[PATCH] misc ppc pt_regs fixes
[deliverable/linux.git] / drivers / net / mv643xx_eth.c
1 /*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
40
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
45
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
52
53 /* Static function declarations */
54 static void eth_port_uc_addr_get(struct net_device *dev,
55 unsigned char *MacAddr);
56 static void eth_port_set_multicast_list(struct net_device *);
57 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58 unsigned int queues);
59 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60 unsigned int queues);
61 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63 static int mv643xx_eth_open(struct net_device *);
64 static int mv643xx_eth_stop(struct net_device *);
65 static int mv643xx_eth_change_mtu(struct net_device *, int);
66 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
67 static void eth_port_init_mac_tables(unsigned int eth_port_num);
68 #ifdef MV643XX_NAPI
69 static int mv643xx_poll(struct net_device *dev, int *budget);
70 #endif
71 static int ethernet_phy_get(unsigned int eth_port_num);
72 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
73 static int ethernet_phy_detect(unsigned int eth_port_num);
74 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
75 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
76 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
77 static const struct ethtool_ops mv643xx_ethtool_ops;
78
79 static char mv643xx_driver_name[] = "mv643xx_eth";
80 static char mv643xx_driver_version[] = "1.0";
81
82 static void __iomem *mv643xx_eth_shared_base;
83
84 /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
85 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
86
87 static inline u32 mv_read(int offset)
88 {
89 void __iomem *reg_base;
90
91 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
92
93 return readl(reg_base + offset);
94 }
95
96 static inline void mv_write(int offset, u32 data)
97 {
98 void __iomem *reg_base;
99
100 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
101 writel(data, reg_base + offset);
102 }
103
104 /*
105 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
106 *
107 * Input : pointer to ethernet interface network device structure
108 * new mtu size
109 * Output : 0 upon success, -EINVAL upon failure
110 */
111 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
112 {
113 if ((new_mtu > 9500) || (new_mtu < 64))
114 return -EINVAL;
115
116 dev->mtu = new_mtu;
117 /*
118 * Stop then re-open the interface. This will allocate RX skb's with
119 * the new MTU.
120 * There is a possible danger that the open will not successed, due
121 * to memory is full, which might fail the open function.
122 */
123 if (netif_running(dev)) {
124 mv643xx_eth_stop(dev);
125 if (mv643xx_eth_open(dev))
126 printk(KERN_ERR
127 "%s: Fatal error on opening device\n",
128 dev->name);
129 }
130
131 return 0;
132 }
133
134 /*
135 * mv643xx_eth_rx_refill_descs
136 *
137 * Fills / refills RX queue on a certain gigabit ethernet port
138 *
139 * Input : pointer to ethernet interface network device structure
140 * Output : N/A
141 */
142 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
143 {
144 struct mv643xx_private *mp = netdev_priv(dev);
145 struct pkt_info pkt_info;
146 struct sk_buff *skb;
147 int unaligned;
148
149 while (mp->rx_desc_count < mp->rx_ring_size) {
150 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + ETH_DMA_ALIGN);
151 if (!skb)
152 break;
153 mp->rx_desc_count++;
154 unaligned = (u32)skb->data & (ETH_DMA_ALIGN - 1);
155 if (unaligned)
156 skb_reserve(skb, ETH_DMA_ALIGN - unaligned);
157 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
158 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
159 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
160 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
161 pkt_info.return_info = skb;
162 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
163 printk(KERN_ERR
164 "%s: Error allocating RX Ring\n", dev->name);
165 break;
166 }
167 skb_reserve(skb, ETH_HW_IP_ALIGN);
168 }
169 /*
170 * If RX ring is empty of SKB, set a timer to try allocating
171 * again at a later time.
172 */
173 if (mp->rx_desc_count == 0) {
174 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
175 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
176 add_timer(&mp->timeout);
177 }
178 }
179
180 /*
181 * mv643xx_eth_rx_refill_descs_timer_wrapper
182 *
183 * Timer routine to wake up RX queue filling task. This function is
184 * used only in case the RX queue is empty, and all alloc_skb has
185 * failed (due to out of memory event).
186 *
187 * Input : pointer to ethernet interface network device structure
188 * Output : N/A
189 */
190 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
191 {
192 mv643xx_eth_rx_refill_descs((struct net_device *)data);
193 }
194
195 /*
196 * mv643xx_eth_update_mac_address
197 *
198 * Update the MAC address of the port in the address table
199 *
200 * Input : pointer to ethernet interface network device structure
201 * Output : N/A
202 */
203 static void mv643xx_eth_update_mac_address(struct net_device *dev)
204 {
205 struct mv643xx_private *mp = netdev_priv(dev);
206 unsigned int port_num = mp->port_num;
207
208 eth_port_init_mac_tables(port_num);
209 eth_port_uc_addr_set(port_num, dev->dev_addr);
210 }
211
212 /*
213 * mv643xx_eth_set_rx_mode
214 *
215 * Change from promiscuos to regular rx mode
216 *
217 * Input : pointer to ethernet interface network device structure
218 * Output : N/A
219 */
220 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
221 {
222 struct mv643xx_private *mp = netdev_priv(dev);
223 u32 config_reg;
224
225 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
226 if (dev->flags & IFF_PROMISC)
227 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
228 else
229 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
230 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
231
232 eth_port_set_multicast_list(dev);
233 }
234
235 /*
236 * mv643xx_eth_set_mac_address
237 *
238 * Change the interface's mac address.
239 * No special hardware thing should be done because interface is always
240 * put in promiscuous mode.
241 *
242 * Input : pointer to ethernet interface network device structure and
243 * a pointer to the designated entry to be added to the cache.
244 * Output : zero upon success, negative upon failure
245 */
246 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
247 {
248 int i;
249
250 for (i = 0; i < 6; i++)
251 /* +2 is for the offset of the HW addr type */
252 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
253 mv643xx_eth_update_mac_address(dev);
254 return 0;
255 }
256
257 /*
258 * mv643xx_eth_tx_timeout
259 *
260 * Called upon a timeout on transmitting a packet
261 *
262 * Input : pointer to ethernet interface network device structure.
263 * Output : N/A
264 */
265 static void mv643xx_eth_tx_timeout(struct net_device *dev)
266 {
267 struct mv643xx_private *mp = netdev_priv(dev);
268
269 printk(KERN_INFO "%s: TX timeout ", dev->name);
270
271 /* Do the reset outside of interrupt context */
272 schedule_work(&mp->tx_timeout_task);
273 }
274
275 /*
276 * mv643xx_eth_tx_timeout_task
277 *
278 * Actual routine to reset the adapter when a timeout on Tx has occurred
279 */
280 static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
281 {
282 struct mv643xx_private *mp = netdev_priv(dev);
283
284 if (!netif_running(dev))
285 return;
286
287 netif_stop_queue(dev);
288
289 eth_port_reset(mp->port_num);
290 eth_port_start(dev);
291
292 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
293 netif_wake_queue(dev);
294 }
295
296 /**
297 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
298 *
299 * If force is non-zero, frees uncompleted descriptors as well
300 */
301 int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
302 {
303 struct mv643xx_private *mp = netdev_priv(dev);
304 struct eth_tx_desc *desc;
305 u32 cmd_sts;
306 struct sk_buff *skb;
307 unsigned long flags;
308 int tx_index;
309 dma_addr_t addr;
310 int count;
311 int released = 0;
312
313 while (mp->tx_desc_count > 0) {
314 spin_lock_irqsave(&mp->lock, flags);
315 tx_index = mp->tx_used_desc_q;
316 desc = &mp->p_tx_desc_area[tx_index];
317 cmd_sts = desc->cmd_sts;
318
319 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
320 spin_unlock_irqrestore(&mp->lock, flags);
321 return released;
322 }
323
324 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
325 mp->tx_desc_count--;
326
327 addr = desc->buf_ptr;
328 count = desc->byte_cnt;
329 skb = mp->tx_skb[tx_index];
330 if (skb)
331 mp->tx_skb[tx_index] = NULL;
332
333 spin_unlock_irqrestore(&mp->lock, flags);
334
335 if (cmd_sts & ETH_ERROR_SUMMARY) {
336 printk("%s: Error in TX\n", dev->name);
337 mp->stats.tx_errors++;
338 }
339
340 if (cmd_sts & ETH_TX_FIRST_DESC)
341 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
342 else
343 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
344
345 if (skb)
346 dev_kfree_skb_irq(skb);
347
348 released = 1;
349 }
350
351 return released;
352 }
353
354 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
355 {
356 struct mv643xx_private *mp = netdev_priv(dev);
357
358 if (mv643xx_eth_free_tx_descs(dev, 0) &&
359 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
360 netif_wake_queue(dev);
361 }
362
363 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
364 {
365 mv643xx_eth_free_tx_descs(dev, 1);
366 }
367
368 /*
369 * mv643xx_eth_receive
370 *
371 * This function is forward packets that are received from the port's
372 * queues toward kernel core or FastRoute them to another interface.
373 *
374 * Input : dev - a pointer to the required interface
375 * max - maximum number to receive (0 means unlimted)
376 *
377 * Output : number of served packets
378 */
379 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
380 {
381 struct mv643xx_private *mp = netdev_priv(dev);
382 struct net_device_stats *stats = &mp->stats;
383 unsigned int received_packets = 0;
384 struct sk_buff *skb;
385 struct pkt_info pkt_info;
386
387 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
388 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
389 DMA_FROM_DEVICE);
390 mp->rx_desc_count--;
391 received_packets++;
392
393 /*
394 * Update statistics.
395 * Note byte count includes 4 byte CRC count
396 */
397 stats->rx_packets++;
398 stats->rx_bytes += pkt_info.byte_cnt;
399 skb = pkt_info.return_info;
400 /*
401 * In case received a packet without first / last bits on OR
402 * the error summary bit is on, the packets needs to be dropeed.
