring)
727 rx_queue = q_vector->rx_ring->reg_idx;
728 if (q_vector->tx_ring)
729 tx_queue = q_vector->tx_ring->reg_idx;
730
731 switch (hw->mac.type) {
732 case e1000_82575:
733 /* The 82575 assigns vectors using a bitmask, which matches the
734 bitmask for the EICR/EIMS/EIMC registers. To assign one
735 or more queues to a vector, we write the appropriate bits
736 into the MSIXBM register for that vector. */
737 if (rx_queue > IGB_N0_QUEUE)
738 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
739 if (tx_queue > IGB_N0_QUEUE)
740 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
741 if (!adapter->msix_entries && msix_vector == 0)
742 msixbm |= E1000_EIMS_OTHER;
743 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
744 q_vector->eims_value = msixbm;
745 break;
746 case e1000_82576:
747 /* 82576 uses a table-based method for assigning vectors.
748 Each queue has a single entry in the table to which we write
749 a vector number along with a "valid" bit. Sadly, the layout
750 of the table is somewhat counterintuitive. */
751 if (rx_queue > IGB_N0_QUEUE) {
752 index = (rx_queue & 0x7);
753 ivar = array_rd32(E1000_IVAR0, index);
754 if (rx_queue < 8) {
755 /* vector goes into low byte of register */
756 ivar = ivar & 0xFFFFFF00;
757 ivar |= msix_vector | E1000_IVAR_VALID;
758 } else {
759 /* vector goes into third byte of register */
760 ivar = ivar & 0xFF00FFFF;
761 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
762 }
763 array_wr32(E1000_IVAR0, index, ivar);
764 }
765 if (tx_queue > IGB_N0_QUEUE) {
766 index = (tx_queue & 0x7);
767 ivar = array_rd32(E1000_IVAR0, index);
768 if (tx_queue < 8) {
769 /* vector goes into second byte of register */
770 ivar = ivar & 0xFFFF00FF;
771 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
772 } else {
773 /* vector goes into high byte of register */
774 ivar = ivar & 0x00FFFFFF;
775 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
776 }
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779 q_vector->eims_value = 1 << msix_vector;
780 break;
781 case e1000_82580:
782 case e1000_i350:
783 /* 82580 uses the same table-based approach as 82576 but has fewer
784 entries as a result we carry over for queues greater than 4. */
785 if (rx_queue > IGB_N0_QUEUE) {
786 index = (rx_queue >> 1);
787 ivar = array_rd32(E1000_IVAR0, index);
788 if (rx_queue & 0x1) {
789 /* vector goes into third byte of register */
790 ivar = ivar & 0xFF00FFFF;
791 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
792 } else {
793 /* vector goes into low byte of register */
794 ivar = ivar & 0xFFFFFF00;
795 ivar |= msix_vector | E1000_IVAR_VALID;
796 }
797 array_wr32(E1000_IVAR0, index, ivar);
798 }
799 if (tx_queue > IGB_N0_QUEUE) {
800 index = (tx_queue >> 1);
801 ivar = array_rd32(E1000_IVAR0, index);
802 if (tx_queue & 0x1) {
803 /* vector goes into high byte of register */
804 ivar = ivar & 0x00FFFFFF;
805 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
806 } else {
807 /* vector goes into second byte of register */
808 ivar = ivar & 0xFFFF00FF;
809 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
810 }
811 array_wr32(E1000_IVAR0, index, ivar);
812 }
813 q_vector->eims_value = 1 << msix_vector;
814 break;
815 default:
816 BUG();
817 break;
818 }
819
820 /* add q_vector eims value to global eims_enable_mask */
821 adapter->eims_enable_mask |= q_vector->eims_value;
822
823 /* configure q_vector to set itr on first interrupt */
824 q_vector->set_itr = 1;
825 }
826
827 /**
828 * igb_configure_msix - Configure MSI-X hardware
829 *
830 * igb_configure_msix sets up the hardware to properly
831 * generate MSI-X interrupts.
832 **/
833 static void igb_configure_msix(struct igb_adapter *adapter)
834 {
835 u32 tmp;
836 int i, vector = 0;
837 struct e1000_hw *hw = &adapter->hw;
838
839 adapter->eims_enable_mask = 0;
840
841 /* set vector for other causes, i.e. link changes */
842 switch (hw->mac.type) {
843 case e1000_82575:
844 tmp = rd32(E1000_CTRL_EXT);
845 /* enable MSI-X PBA support*/
846 tmp |= E1000_CTRL_EXT_PBA_CLR;
847
848 /* Auto-Mask interrupts upon ICR read. */
849 tmp |= E1000_CTRL_EXT_EIAME;
850 tmp |= E1000_CTRL_EXT_IRCA;
851
852 wr32(E1000_CTRL_EXT, tmp);
853
854 /* enable msix_other interrupt */
855 array_wr32(E1000_MSIXBM(0), vector++,
856 E1000_EIMS_OTHER);
857 adapter->eims_other = E1000_EIMS_OTHER;
858
859 break;
860
861 case e1000_82576:
862 case e1000_82580:
863 case e1000_i350:
864 /* Turn on MSI-X capability first, or our settings
865 * won't stick. And it will take days to debug. */
866 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
867 E1000_GPIE_PBA | E1000_GPIE_EIAME |
868 E1000_GPIE_NSICR);
869
870 /* enable msix_other interrupt */
871 adapter->eims_other = 1 << vector;
872 tmp = (vector++ | E1000_IVAR_VALID) << 8;
873
874 wr32(E1000_IVAR_MISC, tmp);
875 break;
876 default:
877 /* do nothing, since nothing else supports MSI-X */
878 break;
879 } /* switch (hw->mac.type) */
880
881 adapter->eims_enable_mask |= adapter->eims_other;
882
883 for (i = 0; i < adapter->num_q_vectors; i++)
884 igb_assign_vector(adapter->q_vector[i], vector++);
885
886 wrfl();
887 }
888
889 /**
890 * igb_request_msix - Initialize MSI-X interrupts
891 *
892 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
893 * kernel.
894 **/
895 static int igb_request_msix(struct igb_adapter *adapter)
896 {
897 struct net_device *netdev = adapter->netdev;
898 struct e1000_hw *hw = &adapter->hw;
899 int i, err = 0, vector = 0;
900
901 err = request_irq(adapter->msix_entries[vector].vector,
902 igb_msix_other, 0, netdev->name, adapter);
903 if (err)
904 goto out;
905 vector++;
906
907 for (i = 0; i < adapter->num_q_vectors; i++) {
908 struct igb_q_vector *q_vector = adapter->q_vector[i];
909
910 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
911
912 if (q_vector->rx_ring && q_vector->tx_ring)
913 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
914 q_vector->rx_ring->queue_index);
915 else if (q_vector->tx_ring)
916 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
917 q_vector->tx_ring->queue_index);
918 else if (q_vector->rx_ring)
919 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
920 q_vector->rx_ring->queue_index);
921 else
922 sprintf(q_vector->name, "%s-unused", netdev->name);
923
924 err = request_irq(adapter->msix_entries[vector].vector,
925 igb_msix_ring, 0, q_vector->name,
926 q_vector);
927 if (err)
928 goto out;
929 vector++;
930 }
931
932 igb_configure_msix(adapter);
933 return 0;
934 out:
935 return err;
936 }
937
938 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
939 {
940 if (adapter->msix_entries) {
941 pci_disable_msix(adapter->pdev);
942 kfree(adapter->msix_entries);
943 adapter->msix_entries = NULL;
944 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
945 pci_disable_msi(adapter->pdev);
946 }
947 }
948
949 /**
950 * igb_free_q_vectors - Free memory allocated for interrupt vectors
951 * @adapter: board private structure to initialize
952 *
953 * This function frees the memory allocated to the q_vectors. In addition if
954 * NAPI is enabled it will delete any references to the NAPI struct prior
955 * to freeing the q_vector.
956 **/
957 static void igb_free_q_vectors(struct igb_adapter *adapter)
958 {
959 int v_idx;
960
961 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
962 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
963 adapter->q_vector[v_idx] = NULL;
964 if (!q_vector)
965 continue;
966 netif_napi_del(&q_vector->napi);
967 kfree(q_vector);
968 }
969 adapter->num_q_vectors = 0;
970 }
971
972 /**
973 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
974 *
975 * This function resets the device so that it has 0 rx queues, tx queues, and
976 * MSI-X interrupts allocated.
977 */
978 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
979 {
980 igb_free_queues(adapter);
981 igb_free_q_vectors(adapter);
982 igb_reset_interrupt_capability(adapter);
983 }
984
985 /**
986 * igb_set_interrupt_capability - set MSI or MSI-X if supported
987 *
988 * Attempt to configure interrupts using the best available
989 * capabilities of the hardware and kernel.
990 **/
991 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
992 {
993 int err;
994 int numvecs, i;
995
996 /* Number of supported queues. */
997 adapter->num_rx_queues = adapter->rss_queues;
998 if (adapter->vfs_allocated_count)
999 adapter->num_tx_queues = 1;
1000 else
1001 adapter->num_tx_queues = adapter->rss_queues;
1002
1003 /* start with one vector for every rx queue */
1004 numvecs = adapter->num_rx_queues;
1005
1006 /* if tx handler is separate add 1 for every tx queue */
1007 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1008 numvecs += adapter->num_tx_queues;
1009
1010 /* store the number of vectors reserved for queues */
1011 adapter->num_q_vectors = numvecs;
1012
1013 /* add 1 vector for link status interrupts */
1014 numvecs++;
1015 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1016 GFP_KERNEL);
1017 if (!adapter->msix_entries)
1018 goto msi_only;
1019
1020 for (i = 0; i < numvecs; i++)
1021 adapter->msix_entries[i].entry = i;
1022
1023 err = pci_enable_msix(adapter->pdev,
1024 adapter->msix_entries,
1025 numvecs);
1026 if (err == 0)
1027 goto out;
1028
1029 igb_reset_interrupt_capability(adapter);
1030
1031 /* If we can't do MSI-X, try MSI */
1032 msi_only:
1033 #ifdef CONFIG_PCI_IOV
1034 /* disable SR-IOV for non MSI-X configurations */
1035 if (adapter->vf_data) {
1036 struct e1000_hw *hw = &adapter->hw;
1037 /* disable iov and allow time for transactions to clear */
1038 pci_disable_sriov(adapter->pdev);
1039 msleep(500);
1040
1041 kfree(adapter->vf_data);
1042 adapter->vf_data = NULL;
1043 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1044 msleep(100);
1045 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1046 }
1047 #endif
1048 adapter->vfs_allocated_count = 0;
1049 adapter->rss_queues = 1;
1050 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1051 adapter->num_rx_queues = 1;
1052 adapter->num_tx_queues = 1;
1053 adapter->num_q_vectors = 1;
1054 if (!pci_enable_msi(adapter->pdev))
1055 adapter->flags |= IGB_FLAG_HAS_MSI;
1056 out:
1057 /* Notify the stack of the (possibly) reduced Tx Queue count. */
1058 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
1059 }
1060
1061 /**
1062 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1063 * @adapter: board private structure to initialize
1064 *
1065 * We allocate one q_vector per queue interrupt. If allocation fails we
1066 * return -ENOMEM.
1067 **/
1068 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1069 {
1070 struct igb_q_vector *q_vector;
1071 struct e1000_hw *hw = &adapter->hw;
1072 int v_idx;
1073
1074 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1075 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1076 if (!q_vector)
1077 goto err_out;
1078 q_vector->adapter = adapter;
1079 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1080 q_vector->itr_val = IGB_START_ITR;
1081 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1082 adapter->q_vector[v_idx] = q_vector;
1083 }
1084 return 0;
1085
1086 err_out:
1087 igb_free_q_vectors(adapter);
1088 return -ENOMEM;
1089 }
1090
1091 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1092 int ring_idx, int v_idx)
1093 {
1094 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1095
1096 q_vector->rx_ring = adapter->rx_ring[ring_idx];
1097 q_vector->rx_ring->q_vector = q_vector;
1098 q_vector->itr_val = adapter->rx_itr_setting;
1099 if (q_vector->itr_val && q_vector->itr_val <= 3)
1100 q_vector->itr_val = IGB_START_ITR;
1101 }
1102
1103 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1104 int ring_idx, int v_idx)
1105 {
1106 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1107
1108 q_vector->tx_ring = adapter->tx_ring[ring_idx];
1109 q_vector->tx_ring->q_vector = q_vector;
1110 q_vector->itr_val = adapter->tx_itr_setting;
1111 if (q_vector->itr_val && q_vector->itr_val <= 3)
1112 q_vector->itr_val = IGB_START_ITR;
1113 }
1114
1115 /**
1116 * igb_map_ring_to_vector - maps allocated queues to vectors
1117 *
1118 * This function maps the recently allocated queues to vectors.
1119 **/
1120 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1121 {
1122 int i;
1123 int v_idx = 0;
1124
1125 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1126 (adapter->num_q_vectors < adapter->num_tx_queues))
1127 return -ENOMEM;
1128
1129 if (adapter->num_q_vectors >=
1130 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1131 for (i = 0; i < adapter->num_rx_queues; i++)
1132 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1133 for (i = 0; i < adapter->num_tx_queues; i++)
1134 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1135 } else {
1136 for (i = 0; i < adapter->num_rx_queues; i++) {
1137 if (i < adapter->num_tx_queues)
1138 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1139 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1140 }
1141 for (; i < adapter->num_tx_queues; i++)
1142 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1143 }
1144 return 0;
1145 }
1146
1147 /**
1148 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1149 *
1150 * This function initializes the interrupts and allocates all of the queues.
1151 **/
1152 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1153 {
1154 struct pci_dev *pdev = adapter->pdev;
1155 int err;
1156
1157 igb_set_interrupt_capability(adapter);
1158
1159 err = igb_alloc_q_vectors(adapter);
1160 if (err) {
1161 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1162 goto err_alloc_q_vectors;
1163 }
1164
1165 err = igb_alloc_queues(adapter);
1166 if (err) {
1167 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1168 goto err_alloc_queues;
1169 }
1170
1171 err = igb_map_ring_to_vector(adapter);
1172 if (err) {
1173 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1174 goto err_map_queues;
1175 }
1176
1177
1178 return 0;
1179 err_map_queues:
1180 igb_free_queues(adapter);
1181 err_alloc_queues:
1182 igb_free_q_vectors(adapter);
1183 err_alloc_q_vectors:
1184 igb_reset_interrupt_capability(adapter);
1185 return err;
1186 }
1187
1188 /**
1189 * igb_request_irq - initialize interrupts
1190 *
1191 * Attempts to configure interrupts using the best available
1192 * capabilities of the hardware and kernel.
1193 **/
1194 static int igb_request_irq(struct igb_adapter *adapter)
1195 {
1196 struct net_device *netdev = adapter->netdev;
1197 struct pci_dev *pdev = adapter->pdev;
1198 int err = 0;
1199
1200 if (adapter->msix_entries) {
1201 err = igb_request_msix(adapter);
1202 if (!err)
1203 goto request_done;
1204 /* fall back to MSI */
1205 igb_clear_interrupt_scheme(adapter);
1206 if (!pci_enable_msi(adapter->pdev))
1207 adapter->flags |= IGB_FLAG_HAS_MSI;
1208 igb_free_all_tx_resources(adapter);
1209 igb_free_all_rx_resources(adapter);
1210 adapter->num_tx_queues = 1;
1211 adapter->num_rx_queues = 1;
1212 adapter->num_q_vectors = 1;
1213 err = igb_alloc_q_vectors(adapter);
1214 if (err) {
1215 dev_err(&pdev->dev,
1216 "Unable to allocate memory for vectors\n");
1217 goto request_done;
1218 }
1219 err = igb_alloc_queues(adapter);
1220 if (err) {
1221 dev_err(&pdev->dev,
1222 "Unable to allocate memory for queues\n");
1223 igb_free_q_vectors(adapter);
1224 goto request_done;
1225 }
1226 igb_setup_all_tx_resources(adapter);
1227 igb_setup_all_rx_resources(adapter);
1228 } else {
1229 igb_assign_vector(adapter->q_vector[0], 0);
1230 }
1231
1232 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1233 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1234 netdev->name, adapter);
1235 if (!err)
1236 goto request_done;
1237
1238 /* fall back to legacy interrupts */
1239 igb_reset_interrupt_capability(adapter);
1240 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1241 }
1242
1243 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1244 netdev->name, adapter);
1245
1246 if (err)
1247 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1248 err);
1249
1250 request_done:
1251 return err;
1252 }
1253
1254 static void igb_free_irq(struct igb_adapter *adapter)
1255 {
1256 if (adapter->msix_entries) {
1257 int vector = 0, i;
1258
1259 free_irq(adapter->msix_entries[vector++].vector, adapter);
1260
1261 for (i = 0; i < adapter->num_q_vectors; i++) {
1262 struct igb_q_vector *q_vector = adapter->q_vector[i];
1263 free_irq(adapter->msix_entries[vector++].vector,
1264 q_vector);
1265 }
1266 } else {
1267 free_irq(adapter->pdev->irq, adapter);
1268 }
1269 }
1270
1271 /**
1272 * igb_irq_disable - Mask off interrupt generation on the NIC
1273 * @adapter: board private structure
1274 **/
1275 static void igb_irq_disable(struct igb_adapter *adapter)
1276 {
1277 struct e1000_hw *hw = &adapter->hw;
1278
1279 /*
1280 * we need to be careful when disabling interrupts. The VFs are also
1281 * mapped into these registers and so clearing the bits can cause
1282 * issues on the VF drivers so we only need to clear what we set
1283 */
1284 if (adapter->msix_entries) {
1285 u32 regval = rd32(E1000_EIAM);
1286 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1287 wr32(E1000_EIMC, adapter->eims_enable_mask);
1288 regval = rd32(E1000_EIAC);
1289 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1290 }
1291
1292 wr32(E1000_IAM, 0);
1293 wr32(E1000_IMC, ~0);
1294 wrfl();
1295 if (adapter->msix_entries) {
1296 int i;
1297 for (i = 0; i < adapter->num_q_vectors; i++)
1298 synchronize_irq(adapter->msix_entries[i].vector);
1299 } else {
1300 synchronize_irq(adapter->pdev->irq);
1301 }
1302 }
1303
1304 /**
1305 * igb_irq_enable - Enable default interrupt generation settings
1306 * @adapter: board private structure
1307 **/
1308 static void igb_irq_enable(struct igb_adapter *adapter)
1309 {
1310 struct e1000_hw *hw = &adapter->hw;
1311
1312 if (adapter->msix_entries) {
1313 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1314 u32 regval = rd32(E1000_EIAC);
1315 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1316 regval = rd32(E1000_EIAM);
1317 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1318 wr32(E1000_EIMS, adapter->eims_enable_mask);
1319 if (adapter->vfs_allocated_count) {
1320 wr32(E1000_MBVFIMR, 0xFF);
1321 ims |= E1000_IMS_VMMB;
1322 }
1323 if (adapter->hw.mac.type == e1000_82580)
1324 ims |= E1000_IMS_DRSTA;
1325
1326 wr32(E1000_IMS, ims);
1327 } else {
1328 wr32(E1000_IMS, IMS_ENABLE_MASK |
1329 E1000_IMS_DRSTA);
1330 wr32(E1000_IAM, IMS_ENABLE_MASK |
1331 E1000_IMS_DRSTA);
1332 }
1333 }
1334
1335 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1336 {
1337 struct e1000_hw *hw = &adapter->hw;
1338 u16 vid = adapter->hw.mng_cookie.vlan_id;
1339 u16 old_vid = adapter->mng_vlan_id;
1340
1341 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1342 /* add VID to filter table */
1343 igb_vfta_set(hw, vid, true);
1344 adapter->mng_vlan_id = vid;
1345 } else {
1346 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1347 }
1348
1349 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1350 (vid != old_vid) &&
1351 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1352 /* remove VID from filter table */
1353 igb_vfta_set(hw, old_vid, false);
1354 }
1355 }
1356
1357 /**
1358 * igb_release_hw_control - release control of the h/w to f/w
1359 * @adapter: address of board private structure
1360 *
1361 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1362 * For ASF and Pass Through versions of f/w this means that the
1363 * driver is no longer loaded.
1364 *
1365 **/
1366 static void igb_release_hw_control(struct igb_adapter *adapter)
1367 {
1368 struct e1000_hw *hw = &adapter->hw;
1369 u32 ctrl_ext;
1370
1371 /* Let firmware take over control of h/w */
1372 ctrl_ext = rd32(E1000_CTRL_EXT);
1373 wr32(E1000_CTRL_EXT,
1374 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1375 }
1376
1377 /**
1378 * igb_get_hw_control - get control of the h/w from f/w
1379 * @adapter: address of board private structure
1380 *
1381 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1382 * For ASF and Pass Through versions of f/w this means that
1383 * the driver is loaded.
