dma-mapping: replace all DMA_32BIT_MASK macro with DMA_BIT_MASK(32)
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80 /* required last entry */
81 {0,}
82 };
83
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
89 */
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91 {
92 u32 sem_bits = 0;
93
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
122 }
123
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
126 }
127
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 {
130 unsigned int wait_count = 30;
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
134 udelay(100);
135 } while (--wait_count);
136 return -ETIMEDOUT;
137 }
138
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
143 }
144
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 */
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151 {
152 u32 temp;
153 int count = UDELAY_COUNT;
154
155 while (count) {
156 temp = ql_read32(qdev, reg);
157
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
168 }
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
172 }
173
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
176 */
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 {
179 int count = UDELAY_COUNT;
180 u32 temp;
181
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
190 }
191 return -ETIMEDOUT;
192 }
193
194
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
197 */
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
200 {
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
206
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
210
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
215 }
216
217 status = ql_wait_cfg(qdev, bit);
218 if (status) {
219 QPRINTK(qdev, IFUP, ERR,
220 "Timed out waiting for CFG to come ready.\n");
221 goto exit;
222 }
223
224 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225 if (status)
226 goto exit;
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
229 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
230
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
234
235 /*
236 * Wait for the bit to clear after signaling hw.
237 */
238 status = ql_wait_cfg(qdev, bit);
239 exit:
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242 }
243
244 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247 {
248 u32 offset = 0;
249 int status;
250
251 switch (type) {
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
254 {
255 status =
256 ql_wait_reg_rdy(qdev,
257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
258 if (status)
259 goto exit;
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263 status =
264 ql_wait_reg_rdy(qdev,
265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
266 if (status)
267 goto exit;
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269 status =
270 ql_wait_reg_rdy(qdev,
271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
272 if (status)
273 goto exit;
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277 status =
278 ql_wait_reg_rdy(qdev,
279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
280 if (status)
281 goto exit;
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
284 status =
285 ql_wait_reg_rdy(qdev,
286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
294 MAC_ADDR_MR, 0);
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298 }
299 break;
300 }
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
303 default:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
306 status = -EPERM;
307 }
308 exit:
309 return status;
310 }
311
312 /* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
314 */
315 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316 u16 index)
317 {
318 u32 offset = 0;
319 int status = 0;
320
321 switch (type) {
322 case MAC_ADDR_TYPE_MULTI_MAC:
323 case MAC_ADDR_TYPE_CAM_MAC:
324 {
325 u32 cam_output;
326 u32 upper = (addr[0] << 8) | addr[1];
327 u32 lower =
328 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
329 (addr[5]);
330
331 QPRINTK(qdev, IFUP, DEBUG,
332 "Adding %s address %pM"
333 " at index %d in the CAM.\n",
334 ((type ==
335 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
336 "UNICAST"), addr, index);
337
338 status =
339 ql_wait_reg_rdy(qdev,
340 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
341 if (status)
342 goto exit;
343 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
344 (index << MAC_ADDR_IDX_SHIFT) | /* index */
345 type); /* type */
346 ql_write32(qdev, MAC_ADDR_DATA, lower);
347 status =
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350 if (status)
351 goto exit;
352 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
353 (index << MAC_ADDR_IDX_SHIFT) | /* index */
354 type); /* type */
355 ql_write32(qdev, MAC_ADDR_DATA, upper);
356 status =
357 ql_wait_reg_rdy(qdev,
358 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
359 if (status)
360 goto exit;
361 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
362 (index << MAC_ADDR_IDX_SHIFT) | /* index */
363 type); /* type */
364 /* This field should also include the queue id
365 and possibly the function id. Right now we hardcode
366 the route field to NIC core.
367 */
368 if (type == MAC_ADDR_TYPE_CAM_MAC) {
369 cam_output = (CAM_OUT_ROUTE_NIC |
370 (qdev->
371 func << CAM_OUT_FUNC_SHIFT) |
372 (qdev->
373 rss_ring_first_cq_id <<
374 CAM_OUT_CQ_ID_SHIFT));
375 if (qdev->vlgrp)
376 cam_output |= CAM_OUT_RV;
377 /* route to NIC core */
378 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
379 }
380 break;
381 }
382 case MAC_ADDR_TYPE_VLAN:
383 {
384 u32 enable_bit = *((u32 *) &addr[0]);
385 /* For VLAN, the addr actually holds a bit that
386 * either enables or disables the vlan id we are
387 * addressing. It's either MAC_ADDR_E on or off.
388 * That's bit-27 we're talking about.
389 */
390 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
391 (enable_bit ? "Adding" : "Removing"),
392 index, (enable_bit ? "to" : "from"));
393
394 status =
395 ql_wait_reg_rdy(qdev,
396 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
397 if (status)
398 goto exit;
399 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
400 (index << MAC_ADDR_IDX_SHIFT) | /* index */
401 type | /* type */
402 enable_bit); /* enable/disable */
403 break;
404 }
405 case MAC_ADDR_TYPE_MULTI_FLTR:
406 default:
407 QPRINTK(qdev, IFUP, CRIT,
408 "Address type %d not yet supported.\n", type);
409 status = -EPERM;
410 }
411 exit:
412 return status;
413 }
414
415 /* Get a specific frame routing value from the CAM.
416 * Used for debug and reg dump.
417 */
418 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
419 {
420 int status = 0;
421
422 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
423 if (status)
424 goto exit;
425
426 ql_write32(qdev, RT_IDX,
427 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
428 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
429 if (status)
430 goto exit;
431 *value = ql_read32(qdev, RT_DATA);
432 exit:
433 return status;
434 }
435
436 /* The NIC function for this chip has 16 routing indexes. Each one can be used
437 * to route different frame types to various inbound queues. We send broadcast/
438 * multicast/error frames to the default queue for slow handling,
439 * and CAM hit/RSS frames to the fast handling queues.
440 */
441 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
442 int enable)
443 {
444 int status = -EINVAL; /* Return error if no mask match. */
445 u32 value = 0;
446
447 QPRINTK(qdev, IFUP, DEBUG,
448 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
449 (enable ? "Adding" : "Removing"),
450 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
451 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
452 ((index ==
453 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
454 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
455 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
456 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
457 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
458 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
459 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
460 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
461 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
462 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
463 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
464 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
465 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
466 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
467 (enable ? "to" : "from"));
468
469 switch (mask) {
470 case RT_IDX_CAM_HIT:
471 {
472 value = RT_IDX_DST_CAM_Q | /* dest */
473 RT_IDX_TYPE_NICQ | /* type */
474 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
475 break;
476 }
477 case RT_IDX_VALID: /* Promiscuous Mode frames. */
478 {
479 value = RT_IDX_DST_DFLT_Q | /* dest */
480 RT_IDX_TYPE_NICQ | /* type */
481 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
482 break;
483 }
484 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
485 {
486 value = RT_IDX_DST_DFLT_Q | /* dest */
487 RT_IDX_TYPE_NICQ | /* type */
488 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
489 break;
490 }
491 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
492 {
493 value = RT_IDX_DST_DFLT_Q | /* dest */
494 RT_IDX_TYPE_NICQ | /* type */
495 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
496 break;
497 }
498 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
499 {
500 value = RT_IDX_DST_CAM_Q | /* dest */
501 RT_IDX_TYPE_NICQ | /* type */
502 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
503 break;
504 }
505 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
506 {
507 value = RT_IDX_DST_CAM_Q | /* dest */
508 RT_IDX_TYPE_NICQ | /* type */
509 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
510 break;
511 }
512 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
513 {
514 value = RT_IDX_DST_RSS | /* dest */
515 RT_IDX_TYPE_NICQ | /* type */
516 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
517 break;
518 }
519 case 0: /* Clear the E-bit on an entry. */
520 {
521 value = RT_IDX_DST_DFLT_Q | /* dest */
522 RT_IDX_TYPE_NICQ | /* type */
523 (index << RT_IDX_IDX_SHIFT);/* index */
524 break;
525 }
526 default:
527 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
528 mask);
529 status = -EPERM;
530 goto exit;
531 }
532
533 if (value) {
534 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
535 if (status)
536 goto exit;
537 value |= (enable ? RT_IDX_E : 0);
538 ql_write32(qdev, RT_IDX, value);
539 ql_write32(qdev, RT_DATA, enable ? mask : 0);
540 }
541 exit:
542 return status;
543 }
544
545 static void ql_enable_interrupts(struct ql_adapter *qdev)
546 {
547 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
548 }
549
550 static void ql_disable_interrupts(struct ql_adapter *qdev)
551 {
552 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
553 }
554
555 /* If we're running with multiple MSI-X vectors then we enable on the fly.
556 * Otherwise, we may have multiple outstanding workers and don't want to
557 * enable until the last one finishes. In this case, the irq_cnt gets
558 * incremented everytime we queue a worker and decremented everytime
559 * a worker finishes. Once it hits zero we enable the interrupt.
560 */
561 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
562 {
563 u32 var = 0;
564 unsigned long hw_flags = 0;
565 struct intr_context *ctx = qdev->intr_context + intr;
566
567 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
568 /* Always enable if we're MSIX multi interrupts and
569 * it's not the default (zeroeth) interrupt.
570 */
571 ql_write32(qdev, INTR_EN,
572 ctx->intr_en_mask);
573 var = ql_read32(qdev, STS);
574 return var;
575 }
576
577 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
578 if (atomic_dec_and_test(&ctx->irq_cnt)) {
579 ql_write32(qdev, INTR_EN,
580 ctx->intr_en_mask);
581 var = ql_read32(qdev, STS);
582 }
583 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
584 return var;
585 }
586
587 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
588 {
589 u32 var = 0;
590 struct intr_context *ctx;
591
592 /* HW disables for us if we're MSIX multi interrupts and
593 * it's not the default (zeroeth) interrupt.
594 */
595 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
596 return 0;
597
598 ctx = qdev->intr_context + intr;
599 spin_lock(&qdev->hw_lock);
600 if (!atomic_read(&ctx->irq_cnt)) {
601 ql_write32(qdev, INTR_EN,
602 ctx->intr_dis_mask);
603 var = ql_read32(qdev, STS);
604 }
605 atomic_inc(&ctx->irq_cnt);
606 spin_unlock(&qdev->hw_lock);
607 return var;
608 }
609
610 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
611 {
612 int i;
613 for (i = 0; i < qdev->intr_count; i++) {
614 /* The enable call does a atomic_dec_and_test
615 * and enables only if the result is zero.
616 * So we precharge it here.
617 */
618 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
619 i == 0))
620 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
621 ql_enable_completion_interrupt(qdev, i);
622 }
623
624 }
625
626 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
627 {
628 int status, i;
629 u16 csum = 0;
630 __le16 *flash = (__le16 *)&qdev->flash;
631
632 status = strncmp((char *)&qdev->flash, str, 4);
633 if (status) {
634 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
635 return status;
636 }
637
638 for (i = 0; i < size; i++)
639 csum += le16_to_cpu(*flash++);
640
641 if (csum)
642 QPRINTK(qdev, IFUP, ERR,
643 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
644
645 return csum;
646 }
647
648 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
649 {
650 int status = 0;
651 /* wait for reg to come ready */
652 status = ql_wait_reg_rdy(qdev,
653 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
654 if (status)
655 goto exit;
656 /* set up for reg read */
657 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
658 /* wait for reg to come ready */
659 status = ql_wait_reg_rdy(qdev,
660 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
661 if (status)
662 goto exit;
663 /* This data is stored on flash as an array of
664 * __le32. Since ql_read32() returns cpu endian
665 * we need to swap it back.
666 */
667 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
668 exit:
669 return status;
670 }
671
672 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
673 {
674 u32 i, size;
675 int status;
676 __le32 *p = (__le32 *)&qdev->flash;
677 u32 offset;
678
679 /* Get flash offset for function and adjust
680 * for dword access.
681 */
682 if (!qdev->func)
683 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
684 else
685 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
686
687 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
688 return -ETIMEDOUT;
689
690 size = sizeof(struct flash_params_8000) / sizeof(u32);
691 for (i = 0; i < size; i++, p++) {
692 status = ql_read_flash_word(qdev, i+offset, p);
693 if (status) {
694 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
695 goto exit;
696 }
697 }
698
699 status = ql_validate_flash(qdev,
700 sizeof(struct flash_params_8000) / sizeof(u16),
701 "8000");
702 if (status) {
703 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
704 status = -EINVAL;
705 goto exit;
706 }
707
708 if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
709 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
710 status = -EINVAL;
711 goto exit;
712 }
713
714 memcpy(qdev->ndev->dev_addr,
715 qdev->flash.flash_params_8000.mac_addr,
716 qdev->ndev->addr_len);
717
718 exit:
719 ql_sem_unlock(qdev, SEM_FLASH_MASK);
720 return status;
721 }
722
723 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
724 {
725 int i;
726 int status;
727 __le32 *p = (__le32 *)&qdev->flash;
728 u32 offset = 0;
729 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
730
731 /* Second function's parameters follow the first
732 * function's.
733 */
734 if (qdev->func)
735 offset = size;
736
737 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
738 return -ETIMEDOUT;
739
740 for (i = 0; i < size; i++, p++) {
741 status = ql_read_flash_word(qdev, i+offset, p);
742 if (status) {
743 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
744 goto exit;
745 }
746
747 }
748
749 status = ql_validate_flash(qdev,
750 sizeof(struct flash_params_8012) / sizeof(u16),
751 "8012");
752 if (status) {
753 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
754 status = -EINVAL;
755 goto exit;
756 }
757
758 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
759 status = -EINVAL;
760 goto exit;
761 }
762
763 memcpy(qdev->ndev->dev_addr,
764 qdev->flash.flash_params_8012.mac_addr,
765 qdev->ndev->addr_len);
766
767 exit:
768 ql_sem_unlock(qdev, SEM_FLASH_MASK);
769 return status;
770 }
771
772 /* xgmac register are located behind the xgmac_addr and xgmac_data
773 * register pair. Each read/write requires us to wait for the ready
774 * bit before reading/writing the data.
775 */
776 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
777 {
778 int status;
779 /* wait for reg to come ready */
780 status = ql_wait_reg_rdy(qdev,
781 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
782 if (status)
783 return status;
784 /* write the data to the data reg */
785 ql_write32(qdev, XGMAC_DATA, data);
786 /* trigger the write */
787 ql_write32(qdev, XGMAC_ADDR, reg);
788 return status;
789 }
790
791 /* xgmac register are located behind the xgmac_addr and xgmac_data
792 * register pair. Each read/write requires us to wait for the ready
793 * bit before reading/writing the data.
