Merge branches 'core/iommu', 'x86/amd-iommu' and 'x86/iommu' into x86-v28-for-linus...
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44 #ifdef CONFIG_DCA
45 #include <linux/dca.h>
46 #endif
47 #include "igb.h"
48
49 #define DRV_VERSION "1.2.45-k2"
50 char igb_driver_name[] = "igb";
51 char igb_driver_version[] = DRV_VERSION;
52 static const char igb_driver_string[] =
53 "Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
55
56 static const struct e1000_info *igb_info_tbl[] = {
57 [board_82575] = &e1000_82575_info,
58 };
59
60 static struct pci_device_id igb_pci_tbl[] = {
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
67 /* required last entry */
68 {0, }
69 };
70
71 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
72
73 void igb_reset(struct igb_adapter *);
74 static int igb_setup_all_tx_resources(struct igb_adapter *);
75 static int igb_setup_all_rx_resources(struct igb_adapter *);
76 static void igb_free_all_tx_resources(struct igb_adapter *);
77 static void igb_free_all_rx_resources(struct igb_adapter *);
78 static void igb_free_tx_resources(struct igb_ring *);
79 static void igb_free_rx_resources(struct igb_ring *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
120 #endif
121 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
122 static void igb_tx_timeout(struct net_device *);
123 static void igb_reset_task(struct work_struct *);
124 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
125 static void igb_vlan_rx_add_vid(struct net_device *, u16);
126 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
127 static void igb_restore_vlan(struct igb_adapter *);
128
129 static int igb_suspend(struct pci_dev *, pm_message_t);
130 #ifdef CONFIG_PM
131 static int igb_resume(struct pci_dev *);
132 #endif
133 static void igb_shutdown(struct pci_dev *);
134 #ifdef CONFIG_DCA
135 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
136 static struct notifier_block dca_notifier = {
137 .notifier_call = igb_notify_dca,
138 .next = NULL,
139 .priority = 0
140 };
141 #endif
142
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device *);
146 #endif
147
148 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
149 pci_channel_state_t);
150 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
151 static void igb_io_resume(struct pci_dev *);
152
153 static struct pci_error_handlers igb_err_handler = {
154 .error_detected = igb_io_error_detected,
155 .slot_reset = igb_io_slot_reset,
156 .resume = igb_io_resume,
157 };
158
159
160 static struct pci_driver igb_driver = {
161 .name = igb_driver_name,
162 .id_table = igb_pci_tbl,
163 .probe = igb_probe,
164 .remove = __devexit_p(igb_remove),
165 #ifdef CONFIG_PM
166 /* Power Managment Hooks */
167 .suspend = igb_suspend,
168 .resume = igb_resume,
169 #endif
170 .shutdown = igb_shutdown,
171 .err_handler = &igb_err_handler
172 };
173
174 static int global_quad_port_a; /* global quad port a indication */
175
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION);
180
181 #ifdef DEBUG
182 /**
183 * igb_get_hw_dev_name - return device name string
184 * used by hardware layer to print debugging information
185 **/
186 char *igb_get_hw_dev_name(struct e1000_hw *hw)
187 {
188 struct igb_adapter *adapter = hw->back;
189 return adapter->netdev->name;
190 }
191 #endif
192
193 /**
194 * igb_init_module - Driver Registration Routine
195 *
196 * igb_init_module is the first routine called when the driver is
197 * loaded. All it does is register with the PCI subsystem.
198 **/
199 static int __init igb_init_module(void)
200 {
201 int ret;
202 printk(KERN_INFO "%s - version %s\n",
203 igb_driver_string, igb_driver_version);
204
205 printk(KERN_INFO "%s\n", igb_copyright);
206
207 global_quad_port_a = 0;
208
209 ret = pci_register_driver(&igb_driver);
210 #ifdef CONFIG_DCA
211 dca_register_notify(&dca_notifier);
212 #endif
213 return ret;
214 }
215
216 module_init(igb_init_module);
217
218 /**
219 * igb_exit_module - Driver Exit Cleanup Routine
220 *
221 * igb_exit_module is called just before the driver is removed
222 * from memory.
223 **/
224 static void __exit igb_exit_module(void)
225 {
226 #ifdef CONFIG_DCA
227 dca_unregister_notify(&dca_notifier);
228 #endif
229 pci_unregister_driver(&igb_driver);
230 }
231
232 module_exit(igb_exit_module);
233
234 /**
235 * igb_alloc_queues - Allocate memory for all rings
236 * @adapter: board private structure to initialize
237 *
238 * We allocate one ring per queue at run-time since we don't know the
239 * number of queues at compile-time.
240 **/
241 static int igb_alloc_queues(struct igb_adapter *adapter)
242 {
243 int i;
244
245 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
246 sizeof(struct igb_ring), GFP_KERNEL);
247 if (!adapter->tx_ring)
248 return -ENOMEM;
249
250 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
251 sizeof(struct igb_ring), GFP_KERNEL);
252 if (!adapter->rx_ring) {
253 kfree(adapter->tx_ring);
254 return -ENOMEM;
255 }
256
257 adapter->rx_ring->buddy = adapter->tx_ring;
258
259 for (i = 0; i < adapter->num_tx_queues; i++) {
260 struct igb_ring *ring = &(adapter->tx_ring[i]);
261 ring->adapter = adapter;
262 ring->queue_index = i;
263 }
264 for (i = 0; i < adapter->num_rx_queues; i++) {
265 struct igb_ring *ring = &(adapter->rx_ring[i]);
266 ring->adapter = adapter;
267 ring->queue_index = i;
268 ring->itr_register = E1000_ITR;
269
270 /* set a default napi handler for each rx_ring */
271 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
272 }
273 return 0;
274 }
275
276 static void igb_free_queues(struct igb_adapter *adapter)
277 {
278 int i;
279
280 for (i = 0; i < adapter->num_rx_queues; i++)
281 netif_napi_del(&adapter->rx_ring[i].napi);
282
283 kfree(adapter->tx_ring);
284 kfree(adapter->rx_ring);
285 }
286
287 #define IGB_N0_QUEUE -1
288 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
289 int tx_queue, int msix_vector)
290 {
291 u32 msixbm = 0;
292 struct e1000_hw *hw = &adapter->hw;
293 u32 ivar, index;
294
295 switch (hw->mac.type) {
296 case e1000_82575:
297 /* The 82575 assigns vectors using a bitmask, which matches the
298 bitmask for the EICR/EIMS/EIMC registers. To assign one
299 or more queues to a vector, we write the appropriate bits
300 into the MSIXBM register for that vector. */
301 if (rx_queue > IGB_N0_QUEUE) {
302 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
303 adapter->rx_ring[rx_queue].eims_value = msixbm;
304 }
305 if (tx_queue > IGB_N0_QUEUE) {
306 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
307 adapter->tx_ring[tx_queue].eims_value =
308 E1000_EICR_TX_QUEUE0 << tx_queue;
309 }
310 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
311 break;
312 case e1000_82576:
313 /* The 82576 uses a table-based method for assigning vectors.
314 Each queue has a single entry in the table to which we write
315 a vector number along with a "valid" bit. Sadly, the layout
316 of the table is somewhat counterintuitive. */
317 if (rx_queue > IGB_N0_QUEUE) {
318 index = (rx_queue & 0x7);
319 ivar = array_rd32(E1000_IVAR0, index);
320 if (rx_queue < 8) {
321 /* vector goes into low byte of register */
322 ivar = ivar & 0xFFFFFF00;
323 ivar |= msix_vector | E1000_IVAR_VALID;
324 } else {
325 /* vector goes into third byte of register */
326 ivar = ivar & 0xFF00FFFF;
327 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
328 }
329 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
330 array_wr32(E1000_IVAR0, index, ivar);
331 }
332 if (tx_queue > IGB_N0_QUEUE) {
333 index = (tx_queue & 0x7);
334 ivar = array_rd32(E1000_IVAR0, index);
335 if (tx_queue < 8) {
336 /* vector goes into second byte of register */
337 ivar = ivar & 0xFFFF00FF;
338 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
339 } else {
340 /* vector goes into high byte of register */
341 ivar = ivar & 0x00FFFFFF;
342 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
343 }
344 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
345 array_wr32(E1000_IVAR0, index, ivar);
346 }
347 break;
348 default:
349 BUG();
350 break;
351 }
352 }
353
354 /**
355 * igb_configure_msix - Configure MSI-X hardware
356 *
357 * igb_configure_msix sets up the hardware to properly
358 * generate MSI-X interrupts.
359 **/
360 static void igb_configure_msix(struct igb_adapter *adapter)
361 {
362 u32 tmp;
363 int i, vector = 0;
364 struct e1000_hw *hw = &adapter->hw;
365
366 adapter->eims_enable_mask = 0;
367 if (hw->mac.type == e1000_82576)
368 /* Turn on MSI-X capability first, or our settings
369 * won't stick. And it will take days to debug. */
370 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
371 E1000_GPIE_PBA | E1000_GPIE_EIAME |
372 E1000_GPIE_NSICR);
373
374 for (i = 0; i < adapter->num_tx_queues; i++) {
375 struct igb_ring *tx_ring = &adapter->tx_ring[i];
376 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
377 adapter->eims_enable_mask |= tx_ring->eims_value;
378 if (tx_ring->itr_val)
379 writel(tx_ring->itr_val,
380 hw->hw_addr + tx_ring->itr_register);
381 else
382 writel(1, hw->hw_addr + tx_ring->itr_register);
383 }
384
385 for (i = 0; i < adapter->num_rx_queues; i++) {
386 struct igb_ring *rx_ring = &adapter->rx_ring[i];
387 rx_ring->buddy = NULL;
388 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
389 adapter->eims_enable_mask |= rx_ring->eims_value;
390 if (rx_ring->itr_val)
391 writel(rx_ring->itr_val,
392 hw->hw_addr + rx_ring->itr_register);
393 else
394 writel(1, hw->hw_addr + rx_ring->itr_register);
395 }
396
397
398 /* set vector for other causes, i.e. link changes */
399 switch (hw->mac.type) {
400 case e1000_82575:
401 array_wr32(E1000_MSIXBM(0), vector++,
402 E1000_EIMS_OTHER);
403
404 tmp = rd32(E1000_CTRL_EXT);
405 /* enable MSI-X PBA support*/
406 tmp |= E1000_CTRL_EXT_PBA_CLR;
407
408 /* Auto-Mask interrupts upon ICR read. */
409 tmp |= E1000_CTRL_EXT_EIAME;
410 tmp |= E1000_CTRL_EXT_IRCA;
411
412 wr32(E1000_CTRL_EXT, tmp);
413 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
414 adapter->eims_other = E1000_EIMS_OTHER;
415
416 break;
417
418 case e1000_82576:
419 tmp = (vector++ | E1000_IVAR_VALID) << 8;
420 wr32(E1000_IVAR_MISC, tmp);
421
422 adapter->eims_enable_mask = (1 << (vector)) - 1;
423 adapter->eims_other = 1 << (vector - 1);
424 break;
425 default:
426 /* do nothing, since nothing else supports MSI-X */
427 break;
428 } /* switch (hw->mac.type) */
429 wrfl();
430 }
431
432 /**
433 * igb_request_msix - Initialize MSI-X interrupts
434 *
435 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
436 * kernel.
437 **/
438 static int igb_request_msix(struct igb_adapter *adapter)
439 {
440 struct net_device *netdev = adapter->netdev;
441 int i, err = 0, vector = 0;
442
443 vector = 0;
444
445 for (i = 0; i < adapter->num_tx_queues; i++) {
446 struct igb_ring *ring = &(adapter->tx_ring[i]);
447 sprintf(ring->name, "%s-tx%d", netdev->name, i);
448 err = request_irq(adapter->msix_entries[vector].vector,
449 &igb_msix_tx, 0, ring->name,
450 &(adapter->tx_ring[i]));
451 if (err)
452 goto out;
453 ring->itr_register = E1000_EITR(0) + (vector << 2);
454 ring->itr_val = 976; /* ~4000 ints/sec */
455 vector++;
456 }
457 for (i = 0; i < adapter->num_rx_queues; i++) {
458 struct igb_ring *ring = &(adapter->rx_ring[i]);
459 if (strlen(netdev->name) < (IFNAMSIZ - 5))
460 sprintf(ring->name, "%s-rx%d", netdev->name, i);
461 else
462 memcpy(ring->name, netdev->name, IFNAMSIZ);
463 err = request_irq(adapter->msix_entries[vector].vector,
464 &igb_msix_rx, 0, ring->name,
465 &(adapter->rx_ring[i]));
466 if (err)
467 goto out;
468 ring->itr_register = E1000_EITR(0) + (vector << 2);
469 ring->itr_val = adapter->itr;
470 /* overwrite the poll routine for MSIX, we've already done
471 * netif_napi_add */
472 ring->napi.poll = &igb_clean_rx_ring_msix;
473 vector++;
474 }
475
476 err = request_irq(adapter->msix_entries[vector].vector,
477 &igb_msix_other, 0, netdev->name, netdev);
478 if (err)
479 goto out;
480
481 igb_configure_msix(adapter);
482 return 0;
483 out:
484 return err;
485 }
486
487 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
488 {
489 if (adapter->msix_entries) {
490 pci_disable_msix(adapter->pdev);
491 kfree(adapter->msix_entries);
492 adapter->msix_entries = NULL;
493 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
494 pci_disable_msi(adapter->pdev);
495 return;
496 }
497
498
499 /**
500 * igb_set_interrupt_capability - set MSI or MSI-X if supported
501 *
502 * Attempt to configure interrupts using the best available
503 * capabilities of the hardware and kernel.
504 **/
505 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
506 {
507 int err;
508 int numvecs, i;
509
510 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
511 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
512 GFP_KERNEL);
513 if (!adapter->msix_entries)
514 goto msi_only;
515
516 for (i = 0; i < numvecs; i++)
517 adapter->msix_entries[i].entry = i;
518
519 err = pci_enable_msix(adapter->pdev,
520 adapter->msix_entries,
521 numvecs);
522 if (err == 0)
523 goto out;
524
525 igb_reset_interrupt_capability(adapter);
526
527 /* If we can't do MSI-X, try MSI */
528 msi_only:
529 adapter->num_rx_queues = 1;
530 adapter->num_tx_queues = 1;
531 if (!pci_enable_msi(adapter->pdev))
532 adapter->flags |= IGB_FLAG_HAS_MSI;
533 out:
534 /* Notify the stack of the (possibly) reduced Tx Queue count. */
535 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
536 return;
537 }
538
539 /**
540 * igb_request_irq - initialize interrupts
541 *
542 * Attempts to configure interrupts using the best available
543 * capabilities of the hardware and kernel.
544 **/
545 static int igb_request_irq(struct igb_adapter *adapter)
546 {
547 struct net_device *netdev = adapter->netdev;
548 struct e1000_hw *hw = &adapter->hw;
549 int err = 0;
550
551 if (adapter->msix_entries) {
552 err = igb_request_msix(adapter);
553 if (!err)
554 goto request_done;
555 /* fall back to MSI */
556 igb_reset_interrupt_capability(adapter);
557 if (!pci_enable_msi(adapter->pdev))
558 adapter->flags |= IGB_FLAG_HAS_MSI;
559 igb_free_all_tx_resources(adapter);
560 igb_free_all_rx_resources(adapter);
561 adapter->num_rx_queues = 1;
562 igb_alloc_queues(adapter);
563 } else {
564 switch (hw->mac.type) {
565 case e1000_82575:
566 wr32(E1000_MSIXBM(0),
567 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
568 break;
569 case e1000_82576:
570 wr32(E1000_IVAR0, E1000_IVAR_VALID);
571 break;
572 default:
573 break;
574 }
575 }
576
577 if (adapter->flags & IGB_FLAG_HAS_MSI) {
578 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
579 netdev->name, netdev);
580 if (!err)
581 goto request_done;
582 /* fall back to legacy interrupts */
583 igb_reset_interrupt_capability(adapter);
584 adapter->flags &= ~IGB_FLAG_HAS_MSI;
585 }
586
587 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
588 netdev->name, netdev);
589
590 if (err)
591 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
592 err);
593
594 request_done:
595 return err;
596 }
597
598 static void igb_free_irq(struct igb_adapter *adapter)
599 {
600 struct net_device *netdev = adapter->netdev;
601
602 if (adapter->msix_entries) {
603 int vector = 0, i;
604
605 for (i = 0; i < adapter->num_tx_queues; i++)
606 free_irq(adapter->msix_entries[vector++].vector,
607 &(adapter->tx_ring[i]));
608 for (i = 0; i < adapter->num_rx_queues; i++)
609 free_irq(adapter->msix_entries[vector++].vector,
610 &(adapter->rx_ring[i]));
611
612 free_irq(adapter->msix_entries[vector++].vector, netdev);
613 return;
614 }
615
616 free_irq(adapter->pdev->irq, netdev);
617 }
618
619 /**
620 * igb_irq_disable - Mask off interrupt generation on the NIC
621 * @adapter: board private structure
622 **/
623 static void igb_irq_disable(struct igb_adapter *adapter)
624 {
625 struct e1000_hw *hw = &adapter->hw;
626
627 if (adapter->msix_entries) {
628 wr32(E1000_EIAM, 0);
629 wr32(E1000_EIMC, ~0);
630 wr32(E1000_EIAC, 0);
631 }
632
633 wr32(E1000_IAM, 0);
634 wr32(E1000_IMC, ~0);
635 wrfl();
636 synchronize_irq(adapter->pdev->irq);
637 }
638
639 /**
640 * igb_irq_enable - Enable default interrupt generation settings
641 * @adapter: board private structure
642 **/
643 static void igb_irq_enable(struct igb_adapter *adapter)
644 {
645 struct e1000_hw *hw = &adapter->hw;
646
647 if (adapter->msix_entries) {
648 wr32(E1000_EIAC, adapter->eims_enable_mask);
649 wr32(E1000_EIAM, adapter->eims_enable_mask);
650 wr32(E1000_EIMS, adapter->eims_enable_mask);
651 wr32(E1000_IMS, E1000_IMS_LSC);
652 } else {
653 wr32(E1000_IMS, IMS_ENABLE_MASK);
654 wr32(E1000_IAM, IMS_ENABLE_MASK);
655 }
656 }
657
658 static void igb_update_mng_vlan(struct igb_adapter *adapter)
659 {
660 struct net_device *netdev = adapter->netdev;
661 u16 vid = adapter->hw.mng_cookie.vlan_id;
662 u16 old_vid = adapter->mng_vlan_id;
663 if (adapter->vlgrp) {
664 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
665 if (adapter->hw.mng_cookie.status &
666 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
667 igb_vlan_rx_add_vid(netdev, vid);
668 adapter->mng_vlan_id = vid;
669 } else
670 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
671
672 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
673 (vid != old_vid) &&
674 !vlan_group_get_device(adapter->vlgrp, old_vid))
675 igb_vlan_rx_kill_vid(netdev, old_vid);
676 } else
677 adapter->mng_vlan_id = vid;
678 }
679 }
680
681 /**
682 * igb_release_hw_control - release control of the h/w to f/w
683 * @adapter: address of board private structure
684 *
685 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
686 * For ASF and Pass Through versions of f/w this means that the
687 * driver is no longer loaded.