1384 *
1385 **/
1386 static void igb_get_hw_control(struct igb_adapter *adapter)
1387 {
1388 struct e1000_hw *hw = &adapter->hw;
1389 u32 ctrl_ext;
1390
1391 /* Let firmware know the driver has taken over */
1392 ctrl_ext = rd32(E1000_CTRL_EXT);
1393 wr32(E1000_CTRL_EXT,
1394 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1395 }
1396
1397 /**
1398 * igb_configure - configure the hardware for RX and TX
1399 * @adapter: private board structure
1400 **/
1401 static void igb_configure(struct igb_adapter *adapter)
1402 {
1403 struct net_device *netdev = adapter->netdev;
1404 int i;
1405
1406 igb_get_hw_control(adapter);
1407 igb_set_rx_mode(netdev);
1408
1409 igb_restore_vlan(adapter);
1410
1411 igb_setup_tctl(adapter);
1412 igb_setup_mrqc(adapter);
1413 igb_setup_rctl(adapter);
1414
1415 igb_configure_tx(adapter);
1416 igb_configure_rx(adapter);
1417
1418 igb_rx_fifo_flush_82575(&adapter->hw);
1419
1420 /* call igb_desc_unused which always leaves
1421 * at least 1 descriptor unused to make sure
1422 * next_to_use != next_to_clean */
1423 for (i = 0; i < adapter->num_rx_queues; i++) {
1424 struct igb_ring *ring = adapter->rx_ring[i];
1425 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1426 }
1427 }
1428
1429 /**
1430 * igb_power_up_link - Power up the phy/serdes link
1431 * @adapter: address of board private structure
1432 **/
1433 void igb_power_up_link(struct igb_adapter *adapter)
1434 {
1435 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1436 igb_power_up_phy_copper(&adapter->hw);
1437 else
1438 igb_power_up_serdes_link_82575(&adapter->hw);
1439 }
1440
1441 /**
1442 * igb_power_down_link - Power down the phy/serdes link
1443 * @adapter: address of board private structure
1444 */
1445 static void igb_power_down_link(struct igb_adapter *adapter)
1446 {
1447 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1448 igb_power_down_phy_copper_82575(&adapter->hw);
1449 else
1450 igb_shutdown_serdes_link_82575(&adapter->hw);
1451 }
1452
1453 /**
1454 * igb_up - Open the interface and prepare it to handle traffic
1455 * @adapter: board private structure
1456 **/
1457 int igb_up(struct igb_adapter *adapter)
1458 {
1459 struct e1000_hw *hw = &adapter->hw;
1460 int i;
1461
1462 /* hardware has been reset, we need to reload some things */
1463 igb_configure(adapter);
1464
1465 clear_bit(__IGB_DOWN, &adapter->state);
1466
1467 for (i = 0; i < adapter->num_q_vectors; i++) {
1468 struct igb_q_vector *q_vector = adapter->q_vector[i];
1469 napi_enable(&q_vector->napi);
1470 }
1471 if (adapter->msix_entries)
1472 igb_configure_msix(adapter);
1473 else
1474 igb_assign_vector(adapter->q_vector[0], 0);
1475
1476 /* Clear any pending interrupts. */
1477 rd32(E1000_ICR);
1478 igb_irq_enable(adapter);
1479
1480 /* notify VFs that reset has been completed */
1481 if (adapter->vfs_allocated_count) {
1482 u32 reg_data = rd32(E1000_CTRL_EXT);
1483 reg_data |= E1000_CTRL_EXT_PFRSTD;
1484 wr32(E1000_CTRL_EXT, reg_data);
1485 }
1486
1487 netif_tx_start_all_queues(adapter->netdev);
1488
1489 /* start the watchdog. */
1490 hw->mac.get_link_status = 1;
1491 schedule_work(&adapter->watchdog_task);
1492
1493 return 0;
1494 }
1495
1496 void igb_down(struct igb_adapter *adapter)
1497 {
1498 struct net_device *netdev = adapter->netdev;
1499 struct e1000_hw *hw = &adapter->hw;
1500 u32 tctl, rctl;
1501 int i;
1502
1503 /* signal that we're down so the interrupt handler does not
1504 * reschedule our watchdog timer */
1505 set_bit(__IGB_DOWN, &adapter->state);
1506
1507 /* disable receives in the hardware */
1508 rctl = rd32(E1000_RCTL);
1509 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1510 /* flush and sleep below */
1511
1512 netif_tx_stop_all_queues(netdev);
1513
1514 /* disable transmits in the hardware */
1515 tctl = rd32(E1000_TCTL);
1516 tctl &= ~E1000_TCTL_EN;
1517 wr32(E1000_TCTL, tctl);
1518 /* flush both disables and wait for them to finish */
1519 wrfl();
1520 msleep(10);
1521
1522 for (i = 0; i < adapter->num_q_vectors; i++) {
1523 struct igb_q_vector *q_vector = adapter->q_vector[i];
1524 napi_disable(&q_vector->napi);
1525 }
1526
1527 igb_irq_disable(adapter);
1528
1529 del_timer_sync(&adapter->watchdog_timer);
1530 del_timer_sync(&adapter->phy_info_timer);
1531
1532 netif_carrier_off(netdev);
1533
1534 /* record the stats before reset*/
1535 igb_update_stats(adapter);
1536
1537 adapter->link_speed = 0;
1538 adapter->link_duplex = 0;
1539
1540 if (!pci_channel_offline(adapter->pdev))
1541 igb_reset(adapter);
1542 igb_clean_all_tx_rings(adapter);
1543 igb_clean_all_rx_rings(adapter);
1544 #ifdef CONFIG_IGB_DCA
1545
1546 /* since we reset the hardware DCA settings were cleared */
1547 igb_setup_dca(adapter);
1548 #endif
1549 }
1550
1551 void igb_reinit_locked(struct igb_adapter *adapter)
1552 {
1553 WARN_ON(in_interrupt());
1554 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1555 msleep(1);
1556 igb_down(adapter);
1557 igb_up(adapter);
1558 clear_bit(__IGB_RESETTING, &adapter->state);
1559 }
1560
1561 void igb_reset(struct igb_adapter *adapter)
1562 {
1563 struct pci_dev *pdev = adapter->pdev;
1564 struct e1000_hw *hw = &adapter->hw;
1565 struct e1000_mac_info *mac = &hw->mac;
1566 struct e1000_fc_info *fc = &hw->fc;
1567 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1568 u16 hwm;
1569
1570 /* Repartition Pba for greater than 9k mtu
1571 * To take effect CTRL.RST is required.
1572 */
1573 switch (mac->type) {
1574 case e1000_i350:
1575 case e1000_82580:
1576 pba = rd32(E1000_RXPBS);
1577 pba = igb_rxpbs_adjust_82580(pba);
1578 break;
1579 case e1000_82576:
1580 pba = rd32(E1000_RXPBS);
1581 pba &= E1000_RXPBS_SIZE_MASK_82576;
1582 break;
1583 case e1000_82575:
1584 default:
1585 pba = E1000_PBA_34K;
1586 break;
1587 }
1588
1589 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1590 (mac->type < e1000_82576)) {
1591 /* adjust PBA for jumbo frames */
1592 wr32(E1000_PBA, pba);
1593
1594 /* To maintain wire speed transmits, the Tx FIFO should be
1595 * large enough to accommodate two full transmit packets,
1596 * rounded up to the next 1KB and expressed in KB. Likewise,
1597 * the Rx FIFO should be large enough to accommodate at least
1598 * one full receive packet and is similarly rounded up and
1599 * expressed in KB. */
1600 pba = rd32(E1000_PBA);
1601 /* upper 16 bits has Tx packet buffer allocation size in KB */
1602 tx_space = pba >> 16;
1603 /* lower 16 bits has Rx packet buffer allocation size in KB */
1604 pba &= 0xffff;
1605 /* the tx fifo also stores 16 bytes of information about the tx
1606 * but don't include ethernet FCS because hardware appends it */
1607 min_tx_space = (adapter->max_frame_size +
1608 sizeof(union e1000_adv_tx_desc) -
1609 ETH_FCS_LEN) * 2;
1610 min_tx_space = ALIGN(min_tx_space, 1024);
1611 min_tx_space >>= 10;
1612 /* software strips receive CRC, so leave room for it */
1613 min_rx_space = adapter->max_frame_size;
1614 min_rx_space = ALIGN(min_rx_space, 1024);
1615 min_rx_space >>= 10;
1616
1617 /* If current Tx allocation is less than the min Tx FIFO size,
1618 * and the min Tx FIFO size is less than the current Rx FIFO
1619 * allocation, take space away from current Rx allocation */
1620 if (tx_space < min_tx_space &&
1621 ((min_tx_space - tx_space) < pba)) {
1622 pba = pba - (min_tx_space - tx_space);
1623
1624 /* if short on rx space, rx wins and must trump tx
1625 * adjustment */
1626 if (pba < min_rx_space)
1627 pba = min_rx_space;
1628 }
1629 wr32(E1000_PBA, pba);
1630 }
1631
1632 /* flow control settings */
1633 /* The high water mark must be low enough to fit one full frame
1634 * (or the size used for early receive) above it in the Rx FIFO.
1635 * Set it to the lower of:
1636 * - 90% of the Rx FIFO size, or
1637 * - the full Rx FIFO size minus one full frame */
1638 hwm = min(((pba << 10) * 9 / 10),
1639 ((pba << 10) - 2 * adapter->max_frame_size));
1640
1641 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1642 fc->low_water = fc->high_water - 16;
1643 fc->pause_time = 0xFFFF;
1644 fc->send_xon = 1;
1645 fc->current_mode = fc->requested_mode;
1646
1647 /* disable receive for all VFs and wait one second */
1648 if (adapter->vfs_allocated_count) {
1649 int i;
1650 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1651 adapter->vf_data[i].flags = 0;
1652
1653 /* ping all the active vfs to let them know we are going down */
1654 igb_ping_all_vfs(adapter);
1655
1656 /* disable transmits and receives */
1657 wr32(E1000_VFRE, 0);
1658 wr32(E1000_VFTE, 0);
1659 }
1660
1661 /* Allow time for pending master requests to run */
1662 hw->mac.ops.reset_hw(hw);
1663 wr32(E1000_WUC, 0);
1664
1665 if (hw->mac.ops.init_hw(hw))
1666 dev_err(&pdev->dev, "Hardware Error\n");
1667
1668 if (hw->mac.type == e1000_82580) {
1669 u32 reg = rd32(E1000_PCIEMISC);
1670 wr32(E1000_PCIEMISC,
1671 reg & ~E1000_PCIEMISC_LX_DECISION);
1672 }
1673 if (!netif_running(adapter->netdev))
1674 igb_power_down_link(adapter);
1675
1676 igb_update_mng_vlan(adapter);
1677
1678 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1679 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1680
1681 igb_get_phy_info(hw);
1682 }
1683
1684 static const struct net_device_ops igb_netdev_ops = {
1685 .ndo_open = igb_open,
1686 .ndo_stop = igb_close,
1687 .ndo_start_xmit = igb_xmit_frame_adv,
1688 .ndo_get_stats = igb_get_stats,
1689 .ndo_set_rx_mode = igb_set_rx_mode,
1690 .ndo_set_multicast_list = igb_set_rx_mode,
1691 .ndo_set_mac_address = igb_set_mac,
1692 .ndo_change_mtu = igb_change_mtu,
1693 .ndo_do_ioctl = igb_ioctl,
1694 .ndo_tx_timeout = igb_tx_timeout,
1695 .ndo_validate_addr = eth_validate_addr,
1696 .ndo_vlan_rx_register = igb_vlan_rx_register,
1697 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1698 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1699 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1700 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1701 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1702 .ndo_get_vf_config = igb_ndo_get_vf_config,
1703 #ifdef CONFIG_NET_POLL_CONTROLLER
1704 .ndo_poll_controller = igb_netpoll,
1705 #endif
1706 };
1707
1708 /**
1709 * igb_probe - Device Initialization Routine
1710 * @pdev: PCI device information struct
1711 * @ent: entry in igb_pci_tbl
1712 *
1713 * Returns 0 on success, negative on failure
1714 *
1715 * igb_probe initializes an adapter identified by a pci_dev structure.
1716 * The OS initialization, configuring of the adapter private structure,
1717 * and a hardware reset occur.
1718 **/
1719 static int __devinit igb_probe(struct pci_dev *pdev,
1720 const struct pci_device_id *ent)
1721 {
1722 struct net_device *netdev;
1723 struct igb_adapter *adapter;
1724 struct e1000_hw *hw;
1725 u16 eeprom_data = 0;
1726 static int global_quad_port_a; /* global quad port a indication */
1727 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1728 unsigned long mmio_start, mmio_len;
1729 int err, pci_using_dac;
1730 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1731 u32 part_num;
1732
1733 /* Catch broken hardware that put the wrong VF device ID in
1734 * the PCIe SR-IOV capability.
1735 */
1736 if (pdev->is_virtfn) {
1737 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1738 pci_name(pdev), pdev->vendor, pdev->device);
1739 return -EINVAL;
1740 }
1741
1742 err = pci_enable_device_mem(pdev);
1743 if (err)
1744 return err;
1745
1746 pci_using_dac = 0;
1747 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1748 if (!err) {
1749 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1750 if (!err)
1751 pci_using_dac = 1;
1752 } else {
1753 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1754 if (err) {
1755 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1756 if (err) {
1757 dev_err(&pdev->dev, "No usable DMA "
1758 "configuration, aborting\n");
1759 goto err_dma;
1760 }
1761 }
1762 }
1763
1764 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1765 IORESOURCE_MEM),
1766 igb_driver_name);
1767 if (err)
1768 goto err_pci_reg;
1769
1770 pci_enable_pcie_error_reporting(pdev);
1771
1772 pci_set_master(pdev);
1773 pci_save_state(pdev);
1774
1775 err = -ENOMEM;
1776 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1777 IGB_ABS_MAX_TX_QUEUES);
1778 if (!netdev)
1779 goto err_alloc_etherdev;
1780
1781 SET_NETDEV_DEV(netdev, &pdev->dev);
1782
1783 pci_set_drvdata(pdev, netdev);
1784 adapter = netdev_priv(netdev);
1785 adapter->netdev = netdev;
1786 adapter->pdev = pdev;
1787 hw = &adapter->hw;
1788 hw->back = adapter;
1789 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1790
1791 mmio_start = pci_resource_start(pdev, 0);
1792 mmio_len = pci_resource_len(pdev, 0);
1793
1794 err = -EIO;
1795 hw->hw_addr = ioremap(mmio_start, mmio_len);
1796 if (!hw->hw_addr)
1797 goto err_ioremap;
1798
1799 netdev->netdev_ops = &igb_netdev_ops;
1800 igb_set_ethtool_ops(netdev);
1801 netdev->watchdog_timeo = 5 * HZ;
1802
1803 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1804
1805 netdev->mem_start = mmio_start;
1806 netdev->mem_end = mmio_start + mmio_len;
1807
1808 /* PCI config space info */
1809 hw->vendor_id = pdev->vendor;
1810 hw->device_id = pdev->device;
1811 hw->revision_id = pdev->revision;
1812 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1813 hw->subsystem_device_id = pdev->subsystem_device;
1814
1815 /* Copy the default MAC, PHY and NVM function pointers */
1816 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1817 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1818 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1819 /* Initialize skew-specific constants */
1820 err = ei->get_invariants(hw);
1821 if (err)
1822 goto err_sw_init;
1823
1824 /* setup the private structure */
1825 err = igb_sw_init(adapter);
1826 if (err)
1827 goto err_sw_init;
1828
1829 igb_get_bus_info_pcie(hw);
1830
1831 hw->phy.autoneg_wait_to_complete = false;
1832
1833 /* Copper options */
1834 if (hw->phy.media_type == e1000_media_type_copper) {
1835 hw->phy.mdix = AUTO_ALL_MODES;
1836 hw->phy.disable_polarity_correction = false;
1837 hw->phy.ms_type = e1000_ms_hw_default;
1838 }
1839
1840 if (igb_check_reset_block(hw))
1841 dev_info(&pdev->dev,
1842 "PHY reset is blocked due to SOL/IDER session.\n");
1843
1844 netdev->features = NETIF_F_SG |
1845 NETIF_F_IP_CSUM |
1846 NETIF_F_HW_VLAN_TX |
1847 NETIF_F_HW_VLAN_RX |
1848 NETIF_F_HW_VLAN_FILTER;
1849
1850 netdev->features |= NETIF_F_IPV6_CSUM;
1851 netdev->features |= NETIF_F_TSO;
1852 netdev->features |= NETIF_F_TSO6;
1853 netdev->features |= NETIF_F_GRO;
1854
1855 netdev->vlan_features |= NETIF_F_TSO;
1856 netdev->vlan_features |= NETIF_F_TSO6;
1857 netdev->vlan_features |= NETIF_F_IP_CSUM;
1858 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1859 netdev->vlan_features |= NETIF_F_SG;
1860
1861 if (pci_using_dac)
1862 netdev->features |= NETIF_F_HIGHDMA;
1863
1864 if (hw->mac.type >= e1000_82576)
1865 netdev->features |= NETIF_F_SCTP_CSUM;
1866
1867 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1868
1869 /* before reading the NVM, reset the controller to put the device in a
1870 * known good starting state */
1871 hw->mac.ops.reset_hw(hw);
1872
1873 /* make sure the NVM is good */
1874 if (igb_validate_nvm_checksum(hw) < 0) {
1875 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1876 err = -EIO;
1877 goto err_eeprom;
1878 }
1879
1880 /* copy the MAC address out of the NVM */
1881 if (hw->mac.ops.read_mac_addr(hw))
1882 dev_err(&pdev->dev, "NVM Read Error\n");
1883
1884 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1885 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1886
1887 if (!is_valid_ether_addr(netdev->perm_addr)) {
1888 dev_err(&pdev->dev, "Invalid MAC Address\n");
1889 err = -EIO;
1890 goto err_eeprom;
1891 }
1892
1893 setup_timer(&adapter->watchdog_timer, igb_watchdog,
1894 (unsigned long) adapter);
1895 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1896 (unsigned long) adapter);
1897
1898 INIT_WORK(&adapter->reset_task, igb_reset_task);
1899 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1900
1901 /* Initialize link properties that are user-changeable */
1902 adapter->fc_autoneg = true;
1903 hw->mac.autoneg = true;
1904 hw->phy.autoneg_advertised = 0x2f;
1905
1906 hw->fc.requested_mode = e1000_fc_default;
1907 hw->fc.current_mode = e1000_fc_default;
1908
1909 igb_validate_mdi_setting(hw);
1910
1911 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1912 * enable the ACPI Magic Packet filter
1913 */
1914
1915 if (hw->bus.func == 0)
1916 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1917 else if (hw->mac.type == e1000_82580)
1918 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1919 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1920 &eeprom_data);
1921 else if (hw->bus.func == 1)
1922 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1923
1924 if (eeprom_data & eeprom_apme_mask)
1925 adapter->eeprom_wol |= E1000_WUFC_MAG;
1926
1927 /* now that we have the eeprom settings, apply the special cases where
1928 * the eeprom may be wrong or the board simply won't support wake on
1929 * lan on a particular port */
1930 switch (pdev->device) {
1931 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1932 adapter->eeprom_wol = 0;
1933 break;
1934 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1935 case E1000_DEV_ID_82576_FIBER:
1936 case E1000_DEV_ID_82576_SERDES:
1937 /* Wake events only supported on port A for dual fiber
1938 * regardless of eeprom setting */
1939 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1940 adapter->eeprom_wol = 0;
1941 break;
1942 case E1000_DEV_ID_82576_QUAD_COPPER:
1943 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1944 /* if quad port adapter, disable WoL on all but port A */
1945 if (global_quad_port_a != 0)
1946 adapter->eeprom_wol = 0;
1947 else
1948 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1949 /* Reset for multiple quad port adapters */
1950 if (++global_quad_port_a == 4)
1951 global_quad_port_a = 0;
1952 break;
1953 }
1954
1955 /* initialize the wol settings based on the eeprom settings */
1956 adapter->wol = adapter->eeprom_wol;
1957 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1958
1959 /* reset the hardware with the new settings */
1960 igb_reset(adapter);
1961
1962 /* let the f/w know that the h/w is now under the control of the
1963 * driver. */
1964 igb_get_hw_control(adapter);
1965
1966 strcpy(netdev->name, "eth%d");
1967 err = register_netdev(netdev);
1968 if (err)
1969 goto err_register;
1970
1971 /* carrier off reporting is important to ethtool even BEFORE open */
1972 netif_carrier_off(netdev);
1973
1974 #ifdef CONFIG_IGB_DCA
1975 if (dca_add_requester(&pdev->dev) == 0) {
1976 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1977 dev_info(&pdev->dev, "DCA enabled\n");
1978 igb_setup_dca(adapter);
1979 }
1980
1981 #endif
1982 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1983 /* print bus type/speed/width info */
1984 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1985 netdev->name,
1986 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1987 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
1988 "unknown"),
1989 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1990 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1991 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1992 "unknown"),
1993 netdev->dev_addr);
1994
1995 igb_read_part_num(hw, &part_num);
1996 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1997 (part_num >> 8), (part_num & 0xff));
1998
1999 dev_info(&pdev->dev,
2000 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2001 adapter->msix_entries ? "MSI-X" :
2002 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2003 adapter->num_rx_queues, adapter->num_tx_queues);
2004
2005 return 0;
2006
2007 err_register:
2008 igb_release_hw_control(adapter);
2009 err_eeprom:
2010 if (!igb_check_reset_block(hw))
2011 igb_reset_phy(hw);
2012
2013 if (hw->flash_address)
2014 iounmap(hw->flash_address);
2015 err_sw_init:
2016 igb_clear_interrupt_scheme(adapter);
2017 iounmap(hw->hw_addr);
2018 err_ioremap:
2019 free_netdev(netdev);
2020 err_alloc_etherdev:
2021 pci_release_selected_regions(pdev,
2022 pci_select_bars(pdev, IORESOURCE_MEM));
2023 err_pci_reg:
2024 err_dma:
2025 pci_disable_device(pdev);
2026 return err;
2027 }
2028
2029 /**
2030 * igb_remove - Device Removal Routine
2031 * @pdev: PCI device information struct
2032 *
2033 * igb_remove is called by the PCI subsystem to alert the driver
2034 * that it should release a PCI device. The could be caused by a
2035 * Hot-Plug event, or because the driver is going to be removed from
2036 * memory.
2037 **/
2038 static void __devexit igb_remove(struct pci_dev *pdev)
2039 {
2040 struct net_device *netdev = pci_get_drvdata(pdev);
2041 struct igb_adapter *adapter = netdev_priv(netdev);
2042 struct e1000_hw *hw = &adapter->hw;
2043
2044 /* flush_scheduled work may reschedule our watchdog task, so
2045 * explicitly disable watchdog tasks from being rescheduled */
2046 set_bit(__IGB_DOWN, &adapter->state);
2047 del_timer_sync(&adapter->watchdog_timer);
2048 del_timer_sync(&adapter->phy_info_timer);
2049
2050 flush_scheduled_work();
2051
2052 #ifdef CONFIG_IGB_DCA
2053 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2054 dev_info(&pdev->dev, "DCA disabled\n");
2055 dca_remove_requester(&pdev->dev);
2056 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2057 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2058 }
2059 #endif
2060
2061 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2062 * would have already happened in close and is redundant. */
2063 igb_release_hw_control(adapter);
2064
2065 unregister_netdev(netdev);
2066
2067 igb_clear_interrupt_scheme(adapter);
2068
2069 #ifdef CONFIG_PCI_IOV
2070 /* reclaim resources allocated to VFs */
2071 if (adapter->vf_data) {
2072 /* disable iov and allow time for transactions to clear */
2073 pci_disable_sriov(pdev);
2074 msleep(500);
2075
2076 kfree(adapter->vf_data);
2077 adapter->vf_data = NULL;
2078 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2079 msleep(100);
2080 dev_info(&pdev->dev, "IOV Disabled\n");
2081 }
2082 #endif
2083
2084 iounmap(hw->hw_addr);
2085 if (hw->flash_address)
2086 iounmap(hw->flash_address);
2087 pci_release_selected_regions(pdev,
2088 pci_select_bars(pdev, IORESOURCE_MEM));
2089
2090 free_netdev(netdev);
2091
2092 pci_disable_pcie_error_reporting(pdev);
2093
2094 pci_disable_device(pdev);
2095 }
2096
2097 /**
2098 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2099 * @adapter: board private structure to initialize
2100 *
2101 * This function initializes the vf specific data storage and then attempts to
2102 * allocate the VFs. The reason for ordering it this way is because it is much
2103 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2104 * the memory for the VFs.
