macvtap: correctly linearize skb when zerocopy is used
[deliverable/linux.git] / drivers / net / macvtap.c
1 #include <linux/etherdevice.h>
2 #include <linux/if_macvlan.h>
3 #include <linux/if_vlan.h>
4 #include <linux/interrupt.h>
5 #include <linux/nsproxy.h>
6 #include <linux/compat.h>
7 #include <linux/if_tun.h>
8 #include <linux/module.h>
9 #include <linux/skbuff.h>
10 #include <linux/cache.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/init.h>
15 #include <linux/wait.h>
16 #include <linux/cdev.h>
17 #include <linux/idr.h>
18 #include <linux/fs.h>
19
20 #include <net/net_namespace.h>
21 #include <net/rtnetlink.h>
22 #include <net/sock.h>
23 #include <linux/virtio_net.h>
24
25 /*
26 * A macvtap queue is the central object of this driver, it connects
27 * an open character device to a macvlan interface. There can be
28 * multiple queues on one interface, which map back to queues
29 * implemented in hardware on the underlying device.
30 *
31 * macvtap_proto is used to allocate queues through the sock allocation
32 * mechanism.
33 *
34 */
35 struct macvtap_queue {
36 struct sock sk;
37 struct socket sock;
38 struct socket_wq wq;
39 int vnet_hdr_sz;
40 struct macvlan_dev __rcu *vlan;
41 struct file *file;
42 unsigned int flags;
43 u16 queue_index;
44 bool enabled;
45 struct list_head next;
46 };
47
48 static struct proto macvtap_proto = {
49 .name = "macvtap",
50 .owner = THIS_MODULE,
51 .obj_size = sizeof (struct macvtap_queue),
52 };
53
54 /*
55 * Variables for dealing with macvtaps device numbers.
56 */
57 static dev_t macvtap_major;
58 #define MACVTAP_NUM_DEVS (1U << MINORBITS)
59 static DEFINE_MUTEX(minor_lock);
60 static DEFINE_IDR(minor_idr);
61
62 #define GOODCOPY_LEN 128
63 static struct class *macvtap_class;
64 static struct cdev macvtap_cdev;
65
66 static const struct proto_ops macvtap_socket_ops;
67
68 #define TUN_OFFLOADS (NETIF_F_HW_CSUM | NETIF_F_TSO_ECN | NETIF_F_TSO | \
69 NETIF_F_TSO6 | NETIF_F_UFO)
70 #define RX_OFFLOADS (NETIF_F_GRO | NETIF_F_LRO)
71 /*
72 * RCU usage:
73 * The macvtap_queue and the macvlan_dev are loosely coupled, the
74 * pointers from one to the other can only be read while rcu_read_lock
75 * or rtnl is held.
76 *
77 * Both the file and the macvlan_dev hold a reference on the macvtap_queue
78 * through sock_hold(&q->sk). When the macvlan_dev goes away first,
79 * q->vlan becomes inaccessible. When the files gets closed,
80 * macvtap_get_queue() fails.
81 *
82 * There may still be references to the struct sock inside of the
83 * queue from outbound SKBs, but these never reference back to the
84 * file or the dev. The data structure is freed through __sk_free
85 * when both our references and any pending SKBs are gone.
86 */
87
88 static int macvtap_enable_queue(struct net_device *dev, struct file *file,
89 struct macvtap_queue *q)
90 {
91 struct macvlan_dev *vlan = netdev_priv(dev);
92 int err = -EINVAL;
93
94 ASSERT_RTNL();
95
96 if (q->enabled)
97 goto out;
98
99 err = 0;
100 rcu_assign_pointer(vlan->taps[vlan->numvtaps], q);
101 q->queue_index = vlan->numvtaps;
102 q->enabled = true;
103
104 vlan->numvtaps++;
105 out:
106 return err;
107 }
108
109 static int macvtap_set_queue(struct net_device *dev, struct file *file,
110 struct macvtap_queue *q)
111 {
112 struct macvlan_dev *vlan = netdev_priv(dev);
113 int err = -EBUSY;
114
115 rtnl_lock();
116 if (vlan->numqueues == MAX_MACVTAP_QUEUES)
117 goto out;
118
119 err = 0;
120 rcu_assign_pointer(q->vlan, vlan);
121 rcu_assign_pointer(vlan->taps[vlan->numvtaps], q);
122 sock_hold(&q->sk);
123
124 q->file = file;
125 q->queue_index = vlan->numvtaps;
126 q->enabled = true;
127 file->private_data = q;
128 list_add_tail(&q->next, &vlan->queue_list);
129
130 vlan->numvtaps++;
131 vlan->numqueues++;
132
133 out:
134 rtnl_unlock();
135 return err;
136 }
137
138 static int macvtap_disable_queue(struct macvtap_queue *q)
139 {
140 struct macvlan_dev *vlan;
141 struct macvtap_queue *nq;
142
143 ASSERT_RTNL();
144 if (!q->enabled)
145 return -EINVAL;
146
147 vlan = rtnl_dereference(q->vlan);
148
149 if (vlan) {
150 int index = q->queue_index;
151 BUG_ON(index >= vlan->numvtaps);
152 nq = rtnl_dereference(vlan->taps[vlan->numvtaps - 1]);
153 nq->queue_index = index;
154
155 rcu_assign_pointer(vlan->taps[index], nq);
156 RCU_INIT_POINTER(vlan->taps[vlan->numvtaps - 1], NULL);
157 q->enabled = false;
158
159 vlan->numvtaps--;
160 }
161
162 return 0;
163 }
164
165 /*
166 * The file owning the queue got closed, give up both
167 * the reference that the files holds as well as the
168 * one from the macvlan_dev if that still exists.
169 *
170 * Using the spinlock makes sure that we don't get
171 * to the queue again after destroying it.