688 *
689 **/
690 static void igb_release_hw_control(struct igb_adapter *adapter)
691 {
692 struct e1000_hw *hw = &adapter->hw;
693 u32 ctrl_ext;
694
695 /* Let firmware take over control of h/w */
696 ctrl_ext = rd32(E1000_CTRL_EXT);
697 wr32(E1000_CTRL_EXT,
698 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
699 }
700
701
702 /**
703 * igb_get_hw_control - get control of the h/w from f/w
704 * @adapter: address of board private structure
705 *
706 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
707 * For ASF and Pass Through versions of f/w this means that
708 * the driver is loaded.
709 *
710 **/
711 static void igb_get_hw_control(struct igb_adapter *adapter)
712 {
713 struct e1000_hw *hw = &adapter->hw;
714 u32 ctrl_ext;
715
716 /* Let firmware know the driver has taken over */
717 ctrl_ext = rd32(E1000_CTRL_EXT);
718 wr32(E1000_CTRL_EXT,
719 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
720 }
721
722 /**
723 * igb_configure - configure the hardware for RX and TX
724 * @adapter: private board structure
725 **/
726 static void igb_configure(struct igb_adapter *adapter)
727 {
728 struct net_device *netdev = adapter->netdev;
729 int i;
730
731 igb_get_hw_control(adapter);
732 igb_set_multi(netdev);
733
734 igb_restore_vlan(adapter);
735
736 igb_configure_tx(adapter);
737 igb_setup_rctl(adapter);
738 igb_configure_rx(adapter);
739
740 igb_rx_fifo_flush_82575(&adapter->hw);
741
742 /* call IGB_DESC_UNUSED which always leaves
743 * at least 1 descriptor unused to make sure
744 * next_to_use != next_to_clean */
745 for (i = 0; i < adapter->num_rx_queues; i++) {
746 struct igb_ring *ring = &adapter->rx_ring[i];
747 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
748 }
749
750
751 adapter->tx_queue_len = netdev->tx_queue_len;
752 }
753
754
755 /**
756 * igb_up - Open the interface and prepare it to handle traffic
757 * @adapter: board private structure
758 **/
759
760 int igb_up(struct igb_adapter *adapter)
761 {
762 struct e1000_hw *hw = &adapter->hw;
763 int i;
764
765 /* hardware has been reset, we need to reload some things */
766 igb_configure(adapter);
767
768 clear_bit(__IGB_DOWN, &adapter->state);
769
770 for (i = 0; i < adapter->num_rx_queues; i++)
771 napi_enable(&adapter->rx_ring[i].napi);
772 if (adapter->msix_entries)
773 igb_configure_msix(adapter);
774
775 /* Clear any pending interrupts. */
776 rd32(E1000_ICR);
777 igb_irq_enable(adapter);
778
779 /* Fire a link change interrupt to start the watchdog. */
780 wr32(E1000_ICS, E1000_ICS_LSC);
781 return 0;
782 }
783
784 void igb_down(struct igb_adapter *adapter)
785 {
786 struct e1000_hw *hw = &adapter->hw;
787 struct net_device *netdev = adapter->netdev;
788 u32 tctl, rctl;
789 int i;
790
791 /* signal that we're down so the interrupt handler does not
792 * reschedule our watchdog timer */
793 set_bit(__IGB_DOWN, &adapter->state);
794
795 /* disable receives in the hardware */
796 rctl = rd32(E1000_RCTL);
797 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
798 /* flush and sleep below */
799
800 netif_tx_stop_all_queues(netdev);
801
802 /* disable transmits in the hardware */
803 tctl = rd32(E1000_TCTL);
804 tctl &= ~E1000_TCTL_EN;
805 wr32(E1000_TCTL, tctl);
806 /* flush both disables and wait for them to finish */
807 wrfl();
808 msleep(10);
809
810 for (i = 0; i < adapter->num_rx_queues; i++)
811 napi_disable(&adapter->rx_ring[i].napi);
812
813 igb_irq_disable(adapter);
814
815 del_timer_sync(&adapter->watchdog_timer);
816 del_timer_sync(&adapter->phy_info_timer);
817
818 netdev->tx_queue_len = adapter->tx_queue_len;
819 netif_carrier_off(netdev);
820 adapter->link_speed = 0;
821 adapter->link_duplex = 0;
822
823 if (!pci_channel_offline(adapter->pdev))
824 igb_reset(adapter);
825 igb_clean_all_tx_rings(adapter);
826 igb_clean_all_rx_rings(adapter);
827 }
828
829 void igb_reinit_locked(struct igb_adapter *adapter)
830 {
831 WARN_ON(in_interrupt());
832 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
833 msleep(1);
834 igb_down(adapter);
835 igb_up(adapter);
836 clear_bit(__IGB_RESETTING, &adapter->state);
837 }
838
839 void igb_reset(struct igb_adapter *adapter)
840 {
841 struct e1000_hw *hw = &adapter->hw;
842 struct e1000_mac_info *mac = &hw->mac;
843 struct e1000_fc_info *fc = &hw->fc;
844 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
845 u16 hwm;
846
847 /* Repartition Pba for greater than 9k mtu
848 * To take effect CTRL.RST is required.
849 */
850 if (mac->type != e1000_82576) {
851 pba = E1000_PBA_34K;
852 }
853 else {
854 pba = E1000_PBA_64K;
855 }
856
857 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
858 (mac->type < e1000_82576)) {
859 /* adjust PBA for jumbo frames */
860 wr32(E1000_PBA, pba);
861
862 /* To maintain wire speed transmits, the Tx FIFO should be
863 * large enough to accommodate two full transmit packets,
864 * rounded up to the next 1KB and expressed in KB. Likewise,
865 * the Rx FIFO should be large enough to accommodate at least
866 * one full receive packet and is similarly rounded up and
867 * expressed in KB. */
868 pba = rd32(E1000_PBA);
869 /* upper 16 bits has Tx packet buffer allocation size in KB */
870 tx_space = pba >> 16;
871 /* lower 16 bits has Rx packet buffer allocation size in KB */
872 pba &= 0xffff;
873 /* the tx fifo also stores 16 bytes of information about the tx
874 * but don't include ethernet FCS because hardware appends it */
875 min_tx_space = (adapter->max_frame_size +
876 sizeof(struct e1000_tx_desc) -
877 ETH_FCS_LEN) * 2;
878 min_tx_space = ALIGN(min_tx_space, 1024);
879 min_tx_space >>= 10;
880 /* software strips receive CRC, so leave room for it */
881 min_rx_space = adapter->max_frame_size;
882 min_rx_space = ALIGN(min_rx_space, 1024);
883 min_rx_space >>= 10;
884
885 /* If current Tx allocation is less than the min Tx FIFO size,
886 * and the min Tx FIFO size is less than the current Rx FIFO
887 * allocation, take space away from current Rx allocation */
888 if (tx_space < min_tx_space &&
889 ((min_tx_space - tx_space) < pba)) {
890 pba = pba - (min_tx_space - tx_space);
891
892 /* if short on rx space, rx wins and must trump tx
893 * adjustment */
894 if (pba < min_rx_space)
895 pba = min_rx_space;
896 }
897 wr32(E1000_PBA, pba);
898 }
899
900 /* flow control settings */
901 /* The high water mark must be low enough to fit one full frame
902 * (or the size used for early receive) above it in the Rx FIFO.
903 * Set it to the lower of:
904 * - 90% of the Rx FIFO size, or
905 * - the full Rx FIFO size minus one full frame */
906 hwm = min(((pba << 10) * 9 / 10),
907 ((pba << 10) - 2 * adapter->max_frame_size));
908
909 if (mac->type < e1000_82576) {
910 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
911 fc->low_water = fc->high_water - 8;
912 } else {
913 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
914 fc->low_water = fc->high_water - 16;
915 }
916 fc->pause_time = 0xFFFF;
917 fc->send_xon = 1;
918 fc->type = fc->original_type;
919
920 /* Allow time for pending master requests to run */
921 adapter->hw.mac.ops.reset_hw(&adapter->hw);
922 wr32(E1000_WUC, 0);
923
924 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
925 dev_err(&adapter->pdev->dev, "Hardware Error\n");
926
927 igb_update_mng_vlan(adapter);
928
929 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
930 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
931
932 igb_reset_adaptive(&adapter->hw);
933 if (adapter->hw.phy.ops.get_phy_info)
934 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
935 }
936
937 /**
938 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
939 * @pdev: PCI device information struct
940 *
941 * Returns true if an adapter needs ioport resources
942 **/
943 static int igb_is_need_ioport(struct pci_dev *pdev)
944 {
945 switch (pdev->device) {
946 /* Currently there are no adapters that need ioport resources */
947 default:
948 return false;
949 }
950 }
951
952 /**
953 * igb_probe - Device Initialization Routine
954 * @pdev: PCI device information struct
955 * @ent: entry in igb_pci_tbl
956 *
957 * Returns 0 on success, negative on failure
958 *
959 * igb_probe initializes an adapter identified by a pci_dev structure.
960 * The OS initialization, configuring of the adapter private structure,
961 * and a hardware reset occur.
962 **/
963 static int __devinit igb_probe(struct pci_dev *pdev,
964 const struct pci_device_id *ent)
965 {
966 struct net_device *netdev;
967 struct igb_adapter *adapter;
968 struct e1000_hw *hw;
969 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
970 unsigned long mmio_start, mmio_len;
971 int i, err, pci_using_dac;
972 u16 eeprom_data = 0;
973 u16 eeprom_apme_mask = IGB_EEPROM_APME;
974 u32 part_num;
975 int bars, need_ioport;
976
977 /* do not allocate ioport bars when not needed */
978 need_ioport = igb_is_need_ioport(pdev);
979 if (need_ioport) {
980 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
981 err = pci_enable_device(pdev);
982 } else {
983 bars = pci_select_bars(pdev, IORESOURCE_MEM);
984 err = pci_enable_device_mem(pdev);
985 }
986 if (err)
987 return err;
988
989 pci_using_dac = 0;
990 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
991 if (!err) {
992 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
993 if (!err)
994 pci_using_dac = 1;
995 } else {
996 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
997 if (err) {
998 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
999 if (err) {
1000 dev_err(&pdev->dev, "No usable DMA "
1001 "configuration, aborting\n");
1002 goto err_dma;
1003 }
1004 }
1005 }
1006
1007 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1008 if (err)
1009 goto err_pci_reg;
1010
1011 pci_set_master(pdev);
1012 pci_save_state(pdev);
1013
1014 err = -ENOMEM;
1015 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1016 if (!netdev)
1017 goto err_alloc_etherdev;
1018
1019 SET_NETDEV_DEV(netdev, &pdev->dev);
1020
1021 pci_set_drvdata(pdev, netdev);
1022 adapter = netdev_priv(netdev);
1023 adapter->netdev = netdev;
1024 adapter->pdev = pdev;
1025 hw = &adapter->hw;
1026 hw->back = adapter;
1027 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1028 adapter->bars = bars;
1029 adapter->need_ioport = need_ioport;
1030
1031 mmio_start = pci_resource_start(pdev, 0);
1032 mmio_len = pci_resource_len(pdev, 0);
1033
1034 err = -EIO;
1035 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1036 if (!adapter->hw.hw_addr)
1037 goto err_ioremap;
1038
1039 netdev->open = &igb_open;
1040 netdev->stop = &igb_close;
1041 netdev->get_stats = &igb_get_stats;
1042 netdev->set_multicast_list = &igb_set_multi;
1043 netdev->set_mac_address = &igb_set_mac;
1044 netdev->change_mtu = &igb_change_mtu;
1045 netdev->do_ioctl = &igb_ioctl;
1046 igb_set_ethtool_ops(netdev);
1047 netdev->tx_timeout = &igb_tx_timeout;
1048 netdev->watchdog_timeo = 5 * HZ;
1049 netdev->vlan_rx_register = igb_vlan_rx_register;
1050 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1051 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1052 #ifdef CONFIG_NET_POLL_CONTROLLER
1053 netdev->poll_controller = igb_netpoll;
1054 #endif
1055 netdev->hard_start_xmit = &igb_xmit_frame_adv;
1056
1057 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1058
1059 netdev->mem_start = mmio_start;
1060 netdev->mem_end = mmio_start + mmio_len;
1061
1062 /* PCI config space info */
1063 hw->vendor_id = pdev->vendor;
1064 hw->device_id = pdev->device;
1065 hw->revision_id = pdev->revision;
1066 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1067 hw->subsystem_device_id = pdev->subsystem_device;
1068
1069 /* setup the private structure */
1070 hw->back = adapter;
1071 /* Copy the default MAC, PHY and NVM function pointers */
1072 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1073 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1074 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1075 /* Initialize skew-specific constants */
1076 err = ei->get_invariants(hw);
1077 if (err)
1078 goto err_hw_init;
1079
1080 err = igb_sw_init(adapter);
1081 if (err)
1082 goto err_sw_init;
1083
1084 igb_get_bus_info_pcie(hw);
1085
1086 /* set flags */
1087 switch (hw->mac.type) {
1088 case e1000_82576:
1089 case e1000_82575:
1090 adapter->flags |= IGB_FLAG_HAS_DCA;
1091 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1092 break;
1093 default:
1094 break;
1095 }
1096
1097 hw->phy.autoneg_wait_to_complete = false;
1098 hw->mac.adaptive_ifs = true;
1099
1100 /* Copper options */
1101 if (hw->phy.media_type == e1000_media_type_copper) {
1102 hw->phy.mdix = AUTO_ALL_MODES;
1103 hw->phy.disable_polarity_correction = false;
1104 hw->phy.ms_type = e1000_ms_hw_default;
1105 }
1106
1107 if (igb_check_reset_block(hw))
1108 dev_info(&pdev->dev,
1109 "PHY reset is blocked due to SOL/IDER session.\n");
1110
1111 netdev->features = NETIF_F_SG |
1112 NETIF_F_HW_CSUM |
1113 NETIF_F_HW_VLAN_TX |
1114 NETIF_F_HW_VLAN_RX |
1115 NETIF_F_HW_VLAN_FILTER;
1116
1117 netdev->features |= NETIF_F_TSO;
1118 netdev->features |= NETIF_F_TSO6;
1119
1120 #ifdef CONFIG_IGB_LRO
1121 netdev->features |= NETIF_F_LRO;
1122 #endif
1123
1124 netdev->vlan_features |= NETIF_F_TSO;
1125 netdev->vlan_features |= NETIF_F_TSO6;
1126 netdev->vlan_features |= NETIF_F_HW_CSUM;
1127 netdev->vlan_features |= NETIF_F_SG;
1128
1129 if (pci_using_dac)
1130 netdev->features |= NETIF_F_HIGHDMA;
1131
1132 netdev->features |= NETIF_F_LLTX;
1133 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1134
1135 /* before reading the NVM, reset the controller to put the device in a
1136 * known good starting state */
1137 hw->mac.ops.reset_hw(hw);
1138
1139 /* make sure the NVM is good */
1140 if (igb_validate_nvm_checksum(hw) < 0) {
1141 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1142 err = -EIO;
1143 goto err_eeprom;
1144 }
1145
1146 /* copy the MAC address out of the NVM */
1147 if (hw->mac.ops.read_mac_addr(hw))
1148 dev_err(&pdev->dev, "NVM Read Error\n");
1149
1150 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1151 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1152
1153 if (!is_valid_ether_addr(netdev->perm_addr)) {
1154 dev_err(&pdev->dev, "Invalid MAC Address\n");
1155 err = -EIO;
1156 goto err_eeprom;
1157 }
1158
1159 init_timer(&adapter->watchdog_timer);
1160 adapter->watchdog_timer.function = &igb_watchdog;
1161 adapter->watchdog_timer.data = (unsigned long) adapter;
1162
1163 init_timer(&adapter->phy_info_timer);
1164 adapter->phy_info_timer.function = &igb_update_phy_info;
1165 adapter->phy_info_timer.data = (unsigned long) adapter;
1166
1167 INIT_WORK(&adapter->reset_task, igb_reset_task);
1168 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1169
1170 /* Initialize link & ring properties that are user-changeable */
1171 adapter->tx_ring->count = 256;
1172 for (i = 0; i < adapter->num_tx_queues; i++)
1173 adapter->tx_ring[i].count = adapter->tx_ring->count;
1174 adapter->rx_ring->count = 256;
1175 for (i = 0; i < adapter->num_rx_queues; i++)
1176 adapter->rx_ring[i].count = adapter->rx_ring->count;
1177
1178 adapter->fc_autoneg = true;
1179 hw->mac.autoneg = true;
1180 hw->phy.autoneg_advertised = 0x2f;
1181
1182 hw->fc.original_type = e1000_fc_default;
1183 hw->fc.type = e1000_fc_default;
1184
1185 adapter->itr_setting = 3;
1186 adapter->itr = IGB_START_ITR;
1187
1188 igb_validate_mdi_setting(hw);
1189
1190 adapter->rx_csum = 1;
1191
1192 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1193 * enable the ACPI Magic Packet filter
1194 */
1195
1196 if (hw->bus.func == 0 ||
1197 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1198 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1199 &eeprom_data);
1200
1201 if (eeprom_data & eeprom_apme_mask)
1202 adapter->eeprom_wol |= E1000_WUFC_MAG;
1203
1204 /* now that we have the eeprom settings, apply the special cases where
1205 * the eeprom may be wrong or the board simply won't support wake on
1206 * lan on a particular port */
1207 switch (pdev->device) {
1208 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1209 adapter->eeprom_wol = 0;
1210 break;
1211 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1212 case E1000_DEV_ID_82576_FIBER:
1213 case E1000_DEV_ID_82576_SERDES:
1214 /* Wake events only supported on port A for dual fiber
1215 * regardless of eeprom setting */
1216 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1217 adapter->eeprom_wol = 0;
1218 break;
1219 }
1220
1221 /* initialize the wol settings based on the eeprom settings */
1222 adapter->wol = adapter->eeprom_wol;
1223
1224 /* reset the hardware with the new settings */
1225 igb_reset(adapter);
1226
1227 /* let the f/w know that the h/w is now under the control of the
1228 * driver. */
1229 igb_get_hw_control(adapter);
1230
1231 /* tell the stack to leave us alone until igb_open() is called */
1232 netif_carrier_off(netdev);
1233 netif_tx_stop_all_queues(netdev);
1234
1235 strcpy(netdev->name, "eth%d");
1236 err = register_netdev(netdev);
1237 if (err)
1238 goto err_register;
1239
1240 #ifdef CONFIG_DCA
1241 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1242 (dca_add_requester(&pdev->dev) == 0)) {
1243 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1244 dev_info(&pdev->dev, "DCA enabled\n");
1245 /* Always use CB2 mode, difference is masked
1246 * in the CB driver. */
1247 wr32(E1000_DCA_CTRL, 2);
1248 igb_setup_dca(adapter);
1249 }
1250 #endif
1251
1252 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1253 /* print bus type/speed/width info */
1254 dev_info(&pdev->dev,
1255 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1256 netdev->name,
1257 ((hw->bus.speed == e1000_bus_speed_2500)
1258 ? "2.5Gb/s" : "unknown"),
1259 ((hw->bus.width == e1000_bus_width_pcie_x4)
1260 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1261 ? "Width x1" : "unknown"),
1262 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1263 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1264
1265 igb_read_part_num(hw, &part_num);
1266 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1267 (part_num >> 8), (part_num & 0xff));
1268
1269 dev_info(&pdev->dev,
1270 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1271 adapter->msix_entries ? "MSI-X" :
1272 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1273 adapter->num_rx_queues, adapter->num_tx_queues);
1274
1275 return 0;
1276
1277 err_register:
1278 igb_release_hw_control(adapter);
1279 err_eeprom:
1280 if (!igb_check_reset_block(hw))
1281 hw->phy.ops.reset_phy(hw);
1282
1283 if (hw->flash_address)
1284 iounmap(hw->flash_address);
1285
1286 igb_remove_device(hw);
1287 igb_free_queues(adapter);
1288 err_sw_init:
1289 err_hw_init:
1290 iounmap(hw->hw_addr);
1291 err_ioremap:
1292 free_netdev(netdev);
1293 err_alloc_etherdev:
1294 pci_release_selected_regions(pdev, bars);
1295 err_pci_reg:
1296 err_dma:
1297 pci_disable_device(pdev);
1298 return err;
1299 }
1300
1301 /**
1302 * igb_remove - Device Removal Routine
1303 * @pdev: PCI device information struct
1304 *
1305 * igb_remove is called by the PCI subsystem to alert the driver
1306 * that it should release a PCI device. The could be caused by a
1307 * Hot-Plug event, or because the driver is going to be removed from
1308 * memory.
