Subject: natsemi: Allow users to disable workaround for DspCfg reset
[deliverable/linux.git] / drivers / net / natsemi.c
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
15
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
20
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
24
25
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
28 */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
59
60 #define RX_OFFSET 2
61
62 /* Updated to recommendations in pci-skeleton v2.03. */
63
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
66
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73
74 static int mtu;
75
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
79
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83
84 static int dspcfg_workaround = 1;
85
86 /* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
88 interoperability.
89 The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8 /* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94
95 /* Operational parameters that are set at compile time. */
96
97 /* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE 16
103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE 32
105
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT (2*HZ)
109
110 #define NATSEMI_HW_TIMEOUT 400
111 #define NATSEMI_TIMER_FREQ 3*HZ
112 #define NATSEMI_PG0_NREGS 64
113 #define NATSEMI_RFDR_NREGS 8
114 #define NATSEMI_PG1_NREGS 4
115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
119
120 /* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
123 */
124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
128
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] __devinitdata =
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
134 KERN_INFO " http://www.scyld.com/network/natsemi.html\n"
135 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
136
137 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
138 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
139 MODULE_LICENSE("GPL");
140
141 module_param(mtu, int, 0);
142 module_param(debug, int, 0);
143 module_param(rx_copybreak, int, 0);
144 module_param(dspcfg_workaround, int, 1);
145 module_param_array(options, int, NULL, 0);
146 module_param_array(full_duplex, int, NULL, 0);
147 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
148 MODULE_PARM_DESC(debug, "DP8381x default debug level");
149 MODULE_PARM_DESC(rx_copybreak,
150 "DP8381x copy breakpoint for copy-only-tiny-frames");
151 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
152 MODULE_PARM_DESC(options,
153 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
154 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
155
156 /*
157 Theory of Operation
158
159 I. Board Compatibility
160
161 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
162 It also works with other chips in in the DP83810 series.
163
164 II. Board-specific settings
165
166 This driver requires the PCI interrupt line to be valid.
167 It honors the EEPROM-set values.
168
169 III. Driver operation
170
171 IIIa. Ring buffers
172
173 This driver uses two statically allocated fixed-size descriptor lists
174 formed into rings by a branch from the final descriptor to the beginning of
175 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
176 The NatSemi design uses a 'next descriptor' pointer that the driver forms
177 into a list.
178
179 IIIb/c. Transmit/Receive Structure
180
181 This driver uses a zero-copy receive and transmit scheme.
182 The driver allocates full frame size skbuffs for the Rx ring buffers at
183 open() time and passes the skb->data field to the chip as receive data
184 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
185 a fresh skbuff is allocated and the frame is copied to the new skbuff.
186 When the incoming frame is larger, the skbuff is passed directly up the
187 protocol stack. Buffers consumed this way are replaced by newly allocated
188 skbuffs in a later phase of receives.
189
190 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
191 using a full-sized skbuff for small frames vs. the copying costs of larger
192 frames. New boards are typically used in generously configured machines
193 and the underfilled buffers have negligible impact compared to the benefit of
194 a single allocation size, so the default value of zero results in never
195 copying packets. When copying is done, the cost is usually mitigated by using
196 a combined copy/checksum routine. Copying also preloads the cache, which is
197 most useful with small frames.
198
199 A subtle aspect of the operation is that unaligned buffers are not permitted
200 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
201 longword aligned for further processing. On copies frames are put into the
202 skbuff at an offset of "+2", 16-byte aligning the IP header.
203
204 IIId. Synchronization
205
206 Most operations are synchronized on the np->lock irq spinlock, except the
207 performance critical codepaths:
208
209 The rx process only runs in the interrupt handler. Access from outside
210 the interrupt handler is only permitted after disable_irq().
211
212 The rx process usually runs under the netif_tx_lock. If np->intr_tx_reap
213 is set, then access is permitted under spin_lock_irq(&np->lock).
214
215 Thus configuration functions that want to access everything must call
216 disable_irq(dev->irq);
217 netif_tx_lock_bh(dev);
218 spin_lock_irq(&np->lock);
219
220 IV. Notes
221
222 NatSemi PCI network controllers are very uncommon.
223
224 IVb. References
225
226 http://www.scyld.com/expert/100mbps.html
227 http://www.scyld.com/expert/NWay.html
228 Datasheet is available from:
229 http://www.national.com/pf/DP/DP83815.html
230
231 IVc. Errata
232
233 None characterised.
234 */
235
236
237
238 /*
239 * Support for fibre connections on Am79C874:
240 * This phy needs a special setup when connected to a fibre cable.
241 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
242 */
243 #define PHYID_AM79C874 0x0022561b
244
245 enum {
246 MII_MCTRL = 0x15, /* mode control register */
247 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
248 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
249 };
250
251 enum {
252 NATSEMI_FLAG_IGNORE_PHY = 0x1,
253 };
254
255 /* array of board data directly indexed by pci_tbl[x].driver_data */
256 static const struct {
257 const char *name;
258 unsigned long flags;
259 unsigned int eeprom_size;
260 } natsemi_pci_info[] __devinitdata = {
261 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
262 { "NatSemi DP8381[56]", 0, 24 },
263 };
264
265 static const struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
266 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
267 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
268 { } /* terminate list */
269 };
270 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
271
272 /* Offsets to the device registers.
273 Unlike software-only systems, device drivers interact with complex hardware.
274 It's not useful to define symbolic names for every register bit in the
275 device.
276 */
277 enum register_offsets {
278 ChipCmd = 0x00,
279 ChipConfig = 0x04,
280 EECtrl = 0x08,
281 PCIBusCfg = 0x0C,
282 IntrStatus = 0x10,
283 IntrMask = 0x14,
284 IntrEnable = 0x18,
285 IntrHoldoff = 0x1C, /* DP83816 only */
286 TxRingPtr = 0x20,
287 TxConfig = 0x24,
288 RxRingPtr = 0x30,
289 RxConfig = 0x34,
290 ClkRun = 0x3C,
291 WOLCmd = 0x40,
292 PauseCmd = 0x44,
293 RxFilterAddr = 0x48,
294 RxFilterData = 0x4C,
295 BootRomAddr = 0x50,
296 BootRomData = 0x54,
297 SiliconRev = 0x58,
298 StatsCtrl = 0x5C,
299 StatsData = 0x60,
300 RxPktErrs = 0x60,
301 RxMissed = 0x68,
302 RxCRCErrs = 0x64,
303 BasicControl = 0x80,
304 BasicStatus = 0x84,
305 AnegAdv = 0x90,
306 AnegPeer = 0x94,
307 PhyStatus = 0xC0,
308 MIntrCtrl = 0xC4,
309 MIntrStatus = 0xC8,
310 PhyCtrl = 0xE4,
311
312 /* These are from the spec, around page 78... on a separate table.
313 * The meaning of these registers depend on the value of PGSEL. */
314 PGSEL = 0xCC,
315 PMDCSR = 0xE4,
316 TSTDAT = 0xFC,
317 DSPCFG = 0xF4,
318 SDCFG = 0xF8
319 };
320 /* the values for the 'magic' registers above (PGSEL=1) */
321 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
322 #define TSTDAT_VAL 0x0
323 #define DSPCFG_VAL 0x5040
324 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
325 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
326 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
327 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
328
329 /* misc PCI space registers */
330 enum pci_register_offsets {
331 PCIPM = 0x44,
332 };
333
334 enum ChipCmd_bits {
335 ChipReset = 0x100,
336 RxReset = 0x20,
337 TxReset = 0x10,
338 RxOff = 0x08,
339 RxOn = 0x04,
340 TxOff = 0x02,
341 TxOn = 0x01,
342 };
343
344 enum ChipConfig_bits {
345 CfgPhyDis = 0x200,
346 CfgPhyRst = 0x400,
347 CfgExtPhy = 0x1000,
348 CfgAnegEnable = 0x2000,
349 CfgAneg100 = 0x4000,
350 CfgAnegFull = 0x8000,
351 CfgAnegDone = 0x8000000,
352 CfgFullDuplex = 0x20000000,
353 CfgSpeed100 = 0x40000000,
354 CfgLink = 0x80000000,
355 };
356
357 enum EECtrl_bits {
358 EE_ShiftClk = 0x04,
359 EE_DataIn = 0x01,
360 EE_ChipSelect = 0x08,
361 EE_DataOut = 0x02,
362 MII_Data = 0x10,
363 MII_Write = 0x20,
364 MII_ShiftClk = 0x40,
365 };
366
367 enum PCIBusCfg_bits {
368 EepromReload = 0x4,
369 };
370
371 /* Bits in the interrupt status/mask registers. */
372 enum IntrStatus_bits {
373 IntrRxDone = 0x0001,
374 IntrRxIntr = 0x0002,
375 IntrRxErr = 0x0004,
376 IntrRxEarly = 0x0008,
377 IntrRxIdle = 0x0010,
378 IntrRxOverrun = 0x0020,
379 IntrTxDone = 0x0040,
380 IntrTxIntr = 0x0080,
381 IntrTxErr = 0x0100,
382 IntrTxIdle = 0x0200,
383 IntrTxUnderrun = 0x0400,
384 StatsMax = 0x0800,
385 SWInt = 0x1000,
386 WOLPkt = 0x2000,
387 LinkChange = 0x4000,
388 IntrHighBits = 0x8000,
389 RxStatusFIFOOver = 0x10000,
390 IntrPCIErr = 0xf00000,
391 RxResetDone = 0x1000000,
392 TxResetDone = 0x2000000,
393 IntrAbnormalSummary = 0xCD20,
394 };
395
396 /*
397 * Default Interrupts:
398 * Rx OK, Rx Packet Error, Rx Overrun,
399 * Tx OK, Tx Packet Error, Tx Underrun,
400 * MIB Service, Phy Interrupt, High Bits,
401 * Rx Status FIFO overrun,
402 * Received Target Abort, Received Master Abort,
403 * Signalled System Error, Received Parity Error
404 */
405 #define DEFAULT_INTR 0x00f1cd65
406
407 enum TxConfig_bits {
408 TxDrthMask = 0x3f,
409 TxFlthMask = 0x3f00,
410 TxMxdmaMask = 0x700000,
411 TxMxdma_512 = 0x0,
412 TxMxdma_4 = 0x100000,
413 TxMxdma_8 = 0x200000,
414 TxMxdma_16 = 0x300000,
415 TxMxdma_32 = 0x400000,
416 TxMxdma_64 = 0x500000,
417 TxMxdma_128 = 0x600000,
418 TxMxdma_256 = 0x700000,
419 TxCollRetry = 0x800000,
420 TxAutoPad = 0x10000000,
421 TxMacLoop = 0x20000000,
422 TxHeartIgn = 0x40000000,
423 TxCarrierIgn = 0x80000000
424 };
425
426 /*
427 * Tx Configuration:
428 * - 256 byte DMA burst length
429 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
430 * - 64 bytes initial drain threshold (i.e. begin actual transmission
431 * when 64 byte are in the fifo)
432 * - on tx underruns, increase drain threshold by 64.
433 * - at most use a drain threshold of 1472 bytes: The sum of the fill
434 * threshold and the drain threshold must be less than 2016 bytes.