172 */
173 static void macvtap_put_queue(struct macvtap_queue *q)
174 {
175 struct macvlan_dev *vlan;
176
177 rtnl_lock();
178 vlan = rtnl_dereference(q->vlan);
179
180 if (vlan) {
181 if (q->enabled)
182 BUG_ON(macvtap_disable_queue(q));
183
184 vlan->numqueues--;
185 RCU_INIT_POINTER(q->vlan, NULL);
186 sock_put(&q->sk);
187 list_del_init(&q->next);
188 }
189
190 rtnl_unlock();
191
192 synchronize_rcu();
193 sock_put(&q->sk);
194 }
195
196 /*
197 * Select a queue based on the rxq of the device on which this packet
198 * arrived. If the incoming device is not mq, calculate a flow hash
199 * to select a queue. If all fails, find the first available queue.
200 * Cache vlan->numvtaps since it can become zero during the execution
201 * of this function.
202 */
203 static struct macvtap_queue *macvtap_get_queue(struct net_device *dev,
204 struct sk_buff *skb)
205 {
206 struct macvlan_dev *vlan = netdev_priv(dev);
207 struct macvtap_queue *tap = NULL;
208 /* Access to taps array is protected by rcu, but access to numvtaps
209 * isn't. Below we use it to lookup a queue, but treat it as a hint
210 * and validate that the result isn't NULL - in case we are
211 * racing against queue removal.
212 */
213 int numvtaps = ACCESS_ONCE(vlan->numvtaps);
214 __u32 rxq;
215
216 if (!numvtaps)
217 goto out;
218
219 /* Check if we can use flow to select a queue */
220 rxq = skb_get_rxhash(skb);
221 if (rxq) {
222 tap = rcu_dereference(vlan->taps[rxq % numvtaps]);
223 goto out;
224 }
225
226 if (likely(skb_rx_queue_recorded(skb))) {
227 rxq = skb_get_rx_queue(skb);
228
229 while (unlikely(rxq >= numvtaps))
230 rxq -= numvtaps;
231
232 tap = rcu_dereference(vlan->taps[rxq]);
233 goto out;
234 }
235
236 tap = rcu_dereference(vlan->taps[0]);
237 out:
238 return tap;
239 }
240
241 /*
242 * The net_device is going away, give up the reference
243 * that it holds on all queues and safely set the pointer
244 * from the queues to NULL.
245 */
246 static void macvtap_del_queues(struct net_device *dev)
247 {
248 struct macvlan_dev *vlan = netdev_priv(dev);
249 struct macvtap_queue *q, *tmp, *qlist[MAX_MACVTAP_QUEUES];
250 int i, j = 0;
251
252 ASSERT_RTNL();
253 list_for_each_entry_safe(q, tmp, &vlan->queue_list, next) {
254 list_del_init(&q->next);
255 qlist[j++] = q;
256 RCU_INIT_POINTER(q->vlan, NULL);
257 if (q->enabled)
258 vlan->numvtaps--;
259 vlan->numqueues--;
260 }
261 for (i = 0; i < vlan->numvtaps; i++)
262 RCU_INIT_POINTER(vlan->taps[i], NULL);
263 BUG_ON(vlan->numvtaps);
264 BUG_ON(vlan->numqueues);
265 /* guarantee that any future macvtap_set_queue will fail */
266 vlan->numvtaps = MAX_MACVTAP_QUEUES;
267
268 for (--j; j >= 0; j--)
269 sock_put(&qlist[j]->sk);
270 }
271
272 /*
273 * Forward happens for data that gets sent from one macvlan
274 * endpoint to another one in bridge mode. We just take
275 * the skb and put it into the receive queue.
276 */
277 static int macvtap_forward(struct net_device *dev, struct sk_buff *skb)
278 {
279 struct macvlan_dev *vlan = netdev_priv(dev);
280 struct macvtap_queue *q = macvtap_get_queue(dev, skb);
281 netdev_features_t features;
282 if (!q)
283 goto drop;
284
285 if (skb_queue_len(&q->sk.sk_receive_queue) >= dev->tx_queue_len)
286 goto drop;
287
288 skb->dev = dev;
289 /* Apply the forward feature mask so that we perform segmentation
290 * according to users wishes.
291 */
292 features = netif_skb_features(skb) & vlan->tap_features;
293 if (netif_needs_gso(skb, features)) {
294 struct sk_buff *segs = __skb_gso_segment(skb, features, false);
295
296 if (IS_ERR(segs))
297 goto drop;
298
299 if (!segs) {
300 skb_queue_tail(&q->sk.sk_receive_queue, skb);
301 goto wake_up;
302 }
303
304 kfree_skb(skb);
305 while (segs) {
306 struct sk_buff *nskb = segs->next;
307
308 segs->next = NULL;
309 skb_queue_tail(&q->sk.sk_receive_queue, segs);
310 segs = nskb;
311 }
312 } else {
313 skb_queue_tail(&q->sk.sk_receive_queue, skb);
314 }
315
316 wake_up:
317 wake_up_interruptible_poll(sk_sleep(&q->sk), POLLIN | POLLRDNORM | POLLRDBAND);
318 return NET_RX_SUCCESS;
319
320 drop:
321 kfree_skb(skb);
322 return NET_RX_DROP;
323 }
324
325 /*
326 * Receive is for data from the external interface (lowerdev),
327 * in case of macvtap, we can treat that the same way as
328 * forward, which macvlan cannot.
