2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
27 #include <linux/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
46 char qlge_driver_name
[] = DRV_NAME
;
47 const char qlge_driver_version
[] = DRV_VERSION
;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING
" ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION
);
54 static const u32 default_msg
=
55 NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
|
56 /* NETIF_MSG_TIMER | */
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW
| NETIF_MSG_WOL
| 0;
66 static int debug
= 0x00007fff; /* defaults above */
67 module_param(debug
, int, 0);
68 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
73 static int irq_type
= MSIX_IRQ
;
74 module_param(irq_type
, int, MSIX_IRQ
);
75 MODULE_PARM_DESC(irq_type
, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl
[] __devinitdata
= {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC
, QLGE_DEVICE_ID_8012
)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC
, QLGE_DEVICE_ID_8000
)},
80 /* required last entry */
84 MODULE_DEVICE_TABLE(pci
, qlge_pci_tbl
);
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
90 static int ql_sem_trylock(struct ql_adapter
*qdev
, u32 sem_mask
)
96 sem_bits
= SEM_SET
<< SEM_XGMAC0_SHIFT
;
99 sem_bits
= SEM_SET
<< SEM_XGMAC1_SHIFT
;
102 sem_bits
= SEM_SET
<< SEM_ICB_SHIFT
;
104 case SEM_MAC_ADDR_MASK
:
105 sem_bits
= SEM_SET
<< SEM_MAC_ADDR_SHIFT
;
108 sem_bits
= SEM_SET
<< SEM_FLASH_SHIFT
;
111 sem_bits
= SEM_SET
<< SEM_PROBE_SHIFT
;
113 case SEM_RT_IDX_MASK
:
114 sem_bits
= SEM_SET
<< SEM_RT_IDX_SHIFT
;
116 case SEM_PROC_REG_MASK
:
117 sem_bits
= SEM_SET
<< SEM_PROC_REG_SHIFT
;
120 QPRINTK(qdev
, PROBE
, ALERT
, "Bad Semaphore mask!.\n");
124 ql_write32(qdev
, SEM
, sem_bits
| sem_mask
);
125 return !(ql_read32(qdev
, SEM
) & sem_bits
);
128 int ql_sem_spinlock(struct ql_adapter
*qdev
, u32 sem_mask
)
130 unsigned int wait_count
= 30;
132 if (!ql_sem_trylock(qdev
, sem_mask
))
135 } while (--wait_count
);
139 void ql_sem_unlock(struct ql_adapter
*qdev
, u32 sem_mask
)
141 ql_write32(qdev
, SEM
, sem_mask
);
142 ql_read32(qdev
, SEM
); /* flush */
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
150 int ql_wait_reg_rdy(struct ql_adapter
*qdev
, u32 reg
, u32 bit
, u32 err_bit
)
153 int count
= UDELAY_COUNT
;
156 temp
= ql_read32(qdev
, reg
);
158 /* check for errors */
159 if (temp
& err_bit
) {
160 QPRINTK(qdev
, PROBE
, ALERT
,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
164 } else if (temp
& bit
)
166 udelay(UDELAY_DELAY
);
169 QPRINTK(qdev
, PROBE
, ALERT
,
170 "Timed out waiting for reg %x to come ready.\n", reg
);
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
177 static int ql_wait_cfg(struct ql_adapter
*qdev
, u32 bit
)
179 int count
= UDELAY_COUNT
;
183 temp
= ql_read32(qdev
, CFG
);
188 udelay(UDELAY_DELAY
);
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
198 int ql_write_cfg(struct ql_adapter
*qdev
, void *ptr
, int size
, u32 bit
,
208 (bit
& (CFG_LRQ
| CFG_LR
| CFG_LCQ
)) ? PCI_DMA_TODEVICE
:
211 map
= pci_map_single(qdev
->pdev
, ptr
, size
, direction
);
212 if (pci_dma_mapping_error(qdev
->pdev
, map
)) {
213 QPRINTK(qdev
, IFUP
, ERR
, "Couldn't map DMA area.\n");
217 status
= ql_wait_cfg(qdev
, bit
);
219 QPRINTK(qdev
, IFUP
, ERR
,
220 "Timed out waiting for CFG to come ready.\n");
224 status
= ql_sem_spinlock(qdev
, SEM_ICB_MASK
);
227 ql_write32(qdev
, ICB_L
, (u32
) map
);
228 ql_write32(qdev
, ICB_H
, (u32
) (map
>> 32));
229 ql_sem_unlock(qdev
, SEM_ICB_MASK
); /* does flush too */
231 mask
= CFG_Q_MASK
| (bit
<< 16);
232 value
= bit
| (q_id
<< CFG_Q_SHIFT
);
233 ql_write32(qdev
, CFG
, (mask
| value
));
236 * Wait for the bit to clear after signaling hw.
238 status
= ql_wait_cfg(qdev
, bit
);
240 pci_unmap_single(qdev
->pdev
, map
, size
, direction
);
244 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter
*qdev
, u32 type
, u16 index
,
252 case MAC_ADDR_TYPE_MULTI_MAC
:
253 case MAC_ADDR_TYPE_CAM_MAC
:
256 ql_wait_reg_rdy(qdev
,
257 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
260 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
261 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
262 MAC_ADDR_ADR
| MAC_ADDR_RS
| type
); /* type */
264 ql_wait_reg_rdy(qdev
,
265 MAC_ADDR_IDX
, MAC_ADDR_MR
, 0);
268 *value
++ = ql_read32(qdev
, MAC_ADDR_DATA
);
270 ql_wait_reg_rdy(qdev
,
271 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
274 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
275 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
276 MAC_ADDR_ADR
| MAC_ADDR_RS
| type
); /* type */
278 ql_wait_reg_rdy(qdev
,
279 MAC_ADDR_IDX
, MAC_ADDR_MR
, 0);
282 *value
++ = ql_read32(qdev
, MAC_ADDR_DATA
);
283 if (type
== MAC_ADDR_TYPE_CAM_MAC
) {
285 ql_wait_reg_rdy(qdev
,
286 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
289 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
290 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
291 MAC_ADDR_ADR
| MAC_ADDR_RS
| type
); /* type */
293 ql_wait_reg_rdy(qdev
, MAC_ADDR_IDX
,
297 *value
++ = ql_read32(qdev
, MAC_ADDR_DATA
);
301 case MAC_ADDR_TYPE_VLAN
:
302 case MAC_ADDR_TYPE_MULTI_FLTR
:
304 QPRINTK(qdev
, IFUP
, CRIT
,
305 "Address type %d not yet supported.\n", type
);
312 /* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
315 static int ql_set_mac_addr_reg(struct ql_adapter
*qdev
, u8
*addr
, u32 type
,
322 case MAC_ADDR_TYPE_MULTI_MAC
:
323 case MAC_ADDR_TYPE_CAM_MAC
:
326 u32 upper
= (addr
[0] << 8) | addr
[1];
328 (addr
[2] << 24) | (addr
[3] << 16) | (addr
[4] << 8) |
331 QPRINTK(qdev
, IFUP
, DEBUG
,
332 "Adding %s address %pM"
333 " at index %d in the CAM.\n",
335 MAC_ADDR_TYPE_MULTI_MAC
) ? "MULTICAST" :
336 "UNICAST"), addr
, index
);
339 ql_wait_reg_rdy(qdev
,
340 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
343 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
344 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
346 ql_write32(qdev
, MAC_ADDR_DATA
, lower
);
348 ql_wait_reg_rdy(qdev
,
349 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
352 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
353 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
355 ql_write32(qdev
, MAC_ADDR_DATA
, upper
);
357 ql_wait_reg_rdy(qdev
,
358 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
361 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
) | /* offset */
362 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
364 /* This field should also include the queue id
365 and possibly the function id. Right now we hardcode
366 the route field to NIC core.
368 if (type
== MAC_ADDR_TYPE_CAM_MAC
) {
369 cam_output
= (CAM_OUT_ROUTE_NIC
|
371 func
<< CAM_OUT_FUNC_SHIFT
) |
373 rss_ring_first_cq_id
<<
374 CAM_OUT_CQ_ID_SHIFT
));
376 cam_output
|= CAM_OUT_RV
;
377 /* route to NIC core */
378 ql_write32(qdev
, MAC_ADDR_DATA
, cam_output
);
382 case MAC_ADDR_TYPE_VLAN
:
384 u32 enable_bit
= *((u32
*) &addr
[0]);
385 /* For VLAN, the addr actually holds a bit that
386 * either enables or disables the vlan id we are
387 * addressing. It's either MAC_ADDR_E on or off.
388 * That's bit-27 we're talking about.
390 QPRINTK(qdev
, IFUP
, INFO
, "%s VLAN ID %d %s the CAM.\n",
391 (enable_bit
? "Adding" : "Removing"),
392 index
, (enable_bit
? "to" : "from"));
395 ql_wait_reg_rdy(qdev
,
396 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
399 ql_write32(qdev
, MAC_ADDR_IDX
, offset
| /* offset */
400 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
402 enable_bit
); /* enable/disable */
405 case MAC_ADDR_TYPE_MULTI_FLTR
:
407 QPRINTK(qdev
, IFUP
, CRIT
,
408 "Address type %d not yet supported.\n", type
);
415 /* Get a specific frame routing value from the CAM.
416 * Used for debug and reg dump.
418 int ql_get_routing_reg(struct ql_adapter
*qdev
, u32 index
, u32
*value
)
422 status
= ql_wait_reg_rdy(qdev
, RT_IDX
, RT_IDX_MW
, 0);
426 ql_write32(qdev
, RT_IDX
,
427 RT_IDX_TYPE_NICQ
| RT_IDX_RS
| (index
<< RT_IDX_IDX_SHIFT
));
428 status
= ql_wait_reg_rdy(qdev
, RT_IDX
, RT_IDX_MR
, 0);
431 *value
= ql_read32(qdev
, RT_DATA
);
436 /* The NIC function for this chip has 16 routing indexes. Each one can be used
437 * to route different frame types to various inbound queues. We send broadcast/
438 * multicast/error frames to the default queue for slow handling,
439 * and CAM hit/RSS frames to the fast handling queues.
441 static int ql_set_routing_reg(struct ql_adapter
*qdev
, u32 index
, u32 mask
,
444 int status
= -EINVAL
; /* Return error if no mask match. */
447 QPRINTK(qdev
, IFUP
, DEBUG
,
448 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
449 (enable
? "Adding" : "Removing"),
450 ((index
== RT_IDX_ALL_ERR_SLOT
) ? "MAC ERROR/ALL ERROR" : ""),
451 ((index
== RT_IDX_IP_CSUM_ERR_SLOT
) ? "IP CSUM ERROR" : ""),
453 RT_IDX_TCP_UDP_CSUM_ERR_SLOT
) ? "TCP/UDP CSUM ERROR" : ""),
454 ((index
== RT_IDX_BCAST_SLOT
) ? "BROADCAST" : ""),
455 ((index
== RT_IDX_MCAST_MATCH_SLOT
) ? "MULTICAST MATCH" : ""),
456 ((index
== RT_IDX_ALLMULTI_SLOT
) ? "ALL MULTICAST MATCH" : ""),
457 ((index
== RT_IDX_UNUSED6_SLOT
) ? "UNUSED6" : ""),
458 ((index
== RT_IDX_UNUSED7_SLOT
) ? "UNUSED7" : ""),
459 ((index
== RT_IDX_RSS_MATCH_SLOT
) ? "RSS ALL/IPV4 MATCH" : ""),
460 ((index
== RT_IDX_RSS_IPV6_SLOT
) ? "RSS IPV6" : ""),
461 ((index
== RT_IDX_RSS_TCP4_SLOT
) ? "RSS TCP4" : ""),
462 ((index
== RT_IDX_RSS_TCP6_SLOT
) ? "RSS TCP6" : ""),
463 ((index
== RT_IDX_CAM_HIT_SLOT
) ? "CAM HIT" : ""),
464 ((index
== RT_IDX_UNUSED013
) ? "UNUSED13" : ""),
465 ((index
== RT_IDX_UNUSED014
) ? "UNUSED14" : ""),
466 ((index
== RT_IDX_PROMISCUOUS_SLOT
) ? "PROMISCUOUS" : ""),
467 (enable
? "to" : "from"));
472 value
= RT_IDX_DST_CAM_Q
| /* dest */
473 RT_IDX_TYPE_NICQ
| /* type */
474 (RT_IDX_CAM_HIT_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
477 case RT_IDX_VALID
: /* Promiscuous Mode frames. */
479 value
= RT_IDX_DST_DFLT_Q
| /* dest */
480 RT_IDX_TYPE_NICQ
| /* type */
481 (RT_IDX_PROMISCUOUS_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
484 case RT_IDX_ERR
: /* Pass up MAC,IP,TCP/UDP error frames. */
486 value
= RT_IDX_DST_DFLT_Q
| /* dest */
487 RT_IDX_TYPE_NICQ
| /* type */
488 (RT_IDX_ALL_ERR_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
491 case RT_IDX_BCAST
: /* Pass up Broadcast frames to default Q. */
493 value
= RT_IDX_DST_DFLT_Q
| /* dest */
494 RT_IDX_TYPE_NICQ
| /* type */
495 (RT_IDX_BCAST_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
498 case RT_IDX_MCAST
: /* Pass up All Multicast frames. */
500 value
= RT_IDX_DST_CAM_Q
| /* dest */
501 RT_IDX_TYPE_NICQ
| /* type */
502 (RT_IDX_ALLMULTI_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
505 case RT_IDX_MCAST_MATCH
: /* Pass up matched Multicast frames. */
507 value
= RT_IDX_DST_CAM_Q
| /* dest */
508 RT_IDX_TYPE_NICQ
| /* type */
509 (RT_IDX_MCAST_MATCH_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
512 case RT_IDX_RSS_MATCH
: /* Pass up matched RSS frames. */
514 value
= RT_IDX_DST_RSS
| /* dest */
515 RT_IDX_TYPE_NICQ
| /* type */
516 (RT_IDX_RSS_MATCH_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
519 case 0: /* Clear the E-bit on an entry. */
521 value
= RT_IDX_DST_DFLT_Q
| /* dest */
522 RT_IDX_TYPE_NICQ
| /* type */
523 (index
<< RT_IDX_IDX_SHIFT
);/* index */
527 QPRINTK(qdev
, IFUP
, ERR
, "Mask type %d not yet supported.\n",
534 status
= ql_wait_reg_rdy(qdev
, RT_IDX
, RT_IDX_MW
, 0);
537 value
|= (enable
? RT_IDX_E
: 0);
538 ql_write32(qdev
, RT_IDX
, value
);
539 ql_write32(qdev
, RT_DATA
, enable
? mask
: 0);
545 static void ql_enable_interrupts(struct ql_adapter
*qdev
)
547 ql_write32(qdev
, INTR_EN
, (INTR_EN_EI
<< 16) | INTR_EN_EI
);
550 static void ql_disable_interrupts(struct ql_adapter
*qdev
)
552 ql_write32(qdev
, INTR_EN
, (INTR_EN_EI
<< 16));
555 /* If we're running with multiple MSI-X vectors then we enable on the fly.