794 */
795 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
796 {
797 int status = 0;
798 /* wait for reg to come ready */
799 status = ql_wait_reg_rdy(qdev,
800 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
801 if (status)
802 goto exit;
803 /* set up for reg read */
804 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
805 /* wait for reg to come ready */
806 status = ql_wait_reg_rdy(qdev,
807 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
808 if (status)
809 goto exit;
810 /* get the data */
811 *data = ql_read32(qdev, XGMAC_DATA);
812 exit:
813 return status;
814 }
815
816 /* This is used for reading the 64-bit statistics regs. */
817 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
818 {
819 int status = 0;
820 u32 hi = 0;
821 u32 lo = 0;
822
823 status = ql_read_xgmac_reg(qdev, reg, &lo);
824 if (status)
825 goto exit;
826
827 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
828 if (status)
829 goto exit;
830
831 *data = (u64) lo | ((u64) hi << 32);
832
833 exit:
834 return status;
835 }
836
837 static int ql_8000_port_initialize(struct ql_adapter *qdev)
838 {
839 int status;
840 status = ql_mb_get_fw_state(qdev);
841 if (status)
842 goto exit;
843 /* Wake up a worker to get/set the TX/RX frame sizes. */
844 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
845 exit:
846 return status;
847 }
848
849 /* Take the MAC Core out of reset.
850 * Enable statistics counting.
851 * Take the transmitter/receiver out of reset.
852 * This functionality may be done in the MPI firmware at a
853 * later date.
854 */
855 static int ql_8012_port_initialize(struct ql_adapter *qdev)
856 {
857 int status = 0;
858 u32 data;
859
860 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
861 /* Another function has the semaphore, so
862 * wait for the port init bit to come ready.
863 */
864 QPRINTK(qdev, LINK, INFO,
865 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
866 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
867 if (status) {
868 QPRINTK(qdev, LINK, CRIT,
869 "Port initialize timed out.\n");
870 }
871 return status;
872 }
873
874 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
875 /* Set the core reset. */
876 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
877 if (status)
878 goto end;
879 data |= GLOBAL_CFG_RESET;
880 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
881 if (status)
882 goto end;
883
884 /* Clear the core reset and turn on jumbo for receiver. */
885 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
886 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
887 data |= GLOBAL_CFG_TX_STAT_EN;
888 data |= GLOBAL_CFG_RX_STAT_EN;
889 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
890 if (status)
891 goto end;
892
893 /* Enable transmitter, and clear it's reset. */
894 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
895 if (status)
896 goto end;
897 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
898 data |= TX_CFG_EN; /* Enable the transmitter. */
899 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
900 if (status)
901 goto end;
902
903 /* Enable receiver and clear it's reset. */
904 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
905 if (status)
906 goto end;
907 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
908 data |= RX_CFG_EN; /* Enable the receiver. */
909 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
910 if (status)
911 goto end;
912
913 /* Turn on jumbo. */
914 status =
915 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
916 if (status)
917 goto end;
918 status =
919 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
920 if (status)
921 goto end;
922
923 /* Signal to the world that the port is enabled. */
924 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
925 end:
926 ql_sem_unlock(qdev, qdev->xg_sem_mask);
927 return status;
928 }
929
930 /* Get the next large buffer. */
931 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
932 {
933 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
934 rx_ring->lbq_curr_idx++;
935 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
936 rx_ring->lbq_curr_idx = 0;
937 rx_ring->lbq_free_cnt++;
938 return lbq_desc;
939 }
940
941 /* Get the next small buffer. */
942 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
943 {
944 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
945 rx_ring->sbq_curr_idx++;
946 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
947 rx_ring->sbq_curr_idx = 0;
948 rx_ring->sbq_free_cnt++;
949 return sbq_desc;
950 }
951
952 /* Update an rx ring index. */
953 static void ql_update_cq(struct rx_ring *rx_ring)
954 {
955 rx_ring->cnsmr_idx++;
956 rx_ring->curr_entry++;
957 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
958 rx_ring->cnsmr_idx = 0;
959 rx_ring->curr_entry = rx_ring->cq_base;
960 }
961 }
962
963 static void ql_write_cq_idx(struct rx_ring *rx_ring)
964 {
965 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
966 }
967
968 /* Process (refill) a large buffer queue. */
969 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
970 {
971 u32 clean_idx = rx_ring->lbq_clean_idx;
972 u32 start_idx = clean_idx;
973 struct bq_desc *lbq_desc;
974 u64 map;
975 int i;
976
977 while (rx_ring->lbq_free_cnt > 16) {
978 for (i = 0; i < 16; i++) {
979 QPRINTK(qdev, RX_STATUS, DEBUG,
980 "lbq: try cleaning clean_idx = %d.\n",
981 clean_idx);
982 lbq_desc = &rx_ring->lbq[clean_idx];
983 if (lbq_desc->p.lbq_page == NULL) {
984 QPRINTK(qdev, RX_STATUS, DEBUG,
985 "lbq: getting new page for index %d.\n",
986 lbq_desc->index);
987 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
988 if (lbq_desc->p.lbq_page == NULL) {
989 rx_ring->lbq_clean_idx = clean_idx;
990 QPRINTK(qdev, RX_STATUS, ERR,
991 "Couldn't get a page.\n");
992 return;
993 }
994 map = pci_map_page(qdev->pdev,
995 lbq_desc->p.lbq_page,
996 0, PAGE_SIZE,
997 PCI_DMA_FROMDEVICE);
998 if (pci_dma_mapping_error(qdev->pdev, map)) {
999 rx_ring->lbq_clean_idx = clean_idx;
1000 put_page(lbq_desc->p.lbq_page);
1001 lbq_desc->p.lbq_page = NULL;
1002 QPRINTK(qdev, RX_STATUS, ERR,
1003 "PCI mapping failed.\n");
1004 return;
1005 }
1006 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1007 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1008 *lbq_desc->addr = cpu_to_le64(map);
1009 }
1010 clean_idx++;
1011 if (clean_idx == rx_ring->lbq_len)
1012 clean_idx = 0;
1013 }
1014
1015 rx_ring->lbq_clean_idx = clean_idx;
1016 rx_ring->lbq_prod_idx += 16;
1017 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1018 rx_ring->lbq_prod_idx = 0;
1019 rx_ring->lbq_free_cnt -= 16;
1020 }
1021
1022 if (start_idx != clean_idx) {
1023 QPRINTK(qdev, RX_STATUS, DEBUG,
1024 "lbq: updating prod idx = %d.\n",
1025 rx_ring->lbq_prod_idx);
1026 ql_write_db_reg(rx_ring->lbq_prod_idx,
1027 rx_ring->lbq_prod_idx_db_reg);
1028 }
1029 }
1030
1031 /* Process (refill) a small buffer queue. */
1032 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1033 {
1034 u32 clean_idx = rx_ring->sbq_clean_idx;
1035 u32 start_idx = clean_idx;
1036 struct bq_desc *sbq_desc;
1037 u64 map;
1038 int i;
1039
1040 while (rx_ring->sbq_free_cnt > 16) {
1041 for (i = 0; i < 16; i++) {
1042 sbq_desc = &rx_ring->sbq[clean_idx];
1043 QPRINTK(qdev, RX_STATUS, DEBUG,
1044 "sbq: try cleaning clean_idx = %d.\n",
1045 clean_idx);
1046 if (sbq_desc->p.skb == NULL) {
1047 QPRINTK(qdev, RX_STATUS, DEBUG,
1048 "sbq: getting new skb for index %d.\n",
1049 sbq_desc->index);
1050 sbq_desc->p.skb =
1051 netdev_alloc_skb(qdev->ndev,
1052 rx_ring->sbq_buf_size);
1053 if (sbq_desc->p.skb == NULL) {
1054 QPRINTK(qdev, PROBE, ERR,
1055 "Couldn't get an skb.\n");
1056 rx_ring->sbq_clean_idx = clean_idx;
1057 return;
1058 }
1059 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1060 map = pci_map_single(qdev->pdev,
1061 sbq_desc->p.skb->data,
1062 rx_ring->sbq_buf_size /
1063 2, PCI_DMA_FROMDEVICE);
1064 if (pci_dma_mapping_error(qdev->pdev, map)) {
1065 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1066 rx_ring->sbq_clean_idx = clean_idx;
1067 dev_kfree_skb_any(sbq_desc->p.skb);
1068 sbq_desc->p.skb = NULL;
1069 return;
1070 }
1071 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1072 pci_unmap_len_set(sbq_desc, maplen,
1073 rx_ring->sbq_buf_size / 2);
1074 *sbq_desc->addr = cpu_to_le64(map);
1075 }
1076
1077 clean_idx++;
1078 if (clean_idx == rx_ring->sbq_len)
1079 clean_idx = 0;
1080 }
1081 rx_ring->sbq_clean_idx = clean_idx;
1082 rx_ring->sbq_prod_idx += 16;
1083 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1084 rx_ring->sbq_prod_idx = 0;
1085 rx_ring->sbq_free_cnt -= 16;
1086 }
1087
1088 if (start_idx != clean_idx) {
1089 QPRINTK(qdev, RX_STATUS, DEBUG,
1090 "sbq: updating prod idx = %d.\n",
1091 rx_ring->sbq_prod_idx);
1092 ql_write_db_reg(rx_ring->sbq_prod_idx,
1093 rx_ring->sbq_prod_idx_db_reg);
1094 }
1095 }
1096
1097 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1098 struct rx_ring *rx_ring)
1099 {
1100 ql_update_sbq(qdev, rx_ring);
1101 ql_update_lbq(qdev, rx_ring);
1102 }
1103
1104 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1105 * fails at some stage, or from the interrupt when a tx completes.
1106 */
1107 static void ql_unmap_send(struct ql_adapter *qdev,
1108 struct tx_ring_desc *tx_ring_desc, int mapped)
1109 {
1110 int i;
1111 for (i = 0; i < mapped; i++) {
1112 if (i == 0 || (i == 7 && mapped > 7)) {
1113 /*
1114 * Unmap the skb->data area, or the
1115 * external sglist (AKA the Outbound
1116 * Address List (OAL)).
1117 * If its the zeroeth element, then it's
1118 * the skb->data area. If it's the 7th
1119 * element and there is more than 6 frags,
1120 * then its an OAL.
1121 */
1122 if (i == 7) {
1123 QPRINTK(qdev, TX_DONE, DEBUG,
1124 "unmapping OAL area.\n");
1125 }
1126 pci_unmap_single(qdev->pdev,
1127 pci_unmap_addr(&tx_ring_desc->map[i],
1128 mapaddr),
1129 pci_unmap_len(&tx_ring_desc->map[i],
1130 maplen),
1131 PCI_DMA_TODEVICE);
1132 } else {
1133 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1134 i);
1135 pci_unmap_page(qdev->pdev,
1136 pci_unmap_addr(&tx_ring_desc->map[i],
1137 mapaddr),
1138 pci_unmap_len(&tx_ring_desc->map[i],
1139 maplen), PCI_DMA_TODEVICE);
1140 }
1141 }
1142
1143 }
1144
1145 /* Map the buffers for this transmit. This will return
1146 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1147 */
1148 static int ql_map_send(struct ql_adapter *qdev,
1149 struct ob_mac_iocb_req *mac_iocb_ptr,
1150 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1151 {
1152 int len = skb_headlen(skb);
1153 dma_addr_t map;
1154 int frag_idx, err, map_idx = 0;
1155 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1156 int frag_cnt = skb_shinfo(skb)->nr_frags;
1157
1158 if (frag_cnt) {
1159 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1160 }
1161 /*
1162 * Map the skb buffer first.
1163 */
1164 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1165
1166 err = pci_dma_mapping_error(qdev->pdev, map);
1167 if (err) {
1168 QPRINTK(qdev, TX_QUEUED, ERR,
1169 "PCI mapping failed with error: %d\n", err);
1170
1171 return NETDEV_TX_BUSY;
1172 }
1173
1174 tbd->len = cpu_to_le32(len);
1175 tbd->addr = cpu_to_le64(map);
1176 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1177 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1178 map_idx++;
1179
1180 /*
1181 * This loop fills the remainder of the 8 address descriptors
1182 * in the IOCB. If there are more than 7 fragments, then the
1183 * eighth address desc will point to an external list (OAL).
1184 * When this happens, the remainder of the frags will be stored
1185 * in this list.
1186 */
1187 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1188 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1189 tbd++;
1190 if (frag_idx == 6 && frag_cnt > 7) {
1191 /* Let's tack on an sglist.
1192 * Our control block will now
1193 * look like this:
1194 * iocb->seg[0] = skb->data
1195 * iocb->seg[1] = frag[0]
1196 * iocb->seg[2] = frag[1]
1197 * iocb->seg[3] = frag[2]
1198 * iocb->seg[4] = frag[3]
1199 * iocb->seg[5] = frag[4]
1200 * iocb->seg[6] = frag[5]
1201 * iocb->seg[7] = ptr to OAL (external sglist)
1202 * oal->seg[0] = frag[6]
1203 * oal->seg[1] = frag[7]
1204 * oal->seg[2] = frag[8]
1205 * oal->seg[3] = frag[9]
1206 * oal->seg[4] = frag[10]
1207 * etc...
1208 */
1209 /* Tack on the OAL in the eighth segment of IOCB. */
1210 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1211 sizeof(struct oal),
1212 PCI_DMA_TODEVICE);
1213 err = pci_dma_mapping_error(qdev->pdev, map);
1214 if (err) {
1215 QPRINTK(qdev, TX_QUEUED, ERR,
1216 "PCI mapping outbound address list with error: %d\n",
1217 err);
1218 goto map_error;
1219 }
1220
1221 tbd->addr = cpu_to_le64(map);
1222 /*
1223 * The length is the number of fragments
1224 * that remain to be mapped times the length
1225 * of our sglist (OAL).
1226 */
1227 tbd->len =
1228 cpu_to_le32((sizeof(struct tx_buf_desc) *
1229 (frag_cnt - frag_idx)) | TX_DESC_C);
1230 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1231 map);
1232 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1233 sizeof(struct oal));
1234 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1235 map_idx++;
1236 }
1237
1238 map =
1239 pci_map_page(qdev->pdev, frag->page,
1240 frag->page_offset, frag->size,
1241 PCI_DMA_TODEVICE);
1242
1243 err = pci_dma_mapping_error(qdev->pdev, map);
1244 if (err) {
1245 QPRINTK(qdev, TX_QUEUED, ERR,
1246 "PCI mapping frags failed with error: %d.\n",
1247 err);
1248 goto map_error;
1249 }
1250
1251 tbd->addr = cpu_to_le64(map);
1252 tbd->len = cpu_to_le32(frag->size);
1253 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1254 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1255 frag->size);
1256
1257 }
1258 /* Save the number of segments we've mapped. */
1259 tx_ring_desc->map_cnt = map_idx;
1260 /* Terminate the last segment. */
1261 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1262 return NETDEV_TX_OK;
1263
1264 map_error:
1265 /*
1266 * If the first frag mapping failed, then i will be zero.