435 *
436 */
437 #define TX_FLTH_VAL ((512/32) << 8)
438 #define TX_DRTH_VAL_START (64/32)
439 #define TX_DRTH_VAL_INC 2
440 #define TX_DRTH_VAL_LIMIT (1472/32)
441
442 enum RxConfig_bits {
443 RxDrthMask = 0x3e,
444 RxMxdmaMask = 0x700000,
445 RxMxdma_512 = 0x0,
446 RxMxdma_4 = 0x100000,
447 RxMxdma_8 = 0x200000,
448 RxMxdma_16 = 0x300000,
449 RxMxdma_32 = 0x400000,
450 RxMxdma_64 = 0x500000,
451 RxMxdma_128 = 0x600000,
452 RxMxdma_256 = 0x700000,
453 RxAcceptLong = 0x8000000,
454 RxAcceptTx = 0x10000000,
455 RxAcceptRunt = 0x40000000,
456 RxAcceptErr = 0x80000000
457 };
458 #define RX_DRTH_VAL (128/8)
459
460 enum ClkRun_bits {
461 PMEEnable = 0x100,
462 PMEStatus = 0x8000,
463 };
464
465 enum WolCmd_bits {
466 WakePhy = 0x1,
467 WakeUnicast = 0x2,
468 WakeMulticast = 0x4,
469 WakeBroadcast = 0x8,
470 WakeArp = 0x10,
471 WakePMatch0 = 0x20,
472 WakePMatch1 = 0x40,
473 WakePMatch2 = 0x80,
474 WakePMatch3 = 0x100,
475 WakeMagic = 0x200,
476 WakeMagicSecure = 0x400,
477 SecureHack = 0x100000,
478 WokePhy = 0x400000,
479 WokeUnicast = 0x800000,
480 WokeMulticast = 0x1000000,
481 WokeBroadcast = 0x2000000,
482 WokeArp = 0x4000000,
483 WokePMatch0 = 0x8000000,
484 WokePMatch1 = 0x10000000,
485 WokePMatch2 = 0x20000000,
486 WokePMatch3 = 0x40000000,
487 WokeMagic = 0x80000000,
488 WakeOptsSummary = 0x7ff
489 };
490
491 enum RxFilterAddr_bits {
492 RFCRAddressMask = 0x3ff,
493 AcceptMulticast = 0x00200000,
494 AcceptMyPhys = 0x08000000,
495 AcceptAllPhys = 0x10000000,
496 AcceptAllMulticast = 0x20000000,
497 AcceptBroadcast = 0x40000000,
498 RxFilterEnable = 0x80000000
499 };
500
501 enum StatsCtrl_bits {
502 StatsWarn = 0x1,
503 StatsFreeze = 0x2,
504 StatsClear = 0x4,
505 StatsStrobe = 0x8,
506 };
507
508 enum MIntrCtrl_bits {
509 MICRIntEn = 0x2,
510 };
511
512 enum PhyCtrl_bits {
513 PhyAddrMask = 0x1f,
514 };
515
516 #define PHY_ADDR_NONE 32
517 #define PHY_ADDR_INTERNAL 1
518
519 /* values we might find in the silicon revision register */
520 #define SRR_DP83815_C 0x0302
521 #define SRR_DP83815_D 0x0403
522 #define SRR_DP83816_A4 0x0504
523 #define SRR_DP83816_A5 0x0505
524
525 /* The Rx and Tx buffer descriptors. */
526 /* Note that using only 32 bit fields simplifies conversion to big-endian
527 architectures. */
528 struct netdev_desc {
529 u32 next_desc;
530 s32 cmd_status;
531 u32 addr;
532 u32 software_use;
533 };
534
535 /* Bits in network_desc.status */
536 enum desc_status_bits {
537 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
538 DescNoCRC=0x10000000, DescPktOK=0x08000000,
539 DescSizeMask=0xfff,
540
541 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
542 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
543 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
544 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
545
546 DescRxAbort=0x04000000, DescRxOver=0x02000000,
547 DescRxDest=0x01800000, DescRxLong=0x00400000,
548 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
549 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
550 DescRxLoop=0x00020000, DesRxColl=0x00010000,
551 };
552
553 struct netdev_private {
554 /* Descriptor rings first for alignment */
555 dma_addr_t ring_dma;
556 struct netdev_desc *rx_ring;
557 struct netdev_desc *tx_ring;
558 /* The addresses of receive-in-place skbuffs */
559 struct sk_buff *rx_skbuff[RX_RING_SIZE];
560 dma_addr_t rx_dma[RX_RING_SIZE];
561 /* address of a sent-in-place packet/buffer, for later free() */
562 struct sk_buff *tx_skbuff[TX_RING_SIZE];
563 dma_addr_t tx_dma[TX_RING_SIZE];
564 struct net_device_stats stats;
565 /* Media monitoring timer */
566 struct timer_list timer;
567 /* Frequently used values: keep some adjacent for cache effect */
568 struct pci_dev *pci_dev;
569 struct netdev_desc *rx_head_desc;
570 /* Producer/consumer ring indices */
571 unsigned int cur_rx, dirty_rx;
572 unsigned int cur_tx, dirty_tx;
573 /* Based on MTU+slack. */
574 unsigned int rx_buf_sz;
575 int oom;
576 /* Interrupt status */
577 u32 intr_status;
578 /* Do not touch the nic registers */
579 int hands_off;
580 /* Don't pay attention to the reported link state. */
581 int ignore_phy;
582 /* external phy that is used: only valid if dev->if_port != PORT_TP */
583 int mii;
584 int phy_addr_external;
585 unsigned int full_duplex;
586 /* Rx filter */
587 u32 cur_rx_mode;
588 u32 rx_filter[16];
589 /* FIFO and PCI burst thresholds */
590 u32 tx_config, rx_config;
591 /* original contents of ClkRun register */
592 u32 SavedClkRun;
593 /* silicon revision */
594 u32 srr;
595 /* expected DSPCFG value */
596 u16 dspcfg;
597 int dspcfg_workaround;
598 /* parms saved in ethtool format */
599 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
600 u8 duplex; /* Duplex, half or full */
601 u8 autoneg; /* Autonegotiation enabled */
602 /* MII transceiver section */
603 u16 advertising;
604 unsigned int iosize;
605 spinlock_t lock;
606 u32 msg_enable;
607 /* EEPROM data */
608 int eeprom_size;
609 };
610
611 static void move_int_phy(struct net_device *dev, int addr);
612 static int eeprom_read(void __iomem *ioaddr, int location);
613 static int mdio_read(struct net_device *dev, int reg);
614 static void mdio_write(struct net_device *dev, int reg, u16 data);
615 static void init_phy_fixup(struct net_device *dev);
616 static int miiport_read(struct net_device *dev, int phy_id, int reg);
617 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
618 static int find_mii(struct net_device *dev);
619 static void natsemi_reset(struct net_device *dev);
620 static void natsemi_reload_eeprom(struct net_device *dev);
621 static void natsemi_stop_rxtx(struct net_device *dev);
622 static int netdev_open(struct net_device *dev);
623 static void do_cable_magic(struct net_device *dev);
624 static void undo_cable_magic(struct net_device *dev);
625 static void check_link(struct net_device *dev);
626 static void netdev_timer(unsigned long data);
627 static void dump_ring(struct net_device *dev);
628 static void tx_timeout(struct net_device *dev);
629 static int alloc_ring(struct net_device *dev);
630 static void refill_rx(struct net_device *dev);
631 static void init_ring(struct net_device *dev);
632 static void drain_tx(struct net_device *dev);
633 static void drain_ring(struct net_device *dev);
634 static void free_ring(struct net_device *dev);
635 static void reinit_ring(struct net_device *dev);
636 static void init_registers(struct net_device *dev);
637 static int start_tx(struct sk_buff *skb, struct net_device *dev);
638 static irqreturn_t intr_handler(int irq, void *dev_instance);
639 static void netdev_error(struct net_device *dev, int intr_status);
640 static int natsemi_poll(struct net_device *dev, int *budget);
641 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
642 static void netdev_tx_done(struct net_device *dev);
643 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
644 #ifdef CONFIG_NET_POLL_CONTROLLER
645 static void natsemi_poll_controller(struct net_device *dev);
646 #endif
647 static void __set_rx_mode(struct net_device *dev);
648 static void set_rx_mode(struct net_device *dev);
649 static void __get_stats(struct net_device *dev);
650 static struct net_device_stats *get_stats(struct net_device *dev);
651 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
652 static int netdev_set_wol(struct net_device *dev, u32 newval);
653 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
654 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
655 static int netdev_get_sopass(struct net_device *dev, u8 *data);
656 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
657 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
658 static void enable_wol_mode(struct net_device *dev, int enable_intr);
659 static int netdev_close(struct net_device *dev);
660 static int netdev_get_regs(struct net_device *dev, u8 *buf);
661 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
662 static const struct ethtool_ops ethtool_ops;
663
664 #define NATSEMI_ATTR(_name) \
665 static ssize_t natsemi_show_##_name(struct device *dev, \
666 struct device_attribute *attr, char *buf); \
667 static ssize_t natsemi_set_##_name(struct device *dev, \
668 struct device_attribute *attr, \
669 const char *buf, size_t count); \
670 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
671
672 #define NATSEMI_CREATE_FILE(_dev, _name) \
673 device_create_file(&_dev->dev, &dev_attr_##_name)
674 #define NATSEMI_REMOVE_FILE(_dev, _name) \
675 device_create_file(&_dev->dev, &dev_attr_##_name)
676
677 NATSEMI_ATTR(dspcfg_workaround);
678
679 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
680 struct device_attribute *attr,
681 char *buf)
682 {
683 struct netdev_private *np = netdev_priv(to_net_dev(dev));
684
685 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
686 }
687
688 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
689 struct device_attribute *attr,
690 const char *buf, size_t count)
691 {
692 struct netdev_private *np = netdev_priv(to_net_dev(dev));
693 int new_setting;
694 u32 flags;
695
696 /* Find out the new setting */
697 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
698 new_setting = 1;
699 else if (!strncmp("off", buf, count - 1)
700 || !strncmp("0", buf, count - 1))
701 new_setting = 0;
702 else
703 return count;
704
705 spin_lock_irqsave(&np->lock, flags);
706
707 np->dspcfg_workaround = new_setting;
708
709 spin_unlock_irqrestore(&np->lock, flags);
710
711 return count;
712 }
713
714 static inline void __iomem *ns_ioaddr(struct net_device *dev)
715 {
716 return (void __iomem *) dev->base_addr;
717 }
718
719 static inline void natsemi_irq_enable(struct net_device *dev)
720 {
721 writel(1, ns_ioaddr(dev) + IntrEnable);
722 readl(ns_ioaddr(dev) + IntrEnable);
723 }
724
725 static inline void natsemi_irq_disable(struct net_device *dev)
726 {
727 writel(0, ns_ioaddr(dev) + IntrEnable);
728 readl(ns_ioaddr(dev) + IntrEnable);
729 }
730
731 static void move_int_phy(struct net_device *dev, int addr)
732 {
733 struct netdev_private *np = netdev_priv(dev);
734 void __iomem *ioaddr = ns_ioaddr(dev);
735 int target = 31;
736
737 /*
738 * The internal phy is visible on the external mii bus. Therefore we must
739 * move it away before we can send commands to an external phy.
740 * There are two addresses we must avoid:
741 * - the address on the external phy that is used for transmission.
742 * - the address that we want to access. User space can access phys
743 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
744 * phy that is used for transmission.
745 */
746
747 if (target == addr)
748 target--;
749 if (target == np->phy_addr_external)
750 target--;
751 writew(target, ioaddr + PhyCtrl);
752 readw(ioaddr + PhyCtrl);
753 udelay(1);
754 }
755
756 static void __devinit natsemi_init_media (struct net_device *dev)
757 {
758 struct netdev_private *np = netdev_priv(dev);
759 u32 tmp;
760
761 if (np->ignore_phy)
762 netif_carrier_on(dev);
763 else
764 netif_carrier_off(dev);
765
766 /* get the initial settings from hardware */
767 tmp = mdio_read(dev, MII_BMCR);
768 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
769 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
770 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
771 np->advertising= mdio_read(dev, MII_ADVERTISE);
772
773 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
774 && netif_msg_probe(np)) {
775 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
776 "10%s %s duplex.\n",
777 pci_name(np->pci_dev),
778 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
779 "enabled, advertise" : "disabled, force",
780 (np->advertising &
781 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
782 "0" : "",
783 (np->advertising &
784 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
785 "full" : "half");
786 }
787 if (netif_msg_probe(np))
788 printk(KERN_INFO
789 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
790 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
791 np->advertising);
792
793 }
794
795 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
796 const struct pci_device_id *ent)
797 {
798 struct net_device *dev;
799 struct netdev_private *np;
800 int i, option, irq, chip_idx = ent->driver_data;
801 static int find_cnt = -1;
802 unsigned long iostart, iosize;
803 void __iomem *ioaddr;
804 const int pcibar = 1; /* PCI base address register */
805 int prev_eedata;
806 u32 tmp;
807
808 /* when built into the kernel, we only print version if device is found */
809 #ifndef MODULE
810 static int printed_version;
811 if (!printed_version++)
812 printk(version);
813 #endif
814
815 i = pci_enable_device(pdev);
816 if (i) return i;
817
818 /* natsemi has a non-standard PM control register
819 * in PCI config space. Some boards apparently need
820 * to be brought to D0 in this manner.
821 */
822 pci_read_config_dword(pdev, PCIPM, &tmp);
823 if (tmp & PCI_PM_CTRL_STATE_MASK) {
824 /* D0 state, disable PME assertion */
825 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
826 pci_write_config_dword(pdev, PCIPM, newtmp);
827 }
828
829 find_cnt++;
830 iostart = pci_resource_start(pdev, pcibar);
831 iosize = pci_resource_len(pdev, pcibar);
832 irq = pdev->irq;
833
834 pci_set_master(pdev);
835
836 dev = alloc_etherdev(sizeof (struct netdev_private));
837 if (!dev)
838 return -ENOMEM;
839 SET_MODULE_OWNER(dev);
840 SET_NETDEV_DEV(dev, &pdev->dev);
841
842 i = pci_request_regions(pdev, DRV_NAME);
843 if (i)
844 goto err_pci_request_regions;
845
846 ioaddr = ioremap(iostart, iosize);
847 if (!ioaddr) {
848 i = -ENOMEM;
849 goto err_ioremap;
850 }
851
852 /* Work around the dropped serial bit. */
853 prev_eedata = eeprom_read(ioaddr, 6);
854 for (i = 0; i < 3; i++) {
855 int eedata = eeprom_read(ioaddr, i + 7);
856 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
857 dev->dev_addr[i*2+1] = eedata >> 7;
858 prev_eedata = eedata;
859 }
860
861 dev->base_addr = (unsigned long __force) ioaddr;
862 dev->irq = irq;
863
864 np = netdev_priv(dev);
865
866 np->pci_dev = pdev;
867 pci_set_drvdata(pdev, dev);
868 np->iosize = iosize;
869 spin_lock_init(&np->lock);
870 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
871 np->hands_off = 0;
872 np->intr_status = 0;
873 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
874 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
875 np->ignore_phy = 1;
876 else
877 np->ignore_phy = 0;
878 np->dspcfg_workaround = dspcfg_workaround;
879
880 /* Initial port:
881 * - If configured to ignore the PHY set up for external.
882 * - If the nic was configured to use an external phy and if find_mii
883 * finds a phy: use external port, first phy that replies.
884 * - Otherwise: internal port.
885 * Note that the phy address for the internal phy doesn't matter:
886 * The address would be used to access a phy over the mii bus, but
887 * the internal phy is accessed through mapped registers.