556 * Otherwise, we may have multiple outstanding workers and don't want to
557 * enable until the last one finishes. In this case, the irq_cnt gets
558 * incremented everytime we queue a worker and decremented everytime
559 * a worker finishes. Once it hits zero we enable the interrupt.
561 u32
ql_enable_completion_interrupt(struct ql_adapter
*qdev
, u32 intr
)
564 unsigned long hw_flags
= 0;
565 struct intr_context
*ctx
= qdev
->intr_context
+ intr
;
567 if (likely(test_bit(QL_MSIX_ENABLED
, &qdev
->flags
) && intr
)) {
568 /* Always enable if we're MSIX multi interrupts and
569 * it's not the default (zeroeth) interrupt.
571 ql_write32(qdev
, INTR_EN
,
573 var
= ql_read32(qdev
, STS
);
577 spin_lock_irqsave(&qdev
->hw_lock
, hw_flags
);
578 if (atomic_dec_and_test(&ctx
->irq_cnt
)) {
579 ql_write32(qdev
, INTR_EN
,
581 var
= ql_read32(qdev
, STS
);
583 spin_unlock_irqrestore(&qdev
->hw_lock
, hw_flags
);
587 static u32
ql_disable_completion_interrupt(struct ql_adapter
*qdev
, u32 intr
)
590 struct intr_context
*ctx
;
592 /* HW disables for us if we're MSIX multi interrupts and
593 * it's not the default (zeroeth) interrupt.
595 if (likely(test_bit(QL_MSIX_ENABLED
, &qdev
->flags
) && intr
))
598 ctx
= qdev
->intr_context
+ intr
;
599 spin_lock(&qdev
->hw_lock
);
600 if (!atomic_read(&ctx
->irq_cnt
)) {
601 ql_write32(qdev
, INTR_EN
,
603 var
= ql_read32(qdev
, STS
);
605 atomic_inc(&ctx
->irq_cnt
);
606 spin_unlock(&qdev
->hw_lock
);
610 static void ql_enable_all_completion_interrupts(struct ql_adapter
*qdev
)
613 for (i
= 0; i
< qdev
->intr_count
; i
++) {
614 /* The enable call does a atomic_dec_and_test
615 * and enables only if the result is zero.
616 * So we precharge it here.
618 if (unlikely(!test_bit(QL_MSIX_ENABLED
, &qdev
->flags
) ||
620 atomic_set(&qdev
->intr_context
[i
].irq_cnt
, 1);
621 ql_enable_completion_interrupt(qdev
, i
);
626 static int ql_validate_flash(struct ql_adapter
*qdev
, u32 size
, const char *str
)
630 __le16
*flash
= (__le16
*)&qdev
->flash
;
632 status
= strncmp((char *)&qdev
->flash
, str
, 4);
634 QPRINTK(qdev
, IFUP
, ERR
, "Invalid flash signature.\n");
638 for (i
= 0; i
< size
; i
++)
639 csum
+= le16_to_cpu(*flash
++);
642 QPRINTK(qdev
, IFUP
, ERR
,
643 "Invalid flash checksum, csum = 0x%.04x.\n", csum
);
648 static int ql_read_flash_word(struct ql_adapter
*qdev
, int offset
, __le32
*data
)
651 /* wait for reg to come ready */
652 status
= ql_wait_reg_rdy(qdev
,
653 FLASH_ADDR
, FLASH_ADDR_RDY
, FLASH_ADDR_ERR
);
656 /* set up for reg read */
657 ql_write32(qdev
, FLASH_ADDR
, FLASH_ADDR_R
| offset
);
658 /* wait for reg to come ready */
659 status
= ql_wait_reg_rdy(qdev
,
660 FLASH_ADDR
, FLASH_ADDR_RDY
, FLASH_ADDR_ERR
);
663 /* This data is stored on flash as an array of
664 * __le32. Since ql_read32() returns cpu endian
665 * we need to swap it back.
667 *data
= cpu_to_le32(ql_read32(qdev
, FLASH_DATA
));
672 static int ql_get_8000_flash_params(struct ql_adapter
*qdev
)
676 __le32
*p
= (__le32
*)&qdev
->flash
;
679 /* Get flash offset for function and adjust
683 offset
= FUNC0_FLASH_OFFSET
/ sizeof(u32
);
685 offset
= FUNC1_FLASH_OFFSET
/ sizeof(u32
);
687 if (ql_sem_spinlock(qdev
, SEM_FLASH_MASK
))
690 size
= sizeof(struct flash_params_8000
) / sizeof(u32
);
691 for (i
= 0; i
< size
; i
++, p
++) {
692 status
= ql_read_flash_word(qdev
, i
+offset
, p
);
694 QPRINTK(qdev
, IFUP
, ERR
, "Error reading flash.\n");
699 status
= ql_validate_flash(qdev
,
700 sizeof(struct flash_params_8000
) / sizeof(u16
),
703 QPRINTK(qdev
, IFUP
, ERR
, "Invalid flash.\n");
708 if (!is_valid_ether_addr(qdev
->flash
.flash_params_8000
.mac_addr
)) {
709 QPRINTK(qdev
, IFUP
, ERR
, "Invalid MAC address.\n");
714 memcpy(qdev
->ndev
->dev_addr
,
715 qdev
->flash
.flash_params_8000
.mac_addr
,
716 qdev
->ndev
->addr_len
);
719 ql_sem_unlock(qdev
, SEM_FLASH_MASK
);
723 static int ql_get_8012_flash_params(struct ql_adapter
*qdev
)
727 __le32
*p
= (__le32
*)&qdev
->flash
;
729 u32 size
= sizeof(struct flash_params_8012
) / sizeof(u32
);
731 /* Second function's parameters follow the first
737 if (ql_sem_spinlock(qdev
, SEM_FLASH_MASK
))
740 for (i
= 0; i
< size
; i
++, p
++) {
741 status
= ql_read_flash_word(qdev
, i
+offset
, p
);
743 QPRINTK(qdev
, IFUP
, ERR
, "Error reading flash.\n");
749 status
= ql_validate_flash(qdev
,
750 sizeof(struct flash_params_8012
) / sizeof(u16
),
753 QPRINTK(qdev
, IFUP
, ERR
, "Invalid flash.\n");
758 if (!is_valid_ether_addr(qdev
->flash
.flash_params_8012
.mac_addr
)) {
763 memcpy(qdev
->ndev
->dev_addr
,
764 qdev
->flash
.flash_params_8012
.mac_addr
,
765 qdev
->ndev
->addr_len
);
768 ql_sem_unlock(qdev
, SEM_FLASH_MASK
);
772 /* xgmac register are located behind the xgmac_addr and xgmac_data
773 * register pair. Each read/write requires us to wait for the ready
774 * bit before reading/writing the data.
776 static int ql_write_xgmac_reg(struct ql_adapter
*qdev
, u32 reg
, u32 data
)
779 /* wait for reg to come ready */
780 status
= ql_wait_reg_rdy(qdev
,
781 XGMAC_ADDR
, XGMAC_ADDR_RDY
, XGMAC_ADDR_XME
);
784 /* write the data to the data reg */
785 ql_write32(qdev
, XGMAC_DATA
, data
);
786 /* trigger the write */
787 ql_write32(qdev
, XGMAC_ADDR
, reg
);
791 /* xgmac register are located behind the xgmac_addr and xgmac_data
792 * register pair. Each read/write requires us to wait for the ready
793 * bit before reading/writing the data.
795 int ql_read_xgmac_reg(struct ql_adapter
*qdev
, u32 reg
, u32
*data
)
798 /* wait for reg to come ready */
799 status
= ql_wait_reg_rdy(qdev
,
800 XGMAC_ADDR
, XGMAC_ADDR_RDY
, XGMAC_ADDR_XME
);
803 /* set up for reg read */
804 ql_write32(qdev
, XGMAC_ADDR
, reg
| XGMAC_ADDR_R
);
805 /* wait for reg to come ready */
806 status
= ql_wait_reg_rdy(qdev
,
807 XGMAC_ADDR
, XGMAC_ADDR_RDY
, XGMAC_ADDR_XME
);
811 *data
= ql_read32(qdev
, XGMAC_DATA
);
816 /* This is used for reading the 64-bit statistics regs. */
817 int ql_read_xgmac_reg64(struct ql_adapter
*qdev
, u32 reg
, u64
*data
)
823 status
= ql_read_xgmac_reg(qdev
, reg
, &lo
);
827 status
= ql_read_xgmac_reg(qdev
, reg
+ 4, &hi
);
831 *data
= (u64
) lo
| ((u64
) hi
<< 32);
837 static int ql_8000_port_initialize(struct ql_adapter
*qdev
)
840 status
= ql_mb_get_fw_state(qdev
);
843 /* Wake up a worker to get/set the TX/RX frame sizes. */
844 queue_delayed_work(qdev
->workqueue
, &qdev
->mpi_port_cfg_work
, 0);
849 /* Take the MAC Core out of reset.
850 * Enable statistics counting.
851 * Take the transmitter/receiver out of reset.
852 * This functionality may be done in the MPI firmware at a
855 static int ql_8012_port_initialize(struct ql_adapter
*qdev
)
860 if (ql_sem_trylock(qdev
, qdev
->xg_sem_mask
)) {
861 /* Another function has the semaphore, so
862 * wait for the port init bit to come ready.