1267 * This causes the unmap of the skb->data area. Otherwise
1268 * we pass in the number of frags that mapped successfully
1269 * so they can be umapped.
1270 */
1271 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1272 return NETDEV_TX_BUSY;
1273 }
1274
1275 static void ql_realign_skb(struct sk_buff *skb, int len)
1276 {
1277 void *temp_addr = skb->data;
1278
1279 /* Undo the skb_reserve(skb,32) we did before
1280 * giving to hardware, and realign data on
1281 * a 2-byte boundary.
1282 */
1283 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1284 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1285 skb_copy_to_linear_data(skb, temp_addr,
1286 (unsigned int)len);
1287 }
1288
1289 /*
1290 * This function builds an skb for the given inbound
1291 * completion. It will be rewritten for readability in the near
1292 * future, but for not it works well.
1293 */
1294 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1295 struct rx_ring *rx_ring,
1296 struct ib_mac_iocb_rsp *ib_mac_rsp)
1297 {
1298 struct bq_desc *lbq_desc;
1299 struct bq_desc *sbq_desc;
1300 struct sk_buff *skb = NULL;
1301 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1302 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1303
1304 /*
1305 * Handle the header buffer if present.
1306 */
1307 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1308 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1309 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1310 /*
1311 * Headers fit nicely into a small buffer.
1312 */
1313 sbq_desc = ql_get_curr_sbuf(rx_ring);
1314 pci_unmap_single(qdev->pdev,
1315 pci_unmap_addr(sbq_desc, mapaddr),
1316 pci_unmap_len(sbq_desc, maplen),
1317 PCI_DMA_FROMDEVICE);
1318 skb = sbq_desc->p.skb;
1319 ql_realign_skb(skb, hdr_len);
1320 skb_put(skb, hdr_len);
1321 sbq_desc->p.skb = NULL;
1322 }
1323
1324 /*
1325 * Handle the data buffer(s).
1326 */
1327 if (unlikely(!length)) { /* Is there data too? */
1328 QPRINTK(qdev, RX_STATUS, DEBUG,
1329 "No Data buffer in this packet.\n");
1330 return skb;
1331 }
1332
1333 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1334 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1335 QPRINTK(qdev, RX_STATUS, DEBUG,
1336 "Headers in small, data of %d bytes in small, combine them.\n", length);
1337 /*
1338 * Data is less than small buffer size so it's
1339 * stuffed in a small buffer.
1340 * For this case we append the data
1341 * from the "data" small buffer to the "header" small
1342 * buffer.
1343 */
1344 sbq_desc = ql_get_curr_sbuf(rx_ring);
1345 pci_dma_sync_single_for_cpu(qdev->pdev,
1346 pci_unmap_addr
1347 (sbq_desc, mapaddr),
1348 pci_unmap_len
1349 (sbq_desc, maplen),
1350 PCI_DMA_FROMDEVICE);
1351 memcpy(skb_put(skb, length),
1352 sbq_desc->p.skb->data, length);
1353 pci_dma_sync_single_for_device(qdev->pdev,
1354 pci_unmap_addr
1355 (sbq_desc,
1356 mapaddr),
1357 pci_unmap_len
1358 (sbq_desc,
1359 maplen),
1360 PCI_DMA_FROMDEVICE);
1361 } else {
1362 QPRINTK(qdev, RX_STATUS, DEBUG,
1363 "%d bytes in a single small buffer.\n", length);
1364 sbq_desc = ql_get_curr_sbuf(rx_ring);
1365 skb = sbq_desc->p.skb;
1366 ql_realign_skb(skb, length);
1367 skb_put(skb, length);
1368 pci_unmap_single(qdev->pdev,
1369 pci_unmap_addr(sbq_desc,
1370 mapaddr),
1371 pci_unmap_len(sbq_desc,
1372 maplen),
1373 PCI_DMA_FROMDEVICE);
1374 sbq_desc->p.skb = NULL;
1375 }
1376 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1377 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1378 QPRINTK(qdev, RX_STATUS, DEBUG,
1379 "Header in small, %d bytes in large. Chain large to small!\n", length);
1380 /*
1381 * The data is in a single large buffer. We
1382 * chain it to the header buffer's skb and let
1383 * it rip.
1384 */
1385 lbq_desc = ql_get_curr_lbuf(rx_ring);
1386 pci_unmap_page(qdev->pdev,
1387 pci_unmap_addr(lbq_desc,
1388 mapaddr),
1389 pci_unmap_len(lbq_desc, maplen),
1390 PCI_DMA_FROMDEVICE);
1391 QPRINTK(qdev, RX_STATUS, DEBUG,
1392 "Chaining page to skb.\n");
1393 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1394 0, length);
1395 skb->len += length;
1396 skb->data_len += length;
1397 skb->truesize += length;
1398 lbq_desc->p.lbq_page = NULL;
1399 } else {
1400 /*
1401 * The headers and data are in a single large buffer. We
1402 * copy it to a new skb and let it go. This can happen with
1403 * jumbo mtu on a non-TCP/UDP frame.
1404 */
1405 lbq_desc = ql_get_curr_lbuf(rx_ring);
1406 skb = netdev_alloc_skb(qdev->ndev, length);
1407 if (skb == NULL) {
1408 QPRINTK(qdev, PROBE, DEBUG,
1409 "No skb available, drop the packet.\n");
1410 return NULL;
1411 }
1412 pci_unmap_page(qdev->pdev,
1413 pci_unmap_addr(lbq_desc,
1414 mapaddr),
1415 pci_unmap_len(lbq_desc, maplen),
1416 PCI_DMA_FROMDEVICE);
1417 skb_reserve(skb, NET_IP_ALIGN);
1418 QPRINTK(qdev, RX_STATUS, DEBUG,
1419 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1420 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1421 0, length);
1422 skb->len += length;
1423 skb->data_len += length;
1424 skb->truesize += length;
1425 length -= length;
1426 lbq_desc->p.lbq_page = NULL;
1427 __pskb_pull_tail(skb,
1428 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1429 VLAN_ETH_HLEN : ETH_HLEN);
1430 }
1431 } else {
1432 /*
1433 * The data is in a chain of large buffers
1434 * pointed to by a small buffer. We loop
1435 * thru and chain them to the our small header
1436 * buffer's skb.
1437 * frags: There are 18 max frags and our small
1438 * buffer will hold 32 of them. The thing is,
1439 * we'll use 3 max for our 9000 byte jumbo
1440 * frames. If the MTU goes up we could
1441 * eventually be in trouble.
1442 */
1443 int size, offset, i = 0;
1444 __le64 *bq, bq_array[8];
1445 sbq_desc = ql_get_curr_sbuf(rx_ring);
1446 pci_unmap_single(qdev->pdev,
1447 pci_unmap_addr(sbq_desc, mapaddr),
1448 pci_unmap_len(sbq_desc, maplen),
1449 PCI_DMA_FROMDEVICE);
1450 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1451 /*
1452 * This is an non TCP/UDP IP frame, so
1453 * the headers aren't split into a small
1454 * buffer. We have to use the small buffer
1455 * that contains our sg list as our skb to
1456 * send upstairs. Copy the sg list here to
1457 * a local buffer and use it to find the
1458 * pages to chain.
1459 */
1460 QPRINTK(qdev, RX_STATUS, DEBUG,
1461 "%d bytes of headers & data in chain of large.\n", length);
1462 skb = sbq_desc->p.skb;
1463 bq = &bq_array[0];
1464 memcpy(bq, skb->data, sizeof(bq_array));
1465 sbq_desc->p.skb = NULL;
1466 skb_reserve(skb, NET_IP_ALIGN);
1467 } else {
1468 QPRINTK(qdev, RX_STATUS, DEBUG,
1469 "Headers in small, %d bytes of data in chain of large.\n", length);
1470 bq = (__le64 *)sbq_desc->p.skb->data;
1471 }
1472 while (length > 0) {
1473 lbq_desc = ql_get_curr_lbuf(rx_ring);
1474 pci_unmap_page(qdev->pdev,
1475 pci_unmap_addr(lbq_desc,
1476 mapaddr),
1477 pci_unmap_len(lbq_desc,
1478 maplen),
1479 PCI_DMA_FROMDEVICE);
1480 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1481 offset = 0;
1482
1483 QPRINTK(qdev, RX_STATUS, DEBUG,
1484 "Adding page %d to skb for %d bytes.\n",
1485 i, size);
1486 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1487 offset, size);
1488 skb->len += size;
1489 skb->data_len += size;
1490 skb->truesize += size;
1491 length -= size;
1492 lbq_desc->p.lbq_page = NULL;
1493 bq++;
1494 i++;
1495 }
1496 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1497 VLAN_ETH_HLEN : ETH_HLEN);
1498 }
1499 return skb;
1500 }
1501
1502 /* Process an inbound completion from an rx ring. */
1503 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1504 struct rx_ring *rx_ring,
1505 struct ib_mac_iocb_rsp *ib_mac_rsp)
1506 {
1507 struct net_device *ndev = qdev->ndev;
1508 struct sk_buff *skb = NULL;
1509 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1510 IB_MAC_IOCB_RSP_VLAN_MASK)
1511
1512 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1513
1514 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1515 if (unlikely(!skb)) {
1516 QPRINTK(qdev, RX_STATUS, DEBUG,
1517 "No skb available, drop packet.\n");
1518 return;
1519 }
1520
1521 prefetch(skb->data);
1522 skb->dev = ndev;
1523 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1524 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1525 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1526 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1527 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1528 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1529 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1530 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1531 }
1532 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1533 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1534 }
1535
1536 skb->protocol = eth_type_trans(skb, ndev);
1537 skb->ip_summed = CHECKSUM_NONE;
1538
1539 /* If rx checksum is on, and there are no
1540 * csum or frame errors.
1541 */
1542 if (qdev->rx_csum &&
1543 !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
1544 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1545 /* TCP frame. */
1546 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1547 QPRINTK(qdev, RX_STATUS, DEBUG,
1548 "TCP checksum done!\n");
1549 skb->ip_summed = CHECKSUM_UNNECESSARY;
1550 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1551 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1552 /* Unfragmented ipv4 UDP frame. */
1553 struct iphdr *iph = (struct iphdr *) skb->data;
1554 if (!(iph->frag_off &
1555 cpu_to_be16(IP_MF|IP_OFFSET))) {
1556 skb->ip_summed = CHECKSUM_UNNECESSARY;
1557 QPRINTK(qdev, RX_STATUS, DEBUG,
1558 "TCP checksum done!\n");
1559 }
1560 }
1561 }
1562
1563 qdev->stats.rx_packets++;
1564 qdev->stats.rx_bytes += skb->len;
1565 skb_record_rx_queue(skb,
1566 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1567 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1568 if (qdev->vlgrp &&
1569 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1570 (vlan_id != 0))
1571 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1572 vlan_id, skb);
1573 else
1574 napi_gro_receive(&rx_ring->napi, skb);
1575 } else {
1576 if (qdev->vlgrp &&
1577 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1578 (vlan_id != 0))
1579 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1580 else
1581 netif_receive_skb(skb);
1582 }
1583 }
1584
1585 /* Process an outbound completion from an rx ring. */
1586 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1587 struct ob_mac_iocb_rsp *mac_rsp)
1588 {
1589 struct tx_ring *tx_ring;
1590 struct tx_ring_desc *tx_ring_desc;
1591
1592 QL_DUMP_OB_MAC_RSP(mac_rsp);
1593 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1594 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1595 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1596 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1597 qdev->stats.tx_packets++;
1598 dev_kfree_skb(tx_ring_desc->skb);
1599 tx_ring_desc->skb = NULL;
1600
1601 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1602 OB_MAC_IOCB_RSP_S |
1603 OB_MAC_IOCB_RSP_L |
1604 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1605 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1606 QPRINTK(qdev, TX_DONE, WARNING,
1607 "Total descriptor length did not match transfer length.\n");
1608 }
1609 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1610 QPRINTK(qdev, TX_DONE, WARNING,
1611 "Frame too short to be legal, not sent.\n");
1612 }
1613 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1614 QPRINTK(qdev, TX_DONE, WARNING,
1615 "Frame too long, but sent anyway.\n");
1616 }
1617 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1618 QPRINTK(qdev, TX_DONE, WARNING,
1619 "PCI backplane error. Frame not sent.\n");
1620 }
1621 }
1622 atomic_inc(&tx_ring->tx_count);
1623 }
1624
1625 /* Fire up a handler to reset the MPI processor. */
1626 void ql_queue_fw_error(struct ql_adapter *qdev)
1627 {
1628 netif_carrier_off(qdev->ndev);
1629 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1630 }
1631
1632 void ql_queue_asic_error(struct ql_adapter *qdev)
1633 {
1634 netif_carrier_off(qdev->ndev);
1635 ql_disable_interrupts(qdev);
1636 /* Clear adapter up bit to signal the recovery
1637 * process that it shouldn't kill the reset worker
1638 * thread
1639 */
1640 clear_bit(QL_ADAPTER_UP, &qdev->flags);
1641 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1642 }
1643
1644 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1645 struct ib_ae_iocb_rsp *ib_ae_rsp)
1646 {
1647 switch (ib_ae_rsp->event) {
1648 case MGMT_ERR_EVENT:
1649 QPRINTK(qdev, RX_ERR, ERR,
1650 "Management Processor Fatal Error.\n");
1651 ql_queue_fw_error(qdev);
1652 return;
1653
1654 case CAM_LOOKUP_ERR_EVENT:
1655 QPRINTK(qdev, LINK, ERR,
1656 "Multiple CAM hits lookup occurred.\n");
1657 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1658 ql_queue_asic_error(qdev);
1659 return;
1660
1661 case SOFT_ECC_ERROR_EVENT:
1662 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1663 ql_queue_asic_error(qdev);
1664 break;
1665
1666 case PCI_ERR_ANON_BUF_RD:
1667 QPRINTK(qdev, RX_ERR, ERR,
1668 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1669 ib_ae_rsp->q_id);
1670 ql_queue_asic_error(qdev);
1671 break;
1672
1673 default:
1674 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1675 ib_ae_rsp->event);
1676 ql_queue_asic_error(qdev);
1677 break;
1678 }
1679 }
1680
1681 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1682 {
1683 struct ql_adapter *qdev = rx_ring->qdev;
1684 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1685 struct ob_mac_iocb_rsp *net_rsp = NULL;
1686 int count = 0;
1687
1688 struct tx_ring *tx_ring;
1689 /* While there are entries in the completion queue. */
1690 while (prod != rx_ring->cnsmr_idx) {
1691
1692 QPRINTK(qdev, RX_STATUS, DEBUG,
1693 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1694 prod, rx_ring->cnsmr_idx);
1695
1696 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1697 rmb();
1698 switch (net_rsp->opcode) {
1699
1700 case OPCODE_OB_MAC_TSO_IOCB:
1701 case OPCODE_OB_MAC_IOCB:
1702 ql_process_mac_tx_intr(qdev, net_rsp);
1703 break;
1704 default:
1705 QPRINTK(qdev, RX_STATUS, DEBUG,
1706 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1707 net_rsp->opcode);
1708 }
1709 count++;
1710 ql_update_cq(rx_ring);
1711 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1712 }
1713 ql_write_cq_idx(rx_ring);
1714 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1715 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1716 net_rsp != NULL) {
1717 if (atomic_read(&tx_ring->queue_stopped) &&
1718 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1719 /*
1720 * The queue got stopped because the tx_ring was full.