1309 **/
1310 static void __devexit igb_remove(struct pci_dev *pdev)
1311 {
1312 struct net_device *netdev = pci_get_drvdata(pdev);
1313 struct igb_adapter *adapter = netdev_priv(netdev);
1314 #ifdef CONFIG_DCA
1315 struct e1000_hw *hw = &adapter->hw;
1316 #endif
1317
1318 /* flush_scheduled work may reschedule our watchdog task, so
1319 * explicitly disable watchdog tasks from being rescheduled */
1320 set_bit(__IGB_DOWN, &adapter->state);
1321 del_timer_sync(&adapter->watchdog_timer);
1322 del_timer_sync(&adapter->phy_info_timer);
1323
1324 flush_scheduled_work();
1325
1326 #ifdef CONFIG_DCA
1327 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1328 dev_info(&pdev->dev, "DCA disabled\n");
1329 dca_remove_requester(&pdev->dev);
1330 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1331 wr32(E1000_DCA_CTRL, 1);
1332 }
1333 #endif
1334
1335 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1336 * would have already happened in close and is redundant. */
1337 igb_release_hw_control(adapter);
1338
1339 unregister_netdev(netdev);
1340
1341 if (adapter->hw.phy.ops.reset_phy &&
1342 !igb_check_reset_block(&adapter->hw))
1343 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1344
1345 igb_remove_device(&adapter->hw);
1346 igb_reset_interrupt_capability(adapter);
1347
1348 igb_free_queues(adapter);
1349
1350 iounmap(adapter->hw.hw_addr);
1351 if (adapter->hw.flash_address)
1352 iounmap(adapter->hw.flash_address);
1353 pci_release_selected_regions(pdev, adapter->bars);
1354
1355 free_netdev(netdev);
1356
1357 pci_disable_device(pdev);
1358 }
1359
1360 /**
1361 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1362 * @adapter: board private structure to initialize
1363 *
1364 * igb_sw_init initializes the Adapter private data structure.
1365 * Fields are initialized based on PCI device information and
1366 * OS network device settings (MTU size).
1367 **/
1368 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1369 {
1370 struct e1000_hw *hw = &adapter->hw;
1371 struct net_device *netdev = adapter->netdev;
1372 struct pci_dev *pdev = adapter->pdev;
1373
1374 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1375
1376 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1377 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1378 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1379 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1380
1381 /* Number of supported queues. */
1382 /* Having more queues than CPUs doesn't make sense. */
1383 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1384 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1385
1386 /* This call may decrease the number of queues depending on
1387 * interrupt mode. */
1388 igb_set_interrupt_capability(adapter);
1389
1390 if (igb_alloc_queues(adapter)) {
1391 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1392 return -ENOMEM;
1393 }
1394
1395 /* Explicitly disable IRQ since the NIC can be in any state. */
1396 igb_irq_disable(adapter);
1397
1398 set_bit(__IGB_DOWN, &adapter->state);
1399 return 0;
1400 }
1401
1402 /**
1403 * igb_open - Called when a network interface is made active
1404 * @netdev: network interface device structure
1405 *
1406 * Returns 0 on success, negative value on failure
1407 *
1408 * The open entry point is called when a network interface is made
1409 * active by the system (IFF_UP). At this point all resources needed
1410 * for transmit and receive operations are allocated, the interrupt
1411 * handler is registered with the OS, the watchdog timer is started,
1412 * and the stack is notified that the interface is ready.
1413 **/
1414 static int igb_open(struct net_device *netdev)
1415 {
1416 struct igb_adapter *adapter = netdev_priv(netdev);
1417 struct e1000_hw *hw = &adapter->hw;
1418 int err;
1419 int i;
1420
1421 /* disallow open during test */
1422 if (test_bit(__IGB_TESTING, &adapter->state))
1423 return -EBUSY;
1424
1425 /* allocate transmit descriptors */
1426 err = igb_setup_all_tx_resources(adapter);
1427 if (err)
1428 goto err_setup_tx;
1429
1430 /* allocate receive descriptors */
1431 err = igb_setup_all_rx_resources(adapter);
1432 if (err)
1433 goto err_setup_rx;
1434
1435 /* e1000_power_up_phy(adapter); */
1436
1437 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1438 if ((adapter->hw.mng_cookie.status &
1439 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1440 igb_update_mng_vlan(adapter);
1441
1442 /* before we allocate an interrupt, we must be ready to handle it.
1443 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1444 * as soon as we call pci_request_irq, so we have to setup our
1445 * clean_rx handler before we do so. */
1446 igb_configure(adapter);
1447
1448 err = igb_request_irq(adapter);
1449 if (err)
1450 goto err_req_irq;
1451
1452 /* From here on the code is the same as igb_up() */
1453 clear_bit(__IGB_DOWN, &adapter->state);
1454
1455 for (i = 0; i < adapter->num_rx_queues; i++)
1456 napi_enable(&adapter->rx_ring[i].napi);
1457
1458 /* Clear any pending interrupts. */
1459 rd32(E1000_ICR);
1460
1461 igb_irq_enable(adapter);
1462
1463 netif_tx_start_all_queues(netdev);
1464
1465 /* Fire a link status change interrupt to start the watchdog. */
1466 wr32(E1000_ICS, E1000_ICS_LSC);
1467
1468 return 0;
1469
1470 err_req_irq:
1471 igb_release_hw_control(adapter);
1472 /* e1000_power_down_phy(adapter); */
1473 igb_free_all_rx_resources(adapter);
1474 err_setup_rx:
1475 igb_free_all_tx_resources(adapter);
1476 err_setup_tx:
1477 igb_reset(adapter);
1478
1479 return err;
1480 }
1481
1482 /**
1483 * igb_close - Disables a network interface
1484 * @netdev: network interface device structure
1485 *
1486 * Returns 0, this is not allowed to fail
1487 *
1488 * The close entry point is called when an interface is de-activated
1489 * by the OS. The hardware is still under the driver's control, but
1490 * needs to be disabled. A global MAC reset is issued to stop the
1491 * hardware, and all transmit and receive resources are freed.
1492 **/
1493 static int igb_close(struct net_device *netdev)
1494 {
1495 struct igb_adapter *adapter = netdev_priv(netdev);
1496
1497 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1498 igb_down(adapter);
1499
1500 igb_free_irq(adapter);
1501
1502 igb_free_all_tx_resources(adapter);
1503 igb_free_all_rx_resources(adapter);
1504
1505 /* kill manageability vlan ID if supported, but not if a vlan with
1506 * the same ID is registered on the host OS (let 8021q kill it) */
1507 if ((adapter->hw.mng_cookie.status &
1508 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1509 !(adapter->vlgrp &&
1510 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1511 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1512
1513 return 0;
1514 }
1515
1516 /**
1517 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1518 * @adapter: board private structure
1519 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1520 *
1521 * Return 0 on success, negative on failure
1522 **/
1523
1524 int igb_setup_tx_resources(struct igb_adapter *adapter,
1525 struct igb_ring *tx_ring)
1526 {
1527 struct pci_dev *pdev = adapter->pdev;
1528 int size;
1529
1530 size = sizeof(struct igb_buffer) * tx_ring->count;
1531 tx_ring->buffer_info = vmalloc(size);
1532 if (!tx_ring->buffer_info)
1533 goto err;
1534 memset(tx_ring->buffer_info, 0, size);
1535
1536 /* round up to nearest 4K */
1537 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1538 + sizeof(u32);
1539 tx_ring->size = ALIGN(tx_ring->size, 4096);
1540
1541 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1542 &tx_ring->dma);
1543
1544 if (!tx_ring->desc)
1545 goto err;
1546
1547 tx_ring->adapter = adapter;
1548 tx_ring->next_to_use = 0;
1549 tx_ring->next_to_clean = 0;
1550 return 0;
1551
1552 err:
1553 vfree(tx_ring->buffer_info);
1554 dev_err(&adapter->pdev->dev,
1555 "Unable to allocate memory for the transmit descriptor ring\n");
1556 return -ENOMEM;
1557 }
1558
1559 /**
1560 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1561 * (Descriptors) for all queues
1562 * @adapter: board private structure
1563 *
1564 * Return 0 on success, negative on failure
1565 **/
1566 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1567 {
1568 int i, err = 0;
1569 int r_idx;
1570
1571 for (i = 0; i < adapter->num_tx_queues; i++) {
1572 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1573 if (err) {
1574 dev_err(&adapter->pdev->dev,
1575 "Allocation for Tx Queue %u failed\n", i);
1576 for (i--; i >= 0; i--)
1577 igb_free_tx_resources(&adapter->tx_ring[i]);
1578 break;
1579 }
1580 }
1581
1582 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1583 r_idx = i % adapter->num_tx_queues;
1584 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1585 }
1586 return err;
1587 }
1588
1589 /**
1590 * igb_configure_tx - Configure transmit Unit after Reset
1591 * @adapter: board private structure
1592 *
1593 * Configure the Tx unit of the MAC after a reset.
1594 **/
1595 static void igb_configure_tx(struct igb_adapter *adapter)
1596 {
1597 u64 tdba, tdwba;
1598 struct e1000_hw *hw = &adapter->hw;
1599 u32 tctl;
1600 u32 txdctl, txctrl;
1601 int i;
1602
1603 for (i = 0; i < adapter->num_tx_queues; i++) {
1604 struct igb_ring *ring = &(adapter->tx_ring[i]);
1605
1606 wr32(E1000_TDLEN(i),
1607 ring->count * sizeof(struct e1000_tx_desc));
1608 tdba = ring->dma;
1609 wr32(E1000_TDBAL(i),
1610 tdba & 0x00000000ffffffffULL);
1611 wr32(E1000_TDBAH(i), tdba >> 32);
1612
1613 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1614 tdwba |= 1; /* enable head wb */
1615 wr32(E1000_TDWBAL(i),
1616 tdwba & 0x00000000ffffffffULL);
1617 wr32(E1000_TDWBAH(i), tdwba >> 32);
1618
1619 ring->head = E1000_TDH(i);
1620 ring->tail = E1000_TDT(i);
1621 writel(0, hw->hw_addr + ring->tail);
1622 writel(0, hw->hw_addr + ring->head);
1623 txdctl = rd32(E1000_TXDCTL(i));
1624 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1625 wr32(E1000_TXDCTL(i), txdctl);
1626
1627 /* Turn off Relaxed Ordering on head write-backs. The
1628 * writebacks MUST be delivered in order or it will
1629 * completely screw up our bookeeping.
1630 */
1631 txctrl = rd32(E1000_DCA_TXCTRL(i));
1632 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1633 wr32(E1000_DCA_TXCTRL(i), txctrl);
1634 }
1635
1636
1637
1638 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1639
1640 /* Program the Transmit Control Register */
1641
1642 tctl = rd32(E1000_TCTL);
1643 tctl &= ~E1000_TCTL_CT;
1644 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1645 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1646
1647 igb_config_collision_dist(hw);
1648
1649 /* Setup Transmit Descriptor Settings for eop descriptor */
1650 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1651
1652 /* Enable transmits */
1653 tctl |= E1000_TCTL_EN;
1654
1655 wr32(E1000_TCTL, tctl);
1656 }
1657
1658 /**
1659 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1660 * @adapter: board private structure
1661 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1662 *
1663 * Returns 0 on success, negative on failure
1664 **/
1665
1666 int igb_setup_rx_resources(struct igb_adapter *adapter,
1667 struct igb_ring *rx_ring)
1668 {
1669 struct pci_dev *pdev = adapter->pdev;
1670 int size, desc_len;
1671
1672 #ifdef CONFIG_IGB_LRO
1673 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1674 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1675 if (!rx_ring->lro_mgr.lro_arr)
1676 goto err;
1677 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1678 #endif
1679
1680 size = sizeof(struct igb_buffer) * rx_ring->count;
1681 rx_ring->buffer_info = vmalloc(size);
1682 if (!rx_ring->buffer_info)
1683 goto err;
1684 memset(rx_ring->buffer_info, 0, size);
1685
1686 desc_len = sizeof(union e1000_adv_rx_desc);
1687
1688 /* Round up to nearest 4K */
1689 rx_ring->size = rx_ring->count * desc_len;
1690 rx_ring->size = ALIGN(rx_ring->size, 4096);
1691
1692 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1693 &rx_ring->dma);
1694
1695 if (!rx_ring->desc)
1696 goto err;
1697
1698 rx_ring->next_to_clean = 0;
1699 rx_ring->next_to_use = 0;
1700
1701 rx_ring->adapter = adapter;
1702
1703 return 0;
1704
1705 err:
1706 #ifdef CONFIG_IGB_LRO
1707 vfree(rx_ring->lro_mgr.lro_arr);
1708 rx_ring->lro_mgr.lro_arr = NULL;
1709 #endif
1710 vfree(rx_ring->buffer_info);
1711 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1712 "the receive descriptor ring\n");
1713 return -ENOMEM;
1714 }
1715
1716 /**
1717 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1718 * (Descriptors) for all queues
1719 * @adapter: board private structure
1720 *
1721 * Return 0 on success, negative on failure
1722 **/
1723 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1724 {
1725 int i, err = 0;
1726
1727 for (i = 0; i < adapter->num_rx_queues; i++) {
1728 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1729 if (err) {
1730 dev_err(&adapter->pdev->dev,
1731 "Allocation for Rx Queue %u failed\n", i);
1732 for (i--; i >= 0; i--)
1733 igb_free_rx_resources(&adapter->rx_ring[i]);
1734 break;
1735 }
1736 }
1737
1738 return err;
1739 }
1740
1741 /**
1742 * igb_setup_rctl - configure the receive control registers
1743 * @adapter: Board private structure
1744 **/
1745 static void igb_setup_rctl(struct igb_adapter *adapter)
1746 {
1747 struct e1000_hw *hw = &adapter->hw;
1748 u32 rctl;
1749 u32 srrctl = 0;
1750 int i;
1751
1752 rctl = rd32(E1000_RCTL);
1753
1754 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1755
1756 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1757 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1758 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1759
1760 /*
1761 * enable stripping of CRC. It's unlikely this will break BMC
1762 * redirection as it did with e1000. Newer features require
1763 * that the HW strips the CRC.