864 QPRINTK(qdev
, LINK
, INFO
,
865 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
866 status
= ql_wait_reg_rdy(qdev
, STS
, qdev
->port_init
, 0);
868 QPRINTK(qdev
, LINK
, CRIT
,
869 "Port initialize timed out.\n");
874 QPRINTK(qdev
, LINK
, INFO
, "Got xgmac semaphore!.\n");
875 /* Set the core reset. */
876 status
= ql_read_xgmac_reg(qdev
, GLOBAL_CFG
, &data
);
879 data
|= GLOBAL_CFG_RESET
;
880 status
= ql_write_xgmac_reg(qdev
, GLOBAL_CFG
, data
);
884 /* Clear the core reset and turn on jumbo for receiver. */
885 data
&= ~GLOBAL_CFG_RESET
; /* Clear core reset. */
886 data
|= GLOBAL_CFG_JUMBO
; /* Turn on jumbo. */
887 data
|= GLOBAL_CFG_TX_STAT_EN
;
888 data
|= GLOBAL_CFG_RX_STAT_EN
;
889 status
= ql_write_xgmac_reg(qdev
, GLOBAL_CFG
, data
);
893 /* Enable transmitter, and clear it's reset. */
894 status
= ql_read_xgmac_reg(qdev
, TX_CFG
, &data
);
897 data
&= ~TX_CFG_RESET
; /* Clear the TX MAC reset. */
898 data
|= TX_CFG_EN
; /* Enable the transmitter. */
899 status
= ql_write_xgmac_reg(qdev
, TX_CFG
, data
);
903 /* Enable receiver and clear it's reset. */
904 status
= ql_read_xgmac_reg(qdev
, RX_CFG
, &data
);
907 data
&= ~RX_CFG_RESET
; /* Clear the RX MAC reset. */
908 data
|= RX_CFG_EN
; /* Enable the receiver. */
909 status
= ql_write_xgmac_reg(qdev
, RX_CFG
, data
);
915 ql_write_xgmac_reg(qdev
, MAC_TX_PARAMS
, MAC_TX_PARAMS_JUMBO
| (0x2580 << 16));
919 ql_write_xgmac_reg(qdev
, MAC_RX_PARAMS
, 0x2580);
923 /* Signal to the world that the port is enabled. */
924 ql_write32(qdev
, STS
, ((qdev
->port_init
<< 16) | qdev
->port_init
));
926 ql_sem_unlock(qdev
, qdev
->xg_sem_mask
);
930 /* Get the next large buffer. */
931 static struct bq_desc
*ql_get_curr_lbuf(struct rx_ring
*rx_ring
)
933 struct bq_desc
*lbq_desc
= &rx_ring
->lbq
[rx_ring
->lbq_curr_idx
];
934 rx_ring
->lbq_curr_idx
++;
935 if (rx_ring
->lbq_curr_idx
== rx_ring
->lbq_len
)
936 rx_ring
->lbq_curr_idx
= 0;
937 rx_ring
->lbq_free_cnt
++;
941 /* Get the next small buffer. */
942 static struct bq_desc
*ql_get_curr_sbuf(struct rx_ring
*rx_ring
)
944 struct bq_desc
*sbq_desc
= &rx_ring
->sbq
[rx_ring
->sbq_curr_idx
];
945 rx_ring
->sbq_curr_idx
++;
946 if (rx_ring
->sbq_curr_idx
== rx_ring
->sbq_len
)
947 rx_ring
->sbq_curr_idx
= 0;
948 rx_ring
->sbq_free_cnt
++;
952 /* Update an rx ring index. */
953 static void ql_update_cq(struct rx_ring
*rx_ring
)
955 rx_ring
->cnsmr_idx
++;
956 rx_ring
->curr_entry
++;
957 if (unlikely(rx_ring
->cnsmr_idx
== rx_ring
->cq_len
)) {
958 rx_ring
->cnsmr_idx
= 0;
959 rx_ring
->curr_entry
= rx_ring
->cq_base
;
963 static void ql_write_cq_idx(struct rx_ring
*rx_ring
)
965 ql_write_db_reg(rx_ring
->cnsmr_idx
, rx_ring
->cnsmr_idx_db_reg
);
968 /* Process (refill) a large buffer queue. */
969 static void ql_update_lbq(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
971 u32 clean_idx
= rx_ring
->lbq_clean_idx
;
972 u32 start_idx
= clean_idx
;
973 struct bq_desc
*lbq_desc
;
977 while (rx_ring
->lbq_free_cnt
> 16) {
978 for (i
= 0; i
< 16; i
++) {
979 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
980 "lbq: try cleaning clean_idx = %d.\n",
982 lbq_desc
= &rx_ring
->lbq
[clean_idx
];
983 if (lbq_desc
->p
.lbq_page
== NULL
) {
984 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
985 "lbq: getting new page for index %d.\n",
987 lbq_desc
->p
.lbq_page
= alloc_page(GFP_ATOMIC
);
988 if (lbq_desc
->p
.lbq_page
== NULL
) {
989 rx_ring
->lbq_clean_idx
= clean_idx
;
990 QPRINTK(qdev
, RX_STATUS
, ERR
,
991 "Couldn't get a page.\n");
994 map
= pci_map_page(qdev
->pdev
,
995 lbq_desc
->p
.lbq_page
,
998 if (pci_dma_mapping_error(qdev
->pdev
, map
)) {
999 rx_ring
->lbq_clean_idx
= clean_idx
;
1000 put_page(lbq_desc
->p
.lbq_page
);
1001 lbq_desc
->p
.lbq_page
= NULL
;
1002 QPRINTK(qdev
, RX_STATUS
, ERR
,
1003 "PCI mapping failed.\n");
1006 pci_unmap_addr_set(lbq_desc
, mapaddr
, map
);
1007 pci_unmap_len_set(lbq_desc
, maplen
, PAGE_SIZE
);
1008 *lbq_desc
->addr
= cpu_to_le64(map
);
1011 if (clean_idx
== rx_ring
->lbq_len
)
1015 rx_ring
->lbq_clean_idx
= clean_idx
;
1016 rx_ring
->lbq_prod_idx
+= 16;
1017 if (rx_ring
->lbq_prod_idx
== rx_ring
->lbq_len
)
1018 rx_ring
->lbq_prod_idx
= 0;
1019 rx_ring
->lbq_free_cnt
-= 16;
1022 if (start_idx
!= clean_idx
) {
1023 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1024 "lbq: updating prod idx = %d.\n",
1025 rx_ring
->lbq_prod_idx
);
1026 ql_write_db_reg(rx_ring
->lbq_prod_idx
,
1027 rx_ring
->lbq_prod_idx_db_reg
);
1031 /* Process (refill) a small buffer queue. */
1032 static void ql_update_sbq(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
1034 u32 clean_idx
= rx_ring
->sbq_clean_idx
;
1035 u32 start_idx
= clean_idx
;
1036 struct bq_desc
*sbq_desc
;
1040 while (rx_ring
->sbq_free_cnt
> 16) {
1041 for (i
= 0; i
< 16; i
++) {
1042 sbq_desc
= &rx_ring
->sbq
[clean_idx
];
1043 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1044 "sbq: try cleaning clean_idx = %d.\n",
1046 if (sbq_desc
->p
.skb
== NULL
) {
1047 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1048 "sbq: getting new skb for index %d.\n",
1051 netdev_alloc_skb(qdev
->ndev
,
1052 rx_ring
->sbq_buf_size
);
1053 if (sbq_desc
->p
.skb
== NULL
) {
1054 QPRINTK(qdev
, PROBE
, ERR
,
1055 "Couldn't get an skb.\n");
1056 rx_ring
->sbq_clean_idx
= clean_idx
;
1059 skb_reserve(sbq_desc
->p
.skb
, QLGE_SB_PAD
);
1060 map
= pci_map_single(qdev
->pdev
,
1061 sbq_desc
->p
.skb
->data
,
1062 rx_ring
->sbq_buf_size
/
1063 2, PCI_DMA_FROMDEVICE
);
1064 if (pci_dma_mapping_error(qdev
->pdev
, map
)) {
1065 QPRINTK(qdev
, IFUP
, ERR
, "PCI mapping failed.\n");
1066 rx_ring
->sbq_clean_idx
= clean_idx
;
1067 dev_kfree_skb_any(sbq_desc
->p
.skb
);
1068 sbq_desc
->p
.skb
= NULL
;
1071 pci_unmap_addr_set(sbq_desc
, mapaddr
, map
);
1072 pci_unmap_len_set(sbq_desc
, maplen
,
1073 rx_ring
->sbq_buf_size
/ 2);
1074 *sbq_desc
->addr
= cpu_to_le64(map
);
1078 if (clean_idx
== rx_ring
->sbq_len
)
1081 rx_ring
->sbq_clean_idx
= clean_idx
;
1082 rx_ring
->sbq_prod_idx
+= 16;
1083 if (rx_ring
->sbq_prod_idx
== rx_ring
->sbq_len
)
1084 rx_ring
->sbq_prod_idx
= 0;
1085 rx_ring
->sbq_free_cnt
-= 16;
1088 if (start_idx
!= clean_idx
) {
1089 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1090 "sbq: updating prod idx = %d.\n",
1091 rx_ring
->sbq_prod_idx
);
1092 ql_write_db_reg(rx_ring
->sbq_prod_idx
,
1093 rx_ring
->sbq_prod_idx_db_reg
);
1097 static void ql_update_buffer_queues(struct ql_adapter
*qdev
,
1098 struct rx_ring
*rx_ring
)
1100 ql_update_sbq(qdev
, rx_ring
);
1101 ql_update_lbq(qdev
, rx_ring
);
1104 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1105 * fails at some stage, or from the interrupt when a tx completes.
1107 static void ql_unmap_send(struct ql_adapter
*qdev
,
1108 struct tx_ring_desc
*tx_ring_desc
, int mapped
)
1111 for (i
= 0; i
< mapped
; i
++) {
1112 if (i
== 0 || (i
== 7 && mapped
> 7)) {
1114 * Unmap the skb->data area, or the
1115 * external sglist (AKA the Outbound
1116 * Address List (OAL)).
1117 * If its the zeroeth element, then it's
1118 * the skb->data area. If it's the 7th
1119 * element and there is more than 6 frags,
1123 QPRINTK(qdev
, TX_DONE
, DEBUG
,
1124 "unmapping OAL area.\n");
1126 pci_unmap_single(qdev
->pdev
,
1127 pci_unmap_addr(&tx_ring_desc
->map
[i
],
1129 pci_unmap_len(&tx_ring_desc
->map
[i
],
1133 QPRINTK(qdev
, TX_DONE
, DEBUG
, "unmapping frag %d.\n",
1135 pci_unmap_page(qdev
->pdev
,
1136 pci_unmap_addr(&tx_ring_desc
->map
[i
],
1138 pci_unmap_len(&tx_ring_desc
->map
[i
],
1139 maplen
), PCI_DMA_TODEVICE
);
1145 /* Map the buffers for this transmit. This will return
1146 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1148 static int ql_map_send(struct ql_adapter
*qdev
,
1149 struct ob_mac_iocb_req
*mac_iocb_ptr
,
1150 struct sk_buff
*skb
, struct tx_ring_desc
*tx_ring_desc
)
1152 int len
= skb_headlen(skb
);
1154 int frag_idx
, err
, map_idx
= 0;
1155 struct tx_buf_desc
*tbd
= mac_iocb_ptr
->tbd
;
1156 int frag_cnt
= skb_shinfo(skb
)->nr_frags
;
1159 QPRINTK(qdev
, TX_QUEUED
, DEBUG
, "frag_cnt = %d.\n", frag_cnt
);
1162 * Map the skb buffer first.
1164 map
= pci_map_single(qdev
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
1166 err
= pci_dma_mapping_error(qdev
->pdev
, map
);
1168 QPRINTK(qdev
, TX_QUEUED
, ERR
,
1169 "PCI mapping failed with error: %d\n", err
);
1171 return NETDEV_TX_BUSY
;
1174 tbd
->len
= cpu_to_le32(len
);
1175 tbd
->addr
= cpu_to_le64(map
);
1176 pci_unmap_addr_set(&tx_ring_desc
->map
[map_idx
], mapaddr
, map
);
1177 pci_unmap_len_set(&tx_ring_desc
->map
[map_idx
], maplen
, len
);
1181 * This loop fills the remainder of the 8 address descriptors
1182 * in the IOCB. If there are more than 7 fragments, then the
1183 * eighth address desc will point to an external list (OAL).
1184 * When this happens, the remainder of the frags will be stored
1187 for (frag_idx
= 0; frag_idx
< frag_cnt
; frag_idx
++, map_idx
++) {
1188 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[frag_idx
];
1190 if (frag_idx
== 6 && frag_cnt
> 7) {
1191 /* Let's tack on an sglist.
1192 * Our control block will now
1194 * iocb->seg[0] = skb->data
1195 * iocb->seg[1] = frag[0]
1196 * iocb->seg[2] = frag[1]
1197 * iocb->seg[3] = frag[2]
1198 * iocb->seg[4] = frag[3]
1199 * iocb->seg[5] = frag[4]
1200 * iocb->seg[6] = frag[5]
1201 * iocb->seg[7] = ptr to OAL (external sglist)
1202 * oal->seg[0] = frag[6]
1203 * oal->seg[1] = frag[7]
1204 * oal->seg[2] = frag[8]
1205 * oal->seg[3] = frag[9]
1206 * oal->seg[4] = frag[10]
1209 /* Tack on the OAL in the eighth segment of IOCB. */
1210 map
= pci_map_single(qdev
->pdev
, &tx_ring_desc
->oal
,
1213 err
= pci_dma_mapping_error(qdev
->pdev
, map
);
1215 QPRINTK(qdev
, TX_QUEUED
, ERR
,
1216 "PCI mapping outbound address list with error: %d\n",
1221 tbd
->addr
= cpu_to_le64(map
);
1223 * The length is the number of fragments
1224 * that remain to be mapped times the length
1225 * of our sglist (OAL).
1228 cpu_to_le32((sizeof(struct tx_buf_desc
) *
1229 (frag_cnt
- frag_idx
)) | TX_DESC_C
);
1230 pci_unmap_addr_set(&tx_ring_desc
->map
[map_idx
], mapaddr
,
1232 pci_unmap_len_set(&tx_ring_desc
->map
[map_idx
], maplen
,
1233 sizeof(struct oal
));
1234 tbd
= (struct tx_buf_desc
*)&tx_ring_desc
->oal
;
1239 pci_map_page(qdev
->pdev
, frag
->page
,
1240 frag
->page_offset
, frag
->size
,
1243 err
= pci_dma_mapping_error(qdev
->pdev
, map
);
1245 QPRINTK(qdev
, TX_QUEUED
, ERR
,
1246 "PCI mapping frags failed with error: %d.\n",
1251 tbd
->addr
= cpu_to_le64(map
);
1252 tbd
->len
= cpu_to_le32(frag
->size
);
1253 pci_unmap_addr_set(&tx_ring_desc
->map
[map_idx
], mapaddr
, map
);
1254 pci_unmap_len_set(&tx_ring_desc
->map
[map_idx
], maplen
,
1258 /* Save the number of segments we've mapped. */
1259 tx_ring_desc
->map_cnt
= map_idx
;
1260 /* Terminate the last segment. */
1261 tbd
->len
= cpu_to_le32(le32_to_cpu(tbd
->len
) | TX_DESC_E
);
1262 return NETDEV_TX_OK
;
1266 * If the first frag mapping failed, then i will be zero.
1267 * This causes the unmap of the skb->data area. Otherwise
1268 * we pass in the number of frags that mapped successfully
1269 * so they can be umapped.
1271 ql_unmap_send(qdev
, tx_ring_desc
, map_idx
);
1272 return NETDEV_TX_BUSY
;
1275 static void ql_realign_skb(struct sk_buff
*skb
, int len
)
1277 void *temp_addr
= skb
->data
;
1279 /* Undo the skb_reserve(skb,32) we did before
1280 * giving to hardware, and realign data on
1281 * a 2-byte boundary.
1283 skb
->data
-= QLGE_SB_PAD
- NET_IP_ALIGN
;
1284 skb
->tail
-= QLGE_SB_PAD
- NET_IP_ALIGN
;
1285 skb_copy_to_linear_data(skb
, temp_addr
,
1290 * This function builds an skb for the given inbound
1291 * completion. It will be rewritten for readability in the near
1292 * future, but for not it works well.
1294 static struct sk_buff
*ql_build_rx_skb(struct ql_adapter
*qdev
,
1295 struct rx_ring
*rx_ring
,
1296 struct ib_mac_iocb_rsp
*ib_mac_rsp
)
1298 struct bq_desc
*lbq_desc
;
1299 struct bq_desc
*sbq_desc
;
1300 struct sk_buff
*skb
= NULL
;
1301 u32 length
= le32_to_cpu(ib_mac_rsp
->data_len
);
1302 u32 hdr_len
= le32_to_cpu(ib_mac_rsp
->hdr_len
);
1305 * Handle the header buffer if present.
1307 if (ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HV
&&
1308 ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HS
) {
1309 QPRINTK(qdev
, RX_STATUS
, DEBUG
, "Header of %d bytes in small buffer.\n", hdr_len
);
1311 * Headers fit nicely into a small buffer.