403 */
404 if (((pkt_info.cmd_sts
405 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
406 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
407 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
408 stats->rx_dropped++;
409 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
410 ETH_RX_LAST_DESC)) !=
411 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
412 if (net_ratelimit())
413 printk(KERN_ERR
414 "%s: Received packet spread "
415 "on multiple descriptors\n",
416 dev->name);
417 }
418 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
419 stats->rx_errors++;
420
421 dev_kfree_skb_irq(skb);
422 } else {
423 /*
424 * The -4 is for the CRC in the trailer of the
425 * received packet
426 */
427 skb_put(skb, pkt_info.byte_cnt - 4);
428 skb->dev = dev;
429
430 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
431 skb->ip_summed = CHECKSUM_UNNECESSARY;
432 skb->csum = htons(
433 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
434 }
435 skb->protocol = eth_type_trans(skb, dev);
436 #ifdef MV643XX_NAPI
437 netif_receive_skb(skb);
438 #else
439 netif_rx(skb);
440 #endif
441 }
442 dev->last_rx = jiffies;
443 }
444 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
445
446 return received_packets;
447 }
448
449 /* Set the mv643xx port configuration register for the speed/duplex mode. */
450 static void mv643xx_eth_update_pscr(struct net_device *dev,
451 struct ethtool_cmd *ecmd)
452 {
453 struct mv643xx_private *mp = netdev_priv(dev);
454 int port_num = mp->port_num;
455 u32 o_pscr, n_pscr;
456 unsigned int queues;
457
458 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
459 n_pscr = o_pscr;
460
461 /* clear speed, duplex and rx buffer size fields */
462 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
463 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
464 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
465 MV643XX_ETH_MAX_RX_PACKET_MASK);
466
467 if (ecmd->duplex == DUPLEX_FULL)
468 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
469
470 if (ecmd->speed == SPEED_1000)
471 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
472 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
473 else {
474 if (ecmd->speed == SPEED_100)
475 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
476 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
477 }
478
479 if (n_pscr != o_pscr) {
480 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
481 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
482 n_pscr);
483 else {
484 queues = mv643xx_eth_port_disable_tx(port_num);
485
486 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
487 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
488 o_pscr);
489 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
490 n_pscr);
491 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
492 n_pscr);
493 if (queues)
494 mv643xx_eth_port_enable_tx(port_num, queues);
495 }
496 }
497 }
498
499 /*
500 * mv643xx_eth_int_handler
501 *
502 * Main interrupt handler for the gigbit ethernet ports
503 *
504 * Input : irq - irq number (not used)
505 * dev_id - a pointer to the required interface's data structure
506 * regs - not used
507 * Output : N/A
508 */
509
510 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
511 {
512 struct net_device *dev = (struct net_device *)dev_id;
513 struct mv643xx_private *mp = netdev_priv(dev);
514 u32 eth_int_cause, eth_int_cause_ext = 0;
515 unsigned int port_num = mp->port_num;
516
517 /* Read interrupt cause registers */
518 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
519 ETH_INT_UNMASK_ALL;
520 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
521 eth_int_cause_ext = mv_read(
522 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
523 ETH_INT_UNMASK_ALL_EXT;
524 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num),
525 ~eth_int_cause_ext);
526 }
527
528 /* PHY status changed */
529 if (eth_int_cause_ext & ETH_INT_CAUSE_PHY) {
530 struct ethtool_cmd cmd;
531
532 if (mii_link_ok(&mp->mii)) {
533 mii_ethtool_gset(&mp->mii, &cmd);
534 mv643xx_eth_update_pscr(dev, &cmd);
535 mv643xx_eth_port_enable_tx(port_num,
536 ETH_TX_QUEUES_ENABLED);
537 if (!netif_carrier_ok(dev)) {
538 netif_carrier_on(dev);
539 if (mp->tx_ring_size - mp->tx_desc_count >=
540 MAX_DESCS_PER_SKB)
541 netif_wake_queue(dev);
542 }
543 } else if (netif_carrier_ok(dev)) {
544 netif_stop_queue(dev);
545 netif_carrier_off(dev);
546 }
547 }
548
549 #ifdef MV643XX_NAPI
550 if (eth_int_cause & ETH_INT_CAUSE_RX) {
551 /* schedule the NAPI poll routine to maintain port */
552 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
553 ETH_INT_MASK_ALL);
554 /* wait for previous write to complete */
555 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
556
557 netif_rx_schedule(dev);
558 }
559 #else
560 if (eth_int_cause & ETH_INT_CAUSE_RX)
561 mv643xx_eth_receive_queue(dev, INT_MAX);
562 #endif
563 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
564 mv643xx_eth_free_completed_tx_descs(dev);
565
566 /*
567 * If no real interrupt occured, exit.
568 * This can happen when using gigE interrupt coalescing mechanism.
569 */
570 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
571 return IRQ_NONE;
572
573 return IRQ_HANDLED;
574 }
575
576 #ifdef MV643XX_COAL
577
578 /*
579 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
580 *
581 * DESCRIPTION:
582 * This routine sets the RX coalescing interrupt mechanism parameter.
583 * This parameter is a timeout counter, that counts in 64 t_clk
584 * chunks ; that when timeout event occurs a maskable interrupt
585 * occurs.
586 * The parameter is calculated using the tClk of the MV-643xx chip
587 * , and the required delay of the interrupt in usec.
588 *
589 * INPUT:
590 * unsigned int eth_port_num Ethernet port number
591 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
592 * unsigned int delay Delay in usec
593 *
594 * OUTPUT:
595 * Interrupt coalescing mechanism value is set in MV-643xx chip.
596 *
597 * RETURN:
598 * The interrupt coalescing value set in the gigE port.
599 *
600 */
601 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
602 unsigned int t_clk, unsigned int delay)
603 {
604 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
605
606 /* Set RX Coalescing mechanism */
607 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
608 ((coal & 0x3fff) << 8) |
609 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
610 & 0xffc000ff));
611
612 return coal;
613 }
614 #endif
615
616 /*
617 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
618 *
619 * DESCRIPTION:
620 * This routine sets the TX coalescing interrupt mechanism parameter.
621 * This parameter is a timeout counter, that counts in 64 t_clk
622 * chunks ; that when timeout event occurs a maskable interrupt
623 * occurs.
624 * The parameter is calculated using the t_cLK frequency of the
625 * MV-643xx chip and the required delay in the interrupt in uSec
626 *
627 * INPUT:
628 * unsigned int eth_port_num Ethernet port number
629 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
630 * unsigned int delay Delay in uSeconds
631 *
632 * OUTPUT:
633 * Interrupt coalescing mechanism value is set in MV-643xx chip.
634 *
635 * RETURN:
636 * The interrupt coalescing value set in the gigE port.
637 *
638 */
639 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
640 unsigned int t_clk, unsigned int delay)
641 {
642 unsigned int coal;
643 coal = ((t_clk / 1000000) * delay) / 64;
644 /* Set TX Coalescing mechanism */
645 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
646 coal << 4);
647 return coal;
648 }
649
650 /*
651 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
652 *
653 * DESCRIPTION:
654 * This function prepares a Rx chained list of descriptors and packet
655 * buffers in a form of a ring. The routine must be called after port
656 * initialization routine and before port start routine.
657 * The Ethernet SDMA engine uses CPU bus addresses to access the various
658 * devices in the system (i.e. DRAM). This function uses the ethernet
659 * struct 'virtual to physical' routine (set by the user) to set the ring
660 * with physical addresses.
661 *
662 * INPUT:
663 * struct mv643xx_private *mp Ethernet Port Control srtuct.
664 *
665 * OUTPUT:
666 * The routine updates the Ethernet port control struct with information
667 * regarding the Rx descriptors and buffers.
668 *
669 * RETURN:
670 * None.
671 */
672 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
673 {
674 volatile struct eth_rx_desc *p_rx_desc;
675 int rx_desc_num = mp->rx_ring_size;
676 int i;
677
678 /* initialize the next_desc_ptr links in the Rx descriptors ring */
679 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
680 for (i = 0; i < rx_desc_num; i++) {
681 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
682 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
683 }
684
685 /* Save Rx desc pointer to driver struct. */
686 mp->rx_curr_desc_q = 0;
687 mp->rx_used_desc_q = 0;
688
689 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
690 }
691
692 /*
693 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
694 *
695 * DESCRIPTION:
696 * This function prepares a Tx chained list of descriptors and packet
697 * buffers in a form of a ring. The routine must be called after port
698 * initialization routine and before port start routine.
699 * The Ethernet SDMA engine uses CPU bus addresses to access the various
700 * devices in the system (i.e. DRAM). This function uses the ethernet
701 * struct 'virtual to physical' routine (set by the user) to set the ring
702 * with physical addresses.
703 *
704 * INPUT:
705 * struct mv643xx_private *mp Ethernet Port Control srtuct.
706 *
707 * OUTPUT:
708 * The routine updates the Ethernet port control struct with information
709 * regarding the Tx descriptors and buffers.
710 *
711 * RETURN:
712 * None.
713 */
714 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
715 {
716 int tx_desc_num = mp->tx_ring_size;
717 struct eth_tx_desc *p_tx_desc;
718 int i;
719
720 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
721 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
722 for (i = 0; i < tx_desc_num; i++) {
723 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
724 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
725 }
726
727 mp->tx_curr_desc_q = 0;
728 mp->tx_used_desc_q = 0;
729
730 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
731 }
732
733 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
734 {
735 struct mv643xx_private *mp = netdev_priv(dev);
736 int err;
737
738 spin_lock_irq(&mp->lock);
739 err = mii_ethtool_sset(&mp->mii, cmd);
740 spin_unlock_irq(&mp->lock);
741
742 return err;
743 }
744
745 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
746 {
747 struct mv643xx_private *mp = netdev_priv(dev);
748 int err;
749
750 spin_lock_irq(&mp->lock);
751 err = mii_ethtool_gset(&mp->mii, cmd);
752 spin_unlock_irq(&mp->lock);
753
754 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
755 cmd->supported &= ~SUPPORTED_1000baseT_Half;
756 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
757
758 return err;
759 }
760
761 /*
762 * mv643xx_eth_open
763 *
764 * This function is called when openning the network device. The function
765 * should initialize all the hardware, initialize cyclic Rx/Tx
766 * descriptors chain and buffers and allocate an IRQ to the network
767 * device.