1764 */
1765 rctl |= E1000_RCTL_SECRC;
1766
1767 rctl &= ~E1000_RCTL_SBP;
1768
1769 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1770 rctl &= ~E1000_RCTL_LPE;
1771 else
1772 rctl |= E1000_RCTL_LPE;
1773 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1774 /* Setup buffer sizes */
1775 rctl &= ~E1000_RCTL_SZ_4096;
1776 rctl |= E1000_RCTL_BSEX;
1777 switch (adapter->rx_buffer_len) {
1778 case IGB_RXBUFFER_256:
1779 rctl |= E1000_RCTL_SZ_256;
1780 rctl &= ~E1000_RCTL_BSEX;
1781 break;
1782 case IGB_RXBUFFER_512:
1783 rctl |= E1000_RCTL_SZ_512;
1784 rctl &= ~E1000_RCTL_BSEX;
1785 break;
1786 case IGB_RXBUFFER_1024:
1787 rctl |= E1000_RCTL_SZ_1024;
1788 rctl &= ~E1000_RCTL_BSEX;
1789 break;
1790 case IGB_RXBUFFER_2048:
1791 default:
1792 rctl |= E1000_RCTL_SZ_2048;
1793 rctl &= ~E1000_RCTL_BSEX;
1794 break;
1795 }
1796 } else {
1797 rctl &= ~E1000_RCTL_BSEX;
1798 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1799 }
1800
1801 /* 82575 and greater support packet-split where the protocol
1802 * header is placed in skb->data and the packet data is
1803 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1804 * In the case of a non-split, skb->data is linearly filled,
1805 * followed by the page buffers. Therefore, skb->data is
1806 * sized to hold the largest protocol header.
1807 */
1808 /* allocations using alloc_page take too long for regular MTU
1809 * so only enable packet split for jumbo frames */
1810 if (rctl & E1000_RCTL_LPE) {
1811 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1812 srrctl |= adapter->rx_ps_hdr_size <<
1813 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1814 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1815 } else {
1816 adapter->rx_ps_hdr_size = 0;
1817 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1818 }
1819
1820 for (i = 0; i < adapter->num_rx_queues; i++)
1821 wr32(E1000_SRRCTL(i), srrctl);
1822
1823 wr32(E1000_RCTL, rctl);
1824 }
1825
1826 /**
1827 * igb_configure_rx - Configure receive Unit after Reset
1828 * @adapter: board private structure
1829 *
1830 * Configure the Rx unit of the MAC after a reset.
1831 **/
1832 static void igb_configure_rx(struct igb_adapter *adapter)
1833 {
1834 u64 rdba;
1835 struct e1000_hw *hw = &adapter->hw;
1836 u32 rctl, rxcsum;
1837 u32 rxdctl;
1838 int i;
1839
1840 /* disable receives while setting up the descriptors */
1841 rctl = rd32(E1000_RCTL);
1842 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1843 wrfl();
1844 mdelay(10);
1845
1846 if (adapter->itr_setting > 3)
1847 wr32(E1000_ITR, adapter->itr);
1848
1849 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1850 * the Base and Length of the Rx Descriptor Ring */
1851 for (i = 0; i < adapter->num_rx_queues; i++) {
1852 struct igb_ring *ring = &(adapter->rx_ring[i]);
1853 rdba = ring->dma;
1854 wr32(E1000_RDBAL(i),
1855 rdba & 0x00000000ffffffffULL);
1856 wr32(E1000_RDBAH(i), rdba >> 32);
1857 wr32(E1000_RDLEN(i),
1858 ring->count * sizeof(union e1000_adv_rx_desc));
1859
1860 ring->head = E1000_RDH(i);
1861 ring->tail = E1000_RDT(i);
1862 writel(0, hw->hw_addr + ring->tail);
1863 writel(0, hw->hw_addr + ring->head);
1864
1865 rxdctl = rd32(E1000_RXDCTL(i));
1866 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1867 rxdctl &= 0xFFF00000;
1868 rxdctl |= IGB_RX_PTHRESH;
1869 rxdctl |= IGB_RX_HTHRESH << 8;
1870 rxdctl |= IGB_RX_WTHRESH << 16;
1871 wr32(E1000_RXDCTL(i), rxdctl);
1872 #ifdef CONFIG_IGB_LRO
1873 /* Intitial LRO Settings */
1874 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1875 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1876 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1877 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1878 ring->lro_mgr.dev = adapter->netdev;
1879 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1880 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1881 #endif
1882 }
1883
1884 if (adapter->num_rx_queues > 1) {
1885 u32 random[10];
1886 u32 mrqc;
1887 u32 j, shift;
1888 union e1000_reta {
1889 u32 dword;
1890 u8 bytes[4];
1891 } reta;
1892
1893 get_random_bytes(&random[0], 40);
1894
1895 if (hw->mac.type >= e1000_82576)
1896 shift = 0;
1897 else
1898 shift = 6;
1899 for (j = 0; j < (32 * 4); j++) {
1900 reta.bytes[j & 3] =
1901 (j % adapter->num_rx_queues) << shift;
1902 if ((j & 3) == 3)
1903 writel(reta.dword,
1904 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1905 }
1906 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1907
1908 /* Fill out hash function seeds */
1909 for (j = 0; j < 10; j++)
1910 array_wr32(E1000_RSSRK(0), j, random[j]);
1911
1912 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1913 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1914 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1915 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1916 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1917 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1918 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1919 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1920
1921
1922 wr32(E1000_MRQC, mrqc);
1923
1924 /* Multiqueue and raw packet checksumming are mutually
1925 * exclusive. Note that this not the same as TCP/IP
1926 * checksumming, which works fine. */
1927 rxcsum = rd32(E1000_RXCSUM);
1928 rxcsum |= E1000_RXCSUM_PCSD;
1929 wr32(E1000_RXCSUM, rxcsum);
1930 } else {
1931 /* Enable Receive Checksum Offload for TCP and UDP */
1932 rxcsum = rd32(E1000_RXCSUM);
1933 if (adapter->rx_csum) {
1934 rxcsum |= E1000_RXCSUM_TUOFL;
1935
1936 /* Enable IPv4 payload checksum for UDP fragments
1937 * Must be used in conjunction with packet-split. */
1938 if (adapter->rx_ps_hdr_size)
1939 rxcsum |= E1000_RXCSUM_IPPCSE;
1940 } else {
1941 rxcsum &= ~E1000_RXCSUM_TUOFL;
1942 /* don't need to clear IPPCSE as it defaults to 0 */
1943 }
1944 wr32(E1000_RXCSUM, rxcsum);
1945 }
1946
1947 if (adapter->vlgrp)
1948 wr32(E1000_RLPML,
1949 adapter->max_frame_size + VLAN_TAG_SIZE);
1950 else
1951 wr32(E1000_RLPML, adapter->max_frame_size);
1952
1953 /* Enable Receives */
1954 wr32(E1000_RCTL, rctl);
1955 }
1956
1957 /**
1958 * igb_free_tx_resources - Free Tx Resources per Queue
1959 * @adapter: board private structure
1960 * @tx_ring: Tx descriptor ring for a specific queue
1961 *
1962 * Free all transmit software resources
1963 **/
1964 static void igb_free_tx_resources(struct igb_ring *tx_ring)
1965 {
1966 struct pci_dev *pdev = tx_ring->adapter->pdev;
1967
1968 igb_clean_tx_ring(tx_ring);
1969
1970 vfree(tx_ring->buffer_info);
1971 tx_ring->buffer_info = NULL;
1972
1973 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1974
1975 tx_ring->desc = NULL;
1976 }
1977
1978 /**
1979 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1980 * @adapter: board private structure
1981 *
1982 * Free all transmit software resources
1983 **/
1984 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1985 {
1986 int i;
1987
1988 for (i = 0; i < adapter->num_tx_queues; i++)
1989 igb_free_tx_resources(&adapter->tx_ring[i]);
1990 }
1991
1992 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1993 struct igb_buffer *buffer_info)
1994 {
1995 if (buffer_info->dma) {
1996 pci_unmap_page(adapter->pdev,
1997 buffer_info->dma,
1998 buffer_info->length,
1999 PCI_DMA_TODEVICE);
2000 buffer_info->dma = 0;
2001 }
2002 if (buffer_info->skb) {
2003 dev_kfree_skb_any(buffer_info->skb);
2004 buffer_info->skb = NULL;
2005 }
2006 buffer_info->time_stamp = 0;
2007 /* buffer_info must be completely set up in the transmit path */
2008 }
2009
2010 /**
2011 * igb_clean_tx_ring - Free Tx Buffers
2012 * @adapter: board private structure
2013 * @tx_ring: ring to be cleaned
2014 **/
2015 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2016 {
2017 struct igb_adapter *adapter = tx_ring->adapter;
2018 struct igb_buffer *buffer_info;
2019 unsigned long size;
2020 unsigned int i;
2021
2022 if (!tx_ring->buffer_info)
2023 return;
2024 /* Free all the Tx ring sk_buffs */
2025
2026 for (i = 0; i < tx_ring->count; i++) {
2027 buffer_info = &tx_ring->buffer_info[i];
2028 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2029 }
2030
2031 size = sizeof(struct igb_buffer) * tx_ring->count;
2032 memset(tx_ring->buffer_info, 0, size);
2033
2034 /* Zero out the descriptor ring */
2035
2036 memset(tx_ring->desc, 0, tx_ring->size);
2037
2038 tx_ring->next_to_use = 0;
2039 tx_ring->next_to_clean = 0;
2040
2041 writel(0, adapter->hw.hw_addr + tx_ring->head);
2042 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2043 }
2044
2045 /**
2046 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2047 * @adapter: board private structure
2048 **/
2049 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2050 {
2051 int i;
2052
2053 for (i = 0; i < adapter->num_tx_queues; i++)
2054 igb_clean_tx_ring(&adapter->tx_ring[i]);
2055 }
2056
2057 /**
2058 * igb_free_rx_resources - Free Rx Resources
2059 * @adapter: board private structure
2060 * @rx_ring: ring to clean the resources from
2061 *
2062 * Free all receive software resources
2063 **/
2064 static void igb_free_rx_resources(struct igb_ring *rx_ring)
2065 {
2066 struct pci_dev *pdev = rx_ring->adapter->pdev;
2067
2068 igb_clean_rx_ring(rx_ring);
2069
2070 vfree(rx_ring->buffer_info);
2071 rx_ring->buffer_info = NULL;
2072
2073 #ifdef CONFIG_IGB_LRO
2074 vfree(rx_ring->lro_mgr.lro_arr);
2075 rx_ring->lro_mgr.lro_arr = NULL;
2076 #endif
2077
2078 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2079
2080 rx_ring->desc = NULL;
2081 }
2082
2083 /**
2084 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2085 * @adapter: board private structure
2086 *
2087 * Free all receive software resources
2088 **/
2089 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2090 {
2091 int i;
2092
2093 for (i = 0; i < adapter->num_rx_queues; i++)
2094 igb_free_rx_resources(&adapter->rx_ring[i]);
2095 }
2096
2097 /**
2098 * igb_clean_rx_ring - Free Rx Buffers per Queue
2099 * @adapter: board private structure
2100 * @rx_ring: ring to free buffers from
2101 **/
2102 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2103 {
2104 struct igb_adapter *adapter = rx_ring->adapter;
2105 struct igb_buffer *buffer_info;
2106 struct pci_dev *pdev = adapter->pdev;
2107 unsigned long size;
2108 unsigned int i;
2109
2110 if (!rx_ring->buffer_info)
2111 return;
2112 /* Free all the Rx ring sk_buffs */
2113 for (i = 0; i < rx_ring->count; i++) {
2114 buffer_info = &rx_ring->buffer_info[i];
2115 if (buffer_info->dma) {
2116 if (adapter->rx_ps_hdr_size)
2117 pci_unmap_single(pdev, buffer_info->dma,
2118 adapter->rx_ps_hdr_size,
2119 PCI_DMA_FROMDEVICE);
2120 else
2121 pci_unmap_single(pdev, buffer_info->dma,
2122 adapter->rx_buffer_len,
2123 PCI_DMA_FROMDEVICE);
2124 buffer_info->dma = 0;
2125 }
2126
2127 if (buffer_info->skb) {
2128 dev_kfree_skb(buffer_info->skb);
2129 buffer_info->skb = NULL;
2130 }
2131 if (buffer_info->page) {
2132 if (buffer_info->page_dma)
2133 pci_unmap_page(pdev, buffer_info->page_dma,
2134 PAGE_SIZE / 2,
2135 PCI_DMA_FROMDEVICE);
2136 put_page(buffer_info->page);
2137 buffer_info->page = NULL;
2138 buffer_info->page_dma = 0;
2139 buffer_info->page_offset = 0;
2140 }
2141 }
2142
2143 size = sizeof(struct igb_buffer) * rx_ring->count;
2144 memset(rx_ring->buffer_info, 0, size);
2145
2146 /* Zero out the descriptor ring */
2147 memset(rx_ring->desc, 0, rx_ring->size);
2148
2149 rx_ring->next_to_clean = 0;
2150 rx_ring->next_to_use = 0;
2151
2152 writel(0, adapter->hw.hw_addr + rx_ring->head);
2153 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2154 }
2155
2156 /**
2157 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2158 * @adapter: board private structure
2159 **/
2160 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2161 {
2162 int i;
2163
2164 for (i = 0; i < adapter->num_rx_queues; i++)
2165 igb_clean_rx_ring(&adapter->rx_ring[i]);
2166 }
2167
2168 /**
2169 * igb_set_mac - Change the Ethernet Address of the NIC
2170 * @netdev: network interface device structure
2171 * @p: pointer to an address structure
2172 *
2173 * Returns 0 on success, negative on failure
2174 **/
2175 static int igb_set_mac(struct net_device *netdev, void *p)
2176 {
2177 struct igb_adapter *adapter = netdev_priv(netdev);
2178 struct sockaddr *addr = p;
2179
2180 if (!is_valid_ether_addr(addr->sa_data))
2181 return -EADDRNOTAVAIL;
2182
2183 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2184 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2185
2186 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2187
2188 return 0;
2189 }
2190
2191 /**
2192 * igb_set_multi - Multicast and Promiscuous mode set
2193 * @netdev: network interface device structure
2194 *
2195 * The set_multi entry point is called whenever the multicast address
2196 * list or the network interface flags are updated. This routine is
2197 * responsible for configuring the hardware for proper multicast,
2198 * promiscuous mode, and all-multi behavior.
2199 **/
2200 static void igb_set_multi(struct net_device *netdev)
2201 {
2202 struct igb_adapter *adapter = netdev_priv(netdev);
2203 struct e1000_hw *hw = &adapter->hw;
2204 struct e1000_mac_info *mac = &hw->mac;
2205 struct dev_mc_list *mc_ptr;
2206 u8 *mta_list;
2207 u32 rctl;
2208 int i;
2209
2210 /* Check for Promiscuous and All Multicast modes */
2211
2212 rctl = rd32(E1000_RCTL);
2213
2214 if (netdev->flags & IFF_PROMISC) {
2215 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2216 rctl &= ~E1000_RCTL_VFE;
2217 } else {
2218 if (netdev->flags & IFF_ALLMULTI) {
2219 rctl |= E1000_RCTL_MPE;
2220 rctl &= ~E1000_RCTL_UPE;
2221 } else
2222 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2223 rctl |= E1000_RCTL_VFE;
2224 }
2225 wr32(E1000_RCTL, rctl);
2226
2227 if (!netdev->mc_count) {
2228 /* nothing to program, so clear mc list */
2229 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2230 mac->rar_entry_count);
2231 return;
2232 }
2233
2234 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2235 if (!mta_list)
2236 return;
2237
2238 /* The shared function expects a packed array of only addresses. */
2239 mc_ptr = netdev->mc_list;
2240
2241 for (i = 0; i < netdev->mc_count; i++) {
2242 if (!mc_ptr)
2243 break;
2244 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2245 mc_ptr = mc_ptr->next;
2246 }
2247 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2248 mac->rar_entry_count);
2249 kfree(mta_list);
2250 }
2251
2252 /* Need to wait a few seconds after link up to get diagnostic information from
2253 * the phy */
2254 static void igb_update_phy_info(unsigned long data)
2255 {
2256 struct igb_adapter *adapter = (struct igb_adapter *) data;
2257 if (adapter->hw.phy.ops.get_phy_info)
2258 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2259 }
2260
2261 /**
2262 * igb_watchdog - Timer Call-back
2263 * @data: pointer to adapter cast into an unsigned long
2264 **/
2265 static void igb_watchdog(unsigned long data)
2266 {
2267 struct igb_adapter *adapter = (struct igb_adapter *)data;
2268 /* Do the rest outside of interrupt context */
2269 schedule_work(&adapter->watchdog_task);
2270 }
2271
2272 static void igb_watchdog_task(struct work_struct *work)
2273 {
2274 struct igb_adapter *adapter = container_of(work,
2275 struct igb_adapter, watchdog_task);
2276 struct e1000_hw *hw = &adapter->hw;
2277
2278 struct net_device *netdev = adapter->netdev;
2279 struct igb_ring *tx_ring = adapter->tx_ring;
2280 struct e1000_mac_info *mac = &adapter->hw.mac;
2281 u32 link;
2282 u32 eics = 0;
2283 s32 ret_val;
2284 int i;
2285
2286 if ((netif_carrier_ok(netdev)) &&
2287 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2288 goto link_up;
2289
2290 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2291 if ((ret_val == E1000_ERR_PHY) &&
2292 (hw->phy.type == e1000_phy_igp_3) &&
2293 (rd32(E1000_CTRL) &
2294 E1000_PHY_CTRL_GBE_DISABLE))
2295 dev_info(&adapter->pdev->dev,
2296 "Gigabit has been disabled, downgrading speed\n");
2297
2298 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2299 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2300 link = mac->serdes_has_link;
2301 else
2302 link = rd32(E1000_STATUS) &
2303 E1000_STATUS_LU;
2304
2305 if (link) {
2306 if (!netif_carrier_ok(netdev)) {
2307 u32 ctrl;
2308 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2309 &adapter->link_speed,
2310 &adapter->link_duplex);
2311
2312 ctrl = rd32(E1000_CTRL);
2313 dev_info(&adapter->pdev->dev,
2314 "NIC Link is Up %d Mbps %s, "
2315 "Flow Control: %s\n",
2316 adapter->link_speed,
2317 adapter->link_duplex == FULL_DUPLEX ?