1721 * Wake it up, because it's now at least 25% empty.
1722 */
1723 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1724 }
1725
1726 return count;
1727 }
1728
1729 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1730 {
1731 struct ql_adapter *qdev = rx_ring->qdev;
1732 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1733 struct ql_net_rsp_iocb *net_rsp;
1734 int count = 0;
1735
1736 /* While there are entries in the completion queue. */
1737 while (prod != rx_ring->cnsmr_idx) {
1738
1739 QPRINTK(qdev, RX_STATUS, DEBUG,
1740 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1741 prod, rx_ring->cnsmr_idx);
1742
1743 net_rsp = rx_ring->curr_entry;
1744 rmb();
1745 switch (net_rsp->opcode) {
1746 case OPCODE_IB_MAC_IOCB:
1747 ql_process_mac_rx_intr(qdev, rx_ring,
1748 (struct ib_mac_iocb_rsp *)
1749 net_rsp);
1750 break;
1751
1752 case OPCODE_IB_AE_IOCB:
1753 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1754 net_rsp);
1755 break;
1756 default:
1757 {
1758 QPRINTK(qdev, RX_STATUS, DEBUG,
1759 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1760 net_rsp->opcode);
1761 }
1762 }
1763 count++;
1764 ql_update_cq(rx_ring);
1765 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1766 if (count == budget)
1767 break;
1768 }
1769 ql_update_buffer_queues(qdev, rx_ring);
1770 ql_write_cq_idx(rx_ring);
1771 return count;
1772 }
1773
1774 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1775 {
1776 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1777 struct ql_adapter *qdev = rx_ring->qdev;
1778 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1779
1780 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1781 rx_ring->cq_id);
1782
1783 if (work_done < budget) {
1784 napi_complete(napi);
1785 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1786 }
1787 return work_done;
1788 }
1789
1790 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1791 {
1792 struct ql_adapter *qdev = netdev_priv(ndev);
1793
1794 qdev->vlgrp = grp;
1795 if (grp) {
1796 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1797 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1798 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1799 } else {
1800 QPRINTK(qdev, IFUP, DEBUG,
1801 "Turning off VLAN in NIC_RCV_CFG.\n");
1802 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1803 }
1804 }
1805
1806 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1807 {
1808 struct ql_adapter *qdev = netdev_priv(ndev);
1809 u32 enable_bit = MAC_ADDR_E;
1810 int status;
1811
1812 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1813 if (status)
1814 return;
1815 spin_lock(&qdev->hw_lock);
1816 if (ql_set_mac_addr_reg
1817 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1818 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1819 }
1820 spin_unlock(&qdev->hw_lock);
1821 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1822 }
1823
1824 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1825 {
1826 struct ql_adapter *qdev = netdev_priv(ndev);
1827 u32 enable_bit = 0;
1828 int status;
1829
1830 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1831 if (status)
1832 return;
1833
1834 spin_lock(&qdev->hw_lock);
1835 if (ql_set_mac_addr_reg
1836 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1837 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1838 }
1839 spin_unlock(&qdev->hw_lock);
1840 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1841
1842 }
1843
1844 /* Worker thread to process a given rx_ring that is dedicated
1845 * to outbound completions.
1846 */
1847 static void ql_tx_clean(struct work_struct *work)
1848 {
1849 struct rx_ring *rx_ring =
1850 container_of(work, struct rx_ring, rx_work.work);
1851 ql_clean_outbound_rx_ring(rx_ring);
1852 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1853
1854 }
1855
1856 /* Worker thread to process a given rx_ring that is dedicated
1857 * to inbound completions.
1858 */
1859 static void ql_rx_clean(struct work_struct *work)
1860 {
1861 struct rx_ring *rx_ring =
1862 container_of(work, struct rx_ring, rx_work.work);
1863 ql_clean_inbound_rx_ring(rx_ring, 64);
1864 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1865 }
1866
1867 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1868 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1869 {
1870 struct rx_ring *rx_ring = dev_id;
1871 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1872 &rx_ring->rx_work, 0);
1873 return IRQ_HANDLED;
1874 }
1875
1876 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1877 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1878 {
1879 struct rx_ring *rx_ring = dev_id;
1880 napi_schedule(&rx_ring->napi);
1881 return IRQ_HANDLED;
1882 }
1883
1884 /* This handles a fatal error, MPI activity, and the default
1885 * rx_ring in an MSI-X multiple vector environment.
1886 * In MSI/Legacy environment it also process the rest of
1887 * the rx_rings.
1888 */
1889 static irqreturn_t qlge_isr(int irq, void *dev_id)
1890 {
1891 struct rx_ring *rx_ring = dev_id;
1892 struct ql_adapter *qdev = rx_ring->qdev;
1893 struct intr_context *intr_context = &qdev->intr_context[0];
1894 u32 var;
1895 int i;
1896 int work_done = 0;
1897
1898 spin_lock(&qdev->hw_lock);
1899 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1900 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1901 spin_unlock(&qdev->hw_lock);
1902 return IRQ_NONE;
1903 }
1904 spin_unlock(&qdev->hw_lock);
1905
1906 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1907
1908 /*
1909 * Check for fatal error.
1910 */
1911 if (var & STS_FE) {
1912 ql_queue_asic_error(qdev);
1913 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1914 var = ql_read32(qdev, ERR_STS);
1915 QPRINTK(qdev, INTR, ERR,
1916 "Resetting chip. Error Status Register = 0x%x\n", var);
1917 return IRQ_HANDLED;
1918 }
1919
1920 /*
1921 * Check MPI processor activity.
1922 */
1923 if (var & STS_PI) {
1924 /*
1925 * We've got an async event or mailbox completion.
1926 * Handle it and clear the source of the interrupt.
1927 */
1928 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1929 ql_disable_completion_interrupt(qdev, intr_context->intr);
1930 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1931 &qdev->mpi_work, 0);
1932 work_done++;
1933 }
1934
1935 /*
1936 * Check the default queue and wake handler if active.
1937 */
1938 rx_ring = &qdev->rx_ring[0];
1939 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1940 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1941 ql_disable_completion_interrupt(qdev, intr_context->intr);
1942 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1943 &rx_ring->rx_work, 0);
1944 work_done++;
1945 }
1946
1947 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1948 /*
1949 * Start the DPC for each active queue.
1950 */
1951 for (i = 1; i < qdev->rx_ring_count; i++) {
1952 rx_ring = &qdev->rx_ring[i];
1953 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1954 rx_ring->cnsmr_idx) {
1955 QPRINTK(qdev, INTR, INFO,
1956 "Waking handler for rx_ring[%d].\n", i);
1957 ql_disable_completion_interrupt(qdev,
1958 intr_context->
1959 intr);
1960 if (i < qdev->rss_ring_first_cq_id)
1961 queue_delayed_work_on(rx_ring->cpu,
1962 qdev->q_workqueue,
1963 &rx_ring->rx_work,
1964 0);
1965 else
1966 napi_schedule(&rx_ring->napi);
1967 work_done++;
1968 }
1969 }
1970 }
1971 ql_enable_completion_interrupt(qdev, intr_context->intr);
1972 return work_done ? IRQ_HANDLED : IRQ_NONE;
1973 }
1974
1975 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1976 {
1977
1978 if (skb_is_gso(skb)) {
1979 int err;
1980 if (skb_header_cloned(skb)) {
1981 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1982 if (err)
1983 return err;
1984 }
1985
1986 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1987 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1988 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1989 mac_iocb_ptr->total_hdrs_len =
1990 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1991 mac_iocb_ptr->net_trans_offset =
1992 cpu_to_le16(skb_network_offset(skb) |
1993 skb_transport_offset(skb)
1994 << OB_MAC_TRANSPORT_HDR_SHIFT);
1995 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1996 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1997 if (likely(skb->protocol == htons(ETH_P_IP))) {
1998 struct iphdr *iph = ip_hdr(skb);
1999 iph->check = 0;
2000 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2001 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2002 iph->daddr, 0,
2003 IPPROTO_TCP,
2004 0);
2005 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2006 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2007 tcp_hdr(skb)->check =
2008 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2009 &ipv6_hdr(skb)->daddr,
2010 0, IPPROTO_TCP, 0);
2011 }
2012 return 1;
2013 }
2014 return 0;
2015 }
2016
2017 static void ql_hw_csum_setup(struct sk_buff *skb,
2018 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2019 {
2020 int len;
2021 struct iphdr *iph = ip_hdr(skb);
2022 __sum16 *check;
2023 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2024 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2025 mac_iocb_ptr->net_trans_offset =
2026 cpu_to_le16(skb_network_offset(skb) |
2027 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2028
2029 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2030 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2031 if (likely(iph->protocol == IPPROTO_TCP)) {
2032 check = &(tcp_hdr(skb)->check);
2033 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2034 mac_iocb_ptr->total_hdrs_len =
2035 cpu_to_le16(skb_transport_offset(skb) +
2036 (tcp_hdr(skb)->doff << 2));
2037 } else {
2038 check = &(udp_hdr(skb)->check);
2039 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2040 mac_iocb_ptr->total_hdrs_len =
2041 cpu_to_le16(skb_transport_offset(skb) +
2042 sizeof(struct udphdr));
2043 }
2044 *check = ~csum_tcpudp_magic(iph->saddr,
2045 iph->daddr, len, iph->protocol, 0);
2046 }
2047
2048 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2049 {
2050 struct tx_ring_desc *tx_ring_desc;
2051 struct ob_mac_iocb_req *mac_iocb_ptr;
2052 struct ql_adapter *qdev = netdev_priv(ndev);
2053 int tso;
2054 struct tx_ring *tx_ring;
2055 u32 tx_ring_idx = (u32) skb->queue_mapping;
2056
2057 tx_ring = &qdev->tx_ring[tx_ring_idx];
2058
2059 if (skb_padto(skb, ETH_ZLEN))
2060 return NETDEV_TX_OK;
2061
2062 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2063 QPRINTK(qdev, TX_QUEUED, INFO,
2064 "%s: shutting down tx queue %d du to lack of resources.\n",
2065 __func__, tx_ring_idx);
2066 netif_stop_subqueue(ndev, tx_ring->wq_id);
2067 atomic_inc(&tx_ring->queue_stopped);
2068 return NETDEV_TX_BUSY;
2069 }
2070 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2071 mac_iocb_ptr = tx_ring_desc->queue_entry;
2072 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
2073
2074 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2075 mac_iocb_ptr->tid = tx_ring_desc->index;
2076 /* We use the upper 32-bits to store the tx queue for this IO.
2077 * When we get the completion we can use it to establish the context.