768 *
769 * Input : a pointer to the network device structure
770 *
771 * Output : zero of success , nonzero if fails.
772 */
773
774 static int mv643xx_eth_open(struct net_device *dev)
775 {
776 struct mv643xx_private *mp = netdev_priv(dev);
777 unsigned int port_num = mp->port_num;
778 unsigned int size;
779 int err;
780
781 err = request_irq(dev->irq, mv643xx_eth_int_handler,
782 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
783 if (err) {
784 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
785 port_num);
786 return -EAGAIN;
787 }
788
789 eth_port_init(mp);
790
791 memset(&mp->timeout, 0, sizeof(struct timer_list));
792 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
793 mp->timeout.data = (unsigned long)dev;
794
795 /* Allocate RX and TX skb rings */
796 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
797 GFP_KERNEL);
798 if (!mp->rx_skb) {
799 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
800 err = -ENOMEM;
801 goto out_free_irq;
802 }
803 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
804 GFP_KERNEL);
805 if (!mp->tx_skb) {
806 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
807 err = -ENOMEM;
808 goto out_free_rx_skb;
809 }
810
811 /* Allocate TX ring */
812 mp->tx_desc_count = 0;
813 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
814 mp->tx_desc_area_size = size;
815
816 if (mp->tx_sram_size) {
817 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
818 mp->tx_sram_size);
819 mp->tx_desc_dma = mp->tx_sram_addr;
820 } else
821 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
822 &mp->tx_desc_dma,
823 GFP_KERNEL);
824
825 if (!mp->p_tx_desc_area) {
826 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
827 dev->name, size);
828 err = -ENOMEM;
829 goto out_free_tx_skb;
830 }
831 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
832 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
833
834 ether_init_tx_desc_ring(mp);
835
836 /* Allocate RX ring */
837 mp->rx_desc_count = 0;
838 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
839 mp->rx_desc_area_size = size;
840
841 if (mp->rx_sram_size) {
842 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
843 mp->rx_sram_size);
844 mp->rx_desc_dma = mp->rx_sram_addr;
845 } else
846 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
847 &mp->rx_desc_dma,
848 GFP_KERNEL);
849
850 if (!mp->p_rx_desc_area) {
851 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
852 dev->name, size);
853 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
854 dev->name);
855 if (mp->rx_sram_size)
856 iounmap(mp->p_tx_desc_area);
857 else
858 dma_free_coherent(NULL, mp->tx_desc_area_size,
859 mp->p_tx_desc_area, mp->tx_desc_dma);
860 err = -ENOMEM;
861 goto out_free_tx_skb;
862 }
863 memset((void *)mp->p_rx_desc_area, 0, size);
864
865 ether_init_rx_desc_ring(mp);
866
867 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
868
869 /* Clear any pending ethernet port interrupts */
870 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
871 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
872
873 eth_port_start(dev);
874
875 /* Interrupt Coalescing */
876
877 #ifdef MV643XX_COAL
878 mp->rx_int_coal =
879 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
880 #endif
881
882 mp->tx_int_coal =
883 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
884
885 /* Unmask phy and link status changes interrupts */
886 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
887 ETH_INT_UNMASK_ALL_EXT);
888
889 /* Unmask RX buffer and TX end interrupt */
890 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
891
892 return 0;
893
894 out_free_tx_skb:
895 kfree(mp->tx_skb);
896 out_free_rx_skb:
897 kfree(mp->rx_skb);
898 out_free_irq:
899 free_irq(dev->irq, dev);
900
901 return err;
902 }
903
904 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
905 {
906 struct mv643xx_private *mp = netdev_priv(dev);
907
908 /* Stop Tx Queues */
909 mv643xx_eth_port_disable_tx(mp->port_num);
910
911 /* Free outstanding skb's on TX ring */
912 mv643xx_eth_free_all_tx_descs(dev);
913
914 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
915
916 /* Free TX ring */
917 if (mp->tx_sram_size)
918 iounmap(mp->p_tx_desc_area);
919 else
920 dma_free_coherent(NULL, mp->tx_desc_area_size,
921 mp->p_tx_desc_area, mp->tx_desc_dma);
922 }
923
924 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
925 {
926 struct mv643xx_private *mp = netdev_priv(dev);
927 unsigned int port_num = mp->port_num;
928 int curr;
929
930 /* Stop RX Queues */
931 mv643xx_eth_port_disable_rx(port_num);
932
933 /* Free preallocated skb's on RX rings */
934 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
935 if (mp->rx_skb[curr]) {
936 dev_kfree_skb(mp->rx_skb[curr]);
937 mp->rx_desc_count--;
938 }
939 }
940
941 if (mp->rx_desc_count)
942 printk(KERN_ERR
943 "%s: Error in freeing Rx Ring. %d skb's still"
944 " stuck in RX Ring - ignoring them\n", dev->name,
945 mp->rx_desc_count);
946 /* Free RX ring */
947 if (mp->rx_sram_size)
948 iounmap(mp->p_rx_desc_area);
949 else
950 dma_free_coherent(NULL, mp->rx_desc_area_size,
951 mp->p_rx_desc_area, mp->rx_desc_dma);
952 }
953
954 /*
955 * mv643xx_eth_stop
956 *
957 * This function is used when closing the network device.
958 * It updates the hardware,
959 * release all memory that holds buffers and descriptors and release the IRQ.
960 * Input : a pointer to the device structure
961 * Output : zero if success , nonzero if fails
962 */
963
964 static int mv643xx_eth_stop(struct net_device *dev)
965 {
966 struct mv643xx_private *mp = netdev_priv(dev);
967 unsigned int port_num = mp->port_num;
968
969 /* Mask all interrupts on ethernet port */
970 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
971 /* wait for previous write to complete */
972 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
973
974 #ifdef MV643XX_NAPI
975 netif_poll_disable(dev);
976 #endif
977 netif_carrier_off(dev);
978 netif_stop_queue(dev);
979
980 eth_port_reset(mp->port_num);
981
982 mv643xx_eth_free_tx_rings(dev);
983 mv643xx_eth_free_rx_rings(dev);
984
985 #ifdef MV643XX_NAPI
986 netif_poll_enable(dev);
987 #endif
988
989 free_irq(dev->irq, dev);
990
991 return 0;
992 }
993
994 #ifdef MV643XX_NAPI
995 /*
996 * mv643xx_poll
997 *
998 * This function is used in case of NAPI
999 */
1000 static int mv643xx_poll(struct net_device *dev, int *budget)
1001 {
1002 struct mv643xx_private *mp = netdev_priv(dev);
1003 int done = 1, orig_budget, work_done;
1004 unsigned int port_num = mp->port_num;
1005
1006 #ifdef MV643XX_TX_FAST_REFILL
1007 if (++mp->tx_clean_threshold > 5) {
1008 mv643xx_eth_free_completed_tx_descs(dev);
1009 mp->tx_clean_threshold = 0;
1010 }
1011 #endif
1012
1013 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1014 != (u32) mp->rx_used_desc_q) {
1015 orig_budget = *budget;
1016 if (orig_budget > dev->quota)
1017 orig_budget = dev->quota;
1018 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1019 *budget -= work_done;
1020 dev->quota -= work_done;
1021 if (work_done >= orig_budget)
1022 done = 0;
1023 }
1024
1025 if (done) {
1026 netif_rx_complete(dev);
1027 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1028 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1029 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1030 ETH_INT_UNMASK_ALL);
1031 }
1032
1033 return done ? 0 : 1;
1034 }
1035 #endif
1036
1037 /**
1038 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1039 *
1040 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1041 * This helper function detects that case.
1042 */
1043
1044 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1045 {
1046 unsigned int frag;
1047 skb_frag_t *fragp;
1048
1049 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1050 fragp = &skb_shinfo(skb)->frags[frag];
1051 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1052 return 1;
1053 }
1054 return 0;
1055 }
1056
1057 /**
1058 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1059 */
1060 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1061 {
1062 int tx_desc_curr;
1063
1064 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1065
1066 tx_desc_curr = mp->tx_curr_desc_q;
1067 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1068
1069 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1070
1071 return tx_desc_curr;
1072 }
1073
1074 /**
1075 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1076 *
1077 * Ensure the data for each fragment to be transmitted is mapped properly,
1078 * then fill in descriptors in the tx hw queue.
1079 */
1080 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1081 struct sk_buff *skb)
1082 {
1083 int frag;
1084 int tx_index;
1085 struct eth_tx_desc *desc;
1086
1087 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1088 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1089
1090 tx_index = eth_alloc_tx_desc_index(mp);
1091 desc = &mp->p_tx_desc_area[tx_index];
1092
1093 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1094 /* Last Frag enables interrupt and frees the skb */
1095 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1096 desc->cmd_sts |= ETH_ZERO_PADDING |
1097 ETH_TX_LAST_DESC |
1098 ETH_TX_ENABLE_INTERRUPT;
1099 mp->tx_skb[tx_index] = skb;
1100 } else
1101 mp->tx_skb[tx_index] = 0;
1102
1103 desc = &mp->p_tx_desc_area[tx_index];
1104 desc->l4i_chk = 0;
1105 desc->byte_cnt = this_frag->size;
1106 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1107 this_frag->page_offset,
1108 this_frag->size,
1109 DMA_TO_DEVICE);
1110 }
1111 }
1112
1113 /**
1114 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1115 *
1116 * Ensure the data for an skb to be transmitted is mapped properly,
1117 * then fill in descriptors in the tx hw queue and start the hardware.
