drivers/net: Remove address use from assignments of function pointers
[deliverable/linux.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/if_ether.h>
47 #include <linux/aer.h>
48 #ifdef CONFIG_IGB_DCA
49 #include <linux/dca.h>
50 #endif
51 #include "igb.h"
52
53 #define DRV_VERSION "2.1.0-k2"
54 char igb_driver_name[] = "igb";
55 char igb_driver_version[] = DRV_VERSION;
56 static const char igb_driver_string[] =
57 "Intel(R) Gigabit Ethernet Network Driver";
58 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59
60 static const struct e1000_info *igb_info_tbl[] = {
61 [board_82575] = &e1000_82575_info,
62 };
63
64 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
85 /* required last entry */
86 {0, }
87 };
88
89 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
90
91 void igb_reset(struct igb_adapter *);
92 static int igb_setup_all_tx_resources(struct igb_adapter *);
93 static int igb_setup_all_rx_resources(struct igb_adapter *);
94 static void igb_free_all_tx_resources(struct igb_adapter *);
95 static void igb_free_all_rx_resources(struct igb_adapter *);
96 static void igb_setup_mrqc(struct igb_adapter *);
97 void igb_update_stats(struct igb_adapter *);
98 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
99 static void __devexit igb_remove(struct pci_dev *pdev);
100 static int igb_sw_init(struct igb_adapter *);
101 static int igb_open(struct net_device *);
102 static int igb_close(struct net_device *);
103 static void igb_configure_tx(struct igb_adapter *);
104 static void igb_configure_rx(struct igb_adapter *);
105 static void igb_clean_all_tx_rings(struct igb_adapter *);
106 static void igb_clean_all_rx_rings(struct igb_adapter *);
107 static void igb_clean_tx_ring(struct igb_ring *);
108 static void igb_clean_rx_ring(struct igb_ring *);
109 static void igb_set_rx_mode(struct net_device *);
110 static void igb_update_phy_info(unsigned long);
111 static void igb_watchdog(unsigned long);
112 static void igb_watchdog_task(struct work_struct *);
113 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
114 static struct net_device_stats *igb_get_stats(struct net_device *);
115 static int igb_change_mtu(struct net_device *, int);
116 static int igb_set_mac(struct net_device *, void *);
117 static void igb_set_uta(struct igb_adapter *adapter);
118 static irqreturn_t igb_intr(int irq, void *);
119 static irqreturn_t igb_intr_msi(int irq, void *);
120 static irqreturn_t igb_msix_other(int irq, void *);
121 static irqreturn_t igb_msix_ring(int irq, void *);
122 #ifdef CONFIG_IGB_DCA
123 static void igb_update_dca(struct igb_q_vector *);
124 static void igb_setup_dca(struct igb_adapter *);
125 #endif /* CONFIG_IGB_DCA */
126 static bool igb_clean_tx_irq(struct igb_q_vector *);
127 static int igb_poll(struct napi_struct *, int);
128 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
129 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
130 static void igb_tx_timeout(struct net_device *);
131 static void igb_reset_task(struct work_struct *);
132 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
133 static void igb_vlan_rx_add_vid(struct net_device *, u16);
134 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
135 static void igb_restore_vlan(struct igb_adapter *);
136 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
137 static void igb_ping_all_vfs(struct igb_adapter *);
138 static void igb_msg_task(struct igb_adapter *);
139 static void igb_vmm_control(struct igb_adapter *);
140 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
141 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
142 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
143 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
144 int vf, u16 vlan, u8 qos);
145 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
146 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
147 struct ifla_vf_info *ivi);
148
149 #ifdef CONFIG_PM
150 static int igb_suspend(struct pci_dev *, pm_message_t);
151 static int igb_resume(struct pci_dev *);
152 #endif
153 static void igb_shutdown(struct pci_dev *);
154 #ifdef CONFIG_IGB_DCA
155 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
156 static struct notifier_block dca_notifier = {
157 .notifier_call = igb_notify_dca,
158 .next = NULL,
159 .priority = 0
160 };
161 #endif
162 #ifdef CONFIG_NET_POLL_CONTROLLER
163 /* for netdump / net console */
164 static void igb_netpoll(struct net_device *);
165 #endif
166 #ifdef CONFIG_PCI_IOV
167 static unsigned int max_vfs = 0;
168 module_param(max_vfs, uint, 0);
169 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
170 "per physical function");
171 #endif /* CONFIG_PCI_IOV */
172
173 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
174 pci_channel_state_t);
175 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
176 static void igb_io_resume(struct pci_dev *);
177
178 static struct pci_error_handlers igb_err_handler = {
179 .error_detected = igb_io_error_detected,
180 .slot_reset = igb_io_slot_reset,
181 .resume = igb_io_resume,
182 };
183
184
185 static struct pci_driver igb_driver = {
186 .name = igb_driver_name,
187 .id_table = igb_pci_tbl,
188 .probe = igb_probe,
189 .remove = __devexit_p(igb_remove),
190 #ifdef CONFIG_PM
191 /* Power Managment Hooks */
192 .suspend = igb_suspend,
193 .resume = igb_resume,
194 #endif
195 .shutdown = igb_shutdown,
196 .err_handler = &igb_err_handler
197 };
198
199 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
200 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
201 MODULE_LICENSE("GPL");
202 MODULE_VERSION(DRV_VERSION);
203
204 struct igb_reg_info {
205 u32 ofs;
206 char *name;
207 };
208
209 static const struct igb_reg_info igb_reg_info_tbl[] = {
210
211 /* General Registers */
212 {E1000_CTRL, "CTRL"},
213 {E1000_STATUS, "STATUS"},
214 {E1000_CTRL_EXT, "CTRL_EXT"},
215
216 /* Interrupt Registers */
217 {E1000_ICR, "ICR"},
218
219 /* RX Registers */
220 {E1000_RCTL, "RCTL"},
221 {E1000_RDLEN(0), "RDLEN"},
222 {E1000_RDH(0), "RDH"},
223 {E1000_RDT(0), "RDT"},
224 {E1000_RXDCTL(0), "RXDCTL"},
225 {E1000_RDBAL(0), "RDBAL"},
226 {E1000_RDBAH(0), "RDBAH"},
227
228 /* TX Registers */
229 {E1000_TCTL, "TCTL"},
230 {E1000_TDBAL(0), "TDBAL"},
231 {E1000_TDBAH(0), "TDBAH"},
232 {E1000_TDLEN(0), "TDLEN"},
233 {E1000_TDH(0), "TDH"},
234 {E1000_TDT(0), "TDT"},
235 {E1000_TXDCTL(0), "TXDCTL"},
236 {E1000_TDFH, "TDFH"},
237 {E1000_TDFT, "TDFT"},
238 {E1000_TDFHS, "TDFHS"},
239 {E1000_TDFPC, "TDFPC"},
240
241 /* List Terminator */
242 {}
243 };
244
245 /*
246 * igb_regdump - register printout routine
247 */
248 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
249 {
250 int n = 0;
251 char rname[16];
252 u32 regs[8];
253
254 switch (reginfo->ofs) {
255 case E1000_RDLEN(0):
256 for (n = 0; n < 4; n++)
257 regs[n] = rd32(E1000_RDLEN(n));
258 break;
259 case E1000_RDH(0):
260 for (n = 0; n < 4; n++)
261 regs[n] = rd32(E1000_RDH(n));
262 break;
263 case E1000_RDT(0):
264 for (n = 0; n < 4; n++)
265 regs[n] = rd32(E1000_RDT(n));
266 break;
267 case E1000_RXDCTL(0):
268 for (n = 0; n < 4; n++)
269 regs[n] = rd32(E1000_RXDCTL(n));
270 break;
271 case E1000_RDBAL(0):
272 for (n = 0; n < 4; n++)
273 regs[n] = rd32(E1000_RDBAL(n));
274 break;
275 case E1000_RDBAH(0):
276 for (n = 0; n < 4; n++)
277 regs[n] = rd32(E1000_RDBAH(n));
278 break;
279 case E1000_TDBAL(0):
280 for (n = 0; n < 4; n++)
281 regs[n] = rd32(E1000_RDBAL(n));
282 break;
283 case E1000_TDBAH(0):
284 for (n = 0; n < 4; n++)
285 regs[n] = rd32(E1000_TDBAH(n));
286 break;
287 case E1000_TDLEN(0):
288 for (n = 0; n < 4; n++)
289 regs[n] = rd32(E1000_TDLEN(n));
290 break;
291 case E1000_TDH(0):
292 for (n = 0; n < 4; n++)
293 regs[n] = rd32(E1000_TDH(n));
294 break;
295 case E1000_TDT(0):
296 for (n = 0; n < 4; n++)
297 regs[n] = rd32(E1000_TDT(n));
298 break;
299 case E1000_TXDCTL(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_TXDCTL(n));
302 break;
303 default:
304 printk(KERN_INFO "%-15s %08x\n",
305 reginfo->name, rd32(reginfo->ofs));
306 return;
307 }
308
309 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
310 printk(KERN_INFO "%-15s ", rname);
311 for (n = 0; n < 4; n++)
312 printk(KERN_CONT "%08x ", regs[n]);
313 printk(KERN_CONT "\n");
314 }
315
316 /*
317 * igb_dump - Print registers, tx-rings and rx-rings
318 */
319 static void igb_dump(struct igb_adapter *adapter)
320 {
321 struct net_device *netdev = adapter->netdev;
322 struct e1000_hw *hw = &adapter->hw;
323 struct igb_reg_info *reginfo;
324 int n = 0;
325 struct igb_ring *tx_ring;
326 union e1000_adv_tx_desc *tx_desc;
327 struct my_u0 { u64 a; u64 b; } *u0;
328 struct igb_buffer *buffer_info;
329 struct igb_ring *rx_ring;
330 union e1000_adv_rx_desc *rx_desc;
331 u32 staterr;
332 int i = 0;
333
334 if (!netif_msg_hw(adapter))
335 return;
336
337 /* Print netdevice Info */
338 if (netdev) {
339 dev_info(&adapter->pdev->dev, "Net device Info\n");
340 printk(KERN_INFO "Device Name state "
341 "trans_start last_rx\n");
342 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
343 netdev->name,
344 netdev->state,
345 netdev->trans_start,
346 netdev->last_rx);
347 }
348
349 /* Print Registers */
350 dev_info(&adapter->pdev->dev, "Register Dump\n");
351 printk(KERN_INFO " Register Name Value\n");
352 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
353 reginfo->name; reginfo++) {
354 igb_regdump(hw, reginfo);
355 }
356
357 /* Print TX Ring Summary */
358 if (!netdev || !netif_running(netdev))
359 goto exit;
360
361 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
362 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
363 " leng ntw timestamp\n");
364 for (n = 0; n < adapter->num_tx_queues; n++) {
365 tx_ring = adapter->tx_ring[n];
366 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
367 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
368 n, tx_ring->next_to_use, tx_ring->next_to_clean,
369 (u64)buffer_info->dma,
370 buffer_info->length,
371 buffer_info->next_to_watch,
372 (u64)buffer_info->time_stamp);
373 }
374
375 /* Print TX Rings */
376 if (!netif_msg_tx_done(adapter))
377 goto rx_ring_summary;
378
379 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
380
381 /* Transmit Descriptor Formats
382 *
383 * Advanced Transmit Descriptor
384 * +--------------------------------------------------------------+
385 * 0 | Buffer Address [63:0] |
386 * +--------------------------------------------------------------+
387 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
388 * +--------------------------------------------------------------+
389 * 63 46 45 40 39 38 36 35 32 31 24 15 0
390 */
391
392 for (n = 0; n < adapter->num_tx_queues; n++) {
393 tx_ring = adapter->tx_ring[n];
394 printk(KERN_INFO "------------------------------------\n");
395 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
396 printk(KERN_INFO "------------------------------------\n");
397 printk(KERN_INFO "T [desc] [address 63:0 ] "
398 "[PlPOCIStDDM Ln] [bi->dma ] "
399 "leng ntw timestamp bi->skb\n");
400
401 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
402 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
403 buffer_info = &tx_ring->buffer_info[i];
404 u0 = (struct my_u0 *)tx_desc;
405 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
406 " %04X %3X %016llX %p", i,
407 le64_to_cpu(u0->a),
408 le64_to_cpu(u0->b),
409 (u64)buffer_info->dma,
410 buffer_info->length,
411 buffer_info->next_to_watch,
412 (u64)buffer_info->time_stamp,
413 buffer_info->skb);
414 if (i == tx_ring->next_to_use &&
415 i == tx_ring->next_to_clean)
416 printk(KERN_CONT " NTC/U\n");
417 else if (i == tx_ring->next_to_use)
418 printk(KERN_CONT " NTU\n");
419 else if (i == tx_ring->next_to_clean)
420 printk(KERN_CONT " NTC\n");
421 else
422 printk(KERN_CONT "\n");
423
424 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
425 print_hex_dump(KERN_INFO, "",
426 DUMP_PREFIX_ADDRESS,
427 16, 1, phys_to_virt(buffer_info->dma),
428 buffer_info->length, true);
429 }
430 }
431
432 /* Print RX Rings Summary */
433 rx_ring_summary:
434 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
435 printk(KERN_INFO "Queue [NTU] [NTC]\n");
436 for (n = 0; n < adapter->num_rx_queues; n++) {
437 rx_ring = adapter->rx_ring[n];
438 printk(KERN_INFO " %5d %5X %5X\n", n,
439 rx_ring->next_to_use, rx_ring->next_to_clean);
440 }
441
442 /* Print RX Rings */
443 if (!netif_msg_rx_status(adapter))
444 goto exit;
445
446 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
447
448 /* Advanced Receive Descriptor (Read) Format
449 * 63 1 0
450 * +-----------------------------------------------------+
451 * 0 | Packet Buffer Address [63:1] |A0/NSE|
452 * +----------------------------------------------+------+
453 * 8 | Header Buffer Address [63:1] | DD |
454 * +-----------------------------------------------------+
455 *
456 *
457 * Advanced Receive Descriptor (Write-Back) Format
458 *
459 * 63 48 47 32 31 30 21 20 17 16 4 3 0
460 * +------------------------------------------------------+
461 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
462 * | Checksum Ident | | | | Type | Type |
463 * +------------------------------------------------------+
464 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
465 * +------------------------------------------------------+
466 * 63 48 47 32 31 20 19 0
467 */
468
469 for (n = 0; n < adapter->num_rx_queues; n++) {
470 rx_ring = adapter->rx_ring[n];
471 printk(KERN_INFO "------------------------------------\n");
472 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
473 printk(KERN_INFO "------------------------------------\n");
474 printk(KERN_INFO "R [desc] [ PktBuf A0] "
475 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
476 "<-- Adv Rx Read format\n");
477 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
478 "[vl er S cks ln] ---------------- [bi->skb] "
479 "<-- Adv Rx Write-Back format\n");
480
481 for (i = 0; i < rx_ring->count; i++) {
482 buffer_info = &rx_ring->buffer_info[i];
483 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
484 u0 = (struct my_u0 *)rx_desc;
485 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
486 if (staterr & E1000_RXD_STAT_DD) {
487 /* Descriptor Done */
488 printk(KERN_INFO "RWB[0x%03X] %016llX "
489 "%016llX ---------------- %p", i,
490 le64_to_cpu(u0->a),
491 le64_to_cpu(u0->b),
492 buffer_info->skb);
493 } else {
494 printk(KERN_INFO "R [0x%03X] %016llX "
495 "%016llX %016llX %p", i,
496 le64_to_cpu(u0->a),
497 le64_to_cpu(u0->b),
498 (u64)buffer_info->dma,
499 buffer_info->skb);
500
501 if (netif_msg_pktdata(adapter)) {
502 print_hex_dump(KERN_INFO, "",
503 DUMP_PREFIX_ADDRESS,
504 16, 1,
505 phys_to_virt(buffer_info->dma),
506 rx_ring->rx_buffer_len, true);
507 if (rx_ring->rx_buffer_len
508 < IGB_RXBUFFER_1024)
509 print_hex_dump(KERN_INFO, "",
510 DUMP_PREFIX_ADDRESS,
511 16, 1,
512 phys_to_virt(
513 buffer_info->page_dma +
514 buffer_info->page_offset),
515 PAGE_SIZE/2, true);
516 }
517 }
518
519 if (i == rx_ring->next_to_use)
520 printk(KERN_CONT " NTU\n");
521 else if (i == rx_ring->next_to_clean)
522 printk(KERN_CONT " NTC\n");
523 else
524 printk(KERN_CONT "\n");
525
526 }
527 }
528
529 exit:
530 return;
531 }
532
533
534 /**
535 * igb_read_clock - read raw cycle counter (to be used by time counter)
536 */
537 static cycle_t igb_read_clock(const struct cyclecounter *tc)
538 {
539 struct igb_adapter *adapter =
540 container_of(tc, struct igb_adapter, cycles);
541 struct e1000_hw *hw = &adapter->hw;
542 u64 stamp = 0;
543 int shift = 0;
544
545 /*
546 * The timestamp latches on lowest register read. For the 82580
547 * the lowest register is SYSTIMR instead of SYSTIML. However we never
548 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
549 */
550 if (hw->mac.type == e1000_82580) {
551 stamp = rd32(E1000_SYSTIMR) >> 8;
552 shift = IGB_82580_TSYNC_SHIFT;
553 }
554
555 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
556 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
557 return stamp;
558 }
559
560 /**
561 * igb_get_hw_dev - return device
562 * used by hardware layer to print debugging information
563 **/
564 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
565 {
566 struct igb_adapter *adapter = hw->back;
567 return adapter->netdev;
568 }
569
570 /**
571 * igb_init_module - Driver Registration Routine
572 *
573 * igb_init_module is the first routine called when the driver is
574 * loaded. All it does is register with the PCI subsystem.
575 **/
576 static int __init igb_init_module(void)
577 {
578 int ret;
579 printk(KERN_INFO "%s - version %s\n",
580 igb_driver_string, igb_driver_version);
581
582 printk(KERN_INFO "%s\n", igb_copyright);
583
584 #ifdef CONFIG_IGB_DCA
585 dca_register_notify(&dca_notifier);
586 #endif
587 ret = pci_register_driver(&igb_driver);
588 return ret;
589 }
590
591 module_init(igb_init_module);
592
593 /**
594 * igb_exit_module - Driver Exit Cleanup Routine
595 *
596 * igb_exit_module is called just before the driver is removed
597 * from memory.
598 **/
599 static void __exit igb_exit_module(void)
600 {
601 #ifdef CONFIG_IGB_DCA
602 dca_unregister_notify(&dca_notifier);
603 #endif
604 pci_unregister_driver(&igb_driver);
605 }
606
607 module_exit(igb_exit_module);
608
609 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
610 /**
611 * igb_cache_ring_register - Descriptor ring to register mapping
612 * @adapter: board private structure to initialize
613 *
614 * Once we know the feature-set enabled for the device, we'll cache
615 * the register offset the descriptor ring is assigned to.
616 **/
617 static void igb_cache_ring_register(struct igb_adapter *adapter)
618 {
619 int i = 0, j = 0;
620 u32 rbase_offset = adapter->vfs_allocated_count;
621
622 switch (adapter->hw.mac.type) {
623 case e1000_82576:
624 /* The queues are allocated for virtualization such that VF 0
625 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
626 * In order to avoid collision we start at the first free queue
627 * and continue consuming queues in the same sequence
628 */
629 if (adapter->vfs_allocated_count) {
630 for (; i < adapter->rss_queues; i++)
631 adapter->rx_ring[i]->reg_idx = rbase_offset +
632 Q_IDX_82576(i);
633 }
634 case e1000_82575:
635 case e1000_82580:
636 case e1000_i350:
637 default:
638 for (; i < adapter->num_rx_queues; i++)
639 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
640 for (; j < adapter->num_tx_queues; j++)
641 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
642 break;
643 }
644 }
645
646 static void igb_free_queues(struct igb_adapter *adapter)
647 {
648 int i;
649
650 for (i = 0; i < adapter->num_tx_queues; i++) {
651 kfree(adapter->tx_ring[i]);
652 adapter->tx_ring[i] = NULL;
653 }
654 for (i = 0; i < adapter->num_rx_queues; i++) {
655 kfree(adapter->rx_ring[i]);
656 adapter->rx_ring[i] = NULL;
657 }
658 adapter->num_rx_queues = 0;
659 adapter->num_tx_queues = 0;
660 }
661
662 /**
663 * igb_alloc_queues - Allocate memory for all rings
664 * @adapter: board private structure to initialize
665 *
666 * We allocate one ring per queue at run-time since we don't know the
667 * number of queues at compile-time.
668 **/
669 static int igb_alloc_queues(struct igb_adapter *adapter)
670 {
671 struct igb_ring *ring;
672 int i;
673
674 for (i = 0; i < adapter->num_tx_queues; i++) {
675 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
676 if (!ring)
677 goto err;
678 ring->count = adapter->tx_ring_count;
679 ring->queue_index = i;
680 ring->dev = &adapter->pdev->dev;
681 ring->netdev = adapter->netdev;
682 /* For 82575, context index must be unique per ring. */
683 if (adapter->hw.mac.type == e1000_82575)
684 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
685 adapter->tx_ring[i] = ring;
686 }
687
688 for (i = 0; i < adapter->num_rx_queues; i++) {
689 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
690 if (!ring)
691 goto err;
692 ring->count = adapter->rx_ring_count;
693 ring->queue_index = i;
694 ring->dev = &adapter->pdev->dev;
695 ring->netdev = adapter->netdev;
696 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
697 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
698 /* set flag indicating ring supports SCTP checksum offload */
699 if (adapter->hw.mac.type >= e1000_82576)
700 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
701 adapter->rx_ring[i] = ring;
702 }
703
704 igb_cache_ring_register(adapter);
705
706 return 0;
707
708 err:
709 igb_free_queues(adapter);
710
711 return -ENOMEM;
712 }
713
714 #define IGB_N0_QUEUE -1
715 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
716 {
717 u32 msixbm = 0;
718 struct igb_adapter *adapter = q_vector->adapter;
719 struct e1000_hw *hw = &adapter->hw;
720 u32 ivar, index;
721 int rx_queue = IGB_N0_QUEUE;
722 int tx_queue = IGB_N0_QUEUE;
723
724 if (q_vector->rx_ring)
725 rx_queue = q_vector->rx_ring->reg_idx;
726 if (q_vector->tx_ring)
727 tx_queue = q_vector->tx_ring->reg_idx;
728
729 switch (hw->mac.type) {
730 case e1000_82575:
731 /* The 82575 assigns vectors using a bitmask, which matches the
732 bitmask for the EICR/EIMS/EIMC registers. To assign one
733 or more queues to a vector, we write the appropriate bits
734 into the MSIXBM register for that vector. */
735 if (rx_queue > IGB_N0_QUEUE)
736 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
737 if (tx_queue > IGB_N0_QUEUE)
738 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
739 if (!adapter->msix_entries && msix_vector == 0)
740 msixbm |= E1000_EIMS_OTHER;
741 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
742 q_vector->eims_value = msixbm;
743 break;
744 case e1000_82576:
745 /* 82576 uses a table-based method for assigning vectors.
746 Each queue has a single entry in the table to which we write
747 a vector number along with a "valid" bit. Sadly, the layout
748 of the table is somewhat counterintuitive. */
749 if (rx_queue > IGB_N0_QUEUE) {
750 index = (rx_queue & 0x7);
751 ivar = array_rd32(E1000_IVAR0, index);
752 if (rx_queue < 8) {
753 /* vector goes into low byte of register */
754 ivar = ivar & 0xFFFFFF00;
755 ivar |= msix_vector | E1000_IVAR_VALID;
756 } else {
757 /* vector goes into third byte of register */
758 ivar = ivar & 0xFF00FFFF;
759 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
760 }
761 array_wr32(E1000_IVAR0, index, ivar);
762 }
763 if (tx_queue > IGB_N0_QUEUE) {
764 index = (tx_queue & 0x7);
765 ivar = array_rd32(E1000_IVAR0, index);
766 if (tx_queue < 8) {
767 /* vector goes into second byte of register */
768 ivar = ivar & 0xFFFF00FF;
769 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
770 } else {
771 /* vector goes into high byte of register */
772 ivar = ivar & 0x00FFFFFF;
773 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
774 }
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777 q_vector->eims_value = 1 << msix_vector;
778 break;
779 case e1000_82580:
780 case e1000_i350:
781 /* 82580 uses the same table-based approach as 82576 but has fewer
782 entries as a result we carry over for queues greater than 4. */
783 if (rx_queue > IGB_N0_QUEUE) {
784 index = (rx_queue >> 1);
785 ivar = array_rd32(E1000_IVAR0, index);
786 if (rx_queue & 0x1) {
787 /* vector goes into third byte of register */
788 ivar = ivar & 0xFF00FFFF;
789 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
790 } else {
791 /* vector goes into low byte of register */
792 ivar = ivar & 0xFFFFFF00;
793 ivar |= msix_vector | E1000_IVAR_VALID;
794 }
795 array_wr32(E1000_IVAR0, index, ivar);
796 }
797 if (tx_queue > IGB_N0_QUEUE) {
798 index = (tx_queue >> 1);
799 ivar = array_rd32(E1000_IVAR0, index);
800 if (tx_queue & 0x1) {
801 /* vector goes into high byte of register */
802 ivar = ivar & 0x00FFFFFF;
803 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
804 } else {
805 /* vector goes into second byte of register */
806 ivar = ivar & 0xFFFF00FF;
807 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
808 }
809 array_wr32(E1000_IVAR0, index, ivar);
810 }
811 q_vector->eims_value = 1 << msix_vector;
812 break;
813 default:
814 BUG();
815 break;
816 }
817
818 /* add q_vector eims value to global eims_enable_mask */
819 adapter->eims_enable_mask |= q_vector->eims_value;
820
821 /* configure q_vector to set itr on first interrupt */
822 q_vector->set_itr = 1;
823 }
824
825 /**
826 * igb_configure_msix - Configure MSI-X hardware
827 *
828 * igb_configure_msix sets up the hardware to properly
829 * generate MSI-X interrupts.