888 */
889 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
890 dev->if_port = PORT_MII;
891 else
892 dev->if_port = PORT_TP;
893 /* Reset the chip to erase previous misconfiguration. */
894 natsemi_reload_eeprom(dev);
895 natsemi_reset(dev);
896
897 if (dev->if_port != PORT_TP) {
898 np->phy_addr_external = find_mii(dev);
899 /* If we're ignoring the PHY it doesn't matter if we can't
900 * find one. */
901 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
902 dev->if_port = PORT_TP;
903 np->phy_addr_external = PHY_ADDR_INTERNAL;
904 }
905 } else {
906 np->phy_addr_external = PHY_ADDR_INTERNAL;
907 }
908
909 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
910 if (dev->mem_start)
911 option = dev->mem_start;
912
913 /* The lower four bits are the media type. */
914 if (option) {
915 if (option & 0x200)
916 np->full_duplex = 1;
917 if (option & 15)
918 printk(KERN_INFO
919 "natsemi %s: ignoring user supplied media type %d",
920 pci_name(np->pci_dev), option & 15);
921 }
922 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
923 np->full_duplex = 1;
924
925 /* The chip-specific entries in the device structure. */
926 dev->open = &netdev_open;
927 dev->hard_start_xmit = &start_tx;
928 dev->stop = &netdev_close;
929 dev->get_stats = &get_stats;
930 dev->set_multicast_list = &set_rx_mode;
931 dev->change_mtu = &natsemi_change_mtu;
932 dev->do_ioctl = &netdev_ioctl;
933 dev->tx_timeout = &tx_timeout;
934 dev->watchdog_timeo = TX_TIMEOUT;
935 dev->poll = natsemi_poll;
936 dev->weight = 64;
937
938 #ifdef CONFIG_NET_POLL_CONTROLLER
939 dev->poll_controller = &natsemi_poll_controller;
940 #endif
941 SET_ETHTOOL_OPS(dev, &ethtool_ops);
942
943 if (mtu)
944 dev->mtu = mtu;
945
946 natsemi_init_media(dev);
947
948 /* save the silicon revision for later querying */
949 np->srr = readl(ioaddr + SiliconRev);
950 if (netif_msg_hw(np))
951 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
952 pci_name(np->pci_dev), np->srr);
953
954 i = register_netdev(dev);
955 if (i)
956 goto err_register_netdev;
957
958 if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
959 goto err_create_file;
960
961 if (netif_msg_drv(np)) {
962 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
963 dev->name, natsemi_pci_info[chip_idx].name, iostart,
964 pci_name(np->pci_dev));
965 for (i = 0; i < ETH_ALEN-1; i++)
966 printk("%02x:", dev->dev_addr[i]);
967 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
968 if (dev->if_port == PORT_TP)
969 printk(", port TP.\n");
970 else if (np->ignore_phy)
971 printk(", port MII, ignoring PHY\n");
972 else
973 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
974 }
975 return 0;
976
977 err_create_file:
978 unregister_netdev(dev);
979
980 err_register_netdev:
981 iounmap(ioaddr);
982
983 err_ioremap:
984 pci_release_regions(pdev);
985 pci_set_drvdata(pdev, NULL);
986
987 err_pci_request_regions:
988 free_netdev(dev);
989 return i;
990 }
991
992
993 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
994 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
995
996 /* Delay between EEPROM clock transitions.
997 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
998 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
999 made udelay() unreliable.
1000 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
1001 depricated.
1002 */
1003 #define eeprom_delay(ee_addr) readl(ee_addr)
1004
1005 #define EE_Write0 (EE_ChipSelect)
1006 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1007
1008 /* The EEPROM commands include the alway-set leading bit. */
1009 enum EEPROM_Cmds {
1010 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1011 };
1012
1013 static int eeprom_read(void __iomem *addr, int location)
1014 {
1015 int i;
1016 int retval = 0;
1017 void __iomem *ee_addr = addr + EECtrl;
1018 int read_cmd = location | EE_ReadCmd;
1019
1020 writel(EE_Write0, ee_addr);
1021
1022 /* Shift the read command bits out. */
1023 for (i = 10; i >= 0; i--) {
1024 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1025 writel(dataval, ee_addr);
1026 eeprom_delay(ee_addr);
1027 writel(dataval | EE_ShiftClk, ee_addr);
1028 eeprom_delay(ee_addr);
1029 }
1030 writel(EE_ChipSelect, ee_addr);
1031 eeprom_delay(ee_addr);
1032
1033 for (i = 0; i < 16; i++) {
1034 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1035 eeprom_delay(ee_addr);
1036 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1037 writel(EE_ChipSelect, ee_addr);
1038 eeprom_delay(ee_addr);
1039 }
1040
1041 /* Terminate the EEPROM access. */
1042 writel(EE_Write0, ee_addr);
1043 writel(0, ee_addr);
1044 return retval;
1045 }
1046
1047 /* MII transceiver control section.
1048 * The 83815 series has an internal transceiver, and we present the
1049 * internal management registers as if they were MII connected.
1050 * External Phy registers are referenced through the MII interface.
1051 */
1052
1053 /* clock transitions >= 20ns (25MHz)
1054 * One readl should be good to PCI @ 100MHz
1055 */
1056 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1057
1058 static int mii_getbit (struct net_device *dev)
1059 {
1060 int data;
1061 void __iomem *ioaddr = ns_ioaddr(dev);
1062
1063 writel(MII_ShiftClk, ioaddr + EECtrl);
1064 data = readl(ioaddr + EECtrl);
1065 writel(0, ioaddr + EECtrl);
1066 mii_delay(ioaddr);
1067 return (data & MII_Data)? 1 : 0;
1068 }
1069
1070 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1071 {
1072 u32 i;
1073 void __iomem *ioaddr = ns_ioaddr(dev);
1074
1075 for (i = (1 << (len-1)); i; i >>= 1)
1076 {
1077 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1078 writel(mdio_val, ioaddr + EECtrl);
1079 mii_delay(ioaddr);
1080 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1081 mii_delay(ioaddr);
1082 }
1083 writel(0, ioaddr + EECtrl);
1084 mii_delay(ioaddr);
1085 }
1086
1087 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1088 {
1089 u32 cmd;
1090 int i;
1091 u32 retval = 0;
1092
1093 /* Ensure sync */
1094 mii_send_bits (dev, 0xffffffff, 32);
1095 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1096 /* ST,OP = 0110'b for read operation */
1097 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1098 mii_send_bits (dev, cmd, 14);
1099 /* Turnaround */
1100 if (mii_getbit (dev))
1101 return 0;
1102 /* Read data */
1103 for (i = 0; i < 16; i++) {
1104 retval <<= 1;
1105 retval |= mii_getbit (dev);
1106 }
1107 /* End cycle */
1108 mii_getbit (dev);
1109 return retval;
1110 }
1111
1112 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1113 {
1114 u32 cmd;
1115
1116 /* Ensure sync */
1117 mii_send_bits (dev, 0xffffffff, 32);
1118 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1119 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1120 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1121 mii_send_bits (dev, cmd, 32);
1122 /* End cycle */
1123 mii_getbit (dev);
1124 }
1125
1126 static int mdio_read(struct net_device *dev, int reg)
1127 {
1128 struct netdev_private *np = netdev_priv(dev);
1129 void __iomem *ioaddr = ns_ioaddr(dev);
1130
1131 /* The 83815 series has two ports:
1132 * - an internal transceiver
1133 * - an external mii bus
1134 */
1135 if (dev->if_port == PORT_TP)
1136 return readw(ioaddr+BasicControl+(reg<<2));
1137 else
1138 return miiport_read(dev, np->phy_addr_external, reg);
1139 }
1140
1141 static void mdio_write(struct net_device *dev, int reg, u16 data)
1142 {
1143 struct netdev_private *np = netdev_priv(dev);
1144 void __iomem *ioaddr = ns_ioaddr(dev);
1145
1146 /* The 83815 series has an internal transceiver; handle separately */
1147 if (dev->if_port == PORT_TP)
1148 writew(data, ioaddr+BasicControl+(reg<<2));
1149 else
1150 miiport_write(dev, np->phy_addr_external, reg, data);
1151 }
1152
1153 static void init_phy_fixup(struct net_device *dev)
1154 {
1155 struct netdev_private *np = netdev_priv(dev);
1156 void __iomem *ioaddr = ns_ioaddr(dev);
1157 int i;
1158 u32 cfg;
1159 u16 tmp;
1160
1161 /* restore stuff lost when power was out */
1162 tmp = mdio_read(dev, MII_BMCR);
1163 if (np->autoneg == AUTONEG_ENABLE) {
1164 /* renegotiate if something changed */
1165 if ((tmp & BMCR_ANENABLE) == 0
1166 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1167 {
1168 /* turn on autonegotiation and force negotiation */
1169 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1170 mdio_write(dev, MII_ADVERTISE, np->advertising);
1171 }
1172 } else {
1173 /* turn off auto negotiation, set speed and duplexity */
1174 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1175 if (np->speed == SPEED_100)
1176 tmp |= BMCR_SPEED100;
1177 if (np->duplex == DUPLEX_FULL)
1178 tmp |= BMCR_FULLDPLX;
1179 /*
1180 * Note: there is no good way to inform the link partner
1181 * that our capabilities changed. The user has to unplug
1182 * and replug the network cable after some changes, e.g.
1183 * after switching from 10HD, autoneg off to 100 HD,
1184 * autoneg off.
1185 */
1186 }
1187 mdio_write(dev, MII_BMCR, tmp);
1188 readl(ioaddr + ChipConfig);
1189 udelay(1);
1190
1191 /* find out what phy this is */
1192 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1193 + mdio_read(dev, MII_PHYSID2);
1194
1195 /* handle external phys here */
1196 switch (np->mii) {
1197 case PHYID_AM79C874:
1198 /* phy specific configuration for fibre/tp operation */
1199 tmp = mdio_read(dev, MII_MCTRL);
1200 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1201 if (dev->if_port == PORT_FIBRE)
1202 tmp |= MII_FX_SEL;
1203 else
1204 tmp |= MII_EN_SCRM;
1205 mdio_write(dev, MII_MCTRL, tmp);
1206 break;
1207 default:
1208 break;
1209 }
1210 cfg = readl(ioaddr + ChipConfig);
1211 if (cfg & CfgExtPhy)
1212 return;
1213
1214 /* On page 78 of the spec, they recommend some settings for "optimum
1215 performance" to be done in sequence. These settings optimize some
1216 of the 100Mbit autodetection circuitry. They say we only want to
1217 do this for rev C of the chip, but engineers at NSC (Bradley
1218 Kennedy) recommends always setting them. If you don't, you get
1219 errors on some autonegotiations that make the device unusable.
1220
1221 It seems that the DSP needs a few usec to reinitialize after
1222 the start of the phy. Just retry writing these values until they
1223 stick.
1224 */
1225 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1226
1227 int dspcfg;
1228 writew(1, ioaddr + PGSEL);
1229 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1230 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1231 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1232 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1233 writew(np->dspcfg, ioaddr + DSPCFG);
1234 writew(SDCFG_VAL, ioaddr + SDCFG);
1235 writew(0, ioaddr + PGSEL);
1236 readl(ioaddr + ChipConfig);
1237 udelay(10);
1238
1239 writew(1, ioaddr + PGSEL);
1240 dspcfg = readw(ioaddr + DSPCFG);
1241 writew(0, ioaddr + PGSEL);
1242 if (np->dspcfg == dspcfg)
1243 break;
1244 }
1245
1246 if (netif_msg_link(np)) {
1247 if (i==NATSEMI_HW_TIMEOUT) {
1248 printk(KERN_INFO
1249 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1250 dev->name, i*10);
1251 } else {
1252 printk(KERN_INFO
1253 "%s: DSPCFG accepted after %d usec.\n",
1254 dev->name, i*10);
1255 }
1256 }
1257 /*
1258 * Enable PHY Specific event based interrupts. Link state change
1259 * and Auto-Negotiation Completion are among the affected.
1260 * Read the intr status to clear it (needed for wake events).
1261 */
1262 readw(ioaddr + MIntrStatus);
1263 writew(MICRIntEn, ioaddr + MIntrCtrl);
1264 }
1265
1266 static int switch_port_external(struct net_device *dev)
1267 {
1268 struct netdev_private *np = netdev_priv(dev);
1269 void __iomem *ioaddr = ns_ioaddr(dev);
1270 u32 cfg;
1271
1272 cfg = readl(ioaddr + ChipConfig);
1273 if (cfg & CfgExtPhy)
1274 return 0;
1275
1276 if (netif_msg_link(np)) {
1277 printk(KERN_INFO "%s: switching to external transceiver.\n",
1278 dev->name);
1279 }
1280
1281 /* 1) switch back to external phy */
1282 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1283 readl(ioaddr + ChipConfig);
1284 udelay(1);
1285
1286 /* 2) reset the external phy: */
1287 /* resetting the external PHY has been known to cause a hub supplying
1288 * power over Ethernet to kill the power. We don't want to kill
1289 * power to this computer, so we avoid resetting the phy.
1290 */
1291
1292 /* 3) reinit the phy fixup, it got lost during power down. */
1293 move_int_phy(dev, np->phy_addr_external);
1294 init_phy_fixup(dev);
1295
1296 return 1;
1297 }
1298
1299 static int switch_port_internal(struct net_device *dev)
1300 {
1301 struct netdev_private *np = netdev_priv(dev);
1302 void __iomem *ioaddr = ns_ioaddr(dev);
1303 int i;
1304 u32 cfg;
1305 u16 bmcr;
1306
1307 cfg = readl(ioaddr + ChipConfig);
1308 if (!(cfg &CfgExtPhy))
1309 return 0;
1310
1311 if (netif_msg_link(np)) {
1312 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1313 dev->name);
1314 }
1315 /* 1) switch back to internal phy: */
1316 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1317 writel(cfg, ioaddr + ChipConfig);
1318 readl(ioaddr + ChipConfig);
1319 udelay(1);
1320
1321 /* 2) reset the internal phy: */
1322 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1323 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1324 readl(ioaddr + ChipConfig);
1325 udelay(10);
1326 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1327 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1328 if (!(bmcr & BMCR_RESET))
1329 break;
1330 udelay(10);
1331 }
1332 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1333 printk(KERN_INFO
1334 "%s: phy reset did not complete in %d usec.\n",
1335 dev->name, i*10);
1336 }
1337 /* 3) reinit the phy fixup, it got lost during power down. */
1338 init_phy_fixup(dev);
1339
1340 return 1;
1341 }
1342
1343 /* Scan for a PHY on the external mii bus.
