ca120e53b5828b0277cad870f46490620839a5d8
[deliverable/linux.git] / drivers / net / mv643xx_eth.c
1 /*
2 * Driver for Marvell Discovery (MV643XX) and Marvell Orion ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2006 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33 #include <linux/init.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/in.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/etherdevice.h>
40
41 #include <linux/bitops.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/platform_device.h>
45
46 #include <asm/io.h>
47 #include <asm/types.h>
48 #include <asm/pgtable.h>
49 #include <asm/system.h>
50 #include <asm/delay.h>
51 #include "mv643xx_eth.h"
52
53 /* Static function declarations */
54 static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr);
55 static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr);
56 static void eth_port_set_multicast_list(struct net_device *);
57 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
58 unsigned int queues);
59 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
60 unsigned int queues);
61 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
62 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
63 static int mv643xx_eth_open(struct net_device *);
64 static int mv643xx_eth_stop(struct net_device *);
65 static int mv643xx_eth_change_mtu(struct net_device *, int);
66 static void eth_port_init_mac_tables(unsigned int eth_port_num);
67 #ifdef MV643XX_NAPI
68 static int mv643xx_poll(struct napi_struct *napi, int budget);
69 #endif
70 static int ethernet_phy_get(unsigned int eth_port_num);
71 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
72 static int ethernet_phy_detect(unsigned int eth_port_num);
73 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
74 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
75 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
76 static const struct ethtool_ops mv643xx_ethtool_ops;
77
78 static char mv643xx_driver_name[] = "mv643xx_eth";
79 static char mv643xx_driver_version[] = "1.0";
80
81 static void __iomem *mv643xx_eth_base;
82
83 /* used to protect SMI_REG, which is shared across ports */
84 static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
85
86 static inline u32 mv_read(int offset)
87 {
88 return readl(mv643xx_eth_base + offset);
89 }
90
91 static inline void mv_write(int offset, u32 data)
92 {
93 writel(data, mv643xx_eth_base + offset);
94 }
95
96 /*
97 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
98 *
99 * Input : pointer to ethernet interface network device structure
100 * new mtu size
101 * Output : 0 upon success, -EINVAL upon failure
102 */
103 static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
104 {
105 if ((new_mtu > 9500) || (new_mtu < 64))
106 return -EINVAL;
107
108 dev->mtu = new_mtu;
109 /*
110 * Stop then re-open the interface. This will allocate RX skb's with
111 * the new MTU.
112 * There is a possible danger that the open will not successed, due
113 * to memory is full, which might fail the open function.
114 */
115 if (netif_running(dev)) {
116 mv643xx_eth_stop(dev);
117 if (mv643xx_eth_open(dev))
118 printk(KERN_ERR
119 "%s: Fatal error on opening device\n",
120 dev->name);
121 }
122
123 return 0;
124 }
125
126 /*
127 * mv643xx_eth_rx_refill_descs
128 *
129 * Fills / refills RX queue on a certain gigabit ethernet port
130 *
131 * Input : pointer to ethernet interface network device structure
132 * Output : N/A
133 */
134 static void mv643xx_eth_rx_refill_descs(struct net_device *dev)
135 {
136 struct mv643xx_private *mp = netdev_priv(dev);
137 struct pkt_info pkt_info;
138 struct sk_buff *skb;
139 int unaligned;
140
141 while (mp->rx_desc_count < mp->rx_ring_size) {
142 skb = dev_alloc_skb(ETH_RX_SKB_SIZE + dma_get_cache_alignment());
143 if (!skb)
144 break;
145 mp->rx_desc_count++;
146 unaligned = (u32)skb->data & (dma_get_cache_alignment() - 1);
147 if (unaligned)
148 skb_reserve(skb, dma_get_cache_alignment() - unaligned);
149 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
150 pkt_info.byte_cnt = ETH_RX_SKB_SIZE;
151 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
152 ETH_RX_SKB_SIZE, DMA_FROM_DEVICE);
153 pkt_info.return_info = skb;
154 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
155 printk(KERN_ERR
156 "%s: Error allocating RX Ring\n", dev->name);
157 break;
158 }
159 skb_reserve(skb, ETH_HW_IP_ALIGN);
160 }
161 /*
162 * If RX ring is empty of SKB, set a timer to try allocating
163 * again at a later time.
164 */
165 if (mp->rx_desc_count == 0) {
166 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
167 mp->timeout.expires = jiffies + (HZ / 10); /* 100 mSec */
168 add_timer(&mp->timeout);
169 }
170 }
171
172 /*
173 * mv643xx_eth_rx_refill_descs_timer_wrapper
174 *
175 * Timer routine to wake up RX queue filling task. This function is
176 * used only in case the RX queue is empty, and all alloc_skb has
177 * failed (due to out of memory event).
178 *
179 * Input : pointer to ethernet interface network device structure
180 * Output : N/A
181 */
182 static inline void mv643xx_eth_rx_refill_descs_timer_wrapper(unsigned long data)
183 {
184 mv643xx_eth_rx_refill_descs((struct net_device *)data);
185 }
186
187 /*
188 * mv643xx_eth_update_mac_address
189 *
190 * Update the MAC address of the port in the address table
191 *
192 * Input : pointer to ethernet interface network device structure
193 * Output : N/A
194 */
195 static void mv643xx_eth_update_mac_address(struct net_device *dev)
196 {
197 struct mv643xx_private *mp = netdev_priv(dev);
198 unsigned int port_num = mp->port_num;
199
200 eth_port_init_mac_tables(port_num);
201 eth_port_uc_addr_set(port_num, dev->dev_addr);
202 }
203
204 /*
205 * mv643xx_eth_set_rx_mode
206 *
207 * Change from promiscuos to regular rx mode
208 *
209 * Input : pointer to ethernet interface network device structure
210 * Output : N/A
211 */
212 static void mv643xx_eth_set_rx_mode(struct net_device *dev)
213 {
214 struct mv643xx_private *mp = netdev_priv(dev);
215 u32 config_reg;
216
217 config_reg = mv_read(PORT_CONFIG_REG(mp->port_num));
218 if (dev->flags & IFF_PROMISC)
219 config_reg |= (u32) UNICAST_PROMISCUOUS_MODE;
220 else
221 config_reg &= ~(u32) UNICAST_PROMISCUOUS_MODE;
222 mv_write(PORT_CONFIG_REG(mp->port_num), config_reg);
223
224 eth_port_set_multicast_list(dev);
225 }
226
227 /*
228 * mv643xx_eth_set_mac_address
229 *
230 * Change the interface's mac address.
231 * No special hardware thing should be done because interface is always
232 * put in promiscuous mode.
233 *
234 * Input : pointer to ethernet interface network device structure and
235 * a pointer to the designated entry to be added to the cache.
236 * Output : zero upon success, negative upon failure
237 */
238 static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
239 {
240 int i;
241
242 for (i = 0; i < 6; i++)
243 /* +2 is for the offset of the HW addr type */
244 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
245 mv643xx_eth_update_mac_address(dev);
246 return 0;
247 }
248
249 /*
250 * mv643xx_eth_tx_timeout
251 *
252 * Called upon a timeout on transmitting a packet
253 *
254 * Input : pointer to ethernet interface network device structure.
255 * Output : N/A
256 */
257 static void mv643xx_eth_tx_timeout(struct net_device *dev)
258 {
259 struct mv643xx_private *mp = netdev_priv(dev);
260
261 printk(KERN_INFO "%s: TX timeout ", dev->name);
262
263 /* Do the reset outside of interrupt context */
264 schedule_work(&mp->tx_timeout_task);
265 }
266
267 /*
268 * mv643xx_eth_tx_timeout_task
269 *
270 * Actual routine to reset the adapter when a timeout on Tx has occurred
271 */
272 static void mv643xx_eth_tx_timeout_task(struct work_struct *ugly)
273 {
274 struct mv643xx_private *mp = container_of(ugly, struct mv643xx_private,
275 tx_timeout_task);
276 struct net_device *dev = mp->mii.dev; /* yuck */
277
278 if (!netif_running(dev))
279 return;
280
281 netif_stop_queue(dev);
282
283 eth_port_reset(mp->port_num);
284 eth_port_start(dev);
285
286 if (mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
287 netif_wake_queue(dev);
288 }
289
290 /**
291 * mv643xx_eth_free_tx_descs - Free the tx desc data for completed descriptors
292 *
293 * If force is non-zero, frees uncompleted descriptors as well
294 */
295 int mv643xx_eth_free_tx_descs(struct net_device *dev, int force)
296 {
297 struct mv643xx_private *mp = netdev_priv(dev);
298 struct eth_tx_desc *desc;
299 u32 cmd_sts;
300 struct sk_buff *skb;
301 unsigned long flags;
302 int tx_index;
303 dma_addr_t addr;
304 int count;
305 int released = 0;
306
307 while (mp->tx_desc_count > 0) {
308 spin_lock_irqsave(&mp->lock, flags);
309
310 /* tx_desc_count might have changed before acquiring the lock */
311 if (mp->tx_desc_count <= 0) {
312 spin_unlock_irqrestore(&mp->lock, flags);
313 return released;
314 }
315
316 tx_index = mp->tx_used_desc_q;
317 desc = &mp->p_tx_desc_area[tx_index];
318 cmd_sts = desc->cmd_sts;
319
320 if (!force && (cmd_sts & ETH_BUFFER_OWNED_BY_DMA)) {
321 spin_unlock_irqrestore(&mp->lock, flags);
322 return released;
323 }
324
325 mp->tx_used_desc_q = (tx_index + 1) % mp->tx_ring_size;
326 mp->tx_desc_count--;
327
328 addr = desc->buf_ptr;
329 count = desc->byte_cnt;
330 skb = mp->tx_skb[tx_index];
331 if (skb)
332 mp->tx_skb[tx_index] = NULL;
333
334 if (cmd_sts & ETH_ERROR_SUMMARY) {
335 printk("%s: Error in TX\n", dev->name);
336 dev->stats.tx_errors++;
337 }
338
339 spin_unlock_irqrestore(&mp->lock, flags);
340
341 if (cmd_sts & ETH_TX_FIRST_DESC)
342 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
343 else
344 dma_unmap_page(NULL, addr, count, DMA_TO_DEVICE);
345
346 if (skb)
347 dev_kfree_skb_irq(skb);
348
349 released = 1;
350 }
351
352 return released;
353 }
354
355 static void mv643xx_eth_free_completed_tx_descs(struct net_device *dev)
356 {
357 struct mv643xx_private *mp = netdev_priv(dev);
358
359 if (mv643xx_eth_free_tx_descs(dev, 0) &&
360 mp->tx_ring_size - mp->tx_desc_count >= MAX_DESCS_PER_SKB)
361 netif_wake_queue(dev);
362 }
363
364 static void mv643xx_eth_free_all_tx_descs(struct net_device *dev)
365 {
366 mv643xx_eth_free_tx_descs(dev, 1);
367 }
368
369 /*
370 * mv643xx_eth_receive
371 *
372 * This function is forward packets that are received from the port's
373 * queues toward kernel core or FastRoute them to another interface.