329 */
330 static int macvtap_receive(struct sk_buff *skb)
331 {
332 skb_push(skb, ETH_HLEN);
333 return macvtap_forward(skb->dev, skb);
334 }
335
336 static int macvtap_get_minor(struct macvlan_dev *vlan)
337 {
338 int retval = -ENOMEM;
339
340 mutex_lock(&minor_lock);
341 retval = idr_alloc(&minor_idr, vlan, 1, MACVTAP_NUM_DEVS, GFP_KERNEL);
342 if (retval >= 0) {
343 vlan->minor = retval;
344 } else if (retval == -ENOSPC) {
345 printk(KERN_ERR "too many macvtap devices\n");
346 retval = -EINVAL;
347 }
348 mutex_unlock(&minor_lock);
349 return retval < 0 ? retval : 0;
350 }
351
352 static void macvtap_free_minor(struct macvlan_dev *vlan)
353 {
354 mutex_lock(&minor_lock);
355 if (vlan->minor) {
356 idr_remove(&minor_idr, vlan->minor);
357 vlan->minor = 0;
358 }
359 mutex_unlock(&minor_lock);
360 }
361
362 static struct net_device *dev_get_by_macvtap_minor(int minor)
363 {
364 struct net_device *dev = NULL;
365 struct macvlan_dev *vlan;
366
367 mutex_lock(&minor_lock);
368 vlan = idr_find(&minor_idr, minor);
369 if (vlan) {
370 dev = vlan->dev;
371 dev_hold(dev);
372 }
373 mutex_unlock(&minor_lock);
374 return dev;
375 }
376
377 static int macvtap_newlink(struct net *src_net,
378 struct net_device *dev,
379 struct nlattr *tb[],
380 struct nlattr *data[])
381 {
382 struct macvlan_dev *vlan = netdev_priv(dev);
383 INIT_LIST_HEAD(&vlan->queue_list);
384
385 /* Since macvlan supports all offloads by default, make
386 * tap support all offloads also.
387 */
388 vlan->tap_features = TUN_OFFLOADS;
389
390 /* Don't put anything that may fail after macvlan_common_newlink
391 * because we can't undo what it does.
392 */
393 return macvlan_common_newlink(src_net, dev, tb, data,
394 macvtap_receive, macvtap_forward);
395 }
396
397 static void macvtap_dellink(struct net_device *dev,
398 struct list_head *head)
399 {
400 macvtap_del_queues(dev);
401 macvlan_dellink(dev, head);
402 }
403
404 static void macvtap_setup(struct net_device *dev)
405 {
406 macvlan_common_setup(dev);
407 dev->tx_queue_len = TUN_READQ_SIZE;
408 }
409
410 static struct rtnl_link_ops macvtap_link_ops __read_mostly = {
411 .kind = "macvtap",
412 .setup = macvtap_setup,
413 .newlink = macvtap_newlink,
414 .dellink = macvtap_dellink,
415 };
416
417
418 static void macvtap_sock_write_space(struct sock *sk)
419 {
420 wait_queue_head_t *wqueue;
421
422 if (!sock_writeable(sk) ||
423 !test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags))
424 return;
425
426 wqueue = sk_sleep(sk);
427 if (wqueue && waitqueue_active(wqueue))
428 wake_up_interruptible_poll(wqueue, POLLOUT | POLLWRNORM | POLLWRBAND);
429 }
430
431 static void macvtap_sock_destruct(struct sock *sk)
432 {
433 skb_queue_purge(&sk->sk_receive_queue);
434 }
435
436 static int macvtap_open(struct inode *inode, struct file *file)
437 {
438 struct net *net = current->nsproxy->net_ns;
439 struct net_device *dev = dev_get_by_macvtap_minor(iminor(inode));
440 struct macvtap_queue *q;
441 int err;
442
443 err = -ENODEV;
444 if (!dev)
445 goto out;
446
447 err = -ENOMEM;
448 q = (struct macvtap_queue *)sk_alloc(net, AF_UNSPEC, GFP_KERNEL,
449 &macvtap_proto);
450 if (!q)
451 goto out;
452
453 RCU_INIT_POINTER(q->sock.wq, &q->wq);
454 init_waitqueue_head(&q->wq.wait);
455 q->sock.type = SOCK_RAW;
456 q->sock.state = SS_CONNECTED;
457 q->sock.file = file;
458 q->sock.ops = &macvtap_socket_ops;
459 sock_init_data(&q->sock, &q->sk);
460 q->sk.sk_write_space = macvtap_sock_write_space;
461 q->sk.sk_destruct = macvtap_sock_destruct;
462 q->flags = IFF_VNET_HDR | IFF_NO_PI | IFF_TAP;
463 q->vnet_hdr_sz = sizeof(struct virtio_net_hdr);
464
465 /*
466 * so far only KVM virtio_net uses macvtap, enable zero copy between
467 * guest kernel and host kernel when lower device supports zerocopy
468 *
469 * The macvlan supports zerocopy iff the lower device supports zero
470 * copy so we don't have to look at the lower device directly.