830 **/
831 static void igb_configure_msix(struct igb_adapter *adapter)
832 {
833 u32 tmp;
834 int i, vector = 0;
835 struct e1000_hw *hw = &adapter->hw;
836
837 adapter->eims_enable_mask = 0;
838
839 /* set vector for other causes, i.e. link changes */
840 switch (hw->mac.type) {
841 case e1000_82575:
842 tmp = rd32(E1000_CTRL_EXT);
843 /* enable MSI-X PBA support*/
844 tmp |= E1000_CTRL_EXT_PBA_CLR;
845
846 /* Auto-Mask interrupts upon ICR read. */
847 tmp |= E1000_CTRL_EXT_EIAME;
848 tmp |= E1000_CTRL_EXT_IRCA;
849
850 wr32(E1000_CTRL_EXT, tmp);
851
852 /* enable msix_other interrupt */
853 array_wr32(E1000_MSIXBM(0), vector++,
854 E1000_EIMS_OTHER);
855 adapter->eims_other = E1000_EIMS_OTHER;
856
857 break;
858
859 case e1000_82576:
860 case e1000_82580:
861 case e1000_i350:
862 /* Turn on MSI-X capability first, or our settings
863 * won't stick. And it will take days to debug. */
864 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
865 E1000_GPIE_PBA | E1000_GPIE_EIAME |
866 E1000_GPIE_NSICR);
867
868 /* enable msix_other interrupt */
869 adapter->eims_other = 1 << vector;
870 tmp = (vector++ | E1000_IVAR_VALID) << 8;
871
872 wr32(E1000_IVAR_MISC, tmp);
873 break;
874 default:
875 /* do nothing, since nothing else supports MSI-X */
876 break;
877 } /* switch (hw->mac.type) */
878
879 adapter->eims_enable_mask |= adapter->eims_other;
880
881 for (i = 0; i < adapter->num_q_vectors; i++)
882 igb_assign_vector(adapter->q_vector[i], vector++);
883
884 wrfl();
885 }
886
887 /**
888 * igb_request_msix - Initialize MSI-X interrupts
889 *
890 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
891 * kernel.
892 **/
893 static int igb_request_msix(struct igb_adapter *adapter)
894 {
895 struct net_device *netdev = adapter->netdev;
896 struct e1000_hw *hw = &adapter->hw;
897 int i, err = 0, vector = 0;
898
899 err = request_irq(adapter->msix_entries[vector].vector,
900 igb_msix_other, 0, netdev->name, adapter);
901 if (err)
902 goto out;
903 vector++;
904
905 for (i = 0; i < adapter->num_q_vectors; i++) {
906 struct igb_q_vector *q_vector = adapter->q_vector[i];
907
908 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
909
910 if (q_vector->rx_ring && q_vector->tx_ring)
911 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
912 q_vector->rx_ring->queue_index);
913 else if (q_vector->tx_ring)
914 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
915 q_vector->tx_ring->queue_index);
916 else if (q_vector->rx_ring)
917 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
918 q_vector->rx_ring->queue_index);
919 else
920 sprintf(q_vector->name, "%s-unused", netdev->name);
921
922 err = request_irq(adapter->msix_entries[vector].vector,
923 igb_msix_ring, 0, q_vector->name,
924 q_vector);
925 if (err)
926 goto out;
927 vector++;
928 }
929
930 igb_configure_msix(adapter);
931 return 0;
932 out:
933 return err;
934 }
935
936 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
937 {
938 if (adapter->msix_entries) {
939 pci_disable_msix(adapter->pdev);
940 kfree(adapter->msix_entries);
941 adapter->msix_entries = NULL;
942 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
943 pci_disable_msi(adapter->pdev);
944 }
945 }
946
947 /**
948 * igb_free_q_vectors - Free memory allocated for interrupt vectors
949 * @adapter: board private structure to initialize
950 *
951 * This function frees the memory allocated to the q_vectors. In addition if
952 * NAPI is enabled it will delete any references to the NAPI struct prior
953 * to freeing the q_vector.
954 **/
955 static void igb_free_q_vectors(struct igb_adapter *adapter)
956 {
957 int v_idx;
958
959 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
960 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
961 adapter->q_vector[v_idx] = NULL;
962 if (!q_vector)
963 continue;
964 netif_napi_del(&q_vector->napi);
965 kfree(q_vector);
966 }
967 adapter->num_q_vectors = 0;
968 }
969
970 /**
971 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
972 *
973 * This function resets the device so that it has 0 rx queues, tx queues, and
974 * MSI-X interrupts allocated.
975 */
976 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
977 {
978 igb_free_queues(adapter);
979 igb_free_q_vectors(adapter);
980 igb_reset_interrupt_capability(adapter);
981 }
982
983 /**
984 * igb_set_interrupt_capability - set MSI or MSI-X if supported
985 *
986 * Attempt to configure interrupts using the best available
987 * capabilities of the hardware and kernel.
988 **/
989 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
990 {
991 int err;
992 int numvecs, i;
993
994 /* Number of supported queues. */
995 adapter->num_rx_queues = adapter->rss_queues;
996 if (adapter->vfs_allocated_count)
997 adapter->num_tx_queues = 1;
998 else
999 adapter->num_tx_queues = adapter->rss_queues;
1000
1001 /* start with one vector for every rx queue */
1002 numvecs = adapter->num_rx_queues;
1003
1004 /* if tx handler is separate add 1 for every tx queue */
1005 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1006 numvecs += adapter->num_tx_queues;
1007
1008 /* store the number of vectors reserved for queues */
1009 adapter->num_q_vectors = numvecs;
1010
1011 /* add 1 vector for link status interrupts */
1012 numvecs++;
1013 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1014 GFP_KERNEL);
1015 if (!adapter->msix_entries)
1016 goto msi_only;
1017
1018 for (i = 0; i < numvecs; i++)
1019 adapter->msix_entries[i].entry = i;
1020
1021 err = pci_enable_msix(adapter->pdev,
1022 adapter->msix_entries,
1023 numvecs);
1024 if (err == 0)
1025 goto out;
1026
1027 igb_reset_interrupt_capability(adapter);
1028
1029 /* If we can't do MSI-X, try MSI */
1030 msi_only:
1031 #ifdef CONFIG_PCI_IOV
1032 /* disable SR-IOV for non MSI-X configurations */
1033 if (adapter->vf_data) {
1034 struct e1000_hw *hw = &adapter->hw;
1035 /* disable iov and allow time for transactions to clear */
1036 pci_disable_sriov(adapter->pdev);
1037 msleep(500);
1038
1039 kfree(adapter->vf_data);
1040 adapter->vf_data = NULL;
1041 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1042 msleep(100);
1043 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1044 }
1045 #endif
1046 adapter->vfs_allocated_count = 0;
1047 adapter->rss_queues = 1;
1048 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1049 adapter->num_rx_queues = 1;
1050 adapter->num_tx_queues = 1;
1051 adapter->num_q_vectors = 1;
1052 if (!pci_enable_msi(adapter->pdev))
1053 adapter->flags |= IGB_FLAG_HAS_MSI;
1054 out:
1055 /* Notify the stack of the (possibly) reduced Tx Queue count. */
1056 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
1057 }
1058
1059 /**
1060 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1061 * @adapter: board private structure to initialize
1062 *
1063 * We allocate one q_vector per queue interrupt. If allocation fails we
1064 * return -ENOMEM.
1065 **/
1066 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1067 {
1068 struct igb_q_vector *q_vector;
1069 struct e1000_hw *hw = &adapter->hw;
1070 int v_idx;
1071
1072 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1073 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1074 if (!q_vector)
1075 goto err_out;
1076 q_vector->adapter = adapter;
1077 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1078 q_vector->itr_val = IGB_START_ITR;
1079 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1080 adapter->q_vector[v_idx] = q_vector;
1081 }
1082 return 0;
1083
1084 err_out:
1085 igb_free_q_vectors(adapter);
1086 return -ENOMEM;
1087 }
1088
1089 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1090 int ring_idx, int v_idx)
1091 {
1092 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1093
1094 q_vector->rx_ring = adapter->rx_ring[ring_idx];
1095 q_vector->rx_ring->q_vector = q_vector;
1096 q_vector->itr_val = adapter->rx_itr_setting;
1097 if (q_vector->itr_val && q_vector->itr_val <= 3)
1098 q_vector->itr_val = IGB_START_ITR;
1099 }
1100
1101 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1102 int ring_idx, int v_idx)
1103 {
1104 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1105
1106 q_vector->tx_ring = adapter->tx_ring[ring_idx];
1107 q_vector->tx_ring->q_vector = q_vector;
1108 q_vector->itr_val = adapter->tx_itr_setting;
1109 if (q_vector->itr_val && q_vector->itr_val <= 3)
1110 q_vector->itr_val = IGB_START_ITR;
1111 }
1112
1113 /**
1114 * igb_map_ring_to_vector - maps allocated queues to vectors
1115 *
1116 * This function maps the recently allocated queues to vectors.
1117 **/
1118 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1119 {
1120 int i;
1121 int v_idx = 0;
1122
1123 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1124 (adapter->num_q_vectors < adapter->num_tx_queues))
1125 return -ENOMEM;
1126
1127 if (adapter->num_q_vectors >=
1128 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1129 for (i = 0; i < adapter->num_rx_queues; i++)
1130 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1131 for (i = 0; i < adapter->num_tx_queues; i++)
1132 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1133 } else {
1134 for (i = 0; i < adapter->num_rx_queues; i++) {
1135 if (i < adapter->num_tx_queues)
1136 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1137 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1138 }
1139 for (; i < adapter->num_tx_queues; i++)
1140 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1141 }
1142 return 0;
1143 }
1144
1145 /**
1146 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1147 *
1148 * This function initializes the interrupts and allocates all of the queues.
1149 **/
1150 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1151 {
1152 struct pci_dev *pdev = adapter->pdev;
1153 int err;
1154
1155 igb_set_interrupt_capability(adapter);
1156
1157 err = igb_alloc_q_vectors(adapter);
1158 if (err) {
1159 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1160 goto err_alloc_q_vectors;
1161 }
1162
1163 err = igb_alloc_queues(adapter);
1164 if (err) {
1165 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1166 goto err_alloc_queues;
1167 }
1168
1169 err = igb_map_ring_to_vector(adapter);
1170 if (err) {
1171 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1172 goto err_map_queues;
1173 }
1174
1175
1176 return 0;
1177 err_map_queues:
1178 igb_free_queues(adapter);
1179 err_alloc_queues:
1180 igb_free_q_vectors(adapter);
1181 err_alloc_q_vectors:
1182 igb_reset_interrupt_capability(adapter);
1183 return err;
1184 }
1185
1186 /**
1187 * igb_request_irq - initialize interrupts
1188 *
1189 * Attempts to configure interrupts using the best available
1190 * capabilities of the hardware and kernel.
1191 **/
1192 static int igb_request_irq(struct igb_adapter *adapter)
1193 {
1194 struct net_device *netdev = adapter->netdev;
1195 struct pci_dev *pdev = adapter->pdev;
1196 int err = 0;
1197
1198 if (adapter->msix_entries) {
1199 err = igb_request_msix(adapter);
1200 if (!err)
1201 goto request_done;
1202 /* fall back to MSI */
1203 igb_clear_interrupt_scheme(adapter);
1204 if (!pci_enable_msi(adapter->pdev))
1205 adapter->flags |= IGB_FLAG_HAS_MSI;
1206 igb_free_all_tx_resources(adapter);
1207 igb_free_all_rx_resources(adapter);
1208 adapter->num_tx_queues = 1;
1209 adapter->num_rx_queues = 1;
1210 adapter->num_q_vectors = 1;
1211 err = igb_alloc_q_vectors(adapter);
1212 if (err) {
1213 dev_err(&pdev->dev,
1214 "Unable to allocate memory for vectors\n");
1215 goto request_done;
1216 }
1217 err = igb_alloc_queues(adapter);
1218 if (err) {
1219 dev_err(&pdev->dev,
1220 "Unable to allocate memory for queues\n");
1221 igb_free_q_vectors(adapter);
1222 goto request_done;
1223 }
1224 igb_setup_all_tx_resources(adapter);
1225 igb_setup_all_rx_resources(adapter);
1226 } else {
1227 igb_assign_vector(adapter->q_vector[0], 0);
1228 }
1229
1230 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1231 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1232 netdev->name, adapter);
1233 if (!err)
1234 goto request_done;
1235
1236 /* fall back to legacy interrupts */
1237 igb_reset_interrupt_capability(adapter);
1238 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1239 }
1240
1241 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1242 netdev->name, adapter);
1243
1244 if (err)
1245 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1246 err);
1247
1248 request_done:
1249 return err;
1250 }
1251
1252 static void igb_free_irq(struct igb_adapter *adapter)
1253 {
1254 if (adapter->msix_entries) {
1255 int vector = 0, i;
1256
1257 free_irq(adapter->msix_entries[vector++].vector, adapter);
1258
1259 for (i = 0; i < adapter->num_q_vectors; i++) {
1260 struct igb_q_vector *q_vector = adapter->q_vector[i];
1261 free_irq(adapter->msix_entries[vector++].vector,
1262 q_vector);
1263 }
1264 } else {
1265 free_irq(adapter->pdev->irq, adapter);
1266 }
1267 }
1268
1269 /**
1270 * igb_irq_disable - Mask off interrupt generation on the NIC
1271 * @adapter: board private structure
1272 **/
1273 static void igb_irq_disable(struct igb_adapter *adapter)
1274 {
1275 struct e1000_hw *hw = &adapter->hw;
1276
1277 /*
1278 * we need to be careful when disabling interrupts. The VFs are also
1279 * mapped into these registers and so clearing the bits can cause
1280 * issues on the VF drivers so we only need to clear what we set
1281 */
1282 if (adapter->msix_entries) {
1283 u32 regval = rd32(E1000_EIAM);
1284 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1285 wr32(E1000_EIMC, adapter->eims_enable_mask);
1286 regval = rd32(E1000_EIAC);
1287 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1288 }
1289
1290 wr32(E1000_IAM, 0);
1291 wr32(E1000_IMC, ~0);
1292 wrfl();
1293 if (adapter->msix_entries) {
1294 int i;
1295 for (i = 0; i < adapter->num_q_vectors; i++)
1296 synchronize_irq(adapter->msix_entries[i].vector);
1297 } else {
1298 synchronize_irq(adapter->pdev->irq);
1299 }
1300 }
1301
1302 /**
1303 * igb_irq_enable - Enable default interrupt generation settings
1304 * @adapter: board private structure
1305 **/
1306 static void igb_irq_enable(struct igb_adapter *adapter)
1307 {
1308 struct e1000_hw *hw = &adapter->hw;
1309
1310 if (adapter->msix_entries) {
1311 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1312 u32 regval = rd32(E1000_EIAC);
1313 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1314 regval = rd32(E1000_EIAM);
1315 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1316 wr32(E1000_EIMS, adapter->eims_enable_mask);
1317 if (adapter->vfs_allocated_count) {
1318 wr32(E1000_MBVFIMR, 0xFF);
1319 ims |= E1000_IMS_VMMB;
1320 }
1321 if (adapter->hw.mac.type == e1000_82580)
1322 ims |= E1000_IMS_DRSTA;
1323
1324 wr32(E1000_IMS, ims);
1325 } else {
1326 wr32(E1000_IMS, IMS_ENABLE_MASK |
1327 E1000_IMS_DRSTA);
1328 wr32(E1000_IAM, IMS_ENABLE_MASK |
1329 E1000_IMS_DRSTA);
1330 }
1331 }
1332
1333 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1334 {
1335 struct e1000_hw *hw = &adapter->hw;
1336 u16 vid = adapter->hw.mng_cookie.vlan_id;
1337 u16 old_vid = adapter->mng_vlan_id;
1338
1339 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1340 /* add VID to filter table */
1341 igb_vfta_set(hw, vid, true);
1342 adapter->mng_vlan_id = vid;
1343 } else {
1344 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1345 }
1346
1347 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1348 (vid != old_vid) &&
1349 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1350 /* remove VID from filter table */
1351 igb_vfta_set(hw, old_vid, false);
1352 }
1353 }
1354
1355 /**
1356 * igb_release_hw_control - release control of the h/w to f/w
1357 * @adapter: address of board private structure
1358 *
1359 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1360 * For ASF and Pass Through versions of f/w this means that the
1361 * driver is no longer loaded.
1362 *
1363 **/
1364 static void igb_release_hw_control(struct igb_adapter *adapter)
1365 {
1366 struct e1000_hw *hw = &adapter->hw;
1367 u32 ctrl_ext;
1368
1369 /* Let firmware take over control of h/w */
1370 ctrl_ext = rd32(E1000_CTRL_EXT);
1371 wr32(E1000_CTRL_EXT,
1372 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1373 }
1374
1375 /**
1376 * igb_get_hw_control - get control of the h/w from f/w
1377 * @adapter: address of board private structure
1378 *
1379 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1380 * For ASF and Pass Through versions of f/w this means that
1381 * the driver is loaded.
1382 *
1383 **/
1384 static void igb_get_hw_control(struct igb_adapter *adapter)
1385 {
1386 struct e1000_hw *hw = &adapter->hw;
1387 u32 ctrl_ext;
1388
1389 /* Let firmware know the driver has taken over */
1390 ctrl_ext = rd32(E1000_CTRL_EXT);
1391 wr32(E1000_CTRL_EXT,
1392 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1393 }
1394
1395 /**
1396 * igb_configure - configure the hardware for RX and TX
1397 * @adapter: private board structure
1398 **/
1399 static void igb_configure(struct igb_adapter *adapter)
1400 {
1401 struct net_device *netdev = adapter->netdev;
1402 int i;
1403
1404 igb_get_hw_control(adapter);
1405 igb_set_rx_mode(netdev);
1406
1407 igb_restore_vlan(adapter);
1408
1409 igb_setup_tctl(adapter);
1410 igb_setup_mrqc(adapter);
1411 igb_setup_rctl(adapter);
1412
1413 igb_configure_tx(adapter);
1414 igb_configure_rx(adapter);
1415
1416 igb_rx_fifo_flush_82575(&adapter->hw);
1417
1418 /* call igb_desc_unused which always leaves
1419 * at least 1 descriptor unused to make sure
1420 * next_to_use != next_to_clean */
1421 for (i = 0; i < adapter->num_rx_queues; i++) {
1422 struct igb_ring *ring = adapter->rx_ring[i];
1423 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1424 }
1425 }
1426
1427 /**
1428 * igb_power_up_link - Power up the phy/serdes link
1429 * @adapter: address of board private structure
1430 **/
1431 void igb_power_up_link(struct igb_adapter *adapter)
1432 {
1433 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1434 igb_power_up_phy_copper(&adapter->hw);
1435 else
1436 igb_power_up_serdes_link_82575(&adapter->hw);
1437 }
1438
1439 /**
1440 * igb_power_down_link - Power down the phy/serdes link
1441 * @adapter: address of board private structure
1442 */
1443 static void igb_power_down_link(struct igb_adapter *adapter)
1444 {
1445 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1446 igb_power_down_phy_copper_82575(&adapter->hw);
1447 else
1448 igb_shutdown_serdes_link_82575(&adapter->hw);
1449 }
1450
1451 /**
1452 * igb_up - Open the interface and prepare it to handle traffic
1453 * @adapter: board private structure
1454 **/
1455 int igb_up(struct igb_adapter *adapter)
1456 {
1457 struct e1000_hw *hw = &adapter->hw;
1458 int i;
1459
1460 /* hardware has been reset, we need to reload some things */
1461 igb_configure(adapter);
1462
1463 clear_bit(__IGB_DOWN, &adapter->state);
1464
1465 for (i = 0; i < adapter->num_q_vectors; i++) {
1466 struct igb_q_vector *q_vector = adapter->q_vector[i];
1467 napi_enable(&q_vector->napi);
1468 }
1469 if (adapter->msix_entries)
1470 igb_configure_msix(adapter);
1471 else
1472 igb_assign_vector(adapter->q_vector[0], 0);
1473
1474 /* Clear any pending interrupts. */
1475 rd32(E1000_ICR);
1476 igb_irq_enable(adapter);
1477
1478 /* notify VFs that reset has been completed */
1479 if (adapter->vfs_allocated_count) {
1480 u32 reg_data = rd32(E1000_CTRL_EXT);
1481 reg_data |= E1000_CTRL_EXT_PFRSTD;
1482 wr32(E1000_CTRL_EXT, reg_data);
1483 }
1484
1485 netif_tx_start_all_queues(adapter->netdev);
1486
1487 /* start the watchdog. */
1488 hw->mac.get_link_status = 1;
1489 schedule_work(&adapter->watchdog_task);
1490
1491 return 0;
1492 }
1493
1494 void igb_down(struct igb_adapter *adapter)
1495 {
1496 struct net_device *netdev = adapter->netdev;
1497 struct e1000_hw *hw = &adapter->hw;
1498 u32 tctl, rctl;
1499 int i;
1500
1501 /* signal that we're down so the interrupt handler does not
1502 * reschedule our watchdog timer */
1503 set_bit(__IGB_DOWN, &adapter->state);
1504
1505 /* disable receives in the hardware */
1506 rctl = rd32(E1000_RCTL);
1507 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1508 /* flush and sleep below */
1509
1510 netif_tx_stop_all_queues(netdev);
1511
1512 /* disable transmits in the hardware */
1513 tctl = rd32(E1000_TCTL);
1514 tctl &= ~E1000_TCTL_EN;
1515 wr32(E1000_TCTL, tctl);
1516 /* flush both disables and wait for them to finish */
1517 wrfl();
1518 msleep(10);
1519
1520 for (i = 0; i < adapter->num_q_vectors; i++) {
1521 struct igb_q_vector *q_vector = adapter->q_vector[i];
1522 napi_disable(&q_vector->napi);
1523 }
1524
1525 igb_irq_disable(adapter);
1526
1527 del_timer_sync(&adapter->watchdog_timer);
1528 del_timer_sync(&adapter->phy_info_timer);
1529
1530 netif_carrier_off(netdev);
1531
1532 /* record the stats before reset*/
1533 igb_update_stats(adapter);
1534
1535 adapter->link_speed = 0;
1536 adapter->link_duplex = 0;
1537
1538 if (!pci_channel_offline(adapter->pdev))
1539 igb_reset(adapter);
1540 igb_clean_all_tx_rings(adapter);
1541 igb_clean_all_rx_rings(adapter);
1542 #ifdef CONFIG_IGB_DCA
1543
1544 /* since we reset the hardware DCA settings were cleared */
1545 igb_setup_dca(adapter);
1546 #endif
1547 }
1548
1549 void igb_reinit_locked(struct igb_adapter *adapter)
1550 {
1551 WARN_ON(in_interrupt());
1552 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1553 msleep(1);
1554 igb_down(adapter);
1555 igb_up(adapter);
1556 clear_bit(__IGB_RESETTING, &adapter->state);
1557 }
1558
1559 void igb_reset(struct igb_adapter *adapter)
1560 {
1561 struct pci_dev *pdev = adapter->pdev;
1562 struct e1000_hw *hw = &adapter->hw;
1563 struct e1000_mac_info *mac = &hw->mac;
1564 struct e1000_fc_info *fc = &hw->fc;
1565 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1566 u16 hwm;
1567
1568 /* Repartition Pba for greater than 9k mtu
1569 * To take effect CTRL.RST is required.
1570 */
1571 switch (mac->type) {
1572 case e1000_i350:
1573 case e1000_82580:
1574 pba = rd32(E1000_RXPBS);
1575 pba = igb_rxpbs_adjust_82580(pba);
1576 break;
1577 case e1000_82576:
1578 pba = rd32(E1000_RXPBS);
1579 pba &= E1000_RXPBS_SIZE_MASK_82576;
1580 break;
1581 case e1000_82575:
1582 default:
1583 pba = E1000_PBA_34K;
1584 break;
1585 }
1586
1587 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1588 (mac->type < e1000_82576)) {
1589 /* adjust PBA for jumbo frames */
1590 wr32(E1000_PBA, pba);
1591
1592 /* To maintain wire speed transmits, the Tx FIFO should be
1593 * large enough to accommodate two full transmit packets,
1594 * rounded up to the next 1KB and expressed in KB. Likewise,
1595 * the Rx FIFO should be large enough to accommodate at least
1596 * one full receive packet and is similarly rounded up and
1597 * expressed in KB. */
1598 pba = rd32(E1000_PBA);
1599 /* upper 16 bits has Tx packet buffer allocation size in KB */
1600 tx_space = pba >> 16;
1601 /* lower 16 bits has Rx packet buffer allocation size in KB */
1602 pba &= 0xffff;
1603 /* the tx fifo also stores 16 bytes of information about the tx
1604 * but don't include ethernet FCS because hardware appends it */
1605 min_tx_space = (adapter->max_frame_size +
1606 sizeof(union e1000_adv_tx_desc) -
1607 ETH_FCS_LEN) * 2;
1608 min_tx_space = ALIGN(min_tx_space, 1024);
1609 min_tx_space >>= 10;
1610 /* software strips receive CRC, so leave room for it */
1611 min_rx_space = adapter->max_frame_size;
1612 min_rx_space = ALIGN(min_rx_space, 1024);
1613 min_rx_space >>= 10;
1614
1615 /* If current Tx allocation is less than the min Tx FIFO size,
1616 * and the min Tx FIFO size is less than the current Rx FIFO
1617 * allocation, take space away from current Rx allocation */
1618 if (tx_space < min_tx_space &&
1619 ((min_tx_space - tx_space) < pba)) {
1620 pba = pba - (min_tx_space - tx_space);
1621
1622 /* if short on rx space, rx wins and must trump tx
1623 * adjustment */
1624 if (pba < min_rx_space)
1625 pba = min_rx_space;
1626 }
1627 wr32(E1000_PBA, pba);
1628 }
1629
1630 /* flow control settings */
1631 /* The high water mark must be low enough to fit one full frame
1632 * (or the size used for early receive) above it in the Rx FIFO.