1313 sbq_desc
= ql_get_curr_sbuf(rx_ring
);
1314 pci_unmap_single(qdev
->pdev
,
1315 pci_unmap_addr(sbq_desc
, mapaddr
),
1316 pci_unmap_len(sbq_desc
, maplen
),
1317 PCI_DMA_FROMDEVICE
);
1318 skb
= sbq_desc
->p
.skb
;
1319 ql_realign_skb(skb
, hdr_len
);
1320 skb_put(skb
, hdr_len
);
1321 sbq_desc
->p
.skb
= NULL
;
1325 * Handle the data buffer(s).
1327 if (unlikely(!length
)) { /* Is there data too? */
1328 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1329 "No Data buffer in this packet.\n");
1333 if (ib_mac_rsp
->flags3
& IB_MAC_IOCB_RSP_DS
) {
1334 if (ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HS
) {
1335 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1336 "Headers in small, data of %d bytes in small, combine them.\n", length
);
1338 * Data is less than small buffer size so it's
1339 * stuffed in a small buffer.
1340 * For this case we append the data
1341 * from the "data" small buffer to the "header" small
1344 sbq_desc
= ql_get_curr_sbuf(rx_ring
);
1345 pci_dma_sync_single_for_cpu(qdev
->pdev
,
1347 (sbq_desc
, mapaddr
),
1350 PCI_DMA_FROMDEVICE
);
1351 memcpy(skb_put(skb
, length
),
1352 sbq_desc
->p
.skb
->data
, length
);
1353 pci_dma_sync_single_for_device(qdev
->pdev
,
1360 PCI_DMA_FROMDEVICE
);
1362 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1363 "%d bytes in a single small buffer.\n", length
);
1364 sbq_desc
= ql_get_curr_sbuf(rx_ring
);
1365 skb
= sbq_desc
->p
.skb
;
1366 ql_realign_skb(skb
, length
);
1367 skb_put(skb
, length
);
1368 pci_unmap_single(qdev
->pdev
,
1369 pci_unmap_addr(sbq_desc
,
1371 pci_unmap_len(sbq_desc
,
1373 PCI_DMA_FROMDEVICE
);
1374 sbq_desc
->p
.skb
= NULL
;
1376 } else if (ib_mac_rsp
->flags3
& IB_MAC_IOCB_RSP_DL
) {
1377 if (ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HS
) {
1378 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1379 "Header in small, %d bytes in large. Chain large to small!\n", length
);
1381 * The data is in a single large buffer. We
1382 * chain it to the header buffer's skb and let
1385 lbq_desc
= ql_get_curr_lbuf(rx_ring
);
1386 pci_unmap_page(qdev
->pdev
,
1387 pci_unmap_addr(lbq_desc
,
1389 pci_unmap_len(lbq_desc
, maplen
),
1390 PCI_DMA_FROMDEVICE
);
1391 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1392 "Chaining page to skb.\n");
1393 skb_fill_page_desc(skb
, 0, lbq_desc
->p
.lbq_page
,
1396 skb
->data_len
+= length
;
1397 skb
->truesize
+= length
;
1398 lbq_desc
->p
.lbq_page
= NULL
;
1401 * The headers and data are in a single large buffer. We
1402 * copy it to a new skb and let it go. This can happen with
1403 * jumbo mtu on a non-TCP/UDP frame.
1405 lbq_desc
= ql_get_curr_lbuf(rx_ring
);
1406 skb
= netdev_alloc_skb(qdev
->ndev
, length
);
1408 QPRINTK(qdev
, PROBE
, DEBUG
,
1409 "No skb available, drop the packet.\n");
1412 pci_unmap_page(qdev
->pdev
,
1413 pci_unmap_addr(lbq_desc
,
1415 pci_unmap_len(lbq_desc
, maplen
),
1416 PCI_DMA_FROMDEVICE
);
1417 skb_reserve(skb
, NET_IP_ALIGN
);
1418 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1419 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length
);
1420 skb_fill_page_desc(skb
, 0, lbq_desc
->p
.lbq_page
,
1423 skb
->data_len
+= length
;
1424 skb
->truesize
+= length
;
1426 lbq_desc
->p
.lbq_page
= NULL
;
1427 __pskb_pull_tail(skb
,
1428 (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_V
) ?
1429 VLAN_ETH_HLEN
: ETH_HLEN
);
1433 * The data is in a chain of large buffers
1434 * pointed to by a small buffer. We loop
1435 * thru and chain them to the our small header
1437 * frags: There are 18 max frags and our small
1438 * buffer will hold 32 of them. The thing is,
1439 * we'll use 3 max for our 9000 byte jumbo
1440 * frames. If the MTU goes up we could
1441 * eventually be in trouble.
1443 int size
, offset
, i
= 0;
1444 __le64
*bq
, bq_array
[8];
1445 sbq_desc
= ql_get_curr_sbuf(rx_ring
);
1446 pci_unmap_single(qdev
->pdev
,
1447 pci_unmap_addr(sbq_desc
, mapaddr
),
1448 pci_unmap_len(sbq_desc
, maplen
),
1449 PCI_DMA_FROMDEVICE
);
1450 if (!(ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HS
)) {
1452 * This is an non TCP/UDP IP frame, so
1453 * the headers aren't split into a small
1454 * buffer. We have to use the small buffer
1455 * that contains our sg list as our skb to
1456 * send upstairs. Copy the sg list here to
1457 * a local buffer and use it to find the
1460 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1461 "%d bytes of headers & data in chain of large.\n", length
);
1462 skb
= sbq_desc
->p
.skb
;
1464 memcpy(bq
, skb
->data
, sizeof(bq_array
));
1465 sbq_desc
->p
.skb
= NULL
;
1466 skb_reserve(skb
, NET_IP_ALIGN
);
1468 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1469 "Headers in small, %d bytes of data in chain of large.\n", length
);
1470 bq
= (__le64
*)sbq_desc
->p
.skb
->data
;
1472 while (length
> 0) {
1473 lbq_desc
= ql_get_curr_lbuf(rx_ring
);
1474 pci_unmap_page(qdev
->pdev
,
1475 pci_unmap_addr(lbq_desc
,
1477 pci_unmap_len(lbq_desc
,
1479 PCI_DMA_FROMDEVICE
);
1480 size
= (length
< PAGE_SIZE
) ? length
: PAGE_SIZE
;
1483 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1484 "Adding page %d to skb for %d bytes.\n",
1486 skb_fill_page_desc(skb
, i
, lbq_desc
->p
.lbq_page
,
1489 skb
->data_len
+= size
;
1490 skb
->truesize
+= size
;
1492 lbq_desc
->p
.lbq_page
= NULL
;
1496 __pskb_pull_tail(skb
, (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_V
) ?
1497 VLAN_ETH_HLEN
: ETH_HLEN
);
1502 /* Process an inbound completion from an rx ring. */
1503 static void ql_process_mac_rx_intr(struct ql_adapter
*qdev
,
1504 struct rx_ring
*rx_ring
,
1505 struct ib_mac_iocb_rsp
*ib_mac_rsp
)
1507 struct net_device
*ndev
= qdev
->ndev
;
1508 struct sk_buff
*skb
= NULL
;
1509 u16 vlan_id
= (le16_to_cpu(ib_mac_rsp
->vlan_id
) &
1510 IB_MAC_IOCB_RSP_VLAN_MASK
)
1512 QL_DUMP_IB_MAC_RSP(ib_mac_rsp
);
1514 skb
= ql_build_rx_skb(qdev
, rx_ring
, ib_mac_rsp
);
1515 if (unlikely(!skb
)) {
1516 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1517 "No skb available, drop packet.\n");
1521 prefetch(skb
->data
);
1523 if (ib_mac_rsp
->flags1
& IB_MAC_IOCB_RSP_M_MASK
) {
1524 QPRINTK(qdev
, RX_STATUS
, DEBUG
, "%s%s%s Multicast.\n",
1525 (ib_mac_rsp
->flags1
& IB_MAC_IOCB_RSP_M_MASK
) ==
1526 IB_MAC_IOCB_RSP_M_HASH
? "Hash" : "",
1527 (ib_mac_rsp
->flags1
& IB_MAC_IOCB_RSP_M_MASK
) ==
1528 IB_MAC_IOCB_RSP_M_REG
? "Registered" : "",
1529 (ib_mac_rsp
->flags1
& IB_MAC_IOCB_RSP_M_MASK
) ==
1530 IB_MAC_IOCB_RSP_M_PROM
? "Promiscuous" : "");
1532 if (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_P
) {
1533 QPRINTK(qdev
, RX_STATUS
, DEBUG
, "Promiscuous Packet.\n");
1536 skb
->protocol
= eth_type_trans(skb
, ndev
);
1537 skb
->ip_summed
= CHECKSUM_NONE
;
1539 /* If rx checksum is on, and there are no
1540 * csum or frame errors.
1542 if (qdev
->rx_csum
&&
1543 !(ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_ERR_MASK
) &&
1544 !(ib_mac_rsp
->flags1
& IB_MAC_CSUM_ERR_MASK
)) {
1546 if (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_T
) {
1547 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1548 "TCP checksum done!\n");
1549 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1550 } else if ((ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_U
) &&
1551 (ib_mac_rsp
->flags3
& IB_MAC_IOCB_RSP_V4
)) {
1552 /* Unfragmented ipv4 UDP frame. */
1553 struct iphdr
*iph
= (struct iphdr
*) skb
->data
;
1554 if (!(iph
->frag_off
&
1555 cpu_to_be16(IP_MF
|IP_OFFSET
))) {
1556 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1557 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1558 "TCP checksum done!\n");
1563 qdev
->stats
.rx_packets
++;
1564 qdev
->stats
.rx_bytes
+= skb
->len
;
1565 skb_record_rx_queue(skb
,
1566 rx_ring
->cq_id
- qdev
->rss_ring_first_cq_id
);
1567 if (skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
1569 (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_V
) &&
1571 vlan_gro_receive(&rx_ring
->napi
, qdev
->vlgrp
,
1574 napi_gro_receive(&rx_ring
->napi
, skb
);
1577 (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_V
) &&
1579 vlan_hwaccel_receive_skb(skb
, qdev
->vlgrp
, vlan_id
);
1581 netif_receive_skb(skb
);
1585 /* Process an outbound completion from an rx ring. */
1586 static void ql_process_mac_tx_intr(struct ql_adapter
*qdev
,
1587 struct ob_mac_iocb_rsp
*mac_rsp
)
1589 struct tx_ring
*tx_ring
;
1590 struct tx_ring_desc
*tx_ring_desc
;
1592 QL_DUMP_OB_MAC_RSP(mac_rsp
);
1593 tx_ring
= &qdev
->tx_ring
[mac_rsp
->txq_idx
];
1594 tx_ring_desc
= &tx_ring
->q
[mac_rsp
->tid
];
1595 ql_unmap_send(qdev
, tx_ring_desc
, tx_ring_desc
->map_cnt
);
1596 qdev
->stats
.tx_bytes
+= tx_ring_desc
->map_cnt
;
1597 qdev
->stats
.tx_packets
++;
1598 dev_kfree_skb(tx_ring_desc
->skb
);
1599 tx_ring_desc
->skb
= NULL
;
1601 if (unlikely(mac_rsp
->flags1
& (OB_MAC_IOCB_RSP_E
|
1604 OB_MAC_IOCB_RSP_P
| OB_MAC_IOCB_RSP_B
))) {
1605 if (mac_rsp
->flags1
& OB_MAC_IOCB_RSP_E
) {
1606 QPRINTK(qdev
, TX_DONE
, WARNING
,
1607 "Total descriptor length did not match transfer length.\n");
1609 if (mac_rsp
->flags1
& OB_MAC_IOCB_RSP_S
) {
1610 QPRINTK(qdev
, TX_DONE
, WARNING
,
1611 "Frame too short to be legal, not sent.\n");
1613 if (mac_rsp
->flags1
& OB_MAC_IOCB_RSP_L
) {
1614 QPRINTK(qdev
, TX_DONE
, WARNING
,
1615 "Frame too long, but sent anyway.\n");
1617 if (mac_rsp
->flags1
& OB_MAC_IOCB_RSP_B
) {
1618 QPRINTK(qdev
, TX_DONE
, WARNING
,
1619 "PCI backplane error. Frame not sent.\n");
1622 atomic_inc(&tx_ring
->tx_count
);
1625 /* Fire up a handler to reset the MPI processor. */
1626 void ql_queue_fw_error(struct ql_adapter
*qdev
)
1628 netif_carrier_off(qdev
->ndev
);
1629 queue_delayed_work(qdev
->workqueue
, &qdev
->mpi_reset_work
, 0);
1632 void ql_queue_asic_error(struct ql_adapter
*qdev
)
1634 netif_carrier_off(qdev
->ndev
);
1635 ql_disable_interrupts(qdev
);
1636 /* Clear adapter up bit to signal the recovery
1637 * process that it shouldn't kill the reset worker
1640 clear_bit(QL_ADAPTER_UP
, &qdev
->flags
);
1641 queue_delayed_work(qdev
->workqueue
, &qdev
->asic_reset_work
, 0);
1644 static void ql_process_chip_ae_intr(struct ql_adapter
*qdev
,
1645 struct ib_ae_iocb_rsp
*ib_ae_rsp
)
1647 switch (ib_ae_rsp
->event
) {
1648 case MGMT_ERR_EVENT
:
1649 QPRINTK(qdev
, RX_ERR
, ERR
,
1650 "Management Processor Fatal Error.\n");
1651 ql_queue_fw_error(qdev
);
1654 case CAM_LOOKUP_ERR_EVENT
:
1655 QPRINTK(qdev
, LINK
, ERR
,
1656 "Multiple CAM hits lookup occurred.\n");
1657 QPRINTK(qdev
, DRV
, ERR
, "This event shouldn't occur.\n");
1658 ql_queue_asic_error(qdev
);
1661 case SOFT_ECC_ERROR_EVENT
:
1662 QPRINTK(qdev
, RX_ERR
, ERR
, "Soft ECC error detected.\n");
1663 ql_queue_asic_error(qdev
);
1666 case PCI_ERR_ANON_BUF_RD
:
1667 QPRINTK(qdev
, RX_ERR
, ERR
,
1668 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1670 ql_queue_asic_error(qdev
);
1674 QPRINTK(qdev
, DRV
, ERR
, "Unexpected event %d.\n",
1676 ql_queue_asic_error(qdev
);
1681 static int ql_clean_outbound_rx_ring(struct rx_ring
*rx_ring
)
1683 struct ql_adapter
*qdev
= rx_ring
->qdev
;
1684 u32 prod
= ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
);
1685 struct ob_mac_iocb_rsp
*net_rsp
= NULL
;
1688 struct tx_ring
*tx_ring
;
1689 /* While there are entries in the completion queue. */
1690 while (prod
!= rx_ring
->cnsmr_idx
) {
1692 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1693 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring
->cq_id
,
1694 prod
, rx_ring
->cnsmr_idx
);
1696 net_rsp
= (struct ob_mac_iocb_rsp
*)rx_ring
->curr_entry
;
1698 switch (net_rsp
->opcode
) {
1700 case OPCODE_OB_MAC_TSO_IOCB
:
1701 case OPCODE_OB_MAC_IOCB
:
1702 ql_process_mac_tx_intr(qdev
, net_rsp
);
1705 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1706 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1710 ql_update_cq(rx_ring
);
1711 prod
= ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
);
1713 ql_write_cq_idx(rx_ring
);
1714 tx_ring
= &qdev
->tx_ring
[net_rsp
->txq_idx
];
1715 if (__netif_subqueue_stopped(qdev
->ndev
, tx_ring
->wq_id
) &&
1717 if (atomic_read(&tx_ring
->queue_stopped
) &&
1718 (atomic_read(&tx_ring
->tx_count
) > (tx_ring
->wq_len
/ 4)))
1720 * The queue got stopped because the tx_ring was full.