2105 **/
2106 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2107 {
2108 #ifdef CONFIG_PCI_IOV
2109 struct pci_dev *pdev = adapter->pdev;
2110
2111 if (adapter->vfs_allocated_count) {
2112 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2113 sizeof(struct vf_data_storage),
2114 GFP_KERNEL);
2115 /* if allocation failed then we do not support SR-IOV */
2116 if (!adapter->vf_data) {
2117 adapter->vfs_allocated_count = 0;
2118 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2119 "Data Storage\n");
2120 }
2121 }
2122
2123 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2124 kfree(adapter->vf_data);
2125 adapter->vf_data = NULL;
2126 #endif /* CONFIG_PCI_IOV */
2127 adapter->vfs_allocated_count = 0;
2128 #ifdef CONFIG_PCI_IOV
2129 } else {
2130 unsigned char mac_addr[ETH_ALEN];
2131 int i;
2132 dev_info(&pdev->dev, "%d vfs allocated\n",
2133 adapter->vfs_allocated_count);
2134 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2135 random_ether_addr(mac_addr);
2136 igb_set_vf_mac(adapter, i, mac_addr);
2137 }
2138 }
2139 #endif /* CONFIG_PCI_IOV */
2140 }
2141
2142
2143 /**
2144 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2145 * @adapter: board private structure to initialize
2146 *
2147 * igb_init_hw_timer initializes the function pointer and values for the hw
2148 * timer found in hardware.
2149 **/
2150 static void igb_init_hw_timer(struct igb_adapter *adapter)
2151 {
2152 struct e1000_hw *hw = &adapter->hw;
2153
2154 switch (hw->mac.type) {
2155 case e1000_i350:
2156 case e1000_82580:
2157 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2158 adapter->cycles.read = igb_read_clock;
2159 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2160 adapter->cycles.mult = 1;
2161 /*
2162 * The 82580 timesync updates the system timer every 8ns by 8ns
2163 * and the value cannot be shifted. Instead we need to shift
2164 * the registers to generate a 64bit timer value. As a result
2165 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2166 * 24 in order to generate a larger value for synchronization.
2167 */
2168 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2169 /* disable system timer temporarily by setting bit 31 */
2170 wr32(E1000_TSAUXC, 0x80000000);
2171 wrfl();
2172
2173 /* Set registers so that rollover occurs soon to test this. */
2174 wr32(E1000_SYSTIMR, 0x00000000);
2175 wr32(E1000_SYSTIML, 0x80000000);
2176 wr32(E1000_SYSTIMH, 0x000000FF);
2177 wrfl();
2178
2179 /* enable system timer by clearing bit 31 */
2180 wr32(E1000_TSAUXC, 0x0);
2181 wrfl();
2182
2183 timecounter_init(&adapter->clock,
2184 &adapter->cycles,
2185 ktime_to_ns(ktime_get_real()));
2186 /*
2187 * Synchronize our NIC clock against system wall clock. NIC
2188 * time stamp reading requires ~3us per sample, each sample
2189 * was pretty stable even under load => only require 10
2190 * samples for each offset comparison.
2191 */
2192 memset(&adapter->compare, 0, sizeof(adapter->compare));
2193 adapter->compare.source = &adapter->clock;
2194 adapter->compare.target = ktime_get_real;
2195 adapter->compare.num_samples = 10;
2196 timecompare_update(&adapter->compare, 0);
2197 break;
2198 case e1000_82576:
2199 /*
2200 * Initialize hardware timer: we keep it running just in case
2201 * that some program needs it later on.
2202 */
2203 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2204 adapter->cycles.read = igb_read_clock;
2205 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2206 adapter->cycles.mult = 1;
2207 /**
2208 * Scale the NIC clock cycle by a large factor so that
2209 * relatively small clock corrections can be added or
2210 * substracted at each clock tick. The drawbacks of a large
2211 * factor are a) that the clock register overflows more quickly
2212 * (not such a big deal) and b) that the increment per tick has
2213 * to fit into 24 bits. As a result we need to use a shift of
2214 * 19 so we can fit a value of 16 into the TIMINCA register.
2215 */
2216 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2217 wr32(E1000_TIMINCA,
2218 (1 << E1000_TIMINCA_16NS_SHIFT) |
2219 (16 << IGB_82576_TSYNC_SHIFT));
2220
2221 /* Set registers so that rollover occurs soon to test this. */
2222 wr32(E1000_SYSTIML, 0x00000000);
2223 wr32(E1000_SYSTIMH, 0xFF800000);
2224 wrfl();
2225
2226 timecounter_init(&adapter->clock,
2227 &adapter->cycles,
2228 ktime_to_ns(ktime_get_real()));
2229 /*
2230 * Synchronize our NIC clock against system wall clock. NIC
2231 * time stamp reading requires ~3us per sample, each sample
2232 * was pretty stable even under load => only require 10
2233 * samples for each offset comparison.
2234 */
2235 memset(&adapter->compare, 0, sizeof(adapter->compare));
2236 adapter->compare.source = &adapter->clock;
2237 adapter->compare.target = ktime_get_real;
2238 adapter->compare.num_samples = 10;
2239 timecompare_update(&adapter->compare, 0);
2240 break;
2241 case e1000_82575:
2242 /* 82575 does not support timesync */
2243 default:
2244 break;
2245 }
2246
2247 }
2248
2249 /**
2250 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2251 * @adapter: board private structure to initialize
2252 *
2253 * igb_sw_init initializes the Adapter private data structure.
2254 * Fields are initialized based on PCI device information and
2255 * OS network device settings (MTU size).
2256 **/
2257 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2258 {
2259 struct e1000_hw *hw = &adapter->hw;
2260 struct net_device *netdev = adapter->netdev;
2261 struct pci_dev *pdev = adapter->pdev;
2262
2263 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2264
2265 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2266 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2267 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2268 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2269
2270 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2271 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2272
2273 #ifdef CONFIG_PCI_IOV
2274 if (hw->mac.type == e1000_82576)
2275 adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
2276
2277 #endif /* CONFIG_PCI_IOV */
2278 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2279
2280 /*
2281 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2282 * then we should combine the queues into a queue pair in order to
2283 * conserve interrupts due to limited supply
2284 */
2285 if ((adapter->rss_queues > 4) ||
2286 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2287 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2288
2289 /* This call may decrease the number of queues */
2290 if (igb_init_interrupt_scheme(adapter)) {
2291 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2292 return -ENOMEM;
2293 }
2294
2295 igb_init_hw_timer(adapter);
2296 igb_probe_vfs(adapter);
2297
2298 /* Explicitly disable IRQ since the NIC can be in any state. */
2299 igb_irq_disable(adapter);
2300
2301 set_bit(__IGB_DOWN, &adapter->state);
2302 return 0;
2303 }
2304
2305 /**
2306 * igb_open - Called when a network interface is made active
2307 * @netdev: network interface device structure
2308 *
2309 * Returns 0 on success, negative value on failure
2310 *
2311 * The open entry point is called when a network interface is made
2312 * active by the system (IFF_UP). At this point all resources needed
2313 * for transmit and receive operations are allocated, the interrupt
2314 * handler is registered with the OS, the watchdog timer is started,
2315 * and the stack is notified that the interface is ready.
2316 **/
2317 static int igb_open(struct net_device *netdev)
2318 {
2319 struct igb_adapter *adapter = netdev_priv(netdev);
2320 struct e1000_hw *hw = &adapter->hw;
2321 int err;
2322 int i;
2323
2324 /* disallow open during test */
2325 if (test_bit(__IGB_TESTING, &adapter->state))
2326 return -EBUSY;
2327
2328 netif_carrier_off(netdev);
2329
2330 /* allocate transmit descriptors */
2331 err = igb_setup_all_tx_resources(adapter);
2332 if (err)
2333 goto err_setup_tx;
2334
2335 /* allocate receive descriptors */
2336 err = igb_setup_all_rx_resources(adapter);
2337 if (err)
2338 goto err_setup_rx;
2339
2340 igb_power_up_link(adapter);
2341
2342 /* before we allocate an interrupt, we must be ready to handle it.
2343 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2344 * as soon as we call pci_request_irq, so we have to setup our
2345 * clean_rx handler before we do so. */
2346 igb_configure(adapter);
2347
2348 err = igb_request_irq(adapter);
2349 if (err)
2350 goto err_req_irq;
2351
2352 /* From here on the code is the same as igb_up() */
2353 clear_bit(__IGB_DOWN, &adapter->state);
2354
2355 for (i = 0; i < adapter->num_q_vectors; i++) {
2356 struct igb_q_vector *q_vector = adapter->q_vector[i];
2357 napi_enable(&q_vector->napi);
2358 }
2359
2360 /* Clear any pending interrupts. */
2361 rd32(E1000_ICR);
2362
2363 igb_irq_enable(adapter);
2364
2365 /* notify VFs that reset has been completed */
2366 if (adapter->vfs_allocated_count) {
2367 u32 reg_data = rd32(E1000_CTRL_EXT);
2368 reg_data |= E1000_CTRL_EXT_PFRSTD;
2369 wr32(E1000_CTRL_EXT, reg_data);
2370 }
2371
2372 netif_tx_start_all_queues(netdev);
2373
2374 /* start the watchdog. */
2375 hw->mac.get_link_status = 1;
2376 schedule_work(&adapter->watchdog_task);
2377
2378 return 0;
2379
2380 err_req_irq:
2381 igb_release_hw_control(adapter);
2382 igb_power_down_link(adapter);
2383 igb_free_all_rx_resources(adapter);
2384 err_setup_rx:
2385 igb_free_all_tx_resources(adapter);
2386 err_setup_tx:
2387 igb_reset(adapter);
2388
2389 return err;
2390 }
2391
2392 /**
2393 * igb_close - Disables a network interface
2394 * @netdev: network interface device structure
2395 *
2396 * Returns 0, this is not allowed to fail
2397 *
2398 * The close entry point is called when an interface is de-activated
2399 * by the OS. The hardware is still under the driver's control, but
2400 * needs to be disabled. A global MAC reset is issued to stop the
2401 * hardware, and all transmit and receive resources are freed.
2402 **/
2403 static int igb_close(struct net_device *netdev)
2404 {
2405 struct igb_adapter *adapter = netdev_priv(netdev);
2406
2407 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2408 igb_down(adapter);
2409
2410 igb_free_irq(adapter);
2411
2412 igb_free_all_tx_resources(adapter);
2413 igb_free_all_rx_resources(adapter);
2414
2415 return 0;
2416 }
2417
2418 /**
2419 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2420 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2421 *
2422 * Return 0 on success, negative on failure
2423 **/
2424 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2425 {
2426 struct device *dev = tx_ring->dev;
2427 int size;
2428
2429 size = sizeof(struct igb_buffer) * tx_ring->count;
2430 tx_ring->buffer_info = vmalloc(size);
2431 if (!tx_ring->buffer_info)
2432 goto err;
2433 memset(tx_ring->buffer_info, 0, size);
2434
2435 /* round up to nearest 4K */
2436 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2437 tx_ring->size = ALIGN(tx_ring->size, 4096);
2438
2439 tx_ring->desc = dma_alloc_coherent(dev,
2440 tx_ring->size,
2441 &tx_ring->dma,
2442 GFP_KERNEL);
2443
2444 if (!tx_ring->desc)
2445 goto err;
2446
2447 tx_ring->next_to_use = 0;
2448 tx_ring->next_to_clean = 0;
2449 return 0;
2450
2451 err:
2452 vfree(tx_ring->buffer_info);
2453 dev_err(dev,
2454 "Unable to allocate memory for the transmit descriptor ring\n");
2455 return -ENOMEM;
2456 }
2457
2458 /**
2459 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2460 * (Descriptors) for all queues
2461 * @adapter: board private structure
2462 *
2463 * Return 0 on success, negative on failure
2464 **/
2465 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2466 {
2467 struct pci_dev *pdev = adapter->pdev;
2468 int i, err = 0;
2469
2470 for (i = 0; i < adapter->num_tx_queues; i++) {
2471 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2472 if (err) {
2473 dev_err(&pdev->dev,
2474 "Allocation for Tx Queue %u failed\n", i);
2475 for (i--; i >= 0; i--)
2476 igb_free_tx_resources(adapter->tx_ring[i]);
2477 break;
2478 }
2479 }
2480
2481 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2482 int r_idx = i % adapter->num_tx_queues;
2483 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2484 }
2485 return err;
2486 }
2487
2488 /**
2489 * igb_setup_tctl - configure the transmit control registers
2490 * @adapter: Board private structure
2491 **/
2492 void igb_setup_tctl(struct igb_adapter *adapter)
2493 {
2494 struct e1000_hw *hw = &adapter->hw;
2495 u32 tctl;
2496
2497 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2498 wr32(E1000_TXDCTL(0), 0);
2499
2500 /* Program the Transmit Control Register */
2501 tctl = rd32(E1000_TCTL);
2502 tctl &= ~E1000_TCTL_CT;
2503 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2504 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2505
2506 igb_config_collision_dist(hw);
2507
2508 /* Enable transmits */
2509 tctl |= E1000_TCTL_EN;
2510
2511 wr32(E1000_TCTL, tctl);
2512 }
2513
2514 /**
2515 * igb_configure_tx_ring - Configure transmit ring after Reset
2516 * @adapter: board private structure
2517 * @ring: tx ring to configure
2518 *
2519 * Configure a transmit ring after a reset.
2520 **/
2521 void igb_configure_tx_ring(struct igb_adapter *adapter,
2522 struct igb_ring *ring)
2523 {
2524 struct e1000_hw *hw = &adapter->hw;
2525 u32 txdctl;
2526 u64 tdba = ring->dma;
2527 int reg_idx = ring->reg_idx;
2528
2529 /* disable the queue */
2530 txdctl = rd32(E1000_TXDCTL(reg_idx));
2531 wr32(E1000_TXDCTL(reg_idx),
2532 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2533 wrfl();
2534 mdelay(10);
2535
2536 wr32(E1000_TDLEN(reg_idx),
2537 ring->count * sizeof(union e1000_adv_tx_desc));
2538 wr32(E1000_TDBAL(reg_idx),
2539 tdba & 0x00000000ffffffffULL);
2540 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2541
2542 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2543 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2544 writel(0, ring->head);
2545 writel(0, ring->tail);
2546
2547 txdctl |= IGB_TX_PTHRESH;
2548 txdctl |= IGB_TX_HTHRESH << 8;
2549 txdctl |= IGB_TX_WTHRESH << 16;
2550
2551 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2552 wr32(E1000_TXDCTL(reg_idx), txdctl);
2553 }
2554
2555 /**
2556 * igb_configure_tx - Configure transmit Unit after Reset
2557 * @adapter: board private structure
2558 *
2559 * Configure the Tx unit of the MAC after a reset.
2560 **/
2561 static void igb_configure_tx(struct igb_adapter *adapter)
2562 {
2563 int i;
2564
2565 for (i = 0; i < adapter->num_tx_queues; i++)
2566 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2567 }
2568
2569 /**
2570 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2571 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2572 *
2573 * Returns 0 on success, negative on failure
2574 **/
2575 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2576 {
2577 struct device *dev = rx_ring->dev;
2578 int size, desc_len;
2579
2580 size = sizeof(struct igb_buffer) * rx_ring->count;
2581 rx_ring->buffer_info = vmalloc(size);
2582 if (!rx_ring->buffer_info)
2583 goto err;
2584 memset(rx_ring->buffer_info, 0, size);
2585
2586 desc_len = sizeof(union e1000_adv_rx_desc);
2587
2588 /* Round up to nearest 4K */
2589 rx_ring->size = rx_ring->count * desc_len;
2590 rx_ring->size = ALIGN(rx_ring->size, 4096);
2591
2592 rx_ring->desc = dma_alloc_coherent(dev,
2593 rx_ring->size,
2594 &rx_ring->dma,
2595 GFP_KERNEL);
2596
2597 if (!rx_ring->desc)
2598 goto err;
2599
2600 rx_ring->next_to_clean = 0;
2601 rx_ring->next_to_use = 0;
2602
2603 return 0;
2604
2605 err:
2606 vfree(rx_ring->buffer_info);
2607 rx_ring->buffer_info = NULL;
2608 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2609 " ring\n");
2610 return -ENOMEM;
2611 }
2612
2613 /**
2614 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2615 * (Descriptors) for all queues
2616 * @adapter: board private structure
2617 *
2618 * Return 0 on success, negative on failure
2619 **/
2620 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2621 {
2622 struct pci_dev *pdev = adapter->pdev;
2623 int i, err = 0;
2624
2625 for (i = 0; i < adapter->num_rx_queues; i++) {
2626 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2627 if (err) {
2628 dev_err(&pdev->dev,
2629 "Allocation for Rx Queue %u failed\n", i);
2630 for (i--; i >= 0; i--)
2631 igb_free_rx_resources(adapter->rx_ring[i]);
2632 break;
2633 }
2634 }
2635
2636 return err;
2637 }
2638
2639 /**
2640 * igb_setup_mrqc - configure the multiple receive queue control registers
2641 * @adapter: Board private structure
2642 **/
2643 static void igb_setup_mrqc(struct igb_adapter *adapter)
2644 {
2645 struct e1000_hw *hw = &adapter->hw;
2646 u32 mrqc, rxcsum;
2647 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2648 union e1000_reta {
2649 u32 dword;
2650 u8 bytes[4];
2651 } reta;
2652 static const u8 rsshash[40] = {
2653 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2654 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2655 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2656 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2657
2658 /* Fill out hash function seeds */
2659 for (j = 0; j < 10; j++) {
2660 u32 rsskey = rsshash[(j * 4)];
2661 rsskey |= rsshash[(j * 4) + 1] << 8;
2662 rsskey |= rsshash[(j * 4) + 2] << 16;
2663 rsskey |= rsshash[(j * 4) + 3] << 24;
2664 array_wr32(E1000_RSSRK(0), j, rsskey);
2665 }
2666
2667 num_rx_queues = adapter->rss_queues;
2668
2669 if (adapter->vfs_allocated_count) {
2670 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2671 switch (hw->mac.type) {
2672 case e1000_i350:
2673 case e1000_82580:
2674 num_rx_queues = 1;
2675 shift = 0;
2676 break;
2677 case e1000_82576:
2678 shift = 3;
2679 num_rx_queues = 2;
2680 break;
2681 case e1000_82575:
2682 shift = 2;
2683 shift2 = 6;
2684 default:
2685 break;
2686 }
2687 } else {
2688 if (hw->mac.type == e1000_82575)
2689 shift = 6;
2690 }
2691
2692 for (j = 0; j < (32 * 4); j++) {
2693 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2694 if (shift2)
2695 reta.bytes[j & 3] |= num_rx_queues << shift2;
2696 if ((j & 3) == 3)
2697 wr32(E1000_RETA(j >> 2), reta.dword);
2698 }
2699
2700 /*
2701 * Disable raw packet checksumming so that RSS hash is placed in
2702 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2703 * offloads as they are enabled by default
2704 */
2705 rxcsum = rd32(E1000_RXCSUM);
2706 rxcsum |= E1000_RXCSUM_PCSD;
2707
2708 if (adapter->hw.mac.type >= e1000_82576)
2709 /* Enable Receive Checksum Offload for SCTP */
2710 rxcsum |= E1000_RXCSUM_CRCOFL;
2711
2712 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2713 wr32(E1000_RXCSUM, rxcsum);
2714
2715 /* If VMDq is enabled then we set the appropriate mode for that, else
2716 * we default to RSS so that an RSS hash is calculated per packet even
2717 * if we are only using one queue */
2718 if (adapter->vfs_allocated_count) {
2719 if (hw->mac.type > e1000_82575) {
2720 /* Set the default pool for the PF's first queue */
2721 u32 vtctl = rd32(E1000_VT_CTL);
2722 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2723 E1000_VT_CTL_DISABLE_DEF_POOL);
2724 vtctl |= adapter->vfs_allocated_count <<
2725 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2726 wr32(E1000_VT_CTL, vtctl);
2727 }
2728 if (adapter->rss_queues > 1)
2729 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2730 else
2731 mrqc = E1000_MRQC_ENABLE_VMDQ;
2732 } else {
2733 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2734 }
2735 igb_vmm_control(adapter);
2736
2737 /*
2738 * Generate RSS hash based on TCP port numbers and/or
2739 * IPv4/v6 src and dst addresses since UDP cannot be
2740 * hashed reliably due to IP fragmentation
2741 */
2742 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2743 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2744 E1000_MRQC_RSS_FIELD_IPV6 |
2745 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2746 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2747
2748 wr32(E1000_MRQC, mrqc);
2749 }
2750
2751 /**
2752 * igb_setup_rctl - configure the receive control registers
2753 * @adapter: Board private structure
2754 **/
2755 void igb_setup_rctl(struct igb_adapter *adapter)
2756 {
2757 struct e1000_hw *hw = &adapter->hw;
2758 u32 rctl;
2759
2760 rctl = rd32(E1000_RCTL);
2761
2762 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2763 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2764
2765 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2766 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2767
2768 /*
2769 * enable stripping of CRC. It's unlikely this will break BMC
2770 * redirection as it did with e1000. Newer features require
2771 * that the HW strips the CRC.
2772 */
2773 rctl |= E1000_RCTL_SECRC;
2774
2775 /* disable store bad packets and clear size bits. */
2776 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2777
2778 /* enable LPE to prevent packets larger than max_frame_size */
2779 rctl |= E1000_RCTL_LPE;
2780
2781 /* disable queue 0 to prevent tail write w/o re-config */
2782 wr32(E1000_RXDCTL(0), 0);
2783
2784 /* Attention!!! For SR-IOV PF driver operations you must enable
2785 * queue drop for all VF and PF queues to prevent head of line blocking
2786 * if an un-trusted VF does not provide descriptors to hardware.
2787 */
2788 if (adapter->vfs_allocated_count) {
2789 /* set all queue drop enable bits */
2790 wr32(E1000_QDE, ALL_QUEUES);
2791 }
2792
2793 wr32(E1000_RCTL, rctl);
2794 }
2795
2796 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2797 int vfn)
2798 {
2799 struct e1000_hw *hw = &adapter->hw;
2800 u32 vmolr;
2801
2802 /* if it isn't the PF check to see if VFs are enabled and
2803 * increase the size to support vlan tags */
2804 if (vfn < adapter->vfs_allocated_count &&
2805 adapter->vf_data[vfn].vlans_enabled)
2806 size += VLAN_TAG_SIZE;
2807
2808 vmolr = rd32(E1000_VMOLR(vfn));
2809 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2810 vmolr |= size | E1000_VMOLR_LPE;
2811 wr32(E1000_VMOLR(vfn), vmolr);
2812
2813 return 0;
2814 }
2815
2816 /**
2817 * igb_rlpml_set - set maximum receive packet size
2818 * @adapter: board private structure
2819 *
2820 * Configure maximum receivable packet size.
2821 **/
2822 static void igb_rlpml_set(struct igb_adapter *adapter)
2823 {
2824 u32 max_frame_size = adapter->max_frame_size;
2825 struct e1000_hw *hw = &adapter->hw;
2826 u16 pf_id = adapter->vfs_allocated_count;
2827
2828 if (adapter->vlgrp)
2829 max_frame_size += VLAN_TAG_SIZE;
2830
2831 /* if vfs are enabled we set RLPML to the largest possible request
2832 * size and set the VMOLR RLPML to the size we need */
2833 if (pf_id) {
2834 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2835 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2836 }
2837
2838 wr32(E1000_RLPML, max_frame_size);
2839 }
2840
2841 static inline void igb_set_vmolr(struct igb_adapter *adapter,
2842 int vfn, bool aupe)
2843 {
2844 struct e1000_hw *hw = &adapter->hw;
2845 u32 vmolr;
2846
2847 /*
2848 * This register exists only on 82576 and newer so if we are older then
2849 * we should exit and do nothing
2850 */
2851 if (hw->mac.type < e1000_82576)
2852 return;
2853
2854 vmolr = rd32(E1000_VMOLR(vfn));
2855 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2856 if (aupe)
2857 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2858 else
2859 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2860
2861 /* clear all bits that might not be set */
2862 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2863
2864 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2865 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2866 /*
2867 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2868 * multicast packets
2869 */
2870 if (vfn <= adapter->vfs_allocated_count)
2871 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2872
2873 wr32(E1000_VMOLR(vfn), vmolr);
2874 }
2875
2876 /**
2877 * igb_configure_rx_ring - Configure a receive ring after Reset
2878 * @adapter: board private structure
2879 * @ring: receive ring to be configured
2880 *
2881 * Configure the Rx unit of the MAC after a reset.