471 */
472 if ((dev->features & NETIF_F_HIGHDMA) && (dev->features & NETIF_F_SG))
473 sock_set_flag(&q->sk, SOCK_ZEROCOPY);
474
475 err = macvtap_set_queue(dev, file, q);
476 if (err)
477 sock_put(&q->sk);
478
479 out:
480 if (dev)
481 dev_put(dev);
482
483 return err;
484 }
485
486 static int macvtap_release(struct inode *inode, struct file *file)
487 {
488 struct macvtap_queue *q = file->private_data;
489 macvtap_put_queue(q);
490 return 0;
491 }
492
493 static unsigned int macvtap_poll(struct file *file, poll_table * wait)
494 {
495 struct macvtap_queue *q = file->private_data;
496 unsigned int mask = POLLERR;
497
498 if (!q)
499 goto out;
500
501 mask = 0;
502 poll_wait(file, &q->wq.wait, wait);
503
504 if (!skb_queue_empty(&q->sk.sk_receive_queue))
505 mask |= POLLIN | POLLRDNORM;
506
507 if (sock_writeable(&q->sk) ||
508 (!test_and_set_bit(SOCK_ASYNC_NOSPACE, &q->sock.flags) &&
509 sock_writeable(&q->sk)))
510 mask |= POLLOUT | POLLWRNORM;
511
512 out:
513 return mask;
514 }
515
516 static inline struct sk_buff *macvtap_alloc_skb(struct sock *sk, size_t prepad,
517 size_t len, size_t linear,
518 int noblock, int *err)
519 {
520 struct sk_buff *skb;
521
522 /* Under a page? Don't bother with paged skb. */
523 if (prepad + len < PAGE_SIZE || !linear)
524 linear = len;
525
526 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
527 err);
528 if (!skb)
529 return NULL;
530
531 skb_reserve(skb, prepad);
532 skb_put(skb, linear);
533 skb->data_len = len - linear;
534 skb->len += len - linear;
535
536 return skb;
537 }
538
539 /* set skb frags from iovec, this can move to core network code for reuse */
540 static int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *from,
541 int offset, size_t count)
542 {
543 int len = iov_length(from, count) - offset;
544 int copy = skb_headlen(skb);
545 int size, offset1 = 0;
546 int i = 0;
547
548 /* Skip over from offset */
549 while (count && (offset >= from->iov_len)) {
550 offset -= from->iov_len;
551 ++from;
552 --count;
553 }
554
555 /* copy up to skb headlen */
556 while (count && (copy > 0)) {
557 size = min_t(unsigned int, copy, from->iov_len - offset);
558 if (copy_from_user(skb->data + offset1, from->iov_base + offset,
559 size))
560 return -EFAULT;
561 if (copy > size) {
562 ++from;
563 --count;
564 offset = 0;
565 } else
566 offset += size;
567 copy -= size;
568 offset1 += size;
569 }
570
571 if (len == offset1)
572 return 0;
573
574 while (count--) {
575 struct page *page[MAX_SKB_FRAGS];
576 int num_pages;
577 unsigned long base;
578 unsigned long truesize;
579
580 len = from->iov_len - offset;
581 if (!len) {
582 offset = 0;
583 ++from;
584 continue;
585 }
586 base = (unsigned long)from->iov_base + offset;
587 size = ((base & ~PAGE_MASK) + len + ~PAGE_MASK) >> PAGE_SHIFT;
588 if (i + size > MAX_SKB_FRAGS)
589 return -EMSGSIZE;
590 num_pages = get_user_pages_fast(base, size, 0, &page[i]);
591 if (num_pages != size) {
592 int j;
593
594 for (j = 0; j < num_pages; j++)
595 put_page(page[i + j]);
596 return -EFAULT;
597 }
598 truesize = size * PAGE_SIZE;
599 skb->data_len += len;
600 skb->len += len;
601 skb->truesize += truesize;
602 atomic_add(truesize, &skb->sk->sk_wmem_alloc);
603 while (len) {
604 int off = base & ~PAGE_MASK;
605 int size = min_t(int, len, PAGE_SIZE - off);
606 __skb_fill_page_desc(skb, i, page[i], off, size);
607 skb_shinfo(skb)->nr_frags++;
608 /* increase sk_wmem_alloc */
609 base += size;
610 len -= size;
611 i++;
612 }
613 offset = 0;
614 ++from;
615 }
616 return 0;
617 }
618
619 /*
620 * macvtap_skb_from_vnet_hdr and macvtap_skb_to_vnet_hdr should
621 * be shared with the tun/tap driver.
622 */
623 static int macvtap_skb_from_vnet_hdr(struct sk_buff *skb,
624 struct virtio_net_hdr *vnet_hdr)
625 {
626 unsigned short gso_type = 0;
627 if (vnet_hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
628 switch (vnet_hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
629 case VIRTIO_NET_HDR_GSO_TCPV4:
630 gso_type = SKB_GSO_TCPV4;
631 break;
632 case VIRTIO_NET_HDR_GSO_TCPV6:
633 gso_type = SKB_GSO_TCPV6;
634 break;
635 case VIRTIO_NET_HDR_GSO_UDP:
636 gso_type = SKB_GSO_UDP;
637 break;
638 default:
639 return -EINVAL;
640 }
641
642 if (vnet_hdr->gso_type & VIRTIO_NET_HDR_GSO_ECN)
643 gso_type |= SKB_GSO_TCP_ECN;
644
645 if (vnet_hdr->gso_size == 0)
646 return -EINVAL;
647 }
648
649 if (vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
650 if (!skb_partial_csum_set(skb, vnet_hdr->csum_start,
651 vnet_hdr->csum_offset))
652 return -EINVAL;
653 }
654
655 if (vnet_hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
656 skb_shinfo(skb)->gso_size = vnet_hdr->gso_size;
657 skb_shinfo(skb)->gso_type = gso_type;
658
659 /* Header must be checked, and gso_segs computed. */
660 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
661 skb_shinfo(skb)->gso_segs = 0;
662 }
663 return 0;
664 }
665
666 static int macvtap_skb_to_vnet_hdr(const struct sk_buff *skb,