1633 * Set it to the lower of:
1634 * - 90% of the Rx FIFO size, or
1635 * - the full Rx FIFO size minus one full frame */
1636 hwm = min(((pba << 10) * 9 / 10),
1637 ((pba << 10) - 2 * adapter->max_frame_size));
1638
1639 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1640 fc->low_water = fc->high_water - 16;
1641 fc->pause_time = 0xFFFF;
1642 fc->send_xon = 1;
1643 fc->current_mode = fc->requested_mode;
1644
1645 /* disable receive for all VFs and wait one second */
1646 if (adapter->vfs_allocated_count) {
1647 int i;
1648 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1649 adapter->vf_data[i].flags = 0;
1650
1651 /* ping all the active vfs to let them know we are going down */
1652 igb_ping_all_vfs(adapter);
1653
1654 /* disable transmits and receives */
1655 wr32(E1000_VFRE, 0);
1656 wr32(E1000_VFTE, 0);
1657 }
1658
1659 /* Allow time for pending master requests to run */
1660 hw->mac.ops.reset_hw(hw);
1661 wr32(E1000_WUC, 0);
1662
1663 if (hw->mac.ops.init_hw(hw))
1664 dev_err(&pdev->dev, "Hardware Error\n");
1665
1666 if (hw->mac.type == e1000_82580) {
1667 u32 reg = rd32(E1000_PCIEMISC);
1668 wr32(E1000_PCIEMISC,
1669 reg & ~E1000_PCIEMISC_LX_DECISION);
1670 }
1671 if (!netif_running(adapter->netdev))
1672 igb_power_down_link(adapter);
1673
1674 igb_update_mng_vlan(adapter);
1675
1676 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1677 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1678
1679 igb_get_phy_info(hw);
1680 }
1681
1682 static const struct net_device_ops igb_netdev_ops = {
1683 .ndo_open = igb_open,
1684 .ndo_stop = igb_close,
1685 .ndo_start_xmit = igb_xmit_frame_adv,
1686 .ndo_get_stats = igb_get_stats,
1687 .ndo_set_rx_mode = igb_set_rx_mode,
1688 .ndo_set_multicast_list = igb_set_rx_mode,
1689 .ndo_set_mac_address = igb_set_mac,
1690 .ndo_change_mtu = igb_change_mtu,
1691 .ndo_do_ioctl = igb_ioctl,
1692 .ndo_tx_timeout = igb_tx_timeout,
1693 .ndo_validate_addr = eth_validate_addr,
1694 .ndo_vlan_rx_register = igb_vlan_rx_register,
1695 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1696 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1697 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1698 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1699 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1700 .ndo_get_vf_config = igb_ndo_get_vf_config,
1701 #ifdef CONFIG_NET_POLL_CONTROLLER
1702 .ndo_poll_controller = igb_netpoll,
1703 #endif
1704 };
1705
1706 /**
1707 * igb_probe - Device Initialization Routine
1708 * @pdev: PCI device information struct
1709 * @ent: entry in igb_pci_tbl
1710 *
1711 * Returns 0 on success, negative on failure
1712 *
1713 * igb_probe initializes an adapter identified by a pci_dev structure.
1714 * The OS initialization, configuring of the adapter private structure,
1715 * and a hardware reset occur.
1716 **/
1717 static int __devinit igb_probe(struct pci_dev *pdev,
1718 const struct pci_device_id *ent)
1719 {
1720 struct net_device *netdev;
1721 struct igb_adapter *adapter;
1722 struct e1000_hw *hw;
1723 u16 eeprom_data = 0;
1724 static int global_quad_port_a; /* global quad port a indication */
1725 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1726 unsigned long mmio_start, mmio_len;
1727 int err, pci_using_dac;
1728 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1729 u32 part_num;
1730
1731 /* Catch broken hardware that put the wrong VF device ID in
1732 * the PCIe SR-IOV capability.
1733 */
1734 if (pdev->is_virtfn) {
1735 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1736 pci_name(pdev), pdev->vendor, pdev->device);
1737 return -EINVAL;
1738 }
1739
1740 err = pci_enable_device_mem(pdev);
1741 if (err)
1742 return err;
1743
1744 pci_using_dac = 0;
1745 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1746 if (!err) {
1747 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1748 if (!err)
1749 pci_using_dac = 1;
1750 } else {
1751 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1752 if (err) {
1753 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1754 if (err) {
1755 dev_err(&pdev->dev, "No usable DMA "
1756 "configuration, aborting\n");
1757 goto err_dma;
1758 }
1759 }
1760 }
1761
1762 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1763 IORESOURCE_MEM),
1764 igb_driver_name);
1765 if (err)
1766 goto err_pci_reg;
1767
1768 pci_enable_pcie_error_reporting(pdev);
1769
1770 pci_set_master(pdev);
1771 pci_save_state(pdev);
1772
1773 err = -ENOMEM;
1774 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1775 IGB_ABS_MAX_TX_QUEUES);
1776 if (!netdev)
1777 goto err_alloc_etherdev;
1778
1779 SET_NETDEV_DEV(netdev, &pdev->dev);
1780
1781 pci_set_drvdata(pdev, netdev);
1782 adapter = netdev_priv(netdev);
1783 adapter->netdev = netdev;
1784 adapter->pdev = pdev;
1785 hw = &adapter->hw;
1786 hw->back = adapter;
1787 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1788
1789 mmio_start = pci_resource_start(pdev, 0);
1790 mmio_len = pci_resource_len(pdev, 0);
1791
1792 err = -EIO;
1793 hw->hw_addr = ioremap(mmio_start, mmio_len);
1794 if (!hw->hw_addr)
1795 goto err_ioremap;
1796
1797 netdev->netdev_ops = &igb_netdev_ops;
1798 igb_set_ethtool_ops(netdev);
1799 netdev->watchdog_timeo = 5 * HZ;
1800
1801 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1802
1803 netdev->mem_start = mmio_start;
1804 netdev->mem_end = mmio_start + mmio_len;
1805
1806 /* PCI config space info */
1807 hw->vendor_id = pdev->vendor;
1808 hw->device_id = pdev->device;
1809 hw->revision_id = pdev->revision;
1810 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1811 hw->subsystem_device_id = pdev->subsystem_device;
1812
1813 /* Copy the default MAC, PHY and NVM function pointers */
1814 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1815 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1816 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1817 /* Initialize skew-specific constants */
1818 err = ei->get_invariants(hw);
1819 if (err)
1820 goto err_sw_init;
1821
1822 /* setup the private structure */
1823 err = igb_sw_init(adapter);
1824 if (err)
1825 goto err_sw_init;
1826
1827 igb_get_bus_info_pcie(hw);
1828
1829 hw->phy.autoneg_wait_to_complete = false;
1830
1831 /* Copper options */
1832 if (hw->phy.media_type == e1000_media_type_copper) {
1833 hw->phy.mdix = AUTO_ALL_MODES;
1834 hw->phy.disable_polarity_correction = false;
1835 hw->phy.ms_type = e1000_ms_hw_default;
1836 }
1837
1838 if (igb_check_reset_block(hw))
1839 dev_info(&pdev->dev,
1840 "PHY reset is blocked due to SOL/IDER session.\n");
1841
1842 netdev->features = NETIF_F_SG |
1843 NETIF_F_IP_CSUM |
1844 NETIF_F_HW_VLAN_TX |
1845 NETIF_F_HW_VLAN_RX |
1846 NETIF_F_HW_VLAN_FILTER;
1847
1848 netdev->features |= NETIF_F_IPV6_CSUM;
1849 netdev->features |= NETIF_F_TSO;
1850 netdev->features |= NETIF_F_TSO6;
1851 netdev->features |= NETIF_F_GRO;
1852
1853 netdev->vlan_features |= NETIF_F_TSO;
1854 netdev->vlan_features |= NETIF_F_TSO6;
1855 netdev->vlan_features |= NETIF_F_IP_CSUM;
1856 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1857 netdev->vlan_features |= NETIF_F_SG;
1858
1859 if (pci_using_dac)
1860 netdev->features |= NETIF_F_HIGHDMA;
1861
1862 if (hw->mac.type >= e1000_82576)
1863 netdev->features |= NETIF_F_SCTP_CSUM;
1864
1865 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1866
1867 /* before reading the NVM, reset the controller to put the device in a
1868 * known good starting state */
1869 hw->mac.ops.reset_hw(hw);
1870
1871 /* make sure the NVM is good */
1872 if (igb_validate_nvm_checksum(hw) < 0) {
1873 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1874 err = -EIO;
1875 goto err_eeprom;
1876 }
1877
1878 /* copy the MAC address out of the NVM */
1879 if (hw->mac.ops.read_mac_addr(hw))
1880 dev_err(&pdev->dev, "NVM Read Error\n");
1881
1882 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1883 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1884
1885 if (!is_valid_ether_addr(netdev->perm_addr)) {
1886 dev_err(&pdev->dev, "Invalid MAC Address\n");
1887 err = -EIO;
1888 goto err_eeprom;
1889 }
1890
1891 setup_timer(&adapter->watchdog_timer, igb_watchdog,
1892 (unsigned long) adapter);
1893 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
1894 (unsigned long) adapter);
1895
1896 INIT_WORK(&adapter->reset_task, igb_reset_task);
1897 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1898
1899 /* Initialize link properties that are user-changeable */
1900 adapter->fc_autoneg = true;
1901 hw->mac.autoneg = true;
1902 hw->phy.autoneg_advertised = 0x2f;
1903
1904 hw->fc.requested_mode = e1000_fc_default;
1905 hw->fc.current_mode = e1000_fc_default;
1906
1907 igb_validate_mdi_setting(hw);
1908
1909 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1910 * enable the ACPI Magic Packet filter
1911 */
1912
1913 if (hw->bus.func == 0)
1914 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1915 else if (hw->mac.type == e1000_82580)
1916 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1917 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1918 &eeprom_data);
1919 else if (hw->bus.func == 1)
1920 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1921
1922 if (eeprom_data & eeprom_apme_mask)
1923 adapter->eeprom_wol |= E1000_WUFC_MAG;
1924
1925 /* now that we have the eeprom settings, apply the special cases where
1926 * the eeprom may be wrong or the board simply won't support wake on
1927 * lan on a particular port */
1928 switch (pdev->device) {
1929 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1930 adapter->eeprom_wol = 0;
1931 break;
1932 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1933 case E1000_DEV_ID_82576_FIBER:
1934 case E1000_DEV_ID_82576_SERDES:
1935 /* Wake events only supported on port A for dual fiber
1936 * regardless of eeprom setting */
1937 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1938 adapter->eeprom_wol = 0;
1939 break;
1940 case E1000_DEV_ID_82576_QUAD_COPPER:
1941 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1942 /* if quad port adapter, disable WoL on all but port A */
1943 if (global_quad_port_a != 0)
1944 adapter->eeprom_wol = 0;
1945 else
1946 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1947 /* Reset for multiple quad port adapters */
1948 if (++global_quad_port_a == 4)
1949 global_quad_port_a = 0;
1950 break;
1951 }
1952
1953 /* initialize the wol settings based on the eeprom settings */
1954 adapter->wol = adapter->eeprom_wol;
1955 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1956
1957 /* reset the hardware with the new settings */
1958 igb_reset(adapter);
1959
1960 /* let the f/w know that the h/w is now under the control of the
1961 * driver. */
1962 igb_get_hw_control(adapter);
1963
1964 strcpy(netdev->name, "eth%d");
1965 err = register_netdev(netdev);
1966 if (err)
1967 goto err_register;
1968
1969 /* carrier off reporting is important to ethtool even BEFORE open */
1970 netif_carrier_off(netdev);
1971
1972 #ifdef CONFIG_IGB_DCA
1973 if (dca_add_requester(&pdev->dev) == 0) {
1974 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1975 dev_info(&pdev->dev, "DCA enabled\n");
1976 igb_setup_dca(adapter);
1977 }
1978
1979 #endif
1980 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1981 /* print bus type/speed/width info */
1982 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1983 netdev->name,
1984 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1985 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
1986 "unknown"),
1987 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1988 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1989 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1990 "unknown"),
1991 netdev->dev_addr);
1992
1993 igb_read_part_num(hw, &part_num);
1994 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1995 (part_num >> 8), (part_num & 0xff));
1996
1997 dev_info(&pdev->dev,
1998 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1999 adapter->msix_entries ? "MSI-X" :
2000 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2001 adapter->num_rx_queues, adapter->num_tx_queues);
2002
2003 return 0;
2004
2005 err_register:
2006 igb_release_hw_control(adapter);
2007 err_eeprom:
2008 if (!igb_check_reset_block(hw))
2009 igb_reset_phy(hw);
2010
2011 if (hw->flash_address)
2012 iounmap(hw->flash_address);
2013 err_sw_init:
2014 igb_clear_interrupt_scheme(adapter);
2015 iounmap(hw->hw_addr);
2016 err_ioremap:
2017 free_netdev(netdev);
2018 err_alloc_etherdev:
2019 pci_release_selected_regions(pdev,
2020 pci_select_bars(pdev, IORESOURCE_MEM));
2021 err_pci_reg:
2022 err_dma:
2023 pci_disable_device(pdev);
2024 return err;
2025 }
2026
2027 /**
2028 * igb_remove - Device Removal Routine
2029 * @pdev: PCI device information struct
2030 *
2031 * igb_remove is called by the PCI subsystem to alert the driver
2032 * that it should release a PCI device. The could be caused by a
2033 * Hot-Plug event, or because the driver is going to be removed from
2034 * memory.
2035 **/
2036 static void __devexit igb_remove(struct pci_dev *pdev)
2037 {
2038 struct net_device *netdev = pci_get_drvdata(pdev);
2039 struct igb_adapter *adapter = netdev_priv(netdev);
2040 struct e1000_hw *hw = &adapter->hw;
2041
2042 /* flush_scheduled work may reschedule our watchdog task, so
2043 * explicitly disable watchdog tasks from being rescheduled */
2044 set_bit(__IGB_DOWN, &adapter->state);
2045 del_timer_sync(&adapter->watchdog_timer);
2046 del_timer_sync(&adapter->phy_info_timer);
2047
2048 flush_scheduled_work();
2049
2050 #ifdef CONFIG_IGB_DCA
2051 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2052 dev_info(&pdev->dev, "DCA disabled\n");
2053 dca_remove_requester(&pdev->dev);
2054 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2055 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2056 }
2057 #endif
2058
2059 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2060 * would have already happened in close and is redundant. */
2061 igb_release_hw_control(adapter);
2062
2063 unregister_netdev(netdev);
2064
2065 igb_clear_interrupt_scheme(adapter);
2066
2067 #ifdef CONFIG_PCI_IOV
2068 /* reclaim resources allocated to VFs */
2069 if (adapter->vf_data) {
2070 /* disable iov and allow time for transactions to clear */
2071 pci_disable_sriov(pdev);
2072 msleep(500);
2073
2074 kfree(adapter->vf_data);
2075 adapter->vf_data = NULL;
2076 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2077 msleep(100);
2078 dev_info(&pdev->dev, "IOV Disabled\n");
2079 }
2080 #endif
2081
2082 iounmap(hw->hw_addr);
2083 if (hw->flash_address)
2084 iounmap(hw->flash_address);
2085 pci_release_selected_regions(pdev,
2086 pci_select_bars(pdev, IORESOURCE_MEM));
2087
2088 free_netdev(netdev);
2089
2090 pci_disable_pcie_error_reporting(pdev);
2091
2092 pci_disable_device(pdev);
2093 }
2094
2095 /**
2096 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2097 * @adapter: board private structure to initialize
2098 *
2099 * This function initializes the vf specific data storage and then attempts to
2100 * allocate the VFs. The reason for ordering it this way is because it is much
2101 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2102 * the memory for the VFs.
2103 **/
2104 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2105 {
2106 #ifdef CONFIG_PCI_IOV
2107 struct pci_dev *pdev = adapter->pdev;
2108
2109 if (adapter->vfs_allocated_count) {
2110 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2111 sizeof(struct vf_data_storage),
2112 GFP_KERNEL);
2113 /* if allocation failed then we do not support SR-IOV */
2114 if (!adapter->vf_data) {
2115 adapter->vfs_allocated_count = 0;
2116 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2117 "Data Storage\n");
2118 }
2119 }
2120
2121 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2122 kfree(adapter->vf_data);
2123 adapter->vf_data = NULL;
2124 #endif /* CONFIG_PCI_IOV */
2125 adapter->vfs_allocated_count = 0;
2126 #ifdef CONFIG_PCI_IOV
2127 } else {
2128 unsigned char mac_addr[ETH_ALEN];
2129 int i;
2130 dev_info(&pdev->dev, "%d vfs allocated\n",
2131 adapter->vfs_allocated_count);
2132 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2133 random_ether_addr(mac_addr);
2134 igb_set_vf_mac(adapter, i, mac_addr);
2135 }
2136 }
2137 #endif /* CONFIG_PCI_IOV */
2138 }
2139
2140
2141 /**
2142 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2143 * @adapter: board private structure to initialize
2144 *
2145 * igb_init_hw_timer initializes the function pointer and values for the hw
2146 * timer found in hardware.
2147 **/
2148 static void igb_init_hw_timer(struct igb_adapter *adapter)
2149 {
2150 struct e1000_hw *hw = &adapter->hw;
2151
2152 switch (hw->mac.type) {
2153 case e1000_i350:
2154 case e1000_82580:
2155 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2156 adapter->cycles.read = igb_read_clock;
2157 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2158 adapter->cycles.mult = 1;
2159 /*
2160 * The 82580 timesync updates the system timer every 8ns by 8ns
2161 * and the value cannot be shifted. Instead we need to shift
2162 * the registers to generate a 64bit timer value. As a result
2163 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2164 * 24 in order to generate a larger value for synchronization.
2165 */
2166 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2167 /* disable system timer temporarily by setting bit 31 */
2168 wr32(E1000_TSAUXC, 0x80000000);
2169 wrfl();
2170
2171 /* Set registers so that rollover occurs soon to test this. */
2172 wr32(E1000_SYSTIMR, 0x00000000);
2173 wr32(E1000_SYSTIML, 0x80000000);
2174 wr32(E1000_SYSTIMH, 0x000000FF);
2175 wrfl();
2176
2177 /* enable system timer by clearing bit 31 */
2178 wr32(E1000_TSAUXC, 0x0);
2179 wrfl();
2180
2181 timecounter_init(&adapter->clock,
2182 &adapter->cycles,
2183 ktime_to_ns(ktime_get_real()));
2184 /*
2185 * Synchronize our NIC clock against system wall clock. NIC
2186 * time stamp reading requires ~3us per sample, each sample
2187 * was pretty stable even under load => only require 10
2188 * samples for each offset comparison.
2189 */
2190 memset(&adapter->compare, 0, sizeof(adapter->compare));
2191 adapter->compare.source = &adapter->clock;
2192 adapter->compare.target = ktime_get_real;
2193 adapter->compare.num_samples = 10;
2194 timecompare_update(&adapter->compare, 0);
2195 break;
2196 case e1000_82576:
2197 /*
2198 * Initialize hardware timer: we keep it running just in case
2199 * that some program needs it later on.
2200 */
2201 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2202 adapter->cycles.read = igb_read_clock;
2203 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2204 adapter->cycles.mult = 1;
2205 /**
2206 * Scale the NIC clock cycle by a large factor so that
2207 * relatively small clock corrections can be added or
2208 * substracted at each clock tick. The drawbacks of a large
2209 * factor are a) that the clock register overflows more quickly
2210 * (not such a big deal) and b) that the increment per tick has
2211 * to fit into 24 bits. As a result we need to use a shift of
2212 * 19 so we can fit a value of 16 into the TIMINCA register.
2213 */
2214 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2215 wr32(E1000_TIMINCA,
2216 (1 << E1000_TIMINCA_16NS_SHIFT) |
2217 (16 << IGB_82576_TSYNC_SHIFT));
2218
2219 /* Set registers so that rollover occurs soon to test this. */
2220 wr32(E1000_SYSTIML, 0x00000000);
2221 wr32(E1000_SYSTIMH, 0xFF800000);
2222 wrfl();
2223
2224 timecounter_init(&adapter->clock,
2225 &adapter->cycles,
2226 ktime_to_ns(ktime_get_real()));
2227 /*
2228 * Synchronize our NIC clock against system wall clock. NIC
2229 * time stamp reading requires ~3us per sample, each sample
2230 * was pretty stable even under load => only require 10
2231 * samples for each offset comparison.
2232 */
2233 memset(&adapter->compare, 0, sizeof(adapter->compare));
2234 adapter->compare.source = &adapter->clock;
2235 adapter->compare.target = ktime_get_real;
2236 adapter->compare.num_samples = 10;
2237 timecompare_update(&adapter->compare, 0);
2238 break;
2239 case e1000_82575:
2240 /* 82575 does not support timesync */
2241 default:
2242 break;
2243 }
2244
2245 }
2246
2247 /**
2248 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2249 * @adapter: board private structure to initialize
2250 *
2251 * igb_sw_init initializes the Adapter private data structure.
2252 * Fields are initialized based on PCI device information and
2253 * OS network device settings (MTU size).
2254 **/
2255 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2256 {
2257 struct e1000_hw *hw = &adapter->hw;
2258 struct net_device *netdev = adapter->netdev;
2259 struct pci_dev *pdev = adapter->pdev;
2260
2261 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2262
2263 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2264 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2265 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2266 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2267
2268 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2269 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2270
2271 #ifdef CONFIG_PCI_IOV
2272 if (hw->mac.type == e1000_82576)
2273 adapter->vfs_allocated_count = (max_vfs > 7) ? 7 : max_vfs;
2274
2275 #endif /* CONFIG_PCI_IOV */
2276 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2277
2278 /*
2279 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2280 * then we should combine the queues into a queue pair in order to
2281 * conserve interrupts due to limited supply
2282 */
2283 if ((adapter->rss_queues > 4) ||
2284 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2285 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2286
2287 /* This call may decrease the number of queues */
2288 if (igb_init_interrupt_scheme(adapter)) {
2289 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2290 return -ENOMEM;
2291 }
2292
2293 igb_init_hw_timer(adapter);
2294 igb_probe_vfs(adapter);
2295
2296 /* Explicitly disable IRQ since the NIC can be in any state. */
2297 igb_irq_disable(adapter);
2298
2299 set_bit(__IGB_DOWN, &adapter->state);
2300 return 0;
2301 }
2302
2303 /**
2304 * igb_open - Called when a network interface is made active
2305 * @netdev: network interface device structure
2306 *
2307 * Returns 0 on success, negative value on failure
2308 *
2309 * The open entry point is called when a network interface is made
2310 * active by the system (IFF_UP). At this point all resources needed
2311 * for transmit and receive operations are allocated, the interrupt
2312 * handler is registered with the OS, the watchdog timer is started,
2313 * and the stack is notified that the interface is ready.
2314 **/
2315 static int igb_open(struct net_device *netdev)
2316 {
2317 struct igb_adapter *adapter = netdev_priv(netdev);
2318 struct e1000_hw *hw = &adapter->hw;
2319 int err;
2320 int i;
2321
2322 /* disallow open during test */
2323 if (test_bit(__IGB_TESTING, &adapter->state))
2324 return -EBUSY;
2325
2326 netif_carrier_off(netdev);
2327
2328 /* allocate transmit descriptors */
2329 err = igb_setup_all_tx_resources(adapter);
2330 if (err)
2331 goto err_setup_tx;
2332
2333 /* allocate receive descriptors */
2334 err = igb_setup_all_rx_resources(adapter);
2335 if (err)
2336 goto err_setup_rx;
2337
2338 igb_power_up_link(adapter);
2339
2340 /* before we allocate an interrupt, we must be ready to handle it.
2341 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2342 * as soon as we call pci_request_irq, so we have to setup our
2343 * clean_rx handler before we do so. */
2344 igb_configure(adapter);
2345
2346 err = igb_request_irq(adapter);
2347 if (err)
2348 goto err_req_irq;
2349
2350 /* From here on the code is the same as igb_up() */
2351 clear_bit(__IGB_DOWN, &adapter->state);
2352
2353 for (i = 0; i < adapter->num_q_vectors; i++) {
2354 struct igb_q_vector *q_vector = adapter->q_vector[i];
2355 napi_enable(&q_vector->napi);
2356 }
2357
2358 /* Clear any pending interrupts. */
2359 rd32(E1000_ICR);
2360
2361 igb_irq_enable(adapter);
2362
2363 /* notify VFs that reset has been completed */
2364 if (adapter->vfs_allocated_count) {
2365 u32 reg_data = rd32(E1000_CTRL_EXT);
2366 reg_data |= E1000_CTRL_EXT_PFRSTD;
2367 wr32(E1000_CTRL_EXT, reg_data);
2368 }
2369
2370 netif_tx_start_all_queues(netdev);
2371
2372 /* start the watchdog. */
2373 hw->mac.get_link_status = 1;
2374 schedule_work(&adapter->watchdog_task);
2375
2376 return 0;
2377
2378 err_req_irq:
2379 igb_release_hw_control(adapter);
2380 igb_power_down_link(adapter);
2381 igb_free_all_rx_resources(adapter);
2382 err_setup_rx:
2383 igb_free_all_tx_resources(adapter);
2384 err_setup_tx:
2385 igb_reset(adapter);
2386
2387 return err;
2388 }
2389
2390 /**
2391 * igb_close - Disables a network interface
2392 * @netdev: network interface device structure
2393 *
2394 * Returns 0, this is not allowed to fail
2395 *
2396 * The close entry point is called when an interface is de-activated
2397 * by the OS. The hardware is still under the driver's control, but
2398 * needs to be disabled. A global MAC reset is issued to stop the
2399 * hardware, and all transmit and receive resources are freed.