2882 **/
2883 void igb_configure_rx_ring(struct igb_adapter *adapter,
2884 struct igb_ring *ring)
2885 {
2886 struct e1000_hw *hw = &adapter->hw;
2887 u64 rdba = ring->dma;
2888 int reg_idx = ring->reg_idx;
2889 u32 srrctl, rxdctl;
2890
2891 /* disable the queue */
2892 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2893 wr32(E1000_RXDCTL(reg_idx),
2894 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2895
2896 /* Set DMA base address registers */
2897 wr32(E1000_RDBAL(reg_idx),
2898 rdba & 0x00000000ffffffffULL);
2899 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2900 wr32(E1000_RDLEN(reg_idx),
2901 ring->count * sizeof(union e1000_adv_rx_desc));
2902
2903 /* initialize head and tail */
2904 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2905 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2906 writel(0, ring->head);
2907 writel(0, ring->tail);
2908
2909 /* set descriptor configuration */
2910 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2911 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2912 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2913 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2914 srrctl |= IGB_RXBUFFER_16384 >>
2915 E1000_SRRCTL_BSIZEPKT_SHIFT;
2916 #else
2917 srrctl |= (PAGE_SIZE / 2) >>
2918 E1000_SRRCTL_BSIZEPKT_SHIFT;
2919 #endif
2920 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2921 } else {
2922 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2923 E1000_SRRCTL_BSIZEPKT_SHIFT;
2924 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2925 }
2926 if (hw->mac.type == e1000_82580)
2927 srrctl |= E1000_SRRCTL_TIMESTAMP;
2928 /* Only set Drop Enable if we are supporting multiple queues */
2929 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2930 srrctl |= E1000_SRRCTL_DROP_EN;
2931
2932 wr32(E1000_SRRCTL(reg_idx), srrctl);
2933
2934 /* set filtering for VMDQ pools */
2935 igb_set_vmolr(adapter, reg_idx & 0x7, true);
2936
2937 /* enable receive descriptor fetching */
2938 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2939 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2940 rxdctl &= 0xFFF00000;
2941 rxdctl |= IGB_RX_PTHRESH;
2942 rxdctl |= IGB_RX_HTHRESH << 8;
2943 rxdctl |= IGB_RX_WTHRESH << 16;
2944 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2945 }
2946
2947 /**
2948 * igb_configure_rx - Configure receive Unit after Reset
2949 * @adapter: board private structure
2950 *
2951 * Configure the Rx unit of the MAC after a reset.
2952 **/
2953 static void igb_configure_rx(struct igb_adapter *adapter)
2954 {
2955 int i;
2956
2957 /* set UTA to appropriate mode */
2958 igb_set_uta(adapter);
2959
2960 /* set the correct pool for the PF default MAC address in entry 0 */
2961 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2962 adapter->vfs_allocated_count);
2963
2964 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2965 * the Base and Length of the Rx Descriptor Ring */
2966 for (i = 0; i < adapter->num_rx_queues; i++)
2967 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
2968 }
2969
2970 /**
2971 * igb_free_tx_resources - Free Tx Resources per Queue
2972 * @tx_ring: Tx descriptor ring for a specific queue
2973 *
2974 * Free all transmit software resources
2975 **/
2976 void igb_free_tx_resources(struct igb_ring *tx_ring)
2977 {
2978 igb_clean_tx_ring(tx_ring);
2979
2980 vfree(tx_ring->buffer_info);
2981 tx_ring->buffer_info = NULL;
2982
2983 /* if not set, then don't free */
2984 if (!tx_ring->desc)
2985 return;
2986
2987 dma_free_coherent(tx_ring->dev, tx_ring->size,
2988 tx_ring->desc, tx_ring->dma);
2989
2990 tx_ring->desc = NULL;
2991 }
2992
2993 /**
2994 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2995 * @adapter: board private structure
2996 *
2997 * Free all transmit software resources
2998 **/
2999 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3000 {
3001 int i;
3002
3003 for (i = 0; i < adapter->num_tx_queues; i++)
3004 igb_free_tx_resources(adapter->tx_ring[i]);
3005 }
3006
3007 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3008 struct igb_buffer *buffer_info)
3009 {
3010 if (buffer_info->dma) {
3011 if (buffer_info->mapped_as_page)
3012 dma_unmap_page(tx_ring->dev,
3013 buffer_info->dma,
3014 buffer_info->length,
3015 DMA_TO_DEVICE);
3016 else
3017 dma_unmap_single(tx_ring->dev,
3018 buffer_info->dma,
3019 buffer_info->length,
3020 DMA_TO_DEVICE);
3021 buffer_info->dma = 0;
3022 }
3023 if (buffer_info->skb) {
3024 dev_kfree_skb_any(buffer_info->skb);
3025 buffer_info->skb = NULL;
3026 }
3027 buffer_info->time_stamp = 0;
3028 buffer_info->length = 0;
3029 buffer_info->next_to_watch = 0;
3030 buffer_info->mapped_as_page = false;
3031 }
3032
3033 /**
3034 * igb_clean_tx_ring - Free Tx Buffers
3035 * @tx_ring: ring to be cleaned
3036 **/
3037 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3038 {
3039 struct igb_buffer *buffer_info;
3040 unsigned long size;
3041 unsigned int i;
3042
3043 if (!tx_ring->buffer_info)
3044 return;
3045 /* Free all the Tx ring sk_buffs */
3046
3047 for (i = 0; i < tx_ring->count; i++) {
3048 buffer_info = &tx_ring->buffer_info[i];
3049 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3050 }
3051
3052 size = sizeof(struct igb_buffer) * tx_ring->count;
3053 memset(tx_ring->buffer_info, 0, size);
3054
3055 /* Zero out the descriptor ring */
3056 memset(tx_ring->desc, 0, tx_ring->size);
3057
3058 tx_ring->next_to_use = 0;
3059 tx_ring->next_to_clean = 0;
3060 }
3061
3062 /**
3063 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3064 * @adapter: board private structure
3065 **/
3066 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3067 {
3068 int i;
3069
3070 for (i = 0; i < adapter->num_tx_queues; i++)
3071 igb_clean_tx_ring(adapter->tx_ring[i]);
3072 }
3073
3074 /**
3075 * igb_free_rx_resources - Free Rx Resources
3076 * @rx_ring: ring to clean the resources from
3077 *
3078 * Free all receive software resources
3079 **/
3080 void igb_free_rx_resources(struct igb_ring *rx_ring)
3081 {
3082 igb_clean_rx_ring(rx_ring);
3083
3084 vfree(rx_ring->buffer_info);
3085 rx_ring->buffer_info = NULL;
3086
3087 /* if not set, then don't free */
3088 if (!rx_ring->desc)
3089 return;
3090
3091 dma_free_coherent(rx_ring->dev, rx_ring->size,
3092 rx_ring->desc, rx_ring->dma);
3093
3094 rx_ring->desc = NULL;
3095 }
3096
3097 /**
3098 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3099 * @adapter: board private structure
3100 *
3101 * Free all receive software resources
3102 **/
3103 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3104 {
3105 int i;
3106
3107 for (i = 0; i < adapter->num_rx_queues; i++)
3108 igb_free_rx_resources(adapter->rx_ring[i]);
3109 }
3110
3111 /**
3112 * igb_clean_rx_ring - Free Rx Buffers per Queue
3113 * @rx_ring: ring to free buffers from
3114 **/
3115 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3116 {
3117 struct igb_buffer *buffer_info;
3118 unsigned long size;
3119 unsigned int i;
3120
3121 if (!rx_ring->buffer_info)
3122 return;
3123
3124 /* Free all the Rx ring sk_buffs */
3125 for (i = 0; i < rx_ring->count; i++) {
3126 buffer_info = &rx_ring->buffer_info[i];
3127 if (buffer_info->dma) {
3128 dma_unmap_single(rx_ring->dev,
3129 buffer_info->dma,
3130 rx_ring->rx_buffer_len,
3131 DMA_FROM_DEVICE);
3132 buffer_info->dma = 0;
3133 }
3134
3135 if (buffer_info->skb) {
3136 dev_kfree_skb(buffer_info->skb);
3137 buffer_info->skb = NULL;
3138 }
3139 if (buffer_info->page_dma) {
3140 dma_unmap_page(rx_ring->dev,
3141 buffer_info->page_dma,
3142 PAGE_SIZE / 2,
3143 DMA_FROM_DEVICE);
3144 buffer_info->page_dma = 0;
3145 }
3146 if (buffer_info->page) {
3147 put_page(buffer_info->page);
3148 buffer_info->page = NULL;
3149 buffer_info->page_offset = 0;
3150 }
3151 }
3152
3153 size = sizeof(struct igb_buffer) * rx_ring->count;
3154 memset(rx_ring->buffer_info, 0, size);
3155
3156 /* Zero out the descriptor ring */
3157 memset(rx_ring->desc, 0, rx_ring->size);
3158
3159 rx_ring->next_to_clean = 0;
3160 rx_ring->next_to_use = 0;
3161 }
3162
3163 /**
3164 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3165 * @adapter: board private structure
3166 **/
3167 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3168 {
3169 int i;
3170
3171 for (i = 0; i < adapter->num_rx_queues; i++)
3172 igb_clean_rx_ring(adapter->rx_ring[i]);
3173 }
3174
3175 /**
3176 * igb_set_mac - Change the Ethernet Address of the NIC
3177 * @netdev: network interface device structure
3178 * @p: pointer to an address structure
3179 *
3180 * Returns 0 on success, negative on failure
3181 **/
3182 static int igb_set_mac(struct net_device *netdev, void *p)
3183 {
3184 struct igb_adapter *adapter = netdev_priv(netdev);
3185 struct e1000_hw *hw = &adapter->hw;
3186 struct sockaddr *addr = p;
3187
3188 if (!is_valid_ether_addr(addr->sa_data))
3189 return -EADDRNOTAVAIL;
3190
3191 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3192 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3193
3194 /* set the correct pool for the new PF MAC address in entry 0 */
3195 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3196 adapter->vfs_allocated_count);
3197
3198 return 0;
3199 }
3200
3201 /**
3202 * igb_write_mc_addr_list - write multicast addresses to MTA
3203 * @netdev: network interface device structure
3204 *
3205 * Writes multicast address list to the MTA hash table.
3206 * Returns: -ENOMEM on failure
3207 * 0 on no addresses written
3208 * X on writing X addresses to MTA
3209 **/
3210 static int igb_write_mc_addr_list(struct net_device *netdev)
3211 {
3212 struct igb_adapter *adapter = netdev_priv(netdev);
3213 struct e1000_hw *hw = &adapter->hw;
3214 struct netdev_hw_addr *ha;
3215 u8 *mta_list;
3216 int i;
3217
3218 if (netdev_mc_empty(netdev)) {
3219 /* nothing to program, so clear mc list */
3220 igb_update_mc_addr_list(hw, NULL, 0);
3221 igb_restore_vf_multicasts(adapter);
3222 return 0;
3223 }
3224
3225 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3226 if (!mta_list)
3227 return -ENOMEM;
3228
3229 /* The shared function expects a packed array of only addresses. */
3230 i = 0;
3231 netdev_for_each_mc_addr(ha, netdev)
3232 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3233
3234 igb_update_mc_addr_list(hw, mta_list, i);
3235 kfree(mta_list);
3236
3237 return netdev_mc_count(netdev);
3238 }
3239
3240 /**
3241 * igb_write_uc_addr_list - write unicast addresses to RAR table
3242 * @netdev: network interface device structure
3243 *
3244 * Writes unicast address list to the RAR table.
3245 * Returns: -ENOMEM on failure/insufficient address space
3246 * 0 on no addresses written
3247 * X on writing X addresses to the RAR table
3248 **/
3249 static int igb_write_uc_addr_list(struct net_device *netdev)
3250 {
3251 struct igb_adapter *adapter = netdev_priv(netdev);
3252 struct e1000_hw *hw = &adapter->hw;
3253 unsigned int vfn = adapter->vfs_allocated_count;
3254 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3255 int count = 0;
3256
3257 /* return ENOMEM indicating insufficient memory for addresses */
3258 if (netdev_uc_count(netdev) > rar_entries)
3259 return -ENOMEM;
3260
3261 if (!netdev_uc_empty(netdev) && rar_entries) {
3262 struct netdev_hw_addr *ha;
3263
3264 netdev_for_each_uc_addr(ha, netdev) {
3265 if (!rar_entries)
3266 break;
3267 igb_rar_set_qsel(adapter, ha->addr,
3268 rar_entries--,
3269 vfn);
3270 count++;
3271 }
3272 }
3273 /* write the addresses in reverse order to avoid write combining */
3274 for (; rar_entries > 0 ; rar_entries--) {
3275 wr32(E1000_RAH(rar_entries), 0);
3276 wr32(E1000_RAL(rar_entries), 0);
3277 }
3278 wrfl();
3279
3280 return count;
3281 }
3282
3283 /**
3284 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3285 * @netdev: network interface device structure
3286 *
3287 * The set_rx_mode entry point is called whenever the unicast or multicast
3288 * address lists or the network interface flags are updated. This routine is
3289 * responsible for configuring the hardware for proper unicast, multicast,
3290 * promiscuous mode, and all-multi behavior.
3291 **/
3292 static void igb_set_rx_mode(struct net_device *netdev)
3293 {
3294 struct igb_adapter *adapter = netdev_priv(netdev);
3295 struct e1000_hw *hw = &adapter->hw;
3296 unsigned int vfn = adapter->vfs_allocated_count;
3297 u32 rctl, vmolr = 0;
3298 int count;
3299
3300 /* Check for Promiscuous and All Multicast modes */
3301 rctl = rd32(E1000_RCTL);
3302
3303 /* clear the effected bits */
3304 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3305
3306 if (netdev->flags & IFF_PROMISC) {
3307 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3308 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3309 } else {
3310 if (netdev->flags & IFF_ALLMULTI) {
3311 rctl |= E1000_RCTL_MPE;
3312 vmolr |= E1000_VMOLR_MPME;
3313 } else {
3314 /*
3315 * Write addresses to the MTA, if the attempt fails
3316 * then we should just turn on promiscous mode so
3317 * that we can at least receive multicast traffic
3318 */
3319 count = igb_write_mc_addr_list(netdev);
3320 if (count < 0) {
3321 rctl |= E1000_RCTL_MPE;
3322 vmolr |= E1000_VMOLR_MPME;
3323 } else if (count) {
3324 vmolr |= E1000_VMOLR_ROMPE;
3325 }
3326 }
3327 /*
3328 * Write addresses to available RAR registers, if there is not
3329 * sufficient space to store all the addresses then enable
3330 * unicast promiscous mode
3331 */
3332 count = igb_write_uc_addr_list(netdev);
3333 if (count < 0) {
3334 rctl |= E1000_RCTL_UPE;
3335 vmolr |= E1000_VMOLR_ROPE;
3336 }
3337 rctl |= E1000_RCTL_VFE;
3338 }
3339 wr32(E1000_RCTL, rctl);
3340
3341 /*
3342 * In order to support SR-IOV and eventually VMDq it is necessary to set
3343 * the VMOLR to enable the appropriate modes. Without this workaround
3344 * we will have issues with VLAN tag stripping not being done for frames
3345 * that are only arriving because we are the default pool
3346 */
3347 if (hw->mac.type < e1000_82576)
3348 return;
3349
3350 vmolr |= rd32(E1000_VMOLR(vfn)) &
3351 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3352 wr32(E1000_VMOLR(vfn), vmolr);
3353 igb_restore_vf_multicasts(adapter);
3354 }
3355
3356 /* Need to wait a few seconds after link up to get diagnostic information from
3357 * the phy */
3358 static void igb_update_phy_info(unsigned long data)
3359 {
3360 struct igb_adapter *adapter = (struct igb_adapter *) data;
3361 igb_get_phy_info(&adapter->hw);
3362 }
3363
3364 /**
3365 * igb_has_link - check shared code for link and determine up/down
3366 * @adapter: pointer to driver private info
3367 **/
3368 bool igb_has_link(struct igb_adapter *adapter)
3369 {
3370 struct e1000_hw *hw = &adapter->hw;
3371 bool link_active = false;
3372 s32 ret_val = 0;
3373
3374 /* get_link_status is set on LSC (link status) interrupt or
3375 * rx sequence error interrupt. get_link_status will stay
3376 * false until the e1000_check_for_link establishes link
3377 * for copper adapters ONLY
3378 */
3379 switch (hw->phy.media_type) {
3380 case e1000_media_type_copper:
3381 if (hw->mac.get_link_status) {
3382 ret_val = hw->mac.ops.check_for_link(hw);
3383 link_active = !hw->mac.get_link_status;
3384 } else {
3385 link_active = true;
3386 }
3387 break;
3388 case e1000_media_type_internal_serdes:
3389 ret_val = hw->mac.ops.check_for_link(hw);
3390 link_active = hw->mac.serdes_has_link;
3391 break;
3392 default:
3393 case e1000_media_type_unknown:
3394 break;
3395 }
3396
3397 return link_active;
3398 }
3399
3400 /**
3401 * igb_watchdog - Timer Call-back
3402 * @data: pointer to adapter cast into an unsigned long
3403 **/
3404 static void igb_watchdog(unsigned long data)
3405 {
3406 struct igb_adapter *adapter = (struct igb_adapter *)data;
3407 /* Do the rest outside of interrupt context */
3408 schedule_work(&adapter->watchdog_task);
3409 }
3410
3411 static void igb_watchdog_task(struct work_struct *work)
3412 {
3413 struct igb_adapter *adapter = container_of(work,
3414 struct igb_adapter,
3415 watchdog_task);
3416 struct e1000_hw *hw = &adapter->hw;
3417 struct net_device *netdev = adapter->netdev;
3418 u32 link;
3419 int i;
3420
3421 link = igb_has_link(adapter);
3422 if (link) {
3423 if (!netif_carrier_ok(netdev)) {
3424 u32 ctrl;
3425 hw->mac.ops.get_speed_and_duplex(hw,
3426 &adapter->link_speed,
3427 &adapter->link_duplex);
3428
3429 ctrl = rd32(E1000_CTRL);
3430 /* Links status message must follow this format */
3431 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3432 "Flow Control: %s\n",
3433 netdev->name,
3434 adapter->link_speed,
3435 adapter->link_duplex == FULL_DUPLEX ?
3436 "Full Duplex" : "Half Duplex",
3437 ((ctrl & E1000_CTRL_TFCE) &&
3438 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3439 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3440 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3441
3442 /* adjust timeout factor according to speed/duplex */
3443 adapter->tx_timeout_factor = 1;
3444 switch (adapter->link_speed) {
3445 case SPEED_10:
3446 adapter->tx_timeout_factor = 14;
3447 break;
3448 case SPEED_100:
3449 /* maybe add some timeout factor ? */
3450 break;
3451 }
3452
3453 netif_carrier_on(netdev);
3454
3455 igb_ping_all_vfs(adapter);
3456
3457 /* link state has changed, schedule phy info update */
3458 if (!test_bit(__IGB_DOWN, &adapter->state))
3459 mod_timer(&adapter->phy_info_timer,
3460 round_jiffies(jiffies + 2 * HZ));
3461 }
3462 } else {
3463 if (netif_carrier_ok(netdev)) {
3464 adapter->link_speed = 0;
3465 adapter->link_duplex = 0;
3466 /* Links status message must follow this format */
3467 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3468 netdev->name);
3469 netif_carrier_off(netdev);
3470
3471 igb_ping_all_vfs(adapter);
3472
3473 /* link state has changed, schedule phy info update */
3474 if (!test_bit(__IGB_DOWN, &adapter->state))
3475 mod_timer(&adapter->phy_info_timer,
3476 round_jiffies(jiffies + 2 * HZ));
3477 }
3478 }
3479
3480 igb_update_stats(adapter);
3481
3482 for (i = 0; i < adapter->num_tx_queues; i++) {
3483 struct igb_ring *tx_ring = adapter->tx_ring[i];
3484 if (!netif_carrier_ok(netdev)) {
3485 /* We've lost link, so the controller stops DMA,
3486 * but we've got queued Tx work that's never going
3487 * to get done, so reset controller to flush Tx.
3488 * (Do the reset outside of interrupt context). */
3489 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3490 adapter->tx_timeout_count++;
3491 schedule_work(&adapter->reset_task);
3492 /* return immediately since reset is imminent */
3493 return;
3494 }
3495 }
3496
3497 /* Force detection of hung controller every watchdog period */
3498 tx_ring->detect_tx_hung = true;
3499 }
3500
3501 /* Cause software interrupt to ensure rx ring is cleaned */
3502 if (adapter->msix_entries) {
3503 u32 eics = 0;
3504 for (i = 0; i < adapter->num_q_vectors; i++) {
3505 struct igb_q_vector *q_vector = adapter->q_vector[i];
3506 eics |= q_vector->eims_value;
3507 }
3508 wr32(E1000_EICS, eics);
3509 } else {
3510 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3511 }
3512
3513 /* Reset the timer */
3514 if (!test_bit(__IGB_DOWN, &adapter->state))
3515 mod_timer(&adapter->watchdog_timer,
3516 round_jiffies(jiffies + 2 * HZ));
3517 }
3518
3519 enum latency_range {
3520 lowest_latency = 0,
3521 low_latency = 1,
3522 bulk_latency = 2,
3523 latency_invalid = 255
3524 };
3525
3526 /**
3527 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3528 *
3529 * Stores a new ITR value based on strictly on packet size. This
3530 * algorithm is less sophisticated than that used in igb_update_itr,
3531 * due to the difficulty of synchronizing statistics across multiple
3532 * receive rings. The divisors and thresholds used by this fuction
3533 * were determined based on theoretical maximum wire speed and testing
3534 * data, in order to minimize response time while increasing bulk
3535 * throughput.
3536 * This functionality is controlled by the InterruptThrottleRate module
3537 * parameter (see igb_param.c)
3538 * NOTE: This function is called only when operating in a multiqueue
3539 * receive environment.
3540 * @q_vector: pointer to q_vector
3541 **/
3542 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3543 {
3544 int new_val = q_vector->itr_val;
3545 int avg_wire_size = 0;
3546 struct igb_adapter *adapter = q_vector->adapter;
3547
3548 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3549 * ints/sec - ITR timer value of 120 ticks.