2318 "Full Duplex" : "Half Duplex",
2319 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2320 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2321 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2322 E1000_CTRL_TFCE) ? "TX" : "None")));
2323
2324 /* tweak tx_queue_len according to speed/duplex and
2325 * adjust the timeout factor */
2326 netdev->tx_queue_len = adapter->tx_queue_len;
2327 adapter->tx_timeout_factor = 1;
2328 switch (adapter->link_speed) {
2329 case SPEED_10:
2330 netdev->tx_queue_len = 10;
2331 adapter->tx_timeout_factor = 14;
2332 break;
2333 case SPEED_100:
2334 netdev->tx_queue_len = 100;
2335 /* maybe add some timeout factor ? */
2336 break;
2337 }
2338
2339 netif_carrier_on(netdev);
2340 netif_tx_wake_all_queues(netdev);
2341
2342 if (!test_bit(__IGB_DOWN, &adapter->state))
2343 mod_timer(&adapter->phy_info_timer,
2344 round_jiffies(jiffies + 2 * HZ));
2345 }
2346 } else {
2347 if (netif_carrier_ok(netdev)) {
2348 adapter->link_speed = 0;
2349 adapter->link_duplex = 0;
2350 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2351 netif_carrier_off(netdev);
2352 netif_tx_stop_all_queues(netdev);
2353 if (!test_bit(__IGB_DOWN, &adapter->state))
2354 mod_timer(&adapter->phy_info_timer,
2355 round_jiffies(jiffies + 2 * HZ));
2356 }
2357 }
2358
2359 link_up:
2360 igb_update_stats(adapter);
2361
2362 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2363 adapter->tpt_old = adapter->stats.tpt;
2364 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2365 adapter->colc_old = adapter->stats.colc;
2366
2367 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2368 adapter->gorc_old = adapter->stats.gorc;
2369 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2370 adapter->gotc_old = adapter->stats.gotc;
2371
2372 igb_update_adaptive(&adapter->hw);
2373
2374 if (!netif_carrier_ok(netdev)) {
2375 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2376 /* We've lost link, so the controller stops DMA,
2377 * but we've got queued Tx work that's never going
2378 * to get done, so reset controller to flush Tx.
2379 * (Do the reset outside of interrupt context). */
2380 adapter->tx_timeout_count++;
2381 schedule_work(&adapter->reset_task);
2382 }
2383 }
2384
2385 /* Cause software interrupt to ensure rx ring is cleaned */
2386 if (adapter->msix_entries) {
2387 for (i = 0; i < adapter->num_rx_queues; i++)
2388 eics |= adapter->rx_ring[i].eims_value;
2389 wr32(E1000_EICS, eics);
2390 } else {
2391 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2392 }
2393
2394 /* Force detection of hung controller every watchdog period */
2395 tx_ring->detect_tx_hung = true;
2396
2397 /* Reset the timer */
2398 if (!test_bit(__IGB_DOWN, &adapter->state))
2399 mod_timer(&adapter->watchdog_timer,
2400 round_jiffies(jiffies + 2 * HZ));
2401 }
2402
2403 enum latency_range {
2404 lowest_latency = 0,
2405 low_latency = 1,
2406 bulk_latency = 2,
2407 latency_invalid = 255
2408 };
2409
2410
2411 /**
2412 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2413 *
2414 * Stores a new ITR value based on strictly on packet size. This
2415 * algorithm is less sophisticated than that used in igb_update_itr,
2416 * due to the difficulty of synchronizing statistics across multiple
2417 * receive rings. The divisors and thresholds used by this fuction
2418 * were determined based on theoretical maximum wire speed and testing
2419 * data, in order to minimize response time while increasing bulk
2420 * throughput.
2421 * This functionality is controlled by the InterruptThrottleRate module
2422 * parameter (see igb_param.c)
2423 * NOTE: This function is called only when operating in a multiqueue
2424 * receive environment.
2425 * @rx_ring: pointer to ring
2426 **/
2427 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2428 {
2429 int new_val = rx_ring->itr_val;
2430 int avg_wire_size = 0;
2431 struct igb_adapter *adapter = rx_ring->adapter;
2432
2433 if (!rx_ring->total_packets)
2434 goto clear_counts; /* no packets, so don't do anything */
2435
2436 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2437 * ints/sec - ITR timer value of 120 ticks.
2438 */
2439 if (adapter->link_speed != SPEED_1000) {
2440 new_val = 120;
2441 goto set_itr_val;
2442 }
2443 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2444
2445 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2446 avg_wire_size += 24;
2447
2448 /* Don't starve jumbo frames */
2449 avg_wire_size = min(avg_wire_size, 3000);
2450
2451 /* Give a little boost to mid-size frames */
2452 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2453 new_val = avg_wire_size / 3;
2454 else
2455 new_val = avg_wire_size / 2;
2456
2457 set_itr_val:
2458 if (new_val != rx_ring->itr_val) {
2459 rx_ring->itr_val = new_val;
2460 rx_ring->set_itr = 1;
2461 }
2462 clear_counts:
2463 rx_ring->total_bytes = 0;
2464 rx_ring->total_packets = 0;
2465 }
2466
2467 /**
2468 * igb_update_itr - update the dynamic ITR value based on statistics
2469 * Stores a new ITR value based on packets and byte
2470 * counts during the last interrupt. The advantage of per interrupt
2471 * computation is faster updates and more accurate ITR for the current
2472 * traffic pattern. Constants in this function were computed
2473 * based on theoretical maximum wire speed and thresholds were set based
2474 * on testing data as well as attempting to minimize response time
2475 * while increasing bulk throughput.
2476 * this functionality is controlled by the InterruptThrottleRate module
2477 * parameter (see igb_param.c)
2478 * NOTE: These calculations are only valid when operating in a single-
2479 * queue environment.
2480 * @adapter: pointer to adapter
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2484 **/
2485 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2486 int packets, int bytes)
2487 {
2488 unsigned int retval = itr_setting;
2489
2490 if (packets == 0)
2491 goto update_itr_done;
2492
2493 switch (itr_setting) {
2494 case lowest_latency:
2495 /* handle TSO and jumbo frames */
2496 if (bytes/packets > 8000)
2497 retval = bulk_latency;
2498 else if ((packets < 5) && (bytes > 512))
2499 retval = low_latency;
2500 break;
2501 case low_latency: /* 50 usec aka 20000 ints/s */
2502 if (bytes > 10000) {
2503 /* this if handles the TSO accounting */
2504 if (bytes/packets > 8000) {
2505 retval = bulk_latency;
2506 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2507 retval = bulk_latency;
2508 } else if ((packets > 35)) {
2509 retval = lowest_latency;
2510 }
2511 } else if (bytes/packets > 2000) {
2512 retval = bulk_latency;
2513 } else if (packets <= 2 && bytes < 512) {
2514 retval = lowest_latency;
2515 }
2516 break;
2517 case bulk_latency: /* 250 usec aka 4000 ints/s */
2518 if (bytes > 25000) {
2519 if (packets > 35)
2520 retval = low_latency;
2521 } else if (bytes < 6000) {
2522 retval = low_latency;
2523 }
2524 break;
2525 }
2526
2527 update_itr_done:
2528 return retval;
2529 }
2530
2531 static void igb_set_itr(struct igb_adapter *adapter)
2532 {
2533 u16 current_itr;
2534 u32 new_itr = adapter->itr;
2535
2536 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2537 if (adapter->link_speed != SPEED_1000) {
2538 current_itr = 0;
2539 new_itr = 4000;
2540 goto set_itr_now;
2541 }
2542
2543 adapter->rx_itr = igb_update_itr(adapter,
2544 adapter->rx_itr,
2545 adapter->rx_ring->total_packets,
2546 adapter->rx_ring->total_bytes);
2547
2548 if (adapter->rx_ring->buddy) {
2549 adapter->tx_itr = igb_update_itr(adapter,
2550 adapter->tx_itr,
2551 adapter->tx_ring->total_packets,
2552 adapter->tx_ring->total_bytes);
2553
2554 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2555 } else {
2556 current_itr = adapter->rx_itr;
2557 }
2558
2559 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2560 if (adapter->itr_setting == 3 &&
2561 current_itr == lowest_latency)
2562 current_itr = low_latency;
2563
2564 switch (current_itr) {
2565 /* counts and packets in update_itr are dependent on these numbers */
2566 case lowest_latency:
2567 new_itr = 70000;
2568 break;
2569 case low_latency:
2570 new_itr = 20000; /* aka hwitr = ~200 */
2571 break;
2572 case bulk_latency:
2573 new_itr = 4000;
2574 break;
2575 default:
2576 break;
2577 }
2578
2579 set_itr_now:
2580 adapter->rx_ring->total_bytes = 0;
2581 adapter->rx_ring->total_packets = 0;
2582 if (adapter->rx_ring->buddy) {
2583 adapter->rx_ring->buddy->total_bytes = 0;
2584 adapter->rx_ring->buddy->total_packets = 0;
2585 }
2586
2587 if (new_itr != adapter->itr) {
2588 /* this attempts to bias the interrupt rate towards Bulk
2589 * by adding intermediate steps when interrupt rate is
2590 * increasing */
2591 new_itr = new_itr > adapter->itr ?
2592 min(adapter->itr + (new_itr >> 2), new_itr) :
2593 new_itr;
2594 /* Don't write the value here; it resets the adapter's
2595 * internal timer, and causes us to delay far longer than
2596 * we should between interrupts. Instead, we write the ITR
2597 * value at the beginning of the next interrupt so the timing
2598 * ends up being correct.
2599 */
2600 adapter->itr = new_itr;
2601 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2602 adapter->rx_ring->set_itr = 1;
2603 }
2604
2605 return;
2606 }
2607
2608
2609 #define IGB_TX_FLAGS_CSUM 0x00000001
2610 #define IGB_TX_FLAGS_VLAN 0x00000002
2611 #define IGB_TX_FLAGS_TSO 0x00000004
2612 #define IGB_TX_FLAGS_IPV4 0x00000008
2613 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2614 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2615
2616 static inline int igb_tso_adv(struct igb_adapter *adapter,
2617 struct igb_ring *tx_ring,
2618 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2619 {
2620 struct e1000_adv_tx_context_desc *context_desc;
2621 unsigned int i;
2622 int err;
2623 struct igb_buffer *buffer_info;
2624 u32 info = 0, tu_cmd = 0;
2625 u32 mss_l4len_idx, l4len;
2626 *hdr_len = 0;
2627
2628 if (skb_header_cloned(skb)) {
2629 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2630 if (err)
2631 return err;
2632 }
2633
2634 l4len = tcp_hdrlen(skb);
2635 *hdr_len += l4len;
2636
2637 if (skb->protocol == htons(ETH_P_IP)) {
2638 struct iphdr *iph = ip_hdr(skb);
2639 iph->tot_len = 0;
2640 iph->check = 0;
2641 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2642 iph->daddr, 0,
2643 IPPROTO_TCP,
2644 0);
2645 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2646 ipv6_hdr(skb)->payload_len = 0;
2647 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2648 &ipv6_hdr(skb)->daddr,
2649 0, IPPROTO_TCP, 0);
2650 }
2651
2652 i = tx_ring->next_to_use;
2653
2654 buffer_info = &tx_ring->buffer_info[i];
2655 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2656 /* VLAN MACLEN IPLEN */
2657 if (tx_flags & IGB_TX_FLAGS_VLAN)
2658 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2659 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2660 *hdr_len += skb_network_offset(skb);
2661 info |= skb_network_header_len(skb);
2662 *hdr_len += skb_network_header_len(skb);
2663 context_desc->vlan_macip_lens = cpu_to_le32(info);
2664
2665 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2666 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2667
2668 if (skb->protocol == htons(ETH_P_IP))
2669 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2670 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2671
2672 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2673
2674 /* MSS L4LEN IDX */
2675 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2676 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2677
2678 /* Context index must be unique per ring. */
2679 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2680 mss_l4len_idx |= tx_ring->queue_index << 4;
2681
2682 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2683 context_desc->seqnum_seed = 0;
2684
2685 buffer_info->time_stamp = jiffies;
2686 buffer_info->dma = 0;
2687 i++;
2688 if (i == tx_ring->count)
2689 i = 0;
2690
2691 tx_ring->next_to_use = i;
2692
2693 return true;
2694 }
2695
2696 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2697 struct igb_ring *tx_ring,
2698 struct sk_buff *skb, u32 tx_flags)
2699 {
2700 struct e1000_adv_tx_context_desc *context_desc;
2701 unsigned int i;
2702 struct igb_buffer *buffer_info;
2703 u32 info = 0, tu_cmd = 0;
2704
2705 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2706 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2707 i = tx_ring->next_to_use;
2708 buffer_info = &tx_ring->buffer_info[i];
2709 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2710
2711 if (tx_flags & IGB_TX_FLAGS_VLAN)
2712 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2713 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2714 if (skb->ip_summed == CHECKSUM_PARTIAL)
2715 info |= skb_network_header_len(skb);
2716
2717 context_desc->vlan_macip_lens = cpu_to_le32(info);
2718
2719 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2720
2721 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2722 switch (skb->protocol) {
2723 case __constant_htons(ETH_P_IP):
2724 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2725 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2726 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2727 break;
2728 case __constant_htons(ETH_P_IPV6):
2729 /* XXX what about other V6 headers?? */
2730 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2731 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2732 break;
2733 default:
2734 if (unlikely(net_ratelimit()))
2735 dev_warn(&adapter->pdev->dev,
2736 "partial checksum but proto=%x!\n",
2737 skb->protocol);
2738 break;
2739 }
2740 }
2741
2742 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2743 context_desc->seqnum_seed = 0;
2744 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2745 context_desc->mss_l4len_idx =
2746 cpu_to_le32(tx_ring->queue_index << 4);
2747
2748 buffer_info->time_stamp = jiffies;
2749 buffer_info->dma = 0;
2750
2751 i++;
2752 if (i == tx_ring->count)
2753 i = 0;
2754 tx_ring->next_to_use = i;
2755
2756 return true;
2757 }
2758
2759
2760 return false;
2761 }
2762
2763 #define IGB_MAX_TXD_PWR 16
2764 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2765
2766 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2767 struct igb_ring *tx_ring,
2768 struct sk_buff *skb)
2769 {
2770 struct igb_buffer *buffer_info;
2771 unsigned int len = skb_headlen(skb);
2772 unsigned int count = 0, i;
2773 unsigned int f;
2774
2775 i = tx_ring->next_to_use;
2776
2777 buffer_info = &tx_ring->buffer_info[i];
2778 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2779 buffer_info->length = len;
2780 /* set time_stamp *before* dma to help avoid a possible race */
2781 buffer_info->time_stamp = jiffies;
2782 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2783 PCI_DMA_TODEVICE);
2784 count++;
2785 i++;
2786 if (i == tx_ring->count)
2787 i = 0;
2788
2789 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2790 struct skb_frag_struct *frag;
2791
2792 frag = &skb_shinfo(skb)->frags[f];
2793 len = frag->size;
2794
2795 buffer_info = &tx_ring->buffer_info[i];
2796 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2797 buffer_info->length = len;
2798 buffer_info->time_stamp = jiffies;
2799 buffer_info->dma = pci_map_page(adapter->pdev,
2800 frag->page,
2801 frag->page_offset,
2802 len,
2803 PCI_DMA_TODEVICE);
2804
2805 count++;
2806 i++;
2807 if (i == tx_ring->count)
2808 i = 0;
2809 }
2810
2811 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2812 tx_ring->buffer_info[i].skb = skb;
2813
2814 return count;
2815 }
2816
2817 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2818 struct igb_ring *tx_ring,
2819 int tx_flags, int count, u32 paylen,
2820 u8 hdr_len)
2821 {
2822 union e1000_adv_tx_desc *tx_desc = NULL;
2823 struct igb_buffer *buffer_info;
2824 u32 olinfo_status = 0, cmd_type_len;
2825 unsigned int i;
2826
2827 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2828 E1000_ADVTXD_DCMD_DEXT);
2829
2830 if (tx_flags & IGB_TX_FLAGS_VLAN)
2831 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2832
2833 if (tx_flags & IGB_TX_FLAGS_TSO) {
2834 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2835
2836 /* insert tcp checksum */
2837 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2838
2839 /* insert ip checksum */
2840 if (tx_flags & IGB_TX_FLAGS_IPV4)
2841 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2842
2843 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2844 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2845 }
2846
2847 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2848 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2849 IGB_TX_FLAGS_VLAN)))
2850 olinfo_status |= tx_ring->queue_index << 4;
2851
2852 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2853
2854 i = tx_ring->next_to_use;
2855 while (count--) {
2856 buffer_info = &tx_ring->buffer_info[i];
2857 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2858 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2859 tx_desc->read.cmd_type_len =
2860 cpu_to_le32(cmd_type_len | buffer_info->length);
2861 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2862 i++;
2863 if (i == tx_ring->count)
2864 i = 0;
2865 }
2866
2867 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2868 /* Force memory writes to complete before letting h/w
2869 * know there are new descriptors to fetch. (Only
2870 * applicable for weak-ordered memory model archs,
2871 * such as IA-64). */
2872 wmb();
2873
2874 tx_ring->next_to_use = i;
2875 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2876 /* we need this if more than one processor can write to our tail
2877 * at a time, it syncronizes IO on IA64/Altix systems */
2878 mmiowb();
2879 }
2880
2881 static int __igb_maybe_stop_tx(struct net_device *netdev,
2882 struct igb_ring *tx_ring, int size)
2883 {
2884 struct igb_adapter *adapter = netdev_priv(netdev);
2885
2886 netif_stop_subqueue(netdev, tx_ring->queue_index);
2887
2888 /* Herbert's original patch had:
2889 * smp_mb__after_netif_stop_queue();
2890 * but since that doesn't exist yet, just open code it. */
2891 smp_mb();
2892
2893 /* We need to check again in a case another CPU has just
2894 * made room available. */
2895 if (IGB_DESC_UNUSED(tx_ring) < size)
2896 return -EBUSY;
2897
2898 /* A reprieve! */
2899 netif_wake_subqueue(netdev, tx_ring->queue_index);
2900 ++adapter->restart_queue;
2901 return 0;
2902 }
2903
2904 static int igb_maybe_stop_tx(struct net_device *netdev,
2905 struct igb_ring *tx_ring, int size)
2906 {
2907 if (IGB_DESC_UNUSED(tx_ring) >= size)
2908 return 0;
2909 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2910 }
2911
2912 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2913
2914 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2915 struct net_device *netdev,
2916 struct igb_ring *tx_ring)
2917 {
2918 struct igb_adapter *adapter = netdev_priv(netdev);
2919 unsigned int tx_flags = 0;
2920 unsigned int len;
2921 u8 hdr_len = 0;
2922 int tso = 0;
2923
2924 len = skb_headlen(skb);
2925
2926 if (test_bit(__IGB_DOWN, &adapter->state)) {
2927 dev_kfree_skb_any(skb);
2928 return NETDEV_TX_OK;
2929 }
2930
2931 if (skb->len <= 0) {
2932 dev_kfree_skb_any(skb);
2933 return NETDEV_TX_OK;
2934 }
2935
2936 /* need: 1 descriptor per page,
2937 * + 2 desc gap to keep tail from touching head,
2938 * + 1 desc for skb->data,
2939 * + 1 desc for context descriptor,
2940 * otherwise try next time */
2941 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2942 /* this is a hard error */
2943 return NETDEV_TX_BUSY;
2944 }
2945 skb_orphan(skb);
2946
2947 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2948 tx_flags |= IGB_TX_FLAGS_VLAN;
2949 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2950 }
2951
2952 if (skb->protocol == htons(ETH_P_IP))
2953 tx_flags |= IGB_TX_FLAGS_IPV4;
2954
2955 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2956 &hdr_len) : 0;
2957
2958 if (tso < 0) {
2959 dev_kfree_skb_any(skb);
2960 return NETDEV_TX_OK;
2961 }
2962
2963 if (tso)
2964 tx_flags |= IGB_TX_FLAGS_TSO;
2965 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2966 if (skb->ip_summed == CHECKSUM_PARTIAL)
2967 tx_flags |= IGB_TX_FLAGS_CSUM;
2968
2969 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2970 igb_tx_map_adv(adapter, tx_ring, skb),
2971 skb->len, hdr_len);
2972
2973 netdev->trans_start = jiffies;
2974
2975 /* Make sure there is space in the ring for the next send. */
2976 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2977
2978 return NETDEV_TX_OK;
2979 }
2980
2981 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2982 {
2983 struct igb_adapter *adapter = netdev_priv(netdev);
2984 struct igb_ring *tx_ring;
2985
2986 int r_idx = 0;
2987 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
2988 tx_ring = adapter->multi_tx_table[r_idx];
2989
2990 /* This goes back to the question of how to logically map a tx queue
2991 * to a flow. Right now, performance is impacted slightly negatively
2992 * if using multiple tx queues. If the stack breaks away from a
2993 * single qdisc implementation, we can look at this again. */
2994 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2995 }
2996
2997 /**
2998 * igb_tx_timeout - Respond to a Tx Hang
2999 * @netdev: network interface device structure
3000 **/
3001 static void igb_tx_timeout(struct net_device *netdev)
3002 {
3003 struct igb_adapter *adapter = netdev_priv(netdev);
3004 struct e1000_hw *hw = &adapter->hw;
3005
3006 /* Do the reset outside of interrupt context */
3007 adapter->tx_timeout_count++;
3008 schedule_work(&adapter->reset_task);
3009 wr32(E1000_EICS, adapter->eims_enable_mask &
3010 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3011 }
3012
3013 static void igb_reset_task(struct work_struct *work)
3014 {
3015 struct igb_adapter *adapter;
3016 adapter = container_of(work, struct igb_adapter, reset_task);
3017
3018 igb_reinit_locked(adapter);
3019 }
3020
3021 /**
3022 * igb_get_stats - Get System Network Statistics
3023 * @netdev: network interface device structure
3024 *
3025 * Returns the address of the device statistics structure.