2078 */
2079 mac_iocb_ptr->txq_idx = tx_ring_idx;
2080 tx_ring_desc->skb = skb;
2081
2082 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2083
2084 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2085 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2086 vlan_tx_tag_get(skb));
2087 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2088 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2089 }
2090 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2091 if (tso < 0) {
2092 dev_kfree_skb_any(skb);
2093 return NETDEV_TX_OK;
2094 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2095 ql_hw_csum_setup(skb,
2096 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2097 }
2098 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2099 NETDEV_TX_OK) {
2100 QPRINTK(qdev, TX_QUEUED, ERR,
2101 "Could not map the segments.\n");
2102 return NETDEV_TX_BUSY;
2103 }
2104 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2105 tx_ring->prod_idx++;
2106 if (tx_ring->prod_idx == tx_ring->wq_len)
2107 tx_ring->prod_idx = 0;
2108 wmb();
2109
2110 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2111 ndev->trans_start = jiffies;
2112 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2113 tx_ring->prod_idx, skb->len);
2114
2115 atomic_dec(&tx_ring->tx_count);
2116 return NETDEV_TX_OK;
2117 }
2118
2119 static void ql_free_shadow_space(struct ql_adapter *qdev)
2120 {
2121 if (qdev->rx_ring_shadow_reg_area) {
2122 pci_free_consistent(qdev->pdev,
2123 PAGE_SIZE,
2124 qdev->rx_ring_shadow_reg_area,
2125 qdev->rx_ring_shadow_reg_dma);
2126 qdev->rx_ring_shadow_reg_area = NULL;
2127 }
2128 if (qdev->tx_ring_shadow_reg_area) {
2129 pci_free_consistent(qdev->pdev,
2130 PAGE_SIZE,
2131 qdev->tx_ring_shadow_reg_area,
2132 qdev->tx_ring_shadow_reg_dma);
2133 qdev->tx_ring_shadow_reg_area = NULL;
2134 }
2135 }
2136
2137 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2138 {
2139 qdev->rx_ring_shadow_reg_area =
2140 pci_alloc_consistent(qdev->pdev,
2141 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2142 if (qdev->rx_ring_shadow_reg_area == NULL) {
2143 QPRINTK(qdev, IFUP, ERR,
2144 "Allocation of RX shadow space failed.\n");
2145 return -ENOMEM;
2146 }
2147 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2148 qdev->tx_ring_shadow_reg_area =
2149 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2150 &qdev->tx_ring_shadow_reg_dma);
2151 if (qdev->tx_ring_shadow_reg_area == NULL) {
2152 QPRINTK(qdev, IFUP, ERR,
2153 "Allocation of TX shadow space failed.\n");
2154 goto err_wqp_sh_area;
2155 }
2156 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2157 return 0;
2158
2159 err_wqp_sh_area:
2160 pci_free_consistent(qdev->pdev,
2161 PAGE_SIZE,
2162 qdev->rx_ring_shadow_reg_area,
2163 qdev->rx_ring_shadow_reg_dma);
2164 return -ENOMEM;
2165 }
2166
2167 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2168 {
2169 struct tx_ring_desc *tx_ring_desc;
2170 int i;
2171 struct ob_mac_iocb_req *mac_iocb_ptr;
2172
2173 mac_iocb_ptr = tx_ring->wq_base;
2174 tx_ring_desc = tx_ring->q;
2175 for (i = 0; i < tx_ring->wq_len; i++) {
2176 tx_ring_desc->index = i;
2177 tx_ring_desc->skb = NULL;
2178 tx_ring_desc->queue_entry = mac_iocb_ptr;
2179 mac_iocb_ptr++;
2180 tx_ring_desc++;
2181 }
2182 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2183 atomic_set(&tx_ring->queue_stopped, 0);
2184 }
2185
2186 static void ql_free_tx_resources(struct ql_adapter *qdev,
2187 struct tx_ring *tx_ring)
2188 {
2189 if (tx_ring->wq_base) {
2190 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2191 tx_ring->wq_base, tx_ring->wq_base_dma);
2192 tx_ring->wq_base = NULL;
2193 }
2194 kfree(tx_ring->q);
2195 tx_ring->q = NULL;
2196 }
2197
2198 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2199 struct tx_ring *tx_ring)
2200 {
2201 tx_ring->wq_base =
2202 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2203 &tx_ring->wq_base_dma);
2204
2205 if ((tx_ring->wq_base == NULL)
2206 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2207 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2208 return -ENOMEM;
2209 }
2210 tx_ring->q =
2211 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2212 if (tx_ring->q == NULL)
2213 goto err;
2214
2215 return 0;
2216 err:
2217 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2218 tx_ring->wq_base, tx_ring->wq_base_dma);
2219 return -ENOMEM;
2220 }
2221
2222 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2223 {
2224 int i;
2225 struct bq_desc *lbq_desc;
2226
2227 for (i = 0; i < rx_ring->lbq_len; i++) {
2228 lbq_desc = &rx_ring->lbq[i];
2229 if (lbq_desc->p.lbq_page) {
2230 pci_unmap_page(qdev->pdev,
2231 pci_unmap_addr(lbq_desc, mapaddr),
2232 pci_unmap_len(lbq_desc, maplen),
2233 PCI_DMA_FROMDEVICE);
2234
2235 put_page(lbq_desc->p.lbq_page);
2236 lbq_desc->p.lbq_page = NULL;
2237 }
2238 }
2239 }
2240
2241 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2242 {
2243 int i;
2244 struct bq_desc *sbq_desc;
2245
2246 for (i = 0; i < rx_ring->sbq_len; i++) {
2247 sbq_desc = &rx_ring->sbq[i];
2248 if (sbq_desc == NULL) {
2249 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2250 return;
2251 }
2252 if (sbq_desc->p.skb) {
2253 pci_unmap_single(qdev->pdev,
2254 pci_unmap_addr(sbq_desc, mapaddr),
2255 pci_unmap_len(sbq_desc, maplen),
2256 PCI_DMA_FROMDEVICE);
2257 dev_kfree_skb(sbq_desc->p.skb);
2258 sbq_desc->p.skb = NULL;
2259 }
2260 }
2261 }
2262
2263 /* Free all large and small rx buffers associated
2264 * with the completion queues for this device.
2265 */
2266 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2267 {
2268 int i;
2269 struct rx_ring *rx_ring;
2270
2271 for (i = 0; i < qdev->rx_ring_count; i++) {
2272 rx_ring = &qdev->rx_ring[i];
2273 if (rx_ring->lbq)
2274 ql_free_lbq_buffers(qdev, rx_ring);
2275 if (rx_ring->sbq)
2276 ql_free_sbq_buffers(qdev, rx_ring);
2277 }
2278 }
2279
2280 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2281 {
2282 struct rx_ring *rx_ring;
2283 int i;
2284
2285 for (i = 0; i < qdev->rx_ring_count; i++) {
2286 rx_ring = &qdev->rx_ring[i];
2287 if (rx_ring->type != TX_Q)
2288 ql_update_buffer_queues(qdev, rx_ring);
2289 }
2290 }
2291
2292 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2293 struct rx_ring *rx_ring)
2294 {
2295 int i;
2296 struct bq_desc *lbq_desc;
2297 __le64 *bq = rx_ring->lbq_base;
2298
2299 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2300 for (i = 0; i < rx_ring->lbq_len; i++) {
2301 lbq_desc = &rx_ring->lbq[i];
2302 memset(lbq_desc, 0, sizeof(*lbq_desc));
2303 lbq_desc->index = i;
2304 lbq_desc->addr = bq;
2305 bq++;
2306 }
2307 }
2308
2309 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2310 struct rx_ring *rx_ring)
2311 {
2312 int i;
2313 struct bq_desc *sbq_desc;
2314 __le64 *bq = rx_ring->sbq_base;
2315
2316 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2317 for (i = 0; i < rx_ring->sbq_len; i++) {
2318 sbq_desc = &rx_ring->sbq[i];
2319 memset(sbq_desc, 0, sizeof(*sbq_desc));
2320 sbq_desc->index = i;
2321 sbq_desc->addr = bq;
2322 bq++;
2323 }
2324 }
2325
2326 static void ql_free_rx_resources(struct ql_adapter *qdev,
2327 struct rx_ring *rx_ring)
2328 {
2329 /* Free the small buffer queue. */
2330 if (rx_ring->sbq_base) {
2331 pci_free_consistent(qdev->pdev,
2332 rx_ring->sbq_size,
2333 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2334 rx_ring->sbq_base = NULL;
2335 }
2336
2337 /* Free the small buffer queue control blocks. */
2338 kfree(rx_ring->sbq);
2339 rx_ring->sbq = NULL;
2340
2341 /* Free the large buffer queue. */
2342 if (rx_ring->lbq_base) {
2343 pci_free_consistent(qdev->pdev,
2344 rx_ring->lbq_size,
2345 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2346 rx_ring->lbq_base = NULL;
2347 }
2348
2349 /* Free the large buffer queue control blocks. */
2350 kfree(rx_ring->lbq);
2351 rx_ring->lbq = NULL;
2352
2353 /* Free the rx queue. */
2354 if (rx_ring->cq_base) {
2355 pci_free_consistent(qdev->pdev,
2356 rx_ring->cq_size,
2357 rx_ring->cq_base, rx_ring->cq_base_dma);
2358 rx_ring->cq_base = NULL;
2359 }
2360 }
2361
2362 /* Allocate queues and buffers for this completions queue based
2363 * on the values in the parameter structure. */
2364 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2365 struct rx_ring *rx_ring)
2366 {
2367
2368 /*
2369 * Allocate the completion queue for this rx_ring.
2370 */
2371 rx_ring->cq_base =
2372 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2373 &rx_ring->cq_base_dma);
2374
2375 if (rx_ring->cq_base == NULL) {
2376 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2377 return -ENOMEM;
2378 }
2379
2380 if (rx_ring->sbq_len) {
2381 /*
2382 * Allocate small buffer queue.
2383 */
2384 rx_ring->sbq_base =
2385 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2386 &rx_ring->sbq_base_dma);
2387
2388 if (rx_ring->sbq_base == NULL) {
2389 QPRINTK(qdev, IFUP, ERR,
2390 "Small buffer queue allocation failed.\n");
2391 goto err_mem;
2392 }
2393
2394 /*
2395 * Allocate small buffer queue control blocks.
2396 */
2397 rx_ring->sbq =
2398 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2399 GFP_KERNEL);
2400 if (rx_ring->sbq == NULL) {
2401 QPRINTK(qdev, IFUP, ERR,
2402 "Small buffer queue control block allocation failed.\n");
2403 goto err_mem;
2404 }
2405
2406 ql_init_sbq_ring(qdev, rx_ring);
2407 }
2408
2409 if (rx_ring->lbq_len) {
2410 /*
2411 * Allocate large buffer queue.
2412 */
2413 rx_ring->lbq_base =
2414 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2415 &rx_ring->lbq_base_dma);
2416
2417 if (rx_ring->lbq_base == NULL) {
2418 QPRINTK(qdev, IFUP, ERR,
2419 "Large buffer queue allocation failed.\n");
2420 goto err_mem;
2421 }
2422 /*
2423 * Allocate large buffer queue control blocks.
2424 */
2425 rx_ring->lbq =
2426 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2427 GFP_KERNEL);
2428 if (rx_ring->lbq == NULL) {
2429 QPRINTK(qdev, IFUP, ERR,
2430 "Large buffer queue control block allocation failed.\n");
2431 goto err_mem;
2432 }
2433
2434 ql_init_lbq_ring(qdev, rx_ring);
2435 }
2436
2437 return 0;
2438
2439 err_mem:
2440 ql_free_rx_resources(qdev, rx_ring);
2441 return -ENOMEM;
2442 }
2443
2444 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2445 {
2446 struct tx_ring *tx_ring;
2447 struct tx_ring_desc *tx_ring_desc;
2448 int i, j;
2449
2450 /*
2451 * Loop through all queues and free
2452 * any resources.
2453 */
2454 for (j = 0; j < qdev->tx_ring_count; j++) {
2455 tx_ring = &qdev->tx_ring[j];
2456 for (i = 0; i < tx_ring->wq_len; i++) {
2457 tx_ring_desc = &tx_ring->q[i];
2458 if (tx_ring_desc && tx_ring_desc->skb) {
2459 QPRINTK(qdev, IFDOWN, ERR,
2460 "Freeing lost SKB %p, from queue %d, index %d.\n",
2461 tx_ring_desc->skb, j,
2462 tx_ring_desc->index);
2463 ql_unmap_send(qdev, tx_ring_desc,
2464 tx_ring_desc->map_cnt);
2465 dev_kfree_skb(tx_ring_desc->skb);
2466 tx_ring_desc->skb = NULL;
2467 }
2468 }
2469 }
2470 }
2471
2472 static void ql_free_mem_resources(struct ql_adapter *qdev)
2473 {
2474 int i;
2475
2476 for (i = 0; i < qdev->tx_ring_count; i++)
2477 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2478 for (i = 0; i < qdev->rx_ring_count; i++)
2479 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2480 ql_free_shadow_space(qdev);
2481 }
2482
2483 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2484 {
2485 int i;
2486
2487 /* Allocate space for our shadow registers and such. */
2488 if (ql_alloc_shadow_space(qdev))
2489 return -ENOMEM;
2490
2491 for (i = 0; i < qdev->rx_ring_count; i++) {
2492 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2493 QPRINTK(qdev, IFUP, ERR,
2494 "RX resource allocation failed.\n");
2495 goto err_mem;
2496 }
2497 }
2498 /* Allocate tx queue resources */
2499 for (i = 0; i < qdev->tx_ring_count; i++) {
2500 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2501 QPRINTK(qdev, IFUP, ERR,
2502 "TX resource allocation failed.\n");
2503 goto err_mem;
2504 }
2505 }
2506 return 0;
2507
2508 err_mem:
2509 ql_free_mem_resources(qdev);
2510 return -ENOMEM;
2511 }
2512
2513 /* Set up the rx ring control block and pass it to the chip.
2514 * The control block is defined as
2515 * "Completion Queue Initialization Control Block", or cqicb.
2516 */
2517 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2518 {
2519 struct cqicb *cqicb = &rx_ring->cqicb;
2520 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2521 (rx_ring->cq_id * sizeof(u64) * 4);
2522 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2523 (rx_ring->cq_id * sizeof(u64) * 4);
2524 void __iomem *doorbell_area =
2525 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2526 int err = 0;
2527 u16 bq_len;
2528 u64 tmp;
2529
2530 /* Set up the shadow registers for this ring. */
2531 rx_ring->prod_idx_sh_reg = shadow_reg;
2532 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2533 shadow_reg += sizeof(u64);
2534 shadow_reg_dma += sizeof(u64);
2535 rx_ring->lbq_base_indirect = shadow_reg;
2536 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2537 shadow_reg += sizeof(u64);
2538 shadow_reg_dma += sizeof(u64);
2539 rx_ring->sbq_base_indirect = shadow_reg;
2540 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2541
2542 /* PCI doorbell mem area + 0x00 for consumer index register */
2543 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2544 rx_ring->cnsmr_idx = 0;
2545 rx_ring->curr_entry = rx_ring->cq_base;
2546
2547 /* PCI doorbell mem area + 0x04 for valid register */
2548 rx_ring->valid_db_reg = doorbell_area + 0x04;
2549
2550 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2551 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2552
2553 /* PCI doorbell mem area + 0x1c */
2554 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2555
2556 memset((void *)cqicb, 0, sizeof(struct cqicb));
2557 cqicb->msix_vect = rx_ring->irq;
2558
2559 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2560 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2561
2562 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2563
2564 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2565
2566 /*
2567 * Set up the control block load flags.
2568 */
2569 cqicb->flags = FLAGS_LC | /* Load queue base address */
2570 FLAGS_LV | /* Load MSI-X vector */
2571 FLAGS_LI; /* Load irq delay values */
2572 if (rx_ring->lbq_len) {
2573 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2574 tmp = (u64)rx_ring->lbq_base_dma;;
2575 *((__le64 *) rx_ring->lbq_base_indirect) = cpu_to_le64(tmp);
2576 cqicb->lbq_addr =
2577 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2578 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2579 (u16) rx_ring->lbq_buf_size;
2580 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2581 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2582 (u16) rx_ring->lbq_len;
2583 cqicb->lbq_len = cpu_to_le16(bq_len);
2584 rx_ring->lbq_prod_idx = 0;
2585 rx_ring->lbq_curr_idx = 0;
2586 rx_ring->lbq_clean_idx = 0;
2587 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2588 }
2589 if (rx_ring->sbq_len) {
2590 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2591 tmp = (u64)rx_ring->sbq_base_dma;;
2592 *((__le64 *) rx_ring->sbq_base_indirect) = cpu_to_le64(tmp);
2593 cqicb->sbq_addr =
2594 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2595 cqicb->sbq_buf_size =
2596 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2597 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2598 (u16) rx_ring->sbq_len;
2599 cqicb->sbq_len = cpu_to_le16(bq_len);
2600 rx_ring->sbq_prod_idx = 0;
2601 rx_ring->sbq_curr_idx = 0;
2602 rx_ring->sbq_clean_idx = 0;
2603 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2604 }
2605 switch (rx_ring->type) {
2606 case TX_Q:
2607 /* If there's only one interrupt, then we use
2608 * worker threads to process the outbound
2609 * completion handling rx_rings. We do this so
2610 * they can be run on multiple CPUs. There is
2611 * room to play with this more where we would only
2612 * run in a worker if there are more than x number
2613 * of outbound completions on the queue and more
2614 * than one queue active. Some threshold that
2615 * would indicate a benefit in spite of the cost
2616 * of a context switch.