667 struct virtio_net_hdr *vnet_hdr)
668 {
669 memset(vnet_hdr, 0, sizeof(*vnet_hdr));
670
671 if (skb_is_gso(skb)) {
672 struct skb_shared_info *sinfo = skb_shinfo(skb);
673
674 /* This is a hint as to how much should be linear. */
675 vnet_hdr->hdr_len = skb_headlen(skb);
676 vnet_hdr->gso_size = sinfo->gso_size;
677 if (sinfo->gso_type & SKB_GSO_TCPV4)
678 vnet_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
679 else if (sinfo->gso_type & SKB_GSO_TCPV6)
680 vnet_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
681 else if (sinfo->gso_type & SKB_GSO_UDP)
682 vnet_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
683 else
684 BUG();
685 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
686 vnet_hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN;
687 } else
688 vnet_hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
689
690 if (skb->ip_summed == CHECKSUM_PARTIAL) {
691 vnet_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
692 vnet_hdr->csum_start = skb_checksum_start_offset(skb);
693 vnet_hdr->csum_offset = skb->csum_offset;
694 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
695 vnet_hdr->flags = VIRTIO_NET_HDR_F_DATA_VALID;
696 } /* else everything is zero */
697
698 return 0;
699 }
700
701
702 /* Get packet from user space buffer */
703 static ssize_t macvtap_get_user(struct macvtap_queue *q, struct msghdr *m,
704 const struct iovec *iv, unsigned long total_len,
705 size_t count, int noblock)
706 {
707 struct sk_buff *skb;
708 struct macvlan_dev *vlan;
709 unsigned long len = total_len;
710 int err;
711 struct virtio_net_hdr vnet_hdr = { 0 };
712 int vnet_hdr_len = 0;
713 int copylen = 0;
714 bool zerocopy = false;
715 size_t linear;
716
717 if (q->flags & IFF_VNET_HDR) {
718 vnet_hdr_len = q->vnet_hdr_sz;
719
720 err = -EINVAL;
721 if (len < vnet_hdr_len)
722 goto err;
723 len -= vnet_hdr_len;
724
725 err = memcpy_fromiovecend((void *)&vnet_hdr, iv, 0,
726 sizeof(vnet_hdr));
727 if (err < 0)
728 goto err;
729 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
730 vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 >
731 vnet_hdr.hdr_len)
732 vnet_hdr.hdr_len = vnet_hdr.csum_start +
733 vnet_hdr.csum_offset + 2;
734 err = -EINVAL;
735 if (vnet_hdr.hdr_len > len)
736 goto err;
737 }
738
739 err = -EINVAL;
740 if (unlikely(len < ETH_HLEN))
741 goto err;
742
743 err = -EMSGSIZE;
744 if (unlikely(count > UIO_MAXIOV))
745 goto err;
746
747 if (m && m->msg_control && sock_flag(&q->sk, SOCK_ZEROCOPY))
748 zerocopy = true;
749
750 if (zerocopy) {
751 /* Userspace may produce vectors with count greater than
752 * MAX_SKB_FRAGS, so we need to linearize parts of the skb
753 * to let the rest of data to be fit in the frags.
754 */
755 if (count > MAX_SKB_FRAGS) {
756 copylen = iov_length(iv, count - MAX_SKB_FRAGS);
757 if (copylen < vnet_hdr_len)
758 copylen = 0;
759 else
760 copylen -= vnet_hdr_len;
761 }
762 /* There are 256 bytes to be copied in skb, so there is enough
763 * room for skb expand head in case it is used.
764 * The rest buffer is mapped from userspace.
765 */
766 if (copylen < vnet_hdr.hdr_len)
767 copylen = vnet_hdr.hdr_len;
768 if (!copylen)
769 copylen = GOODCOPY_LEN;
770 linear = copylen;
771 } else {
772 copylen = len;
773 linear = vnet_hdr.hdr_len;
774 }
775
776 skb = macvtap_alloc_skb(&q->sk, NET_IP_ALIGN, copylen,
777 linear, noblock, &err);
778 if (!skb)
779 goto err;
780
781 if (zerocopy)
782 err = zerocopy_sg_from_iovec(skb, iv, vnet_hdr_len, count);
783 else
784 err = skb_copy_datagram_from_iovec(skb, 0, iv, vnet_hdr_len,
785 len);
786 if (err)
787 goto err_kfree;
788
789 skb_set_network_header(skb, ETH_HLEN);
790 skb_reset_mac_header(skb);
791 skb->protocol = eth_hdr(skb)->h_proto;
792
793 if (vnet_hdr_len) {
794 err = macvtap_skb_from_vnet_hdr(skb, &vnet_hdr);
795 if (err)
796 goto err_kfree;
797 }
798
799 skb_probe_transport_header(skb, ETH_HLEN);
800
801 rcu_read_lock();
802 vlan = rcu_dereference(q->vlan);
803 /* copy skb_ubuf_info for callback when skb has no error */
804 if (zerocopy) {
805 skb_shinfo(skb)->destructor_arg = m->msg_control;
806 skb_shinfo(skb)->tx_flags |= SKBTX_DEV_ZEROCOPY;
807 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
808 }
809 if (vlan)
810 macvlan_start_xmit(skb, vlan->dev);
811 else
812 kfree_skb(skb);
813 rcu_read_unlock();
814
815 return total_len;
816
817 err_kfree:
818 kfree_skb(skb);
819
820 err:
821 rcu_read_lock();
822 vlan = rcu_dereference(q->vlan);
823 if (vlan)
824 vlan->dev->stats.tx_dropped++;
825 rcu_read_unlock();
826
827 return err;
828 }
829
830 static ssize_t macvtap_aio_write(struct kiocb *iocb, const struct iovec *iv,
831 unsigned long count, loff_t pos)
832 {
833 struct file *file = iocb->ki_filp;
834 ssize_t result = -ENOLINK;
835 struct macvtap_queue *q = file->private_data;
836
837 result = macvtap_get_user(q, NULL, iv, iov_length(iv, count), count,