1118 */
1119 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1120 struct sk_buff *skb)
1121 {
1122 int tx_index;
1123 struct eth_tx_desc *desc;
1124 u32 cmd_sts;
1125 int length;
1126 int nr_frags = skb_shinfo(skb)->nr_frags;
1127
1128 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1129
1130 tx_index = eth_alloc_tx_desc_index(mp);
1131 desc = &mp->p_tx_desc_area[tx_index];
1132
1133 if (nr_frags) {
1134 eth_tx_fill_frag_descs(mp, skb);
1135
1136 length = skb_headlen(skb);
1137 mp->tx_skb[tx_index] = 0;
1138 } else {
1139 cmd_sts |= ETH_ZERO_PADDING |
1140 ETH_TX_LAST_DESC |
1141 ETH_TX_ENABLE_INTERRUPT;
1142 length = skb->len;
1143 mp->tx_skb[tx_index] = skb;
1144 }
1145
1146 desc->byte_cnt = length;
1147 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1148
1149 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1150 BUG_ON(skb->protocol != ETH_P_IP);
1151
1152 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1153 ETH_GEN_IP_V_4_CHECKSUM |
1154 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1155
1156 switch (skb->nh.iph->protocol) {
1157 case IPPROTO_UDP:
1158 cmd_sts |= ETH_UDP_FRAME;
1159 desc->l4i_chk = skb->h.uh->check;
1160 break;
1161 case IPPROTO_TCP:
1162 desc->l4i_chk = skb->h.th->check;
1163 break;
1164 default:
1165 BUG();
1166 }
1167 } else {
1168 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1169 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1170 desc->l4i_chk = 0;
1171 }
1172
1173 /* ensure all other descriptors are written before first cmd_sts */
1174 wmb();
1175 desc->cmd_sts = cmd_sts;
1176
1177 /* ensure all descriptors are written before poking hardware */
1178 wmb();
1179 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1180
1181 mp->tx_desc_count += nr_frags + 1;
1182 }
1183
1184 /**
1185 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1186 *
1187 */
1188 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1189 {
1190 struct mv643xx_private *mp = netdev_priv(dev);
1191 struct net_device_stats *stats = &mp->stats;
1192 unsigned long flags;
1193
1194 BUG_ON(netif_queue_stopped(dev));
1195 BUG_ON(skb == NULL);
1196
1197 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1198 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1199 netif_stop_queue(dev);
1200 return 1;
1201 }
1202
1203 if (has_tiny_unaligned_frags(skb)) {
1204 if (__skb_linearize(skb)) {
1205 stats->tx_dropped++;
1206 printk(KERN_DEBUG "%s: failed to linearize tiny "
1207 "unaligned fragment\n", dev->name);
1208 return 1;
1209 }
1210 }
1211
1212 spin_lock_irqsave(&mp->lock, flags);
1213
1214 eth_tx_submit_descs_for_skb(mp, skb);
1215 stats->tx_bytes = skb->len;
1216 stats->tx_packets++;
1217 dev->trans_start = jiffies;
1218
1219 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1220 netif_stop_queue(dev);
1221
1222 spin_unlock_irqrestore(&mp->lock, flags);
1223
1224 return 0; /* success */
1225 }
1226
1227 /*
1228 * mv643xx_eth_get_stats
1229 *
1230 * Returns a pointer to the interface statistics.
1231 *
1232 * Input : dev - a pointer to the required interface
1233 *
1234 * Output : a pointer to the interface's statistics
1235 */
1236
1237 static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1238 {
1239 struct mv643xx_private *mp = netdev_priv(dev);
1240
1241 return &mp->stats;
1242 }
1243
1244 #ifdef CONFIG_NET_POLL_CONTROLLER
1245 static void mv643xx_netpoll(struct net_device *netdev)
1246 {
1247 struct mv643xx_private *mp = netdev_priv(netdev);
1248 int port_num = mp->port_num;
1249
1250 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1251 /* wait for previous write to complete */
1252 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1253
1254 mv643xx_eth_int_handler(netdev->irq, netdev);
1255
1256 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1257 }
1258 #endif
1259
1260 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1261 int speed, int duplex,
1262 struct ethtool_cmd *cmd)
1263 {
1264 struct mv643xx_private *mp = netdev_priv(dev);
1265
1266 memset(cmd, 0, sizeof(*cmd));
1267
1268 cmd->port = PORT_MII;
1269 cmd->transceiver = XCVR_INTERNAL;
1270 cmd->phy_address = phy_address;
1271
1272 if (speed == 0) {
1273 cmd->autoneg = AUTONEG_ENABLE;
1274 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1275 cmd->speed = SPEED_100;
1276 cmd->advertising = ADVERTISED_10baseT_Half |
1277 ADVERTISED_10baseT_Full |
1278 ADVERTISED_100baseT_Half |
1279 ADVERTISED_100baseT_Full;
1280 if (mp->mii.supports_gmii)
1281 cmd->advertising |= ADVERTISED_1000baseT_Full;
1282 } else {
1283 cmd->autoneg = AUTONEG_DISABLE;
1284 cmd->speed = speed;
1285 cmd->duplex = duplex;
1286 }
1287 }
1288
1289 /*/
1290 * mv643xx_eth_probe
1291 *
1292 * First function called after registering the network device.
1293 * It's purpose is to initialize the device as an ethernet device,
1294 * fill the ethernet device structure with pointers * to functions,
1295 * and set the MAC address of the interface
1296 *
1297 * Input : struct device *
1298 * Output : -ENOMEM if failed , 0 if success
1299 */
1300 static int mv643xx_eth_probe(struct platform_device *pdev)
1301 {
1302 struct mv643xx_eth_platform_data *pd;
1303 int port_num = pdev->id;
1304 struct mv643xx_private *mp;
1305 struct net_device *dev;
1306 u8 *p;
1307 struct resource *res;
1308 int err;
1309 struct ethtool_cmd cmd;
1310 int duplex = DUPLEX_HALF;
1311 int speed = 0; /* default to auto-negotiation */
1312
1313 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1314 if (!dev)
1315 return -ENOMEM;
1316
1317 platform_set_drvdata(pdev, dev);
1318
1319 mp = netdev_priv(dev);
1320
1321 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1322 BUG_ON(!res);
1323 dev->irq = res->start;
1324
1325 mp->port_num = port_num;
1326
1327 dev->open = mv643xx_eth_open;
1328 dev->stop = mv643xx_eth_stop;
1329 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1330 dev->get_stats = mv643xx_eth_get_stats;
1331 dev->set_mac_address = mv643xx_eth_set_mac_address;
1332 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1333
1334 /* No need to Tx Timeout */
1335 dev->tx_timeout = mv643xx_eth_tx_timeout;
1336 #ifdef MV643XX_NAPI
1337 dev->poll = mv643xx_poll;
1338 dev->weight = 64;
1339 #endif
1340
1341 #ifdef CONFIG_NET_POLL_CONTROLLER
1342 dev->poll_controller = mv643xx_netpoll;
1343 #endif
1344
1345 dev->watchdog_timeo = 2 * HZ;
1346 dev->tx_queue_len = mp->tx_ring_size;
1347 dev->base_addr = 0;
1348 dev->change_mtu = mv643xx_eth_change_mtu;
1349 dev->do_ioctl = mv643xx_eth_do_ioctl;
1350 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1351
1352 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1353 #ifdef MAX_SKB_FRAGS
1354 /*
1355 * Zero copy can only work if we use Discovery II memory. Else, we will
1356 * have to map the buffers to ISA memory which is only 16 MB
1357 */
1358 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1359 #endif
1360 #endif
1361
1362 /* Configure the timeout task */
1363 INIT_WORK(&mp->tx_timeout_task,
1364 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1365
1366 spin_lock_init(&mp->lock);
1367
1368 /* set default config values */
1369 eth_port_uc_addr_get(dev, dev->dev_addr);
1370 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1371 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1372
1373 pd = pdev->dev.platform_data;
1374 if (pd) {
1375 if (pd->mac_addr)
1376 memcpy(dev->dev_addr, pd->mac_addr, 6);
1377
1378 if (pd->phy_addr || pd->force_phy_addr)
1379 ethernet_phy_set(port_num, pd->phy_addr);
1380
1381 if (pd->rx_queue_size)
1382 mp->rx_ring_size = pd->rx_queue_size;
1383
1384 if (pd->tx_queue_size)
1385 mp->tx_ring_size = pd->tx_queue_size;
1386
1387 if (pd->tx_sram_size) {
1388 mp->tx_sram_size = pd->tx_sram_size;
1389 mp->tx_sram_addr = pd->tx_sram_addr;
1390 }
1391
1392 if (pd->rx_sram_size) {
1393 mp->rx_sram_size = pd->rx_sram_size;
1394 mp->rx_sram_addr = pd->rx_sram_addr;
1395 }
1396
1397 duplex = pd->duplex;
1398 speed = pd->speed;
1399 }
1400
1401 /* Hook up MII support for ethtool */
1402 mp->mii.dev = dev;
1403 mp->mii.mdio_read = mv643xx_mdio_read;
1404 mp->mii.mdio_write = mv643xx_mdio_write;
1405 mp->mii.phy_id = ethernet_phy_get(port_num);
1406 mp->mii.phy_id_mask = 0x3f;
1407 mp->mii.reg_num_mask = 0x1f;
1408
1409 err = ethernet_phy_detect(port_num);
1410 if (err) {
1411 pr_debug("MV643xx ethernet port %d: "
1412 "No PHY detected at addr %d\n",
1413 port_num, ethernet_phy_get(port_num));
1414 goto out;
1415 }
1416
1417 ethernet_phy_reset(port_num);
1418 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1419 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1420 mv643xx_eth_update_pscr(dev, &cmd);
1421 mv643xx_set_settings(dev, &cmd);
1422
1423 SET_MODULE_OWNER(dev);
1424 SET_NETDEV_DEV(dev, &pdev->dev);
1425 err = register_netdev(dev);
1426 if (err)
1427 goto out;
1428
1429 p = dev->dev_addr;
1430 printk(KERN_NOTICE
1431 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1432 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1433
1434 if (dev->features & NETIF_F_SG)
1435 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1436
1437 if (dev->features & NETIF_F_IP_CSUM)
1438 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1439 dev->name);
1440
1441 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1442 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1443 #endif