3026 * The statistics are actually updated from the timer callback.
3027 **/
3028 static struct net_device_stats *
3029 igb_get_stats(struct net_device *netdev)
3030 {
3031 struct igb_adapter *adapter = netdev_priv(netdev);
3032
3033 /* only return the current stats */
3034 return &adapter->net_stats;
3035 }
3036
3037 /**
3038 * igb_change_mtu - Change the Maximum Transfer Unit
3039 * @netdev: network interface device structure
3040 * @new_mtu: new value for maximum frame size
3041 *
3042 * Returns 0 on success, negative on failure
3043 **/
3044 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3045 {
3046 struct igb_adapter *adapter = netdev_priv(netdev);
3047 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3048
3049 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3050 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3051 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3052 return -EINVAL;
3053 }
3054
3055 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3056 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3057 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3058 return -EINVAL;
3059 }
3060
3061 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3062 msleep(1);
3063 /* igb_down has a dependency on max_frame_size */
3064 adapter->max_frame_size = max_frame;
3065 if (netif_running(netdev))
3066 igb_down(adapter);
3067
3068 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3069 * means we reserve 2 more, this pushes us to allocate from the next
3070 * larger slab size.
3071 * i.e. RXBUFFER_2048 --> size-4096 slab
3072 */
3073
3074 if (max_frame <= IGB_RXBUFFER_256)
3075 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3076 else if (max_frame <= IGB_RXBUFFER_512)
3077 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3078 else if (max_frame <= IGB_RXBUFFER_1024)
3079 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3080 else if (max_frame <= IGB_RXBUFFER_2048)
3081 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3082 else
3083 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3084 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3085 #else
3086 adapter->rx_buffer_len = PAGE_SIZE / 2;
3087 #endif
3088 /* adjust allocation if LPE protects us, and we aren't using SBP */
3089 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3090 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3091 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3092
3093 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3094 netdev->mtu, new_mtu);
3095 netdev->mtu = new_mtu;
3096
3097 if (netif_running(netdev))
3098 igb_up(adapter);
3099 else
3100 igb_reset(adapter);
3101
3102 clear_bit(__IGB_RESETTING, &adapter->state);
3103
3104 return 0;
3105 }
3106
3107 /**
3108 * igb_update_stats - Update the board statistics counters
3109 * @adapter: board private structure
3110 **/
3111
3112 void igb_update_stats(struct igb_adapter *adapter)
3113 {
3114 struct e1000_hw *hw = &adapter->hw;
3115 struct pci_dev *pdev = adapter->pdev;
3116 u16 phy_tmp;
3117
3118 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3119
3120 /*
3121 * Prevent stats update while adapter is being reset, or if the pci
3122 * connection is down.
3123 */
3124 if (adapter->link_speed == 0)
3125 return;
3126 if (pci_channel_offline(pdev))
3127 return;
3128
3129 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3130 adapter->stats.gprc += rd32(E1000_GPRC);
3131 adapter->stats.gorc += rd32(E1000_GORCL);
3132 rd32(E1000_GORCH); /* clear GORCL */
3133 adapter->stats.bprc += rd32(E1000_BPRC);
3134 adapter->stats.mprc += rd32(E1000_MPRC);
3135 adapter->stats.roc += rd32(E1000_ROC);
3136
3137 adapter->stats.prc64 += rd32(E1000_PRC64);
3138 adapter->stats.prc127 += rd32(E1000_PRC127);
3139 adapter->stats.prc255 += rd32(E1000_PRC255);
3140 adapter->stats.prc511 += rd32(E1000_PRC511);
3141 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3142 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3143 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3144 adapter->stats.sec += rd32(E1000_SEC);
3145
3146 adapter->stats.mpc += rd32(E1000_MPC);
3147 adapter->stats.scc += rd32(E1000_SCC);
3148 adapter->stats.ecol += rd32(E1000_ECOL);
3149 adapter->stats.mcc += rd32(E1000_MCC);
3150 adapter->stats.latecol += rd32(E1000_LATECOL);
3151 adapter->stats.dc += rd32(E1000_DC);
3152 adapter->stats.rlec += rd32(E1000_RLEC);
3153 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3154 adapter->stats.xontxc += rd32(E1000_XONTXC);
3155 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3156 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3157 adapter->stats.fcruc += rd32(E1000_FCRUC);
3158 adapter->stats.gptc += rd32(E1000_GPTC);
3159 adapter->stats.gotc += rd32(E1000_GOTCL);
3160 rd32(E1000_GOTCH); /* clear GOTCL */
3161 adapter->stats.rnbc += rd32(E1000_RNBC);
3162 adapter->stats.ruc += rd32(E1000_RUC);
3163 adapter->stats.rfc += rd32(E1000_RFC);
3164 adapter->stats.rjc += rd32(E1000_RJC);
3165 adapter->stats.tor += rd32(E1000_TORH);
3166 adapter->stats.tot += rd32(E1000_TOTH);
3167 adapter->stats.tpr += rd32(E1000_TPR);
3168
3169 adapter->stats.ptc64 += rd32(E1000_PTC64);
3170 adapter->stats.ptc127 += rd32(E1000_PTC127);
3171 adapter->stats.ptc255 += rd32(E1000_PTC255);
3172 adapter->stats.ptc511 += rd32(E1000_PTC511);
3173 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3174 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3175
3176 adapter->stats.mptc += rd32(E1000_MPTC);
3177 adapter->stats.bptc += rd32(E1000_BPTC);
3178
3179 /* used for adaptive IFS */
3180
3181 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3182 adapter->stats.tpt += hw->mac.tx_packet_delta;
3183 hw->mac.collision_delta = rd32(E1000_COLC);
3184 adapter->stats.colc += hw->mac.collision_delta;
3185
3186 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3187 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3188 adapter->stats.tncrs += rd32(E1000_TNCRS);
3189 adapter->stats.tsctc += rd32(E1000_TSCTC);
3190 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3191
3192 adapter->stats.iac += rd32(E1000_IAC);
3193 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3194 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3195 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3196 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3197 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3198 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3199 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3200 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3201
3202 /* Fill out the OS statistics structure */
3203 adapter->net_stats.multicast = adapter->stats.mprc;
3204 adapter->net_stats.collisions = adapter->stats.colc;
3205
3206 /* Rx Errors */
3207
3208 /* RLEC on some newer hardware can be incorrect so build
3209 * our own version based on RUC and ROC */
3210 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3211 adapter->stats.crcerrs + adapter->stats.algnerrc +
3212 adapter->stats.ruc + adapter->stats.roc +
3213 adapter->stats.cexterr;
3214 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3215 adapter->stats.roc;
3216 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3217 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3218 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3219
3220 /* Tx Errors */
3221 adapter->net_stats.tx_errors = adapter->stats.ecol +
3222 adapter->stats.latecol;
3223 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3224 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3225 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3226
3227 /* Tx Dropped needs to be maintained elsewhere */
3228
3229 /* Phy Stats */
3230 if (hw->phy.media_type == e1000_media_type_copper) {
3231 if ((adapter->link_speed == SPEED_1000) &&
3232 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3233 &phy_tmp))) {
3234 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3235 adapter->phy_stats.idle_errors += phy_tmp;
3236 }
3237 }
3238
3239 /* Management Stats */
3240 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3241 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3242 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3243 }
3244
3245
3246 static irqreturn_t igb_msix_other(int irq, void *data)
3247 {
3248 struct net_device *netdev = data;
3249 struct igb_adapter *adapter = netdev_priv(netdev);
3250 struct e1000_hw *hw = &adapter->hw;
3251 u32 icr = rd32(E1000_ICR);
3252
3253 /* reading ICR causes bit 31 of EICR to be cleared */
3254 if (!(icr & E1000_ICR_LSC))
3255 goto no_link_interrupt;
3256 hw->mac.get_link_status = 1;
3257 /* guard against interrupt when we're going down */
3258 if (!test_bit(__IGB_DOWN, &adapter->state))
3259 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3260
3261 no_link_interrupt:
3262 wr32(E1000_IMS, E1000_IMS_LSC);
3263 wr32(E1000_EIMS, adapter->eims_other);
3264
3265 return IRQ_HANDLED;
3266 }
3267
3268 static irqreturn_t igb_msix_tx(int irq, void *data)
3269 {
3270 struct igb_ring *tx_ring = data;
3271 struct igb_adapter *adapter = tx_ring->adapter;
3272 struct e1000_hw *hw = &adapter->hw;
3273
3274 #ifdef CONFIG_DCA
3275 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3276 igb_update_tx_dca(tx_ring);
3277 #endif
3278 tx_ring->total_bytes = 0;
3279 tx_ring->total_packets = 0;
3280
3281 /* auto mask will automatically reenable the interrupt when we write
3282 * EICS */
3283 if (!igb_clean_tx_irq(tx_ring))
3284 /* Ring was not completely cleaned, so fire another interrupt */
3285 wr32(E1000_EICS, tx_ring->eims_value);
3286 else
3287 wr32(E1000_EIMS, tx_ring->eims_value);
3288
3289 return IRQ_HANDLED;
3290 }
3291
3292 static void igb_write_itr(struct igb_ring *ring)
3293 {
3294 struct e1000_hw *hw = &ring->adapter->hw;
3295 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3296 switch (hw->mac.type) {
3297 case e1000_82576:
3298 wr32(ring->itr_register,
3299 ring->itr_val |
3300 0x80000000);
3301 break;
3302 default:
3303 wr32(ring->itr_register,
3304 ring->itr_val |
3305 (ring->itr_val << 16));
3306 break;
3307 }
3308 ring->set_itr = 0;
3309 }
3310 }
3311
3312 static irqreturn_t igb_msix_rx(int irq, void *data)
3313 {
3314 struct igb_ring *rx_ring = data;
3315 struct igb_adapter *adapter = rx_ring->adapter;
3316
3317 /* Write the ITR value calculated at the end of the
3318 * previous interrupt.