2400 **/
2401 static int igb_close(struct net_device *netdev)
2402 {
2403 struct igb_adapter *adapter = netdev_priv(netdev);
2404
2405 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2406 igb_down(adapter);
2407
2408 igb_free_irq(adapter);
2409
2410 igb_free_all_tx_resources(adapter);
2411 igb_free_all_rx_resources(adapter);
2412
2413 return 0;
2414 }
2415
2416 /**
2417 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2418 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2419 *
2420 * Return 0 on success, negative on failure
2421 **/
2422 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2423 {
2424 struct device *dev = tx_ring->dev;
2425 int size;
2426
2427 size = sizeof(struct igb_buffer) * tx_ring->count;
2428 tx_ring->buffer_info = vmalloc(size);
2429 if (!tx_ring->buffer_info)
2430 goto err;
2431 memset(tx_ring->buffer_info, 0, size);
2432
2433 /* round up to nearest 4K */
2434 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2435 tx_ring->size = ALIGN(tx_ring->size, 4096);
2436
2437 tx_ring->desc = dma_alloc_coherent(dev,
2438 tx_ring->size,
2439 &tx_ring->dma,
2440 GFP_KERNEL);
2441
2442 if (!tx_ring->desc)
2443 goto err;
2444
2445 tx_ring->next_to_use = 0;
2446 tx_ring->next_to_clean = 0;
2447 return 0;
2448
2449 err:
2450 vfree(tx_ring->buffer_info);
2451 dev_err(dev,
2452 "Unable to allocate memory for the transmit descriptor ring\n");
2453 return -ENOMEM;
2454 }
2455
2456 /**
2457 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2458 * (Descriptors) for all queues
2459 * @adapter: board private structure
2460 *
2461 * Return 0 on success, negative on failure
2462 **/
2463 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2464 {
2465 struct pci_dev *pdev = adapter->pdev;
2466 int i, err = 0;
2467
2468 for (i = 0; i < adapter->num_tx_queues; i++) {
2469 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2470 if (err) {
2471 dev_err(&pdev->dev,
2472 "Allocation for Tx Queue %u failed\n", i);
2473 for (i--; i >= 0; i--)
2474 igb_free_tx_resources(adapter->tx_ring[i]);
2475 break;
2476 }
2477 }
2478
2479 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
2480 int r_idx = i % adapter->num_tx_queues;
2481 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
2482 }
2483 return err;
2484 }
2485
2486 /**
2487 * igb_setup_tctl - configure the transmit control registers
2488 * @adapter: Board private structure
2489 **/
2490 void igb_setup_tctl(struct igb_adapter *adapter)
2491 {
2492 struct e1000_hw *hw = &adapter->hw;
2493 u32 tctl;
2494
2495 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2496 wr32(E1000_TXDCTL(0), 0);
2497
2498 /* Program the Transmit Control Register */
2499 tctl = rd32(E1000_TCTL);
2500 tctl &= ~E1000_TCTL_CT;
2501 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2502 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2503
2504 igb_config_collision_dist(hw);
2505
2506 /* Enable transmits */
2507 tctl |= E1000_TCTL_EN;
2508
2509 wr32(E1000_TCTL, tctl);
2510 }
2511
2512 /**
2513 * igb_configure_tx_ring - Configure transmit ring after Reset
2514 * @adapter: board private structure
2515 * @ring: tx ring to configure
2516 *
2517 * Configure a transmit ring after a reset.
2518 **/
2519 void igb_configure_tx_ring(struct igb_adapter *adapter,
2520 struct igb_ring *ring)
2521 {
2522 struct e1000_hw *hw = &adapter->hw;
2523 u32 txdctl;
2524 u64 tdba = ring->dma;
2525 int reg_idx = ring->reg_idx;
2526
2527 /* disable the queue */
2528 txdctl = rd32(E1000_TXDCTL(reg_idx));
2529 wr32(E1000_TXDCTL(reg_idx),
2530 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2531 wrfl();
2532 mdelay(10);
2533
2534 wr32(E1000_TDLEN(reg_idx),
2535 ring->count * sizeof(union e1000_adv_tx_desc));
2536 wr32(E1000_TDBAL(reg_idx),
2537 tdba & 0x00000000ffffffffULL);
2538 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2539
2540 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2541 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2542 writel(0, ring->head);
2543 writel(0, ring->tail);
2544
2545 txdctl |= IGB_TX_PTHRESH;
2546 txdctl |= IGB_TX_HTHRESH << 8;
2547 txdctl |= IGB_TX_WTHRESH << 16;
2548
2549 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2550 wr32(E1000_TXDCTL(reg_idx), txdctl);
2551 }
2552
2553 /**
2554 * igb_configure_tx - Configure transmit Unit after Reset
2555 * @adapter: board private structure
2556 *
2557 * Configure the Tx unit of the MAC after a reset.
2558 **/
2559 static void igb_configure_tx(struct igb_adapter *adapter)
2560 {
2561 int i;
2562
2563 for (i = 0; i < adapter->num_tx_queues; i++)
2564 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2565 }
2566
2567 /**
2568 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2569 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2570 *
2571 * Returns 0 on success, negative on failure
2572 **/
2573 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2574 {
2575 struct device *dev = rx_ring->dev;
2576 int size, desc_len;
2577
2578 size = sizeof(struct igb_buffer) * rx_ring->count;
2579 rx_ring->buffer_info = vmalloc(size);
2580 if (!rx_ring->buffer_info)
2581 goto err;
2582 memset(rx_ring->buffer_info, 0, size);
2583
2584 desc_len = sizeof(union e1000_adv_rx_desc);
2585
2586 /* Round up to nearest 4K */
2587 rx_ring->size = rx_ring->count * desc_len;
2588 rx_ring->size = ALIGN(rx_ring->size, 4096);
2589
2590 rx_ring->desc = dma_alloc_coherent(dev,
2591 rx_ring->size,
2592 &rx_ring->dma,
2593 GFP_KERNEL);
2594
2595 if (!rx_ring->desc)
2596 goto err;
2597
2598 rx_ring->next_to_clean = 0;
2599 rx_ring->next_to_use = 0;
2600
2601 return 0;
2602
2603 err:
2604 vfree(rx_ring->buffer_info);
2605 rx_ring->buffer_info = NULL;
2606 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2607 " ring\n");
2608 return -ENOMEM;
2609 }
2610
2611 /**
2612 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2613 * (Descriptors) for all queues
2614 * @adapter: board private structure
2615 *
2616 * Return 0 on success, negative on failure
2617 **/
2618 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2619 {
2620 struct pci_dev *pdev = adapter->pdev;
2621 int i, err = 0;
2622
2623 for (i = 0; i < adapter->num_rx_queues; i++) {
2624 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2625 if (err) {
2626 dev_err(&pdev->dev,
2627 "Allocation for Rx Queue %u failed\n", i);
2628 for (i--; i >= 0; i--)
2629 igb_free_rx_resources(adapter->rx_ring[i]);
2630 break;
2631 }
2632 }
2633
2634 return err;
2635 }
2636
2637 /**
2638 * igb_setup_mrqc - configure the multiple receive queue control registers
2639 * @adapter: Board private structure
2640 **/
2641 static void igb_setup_mrqc(struct igb_adapter *adapter)
2642 {
2643 struct e1000_hw *hw = &adapter->hw;
2644 u32 mrqc, rxcsum;
2645 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2646 union e1000_reta {
2647 u32 dword;
2648 u8 bytes[4];
2649 } reta;
2650 static const u8 rsshash[40] = {
2651 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2652 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2653 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2654 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2655
2656 /* Fill out hash function seeds */
2657 for (j = 0; j < 10; j++) {
2658 u32 rsskey = rsshash[(j * 4)];
2659 rsskey |= rsshash[(j * 4) + 1] << 8;
2660 rsskey |= rsshash[(j * 4) + 2] << 16;
2661 rsskey |= rsshash[(j * 4) + 3] << 24;
2662 array_wr32(E1000_RSSRK(0), j, rsskey);
2663 }
2664
2665 num_rx_queues = adapter->rss_queues;
2666
2667 if (adapter->vfs_allocated_count) {
2668 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2669 switch (hw->mac.type) {
2670 case e1000_i350:
2671 case e1000_82580:
2672 num_rx_queues = 1;
2673 shift = 0;
2674 break;
2675 case e1000_82576:
2676 shift = 3;
2677 num_rx_queues = 2;
2678 break;
2679 case e1000_82575:
2680 shift = 2;
2681 shift2 = 6;
2682 default:
2683 break;
2684 }
2685 } else {
2686 if (hw->mac.type == e1000_82575)
2687 shift = 6;
2688 }
2689
2690 for (j = 0; j < (32 * 4); j++) {
2691 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2692 if (shift2)
2693 reta.bytes[j & 3] |= num_rx_queues << shift2;
2694 if ((j & 3) == 3)
2695 wr32(E1000_RETA(j >> 2), reta.dword);
2696 }
2697
2698 /*
2699 * Disable raw packet checksumming so that RSS hash is placed in
2700 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2701 * offloads as they are enabled by default
2702 */
2703 rxcsum = rd32(E1000_RXCSUM);
2704 rxcsum |= E1000_RXCSUM_PCSD;
2705
2706 if (adapter->hw.mac.type >= e1000_82576)
2707 /* Enable Receive Checksum Offload for SCTP */
2708 rxcsum |= E1000_RXCSUM_CRCOFL;
2709
2710 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2711 wr32(E1000_RXCSUM, rxcsum);
2712
2713 /* If VMDq is enabled then we set the appropriate mode for that, else
2714 * we default to RSS so that an RSS hash is calculated per packet even
2715 * if we are only using one queue */
2716 if (adapter->vfs_allocated_count) {
2717 if (hw->mac.type > e1000_82575) {
2718 /* Set the default pool for the PF's first queue */
2719 u32 vtctl = rd32(E1000_VT_CTL);
2720 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2721 E1000_VT_CTL_DISABLE_DEF_POOL);
2722 vtctl |= adapter->vfs_allocated_count <<
2723 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2724 wr32(E1000_VT_CTL, vtctl);
2725 }
2726 if (adapter->rss_queues > 1)
2727 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2728 else
2729 mrqc = E1000_MRQC_ENABLE_VMDQ;
2730 } else {
2731 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2732 }
2733 igb_vmm_control(adapter);
2734
2735 /*
2736 * Generate RSS hash based on TCP port numbers and/or
2737 * IPv4/v6 src and dst addresses since UDP cannot be
2738 * hashed reliably due to IP fragmentation
2739 */
2740 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2741 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2742 E1000_MRQC_RSS_FIELD_IPV6 |
2743 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2744 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2745
2746 wr32(E1000_MRQC, mrqc);
2747 }
2748
2749 /**
2750 * igb_setup_rctl - configure the receive control registers
2751 * @adapter: Board private structure
2752 **/
2753 void igb_setup_rctl(struct igb_adapter *adapter)
2754 {
2755 struct e1000_hw *hw = &adapter->hw;
2756 u32 rctl;
2757
2758 rctl = rd32(E1000_RCTL);
2759
2760 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2761 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2762
2763 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2764 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2765
2766 /*
2767 * enable stripping of CRC. It's unlikely this will break BMC
2768 * redirection as it did with e1000. Newer features require
2769 * that the HW strips the CRC.
2770 */
2771 rctl |= E1000_RCTL_SECRC;
2772
2773 /* disable store bad packets and clear size bits. */
2774 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2775
2776 /* enable LPE to prevent packets larger than max_frame_size */
2777 rctl |= E1000_RCTL_LPE;
2778
2779 /* disable queue 0 to prevent tail write w/o re-config */
2780 wr32(E1000_RXDCTL(0), 0);
2781
2782 /* Attention!!! For SR-IOV PF driver operations you must enable
2783 * queue drop for all VF and PF queues to prevent head of line blocking
2784 * if an un-trusted VF does not provide descriptors to hardware.
2785 */
2786 if (adapter->vfs_allocated_count) {
2787 /* set all queue drop enable bits */
2788 wr32(E1000_QDE, ALL_QUEUES);
2789 }
2790
2791 wr32(E1000_RCTL, rctl);
2792 }
2793
2794 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2795 int vfn)
2796 {
2797 struct e1000_hw *hw = &adapter->hw;
2798 u32 vmolr;
2799
2800 /* if it isn't the PF check to see if VFs are enabled and
2801 * increase the size to support vlan tags */
2802 if (vfn < adapter->vfs_allocated_count &&
2803 adapter->vf_data[vfn].vlans_enabled)
2804 size += VLAN_TAG_SIZE;
2805
2806 vmolr = rd32(E1000_VMOLR(vfn));
2807 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2808 vmolr |= size | E1000_VMOLR_LPE;
2809 wr32(E1000_VMOLR(vfn), vmolr);
2810
2811 return 0;
2812 }
2813
2814 /**
2815 * igb_rlpml_set - set maximum receive packet size
2816 * @adapter: board private structure
2817 *
2818 * Configure maximum receivable packet size.
2819 **/
2820 static void igb_rlpml_set(struct igb_adapter *adapter)
2821 {
2822 u32 max_frame_size = adapter->max_frame_size;
2823 struct e1000_hw *hw = &adapter->hw;
2824 u16 pf_id = adapter->vfs_allocated_count;
2825
2826 if (adapter->vlgrp)
2827 max_frame_size += VLAN_TAG_SIZE;
2828
2829 /* if vfs are enabled we set RLPML to the largest possible request
2830 * size and set the VMOLR RLPML to the size we need */
2831 if (pf_id) {
2832 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2833 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2834 }
2835
2836 wr32(E1000_RLPML, max_frame_size);
2837 }
2838
2839 static inline void igb_set_vmolr(struct igb_adapter *adapter,
2840 int vfn, bool aupe)
2841 {
2842 struct e1000_hw *hw = &adapter->hw;
2843 u32 vmolr;
2844
2845 /*
2846 * This register exists only on 82576 and newer so if we are older then
2847 * we should exit and do nothing
2848 */
2849 if (hw->mac.type < e1000_82576)
2850 return;
2851
2852 vmolr = rd32(E1000_VMOLR(vfn));
2853 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2854 if (aupe)
2855 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2856 else
2857 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
2858
2859 /* clear all bits that might not be set */
2860 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2861
2862 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
2863 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2864 /*
2865 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2866 * multicast packets
2867 */
2868 if (vfn <= adapter->vfs_allocated_count)
2869 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2870
2871 wr32(E1000_VMOLR(vfn), vmolr);
2872 }
2873
2874 /**
2875 * igb_configure_rx_ring - Configure a receive ring after Reset
2876 * @adapter: board private structure
2877 * @ring: receive ring to be configured
2878 *
2879 * Configure the Rx unit of the MAC after a reset.
2880 **/
2881 void igb_configure_rx_ring(struct igb_adapter *adapter,
2882 struct igb_ring *ring)
2883 {
2884 struct e1000_hw *hw = &adapter->hw;
2885 u64 rdba = ring->dma;
2886 int reg_idx = ring->reg_idx;
2887 u32 srrctl, rxdctl;
2888
2889 /* disable the queue */
2890 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2891 wr32(E1000_RXDCTL(reg_idx),
2892 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2893
2894 /* Set DMA base address registers */
2895 wr32(E1000_RDBAL(reg_idx),
2896 rdba & 0x00000000ffffffffULL);
2897 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2898 wr32(E1000_RDLEN(reg_idx),
2899 ring->count * sizeof(union e1000_adv_rx_desc));
2900
2901 /* initialize head and tail */
2902 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2903 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2904 writel(0, ring->head);
2905 writel(0, ring->tail);
2906
2907 /* set descriptor configuration */
2908 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2909 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2910 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2911 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2912 srrctl |= IGB_RXBUFFER_16384 >>
2913 E1000_SRRCTL_BSIZEPKT_SHIFT;
2914 #else
2915 srrctl |= (PAGE_SIZE / 2) >>
2916 E1000_SRRCTL_BSIZEPKT_SHIFT;
2917 #endif
2918 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2919 } else {
2920 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2921 E1000_SRRCTL_BSIZEPKT_SHIFT;
2922 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2923 }
2924 if (hw->mac.type == e1000_82580)
2925 srrctl |= E1000_SRRCTL_TIMESTAMP;
2926 /* Only set Drop Enable if we are supporting multiple queues */
2927 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
2928 srrctl |= E1000_SRRCTL_DROP_EN;
2929
2930 wr32(E1000_SRRCTL(reg_idx), srrctl);
2931
2932 /* set filtering for VMDQ pools */
2933 igb_set_vmolr(adapter, reg_idx & 0x7, true);
2934
2935 /* enable receive descriptor fetching */
2936 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2937 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2938 rxdctl &= 0xFFF00000;
2939 rxdctl |= IGB_RX_PTHRESH;
2940 rxdctl |= IGB_RX_HTHRESH << 8;
2941 rxdctl |= IGB_RX_WTHRESH << 16;
2942 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2943 }
2944
2945 /**
2946 * igb_configure_rx - Configure receive Unit after Reset
2947 * @adapter: board private structure
2948 *
2949 * Configure the Rx unit of the MAC after a reset.
2950 **/
2951 static void igb_configure_rx(struct igb_adapter *adapter)
2952 {
2953 int i;
2954
2955 /* set UTA to appropriate mode */
2956 igb_set_uta(adapter);
2957
2958 /* set the correct pool for the PF default MAC address in entry 0 */
2959 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2960 adapter->vfs_allocated_count);
2961
2962 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2963 * the Base and Length of the Rx Descriptor Ring */
2964 for (i = 0; i < adapter->num_rx_queues; i++)
2965 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
2966 }
2967
2968 /**
2969 * igb_free_tx_resources - Free Tx Resources per Queue
2970 * @tx_ring: Tx descriptor ring for a specific queue
2971 *
2972 * Free all transmit software resources
2973 **/
2974 void igb_free_tx_resources(struct igb_ring *tx_ring)
2975 {
2976 igb_clean_tx_ring(tx_ring);
2977
2978 vfree(tx_ring->buffer_info);
2979 tx_ring->buffer_info = NULL;
2980
2981 /* if not set, then don't free */
2982 if (!tx_ring->desc)
2983 return;
2984
2985 dma_free_coherent(tx_ring->dev, tx_ring->size,
2986 tx_ring->desc, tx_ring->dma);
2987
2988 tx_ring->desc = NULL;
2989 }
2990
2991 /**
2992 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2993 * @adapter: board private structure
2994 *
2995 * Free all transmit software resources
2996 **/
2997 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2998 {
2999 int i;
3000
3001 for (i = 0; i < adapter->num_tx_queues; i++)
3002 igb_free_tx_resources(adapter->tx_ring[i]);
3003 }
3004
3005 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3006 struct igb_buffer *buffer_info)
3007 {
3008 if (buffer_info->dma) {
3009 if (buffer_info->mapped_as_page)
3010 dma_unmap_page(tx_ring->dev,
3011 buffer_info->dma,
3012 buffer_info->length,
3013 DMA_TO_DEVICE);
3014 else
3015 dma_unmap_single(tx_ring->dev,
3016 buffer_info->dma,
3017 buffer_info->length,
3018 DMA_TO_DEVICE);
3019 buffer_info->dma = 0;
3020 }
3021 if (buffer_info->skb) {
3022 dev_kfree_skb_any(buffer_info->skb);
3023 buffer_info->skb = NULL;
3024 }
3025 buffer_info->time_stamp = 0;
3026 buffer_info->length = 0;
3027 buffer_info->next_to_watch = 0;
3028 buffer_info->mapped_as_page = false;
3029 }
3030
3031 /**
3032 * igb_clean_tx_ring - Free Tx Buffers
3033 * @tx_ring: ring to be cleaned
3034 **/
3035 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3036 {
3037 struct igb_buffer *buffer_info;
3038 unsigned long size;
3039 unsigned int i;
3040
3041 if (!tx_ring->buffer_info)
3042 return;
3043 /* Free all the Tx ring sk_buffs */
3044
3045 for (i = 0; i < tx_ring->count; i++) {
3046 buffer_info = &tx_ring->buffer_info[i];
3047 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3048 }
3049
3050 size = sizeof(struct igb_buffer) * tx_ring->count;
3051 memset(tx_ring->buffer_info, 0, size);
3052
3053 /* Zero out the descriptor ring */
3054 memset(tx_ring->desc, 0, tx_ring->size);
3055
3056 tx_ring->next_to_use = 0;
3057 tx_ring->next_to_clean = 0;
3058 }
3059
3060 /**
3061 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3062 * @adapter: board private structure
3063 **/
3064 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3065 {
3066 int i;
3067
3068 for (i = 0; i < adapter->num_tx_queues; i++)
3069 igb_clean_tx_ring(adapter->tx_ring[i]);
3070 }
3071
3072 /**
3073 * igb_free_rx_resources - Free Rx Resources
3074 * @rx_ring: ring to clean the resources from
3075 *
3076 * Free all receive software resources
3077 **/
3078 void igb_free_rx_resources(struct igb_ring *rx_ring)
3079 {
3080 igb_clean_rx_ring(rx_ring);
3081
3082 vfree(rx_ring->buffer_info);
3083 rx_ring->buffer_info = NULL;
3084
3085 /* if not set, then don't free */
3086 if (!rx_ring->desc)
3087 return;
3088
3089 dma_free_coherent(rx_ring->dev, rx_ring->size,
3090 rx_ring->desc, rx_ring->dma);
3091
3092 rx_ring->desc = NULL;
3093 }
3094
3095 /**
3096 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3097 * @adapter: board private structure
3098 *
3099 * Free all receive software resources
3100 **/
3101 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3102 {
3103 int i;
3104
3105 for (i = 0; i < adapter->num_rx_queues; i++)
3106 igb_free_rx_resources(adapter->rx_ring[i]);
3107 }
3108
3109 /**
3110 * igb_clean_rx_ring - Free Rx Buffers per Queue
3111 * @rx_ring: ring to free buffers from
3112 **/
3113 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3114 {
3115 struct igb_buffer *buffer_info;
3116 unsigned long size;
3117 unsigned int i;
3118
3119 if (!rx_ring->buffer_info)
3120 return;
3121
3122 /* Free all the Rx ring sk_buffs */
3123 for (i = 0; i < rx_ring->count; i++) {
3124 buffer_info = &rx_ring->buffer_info[i];
3125 if (buffer_info->dma) {
3126 dma_unmap_single(rx_ring->dev,
3127 buffer_info->dma,
3128 rx_ring->rx_buffer_len,
3129 DMA_FROM_DEVICE);
3130 buffer_info->dma = 0;
3131 }
3132
3133 if (buffer_info->skb) {
3134 dev_kfree_skb(buffer_info->skb);
3135 buffer_info->skb = NULL;
3136 }
3137 if (buffer_info->page_dma) {
3138 dma_unmap_page(rx_ring->dev,
3139 buffer_info->page_dma,
3140 PAGE_SIZE / 2,
3141 DMA_FROM_DEVICE);
3142 buffer_info->page_dma = 0;
3143 }
3144 if (buffer_info->page) {
3145 put_page(buffer_info->page);
3146 buffer_info->page = NULL;
3147 buffer_info->page_offset = 0;
3148 }
3149 }
3150
3151 size = sizeof(struct igb_buffer) * rx_ring->count;
3152 memset(rx_ring->buffer_info, 0, size);
3153
3154 /* Zero out the descriptor ring */
3155 memset(rx_ring->desc, 0, rx_ring->size);
3156
3157 rx_ring->next_to_clean = 0;
3158 rx_ring->next_to_use = 0;
3159 }
3160
3161 /**
3162 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3163 * @adapter: board private structure
3164 **/
3165 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3166 {
3167 int i;
3168
3169 for (i = 0; i < adapter->num_rx_queues; i++)
3170 igb_clean_rx_ring(adapter->rx_ring[i]);
3171 }
3172
3173 /**
3174 * igb_set_mac - Change the Ethernet Address of the NIC
3175 * @netdev: network interface device structure
3176 * @p: pointer to an address structure
3177 *
3178 * Returns 0 on success, negative on failure
3179 **/
3180 static int igb_set_mac(struct net_device *netdev, void *p)
3181 {
3182 struct igb_adapter *adapter = netdev_priv(netdev);
3183 struct e1000_hw *hw = &adapter->hw;
3184 struct sockaddr *addr = p;
3185
3186 if (!is_valid_ether_addr(addr->sa_data))
3187 return -EADDRNOTAVAIL;
3188
3189 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3190 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3191
3192 /* set the correct pool for the new PF MAC address in entry 0 */
3193 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3194 adapter->vfs_allocated_count);
3195
3196 return 0;
3197 }
3198
3199 /**
3200 * igb_write_mc_addr_list - write multicast addresses to MTA
3201 * @netdev: network interface device structure
3202 *
3203 * Writes multicast address list to the MTA hash table.
3204 * Returns: -ENOMEM on failure
3205 * 0 on no addresses written
3206 * X on writing X addresses to MTA
3207 **/
3208 static int igb_write_mc_addr_list(struct net_device *netdev)
3209 {
3210 struct igb_adapter *adapter = netdev_priv(netdev);
3211 struct e1000_hw *hw = &adapter->hw;
3212 struct netdev_hw_addr *ha;
3213 u8 *mta_list;
3214 int i;
3215
3216 if (netdev_mc_empty(netdev)) {
3217 /* nothing to program, so clear mc list */
3218 igb_update_mc_addr_list(hw, NULL, 0);
3219 igb_restore_vf_multicasts(adapter);
3220 return 0;
3221 }
3222
3223 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3224 if (!mta_list)
3225 return -ENOMEM;
3226
3227 /* The shared function expects a packed array of only addresses. */
3228 i = 0;
3229 netdev_for_each_mc_addr(ha, netdev)
3230 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3231
3232 igb_update_mc_addr_list(hw, mta_list, i);
3233 kfree(mta_list);
3234
3235 return netdev_mc_count(netdev);
3236 }
3237
3238 /**
3239 * igb_write_uc_addr_list - write unicast addresses to RAR table
3240 * @netdev: network interface device structure
3241 *
3242 * Writes unicast address list to the RAR table.