2617 * If there's more than one interrupt, then the
2618 * outbound completions are processed in the ISR.
2619 */
2620 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2621 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2622 else {
2623 /* With all debug warnings on we see a WARN_ON message
2624 * when we free the skb in the interrupt context.
2625 */
2626 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2627 }
2628 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2629 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2630 break;
2631 case DEFAULT_Q:
2632 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2633 cqicb->irq_delay = 0;
2634 cqicb->pkt_delay = 0;
2635 break;
2636 case RX_Q:
2637 /* Inbound completion handling rx_rings run in
2638 * separate NAPI contexts.
2639 */
2640 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2641 64);
2642 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2643 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2644 break;
2645 default:
2646 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2647 rx_ring->type);
2648 }
2649 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2650 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2651 CFG_LCQ, rx_ring->cq_id);
2652 if (err) {
2653 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2654 return err;
2655 }
2656 return err;
2657 }
2658
2659 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2660 {
2661 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2662 void __iomem *doorbell_area =
2663 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2664 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2665 (tx_ring->wq_id * sizeof(u64));
2666 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2667 (tx_ring->wq_id * sizeof(u64));
2668 int err = 0;
2669
2670 /*
2671 * Assign doorbell registers for this tx_ring.
2672 */
2673 /* TX PCI doorbell mem area for tx producer index */
2674 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2675 tx_ring->prod_idx = 0;
2676 /* TX PCI doorbell mem area + 0x04 */
2677 tx_ring->valid_db_reg = doorbell_area + 0x04;
2678
2679 /*
2680 * Assign shadow registers for this tx_ring.
2681 */
2682 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2683 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2684
2685 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2686 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2687 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2688 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2689 wqicb->rid = 0;
2690 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2691
2692 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2693
2694 ql_init_tx_ring(qdev, tx_ring);
2695
2696 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2697 (u16) tx_ring->wq_id);
2698 if (err) {
2699 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2700 return err;
2701 }
2702 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2703 return err;
2704 }
2705
2706 static void ql_disable_msix(struct ql_adapter *qdev)
2707 {
2708 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2709 pci_disable_msix(qdev->pdev);
2710 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2711 kfree(qdev->msi_x_entry);
2712 qdev->msi_x_entry = NULL;
2713 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2714 pci_disable_msi(qdev->pdev);
2715 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2716 }
2717 }
2718
2719 static void ql_enable_msix(struct ql_adapter *qdev)
2720 {
2721 int i;
2722
2723 qdev->intr_count = 1;
2724 /* Get the MSIX vectors. */
2725 if (irq_type == MSIX_IRQ) {
2726 /* Try to alloc space for the msix struct,
2727 * if it fails then go to MSI/legacy.
2728 */
2729 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2730 sizeof(struct msix_entry),
2731 GFP_KERNEL);
2732 if (!qdev->msi_x_entry) {
2733 irq_type = MSI_IRQ;
2734 goto msi;
2735 }
2736
2737 for (i = 0; i < qdev->rx_ring_count; i++)
2738 qdev->msi_x_entry[i].entry = i;
2739
2740 if (!pci_enable_msix
2741 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2742 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2743 qdev->intr_count = qdev->rx_ring_count;
2744 QPRINTK(qdev, IFUP, DEBUG,
2745 "MSI-X Enabled, got %d vectors.\n",
2746 qdev->intr_count);
2747 return;
2748 } else {
2749 kfree(qdev->msi_x_entry);
2750 qdev->msi_x_entry = NULL;
2751 QPRINTK(qdev, IFUP, WARNING,
2752 "MSI-X Enable failed, trying MSI.\n");
2753 irq_type = MSI_IRQ;
2754 }
2755 }
2756 msi:
2757 if (irq_type == MSI_IRQ) {
2758 if (!pci_enable_msi(qdev->pdev)) {
2759 set_bit(QL_MSI_ENABLED, &qdev->flags);
2760 QPRINTK(qdev, IFUP, INFO,
2761 "Running with MSI interrupts.\n");
2762 return;
2763 }
2764 }
2765 irq_type = LEG_IRQ;
2766 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2767 }
2768
2769 /*
2770 * Here we build the intr_context structures based on
2771 * our rx_ring count and intr vector count.
2772 * The intr_context structure is used to hook each vector
2773 * to possibly different handlers.
2774 */
2775 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2776 {
2777 int i = 0;
2778 struct intr_context *intr_context = &qdev->intr_context[0];
2779
2780 ql_enable_msix(qdev);
2781
2782 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2783 /* Each rx_ring has it's
2784 * own intr_context since we have separate
2785 * vectors for each queue.
2786 * This only true when MSI-X is enabled.
2787 */
2788 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2789 qdev->rx_ring[i].irq = i;
2790 intr_context->intr = i;
2791 intr_context->qdev = qdev;
2792 /*
2793 * We set up each vectors enable/disable/read bits so
2794 * there's no bit/mask calculations in the critical path.
2795 */
2796 intr_context->intr_en_mask =
2797 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2798 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2799 | i;
2800 intr_context->intr_dis_mask =
2801 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2802 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2803 INTR_EN_IHD | i;
2804 intr_context->intr_read_mask =
2805 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2806 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2807 i;
2808
2809 if (i == 0) {
2810 /*
2811 * Default queue handles bcast/mcast plus
2812 * async events. Needs buffers.
2813 */
2814 intr_context->handler = qlge_isr;
2815 sprintf(intr_context->name, "%s-default-queue",
2816 qdev->ndev->name);
2817 } else if (i < qdev->rss_ring_first_cq_id) {
2818 /*
2819 * Outbound queue is for outbound completions only.
2820 */
2821 intr_context->handler = qlge_msix_tx_isr;
2822 sprintf(intr_context->name, "%s-tx-%d",
2823 qdev->ndev->name, i);
2824 } else {
2825 /*
2826 * Inbound queues handle unicast frames only.
2827 */
2828 intr_context->handler = qlge_msix_rx_isr;
2829 sprintf(intr_context->name, "%s-rx-%d",
2830 qdev->ndev->name, i);
2831 }
2832 }
2833 } else {
2834 /*
2835 * All rx_rings use the same intr_context since
2836 * there is only one vector.
2837 */
2838 intr_context->intr = 0;
2839 intr_context->qdev = qdev;
2840 /*
2841 * We set up each vectors enable/disable/read bits so
2842 * there's no bit/mask calculations in the critical path.
2843 */
2844 intr_context->intr_en_mask =
2845 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2846 intr_context->intr_dis_mask =
2847 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2848 INTR_EN_TYPE_DISABLE;
2849 intr_context->intr_read_mask =
2850 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2851 /*
2852 * Single interrupt means one handler for all rings.
2853 */
2854 intr_context->handler = qlge_isr;
2855 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2856 for (i = 0; i < qdev->rx_ring_count; i++)
2857 qdev->rx_ring[i].irq = 0;
2858 }
2859 }
2860
2861 static void ql_free_irq(struct ql_adapter *qdev)
2862 {
2863 int i;
2864 struct intr_context *intr_context = &qdev->intr_context[0];
2865
2866 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2867 if (intr_context->hooked) {
2868 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2869 free_irq(qdev->msi_x_entry[i].vector,
2870 &qdev->rx_ring[i]);
2871 QPRINTK(qdev, IFDOWN, DEBUG,
2872 "freeing msix interrupt %d.\n", i);
2873 } else {
2874 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2875 QPRINTK(qdev, IFDOWN, DEBUG,
2876 "freeing msi interrupt %d.\n", i);
2877 }
2878 }
2879 }
2880 ql_disable_msix(qdev);
2881 }
2882
2883 static int ql_request_irq(struct ql_adapter *qdev)
2884 {
2885 int i;
2886 int status = 0;
2887 struct pci_dev *pdev = qdev->pdev;
2888 struct intr_context *intr_context = &qdev->intr_context[0];
2889
2890 ql_resolve_queues_to_irqs(qdev);
2891
2892 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2893 atomic_set(&intr_context->irq_cnt, 0);
2894 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2895 status = request_irq(qdev->msi_x_entry[i].vector,
2896 intr_context->handler,
2897 0,
2898 intr_context->name,
2899 &qdev->rx_ring[i]);
2900 if (status) {
2901 QPRINTK(qdev, IFUP, ERR,
2902 "Failed request for MSIX interrupt %d.\n",
2903 i);
2904 goto err_irq;
2905 } else {
2906 QPRINTK(qdev, IFUP, DEBUG,
2907 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2908 i,
2909 qdev->rx_ring[i].type ==
2910 DEFAULT_Q ? "DEFAULT_Q" : "",
2911 qdev->rx_ring[i].type ==
2912 TX_Q ? "TX_Q" : "",
2913 qdev->rx_ring[i].type ==
2914 RX_Q ? "RX_Q" : "", intr_context->name);
2915 }
2916 } else {
2917 QPRINTK(qdev, IFUP, DEBUG,
2918 "trying msi or legacy interrupts.\n");
2919 QPRINTK(qdev, IFUP, DEBUG,
2920 "%s: irq = %d.\n", __func__, pdev->irq);
2921 QPRINTK(qdev, IFUP, DEBUG,
2922 "%s: context->name = %s.\n", __func__,
2923 intr_context->name);
2924 QPRINTK(qdev, IFUP, DEBUG,
2925 "%s: dev_id = 0x%p.\n", __func__,
2926 &qdev->rx_ring[0]);
2927 status =
2928 request_irq(pdev->irq, qlge_isr,
2929 test_bit(QL_MSI_ENABLED,
2930 &qdev->
2931 flags) ? 0 : IRQF_SHARED,
2932 intr_context->name, &qdev->rx_ring[0]);
2933 if (status)
2934 goto err_irq;
2935
2936 QPRINTK(qdev, IFUP, ERR,
2937 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2938 i,
2939 qdev->rx_ring[0].type ==
2940 DEFAULT_Q ? "DEFAULT_Q" : "",
2941 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2942 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2943 intr_context->name);
2944 }
2945 intr_context->hooked = 1;
2946 }
2947 return status;
2948 err_irq:
2949 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2950 ql_free_irq(qdev);
2951 return status;
2952 }
2953
2954 static int ql_start_rss(struct ql_adapter *qdev)
2955 {
2956 struct ricb *ricb = &qdev->ricb;
2957 int status = 0;
2958 int i;
2959 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2960
2961 memset((void *)ricb, 0, sizeof(ricb));
2962
2963 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2964 ricb->flags =
2965 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2966 RSS_RT6);
2967 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2968
2969 /*
2970 * Fill out the Indirection Table.
2971 */
2972 for (i = 0; i < 256; i++)
2973 hash_id[i] = i & (qdev->rss_ring_count - 1);
2974
2975 /*
2976 * Random values for the IPv6 and IPv4 Hash Keys.
2977 */
2978 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2979 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2980
2981 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
2982
2983 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2984 if (status) {
2985 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2986 return status;
2987 }
2988 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
2989 return status;
2990 }
2991
2992 /* Initialize the frame-to-queue routing. */
2993 static int ql_route_initialize(struct ql_adapter *qdev)
2994 {
2995 int status = 0;
2996 int i;
2997
2998 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
2999 if (status)
3000 return status;
3001
3002 /* Clear all the entries in the routing table. */
3003 for (i = 0; i < 16; i++) {
3004 status = ql_set_routing_reg(qdev, i, 0, 0);
3005 if (status) {
3006 QPRINTK(qdev, IFUP, ERR,
3007 "Failed to init routing register for CAM packets.\n");
3008 goto exit;
3009 }
3010 }
3011
3012 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3013 if (status) {
3014 QPRINTK(qdev, IFUP, ERR,
3015 "Failed to init routing register for error packets.\n");
3016 goto exit;
3017 }
3018 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3019 if (status) {
3020 QPRINTK(qdev, IFUP, ERR,
3021 "Failed to init routing register for broadcast packets.\n");
3022 goto exit;
3023 }
3024 /* If we have more than one inbound queue, then turn on RSS in the
3025 * routing block.
3026 */
3027 if (qdev->rss_ring_count > 1) {
3028 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3029 RT_IDX_RSS_MATCH, 1);
3030 if (status) {
3031 QPRINTK(qdev, IFUP, ERR,
3032 "Failed to init routing register for MATCH RSS packets.\n");
3033 goto exit;
3034 }
3035 }
3036
3037 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3038 RT_IDX_CAM_HIT, 1);
3039 if (status)
3040 QPRINTK(qdev, IFUP, ERR,
3041 "Failed to init routing register for CAM packets.\n");
3042 exit:
3043 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3044 return status;
3045 }
3046
3047 int ql_cam_route_initialize(struct ql_adapter *qdev)
3048 {
3049 int status;
3050
3051 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3052 if (status)
3053 return status;
3054 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3055 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3056 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3057 if (status) {
3058 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3059 return status;
3060 }
3061
3062 status = ql_route_initialize(qdev);
3063 if (status)
3064 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3065
3066 return status;
3067 }
3068
3069 static int ql_adapter_initialize(struct ql_adapter *qdev)
3070 {
3071 u32 value, mask;
3072 int i;
3073 int status = 0;
3074
3075 /*
3076 * Set up the System register to halt on errors.
3077 */
3078 value = SYS_EFE | SYS_FAE;
3079 mask = value << 16;
3080 ql_write32(qdev, SYS, mask | value);
3081
3082 /* Set the default queue, and VLAN behavior. */
3083 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3084 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3085 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3086
3087 /* Set the MPI interrupt to enabled. */
3088 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3089
3090 /* Enable the function, set pagesize, enable error checking. */
3091 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3092 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3093
3094 /* Set/clear header splitting. */
3095 mask = FSC_VM_PAGESIZE_MASK |
3096 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3097 ql_write32(qdev, FSC, mask | value);
3098
3099 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3100 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3101
3102 /* Start up the rx queues. */
3103 for (i = 0; i < qdev->rx_ring_count; i++) {
3104 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3105 if (status) {
3106 QPRINTK(qdev, IFUP, ERR,
3107 "Failed to start rx ring[%d].\n", i);
3108 return status;
3109 }
3110 }
3111
3112 /* If there is more than one inbound completion queue
3113 * then download a RICB to configure RSS.