374 *
375 * Input : dev - a pointer to the required interface
376 * max - maximum number to receive (0 means unlimted)
377 *
378 * Output : number of served packets
379 */
380 static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
381 {
382 struct mv643xx_private *mp = netdev_priv(dev);
383 struct net_device_stats *stats = &dev->stats;
384 unsigned int received_packets = 0;
385 struct sk_buff *skb;
386 struct pkt_info pkt_info;
387
388 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
389 dma_unmap_single(NULL, pkt_info.buf_ptr, ETH_RX_SKB_SIZE,
390 DMA_FROM_DEVICE);
391 mp->rx_desc_count--;
392 received_packets++;
393
394 /*
395 * Update statistics.
396 * Note byte count includes 4 byte CRC count
397 */
398 stats->rx_packets++;
399 stats->rx_bytes += pkt_info.byte_cnt;
400 skb = pkt_info.return_info;
401 /*
402 * In case received a packet without first / last bits on OR
403 * the error summary bit is on, the packets needs to be dropeed.
404 */
405 if (((pkt_info.cmd_sts
406 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
407 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
408 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
409 stats->rx_dropped++;
410 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
411 ETH_RX_LAST_DESC)) !=
412 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
413 if (net_ratelimit())
414 printk(KERN_ERR
415 "%s: Received packet spread "
416 "on multiple descriptors\n",
417 dev->name);
418 }
419 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
420 stats->rx_errors++;
421
422 dev_kfree_skb_irq(skb);
423 } else {
424 /*
425 * The -4 is for the CRC in the trailer of the
426 * received packet
427 */
428 skb_put(skb, pkt_info.byte_cnt - 4);
429
430 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
431 skb->ip_summed = CHECKSUM_UNNECESSARY;
432 skb->csum = htons(
433 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
434 }
435 skb->protocol = eth_type_trans(skb, dev);
436 #ifdef MV643XX_NAPI
437 netif_receive_skb(skb);
438 #else
439 netif_rx(skb);
440 #endif
441 }
442 dev->last_rx = jiffies;
443 }
444 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
445
446 return received_packets;
447 }
448
449 /* Set the mv643xx port configuration register for the speed/duplex mode. */
450 static void mv643xx_eth_update_pscr(struct net_device *dev,
451 struct ethtool_cmd *ecmd)
452 {
453 struct mv643xx_private *mp = netdev_priv(dev);
454 int port_num = mp->port_num;
455 u32 o_pscr, n_pscr;
456 unsigned int queues;
457
458 o_pscr = mv_read(PORT_SERIAL_CONTROL_REG(port_num));
459 n_pscr = o_pscr;
460
461 /* clear speed, duplex and rx buffer size fields */
462 n_pscr &= ~(SET_MII_SPEED_TO_100 |
463 SET_GMII_SPEED_TO_1000 |
464 SET_FULL_DUPLEX_MODE |
465 MAX_RX_PACKET_MASK);
466
467 if (ecmd->duplex == DUPLEX_FULL)
468 n_pscr |= SET_FULL_DUPLEX_MODE;
469
470 if (ecmd->speed == SPEED_1000)
471 n_pscr |= SET_GMII_SPEED_TO_1000 |
472 MAX_RX_PACKET_9700BYTE;
473 else {
474 if (ecmd->speed == SPEED_100)
475 n_pscr |= SET_MII_SPEED_TO_100;
476 n_pscr |= MAX_RX_PACKET_1522BYTE;
477 }
478
479 if (n_pscr != o_pscr) {
480 if ((o_pscr & SERIAL_PORT_ENABLE) == 0)
481 mv_write(PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
482 else {
483 queues = mv643xx_eth_port_disable_tx(port_num);
484
485 o_pscr &= ~SERIAL_PORT_ENABLE;
486 mv_write(PORT_SERIAL_CONTROL_REG(port_num), o_pscr);
487 mv_write(PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
488 mv_write(PORT_SERIAL_CONTROL_REG(port_num), n_pscr);
489 if (queues)
490 mv643xx_eth_port_enable_tx(port_num, queues);
491 }
492 }
493 }
494
495 /*
496 * mv643xx_eth_int_handler
497 *
498 * Main interrupt handler for the gigbit ethernet ports
499 *
500 * Input : irq - irq number (not used)
501 * dev_id - a pointer to the required interface's data structure
502 * regs - not used
503 * Output : N/A
504 */
505
506 static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id)
507 {
508 struct net_device *dev = (struct net_device *)dev_id;
509 struct mv643xx_private *mp = netdev_priv(dev);
510 u32 eth_int_cause, eth_int_cause_ext = 0;
511 unsigned int port_num = mp->port_num;
512
513 /* Read interrupt cause registers */
514 eth_int_cause = mv_read(INTERRUPT_CAUSE_REG(port_num)) &
515 ETH_INT_UNMASK_ALL;
516 if (eth_int_cause & ETH_INT_CAUSE_EXT) {
517 eth_int_cause_ext = mv_read(
518 INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
519 ETH_INT_UNMASK_ALL_EXT;
520 mv_write(INTERRUPT_CAUSE_EXTEND_REG(port_num),
521 ~eth_int_cause_ext);
522 }
523
524 /* PHY status changed */
525 if (eth_int_cause_ext & (ETH_INT_CAUSE_PHY | ETH_INT_CAUSE_STATE)) {
526 struct ethtool_cmd cmd;
527
528 if (mii_link_ok(&mp->mii)) {
529 mii_ethtool_gset(&mp->mii, &cmd);
530 mv643xx_eth_update_pscr(dev, &cmd);
531 mv643xx_eth_port_enable_tx(port_num,
532 ETH_TX_QUEUES_ENABLED);
533 if (!netif_carrier_ok(dev)) {
534 netif_carrier_on(dev);
535 if (mp->tx_ring_size - mp->tx_desc_count >=
536 MAX_DESCS_PER_SKB)
537 netif_wake_queue(dev);
538 }
539 } else if (netif_carrier_ok(dev)) {
540 netif_stop_queue(dev);
541 netif_carrier_off(dev);
542 }
543 }
544
545 #ifdef MV643XX_NAPI
546 if (eth_int_cause & ETH_INT_CAUSE_RX) {
547 /* schedule the NAPI poll routine to maintain port */
548 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
549
550 /* wait for previous write to complete */
551 mv_read(INTERRUPT_MASK_REG(port_num));
552
553 netif_rx_schedule(dev, &mp->napi);
554 }
555 #else
556 if (eth_int_cause & ETH_INT_CAUSE_RX)
557 mv643xx_eth_receive_queue(dev, INT_MAX);
558 #endif
559 if (eth_int_cause_ext & ETH_INT_CAUSE_TX)
560 mv643xx_eth_free_completed_tx_descs(dev);
561
562 /*
563 * If no real interrupt occured, exit.
564 * This can happen when using gigE interrupt coalescing mechanism.
565 */
566 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
567 return IRQ_NONE;
568
569 return IRQ_HANDLED;
570 }
571
572 #ifdef MV643XX_COAL
573
574 /*
575 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
576 *
577 * DESCRIPTION:
578 * This routine sets the RX coalescing interrupt mechanism parameter.
579 * This parameter is a timeout counter, that counts in 64 t_clk
580 * chunks ; that when timeout event occurs a maskable interrupt
581 * occurs.
582 * The parameter is calculated using the tClk of the MV-643xx chip
583 * , and the required delay of the interrupt in usec.
584 *
585 * INPUT:
586 * unsigned int eth_port_num Ethernet port number
587 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
588 * unsigned int delay Delay in usec
589 *
590 * OUTPUT:
591 * Interrupt coalescing mechanism value is set in MV-643xx chip.
592 *
593 * RETURN:
594 * The interrupt coalescing value set in the gigE port.
595 *
596 */
597 static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
598 unsigned int t_clk, unsigned int delay)
599 {
600 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
601
602 /* Set RX Coalescing mechanism */
603 mv_write(SDMA_CONFIG_REG(eth_port_num),
604 ((coal & 0x3fff) << 8) |
605 (mv_read(SDMA_CONFIG_REG(eth_port_num))
606 & 0xffc000ff));
607
608 return coal;
609 }
610 #endif
611
612 /*
613 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
614 *
615 * DESCRIPTION:
616 * This routine sets the TX coalescing interrupt mechanism parameter.
617 * This parameter is a timeout counter, that counts in 64 t_clk
618 * chunks ; that when timeout event occurs a maskable interrupt
619 * occurs.
620 * The parameter is calculated using the t_cLK frequency of the
621 * MV-643xx chip and the required delay in the interrupt in uSec
622 *
623 * INPUT:
624 * unsigned int eth_port_num Ethernet port number
625 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
626 * unsigned int delay Delay in uSeconds
627 *
628 * OUTPUT:
629 * Interrupt coalescing mechanism value is set in MV-643xx chip.
630 *
631 * RETURN:
632 * The interrupt coalescing value set in the gigE port.
633 *
634 */
635 static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
636 unsigned int t_clk, unsigned int delay)
637 {
638 unsigned int coal;
639 coal = ((t_clk / 1000000) * delay) / 64;
640 /* Set TX Coalescing mechanism */
641 mv_write(TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num), coal << 4);
642 return coal;
643 }
644
645 /*
646 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
647 *
648 * DESCRIPTION:
649 * This function prepares a Rx chained list of descriptors and packet
650 * buffers in a form of a ring. The routine must be called after port
651 * initialization routine and before port start routine.
652 * The Ethernet SDMA engine uses CPU bus addresses to access the various
653 * devices in the system (i.e. DRAM). This function uses the ethernet
654 * struct 'virtual to physical' routine (set by the user) to set the ring
655 * with physical addresses.
656 *
657 * INPUT:
658 * struct mv643xx_private *mp Ethernet Port Control srtuct.
659 *
660 * OUTPUT:
661 * The routine updates the Ethernet port control struct with information
662 * regarding the Rx descriptors and buffers.
663 *
664 * RETURN:
665 * None.
666 */
667 static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
668 {
669 volatile struct eth_rx_desc *p_rx_desc;
670 int rx_desc_num = mp->rx_ring_size;
671 int i;
672
673 /* initialize the next_desc_ptr links in the Rx descriptors ring */
674 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
675 for (i = 0; i < rx_desc_num; i++) {
676 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
677 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
678 }
679
680 /* Save Rx desc pointer to driver struct. */
681 mp->rx_curr_desc_q = 0;
682 mp->rx_used_desc_q = 0;
683
684 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
685 }
686
687 /*
688 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
689 *
690 * DESCRIPTION:
691 * This function prepares a Tx chained list of descriptors and packet
692 * buffers in a form of a ring. The routine must be called after port
693 * initialization routine and before port start routine.