3550 */
3551 if (adapter->link_speed != SPEED_1000) {
3552 new_val = 976;
3553 goto set_itr_val;
3554 }
3555
3556 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3557 struct igb_ring *ring = q_vector->rx_ring;
3558 avg_wire_size = ring->total_bytes / ring->total_packets;
3559 }
3560
3561 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3562 struct igb_ring *ring = q_vector->tx_ring;
3563 avg_wire_size = max_t(u32, avg_wire_size,
3564 (ring->total_bytes /
3565 ring->total_packets));
3566 }
3567
3568 /* if avg_wire_size isn't set no work was done */
3569 if (!avg_wire_size)
3570 goto clear_counts;
3571
3572 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3573 avg_wire_size += 24;
3574
3575 /* Don't starve jumbo frames */
3576 avg_wire_size = min(avg_wire_size, 3000);
3577
3578 /* Give a little boost to mid-size frames */
3579 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3580 new_val = avg_wire_size / 3;
3581 else
3582 new_val = avg_wire_size / 2;
3583
3584 /* when in itr mode 3 do not exceed 20K ints/sec */
3585 if (adapter->rx_itr_setting == 3 && new_val < 196)
3586 new_val = 196;
3587
3588 set_itr_val:
3589 if (new_val != q_vector->itr_val) {
3590 q_vector->itr_val = new_val;
3591 q_vector->set_itr = 1;
3592 }
3593 clear_counts:
3594 if (q_vector->rx_ring) {
3595 q_vector->rx_ring->total_bytes = 0;
3596 q_vector->rx_ring->total_packets = 0;
3597 }
3598 if (q_vector->tx_ring) {
3599 q_vector->tx_ring->total_bytes = 0;
3600 q_vector->tx_ring->total_packets = 0;
3601 }
3602 }
3603
3604 /**
3605 * igb_update_itr - update the dynamic ITR value based on statistics
3606 * Stores a new ITR value based on packets and byte
3607 * counts during the last interrupt. The advantage of per interrupt
3608 * computation is faster updates and more accurate ITR for the current
3609 * traffic pattern. Constants in this function were computed
3610 * based on theoretical maximum wire speed and thresholds were set based
3611 * on testing data as well as attempting to minimize response time
3612 * while increasing bulk throughput.
3613 * this functionality is controlled by the InterruptThrottleRate module
3614 * parameter (see igb_param.c)
3615 * NOTE: These calculations are only valid when operating in a single-
3616 * queue environment.
3617 * @adapter: pointer to adapter
3618 * @itr_setting: current q_vector->itr_val
3619 * @packets: the number of packets during this measurement interval
3620 * @bytes: the number of bytes during this measurement interval
3621 **/
3622 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3623 int packets, int bytes)
3624 {
3625 unsigned int retval = itr_setting;
3626
3627 if (packets == 0)
3628 goto update_itr_done;
3629
3630 switch (itr_setting) {
3631 case lowest_latency:
3632 /* handle TSO and jumbo frames */
3633 if (bytes/packets > 8000)
3634 retval = bulk_latency;
3635 else if ((packets < 5) && (bytes > 512))
3636 retval = low_latency;
3637 break;
3638 case low_latency: /* 50 usec aka 20000 ints/s */
3639 if (bytes > 10000) {
3640 /* this if handles the TSO accounting */
3641 if (bytes/packets > 8000) {
3642 retval = bulk_latency;
3643 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3644 retval = bulk_latency;
3645 } else if ((packets > 35)) {
3646 retval = lowest_latency;
3647 }
3648 } else if (bytes/packets > 2000) {
3649 retval = bulk_latency;
3650 } else if (packets <= 2 && bytes < 512) {
3651 retval = lowest_latency;
3652 }
3653 break;
3654 case bulk_latency: /* 250 usec aka 4000 ints/s */
3655 if (bytes > 25000) {
3656 if (packets > 35)
3657 retval = low_latency;
3658 } else if (bytes < 1500) {
3659 retval = low_latency;
3660 }
3661 break;
3662 }
3663
3664 update_itr_done:
3665 return retval;
3666 }
3667
3668 static void igb_set_itr(struct igb_adapter *adapter)
3669 {
3670 struct igb_q_vector *q_vector = adapter->q_vector[0];
3671 u16 current_itr;
3672 u32 new_itr = q_vector->itr_val;
3673
3674 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3675 if (adapter->link_speed != SPEED_1000) {
3676 current_itr = 0;
3677 new_itr = 4000;
3678 goto set_itr_now;
3679 }
3680
3681 adapter->rx_itr = igb_update_itr(adapter,
3682 adapter->rx_itr,
3683 q_vector->rx_ring->total_packets,
3684 q_vector->rx_ring->total_bytes);
3685
3686 adapter->tx_itr = igb_update_itr(adapter,
3687 adapter->tx_itr,
3688 q_vector->tx_ring->total_packets,
3689 q_vector->tx_ring->total_bytes);
3690 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3691
3692 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3693 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3694 current_itr = low_latency;
3695
3696 switch (current_itr) {
3697 /* counts and packets in update_itr are dependent on these numbers */
3698 case lowest_latency:
3699 new_itr = 56; /* aka 70,000 ints/sec */
3700 break;
3701 case low_latency:
3702 new_itr = 196; /* aka 20,000 ints/sec */
3703 break;
3704 case bulk_latency:
3705 new_itr = 980; /* aka 4,000 ints/sec */
3706 break;
3707 default:
3708 break;
3709 }
3710
3711 set_itr_now:
3712 q_vector->rx_ring->total_bytes = 0;
3713 q_vector->rx_ring->total_packets = 0;
3714 q_vector->tx_ring->total_bytes = 0;
3715 q_vector->tx_ring->total_packets = 0;
3716
3717 if (new_itr != q_vector->itr_val) {
3718 /* this attempts to bias the interrupt rate towards Bulk
3719 * by adding intermediate steps when interrupt rate is
3720 * increasing */
3721 new_itr = new_itr > q_vector->itr_val ?
3722 max((new_itr * q_vector->itr_val) /
3723 (new_itr + (q_vector->itr_val >> 2)),
3724 new_itr) :
3725 new_itr;
3726 /* Don't write the value here; it resets the adapter's
3727 * internal timer, and causes us to delay far longer than
3728 * we should between interrupts. Instead, we write the ITR
3729 * value at the beginning of the next interrupt so the timing
3730 * ends up being correct.
3731 */
3732 q_vector->itr_val = new_itr;
3733 q_vector->set_itr = 1;
3734 }
3735 }
3736
3737 #define IGB_TX_FLAGS_CSUM 0x00000001
3738 #define IGB_TX_FLAGS_VLAN 0x00000002
3739 #define IGB_TX_FLAGS_TSO 0x00000004
3740 #define IGB_TX_FLAGS_IPV4 0x00000008
3741 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3742 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3743 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3744
3745 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3746 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3747 {
3748 struct e1000_adv_tx_context_desc *context_desc;
3749 unsigned int i;
3750 int err;
3751 struct igb_buffer *buffer_info;
3752 u32 info = 0, tu_cmd = 0;
3753 u32 mss_l4len_idx;
3754 u8 l4len;
3755
3756 if (skb_header_cloned(skb)) {
3757 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3758 if (err)
3759 return err;
3760 }
3761
3762 l4len = tcp_hdrlen(skb);
3763 *hdr_len += l4len;
3764
3765 if (skb->protocol == htons(ETH_P_IP)) {
3766 struct iphdr *iph = ip_hdr(skb);
3767 iph->tot_len = 0;
3768 iph->check = 0;
3769 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3770 iph->daddr, 0,
3771 IPPROTO_TCP,
3772 0);
3773 } else if (skb_is_gso_v6(skb)) {
3774 ipv6_hdr(skb)->payload_len = 0;
3775 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3776 &ipv6_hdr(skb)->daddr,
3777 0, IPPROTO_TCP, 0);
3778 }
3779
3780 i = tx_ring->next_to_use;
3781
3782 buffer_info = &tx_ring->buffer_info[i];
3783 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3784 /* VLAN MACLEN IPLEN */
3785 if (tx_flags & IGB_TX_FLAGS_VLAN)
3786 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3787 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3788 *hdr_len += skb_network_offset(skb);
3789 info |= skb_network_header_len(skb);
3790 *hdr_len += skb_network_header_len(skb);
3791 context_desc->vlan_macip_lens = cpu_to_le32(info);
3792
3793 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3794 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3795
3796 if (skb->protocol == htons(ETH_P_IP))
3797 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3798 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3799
3800 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3801
3802 /* MSS L4LEN IDX */
3803 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3804 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3805
3806 /* For 82575, context index must be unique per ring. */
3807 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3808 mss_l4len_idx |= tx_ring->reg_idx << 4;
3809
3810 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3811 context_desc->seqnum_seed = 0;
3812
3813 buffer_info->time_stamp = jiffies;
3814 buffer_info->next_to_watch = i;
3815 buffer_info->dma = 0;
3816 i++;
3817 if (i == tx_ring->count)
3818 i = 0;
3819
3820 tx_ring->next_to_use = i;
3821
3822 return true;
3823 }
3824
3825 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3826 struct sk_buff *skb, u32 tx_flags)
3827 {
3828 struct e1000_adv_tx_context_desc *context_desc;
3829 struct device *dev = tx_ring->dev;
3830 struct igb_buffer *buffer_info;
3831 u32 info = 0, tu_cmd = 0;
3832 unsigned int i;
3833
3834 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3835 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3836 i = tx_ring->next_to_use;
3837 buffer_info = &tx_ring->buffer_info[i];
3838 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3839
3840 if (tx_flags & IGB_TX_FLAGS_VLAN)
3841 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3842
3843 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3844 if (skb->ip_summed == CHECKSUM_PARTIAL)
3845 info |= skb_network_header_len(skb);
3846
3847 context_desc->vlan_macip_lens = cpu_to_le32(info);
3848
3849 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3850
3851 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3852 __be16 protocol;
3853
3854 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3855 const struct vlan_ethhdr *vhdr =
3856 (const struct vlan_ethhdr*)skb->data;
3857
3858 protocol = vhdr->h_vlan_encapsulated_proto;
3859 } else {
3860 protocol = skb->protocol;
3861 }
3862
3863 switch (protocol) {
3864 case cpu_to_be16(ETH_P_IP):
3865 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3866 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3867 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3868 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3869 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3870 break;
3871 case cpu_to_be16(ETH_P_IPV6):
3872 /* XXX what about other V6 headers?? */
3873 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3874 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3875 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3876 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3877 break;
3878 default:
3879 if (unlikely(net_ratelimit()))
3880 dev_warn(dev,
3881 "partial checksum but proto=%x!\n",
3882 skb->protocol);
3883 break;
3884 }
3885 }
3886
3887 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3888 context_desc->seqnum_seed = 0;
3889 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3890 context_desc->mss_l4len_idx =
3891 cpu_to_le32(tx_ring->reg_idx << 4);
3892
3893 buffer_info->time_stamp = jiffies;
3894 buffer_info->next_to_watch = i;
3895 buffer_info->dma = 0;
3896
3897 i++;
3898 if (i == tx_ring->count)
3899 i = 0;
3900 tx_ring->next_to_use = i;
3901
3902 return true;
3903 }
3904 return false;
3905 }
3906
3907 #define IGB_MAX_TXD_PWR 16
3908 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3909
3910 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3911 unsigned int first)
3912 {
3913 struct igb_buffer *buffer_info;
3914 struct device *dev = tx_ring->dev;
3915 unsigned int hlen = skb_headlen(skb);
3916 unsigned int count = 0, i;
3917 unsigned int f;
3918 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
3919
3920 i = tx_ring->next_to_use;
3921
3922 buffer_info = &tx_ring->buffer_info[i];
3923 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3924 buffer_info->length = hlen;
3925 /* set time_stamp *before* dma to help avoid a possible race */
3926 buffer_info->time_stamp = jiffies;
3927 buffer_info->next_to_watch = i;
3928 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
3929 DMA_TO_DEVICE);
3930 if (dma_mapping_error(dev, buffer_info->dma))
3931 goto dma_error;
3932
3933 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3934 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3935 unsigned int len = frag->size;
3936
3937 count++;
3938 i++;
3939 if (i == tx_ring->count)
3940 i = 0;
3941
3942 buffer_info = &tx_ring->buffer_info[i];
3943 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3944 buffer_info->length = len;
3945 buffer_info->time_stamp = jiffies;
3946 buffer_info->next_to_watch = i;
3947 buffer_info->mapped_as_page = true;
3948 buffer_info->dma = dma_map_page(dev,
3949 frag->page,
3950 frag->page_offset,
3951 len,
3952 DMA_TO_DEVICE);
3953 if (dma_mapping_error(dev, buffer_info->dma))
3954 goto dma_error;
3955
3956 }
3957
3958 tx_ring->buffer_info[i].skb = skb;
3959 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
3960 /* multiply data chunks by size of headers */
3961 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
3962 tx_ring->buffer_info[i].gso_segs = gso_segs;
3963 tx_ring->buffer_info[first].next_to_watch = i;
3964
3965 return ++count;
3966
3967 dma_error:
3968 dev_err(dev, "TX DMA map failed\n");
3969
3970 /* clear timestamp and dma mappings for failed buffer_info mapping */
3971 buffer_info->dma = 0;
3972 buffer_info->time_stamp = 0;
3973 buffer_info->length = 0;
3974 buffer_info->next_to_watch = 0;
3975 buffer_info->mapped_as_page = false;
3976
3977 /* clear timestamp and dma mappings for remaining portion of packet */
3978 while (count--) {
3979 if (i == 0)
3980 i = tx_ring->count;
3981 i--;
3982 buffer_info = &tx_ring->buffer_info[i];
3983 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3984 }
3985
3986 return 0;
3987 }
3988
3989 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3990 u32 tx_flags, int count, u32 paylen,
3991 u8 hdr_len)
3992 {
3993 union e1000_adv_tx_desc *tx_desc;
3994 struct igb_buffer *buffer_info;
3995 u32 olinfo_status = 0, cmd_type_len;
3996 unsigned int i = tx_ring->next_to_use;
3997
3998 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3999 E1000_ADVTXD_DCMD_DEXT);
4000
4001 if (tx_flags & IGB_TX_FLAGS_VLAN)
4002 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4003
4004 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4005 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4006
4007 if (tx_flags & IGB_TX_FLAGS_TSO) {
4008 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4009
4010 /* insert tcp checksum */
4011 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4012
4013 /* insert ip checksum */
4014 if (tx_flags & IGB_TX_FLAGS_IPV4)
4015 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4016
4017 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4018 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4019 }
4020
4021 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4022 (tx_flags & (IGB_TX_FLAGS_CSUM |
4023 IGB_TX_FLAGS_TSO |
4024 IGB_TX_FLAGS_VLAN)))
4025 olinfo_status |= tx_ring->reg_idx << 4;
4026
4027 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4028
4029 do {
4030 buffer_info = &tx_ring->buffer_info[i];
4031 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4032 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4033 tx_desc->read.cmd_type_len =
4034 cpu_to_le32(cmd_type_len | buffer_info->length);
4035 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4036 count--;
4037 i++;
4038 if (i == tx_ring->count)
4039 i = 0;
4040 } while (count > 0);
4041
4042 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4043 /* Force memory writes to complete before letting h/w
4044 * know there are new descriptors to fetch. (Only
4045 * applicable for weak-ordered memory model archs,
4046 * such as IA-64). */
4047 wmb();
4048
4049 tx_ring->next_to_use = i;
4050 writel(i, tx_ring->tail);
4051 /* we need this if more than one processor can write to our tail
4052 * at a time, it syncronizes IO on IA64/Altix systems */
4053 mmiowb();
4054 }
4055
4056 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4057 {
4058 struct net_device *netdev = tx_ring->netdev;
4059
4060 netif_stop_subqueue(netdev, tx_ring->queue_index);
4061
4062 /* Herbert's original patch had:
4063 * smp_mb__after_netif_stop_queue();
4064 * but since that doesn't exist yet, just open code it. */
4065 smp_mb();
4066
4067 /* We need to check again in a case another CPU has just
4068 * made room available. */
4069 if (igb_desc_unused(tx_ring) < size)
4070 return -EBUSY;
4071
4072 /* A reprieve! */
4073 netif_wake_subqueue(netdev, tx_ring->queue_index);
4074 tx_ring->tx_stats.restart_queue++;
4075 return 0;
4076 }
4077
4078 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4079 {
4080 if (igb_desc_unused(tx_ring) >= size)
4081 return 0;
4082 return __igb_maybe_stop_tx(tx_ring, size);
4083 }
4084
4085 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4086 struct igb_ring *tx_ring)
4087 {
4088 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4089 int tso = 0, count;
4090 u32 tx_flags = 0;
4091 u16 first;
4092 u8 hdr_len = 0;
4093
4094 /* need: 1 descriptor per page,
4095 * + 2 desc gap to keep tail from touching head,
4096 * + 1 desc for skb->data,
4097 * + 1 desc for context descriptor,
4098 * otherwise try next time */
4099 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4100 /* this is a hard error */
4101 return NETDEV_TX_BUSY;
4102 }
4103
4104 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4105 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4106 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4107 }
4108
4109 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
4110 tx_flags |= IGB_TX_FLAGS_VLAN;
4111 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4112 }
4113
4114 if (skb->protocol == htons(ETH_P_IP))
4115 tx_flags |= IGB_TX_FLAGS_IPV4;
4116
4117 first = tx_ring->next_to_use;
4118 if (skb_is_gso(skb)) {
4119 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
4120
4121 if (tso < 0) {
4122 dev_kfree_skb_any(skb);
4123 return NETDEV_TX_OK;
4124 }
4125 }
4126
4127 if (tso)
4128 tx_flags |= IGB_TX_FLAGS_TSO;
4129 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4130 (skb->ip_summed == CHECKSUM_PARTIAL))
4131 tx_flags |= IGB_TX_FLAGS_CSUM;
4132
4133 /*
4134 * count reflects descriptors mapped, if 0 or less then mapping error
4135 * has occured and we need to rewind the descriptor queue
4136 */
4137 count = igb_tx_map_adv(tx_ring, skb, first);
4138 if (!count) {
4139 dev_kfree_skb_any(skb);
4140 tx_ring->buffer_info[first].time_stamp = 0;
4141 tx_ring->next_to_use = first;
4142 return NETDEV_TX_OK;
4143 }
4144
4145 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4146
4147 /* Make sure there is space in the ring for the next send. */
4148 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4149
4150 return NETDEV_TX_OK;
4151 }
4152
4153 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4154 struct net_device *netdev)
4155 {
4156 struct igb_adapter *adapter = netdev_priv(netdev);
4157 struct igb_ring *tx_ring;
4158 int r_idx = 0;
4159
4160 if (test_bit(__IGB_DOWN, &adapter->state)) {
4161 dev_kfree_skb_any(skb);
4162 return NETDEV_TX_OK;
4163 }
4164
4165 if (skb->len <= 0) {
4166 dev_kfree_skb_any(skb);
4167 return NETDEV_TX_OK;
4168 }
4169
4170 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4171 tx_ring = adapter->multi_tx_table[r_idx];
4172
4173 /* This goes back to the question of how to logically map a tx queue
4174 * to a flow. Right now, performance is impacted slightly negatively
4175 * if using multiple tx queues. If the stack breaks away from a
4176 * single qdisc implementation, we can look at this again. */
4177 return igb_xmit_frame_ring_adv(skb, tx_ring);
4178 }
4179
4180 /**
4181 * igb_tx_timeout - Respond to a Tx Hang
4182 * @netdev: network interface device structure
4183 **/
4184 static void igb_tx_timeout(struct net_device *netdev)
4185 {
4186 struct igb_adapter *adapter = netdev_priv(netdev);
4187 struct e1000_hw *hw = &adapter->hw;
4188
4189 /* Do the reset outside of interrupt context */
4190 adapter->tx_timeout_count++;
4191
4192 if (hw->mac.type == e1000_82580)
4193 hw->dev_spec._82575.global_device_reset = true;
4194
4195 schedule_work(&adapter->reset_task);
4196 wr32(E1000_EICS,
4197 (adapter->eims_enable_mask & ~adapter->eims_other));
4198 }
4199
4200 static void igb_reset_task(struct work_struct *work)
4201 {
4202 struct igb_adapter *adapter;
4203 adapter = container_of(work, struct igb_adapter, reset_task);
4204
4205 igb_dump(adapter);
4206 netdev_err(adapter->netdev, "Reset adapter\n");
4207 igb_reinit_locked(adapter);
4208 }
4209
4210 /**
4211 * igb_get_stats - Get System Network Statistics
4212 * @netdev: network interface device structure
4213 *
4214 * Returns the address of the device statistics structure.
4215 * The statistics are actually updated from the timer callback.
4216 **/
4217 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
4218 {
4219 /* only return the current stats */
4220 return &netdev->stats;
4221 }
4222
4223 /**
4224 * igb_change_mtu - Change the Maximum Transfer Unit
4225 * @netdev: network interface device structure
4226 * @new_mtu: new value for maximum frame size
4227 *
4228 * Returns 0 on success, negative on failure
4229 **/
4230 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4231 {
4232 struct igb_adapter *adapter = netdev_priv(netdev);
4233 struct pci_dev *pdev = adapter->pdev;
4234 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4235 u32 rx_buffer_len, i;
4236
4237 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4238 dev_err(&pdev->dev, "Invalid MTU setting\n");
4239 return -EINVAL;
4240 }
4241
4242 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4243 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4244 return -EINVAL;
4245 }
4246
4247 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4248 msleep(1);
4249
4250 /* igb_down has a dependency on max_frame_size */
4251 adapter->max_frame_size = max_frame;
4252
4253 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4254 * means we reserve 2 more, this pushes us to allocate from the next
4255 * larger slab size.
4256 * i.e. RXBUFFER_2048 --> size-4096 slab
4257 */
4258
4259 if (adapter->hw.mac.type == e1000_82580)
4260 max_frame += IGB_TS_HDR_LEN;
4261
4262 if (max_frame <= IGB_RXBUFFER_1024)
4263 rx_buffer_len = IGB_RXBUFFER_1024;
4264 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4265 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
4266 else
4267 rx_buffer_len = IGB_RXBUFFER_128;
4268
4269 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4270 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4271 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4272
4273 if ((adapter->hw.mac.type == e1000_82580) &&
4274 (rx_buffer_len == IGB_RXBUFFER_128))
4275 rx_buffer_len += IGB_RXBUFFER_64;
4276
4277 if (netif_running(netdev))
4278 igb_down(adapter);
4279
4280 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4281 netdev->mtu, new_mtu);
4282 netdev->mtu = new_mtu;
4283
4284 for (i = 0; i < adapter->num_rx_queues; i++)
4285 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4286
4287 if (netif_running(netdev))
4288 igb_up(adapter);
4289 else
4290 igb_reset(adapter);
4291
4292 clear_bit(__IGB_RESETTING, &adapter->state);
4293
4294 return 0;
4295 }
4296
4297 /**
4298 * igb_update_stats - Update the board statistics counters
4299 * @adapter: board private structure
4300 **/
4301
4302 void igb_update_stats(struct igb_adapter *adapter)
4303 {
4304 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
4305 struct e1000_hw *hw = &adapter->hw;
4306 struct pci_dev *pdev = adapter->pdev;
4307 u32 reg, mpc;
4308 u16 phy_tmp;
4309 int i;
4310 u64 bytes, packets;
4311
4312 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4313
4314 /*
4315 * Prevent stats update while adapter is being reset, or if the pci
4316 * connection is down.