1344 * There are two tricky points:
1345 * - Do not scan while the internal phy is enabled. The internal phy will
1346 * crash: e.g. reads from the DSPCFG register will return odd values and
1347 * the nasty random phy reset code will reset the nic every few seconds.
1348 * - The internal phy must be moved around, an external phy could
1349 * have the same address as the internal phy.
1350 */
1351 static int find_mii(struct net_device *dev)
1352 {
1353 struct netdev_private *np = netdev_priv(dev);
1354 int tmp;
1355 int i;
1356 int did_switch;
1357
1358 /* Switch to external phy */
1359 did_switch = switch_port_external(dev);
1360
1361 /* Scan the possible phy addresses:
1362 *
1363 * PHY address 0 means that the phy is in isolate mode. Not yet
1364 * supported due to lack of test hardware. User space should
1365 * handle it through ethtool.
1366 */
1367 for (i = 1; i <= 31; i++) {
1368 move_int_phy(dev, i);
1369 tmp = miiport_read(dev, i, MII_BMSR);
1370 if (tmp != 0xffff && tmp != 0x0000) {
1371 /* found something! */
1372 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1373 + mdio_read(dev, MII_PHYSID2);
1374 if (netif_msg_probe(np)) {
1375 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1376 pci_name(np->pci_dev), np->mii, i);
1377 }
1378 break;
1379 }
1380 }
1381 /* And switch back to internal phy: */
1382 if (did_switch)
1383 switch_port_internal(dev);
1384 return i;
1385 }
1386
1387 /* CFG bits [13:16] [18:23] */
1388 #define CFG_RESET_SAVE 0xfde000
1389 /* WCSR bits [0:4] [9:10] */
1390 #define WCSR_RESET_SAVE 0x61f
1391 /* RFCR bits [20] [22] [27:31] */
1392 #define RFCR_RESET_SAVE 0xf8500000;
1393
1394 static void natsemi_reset(struct net_device *dev)
1395 {
1396 int i;
1397 u32 cfg;
1398 u32 wcsr;
1399 u32 rfcr;
1400 u16 pmatch[3];
1401 u16 sopass[3];
1402 struct netdev_private *np = netdev_priv(dev);
1403 void __iomem *ioaddr = ns_ioaddr(dev);
1404
1405 /*
1406 * Resetting the chip causes some registers to be lost.
1407 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1408 * we save the state that would have been loaded from EEPROM
1409 * on a normal power-up (see the spec EEPROM map). This assumes
1410 * whoever calls this will follow up with init_registers() eventually.
1411 */
1412
1413 /* CFG */
1414 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1415 /* WCSR */
1416 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1417 /* RFCR */
1418 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1419 /* PMATCH */
1420 for (i = 0; i < 3; i++) {
1421 writel(i*2, ioaddr + RxFilterAddr);
1422 pmatch[i] = readw(ioaddr + RxFilterData);
1423 }
1424 /* SOPAS */
1425 for (i = 0; i < 3; i++) {
1426 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1427 sopass[i] = readw(ioaddr + RxFilterData);
1428 }
1429
1430 /* now whack the chip */
1431 writel(ChipReset, ioaddr + ChipCmd);
1432 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1433 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1434 break;
1435 udelay(5);
1436 }
1437 if (i==NATSEMI_HW_TIMEOUT) {
1438 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1439 dev->name, i*5);
1440 } else if (netif_msg_hw(np)) {
1441 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1442 dev->name, i*5);
1443 }
1444
1445 /* restore CFG */
1446 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1447 /* turn on external phy if it was selected */
1448 if (dev->if_port == PORT_TP)
1449 cfg &= ~(CfgExtPhy | CfgPhyDis);
1450 else
1451 cfg |= (CfgExtPhy | CfgPhyDis);
1452 writel(cfg, ioaddr + ChipConfig);
1453 /* restore WCSR */
1454 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1455 writel(wcsr, ioaddr + WOLCmd);
1456 /* read RFCR */
1457 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1458 /* restore PMATCH */
1459 for (i = 0; i < 3; i++) {
1460 writel(i*2, ioaddr + RxFilterAddr);
1461 writew(pmatch[i], ioaddr + RxFilterData);
1462 }
1463 for (i = 0; i < 3; i++) {
1464 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1465 writew(sopass[i], ioaddr + RxFilterData);
1466 }
1467 /* restore RFCR */
1468 writel(rfcr, ioaddr + RxFilterAddr);
1469 }
1470
1471 static void reset_rx(struct net_device *dev)
1472 {
1473 int i;
1474 struct netdev_private *np = netdev_priv(dev);
1475 void __iomem *ioaddr = ns_ioaddr(dev);
1476
1477 np->intr_status &= ~RxResetDone;
1478
1479 writel(RxReset, ioaddr + ChipCmd);
1480
1481 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1482 np->intr_status |= readl(ioaddr + IntrStatus);
1483 if (np->intr_status & RxResetDone)
1484 break;
1485 udelay(15);
1486 }
1487 if (i==NATSEMI_HW_TIMEOUT) {
1488 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1489 dev->name, i*15);
1490 } else if (netif_msg_hw(np)) {
1491 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1492 dev->name, i*15);
1493 }
1494 }
1495
1496 static void natsemi_reload_eeprom(struct net_device *dev)
1497 {
1498 struct netdev_private *np = netdev_priv(dev);
1499 void __iomem *ioaddr = ns_ioaddr(dev);
1500 int i;
1501
1502 writel(EepromReload, ioaddr + PCIBusCfg);
1503 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1504 udelay(50);
1505 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1506 break;
1507 }
1508 if (i==NATSEMI_HW_TIMEOUT) {
1509 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1510 pci_name(np->pci_dev), i*50);
1511 } else if (netif_msg_hw(np)) {
1512 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1513 pci_name(np->pci_dev), i*50);
1514 }
1515 }
1516
1517 static void natsemi_stop_rxtx(struct net_device *dev)
1518 {
1519 void __iomem * ioaddr = ns_ioaddr(dev);
1520 struct netdev_private *np = netdev_priv(dev);
1521 int i;
1522
1523 writel(RxOff | TxOff, ioaddr + ChipCmd);
1524 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1525 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1526 break;
1527 udelay(5);
1528 }
1529 if (i==NATSEMI_HW_TIMEOUT) {
1530 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1531 dev->name, i*5);
1532 } else if (netif_msg_hw(np)) {
1533 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1534 dev->name, i*5);
1535 }
1536 }
1537
1538 static int netdev_open(struct net_device *dev)
1539 {
1540 struct netdev_private *np = netdev_priv(dev);
1541 void __iomem * ioaddr = ns_ioaddr(dev);
1542 int i;
1543
1544 /* Reset the chip, just in case. */
1545 natsemi_reset(dev);
1546
1547 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1548 if (i) return i;
1549
1550 if (netif_msg_ifup(np))
1551 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1552 dev->name, dev->irq);
1553 i = alloc_ring(dev);
1554 if (i < 0) {
1555 free_irq(dev->irq, dev);
1556 return i;
1557 }
1558 init_ring(dev);
1559 spin_lock_irq(&np->lock);
1560 init_registers(dev);
1561 /* now set the MAC address according to dev->dev_addr */
1562 for (i = 0; i < 3; i++) {
1563 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1564
1565 writel(i*2, ioaddr + RxFilterAddr);
1566 writew(mac, ioaddr + RxFilterData);
1567 }
1568 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1569 spin_unlock_irq(&np->lock);
1570
1571 netif_start_queue(dev);
1572
1573 if (netif_msg_ifup(np))
1574 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1575 dev->name, (int)readl(ioaddr + ChipCmd));
1576
1577 /* Set the timer to check for link beat. */
1578 init_timer(&np->timer);
1579 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1580 np->timer.data = (unsigned long)dev;
1581 np->timer.function = &netdev_timer; /* timer handler */
1582 add_timer(&np->timer);
1583
1584 return 0;
1585 }
1586
1587 static void do_cable_magic(struct net_device *dev)
1588 {
1589 struct netdev_private *np = netdev_priv(dev);
1590 void __iomem *ioaddr = ns_ioaddr(dev);
1591
1592 if (dev->if_port != PORT_TP)
1593 return;
1594
1595 if (np->srr >= SRR_DP83816_A5)
1596 return;
1597
1598 /*
1599 * 100 MBit links with short cables can trip an issue with the chip.
1600 * The problem manifests as lots of CRC errors and/or flickering
1601 * activity LED while idle. This process is based on instructions
1602 * from engineers at National.
1603 */
1604 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1605 u16 data;
1606
1607 writew(1, ioaddr + PGSEL);
1608 /*
1609 * coefficient visibility should already be enabled via
1610 * DSPCFG | 0x1000
1611 */
1612 data = readw(ioaddr + TSTDAT) & 0xff;
1613 /*
1614 * the value must be negative, and within certain values
1615 * (these values all come from National)
1616 */
1617 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1618 struct netdev_private *np = netdev_priv(dev);
1619
1620 /* the bug has been triggered - fix the coefficient */
1621 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1622 /* lock the value */
1623 data = readw(ioaddr + DSPCFG);
1624 np->dspcfg = data | DSPCFG_LOCK;
1625 writew(np->dspcfg, ioaddr + DSPCFG);
1626 }
1627 writew(0, ioaddr + PGSEL);
1628 }
1629 }
1630
1631 static void undo_cable_magic(struct net_device *dev)
1632 {
1633 u16 data;
1634 struct netdev_private *np = netdev_priv(dev);
1635 void __iomem * ioaddr = ns_ioaddr(dev);
1636
1637 if (dev->if_port != PORT_TP)
1638 return;
1639
1640 if (np->srr >= SRR_DP83816_A5)
1641 return;
1642
1643 writew(1, ioaddr + PGSEL);
1644 /* make sure the lock bit is clear */
1645 data = readw(ioaddr + DSPCFG);
1646 np->dspcfg = data & ~DSPCFG_LOCK;
1647 writew(np->dspcfg, ioaddr + DSPCFG);
1648 writew(0, ioaddr + PGSEL);
1649 }
1650
1651 static void check_link(struct net_device *dev)
1652 {
1653 struct netdev_private *np = netdev_priv(dev);
1654 void __iomem * ioaddr = ns_ioaddr(dev);
1655 int duplex = np->duplex;
1656 u16 bmsr;
1657
1658 /* If we are ignoring the PHY then don't try reading it. */
1659 if (np->ignore_phy)
1660 goto propagate_state;
1661
1662 /* The link status field is latched: it remains low after a temporary
1663 * link failure until it's read. We need the current link status,
1664 * thus read twice.
1665 */
1666 mdio_read(dev, MII_BMSR);
1667 bmsr = mdio_read(dev, MII_BMSR);
1668
1669 if (!(bmsr & BMSR_LSTATUS)) {
1670 if (netif_carrier_ok(dev)) {
1671 if (netif_msg_link(np))
1672 printk(KERN_NOTICE "%s: link down.\n",
1673 dev->name);
1674 netif_carrier_off(dev);
1675 undo_cable_magic(dev);
1676 }
1677 return;
1678 }
1679 if (!netif_carrier_ok(dev)) {
1680 if (netif_msg_link(np))
1681 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1682 netif_carrier_on(dev);
1683 do_cable_magic(dev);
1684 }
1685
1686 duplex = np->full_duplex;
1687 if (!duplex) {
1688 if (bmsr & BMSR_ANEGCOMPLETE) {
1689 int tmp = mii_nway_result(
1690 np->advertising & mdio_read(dev, MII_LPA));
1691 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1692 duplex = 1;
1693 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1694 duplex = 1;
1695 }
1696
1697 propagate_state:
1698 /* if duplex is set then bit 28 must be set, too */
1699 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1700 if (netif_msg_link(np))
1701 printk(KERN_INFO
1702 "%s: Setting %s-duplex based on negotiated "
1703 "link capability.\n", dev->name,
1704 duplex ? "full" : "half");
1705 if (duplex) {
1706 np->rx_config |= RxAcceptTx;
1707 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1708 } else {
1709 np->rx_config &= ~RxAcceptTx;
1710 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1711 }
1712 writel(np->tx_config, ioaddr + TxConfig);
1713 writel(np->rx_config, ioaddr + RxConfig);
1714 }
1715 }
1716
1717 static void init_registers(struct net_device *dev)
1718 {
1719 struct netdev_private *np = netdev_priv(dev);
1720 void __iomem * ioaddr = ns_ioaddr(dev);
1721
1722 init_phy_fixup(dev);
1723
1724 /* clear any interrupts that are pending, such as wake events */
1725 readl(ioaddr + IntrStatus);
1726
1727 writel(np->ring_dma, ioaddr + RxRingPtr);
1728 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1729 ioaddr + TxRingPtr);
1730
1731 /* Initialize other registers.
1732 * Configure the PCI bus bursts and FIFO thresholds.
1733 * Configure for standard, in-spec Ethernet.
1734 * Start with half-duplex. check_link will update
1735 * to the correct settings.