694 * The Ethernet SDMA engine uses CPU bus addresses to access the various
695 * devices in the system (i.e. DRAM). This function uses the ethernet
696 * struct 'virtual to physical' routine (set by the user) to set the ring
697 * with physical addresses.
698 *
699 * INPUT:
700 * struct mv643xx_private *mp Ethernet Port Control srtuct.
701 *
702 * OUTPUT:
703 * The routine updates the Ethernet port control struct with information
704 * regarding the Tx descriptors and buffers.
705 *
706 * RETURN:
707 * None.
708 */
709 static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
710 {
711 int tx_desc_num = mp->tx_ring_size;
712 struct eth_tx_desc *p_tx_desc;
713 int i;
714
715 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
716 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
717 for (i = 0; i < tx_desc_num; i++) {
718 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
719 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
720 }
721
722 mp->tx_curr_desc_q = 0;
723 mp->tx_used_desc_q = 0;
724
725 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
726 }
727
728 static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
729 {
730 struct mv643xx_private *mp = netdev_priv(dev);
731 int err;
732
733 spin_lock_irq(&mp->lock);
734 err = mii_ethtool_sset(&mp->mii, cmd);
735 spin_unlock_irq(&mp->lock);
736
737 return err;
738 }
739
740 static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
741 {
742 struct mv643xx_private *mp = netdev_priv(dev);
743 int err;
744
745 spin_lock_irq(&mp->lock);
746 err = mii_ethtool_gset(&mp->mii, cmd);
747 spin_unlock_irq(&mp->lock);
748
749 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
750 cmd->supported &= ~SUPPORTED_1000baseT_Half;
751 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
752
753 return err;
754 }
755
756 /*
757 * mv643xx_eth_open
758 *
759 * This function is called when openning the network device. The function
760 * should initialize all the hardware, initialize cyclic Rx/Tx
761 * descriptors chain and buffers and allocate an IRQ to the network
762 * device.
763 *
764 * Input : a pointer to the network device structure
765 *
766 * Output : zero of success , nonzero if fails.
767 */
768
769 static int mv643xx_eth_open(struct net_device *dev)
770 {
771 struct mv643xx_private *mp = netdev_priv(dev);
772 unsigned int port_num = mp->port_num;
773 unsigned int size;
774 int err;
775
776 /* Clear any pending ethernet port interrupts */
777 mv_write(INTERRUPT_CAUSE_REG(port_num), 0);
778 mv_write(INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
779 /* wait for previous write to complete */
780 mv_read (INTERRUPT_CAUSE_EXTEND_REG(port_num));
781
782 err = request_irq(dev->irq, mv643xx_eth_int_handler,
783 IRQF_SHARED | IRQF_SAMPLE_RANDOM, dev->name, dev);
784 if (err) {
785 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
786 port_num);
787 return -EAGAIN;
788 }
789
790 eth_port_init(mp);
791
792 memset(&mp->timeout, 0, sizeof(struct timer_list));
793 mp->timeout.function = mv643xx_eth_rx_refill_descs_timer_wrapper;
794 mp->timeout.data = (unsigned long)dev;
795
796 /* Allocate RX and TX skb rings */
797 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
798 GFP_KERNEL);
799 if (!mp->rx_skb) {
800 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
801 err = -ENOMEM;
802 goto out_free_irq;
803 }
804 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
805 GFP_KERNEL);
806 if (!mp->tx_skb) {
807 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
808 err = -ENOMEM;
809 goto out_free_rx_skb;
810 }
811
812 /* Allocate TX ring */
813 mp->tx_desc_count = 0;
814 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
815 mp->tx_desc_area_size = size;
816
817 if (mp->tx_sram_size) {
818 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
819 mp->tx_sram_size);
820 mp->tx_desc_dma = mp->tx_sram_addr;
821 } else
822 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
823 &mp->tx_desc_dma,
824 GFP_KERNEL);
825
826 if (!mp->p_tx_desc_area) {
827 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
828 dev->name, size);
829 err = -ENOMEM;
830 goto out_free_tx_skb;
831 }
832 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
833 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
834
835 ether_init_tx_desc_ring(mp);
836
837 /* Allocate RX ring */
838 mp->rx_desc_count = 0;
839 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
840 mp->rx_desc_area_size = size;
841
842 if (mp->rx_sram_size) {
843 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
844 mp->rx_sram_size);
845 mp->rx_desc_dma = mp->rx_sram_addr;
846 } else
847 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
848 &mp->rx_desc_dma,
849 GFP_KERNEL);
850
851 if (!mp->p_rx_desc_area) {
852 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
853 dev->name, size);
854 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
855 dev->name);
856 if (mp->rx_sram_size)
857 iounmap(mp->p_tx_desc_area);
858 else
859 dma_free_coherent(NULL, mp->tx_desc_area_size,
860 mp->p_tx_desc_area, mp->tx_desc_dma);
861 err = -ENOMEM;
862 goto out_free_tx_skb;
863 }
864 memset((void *)mp->p_rx_desc_area, 0, size);
865
866 ether_init_rx_desc_ring(mp);
867
868 mv643xx_eth_rx_refill_descs(dev); /* Fill RX ring with skb's */
869
870 #ifdef MV643XX_NAPI
871 napi_enable(&mp->napi);
872 #endif
873
874 eth_port_start(dev);
875
876 /* Interrupt Coalescing */
877
878 #ifdef MV643XX_COAL
879 mp->rx_int_coal =
880 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
881 #endif
882
883 mp->tx_int_coal =
884 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
885
886 /* Unmask phy and link status changes interrupts */
887 mv_write(INTERRUPT_EXTEND_MASK_REG(port_num), ETH_INT_UNMASK_ALL_EXT);
888
889 /* Unmask RX buffer and TX end interrupt */
890 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
891
892 return 0;
893
894 out_free_tx_skb:
895 kfree(mp->tx_skb);
896 out_free_rx_skb:
897 kfree(mp->rx_skb);
898 out_free_irq:
899 free_irq(dev->irq, dev);
900
901 return err;
902 }
903
904 static void mv643xx_eth_free_tx_rings(struct net_device *dev)
905 {
906 struct mv643xx_private *mp = netdev_priv(dev);
907
908 /* Stop Tx Queues */
909 mv643xx_eth_port_disable_tx(mp->port_num);
910
911 /* Free outstanding skb's on TX ring */
912 mv643xx_eth_free_all_tx_descs(dev);
913
914 BUG_ON(mp->tx_used_desc_q != mp->tx_curr_desc_q);
915
916 /* Free TX ring */
917 if (mp->tx_sram_size)
918 iounmap(mp->p_tx_desc_area);
919 else
920 dma_free_coherent(NULL, mp->tx_desc_area_size,
921 mp->p_tx_desc_area, mp->tx_desc_dma);
922 }
923
924 static void mv643xx_eth_free_rx_rings(struct net_device *dev)
925 {
926 struct mv643xx_private *mp = netdev_priv(dev);
927 unsigned int port_num = mp->port_num;
928 int curr;
929
930 /* Stop RX Queues */
931 mv643xx_eth_port_disable_rx(port_num);
932
933 /* Free preallocated skb's on RX rings */
934 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
935 if (mp->rx_skb[curr]) {
936 dev_kfree_skb(mp->rx_skb[curr]);
937 mp->rx_desc_count--;
938 }
939 }
940
941 if (mp->rx_desc_count)
942 printk(KERN_ERR
943 "%s: Error in freeing Rx Ring. %d skb's still"
944 " stuck in RX Ring - ignoring them\n", dev->name,
945 mp->rx_desc_count);
946 /* Free RX ring */
947 if (mp->rx_sram_size)
948 iounmap(mp->p_rx_desc_area);
949 else
950 dma_free_coherent(NULL, mp->rx_desc_area_size,
951 mp->p_rx_desc_area, mp->rx_desc_dma);
952 }
953
954 /*
955 * mv643xx_eth_stop
956 *
957 * This function is used when closing the network device.
958 * It updates the hardware,
959 * release all memory that holds buffers and descriptors and release the IRQ.
960 * Input : a pointer to the device structure
961 * Output : zero if success , nonzero if fails
962 */
963
964 static int mv643xx_eth_stop(struct net_device *dev)
965 {
966 struct mv643xx_private *mp = netdev_priv(dev);
967 unsigned int port_num = mp->port_num;
968
969 /* Mask all interrupts on ethernet port */
970 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
971 /* wait for previous write to complete */
972 mv_read(INTERRUPT_MASK_REG(port_num));
973
974 #ifdef MV643XX_NAPI
975 napi_disable(&mp->napi);
976 #endif
977 netif_carrier_off(dev);
978 netif_stop_queue(dev);
979
980 eth_port_reset(mp->port_num);
981
982 mv643xx_eth_free_tx_rings(dev);
983 mv643xx_eth_free_rx_rings(dev);
984
985 free_irq(dev->irq, dev);
986
987 return 0;
988 }
989
990 #ifdef MV643XX_NAPI
991 /*
992 * mv643xx_poll
993 *
994 * This function is used in case of NAPI
995 */
996 static int mv643xx_poll(struct napi_struct *napi, int budget)
997 {
998 struct mv643xx_private *mp = container_of(napi, struct mv643xx_private, napi);
999 struct net_device *dev = mp->dev;
1000 unsigned int port_num = mp->port_num;
1001 int work_done;
1002
1003 #ifdef MV643XX_TX_FAST_REFILL
1004 if (++mp->tx_clean_threshold > 5) {
1005 mv643xx_eth_free_completed_tx_descs(dev);
1006 mp->tx_clean_threshold = 0;
1007 }
1008 #endif
1009
1010 work_done = 0;
1011 if ((mv_read(RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1012 != (u32) mp->rx_used_desc_q)
1013 work_done = mv643xx_eth_receive_queue(dev, budget);
1014
1015 if (work_done < budget) {
1016 netif_rx_complete(dev, napi);
1017 mv_write(INTERRUPT_CAUSE_REG(port_num), 0);
1018 mv_write(INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1019 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1020 }
1021
1022 return work_done;
1023 }
1024 #endif
1025
1026 /**
1027 * has_tiny_unaligned_frags - check if skb has any small, unaligned fragments
1028 *
1029 * Hardware can't handle unaligned fragments smaller than 9 bytes.
1030 * This helper function detects that case.
1031 */
1032
1033 static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1034 {
1035 unsigned int frag;
1036 skb_frag_t *fragp;
1037
1038 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1039 fragp = &skb_shinfo(skb)->frags[frag];
1040 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1041 return 1;
1042 }
1043 return 0;
1044 }
1045
1046 /**
1047 * eth_alloc_tx_desc_index - return the index of the next available tx desc
1048 */
1049 static int eth_alloc_tx_desc_index(struct mv643xx_private *mp)
1050 {
1051 int tx_desc_curr;
1052
1053 BUG_ON(mp->tx_desc_count >= mp->tx_ring_size);
1054
1055 tx_desc_curr = mp->tx_curr_desc_q;
1056 mp->tx_curr_desc_q = (tx_desc_curr + 1) % mp->tx_ring_size;
1057
1058 BUG_ON(mp->tx_curr_desc_q == mp->tx_used_desc_q);
1059
1060 return tx_desc_curr;
1061 }
1062
1063 /**
1064 * eth_tx_fill_frag_descs - fill tx hw descriptors for an skb's fragments.