838 file->f_flags & O_NONBLOCK);
839 return result;
840 }
841
842 /* Put packet to the user space buffer */
843 static ssize_t macvtap_put_user(struct macvtap_queue *q,
844 const struct sk_buff *skb,
845 const struct iovec *iv, int len)
846 {
847 struct macvlan_dev *vlan;
848 int ret;
849 int vnet_hdr_len = 0;
850 int vlan_offset = 0;
851 int copied;
852
853 if (q->flags & IFF_VNET_HDR) {
854 struct virtio_net_hdr vnet_hdr;
855 vnet_hdr_len = q->vnet_hdr_sz;
856 if ((len -= vnet_hdr_len) < 0)
857 return -EINVAL;
858
859 ret = macvtap_skb_to_vnet_hdr(skb, &vnet_hdr);
860 if (ret)
861 return ret;
862
863 if (memcpy_toiovecend(iv, (void *)&vnet_hdr, 0, sizeof(vnet_hdr)))
864 return -EFAULT;
865 }
866 copied = vnet_hdr_len;
867
868 if (!vlan_tx_tag_present(skb))
869 len = min_t(int, skb->len, len);
870 else {
871 int copy;
872 struct {
873 __be16 h_vlan_proto;
874 __be16 h_vlan_TCI;
875 } veth;
876 veth.h_vlan_proto = htons(ETH_P_8021Q);
877 veth.h_vlan_TCI = htons(vlan_tx_tag_get(skb));
878
879 vlan_offset = offsetof(struct vlan_ethhdr, h_vlan_proto);
880 len = min_t(int, skb->len + VLAN_HLEN, len);
881
882 copy = min_t(int, vlan_offset, len);
883 ret = skb_copy_datagram_const_iovec(skb, 0, iv, copied, copy);
884 len -= copy;
885 copied += copy;
886 if (ret || !len)
887 goto done;
888
889 copy = min_t(int, sizeof(veth), len);
890 ret = memcpy_toiovecend(iv, (void *)&veth, copied, copy);
891 len -= copy;
892 copied += copy;
893 if (ret || !len)
894 goto done;
895 }
896
897 ret = skb_copy_datagram_const_iovec(skb, vlan_offset, iv, copied, len);
898 copied += len;
899
900 done:
901 rcu_read_lock();
902 vlan = rcu_dereference(q->vlan);
903 if (vlan)
904 macvlan_count_rx(vlan, copied - vnet_hdr_len, ret == 0, 0);
905 rcu_read_unlock();
906
907 return ret ? ret : copied;
908 }
909
910 static ssize_t macvtap_do_read(struct macvtap_queue *q, struct kiocb *iocb,
911 const struct iovec *iv, unsigned long len,
912 int noblock)
913 {
914 DEFINE_WAIT(wait);
915 struct sk_buff *skb;
916 ssize_t ret = 0;
917
918 while (len) {
919 if (!noblock)
920 prepare_to_wait(sk_sleep(&q->sk), &wait,
921 TASK_INTERRUPTIBLE);
922
923 /* Read frames from the queue */
924 skb = skb_dequeue(&q->sk.sk_receive_queue);
925 if (!skb) {
926 if (noblock) {
927 ret = -EAGAIN;
928 break;
929 }
930 if (signal_pending(current)) {
931 ret = -ERESTARTSYS;
932 break;
933 }
934 /* Nothing to read, let's sleep */
935 schedule();
936 continue;
937 }
938 ret = macvtap_put_user(q, skb, iv, len);
939 kfree_skb(skb);
940 break;
941 }
942
943 if (!noblock)
944 finish_wait(sk_sleep(&q->sk), &wait);
945 return ret;
946 }
947
948 static ssize_t macvtap_aio_read(struct kiocb *iocb, const struct iovec *iv,
949 unsigned long count, loff_t pos)
950 {
951 struct file *file = iocb->ki_filp;
952 struct macvtap_queue *q = file->private_data;
953 ssize_t len, ret = 0;
954
955 len = iov_length(iv, count);
956 if (len < 0) {
957 ret = -EINVAL;
958 goto out;
959 }
960
961 ret = macvtap_do_read(q, iocb, iv, len, file->f_flags & O_NONBLOCK);
962 ret = min_t(ssize_t, ret, len); /* XXX copied from tun.c. Why? */
963 out:
964 return ret;
965 }
966
967 static struct macvlan_dev *macvtap_get_vlan(struct macvtap_queue *q)
968 {
969 struct macvlan_dev *vlan;
970
971 ASSERT_RTNL();
972 vlan = rtnl_dereference(q->vlan);
973 if (vlan)
974 dev_hold(vlan->dev);
975
976 return vlan;
977 }
978
979 static void macvtap_put_vlan(struct macvlan_dev *vlan)
980 {
981 dev_put(vlan->dev);
982 }
983
984 static int macvtap_ioctl_set_queue(struct file *file, unsigned int flags)
985 {
986 struct macvtap_queue *q = file->private_data;
987 struct macvlan_dev *vlan;
988 int ret;
989
990 vlan = macvtap_get_vlan(q);
991 if (!vlan)
992 return -EINVAL;
993
994 if (flags & IFF_ATTACH_QUEUE)
995 ret = macvtap_enable_queue(vlan->dev, file, q);
996 else if (flags & IFF_DETACH_QUEUE)
997 ret = macvtap_disable_queue(q);
998 else
999 ret = -EINVAL;
1000
1001 macvtap_put_vlan(vlan);
1002 return ret;
1003 }
1004
1005 static int set_offload(struct macvtap_queue *q, unsigned long arg)
1006 {
1007 struct macvlan_dev *vlan;
1008 netdev_features_t features;
1009 netdev_features_t feature_mask = 0;
1010
1011 vlan = rtnl_dereference(q->vlan);
1012 if (!vlan)
1013 return -ENOLINK;
1014
1015 features = vlan->dev->features;
1016
1017 if (arg & TUN_F_CSUM) {
1018 feature_mask = NETIF_F_HW_CSUM;
1019
1020 if (arg & (TUN_F_TSO4 | TUN_F_TSO6)) {
1021 if (arg & TUN_F_TSO_ECN)
1022 feature_mask |= NETIF_F_TSO_ECN;
1023 if (arg & TUN_F_TSO4)
1024 feature_mask |= NETIF_F_TSO;
1025 if (arg & TUN_F_TSO6)
1026 feature_mask |= NETIF_F_TSO6;
1027 }
1028
1029 if (arg & TUN_F_UFO)
1030 feature_mask |= NETIF_F_UFO;
1031 }
1032
1033 /* tun/tap driver inverts the usage for TSO offloads, where
1034 * setting the TSO bit means that the userspace wants to
1035 * accept TSO frames and turning it off means that user space
1036 * does not support TSO.