1721 * Wake it up, because it's now at least 25% empty.
1723 netif_wake_subqueue(qdev
->ndev
, tx_ring
->wq_id
);
1729 static int ql_clean_inbound_rx_ring(struct rx_ring
*rx_ring
, int budget
)
1731 struct ql_adapter
*qdev
= rx_ring
->qdev
;
1732 u32 prod
= ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
);
1733 struct ql_net_rsp_iocb
*net_rsp
;
1736 /* While there are entries in the completion queue. */
1737 while (prod
!= rx_ring
->cnsmr_idx
) {
1739 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1740 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring
->cq_id
,
1741 prod
, rx_ring
->cnsmr_idx
);
1743 net_rsp
= rx_ring
->curr_entry
;
1745 switch (net_rsp
->opcode
) {
1746 case OPCODE_IB_MAC_IOCB
:
1747 ql_process_mac_rx_intr(qdev
, rx_ring
,
1748 (struct ib_mac_iocb_rsp
*)
1752 case OPCODE_IB_AE_IOCB
:
1753 ql_process_chip_ae_intr(qdev
, (struct ib_ae_iocb_rsp
*)
1758 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1759 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1764 ql_update_cq(rx_ring
);
1765 prod
= ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
);
1766 if (count
== budget
)
1769 ql_update_buffer_queues(qdev
, rx_ring
);
1770 ql_write_cq_idx(rx_ring
);
1774 static int ql_napi_poll_msix(struct napi_struct
*napi
, int budget
)
1776 struct rx_ring
*rx_ring
= container_of(napi
, struct rx_ring
, napi
);
1777 struct ql_adapter
*qdev
= rx_ring
->qdev
;
1778 int work_done
= ql_clean_inbound_rx_ring(rx_ring
, budget
);
1780 QPRINTK(qdev
, RX_STATUS
, DEBUG
, "Enter, NAPI POLL cq_id = %d.\n",
1783 if (work_done
< budget
) {
1784 napi_complete(napi
);
1785 ql_enable_completion_interrupt(qdev
, rx_ring
->irq
);
1790 static void ql_vlan_rx_register(struct net_device
*ndev
, struct vlan_group
*grp
)
1792 struct ql_adapter
*qdev
= netdev_priv(ndev
);
1796 QPRINTK(qdev
, IFUP
, DEBUG
, "Turning on VLAN in NIC_RCV_CFG.\n");
1797 ql_write32(qdev
, NIC_RCV_CFG
, NIC_RCV_CFG_VLAN_MASK
|
1798 NIC_RCV_CFG_VLAN_MATCH_AND_NON
);
1800 QPRINTK(qdev
, IFUP
, DEBUG
,
1801 "Turning off VLAN in NIC_RCV_CFG.\n");
1802 ql_write32(qdev
, NIC_RCV_CFG
, NIC_RCV_CFG_VLAN_MASK
);
1806 static void ql_vlan_rx_add_vid(struct net_device
*ndev
, u16 vid
)
1808 struct ql_adapter
*qdev
= netdev_priv(ndev
);
1809 u32 enable_bit
= MAC_ADDR_E
;
1812 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
1815 spin_lock(&qdev
->hw_lock
);
1816 if (ql_set_mac_addr_reg
1817 (qdev
, (u8
*) &enable_bit
, MAC_ADDR_TYPE_VLAN
, vid
)) {
1818 QPRINTK(qdev
, IFUP
, ERR
, "Failed to init vlan address.\n");
1820 spin_unlock(&qdev
->hw_lock
);
1821 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
1824 static void ql_vlan_rx_kill_vid(struct net_device
*ndev
, u16 vid
)
1826 struct ql_adapter
*qdev
= netdev_priv(ndev
);
1830 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
1834 spin_lock(&qdev
->hw_lock
);
1835 if (ql_set_mac_addr_reg
1836 (qdev
, (u8
*) &enable_bit
, MAC_ADDR_TYPE_VLAN
, vid
)) {
1837 QPRINTK(qdev
, IFUP
, ERR
, "Failed to clear vlan address.\n");
1839 spin_unlock(&qdev
->hw_lock
);
1840 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
1844 /* Worker thread to process a given rx_ring that is dedicated
1845 * to outbound completions.
1847 static void ql_tx_clean(struct work_struct
*work
)
1849 struct rx_ring
*rx_ring
=
1850 container_of(work
, struct rx_ring
, rx_work
.work
);
1851 ql_clean_outbound_rx_ring(rx_ring
);
1852 ql_enable_completion_interrupt(rx_ring
->qdev
, rx_ring
->irq
);
1856 /* Worker thread to process a given rx_ring that is dedicated
1857 * to inbound completions.
1859 static void ql_rx_clean(struct work_struct
*work
)
1861 struct rx_ring
*rx_ring
=
1862 container_of(work
, struct rx_ring
, rx_work
.work
);
1863 ql_clean_inbound_rx_ring(rx_ring
, 64);
1864 ql_enable_completion_interrupt(rx_ring
->qdev
, rx_ring
->irq
);
1867 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1868 static irqreturn_t
qlge_msix_tx_isr(int irq
, void *dev_id
)
1870 struct rx_ring
*rx_ring
= dev_id
;
1871 queue_delayed_work_on(rx_ring
->cpu
, rx_ring
->qdev
->q_workqueue
,
1872 &rx_ring
->rx_work
, 0);
1876 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1877 static irqreturn_t
qlge_msix_rx_isr(int irq
, void *dev_id
)
1879 struct rx_ring
*rx_ring
= dev_id
;
1880 napi_schedule(&rx_ring
->napi
);
1884 /* This handles a fatal error, MPI activity, and the default
1885 * rx_ring in an MSI-X multiple vector environment.
1886 * In MSI/Legacy environment it also process the rest of
1889 static irqreturn_t
qlge_isr(int irq
, void *dev_id
)
1891 struct rx_ring
*rx_ring
= dev_id
;
1892 struct ql_adapter
*qdev
= rx_ring
->qdev
;
1893 struct intr_context
*intr_context
= &qdev
->intr_context
[0];
1898 spin_lock(&qdev
->hw_lock
);
1899 if (atomic_read(&qdev
->intr_context
[0].irq_cnt
)) {
1900 QPRINTK(qdev
, INTR
, DEBUG
, "Shared Interrupt, Not ours!\n");
1901 spin_unlock(&qdev
->hw_lock
);
1904 spin_unlock(&qdev
->hw_lock
);
1906 var
= ql_disable_completion_interrupt(qdev
, intr_context
->intr
);
1909 * Check for fatal error.
1912 ql_queue_asic_error(qdev
);
1913 QPRINTK(qdev
, INTR
, ERR
, "Got fatal error, STS = %x.\n", var
);
1914 var
= ql_read32(qdev
, ERR_STS
);
1915 QPRINTK(qdev
, INTR
, ERR
,
1916 "Resetting chip. Error Status Register = 0x%x\n", var
);
1921 * Check MPI processor activity.
1925 * We've got an async event or mailbox completion.
1926 * Handle it and clear the source of the interrupt.
1928 QPRINTK(qdev
, INTR
, ERR
, "Got MPI processor interrupt.\n");
1929 ql_disable_completion_interrupt(qdev
, intr_context
->intr
);
1930 queue_delayed_work_on(smp_processor_id(), qdev
->workqueue
,
1931 &qdev
->mpi_work
, 0);
1936 * Check the default queue and wake handler if active.
1938 rx_ring
= &qdev
->rx_ring
[0];
1939 if (ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
) != rx_ring
->cnsmr_idx
) {
1940 QPRINTK(qdev
, INTR
, INFO
, "Waking handler for rx_ring[0].\n");
1941 ql_disable_completion_interrupt(qdev
, intr_context
->intr
);
1942 queue_delayed_work_on(smp_processor_id(), qdev
->q_workqueue
,
1943 &rx_ring
->rx_work
, 0);
1947 if (!test_bit(QL_MSIX_ENABLED
, &qdev
->flags
)) {
1949 * Start the DPC for each active queue.
1951 for (i
= 1; i
< qdev
->rx_ring_count
; i
++) {
1952 rx_ring
= &qdev
->rx_ring
[i
];
1953 if (ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
) !=
1954 rx_ring
->cnsmr_idx
) {
1955 QPRINTK(qdev
, INTR
, INFO
,
1956 "Waking handler for rx_ring[%d].\n", i
);
1957 ql_disable_completion_interrupt(qdev
,
1960 if (i
< qdev
->rss_ring_first_cq_id
)
1961 queue_delayed_work_on(rx_ring
->cpu
,
1966 napi_schedule(&rx_ring
->napi
);
1971 ql_enable_completion_interrupt(qdev
, intr_context
->intr
);
1972 return work_done
? IRQ_HANDLED
: IRQ_NONE
;
1975 static int ql_tso(struct sk_buff
*skb
, struct ob_mac_tso_iocb_req
*mac_iocb_ptr
)
1978 if (skb_is_gso(skb
)) {
1980 if (skb_header_cloned(skb
)) {
1981 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1986 mac_iocb_ptr
->opcode
= OPCODE_OB_MAC_TSO_IOCB
;
1987 mac_iocb_ptr
->flags3
|= OB_MAC_TSO_IOCB_IC
;
1988 mac_iocb_ptr
->frame_len
= cpu_to_le32((u32
) skb
->len
);
1989 mac_iocb_ptr
->total_hdrs_len
=
1990 cpu_to_le16(skb_transport_offset(skb
) + tcp_hdrlen(skb
));
1991 mac_iocb_ptr
->net_trans_offset
=
1992 cpu_to_le16(skb_network_offset(skb
) |
1993 skb_transport_offset(skb
)
1994 << OB_MAC_TRANSPORT_HDR_SHIFT
);
1995 mac_iocb_ptr
->mss
= cpu_to_le16(skb_shinfo(skb
)->gso_size
);
1996 mac_iocb_ptr
->flags2
|= OB_MAC_TSO_IOCB_LSO
;
1997 if (likely(skb
->protocol
== htons(ETH_P_IP
))) {
1998 struct iphdr
*iph
= ip_hdr(skb
);
2000 mac_iocb_ptr
->flags1
|= OB_MAC_TSO_IOCB_IP4
;
2001 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2005 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2006 mac_iocb_ptr
->flags1
|= OB_MAC_TSO_IOCB_IP6
;
2007 tcp_hdr(skb
)->check
=
2008 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2009 &ipv6_hdr(skb
)->daddr
,
2017 static void ql_hw_csum_setup(struct sk_buff
*skb
,
2018 struct ob_mac_tso_iocb_req
*mac_iocb_ptr
)
2021 struct iphdr
*iph
= ip_hdr(skb
);
2023 mac_iocb_ptr
->opcode
= OPCODE_OB_MAC_TSO_IOCB
;
2024 mac_iocb_ptr
->frame_len
= cpu_to_le32((u32
) skb
->len
);
2025 mac_iocb_ptr
->net_trans_offset
=
2026 cpu_to_le16(skb_network_offset(skb
) |
2027 skb_transport_offset(skb
) << OB_MAC_TRANSPORT_HDR_SHIFT
);
2029 mac_iocb_ptr
->flags1
|= OB_MAC_TSO_IOCB_IP4
;
2030 len
= (ntohs(iph
->tot_len
) - (iph
->ihl
<< 2));
2031 if (likely(iph
->protocol
== IPPROTO_TCP
)) {
2032 check
= &(tcp_hdr(skb
)->check
);
2033 mac_iocb_ptr
->flags2
|= OB_MAC_TSO_IOCB_TC
;
2034 mac_iocb_ptr
->total_hdrs_len
=
2035 cpu_to_le16(skb_transport_offset(skb
) +
2036 (tcp_hdr(skb
)->doff
<< 2));
2038 check
= &(udp_hdr(skb
)->check
);
2039 mac_iocb_ptr
->flags2
|= OB_MAC_TSO_IOCB_UC
;
2040 mac_iocb_ptr
->total_hdrs_len
=
2041 cpu_to_le16(skb_transport_offset(skb
) +
2042 sizeof(struct udphdr
));
2044 *check
= ~csum_tcpudp_magic(iph
->saddr
,
2045 iph
->daddr
, len
, iph
->protocol
, 0);
2048 static int qlge_send(struct sk_buff
*skb
, struct net_device
*ndev
)
2050 struct tx_ring_desc
*tx_ring_desc
;
2051 struct ob_mac_iocb_req
*mac_iocb_ptr
;
2052 struct ql_adapter
*qdev
= netdev_priv(ndev
);
2054 struct tx_ring
*tx_ring
;
2055 u32 tx_ring_idx
= (u32
) skb
->queue_mapping
;
2057 tx_ring
= &qdev
->tx_ring
[tx_ring_idx
];
2059 if (skb_padto(skb
, ETH_ZLEN
))
2060 return NETDEV_TX_OK
;
2062 if (unlikely(atomic_read(&tx_ring
->tx_count
) < 2)) {
2063 QPRINTK(qdev
, TX_QUEUED
, INFO
,
2064 "%s: shutting down tx queue %d du to lack of resources.\n",
2065 __func__
, tx_ring_idx
);
2066 netif_stop_subqueue(ndev
, tx_ring
->wq_id
);
2067 atomic_inc(&tx_ring
->queue_stopped
);
2068 return NETDEV_TX_BUSY
;
2070 tx_ring_desc
= &tx_ring
->q
[tx_ring
->prod_idx
];
2071 mac_iocb_ptr
= tx_ring_desc
->queue_entry
;
2072 memset((void *)mac_iocb_ptr
, 0, sizeof(mac_iocb_ptr
));
2074 mac_iocb_ptr
->opcode
= OPCODE_OB_MAC_IOCB
;
2075 mac_iocb_ptr
->tid
= tx_ring_desc
->index
;
2076 /* We use the upper 32-bits to store the tx queue for this IO.