1065 *
1066 * Ensure the data for each fragment to be transmitted is mapped properly,
1067 * then fill in descriptors in the tx hw queue.
1068 */
1069 static void eth_tx_fill_frag_descs(struct mv643xx_private *mp,
1070 struct sk_buff *skb)
1071 {
1072 int frag;
1073 int tx_index;
1074 struct eth_tx_desc *desc;
1075
1076 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1077 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1078
1079 tx_index = eth_alloc_tx_desc_index(mp);
1080 desc = &mp->p_tx_desc_area[tx_index];
1081
1082 desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA;
1083 /* Last Frag enables interrupt and frees the skb */
1084 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1085 desc->cmd_sts |= ETH_ZERO_PADDING |
1086 ETH_TX_LAST_DESC |
1087 ETH_TX_ENABLE_INTERRUPT;
1088 mp->tx_skb[tx_index] = skb;
1089 } else
1090 mp->tx_skb[tx_index] = NULL;
1091
1092 desc = &mp->p_tx_desc_area[tx_index];
1093 desc->l4i_chk = 0;
1094 desc->byte_cnt = this_frag->size;
1095 desc->buf_ptr = dma_map_page(NULL, this_frag->page,
1096 this_frag->page_offset,
1097 this_frag->size,
1098 DMA_TO_DEVICE);
1099 }
1100 }
1101
1102 /**
1103 * eth_tx_submit_descs_for_skb - submit data from an skb to the tx hw
1104 *
1105 * Ensure the data for an skb to be transmitted is mapped properly,
1106 * then fill in descriptors in the tx hw queue and start the hardware.
1107 */
1108 static void eth_tx_submit_descs_for_skb(struct mv643xx_private *mp,
1109 struct sk_buff *skb)
1110 {
1111 int tx_index;
1112 struct eth_tx_desc *desc;
1113 u32 cmd_sts;
1114 int length;
1115 int nr_frags = skb_shinfo(skb)->nr_frags;
1116
1117 cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA;
1118
1119 tx_index = eth_alloc_tx_desc_index(mp);
1120 desc = &mp->p_tx_desc_area[tx_index];
1121
1122 if (nr_frags) {
1123 eth_tx_fill_frag_descs(mp, skb);
1124
1125 length = skb_headlen(skb);
1126 mp->tx_skb[tx_index] = NULL;
1127 } else {
1128 cmd_sts |= ETH_ZERO_PADDING |
1129 ETH_TX_LAST_DESC |
1130 ETH_TX_ENABLE_INTERRUPT;
1131 length = skb->len;
1132 mp->tx_skb[tx_index] = skb;
1133 }
1134
1135 desc->byte_cnt = length;
1136 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1137
1138 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1139 BUG_ON(skb->protocol != ETH_P_IP);
1140
1141 cmd_sts |= ETH_GEN_TCP_UDP_CHECKSUM |
1142 ETH_GEN_IP_V_4_CHECKSUM |
1143 ip_hdr(skb)->ihl << ETH_TX_IHL_SHIFT;
1144
1145 switch (ip_hdr(skb)->protocol) {
1146 case IPPROTO_UDP:
1147 cmd_sts |= ETH_UDP_FRAME;
1148 desc->l4i_chk = udp_hdr(skb)->check;
1149 break;
1150 case IPPROTO_TCP:
1151 desc->l4i_chk = tcp_hdr(skb)->check;
1152 break;
1153 default:
1154 BUG();
1155 }
1156 } else {
1157 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1158 cmd_sts |= 5 << ETH_TX_IHL_SHIFT;
1159 desc->l4i_chk = 0;
1160 }
1161
1162 /* ensure all other descriptors are written before first cmd_sts */
1163 wmb();
1164 desc->cmd_sts = cmd_sts;
1165
1166 /* ensure all descriptors are written before poking hardware */
1167 wmb();
1168 mv643xx_eth_port_enable_tx(mp->port_num, ETH_TX_QUEUES_ENABLED);
1169
1170 mp->tx_desc_count += nr_frags + 1;
1171 }
1172
1173 /**
1174 * mv643xx_eth_start_xmit - queue an skb to the hardware for transmission
1175 *
1176 */
1177 static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1178 {
1179 struct mv643xx_private *mp = netdev_priv(dev);
1180 struct net_device_stats *stats = &dev->stats;
1181 unsigned long flags;
1182
1183 BUG_ON(netif_queue_stopped(dev));
1184 BUG_ON(skb == NULL);
1185
1186 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB) {
1187 printk(KERN_ERR "%s: transmit with queue full\n", dev->name);
1188 netif_stop_queue(dev);
1189 return 1;
1190 }
1191
1192 if (has_tiny_unaligned_frags(skb)) {
1193 if (__skb_linearize(skb)) {
1194 stats->tx_dropped++;
1195 printk(KERN_DEBUG "%s: failed to linearize tiny "
1196 "unaligned fragment\n", dev->name);
1197 return 1;
1198 }
1199 }
1200
1201 spin_lock_irqsave(&mp->lock, flags);
1202
1203 eth_tx_submit_descs_for_skb(mp, skb);
1204 stats->tx_bytes += skb->len;
1205 stats->tx_packets++;
1206 dev->trans_start = jiffies;
1207
1208 if (mp->tx_ring_size - mp->tx_desc_count < MAX_DESCS_PER_SKB)
1209 netif_stop_queue(dev);
1210
1211 spin_unlock_irqrestore(&mp->lock, flags);
1212
1213 return 0; /* success */
1214 }
1215
1216 #ifdef CONFIG_NET_POLL_CONTROLLER
1217 static void mv643xx_netpoll(struct net_device *netdev)
1218 {
1219 struct mv643xx_private *mp = netdev_priv(netdev);
1220 int port_num = mp->port_num;
1221
1222 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_MASK_ALL);
1223 /* wait for previous write to complete */
1224 mv_read(INTERRUPT_MASK_REG(port_num));
1225
1226 mv643xx_eth_int_handler(netdev->irq, netdev);
1227
1228 mv_write(INTERRUPT_MASK_REG(port_num), ETH_INT_UNMASK_ALL);
1229 }
1230 #endif
1231
1232 static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1233 int speed, int duplex,
1234 struct ethtool_cmd *cmd)
1235 {
1236 struct mv643xx_private *mp = netdev_priv(dev);
1237
1238 memset(cmd, 0, sizeof(*cmd));
1239
1240 cmd->port = PORT_MII;
1241 cmd->transceiver = XCVR_INTERNAL;
1242 cmd->phy_address = phy_address;
1243
1244 if (speed == 0) {
1245 cmd->autoneg = AUTONEG_ENABLE;
1246 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1247 cmd->speed = SPEED_100;
1248 cmd->advertising = ADVERTISED_10baseT_Half |
1249 ADVERTISED_10baseT_Full |
1250 ADVERTISED_100baseT_Half |
1251 ADVERTISED_100baseT_Full;
1252 if (mp->mii.supports_gmii)
1253 cmd->advertising |= ADVERTISED_1000baseT_Full;
1254 } else {
1255 cmd->autoneg = AUTONEG_DISABLE;
1256 cmd->speed = speed;
1257 cmd->duplex = duplex;
1258 }
1259 }
1260
1261 /*/
1262 * mv643xx_eth_probe
1263 *
1264 * First function called after registering the network device.