3319 */
3320
3321 igb_write_itr(rx_ring);
3322
3323 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3324 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3325
3326 #ifdef CONFIG_DCA
3327 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3328 igb_update_rx_dca(rx_ring);
3329 #endif
3330 return IRQ_HANDLED;
3331 }
3332
3333 #ifdef CONFIG_DCA
3334 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3335 {
3336 u32 dca_rxctrl;
3337 struct igb_adapter *adapter = rx_ring->adapter;
3338 struct e1000_hw *hw = &adapter->hw;
3339 int cpu = get_cpu();
3340 int q = rx_ring - adapter->rx_ring;
3341
3342 if (rx_ring->cpu != cpu) {
3343 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3344 if (hw->mac.type == e1000_82576) {
3345 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3346 dca_rxctrl |= dca_get_tag(cpu) <<
3347 E1000_DCA_RXCTRL_CPUID_SHIFT;
3348 } else {
3349 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3350 dca_rxctrl |= dca_get_tag(cpu);
3351 }
3352 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3353 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3354 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3355 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3356 rx_ring->cpu = cpu;
3357 }
3358 put_cpu();
3359 }
3360
3361 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3362 {
3363 u32 dca_txctrl;
3364 struct igb_adapter *adapter = tx_ring->adapter;
3365 struct e1000_hw *hw = &adapter->hw;
3366 int cpu = get_cpu();
3367 int q = tx_ring - adapter->tx_ring;
3368
3369 if (tx_ring->cpu != cpu) {
3370 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3371 if (hw->mac.type == e1000_82576) {
3372 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3373 dca_txctrl |= dca_get_tag(cpu) <<
3374 E1000_DCA_TXCTRL_CPUID_SHIFT;
3375 } else {
3376 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3377 dca_txctrl |= dca_get_tag(cpu);
3378 }
3379 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3380 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3381 tx_ring->cpu = cpu;
3382 }
3383 put_cpu();
3384 }
3385
3386 static void igb_setup_dca(struct igb_adapter *adapter)
3387 {
3388 int i;
3389
3390 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3391 return;
3392
3393 for (i = 0; i < adapter->num_tx_queues; i++) {
3394 adapter->tx_ring[i].cpu = -1;
3395 igb_update_tx_dca(&adapter->tx_ring[i]);
3396 }
3397 for (i = 0; i < adapter->num_rx_queues; i++) {
3398 adapter->rx_ring[i].cpu = -1;
3399 igb_update_rx_dca(&adapter->rx_ring[i]);
3400 }
3401 }
3402
3403 static int __igb_notify_dca(struct device *dev, void *data)
3404 {
3405 struct net_device *netdev = dev_get_drvdata(dev);
3406 struct igb_adapter *adapter = netdev_priv(netdev);
3407 struct e1000_hw *hw = &adapter->hw;
3408 unsigned long event = *(unsigned long *)data;
3409
3410 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3411 goto out;
3412
3413 switch (event) {
3414 case DCA_PROVIDER_ADD:
3415 /* if already enabled, don't do it again */
3416 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3417 break;
3418 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3419 /* Always use CB2 mode, difference is masked
3420 * in the CB driver. */
3421 wr32(E1000_DCA_CTRL, 2);
3422 if (dca_add_requester(dev) == 0) {
3423 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3424 igb_setup_dca(adapter);
3425 break;
3426 }
3427 /* Fall Through since DCA is disabled. */
3428 case DCA_PROVIDER_REMOVE:
3429 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3430 /* without this a class_device is left
3431 * hanging around in the sysfs model */
3432 dca_remove_requester(dev);
3433 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3434 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3435 wr32(E1000_DCA_CTRL, 1);
3436 }
3437 break;
3438 }
3439 out:
3440 return 0;
3441 }
3442
3443 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3444 void *p)
3445 {
3446 int ret_val;
3447
3448 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3449 __igb_notify_dca);
3450
3451 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3452 }
3453 #endif /* CONFIG_DCA */
3454
3455 /**
3456 * igb_intr_msi - Interrupt Handler
3457 * @irq: interrupt number
3458 * @data: pointer to a network interface device structure
3459 **/
3460 static irqreturn_t igb_intr_msi(int irq, void *data)
3461 {
3462 struct net_device *netdev = data;
3463 struct igb_adapter *adapter = netdev_priv(netdev);
3464 struct e1000_hw *hw = &adapter->hw;
3465 /* read ICR disables interrupts using IAM */
3466 u32 icr = rd32(E1000_ICR);
3467
3468 igb_write_itr(adapter->rx_ring);
3469
3470 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3471 hw->mac.get_link_status = 1;
3472 if (!test_bit(__IGB_DOWN, &adapter->state))
3473 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3474 }
3475
3476 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3477
3478 return IRQ_HANDLED;
3479 }
3480
3481 /**
3482 * igb_intr - Interrupt Handler
3483 * @irq: interrupt number
3484 * @data: pointer to a network interface device structure
3485 **/
3486 static irqreturn_t igb_intr(int irq, void *data)
3487 {
3488 struct net_device *netdev = data;
3489 struct igb_adapter *adapter = netdev_priv(netdev);
3490 struct e1000_hw *hw = &adapter->hw;
3491 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3492 * need for the IMC write */
3493 u32 icr = rd32(E1000_ICR);
3494 u32 eicr = 0;
3495 if (!icr)
3496 return IRQ_NONE; /* Not our interrupt */
3497
3498 igb_write_itr(adapter->rx_ring);
3499
3500 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3501 * not set, then the adapter didn't send an interrupt */
3502 if (!(icr & E1000_ICR_INT_ASSERTED))
3503 return IRQ_NONE;
3504
3505 eicr = rd32(E1000_EICR);
3506
3507 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3508 hw->mac.get_link_status = 1;
3509 /* guard against interrupt when we're going down */
3510 if (!test_bit(__IGB_DOWN, &adapter->state))
3511 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3512 }
3513
3514 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3515
3516 return IRQ_HANDLED;
3517 }
3518
3519 /**
3520 * igb_poll - NAPI Rx polling callback
3521 * @napi: napi polling structure
3522 * @budget: count of how many packets we should handle
3523 **/
3524 static int igb_poll(struct napi_struct *napi, int budget)
3525 {
3526 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3527 struct igb_adapter *adapter = rx_ring->adapter;
3528 struct net_device *netdev = adapter->netdev;
3529 int tx_clean_complete, work_done = 0;
3530
3531 /* this poll routine only supports one tx and one rx queue */
3532 #ifdef CONFIG_DCA
3533 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3534 igb_update_tx_dca(&adapter->tx_ring[0]);
3535 #endif
3536 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3537
3538 #ifdef CONFIG_DCA
3539 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3540 igb_update_rx_dca(&adapter->rx_ring[0]);
3541 #endif
3542 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3543
3544 /* If no Tx and not enough Rx work done, exit the polling mode */
3545 if ((tx_clean_complete && (work_done < budget)) ||
3546 !netif_running(netdev)) {
3547 if (adapter->itr_setting & 3)
3548 igb_set_itr(adapter);
3549 netif_rx_complete(netdev, napi);
3550 if (!test_bit(__IGB_DOWN, &adapter->state))
3551 igb_irq_enable(adapter);
3552 return 0;
3553 }
3554
3555 return 1;
3556 }
3557
3558 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3559 {
3560 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3561 struct igb_adapter *adapter = rx_ring->adapter;
3562 struct e1000_hw *hw = &adapter->hw;
3563 struct net_device *netdev = adapter->netdev;
3564 int work_done = 0;
3565
3566 /* Keep link state information with original netdev */
3567 if (!netif_carrier_ok(netdev))
3568 goto quit_polling;
3569
3570 #ifdef CONFIG_DCA
3571 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3572 igb_update_rx_dca(rx_ring);
3573 #endif
3574 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3575
3576
3577 /* If not enough Rx work done, exit the polling mode */
3578 if ((work_done == 0) || !netif_running(netdev)) {
3579 quit_polling:
3580 netif_rx_complete(netdev, napi);
3581
3582 if (adapter->itr_setting & 3) {
3583 if (adapter->num_rx_queues == 1)
3584 igb_set_itr(adapter);
3585 else
3586 igb_update_ring_itr(rx_ring);
3587 }
3588
3589 if (!test_bit(__IGB_DOWN, &adapter->state))
3590 wr32(E1000_EIMS, rx_ring->eims_value);
3591
3592 return 0;
3593 }
3594
3595 return 1;
3596 }
3597
3598 static inline u32 get_head(struct igb_ring *tx_ring)
3599 {
3600 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3601 return le32_to_cpu(*(volatile __le32 *)end);
3602 }
3603
3604 /**
3605 * igb_clean_tx_irq - Reclaim resources after transmit completes
3606 * @adapter: board private structure
3607 * returns true if ring is completely cleaned
3608 **/
3609 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3610 {
3611 struct igb_adapter *adapter = tx_ring->adapter;
3612 struct e1000_hw *hw = &adapter->hw;
3613 struct net_device *netdev = adapter->netdev;
3614 struct e1000_tx_desc *tx_desc;
3615 struct igb_buffer *buffer_info;
3616 struct sk_buff *skb;
3617 unsigned int i;
3618 u32 head, oldhead;
3619 unsigned int count = 0;
3620 bool cleaned = false;
3621 bool retval = true;
3622 unsigned int total_bytes = 0, total_packets = 0;
3623
3624 rmb();
3625 head = get_head(tx_ring);
3626 i = tx_ring->next_to_clean;
3627 while (1) {
3628 while (i != head) {
3629 cleaned = true;
3630 tx_desc = E1000_TX_DESC(*tx_ring, i);
3631 buffer_info = &tx_ring->buffer_info[i];
3632 skb = buffer_info->skb;
3633
3634 if (skb) {
3635 unsigned int segs, bytecount;
3636 /* gso_segs is currently only valid for tcp */
3637 segs = skb_shinfo(skb)->gso_segs ?: 1;
3638 /* multiply data chunks by size of headers */
3639 bytecount = ((segs - 1) * skb_headlen(skb)) +
3640 skb->len;
3641 total_packets += segs;
3642 total_bytes += bytecount;
3643 }
3644
3645 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3646 tx_desc->upper.data = 0;
3647
3648 i++;
3649 if (i == tx_ring->count)
3650 i = 0;
3651
3652 count++;
3653 if (count == IGB_MAX_TX_CLEAN) {
3654 retval = false;
3655 goto done_cleaning;
3656 }
3657 }
3658 oldhead = head;
3659 rmb();
3660 head = get_head(tx_ring);
3661 if (head == oldhead)
3662 goto done_cleaning;
3663 } /* while (1) */
3664
3665 done_cleaning:
3666 tx_ring->next_to_clean = i;
3667
3668 if (unlikely(cleaned &&
3669 netif_carrier_ok(netdev) &&
3670 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3671 /* Make sure that anybody stopping the queue after this
3672 * sees the new next_to_clean.
3673 */
3674 smp_mb();
3675 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3676 !(test_bit(__IGB_DOWN, &adapter->state))) {
3677 netif_wake_subqueue(netdev, tx_ring->queue_index);
3678 ++adapter->restart_queue;
3679 }
3680 }
3681
3682 if (tx_ring->detect_tx_hung) {
3683 /* Detect a transmit hang in hardware, this serializes the
3684 * check with the clearing of time_stamp and movement of i */
3685 tx_ring->detect_tx_hung = false;
3686 if (tx_ring->buffer_info[i].time_stamp &&
3687 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3688 (adapter->tx_timeout_factor * HZ))
3689 && !(rd32(E1000_STATUS) &
3690 E1000_STATUS_TXOFF)) {
3691
3692 tx_desc = E1000_TX_DESC(*tx_ring, i);
3693 /* detected Tx unit hang */
3694 dev_err(&adapter->pdev->dev,
3695 "Detected Tx Unit Hang\n"
3696 " Tx Queue <%d>\n"
3697 " TDH <%x>\n"
3698 " TDT <%x>\n"
3699 " next_to_use <%x>\n"
3700 " next_to_clean <%x>\n"
3701 " head (WB) <%x>\n"
3702 "buffer_info[next_to_clean]\n"
3703 " time_stamp <%lx>\n"
3704 " jiffies <%lx>\n"
3705 " desc.status <%x>\n",
3706 tx_ring->queue_index,
3707 readl(adapter->hw.hw_addr + tx_ring->head),
3708 readl(adapter->hw.hw_addr + tx_ring->tail),
3709 tx_ring->next_to_use,
3710 tx_ring->next_to_clean,
3711 head,
3712 tx_ring->buffer_info[i].time_stamp,
3713 jiffies,
3714 tx_desc->upper.fields.status);
3715 netif_stop_subqueue(netdev, tx_ring->queue_index);
3716 }
3717 }
3718 tx_ring->total_bytes += total_bytes;
3719 tx_ring->total_packets += total_packets;
3720 tx_ring->tx_stats.bytes += total_bytes;
3721 tx_ring->tx_stats.packets += total_packets;
3722 adapter->net_stats.tx_bytes += total_bytes;
3723 adapter->net_stats.tx_packets += total_packets;
3724 return retval;
3725 }
3726
3727 #ifdef CONFIG_IGB_LRO
3728 /**
3729 * igb_get_skb_hdr - helper function for LRO header processing
3730 * @skb: pointer to sk_buff to be added to LRO packet
3731 * @iphdr: pointer to ip header structure
3732 * @tcph: pointer to tcp header structure
3733 * @hdr_flags: pointer to header flags
3734 * @priv: pointer to the receive descriptor for the current sk_buff
3735 **/
3736 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3737 u64 *hdr_flags, void *priv)
3738 {
3739 union e1000_adv_rx_desc *rx_desc = priv;
3740 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3741 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3742
3743 /* Verify that this is a valid IPv4 TCP packet */
3744 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3745 E1000_RXDADV_PKTTYPE_TCP))
3746 return -1;
3747
3748 /* Set network headers */
3749 skb_reset_network_header(skb);
3750 skb_set_transport_header(skb, ip_hdrlen(skb));
3751 *iphdr = ip_hdr(skb);
3752 *tcph = tcp_hdr(skb);
3753 *hdr_flags = LRO_IPV4 | LRO_TCP;
3754
3755 return 0;
3756
3757 }
3758 #endif /* CONFIG_IGB_LRO */
3759
3760 /**
3761 * igb_receive_skb - helper function to handle rx indications
3762 * @ring: pointer to receive ring receving this packet
3763 * @status: descriptor status field as written by hardware
3764 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3765 * @skb: pointer to sk_buff to be indicated to stack
3766 **/
3767 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3768 union e1000_adv_rx_desc * rx_desc,
3769 struct sk_buff *skb)
3770 {
3771 struct igb_adapter * adapter = ring->adapter;
3772 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3773
3774 #ifdef CONFIG_IGB_LRO
3775 if (adapter->netdev->features & NETIF_F_LRO &&
3776 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3777 if (vlan_extracted)
3778 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3779 adapter->vlgrp,
3780 le16_to_cpu(rx_desc->wb.upper.vlan),
3781 rx_desc);
3782 else
3783 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3784 ring->lro_used = 1;
3785 } else {
3786 #endif
3787 if (vlan_extracted)
3788 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3789 le16_to_cpu(rx_desc->wb.upper.vlan));
3790 else
3791
3792 netif_receive_skb(skb);
3793 #ifdef CONFIG_IGB_LRO
3794 }
3795 #endif
3796 }
3797
3798
3799 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3800 u32 status_err, struct sk_buff *skb)
3801 {
3802 skb->ip_summed = CHECKSUM_NONE;
3803
3804 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3805 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3806 return;
3807 /* TCP/UDP checksum error bit is set */
3808 if (status_err &
3809 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3810 /* let the stack verify checksum errors */
3811 adapter->hw_csum_err++;
3812 return;
3813 }
3814 /* It must be a TCP or UDP packet with a valid checksum */
3815 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3816 skb->ip_summed = CHECKSUM_UNNECESSARY;
3817
3818 adapter->hw_csum_good++;
3819 }
3820
3821 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3822 int *work_done, int budget)
3823 {
3824 struct igb_adapter *adapter = rx_ring->adapter;
3825 struct net_device *netdev = adapter->netdev;
3826 struct pci_dev *pdev = adapter->pdev;
3827 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3828 struct igb_buffer *buffer_info , *next_buffer;
3829 struct sk_buff *skb;
3830 unsigned int i;
3831 u32 length, hlen, staterr;
3832 bool cleaned = false;
3833 int cleaned_count = 0;
3834 unsigned int total_bytes = 0, total_packets = 0;
3835
3836 i = rx_ring->next_to_clean;
3837 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3838 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3839
3840 while (staterr & E1000_RXD_STAT_DD) {
3841 if (*work_done >= budget)
3842 break;
3843 (*work_done)++;
3844 buffer_info = &rx_ring->buffer_info[i];
3845
3846 /* HW will not DMA in data larger than the given buffer, even
3847 * if it parses the (NFS, of course) header to be larger. In
3848 * that case, it fills the header buffer and spills the rest
3849 * into the page.