1037 * For macvtap, we have to invert it to mean the same thing.
1038 * When user space turns off TSO, we turn off GSO/LRO so that
1039 * user-space will not receive TSO frames.
1040 */
1041 if (feature_mask & (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_UFO))
1042 features |= RX_OFFLOADS;
1043 else
1044 features &= ~RX_OFFLOADS;
1045
1046 /* tap_features are the same as features on tun/tap and
1047 * reflect user expectations.
1048 */
1049 vlan->tap_features = vlan->dev->features &
1050 (feature_mask | ~TUN_OFFLOADS);
1051 vlan->set_features = features;
1052 netdev_update_features(vlan->dev);
1053
1054 return 0;
1055 }
1056
1057 /*
1058 * provide compatibility with generic tun/tap interface
1059 */
1060 static long macvtap_ioctl(struct file *file, unsigned int cmd,
1061 unsigned long arg)
1062 {
1063 struct macvtap_queue *q = file->private_data;
1064 struct macvlan_dev *vlan;
1065 void __user *argp = (void __user *)arg;
1066 struct ifreq __user *ifr = argp;
1067 unsigned int __user *up = argp;
1068 unsigned int u;
1069 int __user *sp = argp;
1070 int s;
1071 int ret;
1072
1073 switch (cmd) {
1074 case TUNSETIFF:
1075 /* ignore the name, just look at flags */
1076 if (get_user(u, &ifr->ifr_flags))
1077 return -EFAULT;
1078
1079 ret = 0;
1080 if ((u & ~(IFF_VNET_HDR | IFF_MULTI_QUEUE)) !=
1081 (IFF_NO_PI | IFF_TAP))
1082 ret = -EINVAL;
1083 else
1084 q->flags = u;
1085
1086 return ret;
1087
1088 case TUNGETIFF:
1089 rtnl_lock();
1090 vlan = macvtap_get_vlan(q);
1091 if (!vlan) {
1092 rtnl_unlock();
1093 return -ENOLINK;
1094 }
1095
1096 ret = 0;
1097 if (copy_to_user(&ifr->ifr_name, vlan->dev->name, IFNAMSIZ) ||
1098 put_user(q->flags, &ifr->ifr_flags))
1099 ret = -EFAULT;
1100 macvtap_put_vlan(vlan);
1101 rtnl_unlock();
1102 return ret;
1103
1104 case TUNSETQUEUE:
1105 if (get_user(u, &ifr->ifr_flags))
1106 return -EFAULT;
1107 rtnl_lock();
1108 ret = macvtap_ioctl_set_queue(file, u);
1109 rtnl_unlock();
1110
1111 case TUNGETFEATURES:
1112 if (put_user(IFF_TAP | IFF_NO_PI | IFF_VNET_HDR |
1113 IFF_MULTI_QUEUE, up))
1114 return -EFAULT;
1115 return 0;
1116
1117 case TUNSETSNDBUF:
1118 if (get_user(u, up))
1119 return -EFAULT;
1120
1121 q->sk.sk_sndbuf = u;
1122 return 0;
1123
1124 case TUNGETVNETHDRSZ:
1125 s = q->vnet_hdr_sz;
1126 if (put_user(s, sp))
1127 return -EFAULT;
1128 return 0;
1129
1130 case TUNSETVNETHDRSZ:
1131 if (get_user(s, sp))
1132 return -EFAULT;
1133 if (s < (int)sizeof(struct virtio_net_hdr))
1134 return -EINVAL;
1135
1136 q->vnet_hdr_sz = s;
1137 return 0;
1138
1139 case TUNSETOFFLOAD:
1140 /* let the user check for future flags */
1141 if (arg & ~(TUN_F_CSUM | TUN_F_TSO4 | TUN_F_TSO6 |
1142 TUN_F_TSO_ECN | TUN_F_UFO))
1143 return -EINVAL;
1144
1145 /* TODO: only accept frames with the features that
1146 got enabled for forwarded frames */
1147 if (!(q->flags & IFF_VNET_HDR))
1148 return -EINVAL;
1149 rtnl_lock();
1150 ret = set_offload(q, arg);
1151 rtnl_unlock();
1152 return ret;
1153
1154 default:
1155 return -EINVAL;
1156 }
1157 }
1158
1159 #ifdef CONFIG_COMPAT
1160 static long macvtap_compat_ioctl(struct file *file, unsigned int cmd,
1161 unsigned long arg)
1162 {
1163 return macvtap_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
1164 }
1165 #endif
1166
1167 static const struct file_operations macvtap_fops = {
1168 .owner = THIS_MODULE,
1169 .open = macvtap_open,
1170 .release = macvtap_release,
1171 .aio_read = macvtap_aio_read,
1172 .aio_write = macvtap_aio_write,
1173 .poll = macvtap_poll,
1174 .llseek = no_llseek,
1175 .unlocked_ioctl = macvtap_ioctl,
1176 #ifdef CONFIG_COMPAT
1177 .compat_ioctl = macvtap_compat_ioctl,
1178 #endif
1179 };
1180
1181 static int macvtap_sendmsg(struct kiocb *iocb, struct socket *sock,
1182 struct msghdr *m, size_t total_len)
1183 {
1184 struct macvtap_queue *q = container_of(sock, struct macvtap_queue, sock);
1185 return macvtap_get_user(q, m, m->msg_iov, total_len, m->msg_iovlen,
1186 m->msg_flags & MSG_DONTWAIT);
1187 }
1188
1189 static int macvtap_recvmsg(struct kiocb *iocb, struct socket *sock,
1190 struct msghdr *m, size_t total_len,