1265 * It's purpose is to initialize the device as an ethernet device,
1266 * fill the ethernet device structure with pointers * to functions,
1267 * and set the MAC address of the interface
1268 *
1269 * Input : struct device *
1270 * Output : -ENOMEM if failed , 0 if success
1271 */
1272 static int mv643xx_eth_probe(struct platform_device *pdev)
1273 {
1274 struct mv643xx_eth_platform_data *pd;
1275 int port_num;
1276 struct mv643xx_private *mp;
1277 struct net_device *dev;
1278 u8 *p;
1279 struct resource *res;
1280 int err;
1281 struct ethtool_cmd cmd;
1282 int duplex = DUPLEX_HALF;
1283 int speed = 0; /* default to auto-negotiation */
1284 DECLARE_MAC_BUF(mac);
1285
1286 pd = pdev->dev.platform_data;
1287 if (pd == NULL) {
1288 printk(KERN_ERR "No mv643xx_eth_platform_data\n");
1289 return -ENODEV;
1290 }
1291
1292 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1293 if (!dev)
1294 return -ENOMEM;
1295
1296 platform_set_drvdata(pdev, dev);
1297
1298 mp = netdev_priv(dev);
1299 mp->dev = dev;
1300 #ifdef MV643XX_NAPI
1301 netif_napi_add(dev, &mp->napi, mv643xx_poll, 64);
1302 #endif
1303
1304 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1305 BUG_ON(!res);
1306 dev->irq = res->start;
1307
1308 dev->open = mv643xx_eth_open;
1309 dev->stop = mv643xx_eth_stop;
1310 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1311 dev->set_mac_address = mv643xx_eth_set_mac_address;
1312 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1313
1314 /* No need to Tx Timeout */
1315 dev->tx_timeout = mv643xx_eth_tx_timeout;
1316
1317 #ifdef CONFIG_NET_POLL_CONTROLLER
1318 dev->poll_controller = mv643xx_netpoll;
1319 #endif
1320
1321 dev->watchdog_timeo = 2 * HZ;
1322 dev->base_addr = 0;
1323 dev->change_mtu = mv643xx_eth_change_mtu;
1324 dev->do_ioctl = mv643xx_eth_do_ioctl;
1325 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1326
1327 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1328 #ifdef MAX_SKB_FRAGS
1329 /*
1330 * Zero copy can only work if we use Discovery II memory. Else, we will
1331 * have to map the buffers to ISA memory which is only 16 MB
1332 */
1333 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1334 #endif
1335 #endif
1336
1337 /* Configure the timeout task */
1338 INIT_WORK(&mp->tx_timeout_task, mv643xx_eth_tx_timeout_task);
1339
1340 spin_lock_init(&mp->lock);
1341
1342 port_num = mp->port_num = pd->port_number;
1343
1344 /* set default config values */
1345 eth_port_uc_addr_get(port_num, dev->dev_addr);
1346 mp->rx_ring_size = PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1347 mp->tx_ring_size = PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1348
1349 if (is_valid_ether_addr(pd->mac_addr))
1350 memcpy(dev->dev_addr, pd->mac_addr, 6);
1351
1352 if (pd->phy_addr || pd->force_phy_addr)
1353 ethernet_phy_set(port_num, pd->phy_addr);
1354
1355 if (pd->rx_queue_size)
1356 mp->rx_ring_size = pd->rx_queue_size;
1357
1358 if (pd->tx_queue_size)
1359 mp->tx_ring_size = pd->tx_queue_size;
1360
1361 if (pd->tx_sram_size) {
1362 mp->tx_sram_size = pd->tx_sram_size;
1363 mp->tx_sram_addr = pd->tx_sram_addr;
1364 }
1365
1366 if (pd->rx_sram_size) {
1367 mp->rx_sram_size = pd->rx_sram_size;
1368 mp->rx_sram_addr = pd->rx_sram_addr;
1369 }
1370
1371 duplex = pd->duplex;
1372 speed = pd->speed;
1373
1374 /* Hook up MII support for ethtool */
1375 mp->mii.dev = dev;
1376 mp->mii.mdio_read = mv643xx_mdio_read;
1377 mp->mii.mdio_write = mv643xx_mdio_write;
1378 mp->mii.phy_id = ethernet_phy_get(port_num);
1379 mp->mii.phy_id_mask = 0x3f;
1380 mp->mii.reg_num_mask = 0x1f;
1381
1382 err = ethernet_phy_detect(port_num);
1383 if (err) {
1384 pr_debug("MV643xx ethernet port %d: "
1385 "No PHY detected at addr %d\n",
1386 port_num, ethernet_phy_get(port_num));
1387 goto out;
1388 }
1389
1390 ethernet_phy_reset(port_num);
1391 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
1392 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1393 mv643xx_eth_update_pscr(dev, &cmd);
1394 mv643xx_set_settings(dev, &cmd);
1395
1396 SET_NETDEV_DEV(dev, &pdev->dev);
1397 err = register_netdev(dev);
1398 if (err)
1399 goto out;
1400
1401 p = dev->dev_addr;
1402 printk(KERN_NOTICE
1403 "%s: port %d with MAC address %s\n",
1404 dev->name, port_num, print_mac(mac, p));
1405
1406 if (dev->features & NETIF_F_SG)
1407 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1408
1409 if (dev->features & NETIF_F_IP_CSUM)
1410 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1411 dev->name);
1412
1413 #ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1414 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1415 #endif
1416
1417 #ifdef MV643XX_COAL
1418 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1419 dev->name);
1420 #endif
1421
1422 #ifdef MV643XX_NAPI
1423 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1424 #endif
1425
1426 if (mp->tx_sram_size > 0)
1427 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1428
1429 return 0;
1430
1431 out:
1432 free_netdev(dev);
1433
1434 return err;
1435 }
1436
1437 static int mv643xx_eth_remove(struct platform_device *pdev)
1438 {
1439 struct net_device *dev = platform_get_drvdata(pdev);
1440
1441 unregister_netdev(dev);
1442 flush_scheduled_work();
1443
1444 free_netdev(dev);
1445 platform_set_drvdata(pdev, NULL);
1446 return 0;
1447 }
1448
1449 static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1450 {
1451 struct resource *res;
1452
1453 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1454
1455 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456 if (res == NULL)
1457 return -ENODEV;
1458
1459 mv643xx_eth_base = ioremap(res->start, res->end - res->start + 1);
1460 if (mv643xx_eth_base == NULL)
1461 return -ENOMEM;
1462
1463 return 0;
1464
1465 }
1466
1467 static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1468 {
1469 iounmap(mv643xx_eth_base);
1470 mv643xx_eth_base = NULL;
1471
1472 return 0;
1473 }
1474
1475 static void mv643xx_eth_shutdown(struct platform_device *pdev)
1476 {
1477 struct net_device *dev = platform_get_drvdata(pdev);
1478 struct mv643xx_private *mp = netdev_priv(dev);
1479 unsigned int port_num = mp->port_num;
1480
1481 /* Mask all interrupts on ethernet port */
1482 mv_write(INTERRUPT_MASK_REG(port_num), 0);
1483 mv_read (INTERRUPT_MASK_REG(port_num));
1484
1485 eth_port_reset(port_num);
1486 }
1487
1488 static struct platform_driver mv643xx_eth_driver = {
1489 .probe = mv643xx_eth_probe,
1490 .remove = mv643xx_eth_remove,
1491 .shutdown = mv643xx_eth_shutdown,
1492 .driver = {
1493 .name = MV643XX_ETH_NAME,
1494 },
1495 };
1496
1497 static struct platform_driver mv643xx_eth_shared_driver = {
1498 .probe = mv643xx_eth_shared_probe,
1499 .remove = mv643xx_eth_shared_remove,
1500 .driver = {
1501 .name = MV643XX_ETH_SHARED_NAME,
1502 },
1503 };
1504
1505 /*
1506 * mv643xx_init_module
1507 *
1508 * Registers the network drivers into the Linux kernel
1509 *
1510 * Input : N/A
1511 *
1512 * Output : N/A
1513 */
1514 static int __init mv643xx_init_module(void)
1515 {
1516 int rc;
1517
1518 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1519 if (!rc) {
1520 rc = platform_driver_register(&mv643xx_eth_driver);
1521 if (rc)
1522 platform_driver_unregister(&mv643xx_eth_shared_driver);
1523 }
1524 return rc;
1525 }
1526
1527 /*
1528 * mv643xx_cleanup_module
1529 *
1530 * Registers the network drivers into the Linux kernel
1531 *
1532 * Input : N/A
1533 *
1534 * Output : N/A
1535 */
1536 static void __exit mv643xx_cleanup_module(void)
1537 {
1538 platform_driver_unregister(&mv643xx_eth_driver);
1539 platform_driver_unregister(&mv643xx_eth_shared_driver);
1540 }
1541
1542 module_init(mv643xx_init_module);
1543 module_exit(mv643xx_cleanup_module);
1544
1545 MODULE_LICENSE("GPL");
1546 MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1547 " and Dale Farnsworth");
1548 MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1549
1550 /*
1551 * The second part is the low level driver of the gigE ethernet ports.
1552 */
1553
1554 /*
1555 * Marvell's Gigabit Ethernet controller low level driver
1556 *
1557 * DESCRIPTION:
1558 * This file introduce low level API to Marvell's Gigabit Ethernet
1559 * controller. This Gigabit Ethernet Controller driver API controls
1560 * 1) Operations (i.e. port init, start, reset etc').
1561 * 2) Data flow (i.e. port send, receive etc').
1562 * Each Gigabit Ethernet port is controlled via
1563 * struct mv643xx_private.
1564 * This struct includes user configuration information as well as
1565 * driver internal data needed for its operations.
1566 *
1567 * Supported Features:
1568 * - This low level driver is OS independent. Allocating memory for
1569 * the descriptor rings and buffers are not within the scope of
1570 * this driver.
1571 * - The user is free from Rx/Tx queue managing.
1572 * - This low level driver introduce functionality API that enable
1573 * the to operate Marvell's Gigabit Ethernet Controller in a
1574 * convenient way.
1575 * - Simple Gigabit Ethernet port operation API.
1576 * - Simple Gigabit Ethernet port data flow API.
1577 * - Data flow and operation API support per queue functionality.
1578 * - Support cached descriptors for better performance.
1579 * - Enable access to all four DRAM banks and internal SRAM memory
1580 * spaces.
1581 * - PHY access and control API.
1582 * - Port control register configuration API.
1583 * - Full control over Unicast and Multicast MAC configurations.
1584 *
1585 * Operation flow:
1586 *
1587 * Initialization phase
1588 * This phase complete the initialization of the the
1589 * mv643xx_private struct.
1590 * User information regarding port configuration has to be set
1591 * prior to calling the port initialization routine.
1592 *
1593 * In this phase any port Tx/Rx activity is halted, MIB counters
1594 * are cleared, PHY address is set according to user parameter and
1595 * access to DRAM and internal SRAM memory spaces.
1596 *
1597 * Driver ring initialization
1598 * Allocating memory for the descriptor rings and buffers is not
1599 * within the scope of this driver. Thus, the user is required to
1600 * allocate memory for the descriptors ring and buffers. Those
1601 * memory parameters are used by the Rx and Tx ring initialization
1602 * routines in order to curve the descriptor linked list in a form
1603 * of a ring.
1604 * Note: Pay special attention to alignment issues when using
1605 * cached descriptors/buffers. In this phase the driver store
1606 * information in the mv643xx_private struct regarding each queue
1607 * ring.
1608 *
1609 * Driver start
1610 * This phase prepares the Ethernet port for Rx and Tx activity.
1611 * It uses the information stored in the mv643xx_private struct to
1612 * initialize the various port registers.
1613 *
1614 * Data flow:
1615 * All packet references to/from the driver are done using
1616 * struct pkt_info.
1617 * This struct is a unified struct used with Rx and Tx operations.
1618 * This way the user is not required to be familiar with neither
1619 * Tx nor Rx descriptors structures.
1620 * The driver's descriptors rings are management by indexes.
1621 * Those indexes controls the ring resources and used to indicate
1622 * a SW resource error:
1623 * 'current'
1624 * This index points to the current available resource for use. For
1625 * example in Rx process this index will point to the descriptor
1626 * that will be passed to the user upon calling the receive
1627 * routine. In Tx process, this index will point to the descriptor
1628 * that will be assigned with the user packet info and transmitted.
1629 * 'used'
1630 * This index points to the descriptor that need to restore its
1631 * resources. For example in Rx process, using the Rx buffer return
1632 * API will attach the buffer returned in packet info to the
1633 * descriptor pointed by 'used'. In Tx process, using the Tx
1634 * descriptor return will merely return the user packet info with
1635 * the command status of the transmitted buffer pointed by the
1636 * 'used' index. Nevertheless, it is essential to use this routine
1637 * to update the 'used' index.
1638 * 'first'
1639 * This index supports Tx Scatter-Gather. It points to the first
1640 * descriptor of a packet assembled of multiple buffers. For
1641 * example when in middle of Such packet we have a Tx resource
1642 * error the 'curr' index get the value of 'first' to indicate
1643 * that the ring returned to its state before trying to transmit
1644 * this packet.
1645 *
1646 * Receive operation:
1647 * The eth_port_receive API set the packet information struct,
1648 * passed by the caller, with received information from the
1649 * 'current' SDMA descriptor.
1650 * It is the user responsibility to return this resource back
1651 * to the Rx descriptor ring to enable the reuse of this source.
1652 * Return Rx resource is done using the eth_rx_return_buff API.
1653 *
1654 * Prior to calling the initialization routine eth_port_init() the user
1655 * must set the following fields under mv643xx_private struct:
1656 * port_num User Ethernet port number.
1657 * port_config User port configuration value.
1658 * port_config_extend User port config extend value.
1659 * port_sdma_config User port SDMA config value.
1660 * port_serial_control User port serial control value.