1736 */
1737
1738 /* DRTH: 2: start tx if 64 bytes are in the fifo
1739 * FLTH: 0x10: refill with next packet if 512 bytes are free
1740 * MXDMA: 0: up to 256 byte bursts.
1741 * MXDMA must be <= FLTH
1742 * ECRETRY=1
1743 * ATP=1
1744 */
1745 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1746 TX_FLTH_VAL | TX_DRTH_VAL_START;
1747 writel(np->tx_config, ioaddr + TxConfig);
1748
1749 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1750 * MXDMA 0: up to 256 byte bursts
1751 */
1752 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1753 /* if receive ring now has bigger buffers than normal, enable jumbo */
1754 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1755 np->rx_config |= RxAcceptLong;
1756
1757 writel(np->rx_config, ioaddr + RxConfig);
1758
1759 /* Disable PME:
1760 * The PME bit is initialized from the EEPROM contents.
1761 * PCI cards probably have PME disabled, but motherboard
1762 * implementations may have PME set to enable WakeOnLan.
1763 * With PME set the chip will scan incoming packets but
1764 * nothing will be written to memory. */
1765 np->SavedClkRun = readl(ioaddr + ClkRun);
1766 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1767 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1768 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1769 dev->name, readl(ioaddr + WOLCmd));
1770 }
1771
1772 check_link(dev);
1773 __set_rx_mode(dev);
1774
1775 /* Enable interrupts by setting the interrupt mask. */
1776 writel(DEFAULT_INTR, ioaddr + IntrMask);
1777 natsemi_irq_enable(dev);
1778
1779 writel(RxOn | TxOn, ioaddr + ChipCmd);
1780 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1781 }
1782
1783 /*
1784 * netdev_timer:
1785 * Purpose:
1786 * 1) check for link changes. Usually they are handled by the MII interrupt
1787 * but it doesn't hurt to check twice.
1788 * 2) check for sudden death of the NIC:
1789 * It seems that a reference set for this chip went out with incorrect info,
1790 * and there exist boards that aren't quite right. An unexpected voltage
1791 * drop can cause the PHY to get itself in a weird state (basically reset).
1792 * NOTE: this only seems to affect revC chips. The user can disable
1793 * this check via dspcfg_workaround sysfs option.
1794 * 3) check of death of the RX path due to OOM
1795 */
1796 static void netdev_timer(unsigned long data)
1797 {
1798 struct net_device *dev = (struct net_device *)data;
1799 struct netdev_private *np = netdev_priv(dev);
1800 void __iomem * ioaddr = ns_ioaddr(dev);
1801 int next_tick = 5*HZ;
1802
1803 if (netif_msg_timer(np)) {
1804 /* DO NOT read the IntrStatus register,
1805 * a read clears any pending interrupts.
1806 */
1807 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1808 dev->name);
1809 }
1810
1811 if (dev->if_port == PORT_TP) {
1812 u16 dspcfg;
1813
1814 spin_lock_irq(&np->lock);
1815 /* check for a nasty random phy-reset - use dspcfg as a flag */
1816 writew(1, ioaddr+PGSEL);
1817 dspcfg = readw(ioaddr+DSPCFG);
1818 writew(0, ioaddr+PGSEL);
1819 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1820 if (!netif_queue_stopped(dev)) {
1821 spin_unlock_irq(&np->lock);
1822 if (netif_msg_drv(np))
1823 printk(KERN_NOTICE "%s: possible phy reset: "
1824 "re-initializing\n", dev->name);
1825 disable_irq(dev->irq);
1826 spin_lock_irq(&np->lock);
1827 natsemi_stop_rxtx(dev);
1828 dump_ring(dev);
1829 reinit_ring(dev);
1830 init_registers(dev);
1831 spin_unlock_irq(&np->lock);
1832 enable_irq(dev->irq);
1833 } else {
1834 /* hurry back */
1835 next_tick = HZ;
1836 spin_unlock_irq(&np->lock);
1837 }
1838 } else {
1839 /* init_registers() calls check_link() for the above case */
1840 check_link(dev);
1841 spin_unlock_irq(&np->lock);
1842 }
1843 } else {
1844 spin_lock_irq(&np->lock);
1845 check_link(dev);
1846 spin_unlock_irq(&np->lock);
1847 }
1848 if (np->oom) {
1849 disable_irq(dev->irq);
1850 np->oom = 0;
1851 refill_rx(dev);
1852 enable_irq(dev->irq);
1853 if (!np->oom) {
1854 writel(RxOn, ioaddr + ChipCmd);
1855 } else {
1856 next_tick = 1;
1857 }
1858 }
1859 mod_timer(&np->timer, jiffies + next_tick);
1860 }
1861
1862 static void dump_ring(struct net_device *dev)
1863 {
1864 struct netdev_private *np = netdev_priv(dev);
1865
1866 if (netif_msg_pktdata(np)) {
1867 int i;
1868 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1869 for (i = 0; i < TX_RING_SIZE; i++) {
1870 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1871 i, np->tx_ring[i].next_desc,
1872 np->tx_ring[i].cmd_status,
1873 np->tx_ring[i].addr);
1874 }
1875 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1876 for (i = 0; i < RX_RING_SIZE; i++) {
1877 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1878 i, np->rx_ring[i].next_desc,
1879 np->rx_ring[i].cmd_status,
1880 np->rx_ring[i].addr);
1881 }
1882 }
1883 }
1884
1885 static void tx_timeout(struct net_device *dev)
1886 {
1887 struct netdev_private *np = netdev_priv(dev);
1888 void __iomem * ioaddr = ns_ioaddr(dev);
1889
1890 disable_irq(dev->irq);
1891 spin_lock_irq(&np->lock);
1892 if (!np->hands_off) {
1893 if (netif_msg_tx_err(np))
1894 printk(KERN_WARNING
1895 "%s: Transmit timed out, status %#08x,"
1896 " resetting...\n",
1897 dev->name, readl(ioaddr + IntrStatus));
1898 dump_ring(dev);
1899
1900 natsemi_reset(dev);
1901 reinit_ring(dev);
1902 init_registers(dev);
1903 } else {
1904 printk(KERN_WARNING
1905 "%s: tx_timeout while in hands_off state?\n",
1906 dev->name);
1907 }
1908 spin_unlock_irq(&np->lock);
1909 enable_irq(dev->irq);
1910
1911 dev->trans_start = jiffies;
1912 np->stats.tx_errors++;
1913 netif_wake_queue(dev);
1914 }
1915
1916 static int alloc_ring(struct net_device *dev)
1917 {
1918 struct netdev_private *np = netdev_priv(dev);
1919 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1920 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1921 &np->ring_dma);
1922 if (!np->rx_ring)
1923 return -ENOMEM;
1924 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1925 return 0;
1926 }
1927
1928 static void refill_rx(struct net_device *dev)
1929 {
1930 struct netdev_private *np = netdev_priv(dev);
1931
1932 /* Refill the Rx ring buffers. */
1933 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1934 struct sk_buff *skb;
1935 int entry = np->dirty_rx % RX_RING_SIZE;
1936 if (np->rx_skbuff[entry] == NULL) {
1937 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1938 skb = dev_alloc_skb(buflen);
1939 np->rx_skbuff[entry] = skb;
1940 if (skb == NULL)
1941 break; /* Better luck next round. */
1942 skb->dev = dev; /* Mark as being used by this device. */
1943 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1944 skb->data, buflen, PCI_DMA_FROMDEVICE);
1945 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1946 }
1947 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1948 }
1949 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1950 if (netif_msg_rx_err(np))
1951 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1952 np->oom = 1;
1953 }
1954 }
1955
1956 static void set_bufsize(struct net_device *dev)
1957 {
1958 struct netdev_private *np = netdev_priv(dev);
1959 if (dev->mtu <= ETH_DATA_LEN)
1960 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1961 else
1962 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1963 }
1964
1965 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1966 static void init_ring(struct net_device *dev)
1967 {
1968 struct netdev_private *np = netdev_priv(dev);
1969 int i;
1970
1971 /* 1) TX ring */
1972 np->dirty_tx = np->cur_tx = 0;
1973 for (i = 0; i < TX_RING_SIZE; i++) {
1974 np->tx_skbuff[i] = NULL;
1975 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1976 +sizeof(struct netdev_desc)
1977 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1978 np->tx_ring[i].cmd_status = 0;
1979 }
1980
1981 /* 2) RX ring */
1982 np->dirty_rx = 0;
1983 np->cur_rx = RX_RING_SIZE;
1984 np->oom = 0;
1985 set_bufsize(dev);
1986
1987 np->rx_head_desc = &np->rx_ring[0];
1988
1989 /* Please be carefull before changing this loop - at least gcc-2.95.1
1990 * miscompiles it otherwise.
1991 */
1992 /* Initialize all Rx descriptors. */
1993 for (i = 0; i < RX_RING_SIZE; i++) {
1994 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1995 +sizeof(struct netdev_desc)
1996 *((i+1)%RX_RING_SIZE));
1997 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1998 np->rx_skbuff[i] = NULL;
1999 }
2000 refill_rx(dev);
2001 dump_ring(dev);
2002 }
2003
2004 static void drain_tx(struct net_device *dev)
2005 {
2006 struct netdev_private *np = netdev_priv(dev);
2007 int i;
2008
2009 for (i = 0; i < TX_RING_SIZE; i++) {
2010 if (np->tx_skbuff[i]) {
2011 pci_unmap_single(np->pci_dev,
2012 np->tx_dma[i], np->tx_skbuff[i]->len,
2013 PCI_DMA_TODEVICE);
2014 dev_kfree_skb(np->tx_skbuff[i]);
2015 np->stats.tx_dropped++;
2016 }
2017 np->tx_skbuff[i] = NULL;
2018 }
2019 }
2020
2021 static void drain_rx(struct net_device *dev)
2022 {
2023 struct netdev_private *np = netdev_priv(dev);
2024 unsigned int buflen = np->rx_buf_sz;
2025 int i;
2026
2027 /* Free all the skbuffs in the Rx queue. */
2028 for (i = 0; i < RX_RING_SIZE; i++) {
2029 np->rx_ring[i].cmd_status = 0;
2030 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
2031 if (np->rx_skbuff[i]) {
2032 pci_unmap_single(np->pci_dev,
2033 np->rx_dma[i], buflen,
2034 PCI_DMA_FROMDEVICE);
2035 dev_kfree_skb(np->rx_skbuff[i]);
2036 }
2037 np->rx_skbuff[i] = NULL;
2038 }
2039 }
2040
2041 static void drain_ring(struct net_device *dev)
2042 {
2043 drain_rx(dev);
2044 drain_tx(dev);
2045 }
2046
2047 static void free_ring(struct net_device *dev)
2048 {
2049 struct netdev_private *np = netdev_priv(dev);
2050 pci_free_consistent(np->pci_dev,
2051 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2052 np->rx_ring, np->ring_dma);
2053 }
2054
2055 static void reinit_rx(struct net_device *dev)
2056 {
2057 struct netdev_private *np = netdev_priv(dev);
2058 int i;
2059
2060 /* RX Ring */
2061 np->dirty_rx = 0;
2062 np->cur_rx = RX_RING_SIZE;
2063 np->rx_head_desc = &np->rx_ring[0];
2064 /* Initialize all Rx descriptors. */
2065 for (i = 0; i < RX_RING_SIZE; i++)
2066 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2067
2068 refill_rx(dev);
2069 }
2070
2071 static void reinit_ring(struct net_device *dev)
2072 {
2073 struct netdev_private *np = netdev_priv(dev);
2074 int i;
2075
2076 /* drain TX ring */
2077 drain_tx(dev);
2078 np->dirty_tx = np->cur_tx = 0;
2079 for (i=0;i<TX_RING_SIZE;i++)
2080 np->tx_ring[i].cmd_status = 0;
2081
2082 reinit_rx(dev);
2083 }
2084
2085 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2086 {
2087 struct netdev_private *np = netdev_priv(dev);
2088 void __iomem * ioaddr = ns_ioaddr(dev);
2089 unsigned entry;
2090 unsigned long flags;
2091
2092 /* Note: Ordering is important here, set the field with the
2093 "ownership" bit last, and only then increment cur_tx. */
2094
2095 /* Calculate the next Tx descriptor entry. */
2096 entry = np->cur_tx % TX_RING_SIZE;
2097
2098 np->tx_skbuff[entry] = skb;
2099 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2100 skb->data,skb->len, PCI_DMA_TODEVICE);
2101
2102 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2103
2104 spin_lock_irqsave(&np->lock, flags);
2105
2106 if (!np->hands_off) {
2107 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2108 /* StrongARM: Explicitly cache flush np->tx_ring and
2109 * skb->data,skb->len. */
2110 wmb();
2111 np->cur_tx++;
2112 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2113 netdev_tx_done(dev);
2114 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2115 netif_stop_queue(dev);
2116 }
2117 /* Wake the potentially-idle transmit channel. */
2118 writel(TxOn, ioaddr + ChipCmd);
2119 } else {
2120 dev_kfree_skb_irq(skb);
2121 np->stats.tx_dropped++;
2122 }
2123 spin_unlock_irqrestore(&np->lock, flags);
2124
2125 dev->trans_start = jiffies;
2126
2127 if (netif_msg_tx_queued(np)) {
2128 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2129 dev->name, np->cur_tx, entry);
2130 }
2131 return 0;
2132 }
2133
2134 static void netdev_tx_done(struct net_device *dev)
2135 {
2136 struct netdev_private *np = netdev_priv(dev);
2137
2138 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2139 int entry = np->dirty_tx % TX_RING_SIZE;
2140 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2141 break;
2142 if (netif_msg_tx_done(np))
2143 printk(KERN_DEBUG
2144 "%s: tx frame #%d finished, status %#08x.\n",
2145 dev->name, np->dirty_tx,
2146 le32_to_cpu(np->tx_ring[entry].cmd_status));
2147 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2148 np->stats.tx_packets++;
2149 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2150 } else { /* Various Tx errors */
2151 int tx_status =
2152 le32_to_cpu(np->tx_ring[entry].cmd_status);
2153 if (tx_status & (DescTxAbort|DescTxExcColl))
2154 np->stats.tx_aborted_errors++;
2155 if (tx_status & DescTxFIFO)
2156 np->stats.tx_fifo_errors++;
2157 if (tx_status & DescTxCarrier)
2158 np->stats.tx_carrier_errors++;
2159 if (tx_status & DescTxOOWCol)
2160 np->stats.tx_window_errors++;
2161 np->stats.tx_errors++;
2162 }
2163 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2164 np->tx_skbuff[entry]->len,
2165 PCI_DMA_TODEVICE);
2166 /* Free the original skb. */
2167 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2168 np->tx_skbuff[entry] = NULL;
2169 }
2170 if (netif_queue_stopped(dev)
2171 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2172 /* The ring is no longer full, wake queue. */
2173 netif_wake_queue(dev);
2174 }
2175 }
2176
2177 /* The interrupt handler doesn't actually handle interrupts itself, it
2178 * schedules a NAPI poll if there is anything to do. */
2179 static irqreturn_t intr_handler(int irq, void *dev_instance)
2180 {
2181 struct net_device *dev = dev_instance;
2182 struct netdev_private *np = netdev_priv(dev);
2183 void __iomem * ioaddr = ns_ioaddr(dev);
2184
2185 /* Reading IntrStatus automatically acknowledges so don't do
2186 * that while interrupts are disabled, (for example, while a
2187 * poll is scheduled). */
2188 if (np->hands_off || !readl(ioaddr + IntrEnable))
2189 return IRQ_NONE;
2190
2191 np->intr_status = readl(ioaddr + IntrStatus);
2192
2193 if (!np->intr_status)
2194 return IRQ_NONE;
2195
2196 if (netif_msg_intr(np))
2197 printk(KERN_DEBUG
2198 "%s: Interrupt, status %#08x, mask %#08x.\n",
2199 dev->name, np->intr_status,
2200 readl(ioaddr + IntrMask));
2201
2202 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2203
2204 if (netif_rx_schedule_prep(dev)) {
2205 /* Disable interrupts and register for poll */
2206 natsemi_irq_disable(dev);
2207 __netif_rx_schedule(dev);
2208 } else
2209 printk(KERN_WARNING
2210 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2211 dev->name, np->intr_status,
2212 readl(ioaddr + IntrMask));
2213
2214 return IRQ_HANDLED;
2215 }
2216
2217 /* This is the NAPI poll routine. As well as the standard RX handling
2218 * it also handles all other interrupts that the chip might raise.