4317 */
4318 if (adapter->link_speed == 0)
4319 return;
4320 if (pci_channel_offline(pdev))
4321 return;
4322
4323 bytes = 0;
4324 packets = 0;
4325 for (i = 0; i < adapter->num_rx_queues; i++) {
4326 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4327 struct igb_ring *ring = adapter->rx_ring[i];
4328 ring->rx_stats.drops += rqdpc_tmp;
4329 net_stats->rx_fifo_errors += rqdpc_tmp;
4330 bytes += ring->rx_stats.bytes;
4331 packets += ring->rx_stats.packets;
4332 }
4333
4334 net_stats->rx_bytes = bytes;
4335 net_stats->rx_packets = packets;
4336
4337 bytes = 0;
4338 packets = 0;
4339 for (i = 0; i < adapter->num_tx_queues; i++) {
4340 struct igb_ring *ring = adapter->tx_ring[i];
4341 bytes += ring->tx_stats.bytes;
4342 packets += ring->tx_stats.packets;
4343 }
4344 net_stats->tx_bytes = bytes;
4345 net_stats->tx_packets = packets;
4346
4347 /* read stats registers */
4348 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4349 adapter->stats.gprc += rd32(E1000_GPRC);
4350 adapter->stats.gorc += rd32(E1000_GORCL);
4351 rd32(E1000_GORCH); /* clear GORCL */
4352 adapter->stats.bprc += rd32(E1000_BPRC);
4353 adapter->stats.mprc += rd32(E1000_MPRC);
4354 adapter->stats.roc += rd32(E1000_ROC);
4355
4356 adapter->stats.prc64 += rd32(E1000_PRC64);
4357 adapter->stats.prc127 += rd32(E1000_PRC127);
4358 adapter->stats.prc255 += rd32(E1000_PRC255);
4359 adapter->stats.prc511 += rd32(E1000_PRC511);
4360 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4361 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4362 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4363 adapter->stats.sec += rd32(E1000_SEC);
4364
4365 mpc = rd32(E1000_MPC);
4366 adapter->stats.mpc += mpc;
4367 net_stats->rx_fifo_errors += mpc;
4368 adapter->stats.scc += rd32(E1000_SCC);
4369 adapter->stats.ecol += rd32(E1000_ECOL);
4370 adapter->stats.mcc += rd32(E1000_MCC);
4371 adapter->stats.latecol += rd32(E1000_LATECOL);
4372 adapter->stats.dc += rd32(E1000_DC);
4373 adapter->stats.rlec += rd32(E1000_RLEC);
4374 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4375 adapter->stats.xontxc += rd32(E1000_XONTXC);
4376 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4377 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4378 adapter->stats.fcruc += rd32(E1000_FCRUC);
4379 adapter->stats.gptc += rd32(E1000_GPTC);
4380 adapter->stats.gotc += rd32(E1000_GOTCL);
4381 rd32(E1000_GOTCH); /* clear GOTCL */
4382 adapter->stats.rnbc += rd32(E1000_RNBC);
4383 adapter->stats.ruc += rd32(E1000_RUC);
4384 adapter->stats.rfc += rd32(E1000_RFC);
4385 adapter->stats.rjc += rd32(E1000_RJC);
4386 adapter->stats.tor += rd32(E1000_TORH);
4387 adapter->stats.tot += rd32(E1000_TOTH);
4388 adapter->stats.tpr += rd32(E1000_TPR);
4389
4390 adapter->stats.ptc64 += rd32(E1000_PTC64);
4391 adapter->stats.ptc127 += rd32(E1000_PTC127);
4392 adapter->stats.ptc255 += rd32(E1000_PTC255);
4393 adapter->stats.ptc511 += rd32(E1000_PTC511);
4394 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4395 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4396
4397 adapter->stats.mptc += rd32(E1000_MPTC);
4398 adapter->stats.bptc += rd32(E1000_BPTC);
4399
4400 adapter->stats.tpt += rd32(E1000_TPT);
4401 adapter->stats.colc += rd32(E1000_COLC);
4402
4403 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4404 /* read internal phy specific stats */
4405 reg = rd32(E1000_CTRL_EXT);
4406 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4407 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4408 adapter->stats.tncrs += rd32(E1000_TNCRS);
4409 }
4410
4411 adapter->stats.tsctc += rd32(E1000_TSCTC);
4412 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4413
4414 adapter->stats.iac += rd32(E1000_IAC);
4415 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4416 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4417 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4418 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4419 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4420 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4421 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4422 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4423
4424 /* Fill out the OS statistics structure */
4425 net_stats->multicast = adapter->stats.mprc;
4426 net_stats->collisions = adapter->stats.colc;
4427
4428 /* Rx Errors */
4429
4430 /* RLEC on some newer hardware can be incorrect so build
4431 * our own version based on RUC and ROC */
4432 net_stats->rx_errors = adapter->stats.rxerrc +
4433 adapter->stats.crcerrs + adapter->stats.algnerrc +
4434 adapter->stats.ruc + adapter->stats.roc +
4435 adapter->stats.cexterr;
4436 net_stats->rx_length_errors = adapter->stats.ruc +
4437 adapter->stats.roc;
4438 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4439 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4440 net_stats->rx_missed_errors = adapter->stats.mpc;
4441
4442 /* Tx Errors */
4443 net_stats->tx_errors = adapter->stats.ecol +
4444 adapter->stats.latecol;
4445 net_stats->tx_aborted_errors = adapter->stats.ecol;
4446 net_stats->tx_window_errors = adapter->stats.latecol;
4447 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4448
4449 /* Tx Dropped needs to be maintained elsewhere */
4450
4451 /* Phy Stats */
4452 if (hw->phy.media_type == e1000_media_type_copper) {
4453 if ((adapter->link_speed == SPEED_1000) &&
4454 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4455 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4456 adapter->phy_stats.idle_errors += phy_tmp;
4457 }
4458 }
4459
4460 /* Management Stats */
4461 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4462 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4463 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4464 }
4465
4466 static irqreturn_t igb_msix_other(int irq, void *data)
4467 {
4468 struct igb_adapter *adapter = data;
4469 struct e1000_hw *hw = &adapter->hw;
4470 u32 icr = rd32(E1000_ICR);
4471 /* reading ICR causes bit 31 of EICR to be cleared */
4472
4473 if (icr & E1000_ICR_DRSTA)
4474 schedule_work(&adapter->reset_task);
4475
4476 if (icr & E1000_ICR_DOUTSYNC) {
4477 /* HW is reporting DMA is out of sync */
4478 adapter->stats.doosync++;
4479 }
4480
4481 /* Check for a mailbox event */
4482 if (icr & E1000_ICR_VMMB)
4483 igb_msg_task(adapter);
4484
4485 if (icr & E1000_ICR_LSC) {
4486 hw->mac.get_link_status = 1;
4487 /* guard against interrupt when we're going down */
4488 if (!test_bit(__IGB_DOWN, &adapter->state))
4489 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4490 }
4491
4492 if (adapter->vfs_allocated_count)
4493 wr32(E1000_IMS, E1000_IMS_LSC |
4494 E1000_IMS_VMMB |
4495 E1000_IMS_DOUTSYNC);
4496 else
4497 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4498 wr32(E1000_EIMS, adapter->eims_other);
4499
4500 return IRQ_HANDLED;
4501 }
4502
4503 static void igb_write_itr(struct igb_q_vector *q_vector)
4504 {
4505 struct igb_adapter *adapter = q_vector->adapter;
4506 u32 itr_val = q_vector->itr_val & 0x7FFC;
4507
4508 if (!q_vector->set_itr)
4509 return;
4510
4511 if (!itr_val)
4512 itr_val = 0x4;
4513
4514 if (adapter->hw.mac.type == e1000_82575)
4515 itr_val |= itr_val << 16;
4516 else
4517 itr_val |= 0x8000000;
4518
4519 writel(itr_val, q_vector->itr_register);
4520 q_vector->set_itr = 0;
4521 }
4522
4523 static irqreturn_t igb_msix_ring(int irq, void *data)
4524 {
4525 struct igb_q_vector *q_vector = data;
4526
4527 /* Write the ITR value calculated from the previous interrupt. */
4528 igb_write_itr(q_vector);
4529
4530 napi_schedule(&q_vector->napi);
4531
4532 return IRQ_HANDLED;
4533 }
4534
4535 #ifdef CONFIG_IGB_DCA
4536 static void igb_update_dca(struct igb_q_vector *q_vector)
4537 {
4538 struct igb_adapter *adapter = q_vector->adapter;
4539 struct e1000_hw *hw = &adapter->hw;
4540 int cpu = get_cpu();
4541
4542 if (q_vector->cpu == cpu)
4543 goto out_no_update;
4544
4545 if (q_vector->tx_ring) {
4546 int q = q_vector->tx_ring->reg_idx;
4547 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4548 if (hw->mac.type == e1000_82575) {
4549 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4550 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4551 } else {
4552 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4553 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4554 E1000_DCA_TXCTRL_CPUID_SHIFT;
4555 }
4556 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4557 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4558 }
4559 if (q_vector->rx_ring) {
4560 int q = q_vector->rx_ring->reg_idx;
4561 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4562 if (hw->mac.type == e1000_82575) {
4563 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4564 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4565 } else {
4566 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4567 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4568 E1000_DCA_RXCTRL_CPUID_SHIFT;
4569 }
4570 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4571 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4572 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4573 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4574 }
4575 q_vector->cpu = cpu;
4576 out_no_update:
4577 put_cpu();
4578 }
4579
4580 static void igb_setup_dca(struct igb_adapter *adapter)
4581 {
4582 struct e1000_hw *hw = &adapter->hw;
4583 int i;
4584
4585 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4586 return;
4587
4588 /* Always use CB2 mode, difference is masked in the CB driver. */
4589 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4590
4591 for (i = 0; i < adapter->num_q_vectors; i++) {
4592 adapter->q_vector[i]->cpu = -1;
4593 igb_update_dca(adapter->q_vector[i]);
4594 }
4595 }
4596
4597 static int __igb_notify_dca(struct device *dev, void *data)
4598 {
4599 struct net_device *netdev = dev_get_drvdata(dev);
4600 struct igb_adapter *adapter = netdev_priv(netdev);
4601 struct pci_dev *pdev = adapter->pdev;
4602 struct e1000_hw *hw = &adapter->hw;
4603 unsigned long event = *(unsigned long *)data;
4604
4605 switch (event) {
4606 case DCA_PROVIDER_ADD:
4607 /* if already enabled, don't do it again */
4608 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4609 break;
4610 if (dca_add_requester(dev) == 0) {
4611 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4612 dev_info(&pdev->dev, "DCA enabled\n");
4613 igb_setup_dca(adapter);
4614 break;
4615 }
4616 /* Fall Through since DCA is disabled. */
4617 case DCA_PROVIDER_REMOVE:
4618 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4619 /* without this a class_device is left
4620 * hanging around in the sysfs model */
4621 dca_remove_requester(dev);
4622 dev_info(&pdev->dev, "DCA disabled\n");
4623 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4624 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4625 }
4626 break;
4627 }
4628
4629 return 0;
4630 }
4631
4632 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4633 void *p)
4634 {
4635 int ret_val;
4636
4637 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4638 __igb_notify_dca);
4639
4640 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4641 }
4642 #endif /* CONFIG_IGB_DCA */
4643
4644 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4645 {
4646 struct e1000_hw *hw = &adapter->hw;
4647 u32 ping;
4648 int i;
4649
4650 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4651 ping = E1000_PF_CONTROL_MSG;
4652 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4653 ping |= E1000_VT_MSGTYPE_CTS;
4654 igb_write_mbx(hw, &ping, 1, i);
4655 }
4656 }
4657
4658 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4659 {
4660 struct e1000_hw *hw = &adapter->hw;
4661 u32 vmolr = rd32(E1000_VMOLR(vf));
4662 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4663
4664 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4665 IGB_VF_FLAG_MULTI_PROMISC);
4666 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4667
4668 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4669 vmolr |= E1000_VMOLR_MPME;
4670 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4671 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4672 } else {
4673 /*
4674 * if we have hashes and we are clearing a multicast promisc
4675 * flag we need to write the hashes to the MTA as this step
4676 * was previously skipped
4677 */
4678 if (vf_data->num_vf_mc_hashes > 30) {
4679 vmolr |= E1000_VMOLR_MPME;
4680 } else if (vf_data->num_vf_mc_hashes) {
4681 int j;
4682 vmolr |= E1000_VMOLR_ROMPE;
4683 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4684 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4685 }
4686 }
4687
4688 wr32(E1000_VMOLR(vf), vmolr);
4689
4690 /* there are flags left unprocessed, likely not supported */
4691 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4692 return -EINVAL;
4693
4694 return 0;
4695
4696 }
4697
4698 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4699 u32 *msgbuf, u32 vf)
4700 {
4701 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4702 u16 *hash_list = (u16 *)&msgbuf[1];
4703 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4704 int i;
4705
4706 /* salt away the number of multicast addresses assigned
4707 * to this VF for later use to restore when the PF multi cast
4708 * list changes
4709 */
4710 vf_data->num_vf_mc_hashes = n;
4711
4712 /* only up to 30 hash values supported */
4713 if (n > 30)
4714 n = 30;
4715
4716 /* store the hashes for later use */
4717 for (i = 0; i < n; i++)
4718 vf_data->vf_mc_hashes[i] = hash_list[i];
4719
4720 /* Flush and reset the mta with the new values */
4721 igb_set_rx_mode(adapter->netdev);
4722
4723 return 0;
4724 }
4725
4726 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4727 {
4728 struct e1000_hw *hw = &adapter->hw;
4729 struct vf_data_storage *vf_data;
4730 int i, j;
4731
4732 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4733 u32 vmolr = rd32(E1000_VMOLR(i));
4734 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4735
4736 vf_data = &adapter->vf_data[i];
4737
4738 if ((vf_data->num_vf_mc_hashes > 30) ||
4739 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4740 vmolr |= E1000_VMOLR_MPME;
4741 } else if (vf_data->num_vf_mc_hashes) {
4742 vmolr |= E1000_VMOLR_ROMPE;
4743 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4744 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4745 }
4746 wr32(E1000_VMOLR(i), vmolr);
4747 }
4748 }
4749
4750 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4751 {
4752 struct e1000_hw *hw = &adapter->hw;
4753 u32 pool_mask, reg, vid;
4754 int i;
4755
4756 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4757
4758 /* Find the vlan filter for this id */
4759 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4760 reg = rd32(E1000_VLVF(i));
4761
4762 /* remove the vf from the pool */
4763 reg &= ~pool_mask;
4764
4765 /* if pool is empty then remove entry from vfta */
4766 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4767 (reg & E1000_VLVF_VLANID_ENABLE)) {
4768 reg = 0;
4769 vid = reg & E1000_VLVF_VLANID_MASK;
4770 igb_vfta_set(hw, vid, false);
4771 }
4772
4773 wr32(E1000_VLVF(i), reg);
4774 }
4775
4776 adapter->vf_data[vf].vlans_enabled = 0;
4777 }
4778
4779 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4780 {
4781 struct e1000_hw *hw = &adapter->hw;
4782 u32 reg, i;
4783
4784 /* The vlvf table only exists on 82576 hardware and newer */
4785 if (hw->mac.type < e1000_82576)
4786 return -1;
4787
4788 /* we only need to do this if VMDq is enabled */
4789 if (!adapter->vfs_allocated_count)
4790 return -1;
4791
4792 /* Find the vlan filter for this id */
4793 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4794 reg = rd32(E1000_VLVF(i));
4795 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4796 vid == (reg & E1000_VLVF_VLANID_MASK))
4797 break;
4798 }
4799
4800 if (add) {
4801 if (i == E1000_VLVF_ARRAY_SIZE) {
4802 /* Did not find a matching VLAN ID entry that was
4803 * enabled. Search for a free filter entry, i.e.
4804 * one without the enable bit set
4805 */
4806 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4807 reg = rd32(E1000_VLVF(i));
4808 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4809 break;
4810 }
4811 }
4812 if (i < E1000_VLVF_ARRAY_SIZE) {
4813 /* Found an enabled/available entry */
4814 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4815
4816 /* if !enabled we need to set this up in vfta */
4817 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4818 /* add VID to filter table */
4819 igb_vfta_set(hw, vid, true);
4820 reg |= E1000_VLVF_VLANID_ENABLE;
4821 }
4822 reg &= ~E1000_VLVF_VLANID_MASK;
4823 reg |= vid;
4824 wr32(E1000_VLVF(i), reg);
4825
4826 /* do not modify RLPML for PF devices */
4827 if (vf >= adapter->vfs_allocated_count)
4828 return 0;
4829
4830 if (!adapter->vf_data[vf].vlans_enabled) {
4831 u32 size;
4832 reg = rd32(E1000_VMOLR(vf));
4833 size = reg & E1000_VMOLR_RLPML_MASK;
4834 size += 4;
4835 reg &= ~E1000_VMOLR_RLPML_MASK;
4836 reg |= size;
4837 wr32(E1000_VMOLR(vf), reg);
4838 }
4839
4840 adapter->vf_data[vf].vlans_enabled++;
4841 return 0;
4842 }
4843 } else {
4844 if (i < E1000_VLVF_ARRAY_SIZE) {
4845 /* remove vf from the pool */
4846 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4847 /* if pool is empty then remove entry from vfta */
4848 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4849 reg = 0;
4850 igb_vfta_set(hw, vid, false);
4851 }
4852 wr32(E1000_VLVF(i), reg);
4853
4854 /* do not modify RLPML for PF devices */
4855 if (vf >= adapter->vfs_allocated_count)
4856 return 0;
4857
4858 adapter->vf_data[vf].vlans_enabled--;
4859 if (!adapter->vf_data[vf].vlans_enabled) {
4860 u32 size;
4861 reg = rd32(E1000_VMOLR(vf));
4862 size = reg & E1000_VMOLR_RLPML_MASK;
4863 size -= 4;
4864 reg &= ~E1000_VMOLR_RLPML_MASK;
4865 reg |= size;
4866 wr32(E1000_VMOLR(vf), reg);
4867 }
4868 }
4869 }
4870 return 0;
4871 }
4872
4873 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4874 {
4875 struct e1000_hw *hw = &adapter->hw;
4876
4877 if (vid)
4878 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4879 else
4880 wr32(E1000_VMVIR(vf), 0);
4881 }
4882
4883 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4884 int vf, u16 vlan, u8 qos)
4885 {
4886 int err = 0;
4887 struct igb_adapter *adapter = netdev_priv(netdev);
4888
4889 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4890 return -EINVAL;
4891 if (vlan || qos) {
4892 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4893 if (err)
4894 goto out;
4895 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4896 igb_set_vmolr(adapter, vf, !vlan);
4897 adapter->vf_data[vf].pf_vlan = vlan;
4898 adapter->vf_data[vf].pf_qos = qos;
4899 dev_info(&adapter->pdev->dev,
4900 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4901 if (test_bit(__IGB_DOWN, &adapter->state)) {
4902 dev_warn(&adapter->pdev->dev,
4903 "The VF VLAN has been set,"
4904 " but the PF device is not up.\n");
4905 dev_warn(&adapter->pdev->dev,
4906 "Bring the PF device up before"
4907 " attempting to use the VF device.\n");
4908 }
4909 } else {
4910 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4911 false, vf);
4912 igb_set_vmvir(adapter, vlan, vf);
4913 igb_set_vmolr(adapter, vf, true);
4914 adapter->vf_data[vf].pf_vlan = 0;
4915 adapter->vf_data[vf].pf_qos = 0;
4916 }
4917 out:
4918 return err;
4919 }
4920
4921 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4922 {
4923 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4924 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4925
4926 return igb_vlvf_set(adapter, vid, add, vf);
4927 }
4928
4929 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4930 {
4931 /* clear flags */
4932 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
4933 adapter->vf_data[vf].last_nack = jiffies;
4934
4935 /* reset offloads to defaults */
4936 igb_set_vmolr(adapter, vf, true);
4937
4938 /* reset vlans for device */
4939 igb_clear_vf_vfta(adapter, vf);
4940 if (adapter->vf_data[vf].pf_vlan)
4941 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4942 adapter->vf_data[vf].pf_vlan,
4943 adapter->vf_data[vf].pf_qos);
4944 else
4945 igb_clear_vf_vfta(adapter, vf);
4946
4947 /* reset multicast table array for vf */
4948 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4949
4950 /* Flush and reset the mta with the new values */
4951 igb_set_rx_mode(adapter->netdev);
4952 }
4953
4954 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4955 {
4956 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4957
4958 /* generate a new mac address as we were hotplug removed/added */
4959 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4960 random_ether_addr(vf_mac);
4961
4962 /* process remaining reset events */
4963 igb_vf_reset(adapter, vf);
4964 }
4965
4966 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4967 {
4968 struct e1000_hw *hw = &adapter->hw;
4969 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4970 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4971 u32 reg, msgbuf[3];
4972 u8 *addr = (u8 *)(&msgbuf[1]);
4973
4974 /* process all the same items cleared in a function level reset */
4975 igb_vf_reset(adapter, vf);
4976
4977 /* set vf mac address */
4978 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4979
4980 /* enable transmit and receive for vf */
4981 reg = rd32(E1000_VFTE);
4982 wr32(E1000_VFTE, reg | (1 << vf));
4983 reg = rd32(E1000_VFRE);
4984 wr32(E1000_VFRE, reg | (1 << vf));
4985
4986 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4987
4988 /* reply to reset with ack and vf mac address */
4989 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4990 memcpy(addr, vf_mac, 6);
4991 igb_write_mbx(hw, msgbuf, 3, vf);
4992 }
4993
4994 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4995 {
4996 /*
4997 * The VF MAC Address is stored in a packed array of bytes
4998 * starting at the second 32 bit word of the msg array
4999 */
5000 unsigned char *addr = (char *)&msg[1];
5001 int err = -1;
5002
5003 if (is_valid_ether_addr(addr))
5004 err = igb_set_vf_mac(adapter, vf, addr);
5005
5006 return err;
5007 }
5008
5009 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5010 {
5011 struct e1000_hw *hw = &adapter->hw;
5012 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5013 u32 msg = E1000_VT_MSGTYPE_NACK;
5014
5015 /* if device isn't clear to send it shouldn't be reading either */
5016 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5017 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5018 igb_write_mbx(hw, &msg, 1, vf);
5019 vf_data->last_nack = jiffies;
5020 }
5021 }
5022
5023 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5024 {
5025 struct pci_dev *pdev = adapter->pdev;
5026 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5027 struct e1000_hw *hw = &adapter->hw;
5028 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5029 s32 retval;
5030
5031 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5032
5033 if (retval) {
5034 /* if receive failed revoke VF CTS stats and restart init */
5035 dev_err(&pdev->dev, "Error receiving message from VF\n");
5036 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5037 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5038 return;
5039 goto out;
5040 }
5041
5042 /* this is a message we already processed, do nothing */
5043 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5044 return;
5045
5046 /*
5047 * until the vf completes a reset it should not be
5048 * allowed to start any configuration.