1661 *
1662 * This driver data flow is done using the struct pkt_info which
1663 * is a unified struct for Rx and Tx operations:
1664 *
1665 * byte_cnt Tx/Rx descriptor buffer byte count.
1666 * l4i_chk CPU provided TCP Checksum. For Tx operation
1667 * only.
1668 * cmd_sts Tx/Rx descriptor command status.
1669 * buf_ptr Tx/Rx descriptor buffer pointer.
1670 * return_info Tx/Rx user resource return information.
1671 */
1672
1673 /* PHY routines */
1674 static int ethernet_phy_get(unsigned int eth_port_num);
1675 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1676
1677 /* Ethernet Port routines */
1678 static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1679
1680 /*
1681 * eth_port_init - Initialize the Ethernet port driver
1682 *
1683 * DESCRIPTION:
1684 * This function prepares the ethernet port to start its activity:
1685 * 1) Completes the ethernet port driver struct initialization toward port
1686 * start routine.
1687 * 2) Resets the device to a quiescent state in case of warm reboot.
1688 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1689 * 4) Clean MAC tables. The reset status of those tables is unknown.
1690 * 5) Set PHY address.
1691 * Note: Call this routine prior to eth_port_start routine and after
1692 * setting user values in the user fields of Ethernet port control
1693 * struct.
1694 *
1695 * INPUT:
1696 * struct mv643xx_private *mp Ethernet port control struct
1697 *
1698 * OUTPUT:
1699 * See description.
1700 *
1701 * RETURN:
1702 * None.
1703 */
1704 static void eth_port_init(struct mv643xx_private *mp)
1705 {
1706 mp->rx_resource_err = 0;
1707
1708 eth_port_reset(mp->port_num);
1709
1710 eth_port_init_mac_tables(mp->port_num);
1711 }
1712
1713 /*
1714 * eth_port_start - Start the Ethernet port activity.
1715 *
1716 * DESCRIPTION:
1717 * This routine prepares the Ethernet port for Rx and Tx activity:
1718 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1719 * has been initialized a descriptor's ring (using
1720 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1721 * 2. Initialize and enable the Ethernet configuration port by writing to
1722 * the port's configuration and command registers.
1723 * 3. Initialize and enable the SDMA by writing to the SDMA's
1724 * configuration and command registers. After completing these steps,
1725 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1726 *
1727 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1728 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1729 * and ether_init_rx_desc_ring for Rx queues).
1730 *
1731 * INPUT:
1732 * dev - a pointer to the required interface
1733 *
1734 * OUTPUT:
1735 * Ethernet port is ready to receive and transmit.
1736 *
1737 * RETURN:
1738 * None.
1739 */
1740 static void eth_port_start(struct net_device *dev)
1741 {
1742 struct mv643xx_private *mp = netdev_priv(dev);
1743 unsigned int port_num = mp->port_num;
1744 int tx_curr_desc, rx_curr_desc;
1745 u32 pscr;
1746 struct ethtool_cmd ethtool_cmd;
1747
1748 /* Assignment of Tx CTRP of given queue */
1749 tx_curr_desc = mp->tx_curr_desc_q;
1750 mv_write(TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1751 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1752
1753 /* Assignment of Rx CRDP of given queue */
1754 rx_curr_desc = mp->rx_curr_desc_q;
1755 mv_write(RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1756 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1757
1758 /* Add the assigned Ethernet address to the port's address table */
1759 eth_port_uc_addr_set(port_num, dev->dev_addr);
1760
1761 /* Assign port configuration and command. */
1762 mv_write(PORT_CONFIG_REG(port_num),
1763 PORT_CONFIG_DEFAULT_VALUE);
1764
1765 mv_write(PORT_CONFIG_EXTEND_REG(port_num),
1766 PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1767
1768 pscr = mv_read(PORT_SERIAL_CONTROL_REG(port_num));
1769
1770 pscr &= ~(SERIAL_PORT_ENABLE | FORCE_LINK_PASS);
1771 mv_write(PORT_SERIAL_CONTROL_REG(port_num), pscr);
1772
1773 pscr |= DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1774 DISABLE_AUTO_NEG_SPEED_GMII |
1775 DISABLE_AUTO_NEG_FOR_DUPLX |
1776 DO_NOT_FORCE_LINK_FAIL |
1777 SERIAL_PORT_CONTROL_RESERVED;
1778
1779 mv_write(PORT_SERIAL_CONTROL_REG(port_num), pscr);
1780
1781 pscr |= SERIAL_PORT_ENABLE;
1782 mv_write(PORT_SERIAL_CONTROL_REG(port_num), pscr);
1783
1784 /* Assign port SDMA configuration */
1785 mv_write(SDMA_CONFIG_REG(port_num),
1786 PORT_SDMA_CONFIG_DEFAULT_VALUE);
1787
1788 /* Enable port Rx. */
1789 mv643xx_eth_port_enable_rx(port_num, ETH_RX_QUEUES_ENABLED);
1790
1791 /* Disable port bandwidth limits by clearing MTU register */
1792 mv_write(MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1793
1794 /* save phy settings across reset */
1795 mv643xx_get_settings(dev, &ethtool_cmd);
1796 ethernet_phy_reset(mp->port_num);
1797 mv643xx_set_settings(dev, &ethtool_cmd);
1798 }
1799
1800 /*
1801 * eth_port_uc_addr_set - Write a MAC address into the port's hw registers
1802 */
1803 static void eth_port_uc_addr_set(unsigned int port_num, unsigned char *p_addr)
1804 {
1805 unsigned int mac_h;
1806 unsigned int mac_l;
1807 int table;
1808
1809 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1810 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1811 (p_addr[3] << 0);
1812
1813 mv_write(MAC_ADDR_LOW(port_num), mac_l);
1814 mv_write(MAC_ADDR_HIGH(port_num), mac_h);
1815
1816 /* Accept frames with this address */
1817 table = DA_FILTER_UNICAST_TABLE_BASE(port_num);
1818 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1819 }
1820
1821 /*
1822 * eth_port_uc_addr_get - Read the MAC address from the port's hw registers
1823 */
1824 static void eth_port_uc_addr_get(unsigned int port_num, unsigned char *p_addr)
1825 {
1826 unsigned int mac_h;
1827 unsigned int mac_l;
1828
1829 mac_h = mv_read(MAC_ADDR_HIGH(port_num));
1830 mac_l = mv_read(MAC_ADDR_LOW(port_num));
1831
1832 p_addr[0] = (mac_h >> 24) & 0xff;
1833 p_addr[1] = (mac_h >> 16) & 0xff;
1834 p_addr[2] = (mac_h >> 8) & 0xff;
1835 p_addr[3] = mac_h & 0xff;
1836 p_addr[4] = (mac_l >> 8) & 0xff;
1837 p_addr[5] = mac_l & 0xff;
1838 }
1839
1840 /*
1841 * The entries in each table are indexed by a hash of a packet's MAC
1842 * address. One bit in each entry determines whether the packet is
1843 * accepted. There are 4 entries (each 8 bits wide) in each register
1844 * of the table. The bits in each entry are defined as follows:
1845 * 0 Accept=1, Drop=0
1846 * 3-1 Queue (ETH_Q0=0)
1847 * 7-4 Reserved = 0;
1848 */
1849 static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1850 {
1851 unsigned int table_reg;
1852 unsigned int tbl_offset;
1853 unsigned int reg_offset;
1854
1855 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1856 reg_offset = entry % 4; /* Entry offset within the register */
1857
1858 /* Set "accepts frame bit" at specified table entry */
1859 table_reg = mv_read(table + tbl_offset);
1860 table_reg |= 0x01 << (8 * reg_offset);
1861 mv_write(table + tbl_offset, table_reg);
1862 }
1863
1864 /*
1865 * eth_port_mc_addr - Multicast address settings.
1866 *
1867 * The MV device supports multicast using two tables:
1868 * 1) Special Multicast Table for MAC addresses of the form
1869 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1870 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1871 * Table entries in the DA-Filter table.
1872 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1873 * is used as an index to the Other Multicast Table entries in the
1874 * DA-Filter table. This function calculates the CRC-8bit value.
1875 * In either case, eth_port_set_filter_table_entry() is then called
1876 * to set to set the actual table entry.
1877 */
1878 static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1879 {
1880 unsigned int mac_h;
1881 unsigned int mac_l;
1882 unsigned char crc_result = 0;
1883 int table;
1884 int mac_array[48];
1885 int crc[8];
1886 int i;
1887
1888 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1889 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1890 table = DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1891 (eth_port_num);
1892 eth_port_set_filter_table_entry(table, p_addr[5]);
1893 return;
1894 }
1895
1896 /* Calculate CRC-8 out of the given address */
1897 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1898 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1899 (p_addr[4] << 8) | (p_addr[5] << 0);
1900
1901 for (i = 0; i < 32; i++)
1902 mac_array[i] = (mac_l >> i) & 0x1;
1903 for (i = 32; i < 48; i++)
1904 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1905
1906 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1907 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1908 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1909 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1910 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1911
1912 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1913 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1914 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
1915 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
1916 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
1917 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
1918 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
1919
1920 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
1921 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
1922 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
1923 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
1924 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
1925 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
1926
1927 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1928 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
1929 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
1930 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
1931 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
1932 mac_array[3] ^ mac_array[2] ^ mac_array[1];
1933
1934 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
1935 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
1936 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
1937 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
1938 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
1939 mac_array[3] ^ mac_array[2];
1940
1941 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
1942 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
1943 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
1944 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
1945 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
1946 mac_array[4] ^ mac_array[3];
1947
1948 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
1949 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
1950 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
1951 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
1952 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
1953 mac_array[4];
1954
1955 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
1956 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
1957 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
1958 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
1959 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
1960
1961 for (i = 0; i < 8; i++)
1962 crc_result = crc_result | (crc[i] << i);
1963
1964 table = DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
1965 eth_port_set_filter_table_entry(table, crc_result);
1966 }
1967
1968 /*
1969 * Set the entire multicast list based on dev->mc_list.
1970 */
1971 static void eth_port_set_multicast_list(struct net_device *dev)
1972 {
1973
1974 struct dev_mc_list *mc_list;
1975 int i;
1976 int table_index;
1977 struct mv643xx_private *mp = netdev_priv(dev);
1978 unsigned int eth_port_num = mp->port_num;
1979
1980 /* If the device is in promiscuous mode or in all multicast mode,
1981 * we will fully populate both multicast tables with accept.
1982 * This is guaranteed to yield a match on all multicast addresses...
1983 */
1984 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
1985 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
1986 /* Set all entries in DA filter special multicast
1987 * table (Ex_dFSMT)
1988 * Set for ETH_Q0 for now
1989 * Bits
1990 * 0 Accept=1, Drop=0
1991 * 3-1 Queue ETH_Q0=0
1992 * 7-4 Reserved = 0;
1993 */
1994 mv_write(DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
1995
1996 /* Set all entries in DA filter other multicast
1997 * table (Ex_dFOMT)
1998 * Set for ETH_Q0 for now
1999 * Bits
2000 * 0 Accept=1, Drop=0
2001 * 3-1 Queue ETH_Q0=0
2002 * 7-4 Reserved = 0;
2003 */
2004 mv_write(DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2005 }
2006 return;
2007 }
2008
2009 /* We will clear out multicast tables every time we get the list.