2219 */
2220 static int natsemi_poll(struct net_device *dev, int *budget)
2221 {
2222 struct netdev_private *np = netdev_priv(dev);
2223 void __iomem * ioaddr = ns_ioaddr(dev);
2224
2225 int work_to_do = min(*budget, dev->quota);
2226 int work_done = 0;
2227
2228 do {
2229 if (netif_msg_intr(np))
2230 printk(KERN_DEBUG
2231 "%s: Poll, status %#08x, mask %#08x.\n",
2232 dev->name, np->intr_status,
2233 readl(ioaddr + IntrMask));
2234
2235 /* netdev_rx() may read IntrStatus again if the RX state
2236 * machine falls over so do it first. */
2237 if (np->intr_status &
2238 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2239 IntrRxErr | IntrRxOverrun)) {
2240 netdev_rx(dev, &work_done, work_to_do);
2241 }
2242
2243 if (np->intr_status &
2244 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2245 spin_lock(&np->lock);
2246 netdev_tx_done(dev);
2247 spin_unlock(&np->lock);
2248 }
2249
2250 /* Abnormal error summary/uncommon events handlers. */
2251 if (np->intr_status & IntrAbnormalSummary)
2252 netdev_error(dev, np->intr_status);
2253
2254 *budget -= work_done;
2255 dev->quota -= work_done;
2256
2257 if (work_done >= work_to_do)
2258 return 1;
2259
2260 np->intr_status = readl(ioaddr + IntrStatus);
2261 } while (np->intr_status);
2262
2263 netif_rx_complete(dev);
2264
2265 /* Reenable interrupts providing nothing is trying to shut
2266 * the chip down. */
2267 spin_lock(&np->lock);
2268 if (!np->hands_off && netif_running(dev))
2269 natsemi_irq_enable(dev);
2270 spin_unlock(&np->lock);
2271
2272 return 0;
2273 }
2274
2275 /* This routine is logically part of the interrupt handler, but separated
2276 for clarity and better register allocation. */
2277 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2278 {
2279 struct netdev_private *np = netdev_priv(dev);
2280 int entry = np->cur_rx % RX_RING_SIZE;
2281 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2282 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2283 unsigned int buflen = np->rx_buf_sz;
2284 void __iomem * ioaddr = ns_ioaddr(dev);
2285
2286 /* If the driver owns the next entry it's a new packet. Send it up. */
2287 while (desc_status < 0) { /* e.g. & DescOwn */
2288 int pkt_len;
2289 if (netif_msg_rx_status(np))
2290 printk(KERN_DEBUG
2291 " netdev_rx() entry %d status was %#08x.\n",
2292 entry, desc_status);
2293 if (--boguscnt < 0)
2294 break;
2295
2296 if (*work_done >= work_to_do)
2297 break;
2298
2299 (*work_done)++;
2300
2301 pkt_len = (desc_status & DescSizeMask) - 4;
2302 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2303 if (desc_status & DescMore) {
2304 unsigned long flags;
2305
2306 if (netif_msg_rx_err(np))
2307 printk(KERN_WARNING
2308 "%s: Oversized(?) Ethernet "
2309 "frame spanned multiple "
2310 "buffers, entry %#08x "
2311 "status %#08x.\n", dev->name,
2312 np->cur_rx, desc_status);
2313 np->stats.rx_length_errors++;
2314
2315 /* The RX state machine has probably
2316 * locked up beneath us. Follow the
2317 * reset procedure documented in
2318 * AN-1287. */
2319
2320 spin_lock_irqsave(&np->lock, flags);
2321 reset_rx(dev);
2322 reinit_rx(dev);
2323 writel(np->ring_dma, ioaddr + RxRingPtr);
2324 check_link(dev);
2325 spin_unlock_irqrestore(&np->lock, flags);
2326
2327 /* We'll enable RX on exit from this
2328 * function. */
2329 break;
2330
2331 } else {
2332 /* There was an error. */
2333 np->stats.rx_errors++;
2334 if (desc_status & (DescRxAbort|DescRxOver))
2335 np->stats.rx_over_errors++;
2336 if (desc_status & (DescRxLong|DescRxRunt))
2337 np->stats.rx_length_errors++;
2338 if (desc_status & (DescRxInvalid|DescRxAlign))
2339 np->stats.rx_frame_errors++;
2340 if (desc_status & DescRxCRC)
2341 np->stats.rx_crc_errors++;
2342 }
2343 } else if (pkt_len > np->rx_buf_sz) {
2344 /* if this is the tail of a double buffer
2345 * packet, we've already counted the error
2346 * on the first part. Ignore the second half.
2347 */
2348 } else {
2349 struct sk_buff *skb;
2350 /* Omit CRC size. */
2351 /* Check if the packet is long enough to accept
2352 * without copying to a minimally-sized skbuff. */
2353 if (pkt_len < rx_copybreak
2354 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2355 /* 16 byte align the IP header */
2356 skb_reserve(skb, RX_OFFSET);
2357 pci_dma_sync_single_for_cpu(np->pci_dev,
2358 np->rx_dma[entry],
2359 buflen,
2360 PCI_DMA_FROMDEVICE);
2361 eth_copy_and_sum(skb,
2362 np->rx_skbuff[entry]->data, pkt_len, 0);
2363 skb_put(skb, pkt_len);
2364 pci_dma_sync_single_for_device(np->pci_dev,
2365 np->rx_dma[entry],
2366 buflen,
2367 PCI_DMA_FROMDEVICE);
2368 } else {
2369 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2370 buflen, PCI_DMA_FROMDEVICE);
2371 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2372 np->rx_skbuff[entry] = NULL;
2373 }
2374 skb->protocol = eth_type_trans(skb, dev);
2375 netif_receive_skb(skb);
2376 dev->last_rx = jiffies;
2377 np->stats.rx_packets++;
2378 np->stats.rx_bytes += pkt_len;
2379 }
2380 entry = (++np->cur_rx) % RX_RING_SIZE;
2381 np->rx_head_desc = &np->rx_ring[entry];
2382 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2383 }
2384 refill_rx(dev);
2385
2386 /* Restart Rx engine if stopped. */
2387 if (np->oom)
2388 mod_timer(&np->timer, jiffies + 1);
2389 else
2390 writel(RxOn, ioaddr + ChipCmd);
2391 }
2392
2393 static void netdev_error(struct net_device *dev, int intr_status)
2394 {
2395 struct netdev_private *np = netdev_priv(dev);
2396 void __iomem * ioaddr = ns_ioaddr(dev);
2397
2398 spin_lock(&np->lock);
2399 if (intr_status & LinkChange) {
2400 u16 lpa = mdio_read(dev, MII_LPA);
2401 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2402 && netif_msg_link(np)) {
2403 printk(KERN_INFO
2404 "%s: Autonegotiation advertising"
2405 " %#04x partner %#04x.\n", dev->name,
2406 np->advertising, lpa);
2407 }
2408
2409 /* read MII int status to clear the flag */
2410 readw(ioaddr + MIntrStatus);
2411 check_link(dev);
2412 }
2413 if (intr_status & StatsMax) {
2414 __get_stats(dev);
2415 }
2416 if (intr_status & IntrTxUnderrun) {
2417 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2418 np->tx_config += TX_DRTH_VAL_INC;
2419 if (netif_msg_tx_err(np))
2420 printk(KERN_NOTICE
2421 "%s: increased tx threshold, txcfg %#08x.\n",
2422 dev->name, np->tx_config);
2423 } else {
2424 if (netif_msg_tx_err(np))
2425 printk(KERN_NOTICE
2426 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2427 dev->name, np->tx_config);
2428 }
2429 writel(np->tx_config, ioaddr + TxConfig);
2430 }
2431 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2432 int wol_status = readl(ioaddr + WOLCmd);
2433 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2434 dev->name, wol_status);
2435 }
2436 if (intr_status & RxStatusFIFOOver) {
2437 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2438 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2439 dev->name);
2440 }
2441 np->stats.rx_fifo_errors++;
2442 }
2443 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2444 if (intr_status & IntrPCIErr) {
2445 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2446 intr_status & IntrPCIErr);
2447 np->stats.tx_fifo_errors++;
2448 np->stats.rx_fifo_errors++;
2449 }
2450 spin_unlock(&np->lock);
2451 }
2452
2453 static void __get_stats(struct net_device *dev)
2454 {
2455 void __iomem * ioaddr = ns_ioaddr(dev);
2456 struct netdev_private *np = netdev_priv(dev);
2457
2458 /* The chip only need report frame silently dropped. */
2459 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2460 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2461 }
2462
2463 static struct net_device_stats *get_stats(struct net_device *dev)
2464 {
2465 struct netdev_private *np = netdev_priv(dev);
2466
2467 /* The chip only need report frame silently dropped. */
2468 spin_lock_irq(&np->lock);
2469 if (netif_running(dev) && !np->hands_off)
2470 __get_stats(dev);
2471 spin_unlock_irq(&np->lock);
2472
2473 return &np->stats;
2474 }
2475
2476 #ifdef CONFIG_NET_POLL_CONTROLLER
2477 static void natsemi_poll_controller(struct net_device *dev)
2478 {
2479 disable_irq(dev->irq);
2480 intr_handler(dev->irq, dev);
2481 enable_irq(dev->irq);
2482 }
2483 #endif
2484
2485 #define HASH_TABLE 0x200
2486 static void __set_rx_mode(struct net_device *dev)
2487 {
2488 void __iomem * ioaddr = ns_ioaddr(dev);
2489 struct netdev_private *np = netdev_priv(dev);
2490 u8 mc_filter[64]; /* Multicast hash filter */
2491 u32 rx_mode;
2492
2493 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2494 rx_mode = RxFilterEnable | AcceptBroadcast
2495 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2496 } else if ((dev->mc_count > multicast_filter_limit)
2497 || (dev->flags & IFF_ALLMULTI)) {
2498 rx_mode = RxFilterEnable | AcceptBroadcast
2499 | AcceptAllMulticast | AcceptMyPhys;
2500 } else {
2501 struct dev_mc_list *mclist;
2502 int i;
2503 memset(mc_filter, 0, sizeof(mc_filter));
2504 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2505 i++, mclist = mclist->next) {
2506 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2507 mc_filter[i/8] |= (1 << (i & 0x07));
2508 }
2509 rx_mode = RxFilterEnable | AcceptBroadcast
2510 | AcceptMulticast | AcceptMyPhys;
2511 for (i = 0; i < 64; i += 2) {
2512 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2513 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2514 ioaddr + RxFilterData);
2515 }
2516 }
2517 writel(rx_mode, ioaddr + RxFilterAddr);
2518 np->cur_rx_mode = rx_mode;
2519 }
2520
2521 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2522 {
2523 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2524 return -EINVAL;
2525
2526 dev->mtu = new_mtu;
2527
2528 /* synchronized against open : rtnl_lock() held by caller */
2529 if (netif_running(dev)) {
2530 struct netdev_private *np = netdev_priv(dev);
2531 void __iomem * ioaddr = ns_ioaddr(dev);
2532
2533 disable_irq(dev->irq);
2534 spin_lock(&np->lock);
2535 /* stop engines */
2536 natsemi_stop_rxtx(dev);
2537 /* drain rx queue */
2538 drain_rx(dev);
2539 /* change buffers */
2540 set_bufsize(dev);
2541 reinit_rx(dev);
2542 writel(np->ring_dma, ioaddr + RxRingPtr);
2543 /* restart engines */
2544 writel(RxOn | TxOn, ioaddr + ChipCmd);
2545 spin_unlock(&np->lock);
2546 enable_irq(dev->irq);
2547 }
2548 return 0;
2549 }
2550
2551 static void set_rx_mode(struct net_device *dev)
2552 {
2553 struct netdev_private *np = netdev_priv(dev);
2554 spin_lock_irq(&np->lock);
2555 if (!np->hands_off)
2556 __set_rx_mode(dev);
2557 spin_unlock_irq(&np->lock);
2558 }
2559
2560 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2561 {
2562 struct netdev_private *np = netdev_priv(dev);
2563 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2564 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2565 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2566 }
2567
2568 static int get_regs_len(struct net_device *dev)
2569 {
2570 return NATSEMI_REGS_SIZE;
2571 }
2572
2573 static int get_eeprom_len(struct net_device *dev)
2574 {
2575 struct netdev_private *np = netdev_priv(dev);