2077 * When we get the completion we can use it to establish the context.
2079 mac_iocb_ptr
->txq_idx
= tx_ring_idx
;
2080 tx_ring_desc
->skb
= skb
;
2082 mac_iocb_ptr
->frame_len
= cpu_to_le16((u16
) skb
->len
);
2084 if (qdev
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2085 QPRINTK(qdev
, TX_QUEUED
, DEBUG
, "Adding a vlan tag %d.\n",
2086 vlan_tx_tag_get(skb
));
2087 mac_iocb_ptr
->flags3
|= OB_MAC_IOCB_V
;
2088 mac_iocb_ptr
->vlan_tci
= cpu_to_le16(vlan_tx_tag_get(skb
));
2090 tso
= ql_tso(skb
, (struct ob_mac_tso_iocb_req
*)mac_iocb_ptr
);
2092 dev_kfree_skb_any(skb
);
2093 return NETDEV_TX_OK
;
2094 } else if (unlikely(!tso
) && (skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
2095 ql_hw_csum_setup(skb
,
2096 (struct ob_mac_tso_iocb_req
*)mac_iocb_ptr
);
2098 if (ql_map_send(qdev
, mac_iocb_ptr
, skb
, tx_ring_desc
) !=
2100 QPRINTK(qdev
, TX_QUEUED
, ERR
,
2101 "Could not map the segments.\n");
2102 return NETDEV_TX_BUSY
;
2104 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr
);
2105 tx_ring
->prod_idx
++;
2106 if (tx_ring
->prod_idx
== tx_ring
->wq_len
)
2107 tx_ring
->prod_idx
= 0;
2110 ql_write_db_reg(tx_ring
->prod_idx
, tx_ring
->prod_idx_db_reg
);
2111 ndev
->trans_start
= jiffies
;
2112 QPRINTK(qdev
, TX_QUEUED
, DEBUG
, "tx queued, slot %d, len %d\n",
2113 tx_ring
->prod_idx
, skb
->len
);
2115 atomic_dec(&tx_ring
->tx_count
);
2116 return NETDEV_TX_OK
;
2119 static void ql_free_shadow_space(struct ql_adapter
*qdev
)
2121 if (qdev
->rx_ring_shadow_reg_area
) {
2122 pci_free_consistent(qdev
->pdev
,
2124 qdev
->rx_ring_shadow_reg_area
,
2125 qdev
->rx_ring_shadow_reg_dma
);
2126 qdev
->rx_ring_shadow_reg_area
= NULL
;
2128 if (qdev
->tx_ring_shadow_reg_area
) {
2129 pci_free_consistent(qdev
->pdev
,
2131 qdev
->tx_ring_shadow_reg_area
,
2132 qdev
->tx_ring_shadow_reg_dma
);
2133 qdev
->tx_ring_shadow_reg_area
= NULL
;
2137 static int ql_alloc_shadow_space(struct ql_adapter
*qdev
)
2139 qdev
->rx_ring_shadow_reg_area
=
2140 pci_alloc_consistent(qdev
->pdev
,
2141 PAGE_SIZE
, &qdev
->rx_ring_shadow_reg_dma
);
2142 if (qdev
->rx_ring_shadow_reg_area
== NULL
) {
2143 QPRINTK(qdev
, IFUP
, ERR
,
2144 "Allocation of RX shadow space failed.\n");
2147 memset(qdev
->rx_ring_shadow_reg_area
, 0, PAGE_SIZE
);
2148 qdev
->tx_ring_shadow_reg_area
=
2149 pci_alloc_consistent(qdev
->pdev
, PAGE_SIZE
,
2150 &qdev
->tx_ring_shadow_reg_dma
);
2151 if (qdev
->tx_ring_shadow_reg_area
== NULL
) {
2152 QPRINTK(qdev
, IFUP
, ERR
,
2153 "Allocation of TX shadow space failed.\n");
2154 goto err_wqp_sh_area
;
2156 memset(qdev
->tx_ring_shadow_reg_area
, 0, PAGE_SIZE
);
2160 pci_free_consistent(qdev
->pdev
,
2162 qdev
->rx_ring_shadow_reg_area
,
2163 qdev
->rx_ring_shadow_reg_dma
);
2167 static void ql_init_tx_ring(struct ql_adapter
*qdev
, struct tx_ring
*tx_ring
)
2169 struct tx_ring_desc
*tx_ring_desc
;
2171 struct ob_mac_iocb_req
*mac_iocb_ptr
;
2173 mac_iocb_ptr
= tx_ring
->wq_base
;
2174 tx_ring_desc
= tx_ring
->q
;
2175 for (i
= 0; i
< tx_ring
->wq_len
; i
++) {
2176 tx_ring_desc
->index
= i
;
2177 tx_ring_desc
->skb
= NULL
;
2178 tx_ring_desc
->queue_entry
= mac_iocb_ptr
;
2182 atomic_set(&tx_ring
->tx_count
, tx_ring
->wq_len
);
2183 atomic_set(&tx_ring
->queue_stopped
, 0);
2186 static void ql_free_tx_resources(struct ql_adapter
*qdev
,
2187 struct tx_ring
*tx_ring
)
2189 if (tx_ring
->wq_base
) {
2190 pci_free_consistent(qdev
->pdev
, tx_ring
->wq_size
,
2191 tx_ring
->wq_base
, tx_ring
->wq_base_dma
);
2192 tx_ring
->wq_base
= NULL
;
2198 static int ql_alloc_tx_resources(struct ql_adapter
*qdev
,
2199 struct tx_ring
*tx_ring
)
2202 pci_alloc_consistent(qdev
->pdev
, tx_ring
->wq_size
,
2203 &tx_ring
->wq_base_dma
);
2205 if ((tx_ring
->wq_base
== NULL
)
2206 || tx_ring
->wq_base_dma
& (tx_ring
->wq_size
- 1)) {
2207 QPRINTK(qdev
, IFUP
, ERR
, "tx_ring alloc failed.\n");
2211 kmalloc(tx_ring
->wq_len
* sizeof(struct tx_ring_desc
), GFP_KERNEL
);
2212 if (tx_ring
->q
== NULL
)
2217 pci_free_consistent(qdev
->pdev
, tx_ring
->wq_size
,
2218 tx_ring
->wq_base
, tx_ring
->wq_base_dma
);
2222 static void ql_free_lbq_buffers(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
2225 struct bq_desc
*lbq_desc
;
2227 for (i
= 0; i
< rx_ring
->lbq_len
; i
++) {
2228 lbq_desc
= &rx_ring
->lbq
[i
];
2229 if (lbq_desc
->p
.lbq_page
) {
2230 pci_unmap_page(qdev
->pdev
,
2231 pci_unmap_addr(lbq_desc
, mapaddr
),
2232 pci_unmap_len(lbq_desc
, maplen
),
2233 PCI_DMA_FROMDEVICE
);
2235 put_page(lbq_desc
->p
.lbq_page
);
2236 lbq_desc
->p
.lbq_page
= NULL
;
2241 static void ql_free_sbq_buffers(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
2244 struct bq_desc
*sbq_desc
;
2246 for (i
= 0; i
< rx_ring
->sbq_len
; i
++) {
2247 sbq_desc
= &rx_ring
->sbq
[i
];
2248 if (sbq_desc
== NULL
) {
2249 QPRINTK(qdev
, IFUP
, ERR
, "sbq_desc %d is NULL.\n", i
);
2252 if (sbq_desc
->p
.skb
) {
2253 pci_unmap_single(qdev
->pdev
,
2254 pci_unmap_addr(sbq_desc
, mapaddr
),
2255 pci_unmap_len(sbq_desc
, maplen
),
2256 PCI_DMA_FROMDEVICE
);
2257 dev_kfree_skb(sbq_desc
->p
.skb
);
2258 sbq_desc
->p
.skb
= NULL
;
2263 /* Free all large and small rx buffers associated
2264 * with the completion queues for this device.
2266 static void ql_free_rx_buffers(struct ql_adapter
*qdev
)
2269 struct rx_ring
*rx_ring
;
2271 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
2272 rx_ring
= &qdev
->rx_ring
[i
];
2274 ql_free_lbq_buffers(qdev
, rx_ring
);
2276 ql_free_sbq_buffers(qdev
, rx_ring
);
2280 static void ql_alloc_rx_buffers(struct ql_adapter
*qdev
)
2282 struct rx_ring
*rx_ring
;
2285 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
2286 rx_ring
= &qdev
->rx_ring
[i
];
2287 if (rx_ring
->type
!= TX_Q
)
2288 ql_update_buffer_queues(qdev
, rx_ring
);
2292 static void ql_init_lbq_ring(struct ql_adapter
*qdev
,
2293 struct rx_ring
*rx_ring
)
2296 struct bq_desc
*lbq_desc
;
2297 __le64
*bq
= rx_ring
->lbq_base
;
2299 memset(rx_ring
->lbq
, 0, rx_ring
->lbq_len
* sizeof(struct bq_desc
));
2300 for (i
= 0; i
< rx_ring
->lbq_len
; i
++) {
2301 lbq_desc
= &rx_ring
->lbq
[i
];
2302 memset(lbq_desc
, 0, sizeof(*lbq_desc
));
2303 lbq_desc
->index
= i
;
2304 lbq_desc
->addr
= bq
;
2309 static void ql_init_sbq_ring(struct ql_adapter
*qdev
,
2310 struct rx_ring
*rx_ring
)
2313 struct bq_desc
*sbq_desc
;
2314 __le64
*bq
= rx_ring
->sbq_base
;
2316 memset(rx_ring
->sbq
, 0, rx_ring
->sbq_len
* sizeof(struct bq_desc
));
2317 for (i
= 0; i
< rx_ring
->sbq_len
; i
++) {
2318 sbq_desc
= &rx_ring
->sbq
[i
];
2319 memset(sbq_desc
, 0, sizeof(*sbq_desc
));
2320 sbq_desc
->index
= i
;
2321 sbq_desc
->addr
= bq
;
2326 static void ql_free_rx_resources(struct ql_adapter
*qdev
,
2327 struct rx_ring
*rx_ring
)
2329 /* Free the small buffer queue. */
2330 if (rx_ring
->sbq_base
) {
2331 pci_free_consistent(qdev
->pdev
,
2333 rx_ring
->sbq_base
, rx_ring
->sbq_base_dma
);
2334 rx_ring
->sbq_base
= NULL
;
2337 /* Free the small buffer queue control blocks. */
2338 kfree(rx_ring
->sbq
);
2339 rx_ring
->sbq
= NULL
;
2341 /* Free the large buffer queue. */
2342 if (rx_ring
->lbq_base
) {
2343 pci_free_consistent(qdev
->pdev
,
2345 rx_ring
->lbq_base
, rx_ring
->lbq_base_dma
);
2346 rx_ring
->lbq_base
= NULL
;
2349 /* Free the large buffer queue control blocks. */
2350 kfree(rx_ring
->lbq
);
2351 rx_ring
->lbq
= NULL
;
2353 /* Free the rx queue. */
2354 if (rx_ring
->cq_base
) {
2355 pci_free_consistent(qdev
->pdev
,
2357 rx_ring
->cq_base
, rx_ring
->cq_base_dma
);
2358 rx_ring
->cq_base
= NULL
;
2362 /* Allocate queues and buffers for this completions queue based
2363 * on the values in the parameter structure. */
2364 static int ql_alloc_rx_resources(struct ql_adapter
*qdev
,
2365 struct rx_ring
*rx_ring
)
2369 * Allocate the completion queue for this rx_ring.
2372 pci_alloc_consistent(qdev
->pdev
, rx_ring
->cq_size
,
2373 &rx_ring
->cq_base_dma
);
2375 if (rx_ring
->cq_base
== NULL
) {
2376 QPRINTK(qdev
, IFUP
, ERR
, "rx_ring alloc failed.\n");
2380 if (rx_ring
->sbq_len
) {
2382 * Allocate small buffer queue.