2010 * Then add the entire new list...
2011 */
2012 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2013 /* Clear DA filter special multicast table (Ex_dFSMT) */
2014 mv_write(DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2015 (eth_port_num) + table_index, 0);
2016
2017 /* Clear DA filter other multicast table (Ex_dFOMT) */
2018 mv_write(DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2019 (eth_port_num) + table_index, 0);
2020 }
2021
2022 /* Get pointer to net_device multicast list and add each one... */
2023 for (i = 0, mc_list = dev->mc_list;
2024 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2025 i++, mc_list = mc_list->next)
2026 if (mc_list->dmi_addrlen == 6)
2027 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2028 }
2029
2030 /*
2031 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2032 *
2033 * DESCRIPTION:
2034 * Go through all the DA filter tables (Unicast, Special Multicast &
2035 * Other Multicast) and set each entry to 0.
2036 *
2037 * INPUT:
2038 * unsigned int eth_port_num Ethernet Port number.
2039 *
2040 * OUTPUT:
2041 * Multicast and Unicast packets are rejected.
2042 *
2043 * RETURN:
2044 * None.
2045 */
2046 static void eth_port_init_mac_tables(unsigned int eth_port_num)
2047 {
2048 int table_index;
2049
2050 /* Clear DA filter unicast table (Ex_dFUT) */
2051 for (table_index = 0; table_index <= 0xC; table_index += 4)
2052 mv_write(DA_FILTER_UNICAST_TABLE_BASE
2053 (eth_port_num) + table_index, 0);
2054
2055 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2056 /* Clear DA filter special multicast table (Ex_dFSMT) */
2057 mv_write(DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2058 (eth_port_num) + table_index, 0);
2059 /* Clear DA filter other multicast table (Ex_dFOMT) */
2060 mv_write(DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2061 (eth_port_num) + table_index, 0);
2062 }
2063 }
2064
2065 /*
2066 * eth_clear_mib_counters - Clear all MIB counters
2067 *
2068 * DESCRIPTION:
2069 * This function clears all MIB counters of a specific ethernet port.
2070 * A read from the MIB counter will reset the counter.
2071 *
2072 * INPUT:
2073 * unsigned int eth_port_num Ethernet Port number.
2074 *
2075 * OUTPUT:
2076 * After reading all MIB counters, the counters resets.
2077 *
2078 * RETURN:
2079 * MIB counter value.
2080 *
2081 */
2082 static void eth_clear_mib_counters(unsigned int eth_port_num)
2083 {
2084 int i;
2085
2086 /* Perform dummy reads from MIB counters */
2087 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2088 i += 4)
2089 mv_read(MIB_COUNTERS_BASE(eth_port_num) + i);
2090 }
2091
2092 static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2093 {
2094 return mv_read(MIB_COUNTERS_BASE(mp->port_num) + offset);
2095 }
2096
2097 static void eth_update_mib_counters(struct mv643xx_private *mp)
2098 {
2099 struct mv643xx_mib_counters *p = &mp->mib_counters;
2100 int offset;
2101
2102 p->good_octets_received +=
2103 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2104 p->good_octets_received +=
2105 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2106
2107 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2108 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2109 offset += 4)
2110 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2111
2112 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2113 p->good_octets_sent +=
2114 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2115
2116 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2117 offset <= ETH_MIB_LATE_COLLISION;
2118 offset += 4)
2119 *(u32 *)((char *)p + offset) += read_mib(mp, offset);
2120 }
2121
2122 /*
2123 * ethernet_phy_detect - Detect whether a phy is present
2124 *
2125 * DESCRIPTION:
2126 * This function tests whether there is a PHY present on
2127 * the specified port.
2128 *
2129 * INPUT:
2130 * unsigned int eth_port_num Ethernet Port number.
2131 *
2132 * OUTPUT:
2133 * None
2134 *
2135 * RETURN:
2136 * 0 on success
2137 * -ENODEV on failure
2138 *
2139 */
2140 static int ethernet_phy_detect(unsigned int port_num)
2141 {
2142 unsigned int phy_reg_data0;
2143 int auto_neg;
2144
2145 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2146 auto_neg = phy_reg_data0 & 0x1000;
2147 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2148 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2149
2150 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2151 if ((phy_reg_data0 & 0x1000) == auto_neg)
2152 return -ENODEV; /* change didn't take */
2153
2154 phy_reg_data0 ^= 0x1000;
2155 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2156 return 0;
2157 }
2158
2159 /*
2160 * ethernet_phy_get - Get the ethernet port PHY address.
2161 *
2162 * DESCRIPTION:
2163 * This routine returns the given ethernet port PHY address.
2164 *
2165 * INPUT:
2166 * unsigned int eth_port_num Ethernet Port number.
2167 *
2168 * OUTPUT:
2169 * None.
2170 *
2171 * RETURN:
2172 * PHY address.
2173 *
2174 */
2175 static int ethernet_phy_get(unsigned int eth_port_num)
2176 {
2177 unsigned int reg_data;
2178
2179 reg_data = mv_read(PHY_ADDR_REG);
2180
2181 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2182 }
2183
2184 /*
2185 * ethernet_phy_set - Set the ethernet port PHY address.
2186 *
2187 * DESCRIPTION:
2188 * This routine sets the given ethernet port PHY address.
2189 *
2190 * INPUT:
2191 * unsigned int eth_port_num Ethernet Port number.
2192 * int phy_addr PHY address.
2193 *
2194 * OUTPUT:
2195 * None.
2196 *
2197 * RETURN:
2198 * None.
2199 *
2200 */
2201 static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2202 {
2203 u32 reg_data;
2204 int addr_shift = 5 * eth_port_num;
2205
2206 reg_data = mv_read(PHY_ADDR_REG);
2207 reg_data &= ~(0x1f << addr_shift);
2208 reg_data |= (phy_addr & 0x1f) << addr_shift;
2209 mv_write(PHY_ADDR_REG, reg_data);
2210 }
2211
2212 /*
2213 * ethernet_phy_reset - Reset Ethernet port PHY.
2214 *
2215 * DESCRIPTION:
2216 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2217 *
2218 * INPUT:
2219 * unsigned int eth_port_num Ethernet Port number.
2220 *
2221 * OUTPUT:
2222 * The PHY is reset.
2223 *
2224 * RETURN:
2225 * None.
2226 *
2227 */
2228 static void ethernet_phy_reset(unsigned int eth_port_num)
2229 {
2230 unsigned int phy_reg_data;
2231
2232 /* Reset the PHY */
2233 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2234 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2235 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2236
2237 /* wait for PHY to come out of reset */
2238 do {
2239 udelay(1);
2240 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2241 } while (phy_reg_data & 0x8000);
2242 }
2243
2244 static void mv643xx_eth_port_enable_tx(unsigned int port_num,
2245 unsigned int queues)
2246 {
2247 mv_write(TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
2248 }
2249
2250 static void mv643xx_eth_port_enable_rx(unsigned int port_num,
2251 unsigned int queues)
2252 {
2253 mv_write(RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
2254 }
2255
2256 static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2257 {
2258 u32 queues;
2259
2260 /* Stop Tx port activity. Check port Tx activity. */
2261 queues = mv_read(TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF;
2262 if (queues) {
2263 /* Issue stop command for active queues only */
2264 mv_write(TRANSMIT_QUEUE_COMMAND_REG(port_num), (queues << 8));
2265
2266 /* Wait for all Tx activity to terminate. */
2267 /* Check port cause register that all Tx queues are stopped */
2268 while (mv_read(TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF)
2269 udelay(PHY_WAIT_MICRO_SECONDS);
2270
2271 /* Wait for Tx FIFO to empty */
2272 while (mv_read(PORT_STATUS_REG(port_num)) &
2273 ETH_PORT_TX_FIFO_EMPTY)
2274 udelay(PHY_WAIT_MICRO_SECONDS);
2275 }
2276
2277 return queues;
2278 }
2279
2280 static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2281 {
2282 u32 queues;
2283
2284 /* Stop Rx port activity. Check port Rx activity. */
2285 queues = mv_read(RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF;
2286 if (queues) {
2287 /* Issue stop command for active queues only */
2288 mv_write(RECEIVE_QUEUE_COMMAND_REG(port_num), (queues << 8));
2289
2290 /* Wait for all Rx activity to terminate. */
2291 /* Check port cause register that all Rx queues are stopped */
2292 while (mv_read(RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF)
2293 udelay(PHY_WAIT_MICRO_SECONDS);
2294 }
2295
2296 return queues;
2297 }
2298
2299 /*
2300 * eth_port_reset - Reset Ethernet port
2301 *
2302 * DESCRIPTION:
2303 * This routine resets the chip by aborting any SDMA engine activity and
2304 * clearing the MIB counters. The Receiver and the Transmit unit are in
2305 * idle state after this command is performed and the port is disabled.
2306 *
2307 * INPUT:
2308 * unsigned int eth_port_num Ethernet Port number.
2309 *
2310 * OUTPUT:
2311 * Channel activity is halted.
2312 *
2313 * RETURN:
2314 * None.
2315 *
2316 */
2317 static void eth_port_reset(unsigned int port_num)
2318 {
2319 unsigned int reg_data;
2320
2321 mv643xx_eth_port_disable_tx(port_num);
2322 mv643xx_eth_port_disable_rx(port_num);
2323
2324 /* Clear all MIB counters */
2325 eth_clear_mib_counters(port_num);
2326
2327 /* Reset the Enable bit in the Configuration Register */
2328 reg_data = mv_read(PORT_SERIAL_CONTROL_REG(port_num));
2329 reg_data &= ~(SERIAL_PORT_ENABLE |
2330 DO_NOT_FORCE_LINK_FAIL |
2331 FORCE_LINK_PASS);
2332 mv_write(PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2333 }
2334
2335
2336 /*
2337 * eth_port_read_smi_reg - Read PHY registers
2338 *
2339 * DESCRIPTION:
2340 * This routine utilize the SMI interface to interact with the PHY in
2341 * order to perform PHY register read.
2342 *
2343 * INPUT:
2344 * unsigned int port_num Ethernet Port number.
2345 * unsigned int phy_reg PHY register address offset.
2346 * unsigned int *value Register value buffer.
2347 *
2348 * OUTPUT:
2349 * Write the value of a specified PHY register into given buffer.
2350 *
2351 * RETURN:
2352 * false if the PHY is busy or read data is not in valid state.
2353 * true otherwise.