3114 */
3115 if (qdev->rss_ring_count > 1) {
3116 status = ql_start_rss(qdev);
3117 if (status) {
3118 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3119 return status;
3120 }
3121 }
3122
3123 /* Start up the tx queues. */
3124 for (i = 0; i < qdev->tx_ring_count; i++) {
3125 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3126 if (status) {
3127 QPRINTK(qdev, IFUP, ERR,
3128 "Failed to start tx ring[%d].\n", i);
3129 return status;
3130 }
3131 }
3132
3133 /* Initialize the port and set the max framesize. */
3134 status = qdev->nic_ops->port_initialize(qdev);
3135 if (status) {
3136 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3137 return status;
3138 }
3139
3140 /* Set up the MAC address and frame routing filter. */
3141 status = ql_cam_route_initialize(qdev);
3142 if (status) {
3143 QPRINTK(qdev, IFUP, ERR,
3144 "Failed to init CAM/Routing tables.\n");
3145 return status;
3146 }
3147
3148 /* Start NAPI for the RSS queues. */
3149 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3150 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3151 i);
3152 napi_enable(&qdev->rx_ring[i].napi);
3153 }
3154
3155 return status;
3156 }
3157
3158 /* Issue soft reset to chip. */
3159 static int ql_adapter_reset(struct ql_adapter *qdev)
3160 {
3161 u32 value;
3162 int status = 0;
3163 unsigned long end_jiffies = jiffies +
3164 max((unsigned long)1, usecs_to_jiffies(30));
3165
3166 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3167
3168 do {
3169 value = ql_read32(qdev, RST_FO);
3170 if ((value & RST_FO_FR) == 0)
3171 break;
3172 cpu_relax();
3173 } while (time_before(jiffies, end_jiffies));
3174
3175 if (value & RST_FO_FR) {
3176 QPRINTK(qdev, IFDOWN, ERR,
3177 "ETIMEOUT!!! errored out of resetting the chip!\n");
3178 status = -ETIMEDOUT;
3179 }
3180
3181 return status;
3182 }
3183
3184 static void ql_display_dev_info(struct net_device *ndev)
3185 {
3186 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3187
3188 QPRINTK(qdev, PROBE, INFO,
3189 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3190 "XG Roll = %d, XG Rev = %d.\n",
3191 qdev->func,
3192 qdev->chip_rev_id & 0x0000000f,
3193 qdev->chip_rev_id >> 4 & 0x0000000f,
3194 qdev->chip_rev_id >> 8 & 0x0000000f,
3195 qdev->chip_rev_id >> 12 & 0x0000000f);
3196 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3197 }
3198
3199 static int ql_adapter_down(struct ql_adapter *qdev)
3200 {
3201 int i, status = 0;
3202 struct rx_ring *rx_ring;
3203
3204 netif_carrier_off(qdev->ndev);
3205
3206 /* Don't kill the reset worker thread if we
3207 * are in the process of recovery.
3208 */
3209 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3210 cancel_delayed_work_sync(&qdev->asic_reset_work);
3211 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3212 cancel_delayed_work_sync(&qdev->mpi_work);
3213 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3214 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3215
3216 /* The default queue at index 0 is always processed in
3217 * a workqueue.
3218 */
3219 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3220
3221 /* The rest of the rx_rings are processed in
3222 * a workqueue only if it's a single interrupt
3223 * environment (MSI/Legacy).
3224 */
3225 for (i = 1; i < qdev->rx_ring_count; i++) {
3226 rx_ring = &qdev->rx_ring[i];
3227 /* Only the RSS rings use NAPI on multi irq
3228 * environment. Outbound completion processing
3229 * is done in interrupt context.
3230 */
3231 if (i >= qdev->rss_ring_first_cq_id) {
3232 napi_disable(&rx_ring->napi);
3233 } else {
3234 cancel_delayed_work_sync(&rx_ring->rx_work);
3235 }
3236 }
3237
3238 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3239
3240 ql_disable_interrupts(qdev);
3241
3242 ql_tx_ring_clean(qdev);
3243
3244 /* Call netif_napi_del() from common point.
3245 */
3246 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3247 netif_napi_del(&qdev->rx_ring[i].napi);
3248
3249 ql_free_rx_buffers(qdev);
3250
3251 spin_lock(&qdev->hw_lock);
3252 status = ql_adapter_reset(qdev);
3253 if (status)
3254 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3255 qdev->func);
3256 spin_unlock(&qdev->hw_lock);
3257 return status;
3258 }
3259
3260 static int ql_adapter_up(struct ql_adapter *qdev)
3261 {
3262 int err = 0;
3263
3264 err = ql_adapter_initialize(qdev);
3265 if (err) {
3266 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3267 spin_unlock(&qdev->hw_lock);
3268 goto err_init;
3269 }
3270 set_bit(QL_ADAPTER_UP, &qdev->flags);
3271 ql_alloc_rx_buffers(qdev);
3272 if ((ql_read32(qdev, STS) & qdev->port_init))
3273 netif_carrier_on(qdev->ndev);
3274 ql_enable_interrupts(qdev);
3275 ql_enable_all_completion_interrupts(qdev);
3276 netif_tx_start_all_queues(qdev->ndev);
3277
3278 return 0;
3279 err_init:
3280 ql_adapter_reset(qdev);
3281 return err;
3282 }
3283
3284 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3285 {
3286 ql_free_mem_resources(qdev);
3287 ql_free_irq(qdev);
3288 }
3289
3290 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3291 {
3292 int status = 0;
3293
3294 if (ql_alloc_mem_resources(qdev)) {
3295 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3296 return -ENOMEM;
3297 }
3298 status = ql_request_irq(qdev);
3299 if (status)
3300 goto err_irq;
3301 return status;
3302 err_irq:
3303 ql_free_mem_resources(qdev);
3304 return status;
3305 }
3306
3307 static int qlge_close(struct net_device *ndev)
3308 {
3309 struct ql_adapter *qdev = netdev_priv(ndev);
3310
3311 /*
3312 * Wait for device to recover from a reset.
3313 * (Rarely happens, but possible.)
3314 */
3315 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3316 msleep(1);
3317 ql_adapter_down(qdev);
3318 ql_release_adapter_resources(qdev);
3319 return 0;
3320 }
3321
3322 static int ql_configure_rings(struct ql_adapter *qdev)
3323 {
3324 int i;
3325 struct rx_ring *rx_ring;
3326 struct tx_ring *tx_ring;
3327 int cpu_cnt = num_online_cpus();
3328
3329 /*
3330 * For each processor present we allocate one
3331 * rx_ring for outbound completions, and one
3332 * rx_ring for inbound completions. Plus there is
3333 * always the one default queue. For the CPU
3334 * counts we end up with the following rx_rings:
3335 * rx_ring count =
3336 * one default queue +
3337 * (CPU count * outbound completion rx_ring) +
3338 * (CPU count * inbound (RSS) completion rx_ring)
3339 * To keep it simple we limit the total number of
3340 * queues to < 32, so we truncate CPU to 8.
3341 * This limitation can be removed when requested.
3342 */
3343
3344 if (cpu_cnt > MAX_CPUS)
3345 cpu_cnt = MAX_CPUS;
3346
3347 /*
3348 * rx_ring[0] is always the default queue.
3349 */
3350 /* Allocate outbound completion ring for each CPU. */
3351 qdev->tx_ring_count = cpu_cnt;
3352 /* Allocate inbound completion (RSS) ring for each CPU. */
3353 qdev->rss_ring_count = cpu_cnt;
3354 /* cq_id for the first inbound ring handler. */
3355 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3356 /*
3357 * qdev->rx_ring_count:
3358 * Total number of rx_rings. This includes the one
3359 * default queue, a number of outbound completion
3360 * handler rx_rings, and the number of inbound
3361 * completion handler rx_rings.
3362 */
3363 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3364 netif_set_gso_max_size(qdev->ndev, 65536);
3365
3366 for (i = 0; i < qdev->tx_ring_count; i++) {
3367 tx_ring = &qdev->tx_ring[i];
3368 memset((void *)tx_ring, 0, sizeof(tx_ring));
3369 tx_ring->qdev = qdev;
3370 tx_ring->wq_id = i;
3371 tx_ring->wq_len = qdev->tx_ring_size;
3372 tx_ring->wq_size =
3373 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3374
3375 /*
3376 * The completion queue ID for the tx rings start
3377 * immediately after the default Q ID, which is zero.
3378 */
3379 tx_ring->cq_id = i + 1;
3380 }
3381
3382 for (i = 0; i < qdev->rx_ring_count; i++) {
3383 rx_ring = &qdev->rx_ring[i];
3384 memset((void *)rx_ring, 0, sizeof(rx_ring));
3385 rx_ring->qdev = qdev;
3386 rx_ring->cq_id = i;
3387 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3388 if (i == 0) { /* Default queue at index 0. */
3389 /*
3390 * Default queue handles bcast/mcast plus
3391 * async events. Needs buffers.
3392 */
3393 rx_ring->cq_len = qdev->rx_ring_size;
3394 rx_ring->cq_size =
3395 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3396 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3397 rx_ring->lbq_size =
3398 rx_ring->lbq_len * sizeof(__le64);
3399 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3400 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3401 rx_ring->sbq_size =
3402 rx_ring->sbq_len * sizeof(__le64);
3403 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3404 rx_ring->type = DEFAULT_Q;
3405 } else if (i < qdev->rss_ring_first_cq_id) {
3406 /*
3407 * Outbound queue handles outbound completions only.
3408 */
3409 /* outbound cq is same size as tx_ring it services. */
3410 rx_ring->cq_len = qdev->tx_ring_size;
3411 rx_ring->cq_size =
3412 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3413 rx_ring->lbq_len = 0;
3414 rx_ring->lbq_size = 0;
3415 rx_ring->lbq_buf_size = 0;
3416 rx_ring->sbq_len = 0;
3417 rx_ring->sbq_size = 0;
3418 rx_ring->sbq_buf_size = 0;
3419 rx_ring->type = TX_Q;
3420 } else { /* Inbound completions (RSS) queues */
3421 /*
3422 * Inbound queues handle unicast frames only.
3423 */
3424 rx_ring->cq_len = qdev->rx_ring_size;
3425 rx_ring->cq_size =
3426 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3427 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3428 rx_ring->lbq_size =
3429 rx_ring->lbq_len * sizeof(__le64);
3430 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3431 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3432 rx_ring->sbq_size =
3433 rx_ring->sbq_len * sizeof(__le64);
3434 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3435 rx_ring->type = RX_Q;
3436 }
3437 }
3438 return 0;
3439 }
3440
3441 static int qlge_open(struct net_device *ndev)
3442 {
3443 int err = 0;
3444 struct ql_adapter *qdev = netdev_priv(ndev);
3445
3446 err = ql_configure_rings(qdev);
3447 if (err)
3448 return err;
3449
3450 err = ql_get_adapter_resources(qdev);
3451 if (err)
3452 goto error_up;
3453
3454 err = ql_adapter_up(qdev);
3455 if (err)
3456 goto error_up;
3457
3458 return err;
3459
3460 error_up:
3461 ql_release_adapter_resources(qdev);
3462 return err;
3463 }
3464
3465 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3466 {
3467 struct ql_adapter *qdev = netdev_priv(ndev);
3468
3469 if (ndev->mtu == 1500 && new_mtu == 9000) {
3470 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3471 queue_delayed_work(qdev->workqueue,
3472 &qdev->mpi_port_cfg_work, 0);
3473 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3474 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3475 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3476 (ndev->mtu == 9000 && new_mtu == 9000)) {
3477 return 0;
3478 } else
3479 return -EINVAL;
3480 ndev->mtu = new_mtu;
3481 return 0;
3482 }
3483
3484 static struct net_device_stats *qlge_get_stats(struct net_device
3485 *ndev)
3486 {
3487 struct ql_adapter *qdev = netdev_priv(ndev);
3488 return &qdev->stats;
3489 }
3490
3491 static void qlge_set_multicast_list(struct net_device *ndev)
3492 {
3493 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3494 struct dev_mc_list *mc_ptr;
3495 int i, status;
3496
3497 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3498 if (status)
3499 return;
3500 spin_lock(&qdev->hw_lock);
3501 /*
3502 * Set or clear promiscuous mode if a
3503 * transition is taking place.
3504 */
3505 if (ndev->flags & IFF_PROMISC) {
3506 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3507 if (ql_set_routing_reg
3508 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3509 QPRINTK(qdev, HW, ERR,
3510 "Failed to set promiscous mode.\n");
3511 } else {
3512 set_bit(QL_PROMISCUOUS, &qdev->flags);
3513 }
3514 }
3515 } else {
3516 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3517 if (ql_set_routing_reg
3518 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3519 QPRINTK(qdev, HW, ERR,
3520 "Failed to clear promiscous mode.\n");
3521 } else {
3522 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3523 }
3524 }
3525 }
3526
3527 /*
3528 * Set or clear all multicast mode if a
3529 * transition is taking place.