1444
1445 #ifdef MV643XX_COAL
1446 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1447 dev->name);
1448 #endif
1449
1450 #ifdef MV643XX_NAPI
1451 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1452 #endif
1453
1454 if (mp->tx_sram_size > 0)
1455 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1456
1457 return 0;
1458
1459 out:
1460 free_netdev(dev);
1461
1462 return err;
1463 }
1464
1465 static int mv643xx_eth_remove(struct platform_device *pdev)
1466 {
1467 struct net_device *dev = platform_get_drvdata(pdev);
1468
1469 unregister_netdev(dev);
1470 flush_scheduled_work();
1471
1472 free_netdev(dev);
1473 platform_set_drvdata(pdev, NULL);
1474 return 0;
1475 }
1476
1477 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1478 {
1479 struct resource *res;
1480
1481 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1482
1483 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1484 if (res == NULL)
1485 return -ENODEV;
1486
1487 mv643xx_eth_shared_base = ioremap(res->start,
1488 MV643XX_ETH_SHARED_REGS_SIZE);
1489 if (mv643xx_eth_shared_base == NULL)
1490 return -ENOMEM;
1491
1492 return 0;
1493
1494 }
1495
1496 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1497 {
1498 iounmap(mv643xx_eth_shared_base);
1499 mv643xx_eth_shared_base = NULL;
1500
1501 return 0;
1502 }
1503
1504 static struct platform_driver mv643xx_eth_driver = {
1505 .probe = mv643xx_eth_probe,
1506 .remove = mv643xx_eth_remove,
1507 .driver = {
1508 .name = MV643XX_ETH_NAME,
1509 },
1510 };
1511
1512 static struct platform_driver mv643xx_eth_shared_driver = {
1513 .probe = mv643xx_eth_shared_probe,
1514 .remove = mv643xx_eth_shared_remove,
1515 .driver = {
1516 .name = MV643XX_ETH_SHARED_NAME,
1517 },
1518 };
1519
1520 /*
1521 * mv643xx_init_module
1522 *
1523 * Registers the network drivers into the Linux kernel
1524 *
1525 * Input : N/A
1526 *
1527 * Output : N/A
1528 */
1529 static int __init mv643xx_init_module(void)
1530 {
1531 int rc;
1532
1533 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1534 if (!rc) {
1535 rc = platform_driver_register(&mv643xx_eth_driver);
1536 if (rc)
1537 platform_driver_unregister(&mv643xx_eth_shared_driver);
1538 }
1539 return rc;
1540 }
1541
1542 /*
1543 * mv643xx_cleanup_module
1544 *
1545 * Registers the network drivers into the Linux kernel
1546 *
1547 * Input : N/A
1548 *
1549 * Output : N/A
1550 */
1551 static void __exit mv643xx_cleanup_module(void)
1552 {
1553 platform_driver_unregister(&mv643xx_eth_driver);
1554 platform_driver_unregister(&mv643xx_eth_shared_driver);
1555 }
1556
1557 module_init(mv643xx_init_module);
1558 module_exit(mv643xx_cleanup_module);
1559
1560 MODULE_LICENSE("GPL");
1561 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1562 " and Dale Farnsworth");
1563 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1564
1565 /*
1566 * The second part is the low level driver of the gigE ethernet ports.
1567 */
1568
1569 /*
1570 * Marvell's Gigabit Ethernet controller low level driver
1571 *
1572 * DESCRIPTION:
1573 * This file introduce low level API to Marvell's Gigabit Ethernet
1574 * controller. This Gigabit Ethernet Controller driver API controls
1575 * 1) Operations (i.e. port init, start, reset etc').
1576 * 2) Data flow (i.e. port send, receive etc').
1577 * Each Gigabit Ethernet port is controlled via
1578 * struct mv643xx_private.
1579 * This struct includes user configuration information as well as
1580 * driver internal data needed for its operations.
1581 *
1582 * Supported Features:
1583 * - This low level driver is OS independent. Allocating memory for
1584 * the descriptor rings and buffers are not within the scope of
1585 * this driver.
1586 * - The user is free from Rx/Tx queue managing.
1587 * - This low level driver introduce functionality API that enable
1588 * the to operate Marvell's Gigabit Ethernet Controller in a
1589 * convenient way.
1590 * - Simple Gigabit Ethernet port operation API.
1591 * - Simple Gigabit Ethernet port data flow API.
1592 * - Data flow and operation API support per queue functionality.
1593 * - Support cached descriptors for better performance.
1594 * - Enable access to all four DRAM banks and internal SRAM memory
1595 * spaces.
1596 * - PHY access and control API.
1597 * - Port control register configuration API.
1598 * - Full control over Unicast and Multicast MAC configurations.
1599 *
1600 * Operation flow:
1601 *
1602 * Initialization phase
1603 * This phase complete the initialization of the the
1604 * mv643xx_private struct.
1605 * User information regarding port configuration has to be set
1606 * prior to calling the port initialization routine.
1607 *
1608 * In this phase any port Tx/Rx activity is halted, MIB counters
1609 * are cleared, PHY address is set according to user parameter and
1610 * access to DRAM and internal SRAM memory spaces.
1611 *
1612 * Driver ring initialization
1613 * Allocating memory for the descriptor rings and buffers is not
1614 * within the scope of this driver. Thus, the user is required to
1615 * allocate memory for the descriptors ring and buffers. Those
1616 * memory parameters are used by the Rx and Tx ring initialization
1617 * routines in order to curve the descriptor linked list in a form
1618 * of a ring.
1619 * Note: Pay special attention to alignment issues when using
1620 * cached descriptors/buffers. In this phase the driver store
1621 * information in the mv643xx_private struct regarding each queue
1622 * ring.
1623 *
1624 * Driver start
1625 * This phase prepares the Ethernet port for Rx and Tx activity.
1626 * It uses the information stored in the mv643xx_private struct to
1627 * initialize the various port registers.
1628 *
1629 * Data flow:
1630 * All packet references to/from the driver are done using
1631 * struct pkt_info.
1632 * This struct is a unified struct used with Rx and Tx operations.
1633 * This way the user is not required to be familiar with neither
1634 * Tx nor Rx descriptors structures.
1635 * The driver's descriptors rings are management by indexes.
1636 * Those indexes controls the ring resources and used to indicate
1637 * a SW resource error:
1638 * 'current'
1639 * This index points to the current available resource for use. For
1640 * example in Rx process this index will point to the descriptor
1641 * that will be passed to the user upon calling the receive
1642 * routine. In Tx process, this index will point to the descriptor
1643 * that will be assigned with the user packet info and transmitted.
1644 * 'used'
1645 * This index points to the descriptor that need to restore its
1646 * resources. For example in Rx process, using the Rx buffer return
1647 * API will attach the buffer returned in packet info to the
1648 * descriptor pointed by 'used'. In Tx process, using the Tx
1649 * descriptor return will merely return the user packet info with
1650 * the command status of the transmitted buffer pointed by the
1651 * 'used' index. Nevertheless, it is essential to use this routine
1652 * to update the 'used' index.
1653 * 'first'
1654 * This index supports Tx Scatter-Gather. It points to the first
1655 * descriptor of a packet assembled of multiple buffers. For
1656 * example when in middle of Such packet we have a Tx resource
1657 * error the 'curr' index get the value of 'first' to indicate
1658 * that the ring returned to its state before trying to transmit
1659 * this packet.
1660 *
1661 * Receive operation:
1662 * The eth_port_receive API set the packet information struct,
1663 * passed by the caller, with received information from the
1664 * 'current' SDMA descriptor.
1665 * It is the user responsibility to return this resource back
1666 * to the Rx descriptor ring to enable the reuse of this source.
1667 * Return Rx resource is done using the eth_rx_return_buff API.
1668 *
1669 * Prior to calling the initialization routine eth_port_init() the user
1670 * must set the following fields under mv643xx_private struct:
1671 * port_num User Ethernet port number.
1672 * port_config User port configuration value.
1673 * port_config_extend User port config extend value.
1674 * port_sdma_config User port SDMA config value.
1675 * port_serial_control User port serial control value.
1676 *
1677 * This driver data flow is done using the struct pkt_info which
1678 * is a unified struct for Rx and Tx operations:
1679 *
1680 * byte_cnt Tx/Rx descriptor buffer byte count.
1681 * l4i_chk CPU provided TCP Checksum. For Tx operation
1682 * only.
1683 * cmd_sts Tx/Rx descriptor command status.
1684 * buf_ptr Tx/Rx descriptor buffer pointer.
1685 * return_info Tx/Rx user resource return information.
1686 */
1687
1688 /* PHY routines */
1689 static int ethernet_phy_get(unsigned int eth_port_num);
1690 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1691
1692 /* Ethernet Port routines */
1693 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1694
1695 /*
1696 * eth_port_init - Initialize the Ethernet port driver
1697 *
1698 * DESCRIPTION:
1699 * This function prepares the ethernet port to start its activity:
1700 * 1) Completes the ethernet port driver struct initialization toward port
1701 * start routine.
1702 * 2) Resets the device to a quiescent state in case of warm reboot.