2354 *
2355 */
2356 static void eth_port_read_smi_reg(unsigned int port_num,
2357 unsigned int phy_reg, unsigned int *value)
2358 {
2359 int phy_addr = ethernet_phy_get(port_num);
2360 unsigned long flags;
2361 int i;
2362
2363 /* the SMI register is a shared resource */
2364 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2365
2366 /* wait for the SMI register to become available */
2367 for (i = 0; mv_read(SMI_REG) & ETH_SMI_BUSY; i++) {
2368 if (i == PHY_WAIT_ITERATIONS) {
2369 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2370 goto out;
2371 }
2372 udelay(PHY_WAIT_MICRO_SECONDS);
2373 }
2374
2375 mv_write(SMI_REG,
2376 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2377
2378 /* now wait for the data to be valid */
2379 for (i = 0; !(mv_read(SMI_REG) & ETH_SMI_READ_VALID); i++) {
2380 if (i == PHY_WAIT_ITERATIONS) {
2381 printk("mv643xx PHY read timeout, port %d\n", port_num);
2382 goto out;
2383 }
2384 udelay(PHY_WAIT_MICRO_SECONDS);
2385 }
2386
2387 *value = mv_read(SMI_REG) & 0xffff;
2388 out:
2389 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2390 }
2391
2392 /*
2393 * eth_port_write_smi_reg - Write to PHY registers
2394 *
2395 * DESCRIPTION:
2396 * This routine utilize the SMI interface to interact with the PHY in
2397 * order to perform writes to PHY registers.
2398 *
2399 * INPUT:
2400 * unsigned int eth_port_num Ethernet Port number.
2401 * unsigned int phy_reg PHY register address offset.
2402 * unsigned int value Register value.
2403 *
2404 * OUTPUT:
2405 * Write the given value to the specified PHY register.
2406 *
2407 * RETURN:
2408 * false if the PHY is busy.
2409 * true otherwise.
2410 *
2411 */
2412 static void eth_port_write_smi_reg(unsigned int eth_port_num,
2413 unsigned int phy_reg, unsigned int value)
2414 {
2415 int phy_addr;
2416 int i;
2417 unsigned long flags;
2418
2419 phy_addr = ethernet_phy_get(eth_port_num);
2420
2421 /* the SMI register is a shared resource */
2422 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2423
2424 /* wait for the SMI register to become available */
2425 for (i = 0; mv_read(SMI_REG) & ETH_SMI_BUSY; i++) {
2426 if (i == PHY_WAIT_ITERATIONS) {
2427 printk("mv643xx PHY busy timeout, port %d\n",
2428 eth_port_num);
2429 goto out;
2430 }
2431 udelay(PHY_WAIT_MICRO_SECONDS);
2432 }
2433
2434 mv_write(SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2435 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2436 out:
2437 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2438 }
2439
2440 /*
2441 * Wrappers for MII support library.
2442 */
2443 static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2444 {
2445 int val;
2446 struct mv643xx_private *mp = netdev_priv(dev);
2447
2448 eth_port_read_smi_reg(mp->port_num, location, &val);
2449 return val;
2450 }
2451
2452 static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2453 {
2454 struct mv643xx_private *mp = netdev_priv(dev);
2455 eth_port_write_smi_reg(mp->port_num, location, val);
2456 }
2457
2458 /*
2459 * eth_port_receive - Get received information from Rx ring.
2460 *
2461 * DESCRIPTION:
2462 * This routine returns the received data to the caller. There is no
2463 * data copying during routine operation. All information is returned
2464 * using pointer to packet information struct passed from the caller.
2465 * If the routine exhausts Rx ring resources then the resource error flag
2466 * is set.
2467 *
2468 * INPUT:
2469 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2470 * struct pkt_info *p_pkt_info User packet buffer.
2471 *
2472 * OUTPUT:
2473 * Rx ring current and used indexes are updated.
2474 *
2475 * RETURN:
2476 * ETH_ERROR in case the routine can not access Rx desc ring.
2477 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2478 * ETH_END_OF_JOB if there is no received data.
2479 * ETH_OK otherwise.
2480 */
2481 static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2482 struct pkt_info *p_pkt_info)
2483 {
2484 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2485 volatile struct eth_rx_desc *p_rx_desc;
2486 unsigned int command_status;
2487 unsigned long flags;
2488
2489 /* Do not process Rx ring in case of Rx ring resource error */
2490 if (mp->rx_resource_err)
2491 return ETH_QUEUE_FULL;
2492
2493 spin_lock_irqsave(&mp->lock, flags);
2494
2495 /* Get the Rx Desc ring 'curr and 'used' indexes */
2496 rx_curr_desc = mp->rx_curr_desc_q;
2497 rx_used_desc = mp->rx_used_desc_q;
2498
2499 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2500
2501 /* The following parameters are used to save readings from memory */
2502 command_status = p_rx_desc->cmd_sts;
2503 rmb();
2504
2505 /* Nothing to receive... */
2506 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2507 spin_unlock_irqrestore(&mp->lock, flags);
2508 return ETH_END_OF_JOB;
2509 }
2510
2511 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2512 p_pkt_info->cmd_sts = command_status;
2513 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2514 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2515 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2516
2517 /*
2518 * Clean the return info field to indicate that the
2519 * packet has been moved to the upper layers
2520 */
2521 mp->rx_skb[rx_curr_desc] = NULL;
2522
2523 /* Update current index in data structure */
2524 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2525 mp->rx_curr_desc_q = rx_next_curr_desc;
2526
2527 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2528 if (rx_next_curr_desc == rx_used_desc)
2529 mp->rx_resource_err = 1;
2530
2531 spin_unlock_irqrestore(&mp->lock, flags);
2532
2533 return ETH_OK;
2534 }
2535
2536 /*
2537 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2538 *
2539 * DESCRIPTION:
2540 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2541 * next 'used' descriptor and attached the returned buffer to it.
2542 * In case the Rx ring was in "resource error" condition, where there are
2543 * no available Rx resources, the function resets the resource error flag.
2544 *
2545 * INPUT:
2546 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2547 * struct pkt_info *p_pkt_info Information on returned buffer.
2548 *
2549 * OUTPUT:
2550 * New available Rx resource in Rx descriptor ring.
2551 *
2552 * RETURN:
2553 * ETH_ERROR in case the routine can not access Rx desc ring.
2554 * ETH_OK otherwise.
2555 */
2556 static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2557 struct pkt_info *p_pkt_info)
2558 {
2559 int used_rx_desc; /* Where to return Rx resource */
2560 volatile struct eth_rx_desc *p_used_rx_desc;
2561 unsigned long flags;
2562
2563 spin_lock_irqsave(&mp->lock, flags);
2564
2565 /* Get 'used' Rx descriptor */
2566 used_rx_desc = mp->rx_used_desc_q;
2567 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2568
2569 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2570 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2571 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2572
2573 /* Flush the write pipe */
2574
2575 /* Return the descriptor to DMA ownership */
2576 wmb();
2577 p_used_rx_desc->cmd_sts =
2578 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2579 wmb();
2580
2581 /* Move the used descriptor pointer to the next descriptor */
2582 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2583
2584 /* Any Rx return cancels the Rx resource error status */
2585 mp->rx_resource_err = 0;
2586
2587 spin_unlock_irqrestore(&mp->lock, flags);
2588
2589 return ETH_OK;
2590 }
2591
2592 /************* Begin ethtool support *************************/
2593
2594 struct mv643xx_stats {
2595 char stat_string[ETH_GSTRING_LEN];
2596 int sizeof_stat;
2597 int stat_offset;
2598 };
2599
2600 #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2601 offsetof(struct mv643xx_private, m)
2602
2603 static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2604 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2605 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2606 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2607 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2608 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2609 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2610 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2611 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2612 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2613 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2614 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2615 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2616 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2617 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2618 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2619 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2620 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2621 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2622 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2623 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2624 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2625 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2626 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2627 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2628 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2629 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2630 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2631 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2632 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2633 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2634 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2635 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2636 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2637 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2638 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2639 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2640 { "collision", MV643XX_STAT(mib_counters.collision) },
2641 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2642 };
2643
2644 #define MV643XX_STATS_LEN ARRAY_SIZE(mv643xx_gstrings_stats)
2645
2646 static void mv643xx_get_drvinfo(struct net_device *netdev,
2647 struct ethtool_drvinfo *drvinfo)
2648 {
2649 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2650 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2651 strncpy(drvinfo->fw_version, "N/A", 32);
2652 strncpy(drvinfo->bus_info, "mv643xx", 32);
2653 drvinfo->n_stats = MV643XX_STATS_LEN;
2654 }
2655
2656 static int mv643xx_get_sset_count(struct net_device *netdev, int sset)
2657 {
2658 switch (sset) {
2659 case ETH_SS_STATS:
2660 return MV643XX_STATS_LEN;
2661 default:
2662 return -EOPNOTSUPP;
2663 }
2664 }
2665
2666 static void mv643xx_get_ethtool_stats(struct net_device *netdev,
2667 struct ethtool_stats *stats, uint64_t *data)
2668 {
2669 struct mv643xx_private *mp = netdev->priv;
2670 int i;
2671
2672 eth_update_mib_counters(mp);
2673
2674 for (i = 0; i < MV643XX_STATS_LEN; i++) {
2675 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2676 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2677 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2678 }
2679 }
2680
2681 static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
2682 uint8_t *data)
2683 {
2684 int i;
2685
2686 switch(stringset) {
2687 case ETH_SS_STATS:
2688 for (i=0; i < MV643XX_STATS_LEN; i++) {
2689 memcpy(data + i * ETH_GSTRING_LEN,
2690 mv643xx_gstrings_stats[i].stat_string,
2691 ETH_GSTRING_LEN);
2692 }
2693 break;
2694 }
2695 }
2696
2697 static u32 mv643xx_eth_get_link(struct net_device *dev)
2698 {
2699 struct mv643xx_private *mp = netdev_priv(dev);
2700
2701 return mii_link_ok(&mp->mii);
2702 }
2703
2704 static int mv643xx_eth_nway_restart(struct net_device *dev)
2705 {
2706 struct mv643xx_private *mp = netdev_priv(dev);
2707
2708 return mii_nway_restart(&mp->mii);
2709 }
2710
2711 static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2712 {
2713 struct mv643xx_private *mp = netdev_priv(dev);
2714
2715 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
2716 }
2717
2718 static const struct ethtool_ops mv643xx_ethtool_ops = {
2719 .get_settings = mv643xx_get_settings,
2720 .set_settings = mv643xx_set_settings,
2721 .get_drvinfo = mv643xx_get_drvinfo,
2722 .get_link = mv643xx_eth_get_link,
2723 .set_sg = ethtool_op_set_sg,
2724 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2725 .get_strings = mv643xx_get_strings,
2726 .nway_reset = mv643xx_eth_nway_restart,
2727 };
2728
2729 /************* End ethtool support *************************/
This page took 0.195128 seconds and 4 git commands to generate.