3530 */
3531 if ((ndev->flags & IFF_ALLMULTI) ||
3532 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3533 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3534 if (ql_set_routing_reg
3535 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3536 QPRINTK(qdev, HW, ERR,
3537 "Failed to set all-multi mode.\n");
3538 } else {
3539 set_bit(QL_ALLMULTI, &qdev->flags);
3540 }
3541 }
3542 } else {
3543 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3544 if (ql_set_routing_reg
3545 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3546 QPRINTK(qdev, HW, ERR,
3547 "Failed to clear all-multi mode.\n");
3548 } else {
3549 clear_bit(QL_ALLMULTI, &qdev->flags);
3550 }
3551 }
3552 }
3553
3554 if (ndev->mc_count) {
3555 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3556 if (status)
3557 goto exit;
3558 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3559 i++, mc_ptr = mc_ptr->next)
3560 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3561 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3562 QPRINTK(qdev, HW, ERR,
3563 "Failed to loadmulticast address.\n");
3564 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3565 goto exit;
3566 }
3567 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3568 if (ql_set_routing_reg
3569 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3570 QPRINTK(qdev, HW, ERR,
3571 "Failed to set multicast match mode.\n");
3572 } else {
3573 set_bit(QL_ALLMULTI, &qdev->flags);
3574 }
3575 }
3576 exit:
3577 spin_unlock(&qdev->hw_lock);
3578 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3579 }
3580
3581 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3582 {
3583 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3584 struct sockaddr *addr = p;
3585 int status;
3586
3587 if (netif_running(ndev))
3588 return -EBUSY;
3589
3590 if (!is_valid_ether_addr(addr->sa_data))
3591 return -EADDRNOTAVAIL;
3592 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3593
3594 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3595 if (status)
3596 return status;
3597 spin_lock(&qdev->hw_lock);
3598 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3599 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3600 spin_unlock(&qdev->hw_lock);
3601 if (status)
3602 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3603 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3604 return status;
3605 }
3606
3607 static void qlge_tx_timeout(struct net_device *ndev)
3608 {
3609 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3610 ql_queue_asic_error(qdev);
3611 }
3612
3613 static void ql_asic_reset_work(struct work_struct *work)
3614 {
3615 struct ql_adapter *qdev =
3616 container_of(work, struct ql_adapter, asic_reset_work.work);
3617 int status;
3618
3619 status = ql_adapter_down(qdev);
3620 if (status)
3621 goto error;
3622
3623 status = ql_adapter_up(qdev);
3624 if (status)
3625 goto error;
3626
3627 return;
3628 error:
3629 QPRINTK(qdev, IFUP, ALERT,
3630 "Driver up/down cycle failed, closing device\n");
3631 rtnl_lock();
3632 set_bit(QL_ADAPTER_UP, &qdev->flags);
3633 dev_close(qdev->ndev);
3634 rtnl_unlock();
3635 }
3636
3637 static struct nic_operations qla8012_nic_ops = {
3638 .get_flash = ql_get_8012_flash_params,
3639 .port_initialize = ql_8012_port_initialize,
3640 };
3641
3642 static struct nic_operations qla8000_nic_ops = {
3643 .get_flash = ql_get_8000_flash_params,
3644 .port_initialize = ql_8000_port_initialize,
3645 };
3646
3647
3648 static void ql_get_board_info(struct ql_adapter *qdev)
3649 {
3650 qdev->func =
3651 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3652 if (qdev->func) {
3653 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3654 qdev->port_link_up = STS_PL1;
3655 qdev->port_init = STS_PI1;
3656 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3657 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3658 } else {
3659 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3660 qdev->port_link_up = STS_PL0;
3661 qdev->port_init = STS_PI0;
3662 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3663 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3664 }
3665 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3666 qdev->device_id = qdev->pdev->device;
3667 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3668 qdev->nic_ops = &qla8012_nic_ops;
3669 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3670 qdev->nic_ops = &qla8000_nic_ops;
3671 }
3672
3673 static void ql_release_all(struct pci_dev *pdev)
3674 {
3675 struct net_device *ndev = pci_get_drvdata(pdev);
3676 struct ql_adapter *qdev = netdev_priv(ndev);
3677
3678 if (qdev->workqueue) {
3679 destroy_workqueue(qdev->workqueue);
3680 qdev->workqueue = NULL;
3681 }
3682 if (qdev->q_workqueue) {
3683 destroy_workqueue(qdev->q_workqueue);
3684 qdev->q_workqueue = NULL;
3685 }
3686 if (qdev->reg_base)
3687 iounmap(qdev->reg_base);
3688 if (qdev->doorbell_area)
3689 iounmap(qdev->doorbell_area);
3690 pci_release_regions(pdev);
3691 pci_set_drvdata(pdev, NULL);
3692 }
3693
3694 static int __devinit ql_init_device(struct pci_dev *pdev,
3695 struct net_device *ndev, int cards_found)
3696 {
3697 struct ql_adapter *qdev = netdev_priv(ndev);
3698 int pos, err = 0;
3699 u16 val16;
3700
3701 memset((void *)qdev, 0, sizeof(qdev));
3702 err = pci_enable_device(pdev);
3703 if (err) {
3704 dev_err(&pdev->dev, "PCI device enable failed.\n");
3705 return err;
3706 }
3707
3708 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3709 if (pos <= 0) {
3710 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3711 "aborting.\n");
3712 goto err_out;
3713 } else {
3714 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3715 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3716 val16 |= (PCI_EXP_DEVCTL_CERE |
3717 PCI_EXP_DEVCTL_NFERE |
3718 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3719 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3720 }
3721
3722 err = pci_request_regions(pdev, DRV_NAME);
3723 if (err) {
3724 dev_err(&pdev->dev, "PCI region request failed.\n");
3725 goto err_out;
3726 }
3727
3728 pci_set_master(pdev);
3729 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3730 set_bit(QL_DMA64, &qdev->flags);
3731 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3732 } else {
3733 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3734 if (!err)
3735 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3736 }
3737
3738 if (err) {
3739 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3740 goto err_out;
3741 }
3742
3743 pci_set_drvdata(pdev, ndev);
3744 qdev->reg_base =
3745 ioremap_nocache(pci_resource_start(pdev, 1),
3746 pci_resource_len(pdev, 1));
3747 if (!qdev->reg_base) {
3748 dev_err(&pdev->dev, "Register mapping failed.\n");
3749 err = -ENOMEM;
3750 goto err_out;
3751 }
3752
3753 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3754 qdev->doorbell_area =
3755 ioremap_nocache(pci_resource_start(pdev, 3),
3756 pci_resource_len(pdev, 3));
3757 if (!qdev->doorbell_area) {
3758 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3759 err = -ENOMEM;
3760 goto err_out;
3761 }
3762
3763 qdev->ndev = ndev;
3764 qdev->pdev = pdev;
3765 ql_get_board_info(qdev);
3766 qdev->msg_enable = netif_msg_init(debug, default_msg);
3767 spin_lock_init(&qdev->hw_lock);
3768 spin_lock_init(&qdev->stats_lock);
3769
3770 /* make sure the EEPROM is good */
3771 err = qdev->nic_ops->get_flash(qdev);
3772 if (err) {
3773 dev_err(&pdev->dev, "Invalid FLASH.\n");
3774 goto err_out;
3775 }
3776
3777 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3778
3779 /* Set up the default ring sizes. */
3780 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3781 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3782
3783 /* Set up the coalescing parameters. */
3784 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3785 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3786 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3787 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3788
3789 /*
3790 * Set up the operating parameters.
3791 */
3792 qdev->rx_csum = 1;
3793
3794 qdev->q_workqueue = create_workqueue(ndev->name);
3795 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3796 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3797 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3798 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3799 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3800 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3801 mutex_init(&qdev->mpi_mutex);
3802 init_completion(&qdev->ide_completion);
3803
3804 if (!cards_found) {
3805 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3806 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3807 DRV_NAME, DRV_VERSION);
3808 }
3809 return 0;
3810 err_out:
3811 ql_release_all(pdev);
3812 pci_disable_device(pdev);
3813 return err;
3814 }
3815
3816
3817 static const struct net_device_ops qlge_netdev_ops = {
3818 .ndo_open = qlge_open,
3819 .ndo_stop = qlge_close,
3820 .ndo_start_xmit = qlge_send,
3821 .ndo_change_mtu = qlge_change_mtu,
3822 .ndo_get_stats = qlge_get_stats,
3823 .ndo_set_multicast_list = qlge_set_multicast_list,
3824 .ndo_set_mac_address = qlge_set_mac_address,
3825 .ndo_validate_addr = eth_validate_addr,
3826 .ndo_tx_timeout = qlge_tx_timeout,
3827 .ndo_vlan_rx_register = ql_vlan_rx_register,
3828 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3829 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3830 };
3831
3832 static int __devinit qlge_probe(struct pci_dev *pdev,
3833 const struct pci_device_id *pci_entry)
3834 {
3835 struct net_device *ndev = NULL;
3836 struct ql_adapter *qdev = NULL;
3837 static int cards_found = 0;
3838 int err = 0;
3839
3840 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3841 min(MAX_CPUS, (int)num_online_cpus()));
3842 if (!ndev)
3843 return -ENOMEM;
3844
3845 err = ql_init_device(pdev, ndev, cards_found);
3846 if (err < 0) {
3847 free_netdev(ndev);
3848 return err;
3849 }
3850
3851 qdev = netdev_priv(ndev);
3852 SET_NETDEV_DEV(ndev, &pdev->dev);
3853 ndev->features = (0
3854 | NETIF_F_IP_CSUM
3855 | NETIF_F_SG
3856 | NETIF_F_TSO
3857 | NETIF_F_TSO6
3858 | NETIF_F_TSO_ECN
3859 | NETIF_F_HW_VLAN_TX
3860 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3861 ndev->features |= NETIF_F_GRO;
3862
3863 if (test_bit(QL_DMA64, &qdev->flags))
3864 ndev->features |= NETIF_F_HIGHDMA;
3865
3866 /*
3867 * Set up net_device structure.
3868 */
3869 ndev->tx_queue_len = qdev->tx_ring_size;
3870 ndev->irq = pdev->irq;
3871
3872 ndev->netdev_ops = &qlge_netdev_ops;
3873 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3874 ndev->watchdog_timeo = 10 * HZ;
3875
3876 err = register_netdev(ndev);
3877 if (err) {
3878 dev_err(&pdev->dev, "net device registration failed.\n");
3879 ql_release_all(pdev);
3880 pci_disable_device(pdev);
3881 return err;
3882 }
3883 netif_carrier_off(ndev);
3884 ql_display_dev_info(ndev);
3885 cards_found++;
3886 return 0;
3887 }
3888
3889 static void __devexit qlge_remove(struct pci_dev *pdev)
3890 {
3891 struct net_device *ndev = pci_get_drvdata(pdev);
3892 unregister_netdev(ndev);
3893 ql_release_all(pdev);
3894 pci_disable_device(pdev);
3895 free_netdev(ndev);
3896 }
3897
3898 /*
3899 * This callback is called by the PCI subsystem whenever
3900 * a PCI bus error is detected.
3901 */
3902 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3903 enum pci_channel_state state)
3904 {
3905 struct net_device *ndev = pci_get_drvdata(pdev);
3906 struct ql_adapter *qdev = netdev_priv(ndev);
3907
3908 if (netif_running(ndev))
3909 ql_adapter_down(qdev);
3910
3911 pci_disable_device(pdev);
3912
3913 /* Request a slot reset. */
3914 return PCI_ERS_RESULT_NEED_RESET;
3915 }
3916
3917 /*
3918 * This callback is called after the PCI buss has been reset.
3919 * Basically, this tries to restart the card from scratch.
3920 * This is a shortened version of the device probe/discovery code,
3921 * it resembles the first-half of the () routine.
3922 */
3923 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3924 {
3925 struct net_device *ndev = pci_get_drvdata(pdev);
3926 struct ql_adapter *qdev = netdev_priv(ndev);
3927
3928 if (pci_enable_device(pdev)) {
3929 QPRINTK(qdev, IFUP, ERR,
3930 "Cannot re-enable PCI device after reset.\n");
3931 return PCI_ERS_RESULT_DISCONNECT;
3932 }
3933
3934 pci_set_master(pdev);
3935
3936 netif_carrier_off(ndev);
3937 ql_adapter_reset(qdev);
3938
3939 /* Make sure the EEPROM is good */
3940 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3941
3942 if (!is_valid_ether_addr(ndev->perm_addr)) {
3943 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3944 return PCI_ERS_RESULT_DISCONNECT;
3945 }
3946
3947 return PCI_ERS_RESULT_RECOVERED;
3948 }
3949
3950 static void qlge_io_resume(struct pci_dev *pdev)
3951 {
3952 struct net_device *ndev = pci_get_drvdata(pdev);
3953 struct ql_adapter *qdev = netdev_priv(ndev);
3954
3955 pci_set_master(pdev);
3956
3957 if (netif_running(ndev)) {
3958 if (ql_adapter_up(qdev)) {
3959 QPRINTK(qdev, IFUP, ERR,
3960 "Device initialization failed after reset.\n");
3961 return;
3962 }
3963 }
3964
3965 netif_device_attach(ndev);
3966 }
3967
3968 static struct pci_error_handlers qlge_err_handler = {
3969 .error_detected = qlge_io_error_detected,
3970 .slot_reset = qlge_io_slot_reset,
3971 .resume = qlge_io_resume,
3972 };
3973
3974 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3975 {
3976 struct net_device *ndev = pci_get_drvdata(pdev);
3977 struct ql_adapter *qdev = netdev_priv(ndev);
3978 int err;
3979
3980 netif_device_detach(ndev);
3981
3982 if (netif_running(ndev)) {
3983 err = ql_adapter_down(qdev);
3984 if (!err)
3985 return err;
3986 }
3987
3988 err = pci_save_state(pdev);
3989 if (err)
3990 return err;
3991
3992 pci_disable_device(pdev);
3993
3994 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3995
3996 return 0;
3997 }
3998
3999 #ifdef CONFIG_PM
4000 static int qlge_resume(struct pci_dev *pdev)
4001 {
4002 struct net_device *ndev = pci_get_drvdata(pdev);
4003 struct ql_adapter *qdev = netdev_priv(ndev);
4004 int err;
4005
4006 pci_set_power_state(pdev, PCI_D0);
4007 pci_restore_state(pdev);
4008 err = pci_enable_device(pdev);
4009 if (err) {
4010 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4011 return err;
4012 }
4013 pci_set_master(pdev);
4014
4015 pci_enable_wake(pdev, PCI_D3hot, 0);
4016 pci_enable_wake(pdev, PCI_D3cold, 0);
4017
4018 if (netif_running(ndev)) {
4019 err = ql_adapter_up(qdev);
4020 if (err)
4021 return err;
4022 }
4023
4024 netif_device_attach(ndev);
4025
4026 return 0;
4027 }
4028 #endif /* CONFIG_PM */
4029
4030 static void qlge_shutdown(struct pci_dev *pdev)
4031 {
4032 qlge_suspend(pdev, PMSG_SUSPEND);
4033 }
4034
4035 static struct pci_driver qlge_driver = {
4036 .name = DRV_NAME,
4037 .id_table = qlge_pci_tbl,
4038 .probe = qlge_probe,
4039 .remove = __devexit_p(qlge_remove),
4040 #ifdef CONFIG_PM
4041 .suspend = qlge_suspend,
4042 .resume = qlge_resume,
4043 #endif
4044 .shutdown = qlge_shutdown,
4045 .err_handler = &qlge_err_handler
4046 };
4047
4048 static int __init qlge_init_module(void)
4049 {
4050 return pci_register_driver(&qlge_driver);
4051 }
4052
4053 static void __exit qlge_exit(void)
4054 {
4055 pci_unregister_driver(&qlge_driver);
4056 }
4057
4058 module_init(qlge_init_module);
4059 module_exit(qlge_exit);
This page took 0.168741 seconds and 5 git commands to generate.