3243 * Returns: -ENOMEM on failure/insufficient address space
3244 * 0 on no addresses written
3245 * X on writing X addresses to the RAR table
3246 **/
3247 static int igb_write_uc_addr_list(struct net_device *netdev)
3248 {
3249 struct igb_adapter *adapter = netdev_priv(netdev);
3250 struct e1000_hw *hw = &adapter->hw;
3251 unsigned int vfn = adapter->vfs_allocated_count;
3252 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3253 int count = 0;
3254
3255 /* return ENOMEM indicating insufficient memory for addresses */
3256 if (netdev_uc_count(netdev) > rar_entries)
3257 return -ENOMEM;
3258
3259 if (!netdev_uc_empty(netdev) && rar_entries) {
3260 struct netdev_hw_addr *ha;
3261
3262 netdev_for_each_uc_addr(ha, netdev) {
3263 if (!rar_entries)
3264 break;
3265 igb_rar_set_qsel(adapter, ha->addr,
3266 rar_entries--,
3267 vfn);
3268 count++;
3269 }
3270 }
3271 /* write the addresses in reverse order to avoid write combining */
3272 for (; rar_entries > 0 ; rar_entries--) {
3273 wr32(E1000_RAH(rar_entries), 0);
3274 wr32(E1000_RAL(rar_entries), 0);
3275 }
3276 wrfl();
3277
3278 return count;
3279 }
3280
3281 /**
3282 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3283 * @netdev: network interface device structure
3284 *
3285 * The set_rx_mode entry point is called whenever the unicast or multicast
3286 * address lists or the network interface flags are updated. This routine is
3287 * responsible for configuring the hardware for proper unicast, multicast,
3288 * promiscuous mode, and all-multi behavior.
3289 **/
3290 static void igb_set_rx_mode(struct net_device *netdev)
3291 {
3292 struct igb_adapter *adapter = netdev_priv(netdev);
3293 struct e1000_hw *hw = &adapter->hw;
3294 unsigned int vfn = adapter->vfs_allocated_count;
3295 u32 rctl, vmolr = 0;
3296 int count;
3297
3298 /* Check for Promiscuous and All Multicast modes */
3299 rctl = rd32(E1000_RCTL);
3300
3301 /* clear the effected bits */
3302 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3303
3304 if (netdev->flags & IFF_PROMISC) {
3305 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3306 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3307 } else {
3308 if (netdev->flags & IFF_ALLMULTI) {
3309 rctl |= E1000_RCTL_MPE;
3310 vmolr |= E1000_VMOLR_MPME;
3311 } else {
3312 /*
3313 * Write addresses to the MTA, if the attempt fails
3314 * then we should just turn on promiscous mode so
3315 * that we can at least receive multicast traffic
3316 */
3317 count = igb_write_mc_addr_list(netdev);
3318 if (count < 0) {
3319 rctl |= E1000_RCTL_MPE;
3320 vmolr |= E1000_VMOLR_MPME;
3321 } else if (count) {
3322 vmolr |= E1000_VMOLR_ROMPE;
3323 }
3324 }
3325 /*
3326 * Write addresses to available RAR registers, if there is not
3327 * sufficient space to store all the addresses then enable
3328 * unicast promiscous mode
3329 */
3330 count = igb_write_uc_addr_list(netdev);
3331 if (count < 0) {
3332 rctl |= E1000_RCTL_UPE;
3333 vmolr |= E1000_VMOLR_ROPE;
3334 }
3335 rctl |= E1000_RCTL_VFE;
3336 }
3337 wr32(E1000_RCTL, rctl);
3338
3339 /*
3340 * In order to support SR-IOV and eventually VMDq it is necessary to set
3341 * the VMOLR to enable the appropriate modes. Without this workaround
3342 * we will have issues with VLAN tag stripping not being done for frames
3343 * that are only arriving because we are the default pool
3344 */
3345 if (hw->mac.type < e1000_82576)
3346 return;
3347
3348 vmolr |= rd32(E1000_VMOLR(vfn)) &
3349 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3350 wr32(E1000_VMOLR(vfn), vmolr);
3351 igb_restore_vf_multicasts(adapter);
3352 }
3353
3354 /* Need to wait a few seconds after link up to get diagnostic information from
3355 * the phy */
3356 static void igb_update_phy_info(unsigned long data)
3357 {
3358 struct igb_adapter *adapter = (struct igb_adapter *) data;
3359 igb_get_phy_info(&adapter->hw);
3360 }
3361
3362 /**
3363 * igb_has_link - check shared code for link and determine up/down
3364 * @adapter: pointer to driver private info
3365 **/
3366 bool igb_has_link(struct igb_adapter *adapter)
3367 {
3368 struct e1000_hw *hw = &adapter->hw;
3369 bool link_active = false;
3370 s32 ret_val = 0;
3371
3372 /* get_link_status is set on LSC (link status) interrupt or
3373 * rx sequence error interrupt. get_link_status will stay
3374 * false until the e1000_check_for_link establishes link
3375 * for copper adapters ONLY
3376 */
3377 switch (hw->phy.media_type) {
3378 case e1000_media_type_copper:
3379 if (hw->mac.get_link_status) {
3380 ret_val = hw->mac.ops.check_for_link(hw);
3381 link_active = !hw->mac.get_link_status;
3382 } else {
3383 link_active = true;
3384 }
3385 break;
3386 case e1000_media_type_internal_serdes:
3387 ret_val = hw->mac.ops.check_for_link(hw);
3388 link_active = hw->mac.serdes_has_link;
3389 break;
3390 default:
3391 case e1000_media_type_unknown:
3392 break;
3393 }
3394
3395 return link_active;
3396 }
3397
3398 /**
3399 * igb_watchdog - Timer Call-back
3400 * @data: pointer to adapter cast into an unsigned long
3401 **/
3402 static void igb_watchdog(unsigned long data)
3403 {
3404 struct igb_adapter *adapter = (struct igb_adapter *)data;
3405 /* Do the rest outside of interrupt context */
3406 schedule_work(&adapter->watchdog_task);
3407 }
3408
3409 static void igb_watchdog_task(struct work_struct *work)
3410 {
3411 struct igb_adapter *adapter = container_of(work,
3412 struct igb_adapter,
3413 watchdog_task);
3414 struct e1000_hw *hw = &adapter->hw;
3415 struct net_device *netdev = adapter->netdev;
3416 u32 link;
3417 int i;
3418
3419 link = igb_has_link(adapter);
3420 if (link) {
3421 if (!netif_carrier_ok(netdev)) {
3422 u32 ctrl;
3423 hw->mac.ops.get_speed_and_duplex(hw,
3424 &adapter->link_speed,
3425 &adapter->link_duplex);
3426
3427 ctrl = rd32(E1000_CTRL);
3428 /* Links status message must follow this format */
3429 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3430 "Flow Control: %s\n",
3431 netdev->name,
3432 adapter->link_speed,
3433 adapter->link_duplex == FULL_DUPLEX ?
3434 "Full Duplex" : "Half Duplex",
3435 ((ctrl & E1000_CTRL_TFCE) &&
3436 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3437 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3438 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3439
3440 /* adjust timeout factor according to speed/duplex */
3441 adapter->tx_timeout_factor = 1;
3442 switch (adapter->link_speed) {
3443 case SPEED_10:
3444 adapter->tx_timeout_factor = 14;
3445 break;
3446 case SPEED_100:
3447 /* maybe add some timeout factor ? */
3448 break;
3449 }
3450
3451 netif_carrier_on(netdev);
3452
3453 igb_ping_all_vfs(adapter);
3454
3455 /* link state has changed, schedule phy info update */
3456 if (!test_bit(__IGB_DOWN, &adapter->state))
3457 mod_timer(&adapter->phy_info_timer,
3458 round_jiffies(jiffies + 2 * HZ));
3459 }
3460 } else {
3461 if (netif_carrier_ok(netdev)) {
3462 adapter->link_speed = 0;
3463 adapter->link_duplex = 0;
3464 /* Links status message must follow this format */
3465 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3466 netdev->name);
3467 netif_carrier_off(netdev);
3468
3469 igb_ping_all_vfs(adapter);
3470
3471 /* link state has changed, schedule phy info update */
3472 if (!test_bit(__IGB_DOWN, &adapter->state))
3473 mod_timer(&adapter->phy_info_timer,
3474 round_jiffies(jiffies + 2 * HZ));
3475 }
3476 }
3477
3478 igb_update_stats(adapter);
3479
3480 for (i = 0; i < adapter->num_tx_queues; i++) {
3481 struct igb_ring *tx_ring = adapter->tx_ring[i];
3482 if (!netif_carrier_ok(netdev)) {
3483 /* We've lost link, so the controller stops DMA,
3484 * but we've got queued Tx work that's never going
3485 * to get done, so reset controller to flush Tx.
3486 * (Do the reset outside of interrupt context). */
3487 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3488 adapter->tx_timeout_count++;
3489 schedule_work(&adapter->reset_task);
3490 /* return immediately since reset is imminent */
3491 return;
3492 }
3493 }
3494
3495 /* Force detection of hung controller every watchdog period */
3496 tx_ring->detect_tx_hung = true;
3497 }
3498
3499 /* Cause software interrupt to ensure rx ring is cleaned */
3500 if (adapter->msix_entries) {
3501 u32 eics = 0;
3502 for (i = 0; i < adapter->num_q_vectors; i++) {
3503 struct igb_q_vector *q_vector = adapter->q_vector[i];
3504 eics |= q_vector->eims_value;
3505 }
3506 wr32(E1000_EICS, eics);
3507 } else {
3508 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3509 }
3510
3511 /* Reset the timer */
3512 if (!test_bit(__IGB_DOWN, &adapter->state))
3513 mod_timer(&adapter->watchdog_timer,
3514 round_jiffies(jiffies + 2 * HZ));
3515 }
3516
3517 enum latency_range {
3518 lowest_latency = 0,
3519 low_latency = 1,
3520 bulk_latency = 2,
3521 latency_invalid = 255
3522 };
3523
3524 /**
3525 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3526 *
3527 * Stores a new ITR value based on strictly on packet size. This
3528 * algorithm is less sophisticated than that used in igb_update_itr,
3529 * due to the difficulty of synchronizing statistics across multiple
3530 * receive rings. The divisors and thresholds used by this fuction
3531 * were determined based on theoretical maximum wire speed and testing
3532 * data, in order to minimize response time while increasing bulk
3533 * throughput.
3534 * This functionality is controlled by the InterruptThrottleRate module
3535 * parameter (see igb_param.c)
3536 * NOTE: This function is called only when operating in a multiqueue
3537 * receive environment.
3538 * @q_vector: pointer to q_vector
3539 **/
3540 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3541 {
3542 int new_val = q_vector->itr_val;
3543 int avg_wire_size = 0;
3544 struct igb_adapter *adapter = q_vector->adapter;
3545
3546 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3547 * ints/sec - ITR timer value of 120 ticks.
3548 */
3549 if (adapter->link_speed != SPEED_1000) {
3550 new_val = 976;
3551 goto set_itr_val;
3552 }
3553
3554 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3555 struct igb_ring *ring = q_vector->rx_ring;
3556 avg_wire_size = ring->total_bytes / ring->total_packets;
3557 }
3558
3559 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3560 struct igb_ring *ring = q_vector->tx_ring;
3561 avg_wire_size = max_t(u32, avg_wire_size,
3562 (ring->total_bytes /
3563 ring->total_packets));
3564 }
3565
3566 /* if avg_wire_size isn't set no work was done */
3567 if (!avg_wire_size)
3568 goto clear_counts;
3569
3570 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3571 avg_wire_size += 24;
3572
3573 /* Don't starve jumbo frames */
3574 avg_wire_size = min(avg_wire_size, 3000);
3575
3576 /* Give a little boost to mid-size frames */
3577 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3578 new_val = avg_wire_size / 3;
3579 else
3580 new_val = avg_wire_size / 2;
3581
3582 /* when in itr mode 3 do not exceed 20K ints/sec */
3583 if (adapter->rx_itr_setting == 3 && new_val < 196)
3584 new_val = 196;
3585
3586 set_itr_val:
3587 if (new_val != q_vector->itr_val) {
3588 q_vector->itr_val = new_val;
3589 q_vector->set_itr = 1;
3590 }
3591 clear_counts:
3592 if (q_vector->rx_ring) {
3593 q_vector->rx_ring->total_bytes = 0;
3594 q_vector->rx_ring->total_packets = 0;
3595 }
3596 if (q_vector->tx_ring) {
3597 q_vector->tx_ring->total_bytes = 0;
3598 q_vector->tx_ring->total_packets = 0;
3599 }
3600 }
3601
3602 /**
3603 * igb_update_itr - update the dynamic ITR value based on statistics
3604 * Stores a new ITR value based on packets and byte
3605 * counts during the last interrupt. The advantage of per interrupt
3606 * computation is faster updates and more accurate ITR for the current
3607 * traffic pattern. Constants in this function were computed
3608 * based on theoretical maximum wire speed and thresholds were set based
3609 * on testing data as well as attempting to minimize response time
3610 * while increasing bulk throughput.
3611 * this functionality is controlled by the InterruptThrottleRate module
3612 * parameter (see igb_param.c)
3613 * NOTE: These calculations are only valid when operating in a single-
3614 * queue environment.
3615 * @adapter: pointer to adapter
3616 * @itr_setting: current q_vector->itr_val
3617 * @packets: the number of packets during this measurement interval
3618 * @bytes: the number of bytes during this measurement interval
3619 **/
3620 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3621 int packets, int bytes)
3622 {
3623 unsigned int retval = itr_setting;
3624
3625 if (packets == 0)
3626 goto update_itr_done;
3627
3628 switch (itr_setting) {
3629 case lowest_latency:
3630 /* handle TSO and jumbo frames */
3631 if (bytes/packets > 8000)
3632 retval = bulk_latency;
3633 else if ((packets < 5) && (bytes > 512))
3634 retval = low_latency;
3635 break;
3636 case low_latency: /* 50 usec aka 20000 ints/s */
3637 if (bytes > 10000) {
3638 /* this if handles the TSO accounting */
3639 if (bytes/packets > 8000) {
3640 retval = bulk_latency;
3641 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3642 retval = bulk_latency;
3643 } else if ((packets > 35)) {
3644 retval = lowest_latency;
3645 }
3646 } else if (bytes/packets > 2000) {
3647 retval = bulk_latency;
3648 } else if (packets <= 2 && bytes < 512) {
3649 retval = lowest_latency;
3650 }
3651 break;
3652 case bulk_latency: /* 250 usec aka 4000 ints/s */
3653 if (bytes > 25000) {
3654 if (packets > 35)
3655 retval = low_latency;
3656 } else if (bytes < 1500) {
3657 retval = low_latency;
3658 }
3659 break;
3660 }
3661
3662 update_itr_done:
3663 return retval;
3664 }
3665
3666 static void igb_set_itr(struct igb_adapter *adapter)
3667 {
3668 struct igb_q_vector *q_vector = adapter->q_vector[0];
3669 u16 current_itr;
3670 u32 new_itr = q_vector->itr_val;
3671
3672 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3673 if (adapter->link_speed != SPEED_1000) {
3674 current_itr = 0;
3675 new_itr = 4000;
3676 goto set_itr_now;
3677 }
3678
3679 adapter->rx_itr = igb_update_itr(adapter,
3680 adapter->rx_itr,
3681 q_vector->rx_ring->total_packets,
3682 q_vector->rx_ring->total_bytes);
3683
3684 adapter->tx_itr = igb_update_itr(adapter,
3685 adapter->tx_itr,
3686 q_vector->tx_ring->total_packets,
3687 q_vector->tx_ring->total_bytes);
3688 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3689
3690 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3691 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3692 current_itr = low_latency;
3693
3694 switch (current_itr) {
3695 /* counts and packets in update_itr are dependent on these numbers */
3696 case lowest_latency:
3697 new_itr = 56; /* aka 70,000 ints/sec */
3698 break;
3699 case low_latency:
3700 new_itr = 196; /* aka 20,000 ints/sec */
3701 break;
3702 case bulk_latency:
3703 new_itr = 980; /* aka 4,000 ints/sec */
3704 break;
3705 default:
3706 break;
3707 }
3708
3709 set_itr_now:
3710 q_vector->rx_ring->total_bytes = 0;
3711 q_vector->rx_ring->total_packets = 0;
3712 q_vector->tx_ring->total_bytes = 0;
3713 q_vector->tx_ring->total_packets = 0;
3714
3715 if (new_itr != q_vector->itr_val) {
3716 /* this attempts to bias the interrupt rate towards Bulk
3717 * by adding intermediate steps when interrupt rate is
3718 * increasing */
3719 new_itr = new_itr > q_vector->itr_val ?
3720 max((new_itr * q_vector->itr_val) /
3721 (new_itr + (q_vector->itr_val >> 2)),
3722 new_itr) :
3723 new_itr;
3724 /* Don't write the value here; it resets the adapter's
3725 * internal timer, and causes us to delay far longer than
3726 * we should between interrupts. Instead, we write the ITR
3727 * value at the beginning of the next interrupt so the timing
3728 * ends up being correct.
3729 */
3730 q_vector->itr_val = new_itr;
3731 q_vector->set_itr = 1;
3732 }
3733 }
3734
3735 #define IGB_TX_FLAGS_CSUM 0x00000001
3736 #define IGB_TX_FLAGS_VLAN 0x00000002
3737 #define IGB_TX_FLAGS_TSO 0x00000004
3738 #define IGB_TX_FLAGS_IPV4 0x00000008
3739 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3740 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3741 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3742
3743 static inline int igb_tso_adv(struct igb_ring *tx_ring,
3744 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3745 {
3746 struct e1000_adv_tx_context_desc *context_desc;
3747 unsigned int i;
3748 int err;
3749 struct igb_buffer *buffer_info;
3750 u32 info = 0, tu_cmd = 0;
3751 u32 mss_l4len_idx;
3752 u8 l4len;
3753
3754 if (skb_header_cloned(skb)) {
3755 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3756 if (err)
3757 return err;
3758 }
3759
3760 l4len = tcp_hdrlen(skb);
3761 *hdr_len += l4len;
3762
3763 if (skb->protocol == htons(ETH_P_IP)) {
3764 struct iphdr *iph = ip_hdr(skb);
3765 iph->tot_len = 0;
3766 iph->check = 0;
3767 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3768 iph->daddr, 0,
3769 IPPROTO_TCP,
3770 0);
3771 } else if (skb_is_gso_v6(skb)) {
3772 ipv6_hdr(skb)->payload_len = 0;
3773 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3774 &ipv6_hdr(skb)->daddr,
3775 0, IPPROTO_TCP, 0);
3776 }
3777
3778 i = tx_ring->next_to_use;
3779
3780 buffer_info = &tx_ring->buffer_info[i];
3781 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3782 /* VLAN MACLEN IPLEN */
3783 if (tx_flags & IGB_TX_FLAGS_VLAN)
3784 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3785 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3786 *hdr_len += skb_network_offset(skb);
3787 info |= skb_network_header_len(skb);
3788 *hdr_len += skb_network_header_len(skb);
3789 context_desc->vlan_macip_lens = cpu_to_le32(info);
3790
3791 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3792 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3793
3794 if (skb->protocol == htons(ETH_P_IP))
3795 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3796 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3797
3798 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3799
3800 /* MSS L4LEN IDX */
3801 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3802 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3803
3804 /* For 82575, context index must be unique per ring. */
3805 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3806 mss_l4len_idx |= tx_ring->reg_idx << 4;
3807
3808 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3809 context_desc->seqnum_seed = 0;
3810
3811 buffer_info->time_stamp = jiffies;
3812 buffer_info->next_to_watch = i;
3813 buffer_info->dma = 0;
3814 i++;
3815 if (i == tx_ring->count)
3816 i = 0;
3817
3818 tx_ring->next_to_use = i;
3819
3820 return true;
3821 }
3822
3823 static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3824 struct sk_buff *skb, u32 tx_flags)
3825 {
3826 struct e1000_adv_tx_context_desc *context_desc;
3827 struct device *dev = tx_ring->dev;
3828 struct igb_buffer *buffer_info;
3829 u32 info = 0, tu_cmd = 0;
3830 unsigned int i;
3831
3832 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3833 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3834 i = tx_ring->next_to_use;
3835 buffer_info = &tx_ring->buffer_info[i];
3836 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3837
3838 if (tx_flags & IGB_TX_FLAGS_VLAN)
3839 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3840
3841 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3842 if (skb->ip_summed == CHECKSUM_PARTIAL)
3843 info |= skb_network_header_len(skb);
3844
3845 context_desc->vlan_macip_lens = cpu_to_le32(info);
3846
3847 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3848
3849 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3850 __be16 protocol;
3851
3852 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3853 const struct vlan_ethhdr *vhdr =
3854 (const struct vlan_ethhdr*)skb->data;
3855
3856 protocol = vhdr->h_vlan_encapsulated_proto;
3857 } else {
3858 protocol = skb->protocol;
3859 }
3860
3861 switch (protocol) {
3862 case cpu_to_be16(ETH_P_IP):
3863 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3864 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3865 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3866 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3867 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3868 break;
3869 case cpu_to_be16(ETH_P_IPV6):
3870 /* XXX what about other V6 headers?? */
3871 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3872 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3873 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3874 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3875 break;
3876 default:
3877 if (unlikely(net_ratelimit()))
3878 dev_warn(dev,
3879 "partial checksum but proto=%x!\n",
3880 skb->protocol);
3881 break;
3882 }
3883 }
3884
3885 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3886 context_desc->seqnum_seed = 0;
3887 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3888 context_desc->mss_l4len_idx =
3889 cpu_to_le32(tx_ring->reg_idx << 4);
3890
3891 buffer_info->time_stamp = jiffies;
3892 buffer_info->next_to_watch = i;
3893 buffer_info->dma = 0;
3894
3895 i++;
3896 if (i == tx_ring->count)
3897 i = 0;
3898 tx_ring->next_to_use = i;
3899
3900 return true;
3901 }
3902 return false;
3903 }
3904
3905 #define IGB_MAX_TXD_PWR 16
3906 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3907
3908 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3909 unsigned int first)
3910 {
3911 struct igb_buffer *buffer_info;
3912 struct device *dev = tx_ring->dev;
3913 unsigned int hlen = skb_headlen(skb);
3914 unsigned int count = 0, i;
3915 unsigned int f;
3916 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
3917
3918 i = tx_ring->next_to_use;
3919
3920 buffer_info = &tx_ring->buffer_info[i];
3921 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
3922 buffer_info->length = hlen;
3923 /* set time_stamp *before* dma to help avoid a possible race */
3924 buffer_info->time_stamp = jiffies;
3925 buffer_info->next_to_watch = i;
3926 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
3927 DMA_TO_DEVICE);
3928 if (dma_mapping_error(dev, buffer_info->dma))
3929 goto dma_error;
3930
3931 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3932 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
3933 unsigned int len = frag->size;
3934
3935 count++;
3936 i++;
3937 if (i == tx_ring->count)
3938 i = 0;
3939
3940 buffer_info = &tx_ring->buffer_info[i];
3941 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3942 buffer_info->length = len;
3943 buffer_info->time_stamp = jiffies;
3944 buffer_info->next_to_watch = i;
3945 buffer_info->mapped_as_page = true;
3946 buffer_info->dma = dma_map_page(dev,
3947 frag->page,
3948 frag->page_offset,
3949 len,
3950 DMA_TO_DEVICE);
3951 if (dma_mapping_error(dev, buffer_info->dma))
3952 goto dma_error;
3953
3954 }
3955
3956 tx_ring->buffer_info[i].skb = skb;
3957 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
3958 /* multiply data chunks by size of headers */
3959 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
3960 tx_ring->buffer_info[i].gso_segs = gso_segs;
3961 tx_ring->buffer_info[first].next_to_watch = i;
3962
3963 return ++count;
3964
3965 dma_error:
3966 dev_err(dev, "TX DMA map failed\n");
3967
3968 /* clear timestamp and dma mappings for failed buffer_info mapping */
3969 buffer_info->dma = 0;
3970 buffer_info->time_stamp = 0;
3971 buffer_info->length = 0;
3972 buffer_info->next_to_watch = 0;
3973 buffer_info->mapped_as_page = false;
3974
3975 /* clear timestamp and dma mappings for remaining portion of packet */
3976 while (count--) {
3977 if (i == 0)
3978 i = tx_ring->count;
3979 i--;
3980 buffer_info = &tx_ring->buffer_info[i];
3981 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3982 }
3983
3984 return 0;
3985 }
3986
3987 static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
3988 u32 tx_flags, int count, u32 paylen,
3989 u8 hdr_len)
3990 {
3991 union e1000_adv_tx_desc *tx_desc;
3992 struct igb_buffer *buffer_info;
3993 u32 olinfo_status = 0, cmd_type_len;
3994 unsigned int i = tx_ring->next_to_use;
3995
3996 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3997 E1000_ADVTXD_DCMD_DEXT);
3998
3999 if (tx_flags & IGB_TX_FLAGS_VLAN)
4000 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4001
4002 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4003 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4004
4005 if (tx_flags & IGB_TX_FLAGS_TSO) {
4006 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4007
4008 /* insert tcp checksum */
4009 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4010
4011 /* insert ip checksum */
4012 if (tx_flags & IGB_TX_FLAGS_IPV4)
4013 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4014
4015 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4016 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4017 }
4018
4019 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4020 (tx_flags & (IGB_TX_FLAGS_CSUM |
4021 IGB_TX_FLAGS_TSO |
4022 IGB_TX_FLAGS_VLAN)))
4023 olinfo_status |= tx_ring->reg_idx << 4;
4024
4025 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4026
4027 do {
4028 buffer_info = &tx_ring->buffer_info[i];
4029 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4030 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4031 tx_desc->read.cmd_type_len =
4032 cpu_to_le32(cmd_type_len | buffer_info->length);
4033 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4034 count--;
4035 i++;
4036 if (i == tx_ring->count)
4037 i = 0;
4038 } while (count > 0);
4039
4040 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
4041 /* Force memory writes to complete before letting h/w
4042 * know there are new descriptors to fetch. (Only
4043 * applicable for weak-ordered memory model archs,
4044 * such as IA-64). */
4045 wmb();
4046
4047 tx_ring->next_to_use = i;
4048 writel(i, tx_ring->tail);
4049 /* we need this if more than one processor can write to our tail
4050 * at a time, it syncronizes IO on IA64/Altix systems */
4051 mmiowb();
4052 }
4053
4054 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4055 {
4056 struct net_device *netdev = tx_ring->netdev;
4057
4058 netif_stop_subqueue(netdev, tx_ring->queue_index);
4059
4060 /* Herbert's original patch had:
4061 * smp_mb__after_netif_stop_queue();
4062 * but since that doesn't exist yet, just open code it. */
4063 smp_mb();
4064
4065 /* We need to check again in a case another CPU has just
4066 * made room available. */
4067 if (igb_desc_unused(tx_ring) < size)
4068 return -EBUSY;
4069
4070 /* A reprieve! */
4071 netif_wake_subqueue(netdev, tx_ring->queue_index);
4072 tx_ring->tx_stats.restart_queue++;
4073 return 0;
4074 }
4075
4076 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4077 {
4078 if (igb_desc_unused(tx_ring) >= size)
4079 return 0;
4080 return __igb_maybe_stop_tx(tx_ring, size);
4081 }
4082
4083 netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4084 struct igb_ring *tx_ring)
4085 {
4086 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4087 int tso = 0, count;
4088 u32 tx_flags = 0;
4089 u16 first;
4090 u8 hdr_len = 0;
4091
4092 /* need: 1 descriptor per page,
4093 * + 2 desc gap to keep tail from touching head,
4094 * + 1 desc for skb->data,
4095 * + 1 desc for context descriptor,
4096 * otherwise try next time */
4097 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4098 /* this is a hard error */
4099 return NETDEV_TX_BUSY;
4100 }
4101
4102 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4103 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4104 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4105 }
4106
4107 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
4108 tx_flags |= IGB_TX_FLAGS_VLAN;
4109 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4110 }
4111
4112 if (skb->protocol == htons(ETH_P_IP))
4113 tx_flags |= IGB_TX_FLAGS_IPV4;
4114
4115 first = tx_ring->next_to_use;
4116 if (skb_is_gso(skb)) {
4117 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
4118
4119 if (tso < 0) {
4120 dev_kfree_skb_any(skb);
4121 return NETDEV_TX_OK;
4122 }
4123 }
4124
4125 if (tso)
4126 tx_flags |= IGB_TX_FLAGS_TSO;
4127 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
4128 (skb->ip_summed == CHECKSUM_PARTIAL))
4129 tx_flags |= IGB_TX_FLAGS_CSUM;
4130
4131 /*
4132 * count reflects descriptors mapped, if 0 or less then mapping error
4133 * has occured and we need to rewind the descriptor queue
4134 */
4135 count = igb_tx_map_adv(tx_ring, skb, first);
4136 if (!count) {
4137 dev_kfree_skb_any(skb);
4138 tx_ring->buffer_info[first].time_stamp = 0;
4139 tx_ring->next_to_use = first;
4140 return NETDEV_TX_OK;
4141 }
4142
4143 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4144
4145 /* Make sure there is space in the ring for the next send. */
4146 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4147
4148 return NETDEV_TX_OK;
4149 }
4150
4151 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4152 struct net_device *netdev)
4153 {
4154 struct igb_adapter *adapter = netdev_priv(netdev);
4155 struct igb_ring *tx_ring;
4156 int r_idx = 0;
4157
4158 if (test_bit(__IGB_DOWN, &adapter->state)) {
4159 dev_kfree_skb_any(skb);
4160 return NETDEV_TX_OK;
4161 }
4162
4163 if (skb->len <= 0) {
4164 dev_kfree_skb_any(skb);
4165 return NETDEV_TX_OK;
4166 }
4167
4168 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
4169 tx_ring = adapter->multi_tx_table[r_idx];
4170
4171 /* This goes back to the question of how to logically map a tx queue
4172 * to a flow. Right now, performance is impacted slightly negatively
4173 * if using multiple tx queues. If the stack breaks away from a
4174 * single qdisc implementation, we can look at this again. */
4175 return igb_xmit_frame_ring_adv(skb, tx_ring);
4176 }
4177
4178 /**
4179 * igb_tx_timeout - Respond to a Tx Hang
4180 * @netdev: network interface device structure
4181 **/
4182 static void igb_tx_timeout(struct net_device *netdev)
4183 {
4184 struct igb_adapter *adapter = netdev_priv(netdev);
4185 struct e1000_hw *hw = &adapter->hw;
4186
4187 /* Do the reset outside of interrupt context */
4188 adapter->tx_timeout_count++;
4189
4190 if (hw->mac.type == e1000_82580)
4191 hw->dev_spec._82575.global_device_reset = true;
4192
4193 schedule_work(&adapter->reset_task);
4194 wr32(E1000_EICS,
4195 (adapter->eims_enable_mask & ~adapter->eims_other));
4196 }
4197
4198 static void igb_reset_task(struct work_struct *work)
4199 {
4200 struct igb_adapter *adapter;
4201 adapter = container_of(work, struct igb_adapter, reset_task);
4202
4203 igb_dump(adapter);
4204 netdev_err(adapter->netdev, "Reset adapter\n");
4205 igb_reinit_locked(adapter);
4206 }
4207
4208 /**
4209 * igb_get_stats - Get System Network Statistics
4210 * @netdev: network interface device structure
4211 *
4212 * Returns the address of the device statistics structure.