2576 return np->eeprom_size;
2577 }
2578
2579 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2580 {
2581 struct netdev_private *np = netdev_priv(dev);
2582 spin_lock_irq(&np->lock);
2583 netdev_get_ecmd(dev, ecmd);
2584 spin_unlock_irq(&np->lock);
2585 return 0;
2586 }
2587
2588 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2589 {
2590 struct netdev_private *np = netdev_priv(dev);
2591 int res;
2592 spin_lock_irq(&np->lock);
2593 res = netdev_set_ecmd(dev, ecmd);
2594 spin_unlock_irq(&np->lock);
2595 return res;
2596 }
2597
2598 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2599 {
2600 struct netdev_private *np = netdev_priv(dev);
2601 spin_lock_irq(&np->lock);
2602 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2603 netdev_get_sopass(dev, wol->sopass);
2604 spin_unlock_irq(&np->lock);
2605 }
2606
2607 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2608 {
2609 struct netdev_private *np = netdev_priv(dev);
2610 int res;
2611 spin_lock_irq(&np->lock);
2612 netdev_set_wol(dev, wol->wolopts);
2613 res = netdev_set_sopass(dev, wol->sopass);
2614 spin_unlock_irq(&np->lock);
2615 return res;
2616 }
2617
2618 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2619 {
2620 struct netdev_private *np = netdev_priv(dev);
2621 regs->version = NATSEMI_REGS_VER;
2622 spin_lock_irq(&np->lock);
2623 netdev_get_regs(dev, buf);
2624 spin_unlock_irq(&np->lock);
2625 }
2626
2627 static u32 get_msglevel(struct net_device *dev)
2628 {
2629 struct netdev_private *np = netdev_priv(dev);
2630 return np->msg_enable;
2631 }
2632
2633 static void set_msglevel(struct net_device *dev, u32 val)
2634 {
2635 struct netdev_private *np = netdev_priv(dev);
2636 np->msg_enable = val;
2637 }
2638
2639 static int nway_reset(struct net_device *dev)
2640 {
2641 int tmp;
2642 int r = -EINVAL;
2643 /* if autoneg is off, it's an error */
2644 tmp = mdio_read(dev, MII_BMCR);
2645 if (tmp & BMCR_ANENABLE) {
2646 tmp |= (BMCR_ANRESTART);
2647 mdio_write(dev, MII_BMCR, tmp);
2648 r = 0;
2649 }
2650 return r;
2651 }
2652
2653 static u32 get_link(struct net_device *dev)
2654 {
2655 /* LSTATUS is latched low until a read - so read twice */
2656 mdio_read(dev, MII_BMSR);
2657 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2658 }
2659
2660 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2661 {
2662 struct netdev_private *np = netdev_priv(dev);
2663 u8 *eebuf;
2664 int res;
2665
2666 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2667 if (!eebuf)
2668 return -ENOMEM;
2669
2670 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2671 spin_lock_irq(&np->lock);
2672 res = netdev_get_eeprom(dev, eebuf);
2673 spin_unlock_irq(&np->lock);
2674 if (!res)
2675 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2676 kfree(eebuf);
2677 return res;
2678 }
2679
2680 static const struct ethtool_ops ethtool_ops = {
2681 .get_drvinfo = get_drvinfo,
2682 .get_regs_len = get_regs_len,
2683 .get_eeprom_len = get_eeprom_len,
2684 .get_settings = get_settings,
2685 .set_settings = set_settings,
2686 .get_wol = get_wol,
2687 .set_wol = set_wol,
2688 .get_regs = get_regs,
2689 .get_msglevel = get_msglevel,
2690 .set_msglevel = set_msglevel,
2691 .nway_reset = nway_reset,
2692 .get_link = get_link,
2693 .get_eeprom = get_eeprom,
2694 };
2695
2696 static int netdev_set_wol(struct net_device *dev, u32 newval)
2697 {
2698 struct netdev_private *np = netdev_priv(dev);
2699 void __iomem * ioaddr = ns_ioaddr(dev);
2700 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2701
2702 /* translate to bitmasks this chip understands */
2703 if (newval & WAKE_PHY)
2704 data |= WakePhy;
2705 if (newval & WAKE_UCAST)
2706 data |= WakeUnicast;
2707 if (newval & WAKE_MCAST)
2708 data |= WakeMulticast;
2709 if (newval & WAKE_BCAST)
2710 data |= WakeBroadcast;
2711 if (newval & WAKE_ARP)
2712 data |= WakeArp;
2713 if (newval & WAKE_MAGIC)
2714 data |= WakeMagic;
2715 if (np->srr >= SRR_DP83815_D) {
2716 if (newval & WAKE_MAGICSECURE) {
2717 data |= WakeMagicSecure;
2718 }
2719 }
2720
2721 writel(data, ioaddr + WOLCmd);
2722
2723 return 0;
2724 }
2725
2726 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2727 {
2728 struct netdev_private *np = netdev_priv(dev);
2729 void __iomem * ioaddr = ns_ioaddr(dev);
2730 u32 regval = readl(ioaddr + WOLCmd);
2731
2732 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2733 | WAKE_ARP | WAKE_MAGIC);
2734
2735 if (np->srr >= SRR_DP83815_D) {
2736 /* SOPASS works on revD and higher */
2737 *supported |= WAKE_MAGICSECURE;
2738 }
2739 *cur = 0;
2740
2741 /* translate from chip bitmasks */
2742 if (regval & WakePhy)
2743 *cur |= WAKE_PHY;
2744 if (regval & WakeUnicast)
2745 *cur |= WAKE_UCAST;
2746 if (regval & WakeMulticast)
2747 *cur |= WAKE_MCAST;
2748 if (regval & WakeBroadcast)
2749 *cur |= WAKE_BCAST;
2750 if (regval & WakeArp)
2751 *cur |= WAKE_ARP;
2752 if (regval & WakeMagic)
2753 *cur |= WAKE_MAGIC;
2754 if (regval & WakeMagicSecure) {
2755 /* this can be on in revC, but it's broken */
2756 *cur |= WAKE_MAGICSECURE;
2757 }
2758
2759 return 0;
2760 }
2761
2762 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2763 {
2764 struct netdev_private *np = netdev_priv(dev);
2765 void __iomem * ioaddr = ns_ioaddr(dev);
2766 u16 *sval = (u16 *)newval;
2767 u32 addr;
2768
2769 if (np->srr < SRR_DP83815_D) {
2770 return 0;
2771 }
2772
2773 /* enable writing to these registers by disabling the RX filter */
2774 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2775 addr &= ~RxFilterEnable;
2776 writel(addr, ioaddr + RxFilterAddr);
2777
2778 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2779 writel(addr | 0xa, ioaddr + RxFilterAddr);
2780 writew(sval[0], ioaddr + RxFilterData);
2781
2782 writel(addr | 0xc, ioaddr + RxFilterAddr);
2783 writew(sval[1], ioaddr + RxFilterData);
2784
2785 writel(addr | 0xe, ioaddr + RxFilterAddr);
2786 writew(sval[2], ioaddr + RxFilterData);
2787
2788 /* re-enable the RX filter */
2789 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2790
2791 return 0;
2792 }
2793
2794 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2795 {
2796 struct netdev_private *np = netdev_priv(dev);
2797 void __iomem * ioaddr = ns_ioaddr(dev);
2798 u16 *sval = (u16 *)data;
2799 u32 addr;
2800
2801 if (np->srr < SRR_DP83815_D) {
2802 sval[0] = sval[1] = sval[2] = 0;
2803 return 0;
2804 }
2805
2806 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2807 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2808
2809 writel(addr | 0xa, ioaddr + RxFilterAddr);
2810 sval[0] = readw(ioaddr + RxFilterData);
2811
2812 writel(addr | 0xc, ioaddr + RxFilterAddr);
2813 sval[1] = readw(ioaddr + RxFilterData);
2814
2815 writel(addr | 0xe, ioaddr + RxFilterAddr);
2816 sval[2] = readw(ioaddr + RxFilterData);
2817
2818 writel(addr, ioaddr + RxFilterAddr);
2819
2820 return 0;
2821 }
2822
2823 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2824 {
2825 struct netdev_private *np = netdev_priv(dev);
2826 u32 tmp;
2827
2828 ecmd->port = dev->if_port;
2829 ecmd->speed = np->speed;
2830 ecmd->duplex = np->duplex;
2831 ecmd->autoneg = np->autoneg;
2832 ecmd->advertising = 0;
2833 if (np->advertising & ADVERTISE_10HALF)
2834 ecmd->advertising |= ADVERTISED_10baseT_Half;
2835 if (np->advertising & ADVERTISE_10FULL)
2836 ecmd->advertising |= ADVERTISED_10baseT_Full;
2837 if (np->advertising & ADVERTISE_100HALF)
2838 ecmd->advertising |= ADVERTISED_100baseT_Half;
2839 if (np->advertising & ADVERTISE_100FULL)
2840 ecmd->advertising |= ADVERTISED_100baseT_Full;
2841 ecmd->supported = (SUPPORTED_Autoneg |
2842 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2843 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2844 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2845 ecmd->phy_address = np->phy_addr_external;
2846 /*
2847 * We intentionally report the phy address of the external
2848 * phy, even if the internal phy is used. This is necessary
2849 * to work around a deficiency of the ethtool interface:
2850 * It's only possible to query the settings of the active
2851 * port. Therefore
2852 * # ethtool -s ethX port mii
2853 * actually sends an ioctl to switch to port mii with the
2854 * settings that are used for the current active port.
2855 * If we would report a different phy address in this
2856 * command, then
2857 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2858 * would unintentionally change the phy address.
2859 *
2860 * Fortunately the phy address doesn't matter with the
2861 * internal phy...
2862 */
2863
2864 /* set information based on active port type */
2865 switch (ecmd->port) {
2866 default:
2867 case PORT_TP:
2868 ecmd->advertising |= ADVERTISED_TP;
2869 ecmd->transceiver = XCVR_INTERNAL;
2870 break;
2871 case PORT_MII:
2872 ecmd->advertising |= ADVERTISED_MII;
2873 ecmd->transceiver = XCVR_EXTERNAL;
2874 break;
2875 case PORT_FIBRE:
2876 ecmd->advertising |= ADVERTISED_FIBRE;
2877 ecmd->transceiver = XCVR_EXTERNAL;
2878 break;
2879 }
2880
2881 /* if autonegotiation is on, try to return the active speed/duplex */
2882 if (ecmd->autoneg == AUTONEG_ENABLE) {
2883 ecmd->advertising |= ADVERTISED_Autoneg;
2884 tmp = mii_nway_result(
2885 np->advertising & mdio_read(dev, MII_LPA));
2886 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2887 ecmd->speed = SPEED_100;
2888 else
2889 ecmd->speed = SPEED_10;
2890 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2891 ecmd->duplex = DUPLEX_FULL;
2892 else
2893 ecmd->duplex = DUPLEX_HALF;
2894 }
2895
2896 /* ignore maxtxpkt, maxrxpkt for now */
2897
2898 return 0;
2899 }
2900
2901 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2902 {
2903 struct netdev_private *np = netdev_priv(dev);
2904
2905 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2906 return -EINVAL;
2907 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2908 return -EINVAL;
2909 if (ecmd->autoneg == AUTONEG_ENABLE) {
2910 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2911 ADVERTISED_10baseT_Full |
2912 ADVERTISED_100baseT_Half |
2913 ADVERTISED_100baseT_Full)) == 0) {
2914 return -EINVAL;
2915 }
2916 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2917 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2918 return -EINVAL;
2919 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2920 return -EINVAL;
2921 } else {
2922 return -EINVAL;
2923 }
2924
2925 /*
2926 * If we're ignoring the PHY then autoneg and the internal
2927 * transciever are really not going to work so don't let the
2928 * user select them.
2929 */
2930 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2931 ecmd->port == PORT_TP))
2932 return -EINVAL;
2933
2934 /*
2935 * maxtxpkt, maxrxpkt: ignored for now.
2936 *
2937 * transceiver:
2938 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2939 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2940 * selects based on ecmd->port.
2941 *
2942 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2943 * phys that are connected to the mii bus. It's used to apply fibre
2944 * specific updates.