2385 pci_alloc_consistent(qdev
->pdev
, rx_ring
->sbq_size
,
2386 &rx_ring
->sbq_base_dma
);
2388 if (rx_ring
->sbq_base
== NULL
) {
2389 QPRINTK(qdev
, IFUP
, ERR
,
2390 "Small buffer queue allocation failed.\n");
2395 * Allocate small buffer queue control blocks.
2398 kmalloc(rx_ring
->sbq_len
* sizeof(struct bq_desc
),
2400 if (rx_ring
->sbq
== NULL
) {
2401 QPRINTK(qdev
, IFUP
, ERR
,
2402 "Small buffer queue control block allocation failed.\n");
2406 ql_init_sbq_ring(qdev
, rx_ring
);
2409 if (rx_ring
->lbq_len
) {
2411 * Allocate large buffer queue.
2414 pci_alloc_consistent(qdev
->pdev
, rx_ring
->lbq_size
,
2415 &rx_ring
->lbq_base_dma
);
2417 if (rx_ring
->lbq_base
== NULL
) {
2418 QPRINTK(qdev
, IFUP
, ERR
,
2419 "Large buffer queue allocation failed.\n");
2423 * Allocate large buffer queue control blocks.
2426 kmalloc(rx_ring
->lbq_len
* sizeof(struct bq_desc
),
2428 if (rx_ring
->lbq
== NULL
) {
2429 QPRINTK(qdev
, IFUP
, ERR
,
2430 "Large buffer queue control block allocation failed.\n");
2434 ql_init_lbq_ring(qdev
, rx_ring
);
2440 ql_free_rx_resources(qdev
, rx_ring
);
2444 static void ql_tx_ring_clean(struct ql_adapter
*qdev
)
2446 struct tx_ring
*tx_ring
;
2447 struct tx_ring_desc
*tx_ring_desc
;
2451 * Loop through all queues and free
2454 for (j
= 0; j
< qdev
->tx_ring_count
; j
++) {
2455 tx_ring
= &qdev
->tx_ring
[j
];
2456 for (i
= 0; i
< tx_ring
->wq_len
; i
++) {
2457 tx_ring_desc
= &tx_ring
->q
[i
];
2458 if (tx_ring_desc
&& tx_ring_desc
->skb
) {
2459 QPRINTK(qdev
, IFDOWN
, ERR
,
2460 "Freeing lost SKB %p, from queue %d, index %d.\n",
2461 tx_ring_desc
->skb
, j
,
2462 tx_ring_desc
->index
);
2463 ql_unmap_send(qdev
, tx_ring_desc
,
2464 tx_ring_desc
->map_cnt
);
2465 dev_kfree_skb(tx_ring_desc
->skb
);
2466 tx_ring_desc
->skb
= NULL
;
2472 static void ql_free_mem_resources(struct ql_adapter
*qdev
)
2476 for (i
= 0; i
< qdev
->tx_ring_count
; i
++)
2477 ql_free_tx_resources(qdev
, &qdev
->tx_ring
[i
]);
2478 for (i
= 0; i
< qdev
->rx_ring_count
; i
++)
2479 ql_free_rx_resources(qdev
, &qdev
->rx_ring
[i
]);
2480 ql_free_shadow_space(qdev
);
2483 static int ql_alloc_mem_resources(struct ql_adapter
*qdev
)
2487 /* Allocate space for our shadow registers and such. */
2488 if (ql_alloc_shadow_space(qdev
))
2491 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
2492 if (ql_alloc_rx_resources(qdev
, &qdev
->rx_ring
[i
]) != 0) {
2493 QPRINTK(qdev
, IFUP
, ERR
,
2494 "RX resource allocation failed.\n");
2498 /* Allocate tx queue resources */
2499 for (i
= 0; i
< qdev
->tx_ring_count
; i
++) {
2500 if (ql_alloc_tx_resources(qdev
, &qdev
->tx_ring
[i
]) != 0) {
2501 QPRINTK(qdev
, IFUP
, ERR
,
2502 "TX resource allocation failed.\n");
2509 ql_free_mem_resources(qdev
);
2513 /* Set up the rx ring control block and pass it to the chip.
2514 * The control block is defined as
2515 * "Completion Queue Initialization Control Block", or cqicb.
2517 static int ql_start_rx_ring(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
2519 struct cqicb
*cqicb
= &rx_ring
->cqicb
;
2520 void *shadow_reg
= qdev
->rx_ring_shadow_reg_area
+
2521 (rx_ring
->cq_id
* sizeof(u64
) * 4);
2522 u64 shadow_reg_dma
= qdev
->rx_ring_shadow_reg_dma
+
2523 (rx_ring
->cq_id
* sizeof(u64
) * 4);
2524 void __iomem
*doorbell_area
=
2525 qdev
->doorbell_area
+ (DB_PAGE_SIZE
* (128 + rx_ring
->cq_id
));
2530 /* Set up the shadow registers for this ring. */
2531 rx_ring
->prod_idx_sh_reg
= shadow_reg
;
2532 rx_ring
->prod_idx_sh_reg_dma
= shadow_reg_dma
;
2533 shadow_reg
+= sizeof(u64
);
2534 shadow_reg_dma
+= sizeof(u64
);
2535 rx_ring
->lbq_base_indirect
= shadow_reg
;
2536 rx_ring
->lbq_base_indirect_dma
= shadow_reg_dma
;
2537 shadow_reg
+= sizeof(u64
);
2538 shadow_reg_dma
+= sizeof(u64
);
2539 rx_ring
->sbq_base_indirect
= shadow_reg
;
2540 rx_ring
->sbq_base_indirect_dma
= shadow_reg_dma
;
2542 /* PCI doorbell mem area + 0x00 for consumer index register */
2543 rx_ring
->cnsmr_idx_db_reg
= (u32 __iomem
*) doorbell_area
;
2544 rx_ring
->cnsmr_idx
= 0;
2545 rx_ring
->curr_entry
= rx_ring
->cq_base
;
2547 /* PCI doorbell mem area + 0x04 for valid register */
2548 rx_ring
->valid_db_reg
= doorbell_area
+ 0x04;
2550 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2551 rx_ring
->lbq_prod_idx_db_reg
= (u32 __iomem
*) (doorbell_area
+ 0x18);
2553 /* PCI doorbell mem area + 0x1c */
2554 rx_ring
->sbq_prod_idx_db_reg
= (u32 __iomem
*) (doorbell_area
+ 0x1c);
2556 memset((void *)cqicb
, 0, sizeof(struct cqicb
));
2557 cqicb
->msix_vect
= rx_ring
->irq
;
2559 bq_len
= (rx_ring
->cq_len
== 65536) ? 0 : (u16
) rx_ring
->cq_len
;
2560 cqicb
->len
= cpu_to_le16(bq_len
| LEN_V
| LEN_CPP_CONT
);
2562 cqicb
->addr
= cpu_to_le64(rx_ring
->cq_base_dma
);
2564 cqicb
->prod_idx_addr
= cpu_to_le64(rx_ring
->prod_idx_sh_reg_dma
);
2567 * Set up the control block load flags.
2569 cqicb
->flags
= FLAGS_LC
| /* Load queue base address */
2570 FLAGS_LV
| /* Load MSI-X vector */
2571 FLAGS_LI
; /* Load irq delay values */
2572 if (rx_ring
->lbq_len
) {
2573 cqicb
->flags
|= FLAGS_LL
; /* Load lbq values */
2574 tmp
= (u64
)rx_ring
->lbq_base_dma
;;
2575 *((__le64
*) rx_ring
->lbq_base_indirect
) = cpu_to_le64(tmp
);
2577 cpu_to_le64(rx_ring
->lbq_base_indirect_dma
);
2578 bq_len
= (rx_ring
->lbq_buf_size
== 65536) ? 0 :
2579 (u16
) rx_ring
->lbq_buf_size
;
2580 cqicb
->lbq_buf_size
= cpu_to_le16(bq_len
);
2581 bq_len
= (rx_ring
->lbq_len
== 65536) ? 0 :
2582 (u16
) rx_ring
->lbq_len
;
2583 cqicb
->lbq_len
= cpu_to_le16(bq_len
);
2584 rx_ring
->lbq_prod_idx
= 0;
2585 rx_ring
->lbq_curr_idx
= 0;
2586 rx_ring
->lbq_clean_idx
= 0;
2587 rx_ring
->lbq_free_cnt
= rx_ring
->lbq_len
;
2589 if (rx_ring
->sbq_len
) {
2590 cqicb
->flags
|= FLAGS_LS
; /* Load sbq values */
2591 tmp
= (u64
)rx_ring
->sbq_base_dma
;;
2592 *((__le64
*) rx_ring
->sbq_base_indirect
) = cpu_to_le64(tmp
);
2594 cpu_to_le64(rx_ring
->sbq_base_indirect_dma
);
2595 cqicb
->sbq_buf_size
=
2596 cpu_to_le16((u16
)(rx_ring
->sbq_buf_size
/2));
2597 bq_len
= (rx_ring
->sbq_len
== 65536) ? 0 :
2598 (u16
) rx_ring
->sbq_len
;
2599 cqicb
->sbq_len
= cpu_to_le16(bq_len
);
2600 rx_ring
->sbq_prod_idx
= 0;
2601 rx_ring
->sbq_curr_idx
= 0;
2602 rx_ring
->sbq_clean_idx
= 0;
2603 rx_ring
->sbq_free_cnt
= rx_ring
->sbq_len
;
2605 switch (rx_ring
->type
) {
2607 /* If there's only one interrupt, then we use
2608 * worker threads to process the outbound
2609 * completion handling rx_rings. We do this so
2610 * they can be run on multiple CPUs. There is
2611 * room to play with this more where we would only
2612 * run in a worker if there are more than x number
2613 * of outbound completions on the queue and more
2614 * than one queue active. Some threshold that
2615 * would indicate a benefit in spite of the cost
2616 * of a context switch.
2617 * If there's more than one interrupt, then the
2618 * outbound completions are processed in the ISR.
2620 if (!test_bit(QL_MSIX_ENABLED
, &qdev
->flags
))
2621 INIT_DELAYED_WORK(&rx_ring
->rx_work
, ql_tx_clean
);
2623 /* With all debug warnings on we see a WARN_ON message
2624 * when we free the skb in the interrupt context.
2626 INIT_DELAYED_WORK(&rx_ring
->rx_work
, ql_tx_clean
);
2628 cqicb
->irq_delay
= cpu_to_le16(qdev
->tx_coalesce_usecs
);
2629 cqicb
->pkt_delay
= cpu_to_le16(qdev
->tx_max_coalesced_frames
);
2632 INIT_DELAYED_WORK(&rx_ring
->rx_work
, ql_rx_clean
);
2633 cqicb
->irq_delay
= 0;
2634 cqicb
->pkt_delay
= 0;
2637 /* Inbound completion handling rx_rings run in
2638 * separate NAPI contexts.
2640 netif_napi_add(qdev
->ndev
, &rx_ring
->napi
, ql_napi_poll_msix
,
2642 cqicb
->irq_delay
= cpu_to_le16(qdev
->rx_coalesce_usecs
);
2643 cqicb
->pkt_delay
= cpu_to_le16(qdev
->rx_max_coalesced_frames
);
2646 QPRINTK(qdev
, IFUP
, DEBUG
, "Invalid rx_ring->type = %d.\n",
2649 QPRINTK(qdev
, IFUP
, DEBUG
, "Initializing rx work queue.\n");
2650 err
= ql_write_cfg(qdev
, cqicb
, sizeof(struct cqicb
),
2651 CFG_LCQ
, rx_ring
->cq_id
);
2653 QPRINTK(qdev
, IFUP
, ERR
, "Failed to load CQICB.\n");
2659 static int ql_start_tx_ring(struct ql_adapter
*qdev
, struct tx_ring
*tx_ring
)
2661 struct wqicb
*wqicb
= (struct wqicb
*)tx_ring
;
2662 void __iomem
*doorbell_area
=
2663 qdev
->doorbell_area
+ (DB_PAGE_SIZE
* tx_ring
->wq_id
);
2664 void *shadow_reg
= qdev
->tx_ring_shadow_reg_area
+
2665 (tx_ring
->wq_id
* sizeof(u64
));
2666 u64 shadow_reg_dma
= qdev
->tx_ring_shadow_reg_dma
+
2667 (tx_ring
->wq_id
* sizeof(u64
));
2671 * Assign doorbell registers for this tx_ring.
2673 /* TX PCI doorbell mem area for tx producer index */
2674 tx_ring
->prod_idx_db_reg
= (u32 __iomem
*) doorbell_area
;
2675 tx_ring
->prod_idx
= 0;
2676 /* TX PCI doorbell mem area + 0x04 */
2677 tx_ring
->valid_db_reg
= doorbell_area
+ 0x04;
2680 * Assign shadow registers for this tx_ring.
2682 tx_ring
->cnsmr_idx_sh_reg
= shadow_reg
;
2683 tx_ring
->cnsmr_idx_sh_reg_dma
= shadow_reg_dma
;
2685 wqicb
->len
= cpu_to_le16(tx_ring
->wq_len
| Q_LEN_V
| Q_LEN_CPP_CONT
);
2686 wqicb
->flags
= cpu_to_le16(Q_FLAGS_LC
|
2687 Q_FLAGS_LB
| Q_FLAGS_LI
| Q_FLAGS_LO
);
2688 wqicb
->cq_id_rss
= cpu_to_le16(tx_ring
->cq_id
);
2690 wqicb
->addr
= cpu_to_le64(tx_ring
->wq_base_dma
);
2692 wqicb
->cnsmr_idx_addr
= cpu_to_le64(tx_ring
->cnsmr_idx_sh_reg_dma
);
2694 ql_init_tx_ring(qdev
, tx_ring
);
2696 err
= ql_write_cfg(qdev
, wqicb
, sizeof(wqicb
), CFG_LRQ
,
2697 (u16
) tx_ring
->wq_id
);
2699 QPRINTK(qdev
, IFUP
, ERR
, "Failed to load tx_ring.\n");
2702 QPRINTK(qdev
, IFUP
, DEBUG
, "Successfully loaded WQICB.\n");
2706 static void ql_disable_msix(struct ql_adapter
*qdev
)
2708 if (test_bit(QL_MSIX_ENABLED
, &qdev
->flags
)) {
2709 pci_disable_msix(qdev
->pdev
);
2710 clear_bit(QL_MSIX_ENABLED
, &qdev
->flags
);
2711 kfree(qdev
->msi_x_entry
);
2712 qdev
->msi_x_entry
= NULL
;
2713 } else if (test_bit(QL_MSI_ENABLED
, &qdev
->flags
)) {
2714 pci_disable_msi(qdev
->pdev
);
2715 clear_bit(QL_MSI_ENABLED
, &qdev
->flags
);
2719 static void ql_enable_msix(struct ql_adapter
*qdev
)
2723 qdev
->intr_count
= 1;
2724 /* Get the MSIX vectors. */
2725 if (irq_type
== MSIX_IRQ
) {
2726 /* Try to alloc space for the msix struct,
2727 * if it fails then go to MSI/legacy.