5049 */
5050
5051 if (msgbuf[0] == E1000_VF_RESET) {
5052 igb_vf_reset_msg(adapter, vf);
5053 return;
5054 }
5055
5056 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5057 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5058 return;
5059 retval = -1;
5060 goto out;
5061 }
5062
5063 switch ((msgbuf[0] & 0xFFFF)) {
5064 case E1000_VF_SET_MAC_ADDR:
5065 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5066 break;
5067 case E1000_VF_SET_PROMISC:
5068 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5069 break;
5070 case E1000_VF_SET_MULTICAST:
5071 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5072 break;
5073 case E1000_VF_SET_LPE:
5074 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5075 break;
5076 case E1000_VF_SET_VLAN:
5077 if (adapter->vf_data[vf].pf_vlan)
5078 retval = -1;
5079 else
5080 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5081 break;
5082 default:
5083 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5084 retval = -1;
5085 break;
5086 }
5087
5088 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5089 out:
5090 /* notify the VF of the results of what it sent us */
5091 if (retval)
5092 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5093 else
5094 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5095
5096 igb_write_mbx(hw, msgbuf, 1, vf);
5097 }
5098
5099 static void igb_msg_task(struct igb_adapter *adapter)
5100 {
5101 struct e1000_hw *hw = &adapter->hw;
5102 u32 vf;
5103
5104 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5105 /* process any reset requests */
5106 if (!igb_check_for_rst(hw, vf))
5107 igb_vf_reset_event(adapter, vf);
5108
5109 /* process any messages pending */
5110 if (!igb_check_for_msg(hw, vf))
5111 igb_rcv_msg_from_vf(adapter, vf);
5112
5113 /* process any acks */
5114 if (!igb_check_for_ack(hw, vf))
5115 igb_rcv_ack_from_vf(adapter, vf);
5116 }
5117 }
5118
5119 /**
5120 * igb_set_uta - Set unicast filter table address
5121 * @adapter: board private structure
5122 *
5123 * The unicast table address is a register array of 32-bit registers.
5124 * The table is meant to be used in a way similar to how the MTA is used
5125 * however due to certain limitations in the hardware it is necessary to
5126 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5127 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5128 **/
5129 static void igb_set_uta(struct igb_adapter *adapter)
5130 {
5131 struct e1000_hw *hw = &adapter->hw;
5132 int i;
5133
5134 /* The UTA table only exists on 82576 hardware and newer */
5135 if (hw->mac.type < e1000_82576)
5136 return;
5137
5138 /* we only need to do this if VMDq is enabled */
5139 if (!adapter->vfs_allocated_count)
5140 return;
5141
5142 for (i = 0; i < hw->mac.uta_reg_count; i++)
5143 array_wr32(E1000_UTA, i, ~0);
5144 }
5145
5146 /**
5147 * igb_intr_msi - Interrupt Handler
5148 * @irq: interrupt number
5149 * @data: pointer to a network interface device structure
5150 **/
5151 static irqreturn_t igb_intr_msi(int irq, void *data)
5152 {
5153 struct igb_adapter *adapter = data;
5154 struct igb_q_vector *q_vector = adapter->q_vector[0];
5155 struct e1000_hw *hw = &adapter->hw;
5156 /* read ICR disables interrupts using IAM */
5157 u32 icr = rd32(E1000_ICR);
5158
5159 igb_write_itr(q_vector);
5160
5161 if (icr & E1000_ICR_DRSTA)
5162 schedule_work(&adapter->reset_task);
5163
5164 if (icr & E1000_ICR_DOUTSYNC) {
5165 /* HW is reporting DMA is out of sync */
5166 adapter->stats.doosync++;
5167 }
5168
5169 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5170 hw->mac.get_link_status = 1;
5171 if (!test_bit(__IGB_DOWN, &adapter->state))
5172 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5173 }
5174
5175 napi_schedule(&q_vector->napi);
5176
5177 return IRQ_HANDLED;
5178 }
5179
5180 /**
5181 * igb_intr - Legacy Interrupt Handler
5182 * @irq: interrupt number
5183 * @data: pointer to a network interface device structure
5184 **/
5185 static irqreturn_t igb_intr(int irq, void *data)
5186 {
5187 struct igb_adapter *adapter = data;
5188 struct igb_q_vector *q_vector = adapter->q_vector[0];
5189 struct e1000_hw *hw = &adapter->hw;
5190 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5191 * need for the IMC write */
5192 u32 icr = rd32(E1000_ICR);
5193 if (!icr)
5194 return IRQ_NONE; /* Not our interrupt */
5195
5196 igb_write_itr(q_vector);
5197
5198 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5199 * not set, then the adapter didn't send an interrupt */
5200 if (!(icr & E1000_ICR_INT_ASSERTED))
5201 return IRQ_NONE;
5202
5203 if (icr & E1000_ICR_DRSTA)
5204 schedule_work(&adapter->reset_task);
5205
5206 if (icr & E1000_ICR_DOUTSYNC) {
5207 /* HW is reporting DMA is out of sync */
5208 adapter->stats.doosync++;
5209 }
5210
5211 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5212 hw->mac.get_link_status = 1;
5213 /* guard against interrupt when we're going down */
5214 if (!test_bit(__IGB_DOWN, &adapter->state))
5215 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5216 }
5217
5218 napi_schedule(&q_vector->napi);
5219
5220 return IRQ_HANDLED;
5221 }
5222
5223 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5224 {
5225 struct igb_adapter *adapter = q_vector->adapter;
5226 struct e1000_hw *hw = &adapter->hw;
5227
5228 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5229 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5230 if (!adapter->msix_entries)
5231 igb_set_itr(adapter);
5232 else
5233 igb_update_ring_itr(q_vector);
5234 }
5235
5236 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5237 if (adapter->msix_entries)
5238 wr32(E1000_EIMS, q_vector->eims_value);
5239 else
5240 igb_irq_enable(adapter);
5241 }
5242 }
5243
5244 /**
5245 * igb_poll - NAPI Rx polling callback
5246 * @napi: napi polling structure
5247 * @budget: count of how many packets we should handle
5248 **/
5249 static int igb_poll(struct napi_struct *napi, int budget)
5250 {
5251 struct igb_q_vector *q_vector = container_of(napi,
5252 struct igb_q_vector,
5253 napi);
5254 int tx_clean_complete = 1, work_done = 0;
5255
5256 #ifdef CONFIG_IGB_DCA
5257 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5258 igb_update_dca(q_vector);
5259 #endif
5260 if (q_vector->tx_ring)
5261 tx_clean_complete = igb_clean_tx_irq(q_vector);
5262
5263 if (q_vector->rx_ring)
5264 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5265
5266 if (!tx_clean_complete)
5267 work_done = budget;
5268
5269 /* If not enough Rx work done, exit the polling mode */
5270 if (work_done < budget) {
5271 napi_complete(napi);
5272 igb_ring_irq_enable(q_vector);
5273 }
5274
5275 return work_done;
5276 }
5277
5278 /**
5279 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5280 * @adapter: board private structure
5281 * @shhwtstamps: timestamp structure to update
5282 * @regval: unsigned 64bit system time value.
5283 *
5284 * We need to convert the system time value stored in the RX/TXSTMP registers
5285 * into a hwtstamp which can be used by the upper level timestamping functions
5286 */
5287 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5288 struct skb_shared_hwtstamps *shhwtstamps,
5289 u64 regval)
5290 {
5291 u64 ns;
5292
5293 /*
5294 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5295 * 24 to match clock shift we setup earlier.
5296 */
5297 if (adapter->hw.mac.type == e1000_82580)
5298 regval <<= IGB_82580_TSYNC_SHIFT;
5299
5300 ns = timecounter_cyc2time(&adapter->clock, regval);
5301 timecompare_update(&adapter->compare, ns);
5302 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5303 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5304 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5305 }
5306
5307 /**
5308 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5309 * @q_vector: pointer to q_vector containing needed info
5310 * @buffer: pointer to igb_buffer structure
5311 *
5312 * If we were asked to do hardware stamping and such a time stamp is
5313 * available, then it must have been for this skb here because we only
5314 * allow only one such packet into the queue.
5315 */
5316 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5317 {
5318 struct igb_adapter *adapter = q_vector->adapter;
5319 struct e1000_hw *hw = &adapter->hw;
5320 struct skb_shared_hwtstamps shhwtstamps;
5321 u64 regval;
5322
5323 /* if skb does not support hw timestamp or TX stamp not valid exit */
5324 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5325 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5326 return;
5327
5328 regval = rd32(E1000_TXSTMPL);
5329 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5330
5331 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5332 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5333 }
5334
5335 /**
5336 * igb_clean_tx_irq - Reclaim resources after transmit completes
5337 * @q_vector: pointer to q_vector containing needed info
5338 * returns true if ring is completely cleaned
5339 **/
5340 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5341 {
5342 struct igb_adapter *adapter = q_vector->adapter;
5343 struct igb_ring *tx_ring = q_vector->tx_ring;
5344 struct net_device *netdev = tx_ring->netdev;
5345 struct e1000_hw *hw = &adapter->hw;
5346 struct igb_buffer *buffer_info;
5347 union e1000_adv_tx_desc *tx_desc, *eop_desc;
5348 unsigned int total_bytes = 0, total_packets = 0;
5349 unsigned int i, eop, count = 0;
5350 bool cleaned = false;
5351
5352 i = tx_ring->next_to_clean;
5353 eop = tx_ring->buffer_info[i].next_to_watch;
5354 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5355
5356 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5357 (count < tx_ring->count)) {
5358 rmb(); /* read buffer_info after eop_desc status */
5359 for (cleaned = false; !cleaned; count++) {
5360 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5361 buffer_info = &tx_ring->buffer_info[i];
5362 cleaned = (i == eop);
5363
5364 if (buffer_info->skb) {
5365 total_bytes += buffer_info->bytecount;
5366 /* gso_segs is currently only valid for tcp */
5367 total_packets += buffer_info->gso_segs;
5368 igb_tx_hwtstamp(q_vector, buffer_info);
5369 }
5370
5371 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
5372 tx_desc->wb.status = 0;
5373
5374 i++;
5375 if (i == tx_ring->count)
5376 i = 0;
5377 }
5378 eop = tx_ring->buffer_info[i].next_to_watch;
5379 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5380 }
5381
5382 tx_ring->next_to_clean = i;
5383
5384 if (unlikely(count &&
5385 netif_carrier_ok(netdev) &&
5386 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5387 /* Make sure that anybody stopping the queue after this
5388 * sees the new next_to_clean.
5389 */
5390 smp_mb();
5391 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5392 !(test_bit(__IGB_DOWN, &adapter->state))) {
5393 netif_wake_subqueue(netdev, tx_ring->queue_index);
5394 tx_ring->tx_stats.restart_queue++;
5395 }
5396 }
5397
5398 if (tx_ring->detect_tx_hung) {
5399 /* Detect a transmit hang in hardware, this serializes the
5400 * check with the clearing of time_stamp and movement of i */
5401 tx_ring->detect_tx_hung = false;
5402 if (tx_ring->buffer_info[i].time_stamp &&
5403 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5404 (adapter->tx_timeout_factor * HZ)) &&
5405 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5406
5407 /* detected Tx unit hang */
5408 dev_err(tx_ring->dev,
5409 "Detected Tx Unit Hang\n"
5410 " Tx Queue <%d>\n"
5411 " TDH <%x>\n"
5412 " TDT <%x>\n"
5413 " next_to_use <%x>\n"
5414 " next_to_clean <%x>\n"
5415 "buffer_info[next_to_clean]\n"
5416 " time_stamp <%lx>\n"
5417 " next_to_watch <%x>\n"
5418 " jiffies <%lx>\n"
5419 " desc.status <%x>\n",
5420 tx_ring->queue_index,
5421 readl(tx_ring->head),
5422 readl(tx_ring->tail),
5423 tx_ring->next_to_use,
5424 tx_ring->next_to_clean,
5425 tx_ring->buffer_info[eop].time_stamp,
5426 eop,
5427 jiffies,
5428 eop_desc->wb.status);
5429 netif_stop_subqueue(netdev, tx_ring->queue_index);
5430 }
5431 }
5432 tx_ring->total_bytes += total_bytes;
5433 tx_ring->total_packets += total_packets;
5434 tx_ring->tx_stats.bytes += total_bytes;
5435 tx_ring->tx_stats.packets += total_packets;
5436 return (count < tx_ring->count);
5437 }
5438
5439 /**
5440 * igb_receive_skb - helper function to handle rx indications
5441 * @q_vector: structure containing interrupt and ring information
5442 * @skb: packet to send up
5443 * @vlan_tag: vlan tag for packet
5444 **/
5445 static void igb_receive_skb(struct igb_q_vector *q_vector,
5446 struct sk_buff *skb,
5447 u16 vlan_tag)
5448 {
5449 struct igb_adapter *adapter = q_vector->adapter;
5450
5451 if (vlan_tag && adapter->vlgrp)
5452 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5453 vlan_tag, skb);
5454 else
5455 napi_gro_receive(&q_vector->napi, skb);
5456 }
5457
5458 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5459 u32 status_err, struct sk_buff *skb)
5460 {
5461 skb_checksum_none_assert(skb);
5462
5463 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5464 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5465 (status_err & E1000_RXD_STAT_IXSM))
5466 return;
5467
5468 /* TCP/UDP checksum error bit is set */
5469 if (status_err &
5470 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5471 /*
5472 * work around errata with sctp packets where the TCPE aka
5473 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5474 * packets, (aka let the stack check the crc32c)
5475 */
5476 if ((skb->len == 60) &&
5477 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5478 ring->rx_stats.csum_err++;
5479
5480 /* let the stack verify checksum errors */
5481 return;
5482 }
5483 /* It must be a TCP or UDP packet with a valid checksum */
5484 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5485 skb->ip_summed = CHECKSUM_UNNECESSARY;
5486
5487 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5488 }
5489
5490 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5491 struct sk_buff *skb)
5492 {
5493 struct igb_adapter *adapter = q_vector->adapter;
5494 struct e1000_hw *hw = &adapter->hw;
5495 u64 regval;
5496
5497 /*
5498 * If this bit is set, then the RX registers contain the time stamp. No
5499 * other packet will be time stamped until we read these registers, so
5500 * read the registers to make them available again. Because only one
5501 * packet can be time stamped at a time, we know that the register
5502 * values must belong to this one here and therefore we don't need to
5503 * compare any of the additional attributes stored for it.
5504 *
5505 * If nothing went wrong, then it should have a shared tx_flags that we
5506 * can turn into a skb_shared_hwtstamps.
5507 */
5508 if (staterr & E1000_RXDADV_STAT_TSIP) {
5509 u32 *stamp = (u32 *)skb->data;
5510 regval = le32_to_cpu(*(stamp + 2));
5511 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5512 skb_pull(skb, IGB_TS_HDR_LEN);
5513 } else {
5514 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5515 return;
5516
5517 regval = rd32(E1000_RXSTMPL);
5518 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5519 }
5520
5521 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5522 }
5523 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5524 union e1000_adv_rx_desc *rx_desc)
5525 {
5526 /* HW will not DMA in data larger than the given buffer, even if it
5527 * parses the (NFS, of course) header to be larger. In that case, it
5528 * fills the header buffer and spills the rest into the page.
5529 */
5530 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5531 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5532 if (hlen > rx_ring->rx_buffer_len)
5533 hlen = rx_ring->rx_buffer_len;
5534 return hlen;
5535 }
5536
5537 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5538 int *work_done, int budget)
5539 {
5540 struct igb_ring *rx_ring = q_vector->rx_ring;
5541 struct net_device *netdev = rx_ring->netdev;
5542 struct device *dev = rx_ring->dev;
5543 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5544 struct igb_buffer *buffer_info , *next_buffer;
5545 struct sk_buff *skb;
5546 bool cleaned = false;
5547 int cleaned_count = 0;
5548 int current_node = numa_node_id();
5549 unsigned int total_bytes = 0, total_packets = 0;
5550 unsigned int i;
5551 u32 staterr;
5552 u16 length;
5553 u16 vlan_tag;
5554
5555 i = rx_ring->next_to_clean;
5556 buffer_info = &rx_ring->buffer_info[i];
5557 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5558 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5559
5560 while (staterr & E1000_RXD_STAT_DD) {
5561 if (*work_done >= budget)
5562 break;
5563 (*work_done)++;
5564 rmb(); /* read descriptor and rx_buffer_info after status DD */
5565
5566 skb = buffer_info->skb;
5567 prefetch(skb->data - NET_IP_ALIGN);
5568 buffer_info->skb = NULL;
5569
5570 i++;
5571 if (i == rx_ring->count)
5572 i = 0;
5573
5574 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5575 prefetch(next_rxd);
5576 next_buffer = &rx_ring->buffer_info[i];
5577
5578 length = le16_to_cpu(rx_desc->wb.upper.length);
5579 cleaned = true;
5580 cleaned_count++;
5581
5582 if (buffer_info->dma) {
5583 dma_unmap_single(dev, buffer_info->dma,
5584 rx_ring->rx_buffer_len,
5585 DMA_FROM_DEVICE);
5586 buffer_info->dma = 0;
5587 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5588 skb_put(skb, length);
5589 goto send_up;
5590 }
5591 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5592 }
5593
5594 if (length) {
5595 dma_unmap_page(dev, buffer_info->page_dma,
5596 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5597 buffer_info->page_dma = 0;
5598
5599 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5600 buffer_info->page,
5601 buffer_info->page_offset,
5602 length);
5603
5604 if ((page_count(buffer_info->page) != 1) ||
5605 (page_to_nid(buffer_info->page) != current_node))
5606 buffer_info->page = NULL;
5607 else
5608 get_page(buffer_info->page);
5609
5610 skb->len += length;
5611 skb->data_len += length;
5612 skb->truesize += length;
5613 }
5614
5615 if (!(staterr & E1000_RXD_STAT_EOP)) {
5616 buffer_info->skb = next_buffer->skb;
5617 buffer_info->dma = next_buffer->dma;
5618 next_buffer->skb = skb;
5619 next_buffer->dma = 0;
5620 goto next_desc;
5621 }
5622 send_up:
5623 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5624 dev_kfree_skb_irq(skb);
5625 goto next_desc;
5626 }
5627
5628 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5629 igb_rx_hwtstamp(q_vector, staterr, skb);
5630 total_bytes += skb->len;
5631 total_packets++;
5632
5633 igb_rx_checksum_adv(rx_ring, staterr, skb);
5634
5635 skb->protocol = eth_type_trans(skb, netdev);
5636 skb_record_rx_queue(skb, rx_ring->queue_index);
5637
5638 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5639 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5640
5641 igb_receive_skb(q_vector, skb, vlan_tag);
5642
5643 next_desc:
5644 rx_desc->wb.upper.status_error = 0;
5645
5646 /* return some buffers to hardware, one at a time is too slow */
5647 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5648 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5649 cleaned_count = 0;
5650 }
5651
5652 /* use prefetched values */
5653 rx_desc = next_rxd;
5654 buffer_info = next_buffer;
5655 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5656 }
5657
5658 rx_ring->next_to_clean = i;
5659 cleaned_count = igb_desc_unused(rx_ring);
5660
5661 if (cleaned_count)
5662 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5663
5664 rx_ring->total_packets += total_packets;
5665 rx_ring->total_bytes += total_bytes;
5666 rx_ring->rx_stats.packets += total_packets;
5667 rx_ring->rx_stats.bytes += total_bytes;
5668 return cleaned;
5669 }
5670
5671 /**
5672 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5673 * @adapter: address of board private structure
5674 **/
5675 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5676 {
5677 struct net_device *netdev = rx_ring->netdev;
5678 union e1000_adv_rx_desc *rx_desc;
5679 struct igb_buffer *buffer_info;
5680 struct sk_buff *skb;
5681 unsigned int i;
5682 int bufsz;
5683
5684 i = rx_ring->next_to_use;
5685 buffer_info = &rx_ring->buffer_info[i];
5686
5687 bufsz = rx_ring->rx_buffer_len;
5688
5689 while (cleaned_count--) {
5690 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5691
5692 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5693 if (!buffer_info->page) {
5694 buffer_info->page = netdev_alloc_page(netdev);
5695 if (!buffer_info->page) {
5696 rx_ring->rx_stats.alloc_failed++;
5697 goto no_buffers;
5698 }
5699 buffer_info->page_offset = 0;
5700 } else {
5701 buffer_info->page_offset ^= PAGE_SIZE / 2;
5702 }
5703 buffer_info->page_dma =
5704 dma_map_page(rx_ring->dev, buffer_info->page,
5705 buffer_info->page_offset,
5706 PAGE_SIZE / 2,
5707 DMA_FROM_DEVICE);
5708 if (dma_mapping_error(rx_ring->dev,
5709 buffer_info->page_dma)) {
5710 buffer_info->page_dma = 0;
5711 rx_ring->rx_stats.alloc_failed++;
5712 goto no_buffers;
5713 }
5714 }
5715
5716 skb = buffer_info->skb;
5717 if (!skb) {
5718 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5719 if (!skb) {
5720 rx_ring->rx_stats.alloc_failed++;
5721 goto no_buffers;
5722 }
5723
5724 buffer_info->skb = skb;
5725 }
5726 if (!buffer_info->dma) {
5727 buffer_info->dma = dma_map_single(rx_ring->dev,
5728 skb->data,
5729 bufsz,
5730 DMA_FROM_DEVICE);
5731 if (dma_mapping_error(rx_ring->dev,
5732 buffer_info->dma)) {
5733 buffer_info->dma = 0;
5734 rx_ring->rx_stats.alloc_failed++;
5735 goto no_buffers;
5736 }
5737 }
5738 /* Refresh the desc even if buffer_addrs didn't change because
5739 * each write-back erases this info. */
5740 if (bufsz < IGB_RXBUFFER_1024) {
5741 rx_desc->read.pkt_addr =
5742 cpu_to_le64(buffer_info->page_dma);
5743 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5744 } else {
5745 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5746 rx_desc->read.hdr_addr = 0;
5747 }
5748
5749 i++;
5750 if (i == rx_ring->count)
5751 i = 0;
5752 buffer_info = &rx_ring->buffer_info[i];
5753 }
5754
5755 no_buffers:
5756 if (rx_ring->next_to_use != i) {
5757 rx_ring->next_to_use = i;
5758 if (i == 0)
5759 i = (rx_ring->count - 1);
5760 else
5761 i--;
5762
5763 /* Force memory writes to complete before letting h/w
5764 * know there are new descriptors to fetch. (Only
5765 * applicable for weak-ordered memory model archs,
5766 * such as IA-64). */
5767 wmb();
5768 writel(i, rx_ring->tail);
5769 }
5770 }
5771
5772 /**
5773 * igb_mii_ioctl -
5774 * @netdev:
5775 * @ifreq:
5776 * @cmd:
5777 **/
5778 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5779 {
5780 struct igb_adapter *adapter = netdev_priv(netdev);
5781 struct mii_ioctl_data *data = if_mii(ifr);
5782
5783 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5784 return -EOPNOTSUPP;
5785
5786 switch (cmd) {
5787 case SIOCGMIIPHY:
5788 data->phy_id = adapter->hw.phy.addr;
5789 break;
5790 case SIOCGMIIREG:
5791 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5792 &data->val_out))
5793 return -EIO;
5794 break;
5795 case SIOCSMIIREG:
5796 default:
5797 return -EOPNOTSUPP;
5798 }
5799 return 0;
5800 }
5801
5802 /**
5803 * igb_hwtstamp_ioctl - control hardware time stamping
5804 * @netdev:
5805 * @ifreq:
5806 * @cmd:
5807 *
5808 * Outgoing time stamping can be enabled and disabled. Play nice and
5809 * disable it when requested, although it shouldn't case any overhead
5810 * when no packet needs it. At most one packet in the queue may be
5811 * marked for time stamping, otherwise it would be impossible to tell
5812 * for sure to which packet the hardware time stamp belongs.