3850 */
3851 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3852 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3853 if (hlen > adapter->rx_ps_hdr_size)
3854 hlen = adapter->rx_ps_hdr_size;
3855
3856 length = le16_to_cpu(rx_desc->wb.upper.length);
3857 cleaned = true;
3858 cleaned_count++;
3859
3860 skb = buffer_info->skb;
3861 prefetch(skb->data - NET_IP_ALIGN);
3862 buffer_info->skb = NULL;
3863 if (!adapter->rx_ps_hdr_size) {
3864 pci_unmap_single(pdev, buffer_info->dma,
3865 adapter->rx_buffer_len +
3866 NET_IP_ALIGN,
3867 PCI_DMA_FROMDEVICE);
3868 skb_put(skb, length);
3869 goto send_up;
3870 }
3871
3872 if (!skb_shinfo(skb)->nr_frags) {
3873 pci_unmap_single(pdev, buffer_info->dma,
3874 adapter->rx_ps_hdr_size +
3875 NET_IP_ALIGN,
3876 PCI_DMA_FROMDEVICE);
3877 skb_put(skb, hlen);
3878 }
3879
3880 if (length) {
3881 pci_unmap_page(pdev, buffer_info->page_dma,
3882 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3883 buffer_info->page_dma = 0;
3884
3885 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3886 buffer_info->page,
3887 buffer_info->page_offset,
3888 length);
3889
3890 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3891 (page_count(buffer_info->page) != 1))
3892 buffer_info->page = NULL;
3893 else
3894 get_page(buffer_info->page);
3895
3896 skb->len += length;
3897 skb->data_len += length;
3898
3899 skb->truesize += length;
3900 }
3901 send_up:
3902 i++;
3903 if (i == rx_ring->count)
3904 i = 0;
3905 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3906 prefetch(next_rxd);
3907 next_buffer = &rx_ring->buffer_info[i];
3908
3909 if (!(staterr & E1000_RXD_STAT_EOP)) {
3910 buffer_info->skb = xchg(&next_buffer->skb, skb);
3911 buffer_info->dma = xchg(&next_buffer->dma, 0);
3912 goto next_desc;
3913 }
3914
3915 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3916 dev_kfree_skb_irq(skb);
3917 goto next_desc;
3918 }
3919
3920 total_bytes += skb->len;
3921 total_packets++;
3922
3923 igb_rx_checksum_adv(adapter, staterr, skb);
3924
3925 skb->protocol = eth_type_trans(skb, netdev);
3926
3927 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3928
3929 netdev->last_rx = jiffies;
3930
3931 next_desc:
3932 rx_desc->wb.upper.status_error = 0;
3933
3934 /* return some buffers to hardware, one at a time is too slow */
3935 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3936 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3937 cleaned_count = 0;
3938 }
3939
3940 /* use prefetched values */
3941 rx_desc = next_rxd;
3942 buffer_info = next_buffer;
3943
3944 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3945 }
3946
3947 rx_ring->next_to_clean = i;
3948 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3949
3950 #ifdef CONFIG_IGB_LRO
3951 if (rx_ring->lro_used) {
3952 lro_flush_all(&rx_ring->lro_mgr);
3953 rx_ring->lro_used = 0;
3954 }
3955 #endif
3956
3957 if (cleaned_count)
3958 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3959
3960 rx_ring->total_packets += total_packets;
3961 rx_ring->total_bytes += total_bytes;
3962 rx_ring->rx_stats.packets += total_packets;
3963 rx_ring->rx_stats.bytes += total_bytes;
3964 adapter->net_stats.rx_bytes += total_bytes;
3965 adapter->net_stats.rx_packets += total_packets;
3966 return cleaned;
3967 }
3968
3969
3970 /**
3971 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3972 * @adapter: address of board private structure
3973 **/
3974 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3975 int cleaned_count)
3976 {
3977 struct igb_adapter *adapter = rx_ring->adapter;
3978 struct net_device *netdev = adapter->netdev;
3979 struct pci_dev *pdev = adapter->pdev;
3980 union e1000_adv_rx_desc *rx_desc;
3981 struct igb_buffer *buffer_info;
3982 struct sk_buff *skb;
3983 unsigned int i;
3984
3985 i = rx_ring->next_to_use;
3986 buffer_info = &rx_ring->buffer_info[i];
3987
3988 while (cleaned_count--) {
3989 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3990
3991 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3992 if (!buffer_info->page) {
3993 buffer_info->page = alloc_page(GFP_ATOMIC);
3994 if (!buffer_info->page) {
3995 adapter->alloc_rx_buff_failed++;
3996 goto no_buffers;
3997 }
3998 buffer_info->page_offset = 0;
3999 } else {
4000 buffer_info->page_offset ^= PAGE_SIZE / 2;
4001 }
4002 buffer_info->page_dma =
4003 pci_map_page(pdev,
4004 buffer_info->page,
4005 buffer_info->page_offset,
4006 PAGE_SIZE / 2,
4007 PCI_DMA_FROMDEVICE);
4008 }
4009
4010 if (!buffer_info->skb) {
4011 int bufsz;
4012
4013 if (adapter->rx_ps_hdr_size)
4014 bufsz = adapter->rx_ps_hdr_size;
4015 else
4016 bufsz = adapter->rx_buffer_len;
4017 bufsz += NET_IP_ALIGN;
4018 skb = netdev_alloc_skb(netdev, bufsz);
4019
4020 if (!skb) {
4021 adapter->alloc_rx_buff_failed++;
4022 goto no_buffers;
4023 }
4024
4025 /* Make buffer alignment 2 beyond a 16 byte boundary
4026 * this will result in a 16 byte aligned IP header after
4027 * the 14 byte MAC header is removed
4028 */
4029 skb_reserve(skb, NET_IP_ALIGN);
4030
4031 buffer_info->skb = skb;
4032 buffer_info->dma = pci_map_single(pdev, skb->data,
4033 bufsz,
4034 PCI_DMA_FROMDEVICE);
4035
4036 }
4037 /* Refresh the desc even if buffer_addrs didn't change because
4038 * each write-back erases this info. */
4039 if (adapter->rx_ps_hdr_size) {
4040 rx_desc->read.pkt_addr =
4041 cpu_to_le64(buffer_info->page_dma);
4042 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4043 } else {
4044 rx_desc->read.pkt_addr =
4045 cpu_to_le64(buffer_info->dma);
4046 rx_desc->read.hdr_addr = 0;
4047 }
4048
4049 i++;
4050 if (i == rx_ring->count)
4051 i = 0;
4052 buffer_info = &rx_ring->buffer_info[i];
4053 }
4054
4055 no_buffers:
4056 if (rx_ring->next_to_use != i) {
4057 rx_ring->next_to_use = i;
4058 if (i == 0)
4059 i = (rx_ring->count - 1);
4060 else
4061 i--;
4062
4063 /* Force memory writes to complete before letting h/w
4064 * know there are new descriptors to fetch. (Only
4065 * applicable for weak-ordered memory model archs,
4066 * such as IA-64). */
4067 wmb();
4068 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4069 }
4070 }
4071
4072 /**
4073 * igb_mii_ioctl -
4074 * @netdev:
4075 * @ifreq:
4076 * @cmd:
4077 **/
4078 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4079 {
4080 struct igb_adapter *adapter = netdev_priv(netdev);
4081 struct mii_ioctl_data *data = if_mii(ifr);
4082
4083 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4084 return -EOPNOTSUPP;
4085
4086 switch (cmd) {
4087 case SIOCGMIIPHY:
4088 data->phy_id = adapter->hw.phy.addr;
4089 break;
4090 case SIOCGMIIREG:
4091 if (!capable(CAP_NET_ADMIN))
4092 return -EPERM;
4093 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4094 data->reg_num
4095 & 0x1F, &data->val_out))
4096 return -EIO;
4097 break;
4098 case SIOCSMIIREG:
4099 default:
4100 return -EOPNOTSUPP;
4101 }
4102 return 0;
4103 }
4104
4105 /**
4106 * igb_ioctl -
4107 * @netdev:
4108 * @ifreq:
4109 * @cmd:
4110 **/
4111 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4112 {
4113 switch (cmd) {
4114 case SIOCGMIIPHY:
4115 case SIOCGMIIREG:
4116 case SIOCSMIIREG:
4117 return igb_mii_ioctl(netdev, ifr, cmd);
4118 default:
4119 return -EOPNOTSUPP;
4120 }
4121 }
4122
4123 static void igb_vlan_rx_register(struct net_device *netdev,
4124 struct vlan_group *grp)
4125 {
4126 struct igb_adapter *adapter = netdev_priv(netdev);
4127 struct e1000_hw *hw = &adapter->hw;
4128 u32 ctrl, rctl;
4129
4130 igb_irq_disable(adapter);
4131 adapter->vlgrp = grp;
4132
4133 if (grp) {
4134 /* enable VLAN tag insert/strip */
4135 ctrl = rd32(E1000_CTRL);
4136 ctrl |= E1000_CTRL_VME;
4137 wr32(E1000_CTRL, ctrl);
4138
4139 /* enable VLAN receive filtering */
4140 rctl = rd32(E1000_RCTL);
4141 rctl &= ~E1000_RCTL_CFIEN;
4142 wr32(E1000_RCTL, rctl);
4143 igb_update_mng_vlan(adapter);
4144 wr32(E1000_RLPML,
4145 adapter->max_frame_size + VLAN_TAG_SIZE);
4146 } else {
4147 /* disable VLAN tag insert/strip */
4148 ctrl = rd32(E1000_CTRL);
4149 ctrl &= ~E1000_CTRL_VME;
4150 wr32(E1000_CTRL, ctrl);
4151
4152 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4153 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4154 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4155 }
4156 wr32(E1000_RLPML,
4157 adapter->max_frame_size);
4158 }
4159
4160 if (!test_bit(__IGB_DOWN, &adapter->state))
4161 igb_irq_enable(adapter);
4162 }
4163
4164 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4165 {
4166 struct igb_adapter *adapter = netdev_priv(netdev);
4167 struct e1000_hw *hw = &adapter->hw;
4168 u32 vfta, index;
4169
4170 if ((adapter->hw.mng_cookie.status &
4171 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4172 (vid == adapter->mng_vlan_id))
4173 return;
4174 /* add VID to filter table */
4175 index = (vid >> 5) & 0x7F;
4176 vfta = array_rd32(E1000_VFTA, index);
4177 vfta |= (1 << (vid & 0x1F));
4178 igb_write_vfta(&adapter->hw, index, vfta);
4179 }
4180
4181 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4182 {
4183 struct igb_adapter *adapter = netdev_priv(netdev);
4184 struct e1000_hw *hw = &adapter->hw;
4185 u32 vfta, index;
4186
4187 igb_irq_disable(adapter);
4188 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4189
4190 if (!test_bit(__IGB_DOWN, &adapter->state))
4191 igb_irq_enable(adapter);
4192
4193 if ((adapter->hw.mng_cookie.status &
4194 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4195 (vid == adapter->mng_vlan_id)) {
4196 /* release control to f/w */
4197 igb_release_hw_control(adapter);
4198 return;
4199 }
4200
4201 /* remove VID from filter table */
4202 index = (vid >> 5) & 0x7F;
4203 vfta = array_rd32(E1000_VFTA, index);
4204 vfta &= ~(1 << (vid & 0x1F));
4205 igb_write_vfta(&adapter->hw, index, vfta);
4206 }
4207
4208 static void igb_restore_vlan(struct igb_adapter *adapter)
4209 {
4210 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4211
4212 if (adapter->vlgrp) {
4213 u16 vid;
4214 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4215 if (!vlan_group_get_device(adapter->vlgrp, vid))
4216 continue;
4217 igb_vlan_rx_add_vid(adapter->netdev, vid);
4218 }
4219 }
4220 }
4221
4222 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4223 {
4224 struct e1000_mac_info *mac = &adapter->hw.mac;
4225
4226 mac->autoneg = 0;
4227
4228 /* Fiber NICs only allow 1000 gbps Full duplex */
4229 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4230 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4231 dev_err(&adapter->pdev->dev,
4232 "Unsupported Speed/Duplex configuration\n");
4233 return -EINVAL;
4234 }
4235
4236 switch (spddplx) {
4237 case SPEED_10 + DUPLEX_HALF:
4238 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4239 break;
4240 case SPEED_10 + DUPLEX_FULL:
4241 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4242 break;
4243 case SPEED_100 + DUPLEX_HALF:
4244 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4245 break;
4246 case SPEED_100 + DUPLEX_FULL:
4247 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4248 break;
4249 case SPEED_1000 + DUPLEX_FULL:
4250 mac->autoneg = 1;
4251 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4252 break;
4253 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4254 default:
4255 dev_err(&adapter->pdev->dev,
4256 "Unsupported Speed/Duplex configuration\n");
4257 return -EINVAL;
4258 }
4259 return 0;
4260 }
4261
4262
4263 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4264 {
4265 struct net_device *netdev = pci_get_drvdata(pdev);
4266 struct igb_adapter *adapter = netdev_priv(netdev);
4267 struct e1000_hw *hw = &adapter->hw;
4268 u32 ctrl, rctl, status;
4269 u32 wufc = adapter->wol;
4270 #ifdef CONFIG_PM
4271 int retval = 0;
4272 #endif
4273
4274 netif_device_detach(netdev);
4275
4276 if (netif_running(netdev))
4277 igb_close(netdev);
4278
4279 igb_reset_interrupt_capability(adapter);
4280
4281 igb_free_queues(adapter);
4282
4283 #ifdef CONFIG_PM
4284 retval = pci_save_state(pdev);
4285 if (retval)
4286 return retval;
4287 #endif
4288
4289 status = rd32(E1000_STATUS);
4290 if (status & E1000_STATUS_LU)
4291 wufc &= ~E1000_WUFC_LNKC;
4292
4293 if (wufc) {
4294 igb_setup_rctl(adapter);
4295 igb_set_multi(netdev);
4296
4297 /* turn on all-multi mode if wake on multicast is enabled */
4298 if (wufc & E1000_WUFC_MC) {
4299 rctl = rd32(E1000_RCTL);
4300 rctl |= E1000_RCTL_MPE;
4301 wr32(E1000_RCTL, rctl);
4302 }
4303
4304 ctrl = rd32(E1000_CTRL);
4305 /* advertise wake from D3Cold */
4306 #define E1000_CTRL_ADVD3WUC 0x00100000
4307 /* phy power management enable */
4308 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4309 ctrl |= E1000_CTRL_ADVD3WUC;
4310 wr32(E1000_CTRL, ctrl);
4311
4312 /* Allow time for pending master requests to run */
4313 igb_disable_pcie_master(&adapter->hw);
4314
4315 wr32(E1000_WUC, E1000_WUC_PME_EN);
4316 wr32(E1000_WUFC, wufc);
4317 } else {
4318 wr32(E1000_WUC, 0);
4319 wr32(E1000_WUFC, 0);
4320 }
4321
4322 /* make sure adapter isn't asleep if manageability/wol is enabled */
4323 if (wufc || adapter->en_mng_pt) {
4324 pci_enable_wake(pdev, PCI_D3hot, 1);
4325 pci_enable_wake(pdev, PCI_D3cold, 1);
4326 } else {
4327 igb_shutdown_fiber_serdes_link_82575(hw);
4328 pci_enable_wake(pdev, PCI_D3hot, 0);
4329 pci_enable_wake(pdev, PCI_D3cold, 0);
4330 }
4331
4332 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4333 * would have already happened in close and is redundant. */
4334 igb_release_hw_control(adapter);
4335
4336 pci_disable_device(pdev);
4337
4338 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4339
4340 return 0;
4341 }
4342
4343 #ifdef CONFIG_PM
4344 static int igb_resume(struct pci_dev *pdev)
4345 {
4346 struct net_device *netdev = pci_get_drvdata(pdev);
4347 struct igb_adapter *adapter = netdev_priv(netdev);
4348 struct e1000_hw *hw = &adapter->hw;
4349 u32 err;
4350
4351 pci_set_power_state(pdev, PCI_D0);
4352 pci_restore_state(pdev);
4353
4354 if (adapter->need_ioport)
4355 err = pci_enable_device(pdev);
4356 else
4357 err = pci_enable_device_mem(pdev);
4358 if (err) {
4359 dev_err(&pdev->dev,
4360 "igb: Cannot enable PCI device from suspend\n");
4361 return err;
4362 }
4363 pci_set_master(pdev);
4364
4365 pci_enable_wake(pdev, PCI_D3hot, 0);
4366 pci_enable_wake(pdev, PCI_D3cold, 0);
4367
4368 igb_set_interrupt_capability(adapter);
4369
4370 if (igb_alloc_queues(adapter)) {
4371 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4372 return -ENOMEM;
4373 }
4374
4375 /* e1000_power_up_phy(adapter); */
4376
4377 igb_reset(adapter);
4378 wr32(E1000_WUS, ~0);
4379
4380 if (netif_running(netdev)) {
4381 err = igb_open(netdev);
4382 if (err)
4383 return err;
4384 }
4385
4386 netif_device_attach(netdev);
4387
4388 /* let the f/w know that the h/w is now under the control of the
4389 * driver. */
4390 igb_get_hw_control(adapter);
4391
4392 return 0;
4393 }
4394 #endif
4395
4396 static void igb_shutdown(struct pci_dev *pdev)
4397 {
4398 igb_suspend(pdev, PMSG_SUSPEND);
4399 }
4400
4401 #ifdef CONFIG_NET_POLL_CONTROLLER
4402 /*
4403 * Polling 'interrupt' - used by things like netconsole to send skbs
4404 * without having to re-enable interrupts. It's not called while
4405 * the interrupt routine is executing.
4406 */
4407 static void igb_netpoll(struct net_device *netdev)
4408 {
4409 struct igb_adapter *adapter = netdev_priv(netdev);
4410 int i;
4411 int work_done = 0;
4412
4413 igb_irq_disable(adapter);
4414 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4415
4416 for (i = 0; i < adapter->num_tx_queues; i++)
4417 igb_clean_tx_irq(&adapter->tx_ring[i]);
4418
4419 for (i = 0; i < adapter->num_rx_queues; i++)
4420 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4421 &work_done,
4422 adapter->rx_ring[i].napi.weight);
4423
4424 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4425 igb_irq_enable(adapter);
4426 }
4427 #endif /* CONFIG_NET_POLL_CONTROLLER */
4428
4429 /**
4430 * igb_io_error_detected - called when PCI error is detected
4431 * @pdev: Pointer to PCI device
4432 * @state: The current pci connection state
4433 *
4434 * This function is called after a PCI bus error affecting
4435 * this device has been detected.
4436 */
4437 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4438 pci_channel_state_t state)
4439 {
4440 struct net_device *netdev = pci_get_drvdata(pdev);
4441 struct igb_adapter *adapter = netdev_priv(netdev);
4442
4443 netif_device_detach(netdev);
4444
4445 if (netif_running(netdev))
4446 igb_down(adapter);
4447 pci_disable_device(pdev);
4448
4449 /* Request a slot slot reset. */
4450 return PCI_ERS_RESULT_NEED_RESET;
4451 }
4452
4453 /**
4454 * igb_io_slot_reset - called after the pci bus has been reset.
4455 * @pdev: Pointer to PCI device
4456 *
4457 * Restart the card from scratch, as if from a cold-boot. Implementation
4458 * resembles the first-half of the igb_resume routine.
4459 */
4460 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4461 {
4462 struct net_device *netdev = pci_get_drvdata(pdev);
4463 struct igb_adapter *adapter = netdev_priv(netdev);
4464 struct e1000_hw *hw = &adapter->hw;
4465 int err;
4466
4467 if (adapter->need_ioport)
4468 err = pci_enable_device(pdev);
4469 else
4470 err = pci_enable_device_mem(pdev);
4471 if (err) {
4472 dev_err(&pdev->dev,
4473 "Cannot re-enable PCI device after reset.\n");
4474 return PCI_ERS_RESULT_DISCONNECT;
4475 }
4476 pci_set_master(pdev);
4477 pci_restore_state(pdev);
4478
4479 pci_enable_wake(pdev, PCI_D3hot, 0);
4480 pci_enable_wake(pdev, PCI_D3cold, 0);
4481
4482 igb_reset(adapter);
4483 wr32(E1000_WUS, ~0);
4484
4485 return PCI_ERS_RESULT_RECOVERED;
4486 }
4487
4488 /**
4489 * igb_io_resume - called when traffic can start flowing again.
4490 * @pdev: Pointer to PCI device
4491 *
4492 * This callback is called when the error recovery driver tells us that
4493 * its OK to resume normal operation. Implementation resembles the
4494 * second-half of the igb_resume routine.
4495 */
4496 static void igb_io_resume(struct pci_dev *pdev)
4497 {
4498 struct net_device *netdev = pci_get_drvdata(pdev);
4499 struct igb_adapter *adapter = netdev_priv(netdev);
4500
4501 if (netif_running(netdev)) {
4502 if (igb_up(adapter)) {
4503 dev_err(&pdev->dev, "igb_up failed after reset\n");
4504 return;
4505 }
4506 }
4507
4508 netif_device_attach(netdev);
4509
4510 /* let the f/w know that the h/w is now under the control of the
4511 * driver. */
4512 igb_get_hw_control(adapter);
4513
4514 }
4515
4516 /* igb_main.c */
This page took 0.120666 seconds and 6 git commands to generate.