2945 */
2946
2947 /* WHEW! now lets bang some bits */
2948
2949 /* save the parms */
2950 dev->if_port = ecmd->port;
2951 np->autoneg = ecmd->autoneg;
2952 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2953 if (np->autoneg == AUTONEG_ENABLE) {
2954 /* advertise only what has been requested */
2955 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2956 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2957 np->advertising |= ADVERTISE_10HALF;
2958 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2959 np->advertising |= ADVERTISE_10FULL;
2960 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2961 np->advertising |= ADVERTISE_100HALF;
2962 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2963 np->advertising |= ADVERTISE_100FULL;
2964 } else {
2965 np->speed = ecmd->speed;
2966 np->duplex = ecmd->duplex;
2967 /* user overriding the initial full duplex parm? */
2968 if (np->duplex == DUPLEX_HALF)
2969 np->full_duplex = 0;
2970 }
2971
2972 /* get the right phy enabled */
2973 if (ecmd->port == PORT_TP)
2974 switch_port_internal(dev);
2975 else
2976 switch_port_external(dev);
2977
2978 /* set parms and see how this affected our link status */
2979 init_phy_fixup(dev);
2980 check_link(dev);
2981 return 0;
2982 }
2983
2984 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2985 {
2986 int i;
2987 int j;
2988 u32 rfcr;
2989 u32 *rbuf = (u32 *)buf;
2990 void __iomem * ioaddr = ns_ioaddr(dev);
2991
2992 /* read non-mii page 0 of registers */
2993 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2994 rbuf[i] = readl(ioaddr + i*4);
2995 }
2996
2997 /* read current mii registers */
2998 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2999 rbuf[i] = mdio_read(dev, i & 0x1f);
3000
3001 /* read only the 'magic' registers from page 1 */
3002 writew(1, ioaddr + PGSEL);
3003 rbuf[i++] = readw(ioaddr + PMDCSR);
3004 rbuf[i++] = readw(ioaddr + TSTDAT);
3005 rbuf[i++] = readw(ioaddr + DSPCFG);
3006 rbuf[i++] = readw(ioaddr + SDCFG);
3007 writew(0, ioaddr + PGSEL);
3008
3009 /* read RFCR indexed registers */
3010 rfcr = readl(ioaddr + RxFilterAddr);
3011 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3012 writel(j*2, ioaddr + RxFilterAddr);
3013 rbuf[i++] = readw(ioaddr + RxFilterData);
3014 }
3015 writel(rfcr, ioaddr + RxFilterAddr);
3016
3017 /* the interrupt status is clear-on-read - see if we missed any */
3018 if (rbuf[4] & rbuf[5]) {
3019 printk(KERN_WARNING
3020 "%s: shoot, we dropped an interrupt (%#08x)\n",
3021 dev->name, rbuf[4] & rbuf[5]);
3022 }
3023
3024 return 0;
3025 }
3026
3027 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3028 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3029 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3030 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3031 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3032 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3033 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3034 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3035
3036 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3037 {
3038 int i;
3039 u16 *ebuf = (u16 *)buf;
3040 void __iomem * ioaddr = ns_ioaddr(dev);
3041 struct netdev_private *np = netdev_priv(dev);
3042
3043 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3044 for (i = 0; i < np->eeprom_size/2; i++) {
3045 ebuf[i] = eeprom_read(ioaddr, i);
3046 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3047 * reads it back "sanely". So we swap it back here in order to
3048 * present it to userland as it is stored. */
3049 ebuf[i] = SWAP_BITS(ebuf[i]);
3050 }
3051 return 0;
3052 }
3053
3054 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3055 {
3056 struct mii_ioctl_data *data = if_mii(rq);
3057 struct netdev_private *np = netdev_priv(dev);
3058
3059 switch(cmd) {
3060 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3061 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
3062 data->phy_id = np->phy_addr_external;
3063 /* Fall Through */
3064
3065 case SIOCGMIIREG: /* Read MII PHY register. */
3066 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3067 /* The phy_id is not enough to uniquely identify
3068 * the intended target. Therefore the command is sent to
3069 * the given mii on the current port.
3070 */
3071 if (dev->if_port == PORT_TP) {
3072 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3073 data->val_out = mdio_read(dev,
3074 data->reg_num & 0x1f);
3075 else
3076 data->val_out = 0;
3077 } else {
3078 move_int_phy(dev, data->phy_id & 0x1f);
3079 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3080 data->reg_num & 0x1f);
3081 }
3082 return 0;
3083
3084 case SIOCSMIIREG: /* Write MII PHY register. */
3085 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3086 if (!capable(CAP_NET_ADMIN))
3087 return -EPERM;
3088 if (dev->if_port == PORT_TP) {
3089 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3090 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3091 np->advertising = data->val_in;
3092 mdio_write(dev, data->reg_num & 0x1f,
3093 data->val_in);
3094 }
3095 } else {
3096 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3097 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3098 np->advertising = data->val_in;
3099 }
3100 move_int_phy(dev, data->phy_id & 0x1f);
3101 miiport_write(dev, data->phy_id & 0x1f,
3102 data->reg_num & 0x1f,
3103 data->val_in);
3104 }
3105 return 0;
3106 default:
3107 return -EOPNOTSUPP;
3108 }
3109 }
3110
3111 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3112 {
3113 void __iomem * ioaddr = ns_ioaddr(dev);
3114 struct netdev_private *np = netdev_priv(dev);
3115
3116 if (netif_msg_wol(np))
3117 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3118 dev->name);
3119
3120 /* For WOL we must restart the rx process in silent mode.
3121 * Write NULL to the RxRingPtr. Only possible if
3122 * rx process is stopped
3123 */
3124 writel(0, ioaddr + RxRingPtr);
3125
3126 /* read WoL status to clear */
3127 readl(ioaddr + WOLCmd);
3128
3129 /* PME on, clear status */
3130 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3131
3132 /* and restart the rx process */
3133 writel(RxOn, ioaddr + ChipCmd);
3134
3135 if (enable_intr) {
3136 /* enable the WOL interrupt.
3137 * Could be used to send a netlink message.
3138 */
3139 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3140 natsemi_irq_enable(dev);
3141 }
3142 }
3143
3144 static int netdev_close(struct net_device *dev)
3145 {
3146 void __iomem * ioaddr = ns_ioaddr(dev);
3147 struct netdev_private *np = netdev_priv(dev);
3148
3149 if (netif_msg_ifdown(np))
3150 printk(KERN_DEBUG
3151 "%s: Shutting down ethercard, status was %#04x.\n",
3152 dev->name, (int)readl(ioaddr + ChipCmd));
3153 if (netif_msg_pktdata(np))
3154 printk(KERN_DEBUG
3155 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3156 dev->name, np->cur_tx, np->dirty_tx,
3157 np->cur_rx, np->dirty_rx);
3158
3159 /*
3160 * FIXME: what if someone tries to close a device
3161 * that is suspended?
3162 * Should we reenable the nic to switch to
3163 * the final WOL settings?
3164 */
3165
3166 del_timer_sync(&np->timer);
3167 disable_irq(dev->irq);
3168 spin_lock_irq(&np->lock);
3169 natsemi_irq_disable(dev);
3170 np->hands_off = 1;
3171 spin_unlock_irq(&np->lock);
3172 enable_irq(dev->irq);
3173
3174 free_irq(dev->irq, dev);
3175
3176 /* Interrupt disabled, interrupt handler released,
3177 * queue stopped, timer deleted, rtnl_lock held
3178 * All async codepaths that access the driver are disabled.
3179 */
3180 spin_lock_irq(&np->lock);
3181 np->hands_off = 0;
3182 readl(ioaddr + IntrMask);
3183 readw(ioaddr + MIntrStatus);
3184
3185 /* Freeze Stats */
3186 writel(StatsFreeze, ioaddr + StatsCtrl);
3187
3188 /* Stop the chip's Tx and Rx processes. */
3189 natsemi_stop_rxtx(dev);
3190
3191 __get_stats(dev);
3192 spin_unlock_irq(&np->lock);
3193
3194 /* clear the carrier last - an interrupt could reenable it otherwise */
3195 netif_carrier_off(dev);
3196 netif_stop_queue(dev);
3197
3198 dump_ring(dev);
3199 drain_ring(dev);
3200 free_ring(dev);
3201
3202 {
3203 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3204 if (wol) {
3205 /* restart the NIC in WOL mode.
3206 * The nic must be stopped for this.
3207 */
3208 enable_wol_mode(dev, 0);
3209 } else {
3210 /* Restore PME enable bit unmolested */
3211 writel(np->SavedClkRun, ioaddr + ClkRun);
3212 }
3213 }
3214 return 0;
3215 }
3216
3217
3218 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3219 {
3220 struct net_device *dev = pci_get_drvdata(pdev);
3221 void __iomem * ioaddr = ns_ioaddr(dev);
3222
3223 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3224 unregister_netdev (dev);
3225 pci_release_regions (pdev);
3226 iounmap(ioaddr);
3227 free_netdev (dev);
3228 pci_set_drvdata(pdev, NULL);
3229 }
3230
3231 #ifdef CONFIG_PM
3232
3233 /*
3234 * The ns83815 chip doesn't have explicit RxStop bits.
3235 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3236 * of the nic, thus this function must be very careful:
3237 *
3238 * suspend/resume synchronization:
3239 * entry points:
3240 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3241 * start_tx, tx_timeout
3242 *
3243 * No function accesses the hardware without checking np->hands_off.
3244 * the check occurs under spin_lock_irq(&np->lock);
3245 * exceptions:
3246 * * netdev_ioctl: noncritical access.
3247 * * netdev_open: cannot happen due to the device_detach
3248 * * netdev_close: doesn't hurt.
3249 * * netdev_timer: timer stopped by natsemi_suspend.
3250 * * intr_handler: doesn't acquire the spinlock. suspend calls
3251 * disable_irq() to enforce synchronization.
3252 * * natsemi_poll: checks before reenabling interrupts. suspend
3253 * sets hands_off, disables interrupts and then waits with
3254 * netif_poll_disable().
3255 *
3256 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3257 */
3258
3259 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3260 {
3261 struct net_device *dev = pci_get_drvdata (pdev);
3262 struct netdev_private *np = netdev_priv(dev);
3263 void __iomem * ioaddr = ns_ioaddr(dev);
3264
3265 rtnl_lock();
3266 if (netif_running (dev)) {
3267 del_timer_sync(&np->timer);
3268
3269 disable_irq(dev->irq);
3270 spin_lock_irq(&np->lock);
3271
3272 natsemi_irq_disable(dev);
3273 np->hands_off = 1;
3274 natsemi_stop_rxtx(dev);
3275 netif_stop_queue(dev);
3276
3277 spin_unlock_irq(&np->lock);
3278 enable_irq(dev->irq);
3279
3280 netif_poll_disable(dev);
3281
3282 /* Update the error counts. */
3283 __get_stats(dev);
3284
3285 /* pci_power_off(pdev, -1); */
3286 drain_ring(dev);
3287 {
3288 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3289 /* Restore PME enable bit */
3290 if (wol) {
3291 /* restart the NIC in WOL mode.
3292 * The nic must be stopped for this.
3293 * FIXME: use the WOL interrupt
3294 */
3295 enable_wol_mode(dev, 0);
3296 } else {
3297 /* Restore PME enable bit unmolested */
3298 writel(np->SavedClkRun, ioaddr + ClkRun);
3299 }
3300 }
3301 }
3302 netif_device_detach(dev);
3303 rtnl_unlock();
3304 return 0;
3305 }
3306
3307
3308 static int natsemi_resume (struct pci_dev *pdev)
3309 {
3310 struct net_device *dev = pci_get_drvdata (pdev);
3311 struct netdev_private *np = netdev_priv(dev);
3312
3313 rtnl_lock();
3314 if (netif_device_present(dev))
3315 goto out;
3316 if (netif_running(dev)) {
3317 BUG_ON(!np->hands_off);
3318 pci_enable_device(pdev);
3319 /* pci_power_on(pdev); */
3320
3321 natsemi_reset(dev);
3322 init_ring(dev);
3323 disable_irq(dev->irq);
3324 spin_lock_irq(&np->lock);
3325 np->hands_off = 0;
3326 init_registers(dev);
3327 netif_device_attach(dev);
3328 spin_unlock_irq(&np->lock);
3329 enable_irq(dev->irq);
3330
3331 mod_timer(&np->timer, jiffies + 1*HZ);
3332 }
3333 netif_device_attach(dev);
3334 netif_poll_enable(dev);
3335 out:
3336 rtnl_unlock();
3337 return 0;
3338 }
3339
3340 #endif /* CONFIG_PM */
3341
3342 static struct pci_driver natsemi_driver = {
3343 .name = DRV_NAME,
3344 .id_table = natsemi_pci_tbl,
3345 .probe = natsemi_probe1,
3346 .remove = __devexit_p(natsemi_remove1),
3347 #ifdef CONFIG_PM
3348 .suspend = natsemi_suspend,
3349 .resume = natsemi_resume,
3350 #endif
3351 };
3352
3353 static int __init natsemi_init_mod (void)
3354 {
3355 /* when a module, this is printed whether or not devices are found in probe */
3356 #ifdef MODULE
3357 printk(version);
3358 #endif
3359
3360 return pci_register_driver(&natsemi_driver);
3361 }
3362
3363 static void __exit natsemi_exit_mod (void)
3364 {
3365 pci_unregister_driver (&natsemi_driver);
3366 }
3367
3368 module_init(natsemi_init_mod);
3369 module_exit(natsemi_exit_mod);
3370
This page took 0.120349 seconds and 5 git commands to generate.