4213 * The statistics are actually updated from the timer callback.
4214 **/
4215 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
4216 {
4217 /* only return the current stats */
4218 return &netdev->stats;
4219 }
4220
4221 /**
4222 * igb_change_mtu - Change the Maximum Transfer Unit
4223 * @netdev: network interface device structure
4224 * @new_mtu: new value for maximum frame size
4225 *
4226 * Returns 0 on success, negative on failure
4227 **/
4228 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4229 {
4230 struct igb_adapter *adapter = netdev_priv(netdev);
4231 struct pci_dev *pdev = adapter->pdev;
4232 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4233 u32 rx_buffer_len, i;
4234
4235 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4236 dev_err(&pdev->dev, "Invalid MTU setting\n");
4237 return -EINVAL;
4238 }
4239
4240 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4241 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4242 return -EINVAL;
4243 }
4244
4245 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4246 msleep(1);
4247
4248 /* igb_down has a dependency on max_frame_size */
4249 adapter->max_frame_size = max_frame;
4250
4251 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4252 * means we reserve 2 more, this pushes us to allocate from the next
4253 * larger slab size.
4254 * i.e. RXBUFFER_2048 --> size-4096 slab
4255 */
4256
4257 if (adapter->hw.mac.type == e1000_82580)
4258 max_frame += IGB_TS_HDR_LEN;
4259
4260 if (max_frame <= IGB_RXBUFFER_1024)
4261 rx_buffer_len = IGB_RXBUFFER_1024;
4262 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4263 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
4264 else
4265 rx_buffer_len = IGB_RXBUFFER_128;
4266
4267 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4268 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4269 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4270
4271 if ((adapter->hw.mac.type == e1000_82580) &&
4272 (rx_buffer_len == IGB_RXBUFFER_128))
4273 rx_buffer_len += IGB_RXBUFFER_64;
4274
4275 if (netif_running(netdev))
4276 igb_down(adapter);
4277
4278 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4279 netdev->mtu, new_mtu);
4280 netdev->mtu = new_mtu;
4281
4282 for (i = 0; i < adapter->num_rx_queues; i++)
4283 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4284
4285 if (netif_running(netdev))
4286 igb_up(adapter);
4287 else
4288 igb_reset(adapter);
4289
4290 clear_bit(__IGB_RESETTING, &adapter->state);
4291
4292 return 0;
4293 }
4294
4295 /**
4296 * igb_update_stats - Update the board statistics counters
4297 * @adapter: board private structure
4298 **/
4299
4300 void igb_update_stats(struct igb_adapter *adapter)
4301 {
4302 struct net_device_stats *net_stats = igb_get_stats(adapter->netdev);
4303 struct e1000_hw *hw = &adapter->hw;
4304 struct pci_dev *pdev = adapter->pdev;
4305 u32 reg, mpc;
4306 u16 phy_tmp;
4307 int i;
4308 u64 bytes, packets;
4309
4310 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4311
4312 /*
4313 * Prevent stats update while adapter is being reset, or if the pci
4314 * connection is down.
4315 */
4316 if (adapter->link_speed == 0)
4317 return;
4318 if (pci_channel_offline(pdev))
4319 return;
4320
4321 bytes = 0;
4322 packets = 0;
4323 for (i = 0; i < adapter->num_rx_queues; i++) {
4324 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4325 struct igb_ring *ring = adapter->rx_ring[i];
4326 ring->rx_stats.drops += rqdpc_tmp;
4327 net_stats->rx_fifo_errors += rqdpc_tmp;
4328 bytes += ring->rx_stats.bytes;
4329 packets += ring->rx_stats.packets;
4330 }
4331
4332 net_stats->rx_bytes = bytes;
4333 net_stats->rx_packets = packets;
4334
4335 bytes = 0;
4336 packets = 0;
4337 for (i = 0; i < adapter->num_tx_queues; i++) {
4338 struct igb_ring *ring = adapter->tx_ring[i];
4339 bytes += ring->tx_stats.bytes;
4340 packets += ring->tx_stats.packets;
4341 }
4342 net_stats->tx_bytes = bytes;
4343 net_stats->tx_packets = packets;
4344
4345 /* read stats registers */
4346 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4347 adapter->stats.gprc += rd32(E1000_GPRC);
4348 adapter->stats.gorc += rd32(E1000_GORCL);
4349 rd32(E1000_GORCH); /* clear GORCL */
4350 adapter->stats.bprc += rd32(E1000_BPRC);
4351 adapter->stats.mprc += rd32(E1000_MPRC);
4352 adapter->stats.roc += rd32(E1000_ROC);
4353
4354 adapter->stats.prc64 += rd32(E1000_PRC64);
4355 adapter->stats.prc127 += rd32(E1000_PRC127);
4356 adapter->stats.prc255 += rd32(E1000_PRC255);
4357 adapter->stats.prc511 += rd32(E1000_PRC511);
4358 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4359 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4360 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4361 adapter->stats.sec += rd32(E1000_SEC);
4362
4363 mpc = rd32(E1000_MPC);
4364 adapter->stats.mpc += mpc;
4365 net_stats->rx_fifo_errors += mpc;
4366 adapter->stats.scc += rd32(E1000_SCC);
4367 adapter->stats.ecol += rd32(E1000_ECOL);
4368 adapter->stats.mcc += rd32(E1000_MCC);
4369 adapter->stats.latecol += rd32(E1000_LATECOL);
4370 adapter->stats.dc += rd32(E1000_DC);
4371 adapter->stats.rlec += rd32(E1000_RLEC);
4372 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4373 adapter->stats.xontxc += rd32(E1000_XONTXC);
4374 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4375 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4376 adapter->stats.fcruc += rd32(E1000_FCRUC);
4377 adapter->stats.gptc += rd32(E1000_GPTC);
4378 adapter->stats.gotc += rd32(E1000_GOTCL);
4379 rd32(E1000_GOTCH); /* clear GOTCL */
4380 adapter->stats.rnbc += rd32(E1000_RNBC);
4381 adapter->stats.ruc += rd32(E1000_RUC);
4382 adapter->stats.rfc += rd32(E1000_RFC);
4383 adapter->stats.rjc += rd32(E1000_RJC);
4384 adapter->stats.tor += rd32(E1000_TORH);
4385 adapter->stats.tot += rd32(E1000_TOTH);
4386 adapter->stats.tpr += rd32(E1000_TPR);
4387
4388 adapter->stats.ptc64 += rd32(E1000_PTC64);
4389 adapter->stats.ptc127 += rd32(E1000_PTC127);
4390 adapter->stats.ptc255 += rd32(E1000_PTC255);
4391 adapter->stats.ptc511 += rd32(E1000_PTC511);
4392 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4393 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4394
4395 adapter->stats.mptc += rd32(E1000_MPTC);
4396 adapter->stats.bptc += rd32(E1000_BPTC);
4397
4398 adapter->stats.tpt += rd32(E1000_TPT);
4399 adapter->stats.colc += rd32(E1000_COLC);
4400
4401 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4402 /* read internal phy specific stats */
4403 reg = rd32(E1000_CTRL_EXT);
4404 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4405 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4406 adapter->stats.tncrs += rd32(E1000_TNCRS);
4407 }
4408
4409 adapter->stats.tsctc += rd32(E1000_TSCTC);
4410 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4411
4412 adapter->stats.iac += rd32(E1000_IAC);
4413 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4414 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4415 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4416 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4417 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4418 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4419 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4420 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4421
4422 /* Fill out the OS statistics structure */
4423 net_stats->multicast = adapter->stats.mprc;
4424 net_stats->collisions = adapter->stats.colc;
4425
4426 /* Rx Errors */
4427
4428 /* RLEC on some newer hardware can be incorrect so build
4429 * our own version based on RUC and ROC */
4430 net_stats->rx_errors = adapter->stats.rxerrc +
4431 adapter->stats.crcerrs + adapter->stats.algnerrc +
4432 adapter->stats.ruc + adapter->stats.roc +
4433 adapter->stats.cexterr;
4434 net_stats->rx_length_errors = adapter->stats.ruc +
4435 adapter->stats.roc;
4436 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4437 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4438 net_stats->rx_missed_errors = adapter->stats.mpc;
4439
4440 /* Tx Errors */
4441 net_stats->tx_errors = adapter->stats.ecol +
4442 adapter->stats.latecol;
4443 net_stats->tx_aborted_errors = adapter->stats.ecol;
4444 net_stats->tx_window_errors = adapter->stats.latecol;
4445 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4446
4447 /* Tx Dropped needs to be maintained elsewhere */
4448
4449 /* Phy Stats */
4450 if (hw->phy.media_type == e1000_media_type_copper) {
4451 if ((adapter->link_speed == SPEED_1000) &&
4452 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4453 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4454 adapter->phy_stats.idle_errors += phy_tmp;
4455 }
4456 }
4457
4458 /* Management Stats */
4459 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4460 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4461 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4462 }
4463
4464 static irqreturn_t igb_msix_other(int irq, void *data)
4465 {
4466 struct igb_adapter *adapter = data;
4467 struct e1000_hw *hw = &adapter->hw;
4468 u32 icr = rd32(E1000_ICR);
4469 /* reading ICR causes bit 31 of EICR to be cleared */
4470
4471 if (icr & E1000_ICR_DRSTA)
4472 schedule_work(&adapter->reset_task);
4473
4474 if (icr & E1000_ICR_DOUTSYNC) {
4475 /* HW is reporting DMA is out of sync */
4476 adapter->stats.doosync++;
4477 }
4478
4479 /* Check for a mailbox event */
4480 if (icr & E1000_ICR_VMMB)
4481 igb_msg_task(adapter);
4482
4483 if (icr & E1000_ICR_LSC) {
4484 hw->mac.get_link_status = 1;
4485 /* guard against interrupt when we're going down */
4486 if (!test_bit(__IGB_DOWN, &adapter->state))
4487 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4488 }
4489
4490 if (adapter->vfs_allocated_count)
4491 wr32(E1000_IMS, E1000_IMS_LSC |
4492 E1000_IMS_VMMB |
4493 E1000_IMS_DOUTSYNC);
4494 else
4495 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4496 wr32(E1000_EIMS, adapter->eims_other);
4497
4498 return IRQ_HANDLED;
4499 }
4500
4501 static void igb_write_itr(struct igb_q_vector *q_vector)
4502 {
4503 struct igb_adapter *adapter = q_vector->adapter;
4504 u32 itr_val = q_vector->itr_val & 0x7FFC;
4505
4506 if (!q_vector->set_itr)
4507 return;
4508
4509 if (!itr_val)
4510 itr_val = 0x4;
4511
4512 if (adapter->hw.mac.type == e1000_82575)
4513 itr_val |= itr_val << 16;
4514 else
4515 itr_val |= 0x8000000;
4516
4517 writel(itr_val, q_vector->itr_register);
4518 q_vector->set_itr = 0;
4519 }
4520
4521 static irqreturn_t igb_msix_ring(int irq, void *data)
4522 {
4523 struct igb_q_vector *q_vector = data;
4524
4525 /* Write the ITR value calculated from the previous interrupt. */
4526 igb_write_itr(q_vector);
4527
4528 napi_schedule(&q_vector->napi);
4529
4530 return IRQ_HANDLED;
4531 }
4532
4533 #ifdef CONFIG_IGB_DCA
4534 static void igb_update_dca(struct igb_q_vector *q_vector)
4535 {
4536 struct igb_adapter *adapter = q_vector->adapter;
4537 struct e1000_hw *hw = &adapter->hw;
4538 int cpu = get_cpu();
4539
4540 if (q_vector->cpu == cpu)
4541 goto out_no_update;
4542
4543 if (q_vector->tx_ring) {
4544 int q = q_vector->tx_ring->reg_idx;
4545 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4546 if (hw->mac.type == e1000_82575) {
4547 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4548 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4549 } else {
4550 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4551 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4552 E1000_DCA_TXCTRL_CPUID_SHIFT;
4553 }
4554 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4555 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4556 }
4557 if (q_vector->rx_ring) {
4558 int q = q_vector->rx_ring->reg_idx;
4559 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4560 if (hw->mac.type == e1000_82575) {
4561 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4562 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4563 } else {
4564 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4565 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4566 E1000_DCA_RXCTRL_CPUID_SHIFT;
4567 }
4568 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4569 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4570 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4571 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4572 }
4573 q_vector->cpu = cpu;
4574 out_no_update:
4575 put_cpu();
4576 }
4577
4578 static void igb_setup_dca(struct igb_adapter *adapter)
4579 {
4580 struct e1000_hw *hw = &adapter->hw;
4581 int i;
4582
4583 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4584 return;
4585
4586 /* Always use CB2 mode, difference is masked in the CB driver. */
4587 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4588
4589 for (i = 0; i < adapter->num_q_vectors; i++) {
4590 adapter->q_vector[i]->cpu = -1;
4591 igb_update_dca(adapter->q_vector[i]);
4592 }
4593 }
4594
4595 static int __igb_notify_dca(struct device *dev, void *data)
4596 {
4597 struct net_device *netdev = dev_get_drvdata(dev);
4598 struct igb_adapter *adapter = netdev_priv(netdev);
4599 struct pci_dev *pdev = adapter->pdev;
4600 struct e1000_hw *hw = &adapter->hw;
4601 unsigned long event = *(unsigned long *)data;
4602
4603 switch (event) {
4604 case DCA_PROVIDER_ADD:
4605 /* if already enabled, don't do it again */
4606 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4607 break;
4608 if (dca_add_requester(dev) == 0) {
4609 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4610 dev_info(&pdev->dev, "DCA enabled\n");
4611 igb_setup_dca(adapter);
4612 break;
4613 }
4614 /* Fall Through since DCA is disabled. */
4615 case DCA_PROVIDER_REMOVE:
4616 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4617 /* without this a class_device is left
4618 * hanging around in the sysfs model */
4619 dca_remove_requester(dev);
4620 dev_info(&pdev->dev, "DCA disabled\n");
4621 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4622 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4623 }
4624 break;
4625 }
4626
4627 return 0;
4628 }
4629
4630 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4631 void *p)
4632 {
4633 int ret_val;
4634
4635 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4636 __igb_notify_dca);
4637
4638 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4639 }
4640 #endif /* CONFIG_IGB_DCA */
4641
4642 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4643 {
4644 struct e1000_hw *hw = &adapter->hw;
4645 u32 ping;
4646 int i;
4647
4648 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4649 ping = E1000_PF_CONTROL_MSG;
4650 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4651 ping |= E1000_VT_MSGTYPE_CTS;
4652 igb_write_mbx(hw, &ping, 1, i);
4653 }
4654 }
4655
4656 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4657 {
4658 struct e1000_hw *hw = &adapter->hw;
4659 u32 vmolr = rd32(E1000_VMOLR(vf));
4660 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4661
4662 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4663 IGB_VF_FLAG_MULTI_PROMISC);
4664 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4665
4666 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4667 vmolr |= E1000_VMOLR_MPME;
4668 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4669 } else {
4670 /*
4671 * if we have hashes and we are clearing a multicast promisc
4672 * flag we need to write the hashes to the MTA as this step
4673 * was previously skipped
4674 */
4675 if (vf_data->num_vf_mc_hashes > 30) {
4676 vmolr |= E1000_VMOLR_MPME;
4677 } else if (vf_data->num_vf_mc_hashes) {
4678 int j;
4679 vmolr |= E1000_VMOLR_ROMPE;
4680 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4681 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4682 }
4683 }
4684
4685 wr32(E1000_VMOLR(vf), vmolr);
4686
4687 /* there are flags left unprocessed, likely not supported */
4688 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4689 return -EINVAL;
4690
4691 return 0;
4692
4693 }
4694
4695 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4696 u32 *msgbuf, u32 vf)
4697 {
4698 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4699 u16 *hash_list = (u16 *)&msgbuf[1];
4700 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4701 int i;
4702
4703 /* salt away the number of multicast addresses assigned
4704 * to this VF for later use to restore when the PF multi cast
4705 * list changes
4706 */
4707 vf_data->num_vf_mc_hashes = n;
4708
4709 /* only up to 30 hash values supported */
4710 if (n > 30)
4711 n = 30;
4712
4713 /* store the hashes for later use */
4714 for (i = 0; i < n; i++)
4715 vf_data->vf_mc_hashes[i] = hash_list[i];
4716
4717 /* Flush and reset the mta with the new values */
4718 igb_set_rx_mode(adapter->netdev);
4719
4720 return 0;
4721 }
4722
4723 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4724 {
4725 struct e1000_hw *hw = &adapter->hw;
4726 struct vf_data_storage *vf_data;
4727 int i, j;
4728
4729 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4730 u32 vmolr = rd32(E1000_VMOLR(i));
4731 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4732
4733 vf_data = &adapter->vf_data[i];
4734
4735 if ((vf_data->num_vf_mc_hashes > 30) ||
4736 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4737 vmolr |= E1000_VMOLR_MPME;
4738 } else if (vf_data->num_vf_mc_hashes) {
4739 vmolr |= E1000_VMOLR_ROMPE;
4740 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4741 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4742 }
4743 wr32(E1000_VMOLR(i), vmolr);
4744 }
4745 }
4746
4747 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4748 {
4749 struct e1000_hw *hw = &adapter->hw;
4750 u32 pool_mask, reg, vid;
4751 int i;
4752
4753 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4754
4755 /* Find the vlan filter for this id */
4756 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4757 reg = rd32(E1000_VLVF(i));
4758
4759 /* remove the vf from the pool */
4760 reg &= ~pool_mask;
4761
4762 /* if pool is empty then remove entry from vfta */
4763 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4764 (reg & E1000_VLVF_VLANID_ENABLE)) {
4765 reg = 0;
4766 vid = reg & E1000_VLVF_VLANID_MASK;
4767 igb_vfta_set(hw, vid, false);
4768 }
4769
4770 wr32(E1000_VLVF(i), reg);
4771 }
4772
4773 adapter->vf_data[vf].vlans_enabled = 0;
4774 }
4775
4776 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4777 {
4778 struct e1000_hw *hw = &adapter->hw;
4779 u32 reg, i;
4780
4781 /* The vlvf table only exists on 82576 hardware and newer */
4782 if (hw->mac.type < e1000_82576)
4783 return -1;
4784
4785 /* we only need to do this if VMDq is enabled */
4786 if (!adapter->vfs_allocated_count)
4787 return -1;
4788
4789 /* Find the vlan filter for this id */
4790 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4791 reg = rd32(E1000_VLVF(i));
4792 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4793 vid == (reg & E1000_VLVF_VLANID_MASK))
4794 break;
4795 }
4796
4797 if (add) {
4798 if (i == E1000_VLVF_ARRAY_SIZE) {
4799 /* Did not find a matching VLAN ID entry that was
4800 * enabled. Search for a free filter entry, i.e.