1703 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1704 * 4) Clean MAC tables. The reset status of those tables is unknown.
1705 * 5) Set PHY address.
1706 * Note: Call this routine prior to eth_port_start routine and after
1707 * setting user values in the user fields of Ethernet port control
1708 * struct.
1709 *
1710 * INPUT:
1711 * struct mv643xx_private *mp Ethernet port control struct
1712 *
1713 * OUTPUT:
1714 * See description.
1715 *
1716 * RETURN:
1717 * None.
1718 */
1719 static void eth_port_init(struct mv643xx_private *mp)
1720 {
1721 mp->rx_resource_err = 0;
1722
1723 eth_port_reset(mp->port_num);
1724
1725 eth_port_init_mac_tables(mp->port_num);
1726 }
1727
1728 /*
1729 * eth_port_start - Start the Ethernet port activity.
1730 *
1731 * DESCRIPTION:
1732 * This routine prepares the Ethernet port for Rx and Tx activity:
1733 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1734 * has been initialized a descriptor's ring (using
1735 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1736 * 2. Initialize and enable the Ethernet configuration port by writing to
1737 * the port's configuration and command registers.
1738 * 3. Initialize and enable the SDMA by writing to the SDMA's
1739 * configuration and command registers. After completing these steps,
1740 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1741 *
1742 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1743 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1744 * and ether_init_rx_desc_ring for Rx queues).
1745 *
1746 * INPUT:
1747 * dev - a pointer to the required interface
1748 *
1749 * OUTPUT:
1750 * Ethernet port is ready to receive and transmit.
1751 *
1752 * RETURN:
1753 * None.
1754 */
1755 static void eth_port_start(struct net_device *dev)
1756 {
1757 struct mv643xx_private *mp = netdev_priv(dev);
1758 unsigned int port_num = mp->port_num;
1759 int tx_curr_desc, rx_curr_desc;
1760 u32 pscr;
1761 struct ethtool_cmd ethtool_cmd;
1762
1763 /* Assignment of Tx CTRP of given queue */
1764 tx_curr_desc = mp->tx_curr_desc_q;
1765 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1766 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1767
1768 /* Assignment of Rx CRDP of given queue */
1769 rx_curr_desc = mp->rx_curr_desc_q;
1770 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1771 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1772
1773 /* Add the assigned Ethernet address to the port's address table */
1774 eth_port_uc_addr_set(port_num, dev->dev_addr);
1775
1776 /* Assign port configuration and command. */
1777 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1778 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1779
1780 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1781 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1782
1783 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
1784
1785 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
1786 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1787
1788 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1789 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1790 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1791 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1792 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1793
1794 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1795
1796 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1797 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1798
1799 /* Assign port SDMA configuration */
1800 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1801 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1802
1803 /* Enable port Rx. */
1804 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1805
1806 /* Disable port bandwidth limits by clearing MTU register */
1807 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1808
1809 /* save phy settings across reset */
1810 mv643xx_get_settings(dev, &ethtool_cmd);
1811 ethernet_phy_reset(mp->port_num);
1812 mv643xx_set_settings(dev, &ethtool_cmd);
1813 }
1814
1815 /*
1816 * eth_port_uc_addr_set - This function Set the port Unicast address.
1817 *
1818 * DESCRIPTION:
1819 * This function Set the port Ethernet MAC address.
1820 *
1821 * INPUT:
1822 * unsigned int eth_port_num Port number.
1823 * char * p_addr Address to be set
1824 *
1825 * OUTPUT:
1826 * Set MAC address low and high registers. also calls
1827 * eth_port_set_filter_table_entry() to set the unicast
1828 * table with the proper information.
1829 *
1830 * RETURN:
1831 * N/A.
1832 *
1833 */
1834 static void eth_port_uc_addr_set(unsigned int eth_port_num,
1835 unsigned char *p_addr)
1836 {
1837 unsigned int mac_h;
1838 unsigned int mac_l;
1839 int table;
1840
1841 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1842 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1843 (p_addr[3] << 0);
1844
1845 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1846 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1847
1848 /* Accept frames of this address */
1849 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(eth_port_num);
1850 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1851 }
1852
1853 /*
1854 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1855 * (MAC address) from the ethernet hw registers.
1856 *
1857 * DESCRIPTION:
1858 * This function retrieves the port Ethernet MAC address.
1859 *
1860 * INPUT:
1861 * unsigned int eth_port_num Port number.
1862 * char *MacAddr pointer where the MAC address is stored
1863 *
1864 * OUTPUT:
1865 * Copy the MAC address to the location pointed to by MacAddr
1866 *
1867 * RETURN:
1868 * N/A.
1869 *
1870 */
1871 static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1872 {
1873 struct mv643xx_private *mp = netdev_priv(dev);
1874 unsigned int mac_h;
1875 unsigned int mac_l;
1876
1877 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1878 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1879
1880 p_addr[0] = (mac_h >> 24) & 0xff;
1881 p_addr[1] = (mac_h >> 16) & 0xff;
1882 p_addr[2] = (mac_h >> 8) & 0xff;
1883 p_addr[3] = mac_h & 0xff;
1884 p_addr[4] = (mac_l >> 8) & 0xff;
1885 p_addr[5] = mac_l & 0xff;
1886 }
1887
1888 /*
1889 * The entries in each table are indexed by a hash of a packet's MAC
1890 * address. One bit in each entry determines whether the packet is
1891 * accepted. There are 4 entries (each 8 bits wide) in each register
1892 * of the table. The bits in each entry are defined as follows:
1893 * 0 Accept=1, Drop=0
1894 * 3-1 Queue (ETH_Q0=0)
1895 * 7-4 Reserved = 0;
1896 */
1897 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1898 {
1899 unsigned int table_reg;
1900 unsigned int tbl_offset;
1901 unsigned int reg_offset;
1902
1903 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1904 reg_offset = entry % 4; /* Entry offset within the register */
1905
1906 /* Set "accepts frame bit" at specified table entry */
1907 table_reg = mv_read(table + tbl_offset);
1908 table_reg |= 0x01 << (8 * reg_offset);
1909 mv_write(table + tbl_offset, table_reg);
1910 }
1911
1912 /*
1913 * eth_port_mc_addr - Multicast address settings.
1914 *
1915 * The MV device supports multicast using two tables:
1916 * 1) Special Multicast Table for MAC addresses of the form
1917 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1918 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1919 * Table entries in the DA-Filter table.
1920 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1921 * is used as an index to the Other Multicast Table entries in the
1922 * DA-Filter table. This function calculates the CRC-8bit value.
1923 * In either case, eth_port_set_filter_table_entry() is then called
1924 * to set to set the actual table entry.
1925 */
1926 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1927 {
1928 unsigned int mac_h;
1929 unsigned int mac_l;
1930 unsigned char crc_result = 0;
1931 int table;
1932 int mac_array[48];
1933 int crc[8];
1934 int i;
1935
1936 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1937 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1938 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1939 (eth_port_num);
1940 eth_port_set_filter_table_entry(table, p_addr[5]);
1941 return;
1942 }
1943
1944 /* Calculate CRC-8 out of the given address */
1945 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1946 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1947 (p_addr[4] << 8) | (p_addr[5] << 0);
1948
1949 for (i = 0; i < 32; i++)
1950 mac_array[i] = (mac_l >> i) & 0x1;
1951 for (i = 32; i < 48; i++)
1952 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1953
1954 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1955 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1956 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1957 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1958 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1959
1960 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1961 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1962 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1963 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1964 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1965 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1966 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1967
1968 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1969 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1970 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1971 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1972 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
1973 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
1974
1975 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1976 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1977 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1978 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1979 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
1980 mac_array[3] ^ mac_array[2] ^ mac_array[1];
1981
1982 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1983 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1984 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1985 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1986 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
1987 mac_array[3] ^ mac_array[2];
1988
1989 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1990 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1991 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
1992 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
1993 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
1994 mac_array[4] ^ mac_array[3];
1995
1996 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
1997 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
1998 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
1999 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2000 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2001 mac_array[4];
2002
2003 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2004 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2005 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2006 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2007 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2008
2009 for (i = 0; i < 8; i++)
2010 crc_result = crc_result | (crc[i] << i);
2011
2012 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2013 eth_port_set_filter_table_entry(table, crc_result);
2014 }
2015
2016 /*
2017 * Set the entire multicast list based on dev->mc_list.
2018 */
2019 static void eth_port_set_multicast_list(struct net_device *dev)
2020 {
2021
2022 struct dev_mc_list *mc_list;
2023 int i;
2024 int table_index;
2025 struct mv643xx_private *mp = netdev_priv(dev);
2026 unsigned int eth_port_num = mp->port_num;
2027
2028 /* If the device is in promiscuous mode or in all multicast mode,
2029 * we will fully populate both multicast tables with accept.
2030 * This is guaranteed to yield a match on all multicast addresses...
2031 */
2032 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2033 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2034 /* Set all entries in DA filter special multicast
2035 * table (Ex_dFSMT)
2036 * Set for ETH_Q0 for now
2037 * Bits
2038 * 0 Accept=1, Drop=0
2039 * 3-1 Queue ETH_Q0=0
2040 * 7-4 Reserved = 0;
2041 */
2042 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2043
2044 /* Set all entries in DA filter other multicast
2045 * table (Ex_dFOMT)
2046 * Set for ETH_Q0 for now
2047 * Bits
2048 * 0 Accept=1, Drop=0
2049 * 3-1 Queue ETH_Q0=0
2050 * 7-4 Reserved = 0;
2051 */
2052 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2053 }
2054 return;
2055 }
2056
2057 /* We will clear out multicast tables every time we get the list.
2058 * Then add the entire new list...