1191 int flags)
1192 {
1193 struct macvtap_queue *q = container_of(sock, struct macvtap_queue, sock);
1194 int ret;
1195 if (flags & ~(MSG_DONTWAIT|MSG_TRUNC))
1196 return -EINVAL;
1197 ret = macvtap_do_read(q, iocb, m->msg_iov, total_len,
1198 flags & MSG_DONTWAIT);
1199 if (ret > total_len) {
1200 m->msg_flags |= MSG_TRUNC;
1201 ret = flags & MSG_TRUNC ? ret : total_len;
1202 }
1203 return ret;
1204 }
1205
1206 /* Ops structure to mimic raw sockets with tun */
1207 static const struct proto_ops macvtap_socket_ops = {
1208 .sendmsg = macvtap_sendmsg,
1209 .recvmsg = macvtap_recvmsg,
1210 };
1211
1212 /* Get an underlying socket object from tun file. Returns error unless file is
1213 * attached to a device. The returned object works like a packet socket, it
1214 * can be used for sock_sendmsg/sock_recvmsg. The caller is responsible for
1215 * holding a reference to the file for as long as the socket is in use. */
1216 struct socket *macvtap_get_socket(struct file *file)
1217 {
1218 struct macvtap_queue *q;
1219 if (file->f_op != &macvtap_fops)
1220 return ERR_PTR(-EINVAL);
1221 q = file->private_data;
1222 if (!q)
1223 return ERR_PTR(-EBADFD);
1224 return &q->sock;
1225 }
1226 EXPORT_SYMBOL_GPL(macvtap_get_socket);
1227
1228 static int macvtap_device_event(struct notifier_block *unused,
1229 unsigned long event, void *ptr)
1230 {
1231 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1232 struct macvlan_dev *vlan;
1233 struct device *classdev;
1234 dev_t devt;
1235 int err;
1236
1237 if (dev->rtnl_link_ops != &macvtap_link_ops)
1238 return NOTIFY_DONE;
1239
1240 vlan = netdev_priv(dev);
1241
1242 switch (event) {
1243 case NETDEV_REGISTER:
1244 /* Create the device node here after the network device has
1245 * been registered but before register_netdevice has
1246 * finished running.
1247 */
1248 err = macvtap_get_minor(vlan);
1249 if (err)
1250 return notifier_from_errno(err);
1251
1252 devt = MKDEV(MAJOR(macvtap_major), vlan->minor);
1253 classdev = device_create(macvtap_class, &dev->dev, devt,
1254 dev, "tap%d", dev->ifindex);
1255 if (IS_ERR(classdev)) {
1256 macvtap_free_minor(vlan);
1257 return notifier_from_errno(PTR_ERR(classdev));
1258 }
1259 break;
1260 case NETDEV_UNREGISTER:
1261 devt = MKDEV(MAJOR(macvtap_major), vlan->minor);
1262 device_destroy(macvtap_class, devt);
1263 macvtap_free_minor(vlan);
1264 break;
1265 }
1266
1267 return NOTIFY_DONE;
1268 }
1269
1270 static struct notifier_block macvtap_notifier_block __read_mostly = {
1271 .notifier_call = macvtap_device_event,
1272 };
1273
1274 static int macvtap_init(void)
1275 {
1276 int err;
1277
1278 err = alloc_chrdev_region(&macvtap_major, 0,
1279 MACVTAP_NUM_DEVS, "macvtap");
1280 if (err)
1281 goto out1;
1282
1283 cdev_init(&macvtap_cdev, &macvtap_fops);
1284 err = cdev_add(&macvtap_cdev, macvtap_major, MACVTAP_NUM_DEVS);
1285 if (err)
1286 goto out2;
1287
1288 macvtap_class = class_create(THIS_MODULE, "macvtap");
1289 if (IS_ERR(macvtap_class)) {
1290 err = PTR_ERR(macvtap_class);
1291 goto out3;
1292 }
1293
1294 err = register_netdevice_notifier(&macvtap_notifier_block);
1295 if (err)
1296 goto out4;
1297
1298 err = macvlan_link_register(&macvtap_link_ops);
1299 if (err)
1300 goto out5;
1301
1302 return 0;
1303
1304 out5:
1305 unregister_netdevice_notifier(&macvtap_notifier_block);
1306 out4:
1307 class_unregister(macvtap_class);
1308 out3:
1309 cdev_del(&macvtap_cdev);
1310 out2:
1311 unregister_chrdev_region(macvtap_major, MACVTAP_NUM_DEVS);
1312 out1:
1313 return err;
1314 }
1315 module_init(macvtap_init);
1316
1317 static void macvtap_exit(void)
1318 {
1319 rtnl_link_unregister(&macvtap_link_ops);
1320 unregister_netdevice_notifier(&macvtap_notifier_block);
1321 class_unregister(macvtap_class);
1322 cdev_del(&macvtap_cdev);
1323 unregister_chrdev_region(macvtap_major, MACVTAP_NUM_DEVS);
1324 }
1325 module_exit(macvtap_exit);
1326
1327 MODULE_ALIAS_RTNL_LINK("macvtap");
1328 MODULE_AUTHOR("Arnd Bergmann <arnd@arndb.de>");
1329 MODULE_LICENSE("GPL");
This page took 0.136033 seconds and 5 git commands to generate.