4801 * one without the enable bit set
4802 */
4803 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4804 reg = rd32(E1000_VLVF(i));
4805 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4806 break;
4807 }
4808 }
4809 if (i < E1000_VLVF_ARRAY_SIZE) {
4810 /* Found an enabled/available entry */
4811 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4812
4813 /* if !enabled we need to set this up in vfta */
4814 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4815 /* add VID to filter table */
4816 igb_vfta_set(hw, vid, true);
4817 reg |= E1000_VLVF_VLANID_ENABLE;
4818 }
4819 reg &= ~E1000_VLVF_VLANID_MASK;
4820 reg |= vid;
4821 wr32(E1000_VLVF(i), reg);
4822
4823 /* do not modify RLPML for PF devices */
4824 if (vf >= adapter->vfs_allocated_count)
4825 return 0;
4826
4827 if (!adapter->vf_data[vf].vlans_enabled) {
4828 u32 size;
4829 reg = rd32(E1000_VMOLR(vf));
4830 size = reg & E1000_VMOLR_RLPML_MASK;
4831 size += 4;
4832 reg &= ~E1000_VMOLR_RLPML_MASK;
4833 reg |= size;
4834 wr32(E1000_VMOLR(vf), reg);
4835 }
4836
4837 adapter->vf_data[vf].vlans_enabled++;
4838 return 0;
4839 }
4840 } else {
4841 if (i < E1000_VLVF_ARRAY_SIZE) {
4842 /* remove vf from the pool */
4843 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4844 /* if pool is empty then remove entry from vfta */
4845 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4846 reg = 0;
4847 igb_vfta_set(hw, vid, false);
4848 }
4849 wr32(E1000_VLVF(i), reg);
4850
4851 /* do not modify RLPML for PF devices */
4852 if (vf >= adapter->vfs_allocated_count)
4853 return 0;
4854
4855 adapter->vf_data[vf].vlans_enabled--;
4856 if (!adapter->vf_data[vf].vlans_enabled) {
4857 u32 size;
4858 reg = rd32(E1000_VMOLR(vf));
4859 size = reg & E1000_VMOLR_RLPML_MASK;
4860 size -= 4;
4861 reg &= ~E1000_VMOLR_RLPML_MASK;
4862 reg |= size;
4863 wr32(E1000_VMOLR(vf), reg);
4864 }
4865 }
4866 }
4867 return 0;
4868 }
4869
4870 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
4871 {
4872 struct e1000_hw *hw = &adapter->hw;
4873
4874 if (vid)
4875 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
4876 else
4877 wr32(E1000_VMVIR(vf), 0);
4878 }
4879
4880 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
4881 int vf, u16 vlan, u8 qos)
4882 {
4883 int err = 0;
4884 struct igb_adapter *adapter = netdev_priv(netdev);
4885
4886 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
4887 return -EINVAL;
4888 if (vlan || qos) {
4889 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
4890 if (err)
4891 goto out;
4892 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
4893 igb_set_vmolr(adapter, vf, !vlan);
4894 adapter->vf_data[vf].pf_vlan = vlan;
4895 adapter->vf_data[vf].pf_qos = qos;
4896 dev_info(&adapter->pdev->dev,
4897 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
4898 if (test_bit(__IGB_DOWN, &adapter->state)) {
4899 dev_warn(&adapter->pdev->dev,
4900 "The VF VLAN has been set,"
4901 " but the PF device is not up.\n");
4902 dev_warn(&adapter->pdev->dev,
4903 "Bring the PF device up before"
4904 " attempting to use the VF device.\n");
4905 }
4906 } else {
4907 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
4908 false, vf);
4909 igb_set_vmvir(adapter, vlan, vf);
4910 igb_set_vmolr(adapter, vf, true);
4911 adapter->vf_data[vf].pf_vlan = 0;
4912 adapter->vf_data[vf].pf_qos = 0;
4913 }
4914 out:
4915 return err;
4916 }
4917
4918 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4919 {
4920 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4921 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4922
4923 return igb_vlvf_set(adapter, vid, add, vf);
4924 }
4925
4926 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4927 {
4928 /* clear flags */
4929 adapter->vf_data[vf].flags &= ~(IGB_VF_FLAG_PF_SET_MAC);
4930 adapter->vf_data[vf].last_nack = jiffies;
4931
4932 /* reset offloads to defaults */
4933 igb_set_vmolr(adapter, vf, true);
4934
4935 /* reset vlans for device */
4936 igb_clear_vf_vfta(adapter, vf);
4937 if (adapter->vf_data[vf].pf_vlan)
4938 igb_ndo_set_vf_vlan(adapter->netdev, vf,
4939 adapter->vf_data[vf].pf_vlan,
4940 adapter->vf_data[vf].pf_qos);
4941 else
4942 igb_clear_vf_vfta(adapter, vf);
4943
4944 /* reset multicast table array for vf */
4945 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4946
4947 /* Flush and reset the mta with the new values */
4948 igb_set_rx_mode(adapter->netdev);
4949 }
4950
4951 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4952 {
4953 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4954
4955 /* generate a new mac address as we were hotplug removed/added */
4956 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
4957 random_ether_addr(vf_mac);
4958
4959 /* process remaining reset events */
4960 igb_vf_reset(adapter, vf);
4961 }
4962
4963 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4964 {
4965 struct e1000_hw *hw = &adapter->hw;
4966 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4967 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4968 u32 reg, msgbuf[3];
4969 u8 *addr = (u8 *)(&msgbuf[1]);
4970
4971 /* process all the same items cleared in a function level reset */
4972 igb_vf_reset(adapter, vf);
4973
4974 /* set vf mac address */
4975 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4976
4977 /* enable transmit and receive for vf */
4978 reg = rd32(E1000_VFTE);
4979 wr32(E1000_VFTE, reg | (1 << vf));
4980 reg = rd32(E1000_VFRE);
4981 wr32(E1000_VFRE, reg | (1 << vf));
4982
4983 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4984
4985 /* reply to reset with ack and vf mac address */
4986 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4987 memcpy(addr, vf_mac, 6);
4988 igb_write_mbx(hw, msgbuf, 3, vf);
4989 }
4990
4991 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4992 {
4993 /*
4994 * The VF MAC Address is stored in a packed array of bytes
4995 * starting at the second 32 bit word of the msg array
4996 */
4997 unsigned char *addr = (char *)&msg[1];
4998 int err = -1;
4999
5000 if (is_valid_ether_addr(addr))
5001 err = igb_set_vf_mac(adapter, vf, addr);
5002
5003 return err;
5004 }
5005
5006 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5007 {
5008 struct e1000_hw *hw = &adapter->hw;
5009 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5010 u32 msg = E1000_VT_MSGTYPE_NACK;
5011
5012 /* if device isn't clear to send it shouldn't be reading either */
5013 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5014 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5015 igb_write_mbx(hw, &msg, 1, vf);
5016 vf_data->last_nack = jiffies;
5017 }
5018 }
5019
5020 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5021 {
5022 struct pci_dev *pdev = adapter->pdev;
5023 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5024 struct e1000_hw *hw = &adapter->hw;
5025 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5026 s32 retval;
5027
5028 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5029
5030 if (retval) {
5031 /* if receive failed revoke VF CTS stats and restart init */
5032 dev_err(&pdev->dev, "Error receiving message from VF\n");
5033 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5034 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5035 return;
5036 goto out;
5037 }
5038
5039 /* this is a message we already processed, do nothing */
5040 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5041 return;
5042
5043 /*
5044 * until the vf completes a reset it should not be
5045 * allowed to start any configuration.
5046 */
5047
5048 if (msgbuf[0] == E1000_VF_RESET) {
5049 igb_vf_reset_msg(adapter, vf);
5050 return;
5051 }
5052
5053 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5054 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5055 return;
5056 retval = -1;
5057 goto out;
5058 }
5059
5060 switch ((msgbuf[0] & 0xFFFF)) {
5061 case E1000_VF_SET_MAC_ADDR:
5062 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5063 break;
5064 case E1000_VF_SET_PROMISC:
5065 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5066 break;
5067 case E1000_VF_SET_MULTICAST:
5068 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5069 break;
5070 case E1000_VF_SET_LPE:
5071 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5072 break;
5073 case E1000_VF_SET_VLAN:
5074 if (adapter->vf_data[vf].pf_vlan)
5075 retval = -1;
5076 else
5077 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5078 break;
5079 default:
5080 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5081 retval = -1;
5082 break;
5083 }
5084
5085 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5086 out:
5087 /* notify the VF of the results of what it sent us */
5088 if (retval)
5089 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5090 else
5091 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5092
5093 igb_write_mbx(hw, msgbuf, 1, vf);
5094 }
5095
5096 static void igb_msg_task(struct igb_adapter *adapter)
5097 {
5098 struct e1000_hw *hw = &adapter->hw;
5099 u32 vf;
5100
5101 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5102 /* process any reset requests */
5103 if (!igb_check_for_rst(hw, vf))
5104 igb_vf_reset_event(adapter, vf);
5105
5106 /* process any messages pending */
5107 if (!igb_check_for_msg(hw, vf))
5108 igb_rcv_msg_from_vf(adapter, vf);
5109
5110 /* process any acks */
5111 if (!igb_check_for_ack(hw, vf))
5112 igb_rcv_ack_from_vf(adapter, vf);
5113 }
5114 }
5115
5116 /**
5117 * igb_set_uta - Set unicast filter table address
5118 * @adapter: board private structure
5119 *
5120 * The unicast table address is a register array of 32-bit registers.
5121 * The table is meant to be used in a way similar to how the MTA is used
5122 * however due to certain limitations in the hardware it is necessary to
5123 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
5124 * enable bit to allow vlan tag stripping when promiscous mode is enabled
5125 **/
5126 static void igb_set_uta(struct igb_adapter *adapter)
5127 {
5128 struct e1000_hw *hw = &adapter->hw;
5129 int i;
5130
5131 /* The UTA table only exists on 82576 hardware and newer */
5132 if (hw->mac.type < e1000_82576)
5133 return;
5134
5135 /* we only need to do this if VMDq is enabled */
5136 if (!adapter->vfs_allocated_count)
5137 return;
5138
5139 for (i = 0; i < hw->mac.uta_reg_count; i++)
5140 array_wr32(E1000_UTA, i, ~0);
5141 }
5142
5143 /**
5144 * igb_intr_msi - Interrupt Handler
5145 * @irq: interrupt number
5146 * @data: pointer to a network interface device structure
5147 **/
5148 static irqreturn_t igb_intr_msi(int irq, void *data)
5149 {
5150 struct igb_adapter *adapter = data;
5151 struct igb_q_vector *q_vector = adapter->q_vector[0];
5152 struct e1000_hw *hw = &adapter->hw;
5153 /* read ICR disables interrupts using IAM */
5154 u32 icr = rd32(E1000_ICR);
5155
5156 igb_write_itr(q_vector);
5157
5158 if (icr & E1000_ICR_DRSTA)
5159 schedule_work(&adapter->reset_task);
5160
5161 if (icr & E1000_ICR_DOUTSYNC) {
5162 /* HW is reporting DMA is out of sync */
5163 adapter->stats.doosync++;
5164 }
5165
5166 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5167 hw->mac.get_link_status = 1;
5168 if (!test_bit(__IGB_DOWN, &adapter->state))
5169 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5170 }
5171
5172 napi_schedule(&q_vector->napi);
5173
5174 return IRQ_HANDLED;
5175 }
5176
5177 /**
5178 * igb_intr - Legacy Interrupt Handler
5179 * @irq: interrupt number
5180 * @data: pointer to a network interface device structure
5181 **/
5182 static irqreturn_t igb_intr(int irq, void *data)
5183 {
5184 struct igb_adapter *adapter = data;
5185 struct igb_q_vector *q_vector = adapter->q_vector[0];
5186 struct e1000_hw *hw = &adapter->hw;
5187 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5188 * need for the IMC write */
5189 u32 icr = rd32(E1000_ICR);
5190 if (!icr)
5191 return IRQ_NONE; /* Not our interrupt */
5192
5193 igb_write_itr(q_vector);
5194
5195 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5196 * not set, then the adapter didn't send an interrupt */
5197 if (!(icr & E1000_ICR_INT_ASSERTED))
5198 return IRQ_NONE;
5199
5200 if (icr & E1000_ICR_DRSTA)
5201 schedule_work(&adapter->reset_task);
5202
5203 if (icr & E1000_ICR_DOUTSYNC) {
5204 /* HW is reporting DMA is out of sync */
5205 adapter->stats.doosync++;
5206 }
5207
5208 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5209 hw->mac.get_link_status = 1;
5210 /* guard against interrupt when we're going down */
5211 if (!test_bit(__IGB_DOWN, &adapter->state))
5212 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5213 }
5214
5215 napi_schedule(&q_vector->napi);
5216
5217 return IRQ_HANDLED;
5218 }
5219
5220 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5221 {
5222 struct igb_adapter *adapter = q_vector->adapter;
5223 struct e1000_hw *hw = &adapter->hw;
5224
5225 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5226 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5227 if (!adapter->msix_entries)
5228 igb_set_itr(adapter);
5229 else
5230 igb_update_ring_itr(q_vector);
5231 }
5232
5233 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5234 if (adapter->msix_entries)
5235 wr32(E1000_EIMS, q_vector->eims_value);
5236 else
5237 igb_irq_enable(adapter);
5238 }
5239 }
5240
5241 /**
5242 * igb_poll - NAPI Rx polling callback
5243 * @napi: napi polling structure
5244 * @budget: count of how many packets we should handle
5245 **/
5246 static int igb_poll(struct napi_struct *napi, int budget)
5247 {
5248 struct igb_q_vector *q_vector = container_of(napi,
5249 struct igb_q_vector,
5250 napi);
5251 int tx_clean_complete = 1, work_done = 0;
5252
5253 #ifdef CONFIG_IGB_DCA
5254 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5255 igb_update_dca(q_vector);
5256 #endif
5257 if (q_vector->tx_ring)
5258 tx_clean_complete = igb_clean_tx_irq(q_vector);
5259
5260 if (q_vector->rx_ring)
5261 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5262
5263 if (!tx_clean_complete)
5264 work_done = budget;
5265
5266 /* If not enough Rx work done, exit the polling mode */
5267 if (work_done < budget) {
5268 napi_complete(napi);
5269 igb_ring_irq_enable(q_vector);
5270 }
5271
5272 return work_done;
5273 }
5274
5275 /**
5276 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5277 * @adapter: board private structure
5278 * @shhwtstamps: timestamp structure to update
5279 * @regval: unsigned 64bit system time value.
5280 *
5281 * We need to convert the system time value stored in the RX/TXSTMP registers
5282 * into a hwtstamp which can be used by the upper level timestamping functions
5283 */
5284 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5285 struct skb_shared_hwtstamps *shhwtstamps,
5286 u64 regval)
5287 {
5288 u64 ns;
5289
5290 /*
5291 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5292 * 24 to match clock shift we setup earlier.
5293 */
5294 if (adapter->hw.mac.type == e1000_82580)
5295 regval <<= IGB_82580_TSYNC_SHIFT;
5296
5297 ns = timecounter_cyc2time(&adapter->clock, regval);
5298 timecompare_update(&adapter->compare, ns);
5299 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5300 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5301 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5302 }
5303
5304 /**
5305 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5306 * @q_vector: pointer to q_vector containing needed info
5307 * @buffer: pointer to igb_buffer structure
5308 *
5309 * If we were asked to do hardware stamping and such a time stamp is
5310 * available, then it must have been for this skb here because we only
5311 * allow only one such packet into the queue.
5312 */
5313 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
5314 {
5315 struct igb_adapter *adapter = q_vector->adapter;
5316 struct e1000_hw *hw = &adapter->hw;
5317 struct skb_shared_hwtstamps shhwtstamps;
5318 u64 regval;
5319
5320 /* if skb does not support hw timestamp or TX stamp not valid exit */
5321 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5322 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5323 return;
5324
5325 regval = rd32(E1000_TXSTMPL);
5326 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5327
5328 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5329 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5330 }
5331
5332 /**
5333 * igb_clean_tx_irq - Reclaim resources after transmit completes
5334 * @q_vector: pointer to q_vector containing needed info
5335 * returns true if ring is completely cleaned
5336 **/
5337 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5338 {
5339 struct igb_adapter *adapter = q_vector->adapter;
5340 struct igb_ring *tx_ring = q_vector->tx_ring;
5341 struct net_device *netdev = tx_ring->netdev;
5342 struct e1000_hw *hw = &adapter->hw;
5343 struct igb_buffer *buffer_info;
5344 union e1000_adv_tx_desc *tx_desc, *eop_desc;
5345 unsigned int total_bytes = 0, total_packets = 0;
5346 unsigned int i, eop, count = 0;
5347 bool cleaned = false;
5348
5349 i = tx_ring->next_to_clean;
5350 eop = tx_ring->buffer_info[i].next_to_watch;
5351 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5352
5353 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5354 (count < tx_ring->count)) {
5355 rmb(); /* read buffer_info after eop_desc status */
5356 for (cleaned = false; !cleaned; count++) {
5357 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
5358 buffer_info = &tx_ring->buffer_info[i];
5359 cleaned = (i == eop);
5360
5361 if (buffer_info->skb) {
5362 total_bytes += buffer_info->bytecount;
5363 /* gso_segs is currently only valid for tcp */
5364 total_packets += buffer_info->gso_segs;
5365 igb_tx_hwtstamp(q_vector, buffer_info);
5366 }
5367
5368 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
5369 tx_desc->wb.status = 0;
5370
5371 i++;
5372 if (i == tx_ring->count)
5373 i = 0;
5374 }
5375 eop = tx_ring->buffer_info[i].next_to_watch;
5376 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5377 }
5378
5379 tx_ring->next_to_clean = i;
5380
5381 if (unlikely(count &&
5382 netif_carrier_ok(netdev) &&
5383 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5384 /* Make sure that anybody stopping the queue after this
5385 * sees the new next_to_clean.
5386 */
5387 smp_mb();
5388 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5389 !(test_bit(__IGB_DOWN, &adapter->state))) {
5390 netif_wake_subqueue(netdev, tx_ring->queue_index);
5391 tx_ring->tx_stats.restart_queue++;
5392 }
5393 }
5394
5395 if (tx_ring->detect_tx_hung) {
5396 /* Detect a transmit hang in hardware, this serializes the
5397 * check with the clearing of time_stamp and movement of i */
5398 tx_ring->detect_tx_hung = false;
5399 if (tx_ring->buffer_info[i].time_stamp &&
5400 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
5401 (adapter->tx_timeout_factor * HZ)) &&
5402 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5403
5404 /* detected Tx unit hang */
5405 dev_err(tx_ring->dev,
5406 "Detected Tx Unit Hang\n"
5407 " Tx Queue <%d>\n"
5408 " TDH <%x>\n"
5409 " TDT <%x>\n"
5410 " next_to_use <%x>\n"
5411 " next_to_clean <%x>\n"
5412 "buffer_info[next_to_clean]\n"
5413 " time_stamp <%lx>\n"
5414 " next_to_watch <%x>\n"
5415 " jiffies <%lx>\n"
5416 " desc.status <%x>\n",
5417 tx_ring->queue_index,
5418 readl(tx_ring->head),
5419 readl(tx_ring->tail),
5420 tx_ring->next_to_use,
5421 tx_ring->next_to_clean,
5422 tx_ring->buffer_info[eop].time_stamp,
5423 eop,
5424 jiffies,
5425 eop_desc->wb.status);
5426 netif_stop_subqueue(netdev, tx_ring->queue_index);
5427 }
5428 }
5429 tx_ring->total_bytes += total_bytes;
5430 tx_ring->total_packets += total_packets;
5431 tx_ring->tx_stats.bytes += total_bytes;
5432 tx_ring->tx_stats.packets += total_packets;
5433 return (count < tx_ring->count);
5434 }
5435
5436 /**
5437 * igb_receive_skb - helper function to handle rx indications
5438 * @q_vector: structure containing interrupt and ring information
5439 * @skb: packet to send up
5440 * @vlan_tag: vlan tag for packet
5441 **/
5442 static void igb_receive_skb(struct igb_q_vector *q_vector,
5443 struct sk_buff *skb,
5444 u16 vlan_tag)
5445 {
5446 struct igb_adapter *adapter = q_vector->adapter;
5447
5448 if (vlan_tag && adapter->vlgrp)
5449 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5450 vlan_tag, skb);
5451 else
5452 napi_gro_receive(&q_vector->napi, skb);
5453 }
5454
5455 static inline void igb_rx_checksum_adv(struct igb_ring *ring,
5456 u32 status_err, struct sk_buff *skb)
5457 {
5458 skb->ip_summed = CHECKSUM_NONE;
5459
5460 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5461 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5462 (status_err & E1000_RXD_STAT_IXSM))
5463 return;
5464
5465 /* TCP/UDP checksum error bit is set */
5466 if (status_err &
5467 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5468 /*
5469 * work around errata with sctp packets where the TCPE aka
5470 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5471 * packets, (aka let the stack check the crc32c)
5472 */
5473 if ((skb->len == 60) &&
5474 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
5475 ring->rx_stats.csum_err++;
5476
5477 /* let the stack verify checksum errors */
5478 return;
5479 }
5480 /* It must be a TCP or UDP packet with a valid checksum */
5481 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5482 skb->ip_summed = CHECKSUM_UNNECESSARY;
5483
5484 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5485 }
5486
5487 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5488 struct sk_buff *skb)
5489 {
5490 struct igb_adapter *adapter = q_vector->adapter;
5491 struct e1000_hw *hw = &adapter->hw;
5492 u64 regval;
5493
5494 /*
5495 * If this bit is set, then the RX registers contain the time stamp. No
5496 * other packet will be time stamped until we read these registers, so
5497 * read the registers to make them available again. Because only one
5498 * packet can be time stamped at a time, we know that the register
5499 * values must belong to this one here and therefore we don't need to
5500 * compare any of the additional attributes stored for it.
5501 *
5502 * If nothing went wrong, then it should have a shared tx_flags that we
5503 * can turn into a skb_shared_hwtstamps.
5504 */
5505 if (staterr & E1000_RXDADV_STAT_TSIP) {
5506 u32 *stamp = (u32 *)skb->data;
5507 regval = le32_to_cpu(*(stamp + 2));
5508 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5509 skb_pull(skb, IGB_TS_HDR_LEN);
5510 } else {
5511 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5512 return;
5513
5514 regval = rd32(E1000_RXSTMPL);
5515 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5516 }
5517
5518 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5519 }
5520 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
5521 union e1000_adv_rx_desc *rx_desc)
5522 {
5523 /* HW will not DMA in data larger than the given buffer, even if it
5524 * parses the (NFS, of course) header to be larger. In that case, it
5525 * fills the header buffer and spills the rest into the page.
5526 */
5527 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5528 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5529 if (hlen > rx_ring->rx_buffer_len)
5530 hlen = rx_ring->rx_buffer_len;
5531 return hlen;
5532 }
5533
5534 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5535 int *work_done, int budget)
5536 {
5537 struct igb_ring *rx_ring = q_vector->rx_ring;
5538 struct net_device *netdev = rx_ring->netdev;
5539 struct device *dev = rx_ring->dev;
5540 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5541 struct igb_buffer *buffer_info , *next_buffer;
5542 struct sk_buff *skb;
5543 bool cleaned = false;
5544 int cleaned_count = 0;
5545 int current_node = numa_node_id();
5546 unsigned int total_bytes = 0, total_packets = 0;
5547 unsigned int i;
5548 u32 staterr;
5549 u16 length;
5550 u16 vlan_tag;
5551
5552 i = rx_ring->next_to_clean;
5553 buffer_info = &rx_ring->buffer_info[i];
5554 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5555 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5556
5557 while (staterr & E1000_RXD_STAT_DD) {
5558 if (*work_done >= budget)
5559 break;
5560 (*work_done)++;
5561 rmb(); /* read descriptor and rx_buffer_info after status DD */
5562
5563 skb = buffer_info->skb;
5564 prefetch(skb->data - NET_IP_ALIGN);
5565 buffer_info->skb = NULL;
5566
5567 i++;
5568 if (i == rx_ring->count)
5569 i = 0;
5570
5571 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5572 prefetch(next_rxd);
5573 next_buffer = &rx_ring->buffer_info[i];
5574
5575 length = le16_to_cpu(rx_desc->wb.upper.length);
5576 cleaned = true;
5577 cleaned_count++;
5578
5579 if (buffer_info->dma) {
5580 dma_unmap_single(dev, buffer_info->dma,
5581 rx_ring->rx_buffer_len,
5582 DMA_FROM_DEVICE);
5583 buffer_info->dma = 0;
5584 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
5585 skb_put(skb, length);
5586 goto send_up;
5587 }
5588 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
5589 }
5590
5591 if (length) {
5592 dma_unmap_page(dev, buffer_info->page_dma,
5593 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5594 buffer_info->page_dma = 0;
5595
5596 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5597 buffer_info->page,
5598 buffer_info->page_offset,
5599 length);
5600
5601 if ((page_count(buffer_info->page) != 1) ||
5602 (page_to_nid(buffer_info->page) != current_node))
5603 buffer_info->page = NULL;
5604 else
5605 get_page(buffer_info->page);
5606
5607 skb->len += length;
5608 skb->data_len += length;
5609 skb->truesize += length;
5610 }
5611
5612 if (!(staterr & E1000_RXD_STAT_EOP)) {
5613 buffer_info->skb = next_buffer->skb;
5614 buffer_info->dma = next_buffer->dma;
5615 next_buffer->skb = skb;
5616 next_buffer->dma = 0;
5617 goto next_desc;
5618 }
5619 send_up:
5620 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5621 dev_kfree_skb_irq(skb);
5622 goto next_desc;
5623 }
5624
5625 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5626 igb_rx_hwtstamp(q_vector, staterr, skb);
5627 total_bytes += skb->len;
5628 total_packets++;
5629
5630 igb_rx_checksum_adv(rx_ring, staterr, skb);
5631
5632 skb->protocol = eth_type_trans(skb, netdev);
5633 skb_record_rx_queue(skb, rx_ring->queue_index);
5634
5635 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5636 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
5637
5638 igb_receive_skb(q_vector, skb, vlan_tag);
5639
5640 next_desc:
5641 rx_desc->wb.upper.status_error = 0;
5642
5643 /* return some buffers to hardware, one at a time is too slow */
5644 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5645 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5646 cleaned_count = 0;
5647 }
5648
5649 /* use prefetched values */
5650 rx_desc = next_rxd;
5651 buffer_info = next_buffer;
5652 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5653 }
5654
5655 rx_ring->next_to_clean = i;
5656 cleaned_count = igb_desc_unused(rx_ring);
5657
5658 if (cleaned_count)
5659 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5660
5661 rx_ring->total_packets += total_packets;
5662 rx_ring->total_bytes += total_bytes;
5663 rx_ring->rx_stats.packets += total_packets;
5664 rx_ring->rx_stats.bytes += total_bytes;
5665 return cleaned;
5666 }
5667
5668 /**
5669 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5670 * @adapter: address of board private structure
5671 **/
5672 void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
5673 {
5674 struct net_device *netdev = rx_ring->netdev;
5675 union e1000_adv_rx_desc *rx_desc;
5676 struct igb_buffer *buffer_info;
5677 struct sk_buff *skb;
5678 unsigned int i;
5679 int bufsz;
5680
5681 i = rx_ring->next_to_use;
5682 buffer_info = &rx_ring->buffer_info[i];
5683
5684 bufsz = rx_ring->rx_buffer_len;
5685
5686 while (cleaned_count--) {
5687 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5688
5689 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5690 if (!buffer_info->page) {
5691 buffer_info->page = netdev_alloc_page(netdev);
5692 if (!buffer_info->page) {
5693 rx_ring->rx_stats.alloc_failed++;
5694 goto no_buffers;
5695 }
5696 buffer_info->page_offset = 0;
5697 } else {
5698 buffer_info->page_offset ^= PAGE_SIZE / 2;
5699 }
5700 buffer_info->page_dma =
5701 dma_map_page(rx_ring->dev, buffer_info->page,
5702 buffer_info->page_offset,
5703 PAGE_SIZE / 2,
5704 DMA_FROM_DEVICE);
5705 if (dma_mapping_error(rx_ring->dev,
5706 buffer_info->page_dma)) {
5707 buffer_info->page_dma = 0;
5708 rx_ring->rx_stats.alloc_failed++;
5709 goto no_buffers;
5710 }
5711 }
5712
5713 skb = buffer_info->skb;
5714 if (!skb) {
5715 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5716 if (!skb) {
5717 rx_ring->rx_stats.alloc_failed++;
5718 goto no_buffers;
5719 }
5720
5721 buffer_info->skb = skb;
5722 }
5723 if (!buffer_info->dma) {
5724 buffer_info->dma = dma_map_single(rx_ring->dev,
5725 skb->data,
5726 bufsz,
5727 DMA_FROM_DEVICE);
5728 if (dma_mapping_error(rx_ring->dev,
5729 buffer_info->dma)) {
5730 buffer_info->dma = 0;
5731 rx_ring->rx_stats.alloc_failed++;
5732 goto no_buffers;
5733 }
5734 }
5735 /* Refresh the desc even if buffer_addrs didn't change because
5736 * each write-back erases this info. */
5737 if (bufsz < IGB_RXBUFFER_1024) {
5738 rx_desc->read.pkt_addr =
5739 cpu_to_le64(buffer_info->page_dma);
5740 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5741 } else {
5742 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
5743 rx_desc->read.hdr_addr = 0;
5744 }
5745
5746 i++;
5747 if (i == rx_ring->count)
5748 i = 0;
5749 buffer_info = &rx_ring->buffer_info[i];
5750 }
5751
5752 no_buffers:
5753 if (rx_ring->next_to_use != i) {
5754 rx_ring->next_to_use = i;
5755 if (i == 0)
5756 i = (rx_ring->count - 1);
5757 else
5758 i--;
5759
5760 /* Force memory writes to complete before letting h/w
5761 * know there are new descriptors to fetch. (Only
5762 * applicable for weak-ordered memory model archs,
5763 * such as IA-64). */
5764 wmb();
5765 writel(i, rx_ring->tail);
5766 }
5767 }
5768
5769 /**
5770 * igb_mii_ioctl -
5771 * @netdev:
5772 * @ifreq:
5773 * @cmd:
5774 **/
5775 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5776 {
5777 struct igb_adapter *adapter = netdev_priv(netdev);
5778 struct mii_ioctl_data *data = if_mii(ifr);
5779
5780 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5781 return -EOPNOTSUPP;
5782
5783 switch (cmd) {
5784 case SIOCGMIIPHY:
5785 data->phy_id = adapter->hw.phy.addr;
5786 break;
5787 case SIOCGMIIREG:
5788 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5789 &data->val_out))
5790 return -EIO;
5791 break;
5792 case SIOCSMIIREG:
5793 default:
5794 return -EOPNOTSUPP;
5795 }
5796 return 0;
5797 }
5798
5799 /**
5800 * igb_hwtstamp_ioctl - control hardware time stamping
5801 * @netdev:
5802 * @ifreq:
5803 * @cmd:
5804 *
5805 * Outgoing time stamping can be enabled and disabled. Play nice and
5806 * disable it when requested, although it shouldn't case any overhead
5807 * when no packet needs it. At most one packet in the queue may be
5808 * marked for time stamping, otherwise it would be impossible to tell
5809 * for sure to which packet the hardware time stamp belongs.