2059 */
2060 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2061 /* Clear DA filter special multicast table (Ex_dFSMT) */
2062 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2063 (eth_port_num) + table_index, 0);
2064
2065 /* Clear DA filter other multicast table (Ex_dFOMT) */
2066 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2067 (eth_port_num) + table_index, 0);
2068 }
2069
2070 /* Get pointer to net_device multicast list and add each one... */
2071 for (i = 0, mc_list = dev->mc_list;
2072 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2073 i++, mc_list = mc_list->next)
2074 if (mc_list->dmi_addrlen == 6)
2075 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2076 }
2077
2078 /*
2079 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2080 *
2081 * DESCRIPTION:
2082 * Go through all the DA filter tables (Unicast, Special Multicast &
2083 * Other Multicast) and set each entry to 0.
2084 *
2085 * INPUT:
2086 * unsigned int eth_port_num Ethernet Port number.
2087 *
2088 * OUTPUT:
2089 * Multicast and Unicast packets are rejected.
2090 *
2091 * RETURN:
2092 * None.
2093 */
2094 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2095 {
2096 int table_index;
2097
2098 /* Clear DA filter unicast table (Ex_dFUT) */
2099 for (table_index = 0; table_index <= 0xC; table_index += 4)
2100 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2101 (eth_port_num) + table_index, 0);
2102
2103 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2104 /* Clear DA filter special multicast table (Ex_dFSMT) */
2105 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2106 (eth_port_num) + table_index, 0);
2107 /* Clear DA filter other multicast table (Ex_dFOMT) */
2108 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2109 (eth_port_num) + table_index, 0);
2110 }
2111 }
2112
2113 /*
2114 * eth_clear_mib_counters - Clear all MIB counters
2115 *
2116 * DESCRIPTION:
2117 * This function clears all MIB counters of a specific ethernet port.
2118 * A read from the MIB counter will reset the counter.
2119 *
2120 * INPUT:
2121 * unsigned int eth_port_num Ethernet Port number.
2122 *
2123 * OUTPUT:
2124 * After reading all MIB counters, the counters resets.
2125 *
2126 * RETURN:
2127 * MIB counter value.
2128 *
2129 */
2130 static void eth_clear_mib_counters(unsigned int eth_port_num)
2131 {
2132 int i;
2133
2134 /* Perform dummy reads from MIB counters */
2135 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2136 i += 4)
2137 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2138 }
2139
2140 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2141 {
2142 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2143 }
2144
2145 static void eth_update_mib_counters(struct mv643xx_private *mp)
2146 {
2147 struct mv643xx_mib_counters *p = &mp->mib_counters;
2148 int offset;
2149
2150 p->good_octets_received +=
2151 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2152 p->good_octets_received +=
2153 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2154
2155 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2156 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2157 offset += 4)
2158 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2159
2160 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2161 p->good_octets_sent +=
2162 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2163
2164 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2165 offset <= ETH_MIB_LATE_COLLISION;
2166 offset += 4)
2167 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2168 }
2169
2170 /*
2171 * ethernet_phy_detect - Detect whether a phy is present
2172 *
2173 * DESCRIPTION:
2174 * This function tests whether there is a PHY present on
2175 * the specified port.
2176 *
2177 * INPUT:
2178 * unsigned int eth_port_num Ethernet Port number.
2179 *
2180 * OUTPUT:
2181 * None
2182 *
2183 * RETURN:
2184 * 0 on success
2185 * -ENODEV on failure
2186 *
2187 */
2188 static int ethernet_phy_detect(unsigned int port_num)
2189 {
2190 unsigned int phy_reg_data0;
2191 int auto_neg;
2192
2193 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2194 auto_neg = phy_reg_data0 & 0x1000;
2195 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2196 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2197
2198 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2199 if ((phy_reg_data0 & 0x1000) == auto_neg)
2200 return -ENODEV; /* change didn't take */
2201
2202 phy_reg_data0 ^= 0x1000;
2203 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2204 return 0;
2205 }
2206
2207 /*
2208 * ethernet_phy_get - Get the ethernet port PHY address.
2209 *
2210 * DESCRIPTION:
2211 * This routine returns the given ethernet port PHY address.
2212 *
2213 * INPUT:
2214 * unsigned int eth_port_num Ethernet Port number.
2215 *
2216 * OUTPUT:
2217 * None.
2218 *
2219 * RETURN:
2220 * PHY address.
2221 *
2222 */
2223 static int ethernet_phy_get(unsigned int eth_port_num)
2224 {
2225 unsigned int reg_data;
2226
2227 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2228
2229 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2230 }
2231
2232 /*
2233 * ethernet_phy_set - Set the ethernet port PHY address.
2234 *
2235 * DESCRIPTION:
2236 * This routine sets the given ethernet port PHY address.
2237 *
2238 * INPUT:
2239 * unsigned int eth_port_num Ethernet Port number.
2240 * int phy_addr PHY address.
2241 *
2242 * OUTPUT:
2243 * None.
2244 *
2245 * RETURN:
2246 * None.
2247 *
2248 */
2249 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2250 {
2251 u32 reg_data;
2252 int addr_shift = 5 * eth_port_num;
2253
2254 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2255 reg_data &= ~(0x1f << addr_shift);
2256 reg_data |= (phy_addr & 0x1f) << addr_shift;
2257 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2258 }
2259
2260 /*
2261 * ethernet_phy_reset - Reset Ethernet port PHY.
2262 *
2263 * DESCRIPTION:
2264 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2265 *
2266 * INPUT:
2267 * unsigned int eth_port_num Ethernet Port number.
2268 *
2269 * OUTPUT:
2270 * The PHY is reset.
2271 *
2272 * RETURN:
2273 * None.
2274 *
2275 */
2276 static void ethernet_phy_reset(unsigned int eth_port_num)
2277 {
2278 unsigned int phy_reg_data;
2279
2280 /* Reset the PHY */
2281 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2282 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2283 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2284
2285 /* wait for PHY to come out of reset */
2286 do {
2287 udelay(1);
2288 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2289 } while (phy_reg_data & 0x8000);
2290 }
2291
2292 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2293 unsigned int queues)
2294 {
2295 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2296 }
2297
2298 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2299 unsigned int queues)
2300 {
2301 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2302 }
2303
2304 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2305 {
2306 u32 queues;
2307
2308 /* Stop Tx port activity. Check port Tx activity. */
2309 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2310 & 0xFF;
2311 if (queues) {
2312 /* Issue stop command for active queues only */
2313 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2314 (queues << 8));
2315
2316 /* Wait for all Tx activity to terminate. */
2317 /* Check port cause register that all Tx queues are stopped */
2318 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2319 & 0xFF)
2320 udelay(PHY_WAIT_MICRO_SECONDS);
2321
2322 /* Wait for Tx FIFO to empty */
2323 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2324 ETH_PORT_TX_FIFO_EMPTY)
2325 udelay(PHY_WAIT_MICRO_SECONDS);
2326 }
2327
2328 return queues;
2329 }
2330
2331 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2332 {
2333 u32 queues;
2334
2335 /* Stop Rx port activity. Check port Rx activity. */
2336 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2337 & 0xFF;
2338 if (queues) {
2339 /* Issue stop command for active queues only */
2340 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2341 (queues << 8));
2342
2343 /* Wait for all Rx activity to terminate. */
2344 /* Check port cause register that all Rx queues are stopped */
2345 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2346 & 0xFF)
2347 udelay(PHY_WAIT_MICRO_SECONDS);
2348 }
2349
2350 return queues;
2351 }
2352
2353 /*
2354 * eth_port_reset - Reset Ethernet port
2355 *
2356 * DESCRIPTION:
2357 * This routine resets the chip by aborting any SDMA engine activity and
2358 * clearing the MIB counters. The Receiver and the Transmit unit are in
2359 * idle state after this command is performed and the port is disabled.
2360 *
2361 * INPUT:
2362 * unsigned int eth_port_num Ethernet Port number.
2363 *
2364 * OUTPUT:
2365 * Channel activity is halted.
2366 *
2367 * RETURN:
2368 * None.
2369 *
2370 */
2371 static void eth_port_reset(unsigned int port_num)
2372 {
2373 unsigned int reg_data;
2374
2375 mv643xx_eth_port_disable_tx(port_num);
2376 mv643xx_eth_port_disable_rx(port_num);
2377
2378 /* Clear all MIB counters */
2379 eth_clear_mib_counters(port_num);
2380
2381 /* Reset the Enable bit in the Configuration Register */
2382 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2383 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2384 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2385 MV643XX_ETH_FORCE_LINK_PASS);
2386 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2387 }
2388
2389
2390 /*
2391 * eth_port_read_smi_reg - Read PHY registers
2392 *
2393 * DESCRIPTION:
2394 * This routine utilize the SMI interface to interact with the PHY in
2395 * order to perform PHY register read.
2396 *
2397 * INPUT:
2398 * unsigned int port_num Ethernet Port number.
2399 * unsigned int phy_reg PHY register address offset.
2400 * unsigned int *value Register value buffer.
2401 *
2402 * OUTPUT:
2403 * Write the value of a specified PHY register into given buffer.
2404 *
2405 * RETURN:
2406 * false if the PHY is busy or read data is not in valid state.
2407 * true otherwise.
2408 *
2409 */
2410 static void eth_port_read_smi_reg(unsigned int port_num,
2411 unsigned int phy_reg, unsigned int *value)
2412 {
2413 int phy_addr = ethernet_phy_get(port_num);
2414 unsigned long flags;
2415 int i;
2416
2417 /* the SMI register is a shared resource */
2418 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2419
2420 /* wait for the SMI register to become available */
2421 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2422 if (i == PHY_WAIT_ITERATIONS) {
2423 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2424 goto out;
2425 }
2426 udelay(PHY_WAIT_MICRO_SECONDS);
2427 }
2428
2429 mv_write(MV643XX_ETH_SMI_REG,
2430 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2431
2432 /* now wait for the data to be valid */
2433 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2434 if (i == PHY_WAIT_ITERATIONS) {
2435 printk("mv643xx PHY read timeout, port %d\n", port_num);
2436 goto out;
2437 }
2438 udelay(PHY_WAIT_MICRO_SECONDS);
2439 }
2440
2441 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2442 out:
2443 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2444 }
2445
2446 /*
2447 * eth_port_write_smi_reg - Write to PHY registers
2448 *
2449 * DESCRIPTION:
2450 * This routine utilize the SMI interface to interact with the PHY in
2451 * order to perform writes to PHY registers.