5813 *
5814 * Incoming time stamping has to be configured via the hardware
5815 * filters. Not all combinations are supported, in particular event
5816 * type has to be specified. Matching the kind of event packet is
5817 * not supported, with the exception of "all V2 events regardless of
5818 * level 2 or 4".
5819 *
5820 **/
5821 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5822 struct ifreq *ifr, int cmd)
5823 {
5824 struct igb_adapter *adapter = netdev_priv(netdev);
5825 struct e1000_hw *hw = &adapter->hw;
5826 struct hwtstamp_config config;
5827 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5828 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5829 u32 tsync_rx_cfg = 0;
5830 bool is_l4 = false;
5831 bool is_l2 = false;
5832 u32 regval;
5833
5834 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5835 return -EFAULT;
5836
5837 /* reserved for future extensions */
5838 if (config.flags)
5839 return -EINVAL;
5840
5841 switch (config.tx_type) {
5842 case HWTSTAMP_TX_OFF:
5843 tsync_tx_ctl = 0;
5844 case HWTSTAMP_TX_ON:
5845 break;
5846 default:
5847 return -ERANGE;
5848 }
5849
5850 switch (config.rx_filter) {
5851 case HWTSTAMP_FILTER_NONE:
5852 tsync_rx_ctl = 0;
5853 break;
5854 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5855 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5856 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5857 case HWTSTAMP_FILTER_ALL:
5858 /*
5859 * register TSYNCRXCFG must be set, therefore it is not
5860 * possible to time stamp both Sync and Delay_Req messages
5861 * => fall back to time stamping all packets
5862 */
5863 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5864 config.rx_filter = HWTSTAMP_FILTER_ALL;
5865 break;
5866 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5867 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5868 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5869 is_l4 = true;
5870 break;
5871 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5872 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5873 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5874 is_l4 = true;
5875 break;
5876 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5877 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5878 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5879 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5880 is_l2 = true;
5881 is_l4 = true;
5882 config.rx_filter = HWTSTAMP_FILTER_SOME;
5883 break;
5884 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5885 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5886 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5887 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5888 is_l2 = true;
5889 is_l4 = true;
5890 config.rx_filter = HWTSTAMP_FILTER_SOME;
5891 break;
5892 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5893 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5894 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5895 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5896 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5897 is_l2 = true;
5898 break;
5899 default:
5900 return -ERANGE;
5901 }
5902
5903 if (hw->mac.type == e1000_82575) {
5904 if (tsync_rx_ctl | tsync_tx_ctl)
5905 return -EINVAL;
5906 return 0;
5907 }
5908
5909 /*
5910 * Per-packet timestamping only works if all packets are
5911 * timestamped, so enable timestamping in all packets as
5912 * long as one rx filter was configured.
5913 */
5914 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5915 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5916 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5917 }
5918
5919 /* enable/disable TX */
5920 regval = rd32(E1000_TSYNCTXCTL);
5921 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5922 regval |= tsync_tx_ctl;
5923 wr32(E1000_TSYNCTXCTL, regval);
5924
5925 /* enable/disable RX */
5926 regval = rd32(E1000_TSYNCRXCTL);
5927 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5928 regval |= tsync_rx_ctl;
5929 wr32(E1000_TSYNCRXCTL, regval);
5930
5931 /* define which PTP packets are time stamped */
5932 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5933
5934 /* define ethertype filter for timestamped packets */
5935 if (is_l2)
5936 wr32(E1000_ETQF(3),
5937 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5938 E1000_ETQF_1588 | /* enable timestamping */
5939 ETH_P_1588)); /* 1588 eth protocol type */
5940 else
5941 wr32(E1000_ETQF(3), 0);
5942
5943 #define PTP_PORT 319
5944 /* L4 Queue Filter[3]: filter by destination port and protocol */
5945 if (is_l4) {
5946 u32 ftqf = (IPPROTO_UDP /* UDP */
5947 | E1000_FTQF_VF_BP /* VF not compared */
5948 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5949 | E1000_FTQF_MASK); /* mask all inputs */
5950 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5951
5952 wr32(E1000_IMIR(3), htons(PTP_PORT));
5953 wr32(E1000_IMIREXT(3),
5954 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5955 if (hw->mac.type == e1000_82576) {
5956 /* enable source port check */
5957 wr32(E1000_SPQF(3), htons(PTP_PORT));
5958 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5959 }
5960 wr32(E1000_FTQF(3), ftqf);
5961 } else {
5962 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5963 }
5964 wrfl();
5965
5966 adapter->hwtstamp_config = config;
5967
5968 /* clear TX/RX time stamp registers, just to be sure */
5969 regval = rd32(E1000_TXSTMPH);
5970 regval = rd32(E1000_RXSTMPH);
5971
5972 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5973 -EFAULT : 0;
5974 }
5975
5976 /**
5977 * igb_ioctl -
5978 * @netdev:
5979 * @ifreq:
5980 * @cmd:
5981 **/
5982 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5983 {
5984 switch (cmd) {
5985 case SIOCGMIIPHY:
5986 case SIOCGMIIREG:
5987 case SIOCSMIIREG:
5988 return igb_mii_ioctl(netdev, ifr, cmd);
5989 case SIOCSHWTSTAMP:
5990 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5991 default:
5992 return -EOPNOTSUPP;
5993 }
5994 }
5995
5996 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5997 {
5998 struct igb_adapter *adapter = hw->back;
5999 u16 cap_offset;
6000
6001 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6002 if (!cap_offset)
6003 return -E1000_ERR_CONFIG;
6004
6005 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6006
6007 return 0;
6008 }
6009
6010 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6011 {
6012 struct igb_adapter *adapter = hw->back;
6013 u16 cap_offset;
6014
6015 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6016 if (!cap_offset)
6017 return -E1000_ERR_CONFIG;
6018
6019 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6020
6021 return 0;
6022 }
6023
6024 static void igb_vlan_rx_register(struct net_device *netdev,
6025 struct vlan_group *grp)
6026 {
6027 struct igb_adapter *adapter = netdev_priv(netdev);
6028 struct e1000_hw *hw = &adapter->hw;
6029 u32 ctrl, rctl;
6030
6031 igb_irq_disable(adapter);
6032 adapter->vlgrp = grp;
6033
6034 if (grp) {
6035 /* enable VLAN tag insert/strip */
6036 ctrl = rd32(E1000_CTRL);
6037 ctrl |= E1000_CTRL_VME;
6038 wr32(E1000_CTRL, ctrl);
6039
6040 /* Disable CFI check */
6041 rctl = rd32(E1000_RCTL);
6042 rctl &= ~E1000_RCTL_CFIEN;
6043 wr32(E1000_RCTL, rctl);
6044 } else {
6045 /* disable VLAN tag insert/strip */
6046 ctrl = rd32(E1000_CTRL);
6047 ctrl &= ~E1000_CTRL_VME;
6048 wr32(E1000_CTRL, ctrl);
6049 }
6050
6051 igb_rlpml_set(adapter);
6052
6053 if (!test_bit(__IGB_DOWN, &adapter->state))
6054 igb_irq_enable(adapter);
6055 }
6056
6057 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6058 {
6059 struct igb_adapter *adapter = netdev_priv(netdev);
6060 struct e1000_hw *hw = &adapter->hw;
6061 int pf_id = adapter->vfs_allocated_count;
6062
6063 /* attempt to add filter to vlvf array */
6064 igb_vlvf_set(adapter, vid, true, pf_id);
6065
6066 /* add the filter since PF can receive vlans w/o entry in vlvf */
6067 igb_vfta_set(hw, vid, true);
6068 }
6069
6070 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6071 {
6072 struct igb_adapter *adapter = netdev_priv(netdev);
6073 struct e1000_hw *hw = &adapter->hw;
6074 int pf_id = adapter->vfs_allocated_count;
6075 s32 err;
6076
6077 igb_irq_disable(adapter);
6078 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6079
6080 if (!test_bit(__IGB_DOWN, &adapter->state))
6081 igb_irq_enable(adapter);
6082
6083 /* remove vlan from VLVF table array */
6084 err = igb_vlvf_set(adapter, vid, false, pf_id);
6085
6086 /* if vid was not present in VLVF just remove it from table */
6087 if (err)
6088 igb_vfta_set(hw, vid, false);
6089 }
6090
6091 static void igb_restore_vlan(struct igb_adapter *adapter)
6092 {
6093 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6094
6095 if (adapter->vlgrp) {
6096 u16 vid;
6097 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
6098 if (!vlan_group_get_device(adapter->vlgrp, vid))
6099 continue;
6100 igb_vlan_rx_add_vid(adapter->netdev, vid);
6101 }
6102 }
6103 }
6104
6105 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6106 {
6107 struct pci_dev *pdev = adapter->pdev;
6108 struct e1000_mac_info *mac = &adapter->hw.mac;
6109
6110 mac->autoneg = 0;
6111
6112 switch (spddplx) {
6113 case SPEED_10 + DUPLEX_HALF:
6114 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6115 break;
6116 case SPEED_10 + DUPLEX_FULL:
6117 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6118 break;
6119 case SPEED_100 + DUPLEX_HALF:
6120 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6121 break;
6122 case SPEED_100 + DUPLEX_FULL:
6123 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6124 break;
6125 case SPEED_1000 + DUPLEX_FULL:
6126 mac->autoneg = 1;
6127 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6128 break;
6129 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6130 default:
6131 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6132 return -EINVAL;
6133 }
6134 return 0;
6135 }
6136
6137 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6138 {
6139 struct net_device *netdev = pci_get_drvdata(pdev);
6140 struct igb_adapter *adapter = netdev_priv(netdev);
6141 struct e1000_hw *hw = &adapter->hw;
6142 u32 ctrl, rctl, status;
6143 u32 wufc = adapter->wol;
6144 #ifdef CONFIG_PM
6145 int retval = 0;
6146 #endif
6147
6148 netif_device_detach(netdev);
6149
6150 if (netif_running(netdev))
6151 igb_close(netdev);
6152
6153 igb_clear_interrupt_scheme(adapter);
6154
6155 #ifdef CONFIG_PM
6156 retval = pci_save_state(pdev);
6157 if (retval)
6158 return retval;
6159 #endif
6160
6161 status = rd32(E1000_STATUS);
6162 if (status & E1000_STATUS_LU)
6163 wufc &= ~E1000_WUFC_LNKC;
6164
6165 if (wufc) {
6166 igb_setup_rctl(adapter);
6167 igb_set_rx_mode(netdev);
6168
6169 /* turn on all-multi mode if wake on multicast is enabled */
6170 if (wufc & E1000_WUFC_MC) {
6171 rctl = rd32(E1000_RCTL);
6172 rctl |= E1000_RCTL_MPE;
6173 wr32(E1000_RCTL, rctl);
6174 }
6175
6176 ctrl = rd32(E1000_CTRL);
6177 /* advertise wake from D3Cold */
6178 #define E1000_CTRL_ADVD3WUC 0x00100000
6179 /* phy power management enable */
6180 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6181 ctrl |= E1000_CTRL_ADVD3WUC;
6182 wr32(E1000_CTRL, ctrl);
6183
6184 /* Allow time for pending master requests to run */
6185 igb_disable_pcie_master(hw);
6186
6187 wr32(E1000_WUC, E1000_WUC_PME_EN);
6188 wr32(E1000_WUFC, wufc);
6189 } else {
6190 wr32(E1000_WUC, 0);
6191 wr32(E1000_WUFC, 0);
6192 }
6193
6194 *enable_wake = wufc || adapter->en_mng_pt;
6195 if (!*enable_wake)
6196 igb_power_down_link(adapter);
6197 else
6198 igb_power_up_link(adapter);
6199
6200 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6201 * would have already happened in close and is redundant. */
6202 igb_release_hw_control(adapter);
6203
6204 pci_disable_device(pdev);
6205
6206 return 0;
6207 }
6208
6209 #ifdef CONFIG_PM
6210 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6211 {
6212 int retval;
6213 bool wake;
6214
6215 retval = __igb_shutdown(pdev, &wake);
6216 if (retval)
6217 return retval;
6218
6219 if (wake) {
6220 pci_prepare_to_sleep(pdev);
6221 } else {
6222 pci_wake_from_d3(pdev, false);
6223 pci_set_power_state(pdev, PCI_D3hot);
6224 }
6225
6226 return 0;
6227 }
6228
6229 static int igb_resume(struct pci_dev *pdev)
6230 {
6231 struct net_device *netdev = pci_get_drvdata(pdev);
6232 struct igb_adapter *adapter = netdev_priv(netdev);
6233 struct e1000_hw *hw = &adapter->hw;
6234 u32 err;
6235
6236 pci_set_power_state(pdev, PCI_D0);
6237 pci_restore_state(pdev);
6238 pci_save_state(pdev);
6239
6240 err = pci_enable_device_mem(pdev);
6241 if (err) {
6242 dev_err(&pdev->dev,
6243 "igb: Cannot enable PCI device from suspend\n");
6244 return err;
6245 }
6246 pci_set_master(pdev);
6247
6248 pci_enable_wake(pdev, PCI_D3hot, 0);
6249 pci_enable_wake(pdev, PCI_D3cold, 0);
6250
6251 if (igb_init_interrupt_scheme(adapter)) {
6252 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6253 return -ENOMEM;
6254 }
6255
6256 igb_reset(adapter);
6257
6258 /* let the f/w know that the h/w is now under the control of the
6259 * driver. */
6260 igb_get_hw_control(adapter);
6261
6262 wr32(E1000_WUS, ~0);
6263
6264 if (netif_running(netdev)) {
6265 err = igb_open(netdev);
6266 if (err)
6267 return err;
6268 }
6269
6270 netif_device_attach(netdev);
6271
6272 return 0;
6273 }
6274 #endif
6275
6276 static void igb_shutdown(struct pci_dev *pdev)
6277 {
6278 bool wake;
6279
6280 __igb_shutdown(pdev, &wake);
6281
6282 if (system_state == SYSTEM_POWER_OFF) {
6283 pci_wake_from_d3(pdev, wake);
6284 pci_set_power_state(pdev, PCI_D3hot);
6285 }
6286 }
6287
6288 #ifdef CONFIG_NET_POLL_CONTROLLER
6289 /*
6290 * Polling 'interrupt' - used by things like netconsole to send skbs
6291 * without having to re-enable interrupts. It's not called while
6292 * the interrupt routine is executing.
6293 */
6294 static void igb_netpoll(struct net_device *netdev)
6295 {
6296 struct igb_adapter *adapter = netdev_priv(netdev);
6297 struct e1000_hw *hw = &adapter->hw;
6298 int i;
6299
6300 if (!adapter->msix_entries) {
6301 struct igb_q_vector *q_vector = adapter->q_vector[0];
6302 igb_irq_disable(adapter);
6303 napi_schedule(&q_vector->napi);
6304 return;
6305 }
6306
6307 for (i = 0; i < adapter->num_q_vectors; i++) {
6308 struct igb_q_vector *q_vector = adapter->q_vector[i];
6309 wr32(E1000_EIMC, q_vector->eims_value);
6310 napi_schedule(&q_vector->napi);
6311 }
6312 }
6313 #endif /* CONFIG_NET_POLL_CONTROLLER */
6314
6315 /**
6316 * igb_io_error_detected - called when PCI error is detected
6317 * @pdev: Pointer to PCI device
6318 * @state: The current pci connection state
6319 *
6320 * This function is called after a PCI bus error affecting
6321 * this device has been detected.
6322 */
6323 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6324 pci_channel_state_t state)
6325 {
6326 struct net_device *netdev = pci_get_drvdata(pdev);
6327 struct igb_adapter *adapter = netdev_priv(netdev);
6328
6329 netif_device_detach(netdev);
6330
6331 if (state == pci_channel_io_perm_failure)
6332 return PCI_ERS_RESULT_DISCONNECT;
6333
6334 if (netif_running(netdev))
6335 igb_down(adapter);
6336 pci_disable_device(pdev);
6337
6338 /* Request a slot slot reset. */
6339 return PCI_ERS_RESULT_NEED_RESET;
6340 }
6341
6342 /**
6343 * igb_io_slot_reset - called after the pci bus has been reset.
6344 * @pdev: Pointer to PCI device
6345 *
6346 * Restart the card from scratch, as if from a cold-boot. Implementation
6347 * resembles the first-half of the igb_resume routine.
6348 */
6349 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6350 {
6351 struct net_device *netdev = pci_get_drvdata(pdev);
6352 struct igb_adapter *adapter = netdev_priv(netdev);
6353 struct e1000_hw *hw = &adapter->hw;
6354 pci_ers_result_t result;
6355 int err;
6356
6357 if (pci_enable_device_mem(pdev)) {
6358 dev_err(&pdev->dev,
6359 "Cannot re-enable PCI device after reset.\n");
6360 result = PCI_ERS_RESULT_DISCONNECT;
6361 } else {
6362 pci_set_master(pdev);
6363 pci_restore_state(pdev);
6364 pci_save_state(pdev);
6365
6366 pci_enable_wake(pdev, PCI_D3hot, 0);
6367 pci_enable_wake(pdev, PCI_D3cold, 0);
6368
6369 igb_reset(adapter);
6370 wr32(E1000_WUS, ~0);
6371 result = PCI_ERS_RESULT_RECOVERED;
6372 }
6373
6374 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6375 if (err) {
6376 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6377 "failed 0x%0x\n", err);
6378 /* non-fatal, continue */
6379 }
6380
6381 return result;
6382 }
6383
6384 /**
6385 * igb_io_resume - called when traffic can start flowing again.
6386 * @pdev: Pointer to PCI device
6387 *
6388 * This callback is called when the error recovery driver tells us that
6389 * its OK to resume normal operation. Implementation resembles the
6390 * second-half of the igb_resume routine.
6391 */
6392 static void igb_io_resume(struct pci_dev *pdev)
6393 {
6394 struct net_device *netdev = pci_get_drvdata(pdev);
6395 struct igb_adapter *adapter = netdev_priv(netdev);
6396
6397 if (netif_running(netdev)) {
6398 if (igb_up(adapter)) {
6399 dev_err(&pdev->dev, "igb_up failed after reset\n");
6400 return;
6401 }
6402 }
6403
6404 netif_device_attach(netdev);
6405
6406 /* let the f/w know that the h/w is now under the control of the
6407 * driver. */
6408 igb_get_hw_control(adapter);
6409 }
6410
6411 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6412 u8 qsel)
6413 {
6414 u32 rar_low, rar_high;
6415 struct e1000_hw *hw = &adapter->hw;
6416
6417 /* HW expects these in little endian so we reverse the byte order
6418 * from network order (big endian) to little endian
6419 */
6420 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6421 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6422 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6423
6424 /* Indicate to hardware the Address is Valid. */
6425 rar_high |= E1000_RAH_AV;
6426
6427 if (hw->mac.type == e1000_82575)
6428 rar_high |= E1000_RAH_POOL_1 * qsel;
6429 else
6430 rar_high |= E1000_RAH_POOL_1 << qsel;
6431
6432 wr32(E1000_RAL(index), rar_low);
6433 wrfl();
6434 wr32(E1000_RAH(index), rar_high);
6435 wrfl();
6436 }
6437
6438 static int igb_set_vf_mac(struct igb_adapter *adapter,
6439 int vf, unsigned char *mac_addr)
6440 {
6441 struct e1000_hw *hw = &adapter->hw;
6442 /* VF MAC addresses start at end of receive addresses and moves
6443 * torwards the first, as a result a collision should not be possible */
6444 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6445
6446 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6447
6448 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6449
6450 return 0;
6451 }
6452
6453 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6454 {
6455 struct igb_adapter *adapter = netdev_priv(netdev);
6456 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6457 return -EINVAL;
6458 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6459 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6460 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6461 " change effective.");
6462 if (test_bit(__IGB_DOWN, &adapter->state)) {
6463 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6464 " but the PF device is not up.\n");
6465 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6466 " attempting to use the VF device.\n");
6467 }
6468 return igb_set_vf_mac(adapter, vf, mac);
6469 }
6470
6471 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6472 {
6473 return -EOPNOTSUPP;
6474 }
6475
6476 static int igb_ndo_get_vf_config(struct net_device *netdev,
6477 int vf, struct ifla_vf_info *ivi)
6478 {
6479 struct igb_adapter *adapter = netdev_priv(netdev);
6480 if (vf >= adapter->vfs_allocated_count)
6481 return -EINVAL;
6482 ivi->vf = vf;
6483 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6484 ivi->tx_rate = 0;
6485 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6486 ivi->qos = adapter->vf_data[vf].pf_qos;
6487 return 0;
6488 }
6489
6490 static void igb_vmm_control(struct igb_adapter *adapter)
6491 {
6492 struct e1000_hw *hw = &adapter->hw;
6493 u32 reg;
6494
6495 switch (hw->mac.type) {
6496 case e1000_82575:
6497 default:
6498 /* replication is not supported for 82575 */
6499 return;
6500 case e1000_82576:
6501 /* notify HW that the MAC is adding vlan tags */
6502 reg = rd32(E1000_DTXCTL);
6503 reg |= E1000_DTXCTL_VLAN_ADDED;
6504 wr32(E1000_DTXCTL, reg);
6505 case e1000_82580:
6506 /* enable replication vlan tag stripping */
6507 reg = rd32(E1000_RPLOLR);
6508 reg |= E1000_RPLOLR_STRVLAN;
6509 wr32(E1000_RPLOLR, reg);
6510 case e1000_i350:
6511 /* none of the above registers are supported by i350 */
6512 break;
6513 }
6514
6515 if (adapter->vfs_allocated_count) {
6516 igb_vmdq_set_loopback_pf(hw, true);
6517 igb_vmdq_set_replication_pf(hw, true);
6518 } else {
6519 igb_vmdq_set_loopback_pf(hw, false);
6520 igb_vmdq_set_replication_pf(hw, false);
6521 }
6522 }
6523
6524 /* igb_main.c */
This page took 0.161721 seconds and 6 git commands to generate.