5810 *
5811 * Incoming time stamping has to be configured via the hardware
5812 * filters. Not all combinations are supported, in particular event
5813 * type has to be specified. Matching the kind of event packet is
5814 * not supported, with the exception of "all V2 events regardless of
5815 * level 2 or 4".
5816 *
5817 **/
5818 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5819 struct ifreq *ifr, int cmd)
5820 {
5821 struct igb_adapter *adapter = netdev_priv(netdev);
5822 struct e1000_hw *hw = &adapter->hw;
5823 struct hwtstamp_config config;
5824 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5825 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5826 u32 tsync_rx_cfg = 0;
5827 bool is_l4 = false;
5828 bool is_l2 = false;
5829 u32 regval;
5830
5831 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5832 return -EFAULT;
5833
5834 /* reserved for future extensions */
5835 if (config.flags)
5836 return -EINVAL;
5837
5838 switch (config.tx_type) {
5839 case HWTSTAMP_TX_OFF:
5840 tsync_tx_ctl = 0;
5841 case HWTSTAMP_TX_ON:
5842 break;
5843 default:
5844 return -ERANGE;
5845 }
5846
5847 switch (config.rx_filter) {
5848 case HWTSTAMP_FILTER_NONE:
5849 tsync_rx_ctl = 0;
5850 break;
5851 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5852 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5853 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5854 case HWTSTAMP_FILTER_ALL:
5855 /*
5856 * register TSYNCRXCFG must be set, therefore it is not
5857 * possible to time stamp both Sync and Delay_Req messages
5858 * => fall back to time stamping all packets
5859 */
5860 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5861 config.rx_filter = HWTSTAMP_FILTER_ALL;
5862 break;
5863 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5864 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5865 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5866 is_l4 = true;
5867 break;
5868 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5869 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
5870 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5871 is_l4 = true;
5872 break;
5873 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5874 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5875 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5876 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5877 is_l2 = true;
5878 is_l4 = true;
5879 config.rx_filter = HWTSTAMP_FILTER_SOME;
5880 break;
5881 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5882 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5883 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5884 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5885 is_l2 = true;
5886 is_l4 = true;
5887 config.rx_filter = HWTSTAMP_FILTER_SOME;
5888 break;
5889 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5890 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5891 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5892 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5893 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5894 is_l2 = true;
5895 break;
5896 default:
5897 return -ERANGE;
5898 }
5899
5900 if (hw->mac.type == e1000_82575) {
5901 if (tsync_rx_ctl | tsync_tx_ctl)
5902 return -EINVAL;
5903 return 0;
5904 }
5905
5906 /*
5907 * Per-packet timestamping only works if all packets are
5908 * timestamped, so enable timestamping in all packets as
5909 * long as one rx filter was configured.
5910 */
5911 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
5912 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
5913 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
5914 }
5915
5916 /* enable/disable TX */
5917 regval = rd32(E1000_TSYNCTXCTL);
5918 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5919 regval |= tsync_tx_ctl;
5920 wr32(E1000_TSYNCTXCTL, regval);
5921
5922 /* enable/disable RX */
5923 regval = rd32(E1000_TSYNCRXCTL);
5924 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5925 regval |= tsync_rx_ctl;
5926 wr32(E1000_TSYNCRXCTL, regval);
5927
5928 /* define which PTP packets are time stamped */
5929 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5930
5931 /* define ethertype filter for timestamped packets */
5932 if (is_l2)
5933 wr32(E1000_ETQF(3),
5934 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5935 E1000_ETQF_1588 | /* enable timestamping */
5936 ETH_P_1588)); /* 1588 eth protocol type */
5937 else
5938 wr32(E1000_ETQF(3), 0);
5939
5940 #define PTP_PORT 319
5941 /* L4 Queue Filter[3]: filter by destination port and protocol */
5942 if (is_l4) {
5943 u32 ftqf = (IPPROTO_UDP /* UDP */
5944 | E1000_FTQF_VF_BP /* VF not compared */
5945 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5946 | E1000_FTQF_MASK); /* mask all inputs */
5947 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5948
5949 wr32(E1000_IMIR(3), htons(PTP_PORT));
5950 wr32(E1000_IMIREXT(3),
5951 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5952 if (hw->mac.type == e1000_82576) {
5953 /* enable source port check */
5954 wr32(E1000_SPQF(3), htons(PTP_PORT));
5955 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5956 }
5957 wr32(E1000_FTQF(3), ftqf);
5958 } else {
5959 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5960 }
5961 wrfl();
5962
5963 adapter->hwtstamp_config = config;
5964
5965 /* clear TX/RX time stamp registers, just to be sure */
5966 regval = rd32(E1000_TXSTMPH);
5967 regval = rd32(E1000_RXSTMPH);
5968
5969 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5970 -EFAULT : 0;
5971 }
5972
5973 /**
5974 * igb_ioctl -
5975 * @netdev:
5976 * @ifreq:
5977 * @cmd:
5978 **/
5979 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5980 {
5981 switch (cmd) {
5982 case SIOCGMIIPHY:
5983 case SIOCGMIIREG:
5984 case SIOCSMIIREG:
5985 return igb_mii_ioctl(netdev, ifr, cmd);
5986 case SIOCSHWTSTAMP:
5987 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5988 default:
5989 return -EOPNOTSUPP;
5990 }
5991 }
5992
5993 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5994 {
5995 struct igb_adapter *adapter = hw->back;
5996 u16 cap_offset;
5997
5998 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5999 if (!cap_offset)
6000 return -E1000_ERR_CONFIG;
6001
6002 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6003
6004 return 0;
6005 }
6006
6007 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6008 {
6009 struct igb_adapter *adapter = hw->back;
6010 u16 cap_offset;
6011
6012 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6013 if (!cap_offset)
6014 return -E1000_ERR_CONFIG;
6015
6016 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6017
6018 return 0;
6019 }
6020
6021 static void igb_vlan_rx_register(struct net_device *netdev,
6022 struct vlan_group *grp)
6023 {
6024 struct igb_adapter *adapter = netdev_priv(netdev);
6025 struct e1000_hw *hw = &adapter->hw;
6026 u32 ctrl, rctl;
6027
6028 igb_irq_disable(adapter);
6029 adapter->vlgrp = grp;
6030
6031 if (grp) {
6032 /* enable VLAN tag insert/strip */
6033 ctrl = rd32(E1000_CTRL);
6034 ctrl |= E1000_CTRL_VME;
6035 wr32(E1000_CTRL, ctrl);
6036
6037 /* Disable CFI check */
6038 rctl = rd32(E1000_RCTL);
6039 rctl &= ~E1000_RCTL_CFIEN;
6040 wr32(E1000_RCTL, rctl);
6041 } else {
6042 /* disable VLAN tag insert/strip */
6043 ctrl = rd32(E1000_CTRL);
6044 ctrl &= ~E1000_CTRL_VME;
6045 wr32(E1000_CTRL, ctrl);
6046 }
6047
6048 igb_rlpml_set(adapter);
6049
6050 if (!test_bit(__IGB_DOWN, &adapter->state))
6051 igb_irq_enable(adapter);
6052 }
6053
6054 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6055 {
6056 struct igb_adapter *adapter = netdev_priv(netdev);
6057 struct e1000_hw *hw = &adapter->hw;
6058 int pf_id = adapter->vfs_allocated_count;
6059
6060 /* attempt to add filter to vlvf array */
6061 igb_vlvf_set(adapter, vid, true, pf_id);
6062
6063 /* add the filter since PF can receive vlans w/o entry in vlvf */
6064 igb_vfta_set(hw, vid, true);
6065 }
6066
6067 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6068 {
6069 struct igb_adapter *adapter = netdev_priv(netdev);
6070 struct e1000_hw *hw = &adapter->hw;
6071 int pf_id = adapter->vfs_allocated_count;
6072 s32 err;
6073
6074 igb_irq_disable(adapter);
6075 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6076
6077 if (!test_bit(__IGB_DOWN, &adapter->state))
6078 igb_irq_enable(adapter);
6079
6080 /* remove vlan from VLVF table array */
6081 err = igb_vlvf_set(adapter, vid, false, pf_id);
6082
6083 /* if vid was not present in VLVF just remove it from table */
6084 if (err)
6085 igb_vfta_set(hw, vid, false);
6086 }
6087
6088 static void igb_restore_vlan(struct igb_adapter *adapter)
6089 {
6090 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6091
6092 if (adapter->vlgrp) {
6093 u16 vid;
6094 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
6095 if (!vlan_group_get_device(adapter->vlgrp, vid))
6096 continue;
6097 igb_vlan_rx_add_vid(adapter->netdev, vid);
6098 }
6099 }
6100 }
6101
6102 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
6103 {
6104 struct pci_dev *pdev = adapter->pdev;
6105 struct e1000_mac_info *mac = &adapter->hw.mac;
6106
6107 mac->autoneg = 0;
6108
6109 switch (spddplx) {
6110 case SPEED_10 + DUPLEX_HALF:
6111 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6112 break;
6113 case SPEED_10 + DUPLEX_FULL:
6114 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6115 break;
6116 case SPEED_100 + DUPLEX_HALF:
6117 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6118 break;
6119 case SPEED_100 + DUPLEX_FULL:
6120 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6121 break;
6122 case SPEED_1000 + DUPLEX_FULL:
6123 mac->autoneg = 1;
6124 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6125 break;
6126 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6127 default:
6128 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6129 return -EINVAL;
6130 }
6131 return 0;
6132 }
6133
6134 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6135 {
6136 struct net_device *netdev = pci_get_drvdata(pdev);
6137 struct igb_adapter *adapter = netdev_priv(netdev);
6138 struct e1000_hw *hw = &adapter->hw;
6139 u32 ctrl, rctl, status;
6140 u32 wufc = adapter->wol;
6141 #ifdef CONFIG_PM
6142 int retval = 0;
6143 #endif
6144
6145 netif_device_detach(netdev);
6146
6147 if (netif_running(netdev))
6148 igb_close(netdev);
6149
6150 igb_clear_interrupt_scheme(adapter);
6151
6152 #ifdef CONFIG_PM
6153 retval = pci_save_state(pdev);
6154 if (retval)
6155 return retval;
6156 #endif
6157
6158 status = rd32(E1000_STATUS);
6159 if (status & E1000_STATUS_LU)
6160 wufc &= ~E1000_WUFC_LNKC;
6161
6162 if (wufc) {
6163 igb_setup_rctl(adapter);
6164 igb_set_rx_mode(netdev);
6165
6166 /* turn on all-multi mode if wake on multicast is enabled */
6167 if (wufc & E1000_WUFC_MC) {
6168 rctl = rd32(E1000_RCTL);
6169 rctl |= E1000_RCTL_MPE;
6170 wr32(E1000_RCTL, rctl);
6171 }
6172
6173 ctrl = rd32(E1000_CTRL);
6174 /* advertise wake from D3Cold */
6175 #define E1000_CTRL_ADVD3WUC 0x00100000
6176 /* phy power management enable */
6177 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6178 ctrl |= E1000_CTRL_ADVD3WUC;
6179 wr32(E1000_CTRL, ctrl);
6180
6181 /* Allow time for pending master requests to run */
6182 igb_disable_pcie_master(hw);
6183
6184 wr32(E1000_WUC, E1000_WUC_PME_EN);
6185 wr32(E1000_WUFC, wufc);
6186 } else {
6187 wr32(E1000_WUC, 0);
6188 wr32(E1000_WUFC, 0);
6189 }
6190
6191 *enable_wake = wufc || adapter->en_mng_pt;
6192 if (!*enable_wake)
6193 igb_power_down_link(adapter);
6194 else
6195 igb_power_up_link(adapter);
6196
6197 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6198 * would have already happened in close and is redundant. */
6199 igb_release_hw_control(adapter);
6200
6201 pci_disable_device(pdev);
6202
6203 return 0;
6204 }
6205
6206 #ifdef CONFIG_PM
6207 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6208 {
6209 int retval;
6210 bool wake;
6211
6212 retval = __igb_shutdown(pdev, &wake);
6213 if (retval)
6214 return retval;
6215
6216 if (wake) {
6217 pci_prepare_to_sleep(pdev);
6218 } else {
6219 pci_wake_from_d3(pdev, false);
6220 pci_set_power_state(pdev, PCI_D3hot);
6221 }
6222
6223 return 0;
6224 }
6225
6226 static int igb_resume(struct pci_dev *pdev)
6227 {
6228 struct net_device *netdev = pci_get_drvdata(pdev);
6229 struct igb_adapter *adapter = netdev_priv(netdev);
6230 struct e1000_hw *hw = &adapter->hw;
6231 u32 err;
6232
6233 pci_set_power_state(pdev, PCI_D0);
6234 pci_restore_state(pdev);
6235 pci_save_state(pdev);
6236
6237 err = pci_enable_device_mem(pdev);
6238 if (err) {
6239 dev_err(&pdev->dev,
6240 "igb: Cannot enable PCI device from suspend\n");
6241 return err;
6242 }
6243 pci_set_master(pdev);
6244
6245 pci_enable_wake(pdev, PCI_D3hot, 0);
6246 pci_enable_wake(pdev, PCI_D3cold, 0);
6247
6248 if (igb_init_interrupt_scheme(adapter)) {
6249 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6250 return -ENOMEM;
6251 }
6252
6253 igb_reset(adapter);
6254
6255 /* let the f/w know that the h/w is now under the control of the
6256 * driver. */
6257 igb_get_hw_control(adapter);
6258
6259 wr32(E1000_WUS, ~0);
6260
6261 if (netif_running(netdev)) {
6262 err = igb_open(netdev);
6263 if (err)
6264 return err;
6265 }
6266
6267 netif_device_attach(netdev);
6268
6269 return 0;
6270 }
6271 #endif
6272
6273 static void igb_shutdown(struct pci_dev *pdev)
6274 {
6275 bool wake;
6276
6277 __igb_shutdown(pdev, &wake);
6278
6279 if (system_state == SYSTEM_POWER_OFF) {
6280 pci_wake_from_d3(pdev, wake);
6281 pci_set_power_state(pdev, PCI_D3hot);
6282 }
6283 }
6284
6285 #ifdef CONFIG_NET_POLL_CONTROLLER
6286 /*
6287 * Polling 'interrupt' - used by things like netconsole to send skbs
6288 * without having to re-enable interrupts. It's not called while
6289 * the interrupt routine is executing.
6290 */
6291 static void igb_netpoll(struct net_device *netdev)
6292 {
6293 struct igb_adapter *adapter = netdev_priv(netdev);
6294 struct e1000_hw *hw = &adapter->hw;
6295 int i;
6296
6297 if (!adapter->msix_entries) {
6298 struct igb_q_vector *q_vector = adapter->q_vector[0];
6299 igb_irq_disable(adapter);
6300 napi_schedule(&q_vector->napi);
6301 return;
6302 }
6303
6304 for (i = 0; i < adapter->num_q_vectors; i++) {
6305 struct igb_q_vector *q_vector = adapter->q_vector[i];
6306 wr32(E1000_EIMC, q_vector->eims_value);
6307 napi_schedule(&q_vector->napi);
6308 }
6309 }
6310 #endif /* CONFIG_NET_POLL_CONTROLLER */
6311
6312 /**
6313 * igb_io_error_detected - called when PCI error is detected
6314 * @pdev: Pointer to PCI device
6315 * @state: The current pci connection state
6316 *
6317 * This function is called after a PCI bus error affecting
6318 * this device has been detected.
6319 */
6320 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6321 pci_channel_state_t state)
6322 {
6323 struct net_device *netdev = pci_get_drvdata(pdev);
6324 struct igb_adapter *adapter = netdev_priv(netdev);
6325
6326 netif_device_detach(netdev);
6327
6328 if (state == pci_channel_io_perm_failure)
6329 return PCI_ERS_RESULT_DISCONNECT;
6330
6331 if (netif_running(netdev))
6332 igb_down(adapter);
6333 pci_disable_device(pdev);
6334
6335 /* Request a slot slot reset. */
6336 return PCI_ERS_RESULT_NEED_RESET;
6337 }
6338
6339 /**
6340 * igb_io_slot_reset - called after the pci bus has been reset.
6341 * @pdev: Pointer to PCI device
6342 *
6343 * Restart the card from scratch, as if from a cold-boot. Implementation
6344 * resembles the first-half of the igb_resume routine.
6345 */
6346 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6347 {
6348 struct net_device *netdev = pci_get_drvdata(pdev);
6349 struct igb_adapter *adapter = netdev_priv(netdev);
6350 struct e1000_hw *hw = &adapter->hw;
6351 pci_ers_result_t result;
6352 int err;
6353
6354 if (pci_enable_device_mem(pdev)) {
6355 dev_err(&pdev->dev,
6356 "Cannot re-enable PCI device after reset.\n");
6357 result = PCI_ERS_RESULT_DISCONNECT;
6358 } else {
6359 pci_set_master(pdev);
6360 pci_restore_state(pdev);
6361 pci_save_state(pdev);
6362
6363 pci_enable_wake(pdev, PCI_D3hot, 0);
6364 pci_enable_wake(pdev, PCI_D3cold, 0);
6365
6366 igb_reset(adapter);
6367 wr32(E1000_WUS, ~0);
6368 result = PCI_ERS_RESULT_RECOVERED;
6369 }
6370
6371 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6372 if (err) {
6373 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6374 "failed 0x%0x\n", err);
6375 /* non-fatal, continue */
6376 }
6377
6378 return result;
6379 }
6380
6381 /**
6382 * igb_io_resume - called when traffic can start flowing again.
6383 * @pdev: Pointer to PCI device
6384 *
6385 * This callback is called when the error recovery driver tells us that
6386 * its OK to resume normal operation. Implementation resembles the
6387 * second-half of the igb_resume routine.
6388 */
6389 static void igb_io_resume(struct pci_dev *pdev)
6390 {
6391 struct net_device *netdev = pci_get_drvdata(pdev);
6392 struct igb_adapter *adapter = netdev_priv(netdev);
6393
6394 if (netif_running(netdev)) {
6395 if (igb_up(adapter)) {
6396 dev_err(&pdev->dev, "igb_up failed after reset\n");
6397 return;
6398 }
6399 }
6400
6401 netif_device_attach(netdev);
6402
6403 /* let the f/w know that the h/w is now under the control of the
6404 * driver. */
6405 igb_get_hw_control(adapter);
6406 }
6407
6408 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6409 u8 qsel)
6410 {
6411 u32 rar_low, rar_high;
6412 struct e1000_hw *hw = &adapter->hw;
6413
6414 /* HW expects these in little endian so we reverse the byte order
6415 * from network order (big endian) to little endian
6416 */
6417 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6418 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6419 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6420
6421 /* Indicate to hardware the Address is Valid. */
6422 rar_high |= E1000_RAH_AV;
6423
6424 if (hw->mac.type == e1000_82575)
6425 rar_high |= E1000_RAH_POOL_1 * qsel;
6426 else
6427 rar_high |= E1000_RAH_POOL_1 << qsel;
6428
6429 wr32(E1000_RAL(index), rar_low);
6430 wrfl();
6431 wr32(E1000_RAH(index), rar_high);
6432 wrfl();
6433 }
6434
6435 static int igb_set_vf_mac(struct igb_adapter *adapter,
6436 int vf, unsigned char *mac_addr)
6437 {
6438 struct e1000_hw *hw = &adapter->hw;
6439 /* VF MAC addresses start at end of receive addresses and moves
6440 * torwards the first, as a result a collision should not be possible */
6441 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6442
6443 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6444
6445 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6446
6447 return 0;
6448 }
6449
6450 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6451 {
6452 struct igb_adapter *adapter = netdev_priv(netdev);
6453 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6454 return -EINVAL;
6455 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6456 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6457 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6458 " change effective.");
6459 if (test_bit(__IGB_DOWN, &adapter->state)) {
6460 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6461 " but the PF device is not up.\n");
6462 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6463 " attempting to use the VF device.\n");
6464 }
6465 return igb_set_vf_mac(adapter, vf, mac);
6466 }
6467
6468 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6469 {
6470 return -EOPNOTSUPP;
6471 }
6472
6473 static int igb_ndo_get_vf_config(struct net_device *netdev,
6474 int vf, struct ifla_vf_info *ivi)
6475 {
6476 struct igb_adapter *adapter = netdev_priv(netdev);
6477 if (vf >= adapter->vfs_allocated_count)
6478 return -EINVAL;
6479 ivi->vf = vf;
6480 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6481 ivi->tx_rate = 0;
6482 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6483 ivi->qos = adapter->vf_data[vf].pf_qos;
6484 return 0;
6485 }
6486
6487 static void igb_vmm_control(struct igb_adapter *adapter)
6488 {
6489 struct e1000_hw *hw = &adapter->hw;
6490 u32 reg;
6491
6492 switch (hw->mac.type) {
6493 case e1000_82575:
6494 default:
6495 /* replication is not supported for 82575 */
6496 return;
6497 case e1000_82576:
6498 /* notify HW that the MAC is adding vlan tags */
6499 reg = rd32(E1000_DTXCTL);
6500 reg |= E1000_DTXCTL_VLAN_ADDED;
6501 wr32(E1000_DTXCTL, reg);
6502 case e1000_82580:
6503 /* enable replication vlan tag stripping */
6504 reg = rd32(E1000_RPLOLR);
6505 reg |= E1000_RPLOLR_STRVLAN;
6506 wr32(E1000_RPLOLR, reg);
6507 case e1000_i350:
6508 /* none of the above registers are supported by i350 */
6509 break;
6510 }
6511
6512 if (adapter->vfs_allocated_count) {
6513 igb_vmdq_set_loopback_pf(hw, true);
6514 igb_vmdq_set_replication_pf(hw, true);
6515 } else {
6516 igb_vmdq_set_loopback_pf(hw, false);
6517 igb_vmdq_set_replication_pf(hw, false);
6518 }
6519 }
6520
6521 /* igb_main.c */
This page took 0.161754 seconds and 6 git commands to generate.