2452 *
2453 * INPUT:
2454 * unsigned int eth_port_num Ethernet Port number.
2455 * unsigned int phy_reg PHY register address offset.
2456 * unsigned int value Register value.
2457 *
2458 * OUTPUT:
2459 * Write the given value to the specified PHY register.
2460 *
2461 * RETURN:
2462 * false if the PHY is busy.
2463 * true otherwise.
2464 *
2465 */
2466 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2467 unsigned int phy_reg, unsigned int value)
2468 {
2469 int phy_addr;
2470 int i;
2471 unsigned long flags;
2472
2473 phy_addr = ethernet_phy_get(eth_port_num);
2474
2475 /* the SMI register is a shared resource */
2476 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2477
2478 /* wait for the SMI register to become available */
2479 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2480 if (i == PHY_WAIT_ITERATIONS) {
2481 printk("mv643xx PHY busy timeout, port %d\n",
2482 eth_port_num);
2483 goto out;
2484 }
2485 udelay(PHY_WAIT_MICRO_SECONDS);
2486 }
2487
2488 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2489 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2490 out:
2491 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2492 }
2493
2494 /*
2495 * Wrappers for MII support library.
2496 */
2497 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2498 {
2499 int val;
2500 struct mv643xx_private *mp = netdev_priv(dev);
2501
2502 eth_port_read_smi_reg(mp->port_num, location, &val);
2503 return val;
2504 }
2505
2506 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2507 {
2508 struct mv643xx_private *mp = netdev_priv(dev);
2509 eth_port_write_smi_reg(mp->port_num, location, val);
2510 }
2511
2512 /*
2513 * eth_port_receive - Get received information from Rx ring.
2514 *
2515 * DESCRIPTION:
2516 * This routine returns the received data to the caller. There is no
2517 * data copying during routine operation. All information is returned
2518 * using pointer to packet information struct passed from the caller.
2519 * If the routine exhausts Rx ring resources then the resource error flag
2520 * is set.
2521 *
2522 * INPUT:
2523 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2524 * struct pkt_info *p_pkt_info User packet buffer.
2525 *
2526 * OUTPUT:
2527 * Rx ring current and used indexes are updated.
2528 *
2529 * RETURN:
2530 * ETH_ERROR in case the routine can not access Rx desc ring.
2531 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2532 * ETH_END_OF_JOB if there is no received data.
2533 * ETH_OK otherwise.
2534 */
2535 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2536 struct pkt_info *p_pkt_info)
2537 {
2538 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2539 volatile struct eth_rx_desc *p_rx_desc;
2540 unsigned int command_status;
2541 unsigned long flags;
2542
2543 /* Do not process Rx ring in case of Rx ring resource error */
2544 if (mp->rx_resource_err)
2545 return ETH_QUEUE_FULL;
2546
2547 spin_lock_irqsave(&mp->lock, flags);
2548
2549 /* Get the Rx Desc ring 'curr and 'used' indexes */
2550 rx_curr_desc = mp->rx_curr_desc_q;
2551 rx_used_desc = mp->rx_used_desc_q;
2552
2553 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2554
2555 /* The following parameters are used to save readings from memory */
2556 command_status = p_rx_desc->cmd_sts;
2557 rmb();
2558
2559 /* Nothing to receive... */
2560 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2561 spin_unlock_irqrestore(&mp->lock, flags);
2562 return ETH_END_OF_JOB;
2563 }
2564
2565 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2566 p_pkt_info->cmd_sts = command_status;
2567 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2568 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2569 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2570
2571 /*
2572 * Clean the return info field to indicate that the
2573 * packet has been moved to the upper layers
2574 */
2575 mp->rx_skb[rx_curr_desc] = NULL;
2576
2577 /* Update current index in data structure */
2578 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2579 mp->rx_curr_desc_q = rx_next_curr_desc;
2580
2581 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2582 if (rx_next_curr_desc == rx_used_desc)
2583 mp->rx_resource_err = 1;
2584
2585 spin_unlock_irqrestore(&mp->lock, flags);
2586
2587 return ETH_OK;
2588 }
2589
2590 /*
2591 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2592 *
2593 * DESCRIPTION:
2594 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2595 * next 'used' descriptor and attached the returned buffer to it.
2596 * In case the Rx ring was in "resource error" condition, where there are
2597 * no available Rx resources, the function resets the resource error flag.
2598 *
2599 * INPUT:
2600 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2601 * struct pkt_info *p_pkt_info Information on returned buffer.
2602 *
2603 * OUTPUT:
2604 * New available Rx resource in Rx descriptor ring.
2605 *
2606 * RETURN:
2607 * ETH_ERROR in case the routine can not access Rx desc ring.
2608 * ETH_OK otherwise.
2609 */
2610 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2611 struct pkt_info *p_pkt_info)
2612 {
2613 int used_rx_desc; /* Where to return Rx resource */
2614 volatile struct eth_rx_desc *p_used_rx_desc;
2615 unsigned long flags;
2616
2617 spin_lock_irqsave(&mp->lock, flags);
2618
2619 /* Get 'used' Rx descriptor */
2620 used_rx_desc = mp->rx_used_desc_q;
2621 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2622
2623 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2624 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2625 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2626
2627 /* Flush the write pipe */
2628
2629 /* Return the descriptor to DMA ownership */
2630 wmb();
2631 p_used_rx_desc->cmd_sts =
2632 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2633 wmb();
2634
2635 /* Move the used descriptor pointer to the next descriptor */
2636 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2637
2638 /* Any Rx return cancels the Rx resource error status */
2639 mp->rx_resource_err = 0;
2640
2641 spin_unlock_irqrestore(&mp->lock, flags);
2642
2643 return ETH_OK;
2644 }
2645
2646 /************* Begin ethtool support *************************/
2647
2648 struct mv643xx_stats {
2649 char stat_string[ETH_GSTRING_LEN];
2650 int sizeof_stat;
2651 int stat_offset;
2652 };
2653
2654 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2655 offsetof(struct mv643xx_private, m)
2656
2657 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2658 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2659 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2660 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2661 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2662 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2663 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2664 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2665 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2666 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2667 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2668 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2669 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2670 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2671 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2672 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2673 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2674 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2675 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2676 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2677 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2678 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2679 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2680 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2681 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2682 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2683 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2684 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2685 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2686 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2687 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2688 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2689 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2690 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2691 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2692 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2693 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2694 { "collision", MV643XX_STAT(mib_counters.collision) },
2695 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2696 };
2697
2698 #define MV643XX_STATS_LEN \
2699 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2700
2701 static void mv643xx_get_drvinfo(struct net_device *netdev,
2702 struct ethtool_drvinfo *drvinfo)
2703 {
2704 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2705 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2706 strncpy(drvinfo->fw_version, "N/A", 32);
2707 strncpy(drvinfo->bus_info, "mv643xx", 32);
2708 drvinfo->n_stats = MV643XX_STATS_LEN;
2709 }
2710
2711 static int mv643xx_get_stats_count(struct net_device *netdev)
2712 {
2713 return MV643XX_STATS_LEN;
2714 }
2715
2716 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2717 struct ethtool_stats *stats, uint64_t *data)
2718 {
2719 struct mv643xx_private *mp = netdev->priv;
2720 int i;
2721
2722 eth_update_mib_counters(mp);
2723
2724 for (i = 0; i < MV643XX_STATS_LEN; i++) {
2725 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2726 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2727 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2728 }
2729 }
2730
2731 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2732 uint8_t *data)
2733 {
2734 int i;
2735
2736 switch(stringset) {
2737 case ETH_SS_STATS:
2738 for (i=0; i < MV643XX_STATS_LEN; i++) {
2739 memcpy(data + i * ETH_GSTRING_LEN,
2740 mv643xx_gstrings_stats[i].stat_string,
2741 ETH_GSTRING_LEN);
2742 }
2743 break;
2744 }
2745 }
2746
2747 static u32 mv643xx_eth_get_link(struct net_device *dev)
2748 {
2749 struct mv643xx_private *mp = netdev_priv(dev);
2750
2751 return mii_link_ok(&mp->mii);
2752 }
2753
2754 static int mv643xx_eth_nway_restart(struct net_device *dev)
2755 {
2756 struct mv643xx_private *mp = netdev_priv(dev);
2757
2758 return mii_nway_restart(&mp->mii);
2759 }
2760
2761 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2762 {
2763 struct mv643xx_private *mp = netdev_priv(dev);
2764
2765 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2766 }
2767
2768 static const struct ethtool_ops mv643xx_ethtool_ops = {
2769 .get_settings = mv643xx_get_settings,
2770 .set_settings = mv643xx_set_settings,
2771 .get_drvinfo = mv643xx_get_drvinfo,
2772 .get_link = mv643xx_eth_get_link,
2773 .get_sg = ethtool_op_get_sg,
2774 .set_sg = ethtool_op_set_sg,
2775 .get_strings = mv643xx_get_strings,
2776 .get_stats_count = mv643xx_get_stats_count,
2777 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2778 .get_strings = mv643xx_get_strings,
2779 .get_stats_count = mv643xx_get_stats_count,
2780 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2781 .nway_reset = mv643xx_eth_nway_restart,
2782 };
2783
2784 /************* End ethtool support *************************/
This page took 0.096574 seconds and 5 git commands to generate.