2729 qdev
->msi_x_entry
= kcalloc(qdev
->rx_ring_count
,
2730 sizeof(struct msix_entry
),
2732 if (!qdev
->msi_x_entry
) {
2737 for (i
= 0; i
< qdev
->rx_ring_count
; i
++)
2738 qdev
->msi_x_entry
[i
].entry
= i
;
2740 if (!pci_enable_msix
2741 (qdev
->pdev
, qdev
->msi_x_entry
, qdev
->rx_ring_count
)) {
2742 set_bit(QL_MSIX_ENABLED
, &qdev
->flags
);
2743 qdev
->intr_count
= qdev
->rx_ring_count
;
2744 QPRINTK(qdev
, IFUP
, DEBUG
,
2745 "MSI-X Enabled, got %d vectors.\n",
2749 kfree(qdev
->msi_x_entry
);
2750 qdev
->msi_x_entry
= NULL
;
2751 QPRINTK(qdev
, IFUP
, WARNING
,
2752 "MSI-X Enable failed, trying MSI.\n");
2757 if (irq_type
== MSI_IRQ
) {
2758 if (!pci_enable_msi(qdev
->pdev
)) {
2759 set_bit(QL_MSI_ENABLED
, &qdev
->flags
);
2760 QPRINTK(qdev
, IFUP
, INFO
,
2761 "Running with MSI interrupts.\n");
2766 QPRINTK(qdev
, IFUP
, DEBUG
, "Running with legacy interrupts.\n");
2770 * Here we build the intr_context structures based on
2771 * our rx_ring count and intr vector count.
2772 * The intr_context structure is used to hook each vector
2773 * to possibly different handlers.
2775 static void ql_resolve_queues_to_irqs(struct ql_adapter
*qdev
)
2778 struct intr_context
*intr_context
= &qdev
->intr_context
[0];
2780 ql_enable_msix(qdev
);
2782 if (likely(test_bit(QL_MSIX_ENABLED
, &qdev
->flags
))) {
2783 /* Each rx_ring has it's
2784 * own intr_context since we have separate
2785 * vectors for each queue.
2786 * This only true when MSI-X is enabled.
2788 for (i
= 0; i
< qdev
->intr_count
; i
++, intr_context
++) {
2789 qdev
->rx_ring
[i
].irq
= i
;
2790 intr_context
->intr
= i
;
2791 intr_context
->qdev
= qdev
;
2793 * We set up each vectors enable/disable/read bits so
2794 * there's no bit/mask calculations in the critical path.
2796 intr_context
->intr_en_mask
=
2797 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
|
2798 INTR_EN_TYPE_ENABLE
| INTR_EN_IHD_MASK
| INTR_EN_IHD
2800 intr_context
->intr_dis_mask
=
2801 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
|
2802 INTR_EN_TYPE_DISABLE
| INTR_EN_IHD_MASK
|
2804 intr_context
->intr_read_mask
=
2805 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
|
2806 INTR_EN_TYPE_READ
| INTR_EN_IHD_MASK
| INTR_EN_IHD
|
2811 * Default queue handles bcast/mcast plus
2812 * async events. Needs buffers.
2814 intr_context
->handler
= qlge_isr
;
2815 sprintf(intr_context
->name
, "%s-default-queue",
2817 } else if (i
< qdev
->rss_ring_first_cq_id
) {
2819 * Outbound queue is for outbound completions only.
2821 intr_context
->handler
= qlge_msix_tx_isr
;
2822 sprintf(intr_context
->name
, "%s-tx-%d",
2823 qdev
->ndev
->name
, i
);
2826 * Inbound queues handle unicast frames only.
2828 intr_context
->handler
= qlge_msix_rx_isr
;
2829 sprintf(intr_context
->name
, "%s-rx-%d",
2830 qdev
->ndev
->name
, i
);
2835 * All rx_rings use the same intr_context since
2836 * there is only one vector.
2838 intr_context
->intr
= 0;
2839 intr_context
->qdev
= qdev
;
2841 * We set up each vectors enable/disable/read bits so
2842 * there's no bit/mask calculations in the critical path.
2844 intr_context
->intr_en_mask
=
2845 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
| INTR_EN_TYPE_ENABLE
;
2846 intr_context
->intr_dis_mask
=
2847 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
|
2848 INTR_EN_TYPE_DISABLE
;
2849 intr_context
->intr_read_mask
=
2850 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
| INTR_EN_TYPE_READ
;
2852 * Single interrupt means one handler for all rings.
2854 intr_context
->handler
= qlge_isr
;
2855 sprintf(intr_context
->name
, "%s-single_irq", qdev
->ndev
->name
);
2856 for (i
= 0; i
< qdev
->rx_ring_count
; i
++)
2857 qdev
->rx_ring
[i
].irq
= 0;
2861 static void ql_free_irq(struct ql_adapter
*qdev
)
2864 struct intr_context
*intr_context
= &qdev
->intr_context
[0];
2866 for (i
= 0; i
< qdev
->intr_count
; i
++, intr_context
++) {
2867 if (intr_context
->hooked
) {
2868 if (test_bit(QL_MSIX_ENABLED
, &qdev
->flags
)) {
2869 free_irq(qdev
->msi_x_entry
[i
].vector
,
2871 QPRINTK(qdev
, IFDOWN
, DEBUG
,
2872 "freeing msix interrupt %d.\n", i
);
2874 free_irq(qdev
->pdev
->irq
, &qdev
->rx_ring
[0]);
2875 QPRINTK(qdev
, IFDOWN
, DEBUG
,
2876 "freeing msi interrupt %d.\n", i
);
2880 ql_disable_msix(qdev
);
2883 static int ql_request_irq(struct ql_adapter
*qdev
)
2887 struct pci_dev
*pdev
= qdev
->pdev
;
2888 struct intr_context
*intr_context
= &qdev
->intr_context
[0];
2890 ql_resolve_queues_to_irqs(qdev
);
2892 for (i
= 0; i
< qdev
->intr_count
; i
++, intr_context
++) {
2893 atomic_set(&intr_context
->irq_cnt
, 0);
2894 if (test_bit(QL_MSIX_ENABLED
, &qdev
->flags
)) {
2895 status
= request_irq(qdev
->msi_x_entry
[i
].vector
,
2896 intr_context
->handler
,
2901 QPRINTK(qdev
, IFUP
, ERR
,
2902 "Failed request for MSIX interrupt %d.\n",
2906 QPRINTK(qdev
, IFUP
, DEBUG
,
2907 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2909 qdev
->rx_ring
[i
].type
==
2910 DEFAULT_Q
? "DEFAULT_Q" : "",
2911 qdev
->rx_ring
[i
].type
==
2913 qdev
->rx_ring
[i
].type
==
2914 RX_Q
? "RX_Q" : "", intr_context
->name
);
2917 QPRINTK(qdev
, IFUP
, DEBUG
,
2918 "trying msi or legacy interrupts.\n");
2919 QPRINTK(qdev
, IFUP
, DEBUG
,
2920 "%s: irq = %d.\n", __func__
, pdev
->irq
);
2921 QPRINTK(qdev
, IFUP
, DEBUG
,
2922 "%s: context->name = %s.\n", __func__
,
2923 intr_context
->name
);
2924 QPRINTK(qdev
, IFUP
, DEBUG
,
2925 "%s: dev_id = 0x%p.\n", __func__
,
2928 request_irq(pdev
->irq
, qlge_isr
,
2929 test_bit(QL_MSI_ENABLED
,
2931 flags
) ? 0 : IRQF_SHARED
,
2932 intr_context
->name
, &qdev
->rx_ring
[0]);
2936 QPRINTK(qdev
, IFUP
, ERR
,
2937 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2939 qdev
->rx_ring
[0].type
==
2940 DEFAULT_Q
? "DEFAULT_Q" : "",
2941 qdev
->rx_ring
[0].type
== TX_Q
? "TX_Q" : "",
2942 qdev
->rx_ring
[0].type
== RX_Q
? "RX_Q" : "",
2943 intr_context
->name
);
2945 intr_context
->hooked
= 1;
2949 QPRINTK(qdev
, IFUP
, ERR
, "Failed to get the interrupts!!!/n");
2954 static int ql_start_rss(struct ql_adapter
*qdev
)
2956 struct ricb
*ricb
= &qdev
->ricb
;
2959 u8
*hash_id
= (u8
*) ricb
->hash_cq_id
;
2961 memset((void *)ricb
, 0, sizeof(ricb
));
2963 ricb
->base_cq
= qdev
->rss_ring_first_cq_id
| RSS_L4K
;
2965 (RSS_L6K
| RSS_LI
| RSS_LB
| RSS_LM
| RSS_RI4
| RSS_RI6
| RSS_RT4
|
2967 ricb
->mask
= cpu_to_le16(qdev
->rss_ring_count
- 1);
2970 * Fill out the Indirection Table.
2972 for (i
= 0; i
< 256; i
++)
2973 hash_id
[i
] = i
& (qdev
->rss_ring_count
- 1);
2976 * Random values for the IPv6 and IPv4 Hash Keys.
2978 get_random_bytes((void *)&ricb
->ipv6_hash_key
[0], 40);
2979 get_random_bytes((void *)&ricb
->ipv4_hash_key
[0], 16);
2981 QPRINTK(qdev
, IFUP
, DEBUG
, "Initializing RSS.\n");
2983 status
= ql_write_cfg(qdev
, ricb
, sizeof(ricb
), CFG_LR
, 0);
2985 QPRINTK(qdev
, IFUP
, ERR
, "Failed to load RICB.\n");
2988 QPRINTK(qdev
, IFUP
, DEBUG
, "Successfully loaded RICB.\n");
2992 /* Initialize the frame-to-queue routing. */
2993 static int ql_route_initialize(struct ql_adapter
*qdev
)
2998 status
= ql_sem_spinlock(qdev
, SEM_RT_IDX_MASK
);
3002 /* Clear all the entries in the routing table. */
3003 for (i
= 0; i
< 16; i
++) {
3004 status
= ql_set_routing_reg(qdev
, i
, 0, 0);
3006 QPRINTK(qdev
, IFUP
, ERR
,
3007 "Failed to init routing register for CAM packets.\n");
3012 status
= ql_set_routing_reg(qdev
, RT_IDX_ALL_ERR_SLOT
, RT_IDX_ERR
, 1);
3014 QPRINTK(qdev
, IFUP
, ERR
,
3015 "Failed to init routing register for error packets.\n");
3018 status
= ql_set_routing_reg(qdev
, RT_IDX_BCAST_SLOT
, RT_IDX_BCAST
, 1);
3020 QPRINTK(qdev
, IFUP
, ERR
,
3021 "Failed to init routing register for broadcast packets.\n");
3024 /* If we have more than one inbound queue, then turn on RSS in the
3027 if (qdev
->rss_ring_count
> 1) {
3028 status
= ql_set_routing_reg(qdev
, RT_IDX_RSS_MATCH_SLOT
,
3029 RT_IDX_RSS_MATCH
, 1);
3031 QPRINTK(qdev
, IFUP
, ERR
,
3032 "Failed to init routing register for MATCH RSS packets.\n");
3037 status
= ql_set_routing_reg(qdev
, RT_IDX_CAM_HIT_SLOT
,
3040 QPRINTK(qdev
, IFUP
, ERR
,
3041 "Failed to init routing register for CAM packets.\n");
3043 ql_sem_unlock(qdev
, SEM_RT_IDX_MASK
);
3047 int ql_cam_route_initialize(struct ql_adapter
*qdev
)
3051 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
3054 status
= ql_set_mac_addr_reg(qdev
, (u8
*) qdev
->ndev
->perm_addr
,
3055 MAC_ADDR_TYPE_CAM_MAC
, qdev
->func
* MAX_CQ
);
3056 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
3058 QPRINTK(qdev
, IFUP
, ERR
, "Failed to init mac address.\n");
3062 status
= ql_route_initialize(qdev
);
3064 QPRINTK(qdev
, IFUP
, ERR
, "Failed to init routing table.\n");
3069 static int ql_adapter_initialize(struct ql_adapter
*qdev
)
3076 * Set up the System register to halt on errors.
3078 value
= SYS_EFE
| SYS_FAE
;
3080 ql_write32(qdev
, SYS
, mask
| value
);
3082 /* Set the default queue, and VLAN behavior. */
3083 value
= NIC_RCV_CFG_DFQ
| NIC_RCV_CFG_RV
;
3084 mask
= NIC_RCV_CFG_DFQ_MASK
| (NIC_RCV_CFG_RV
<< 16);
3085 ql_write32(qdev
, NIC_RCV_CFG
, (mask
| value
));
3087 /* Set the MPI interrupt to enabled. */
3088 ql_write32(qdev
, INTR_MASK
, (INTR_MASK_PI
<< 16) | INTR_MASK_PI
);
3090 /* Enable the function, set pagesize, enable error checking. */
3091 value
= FSC_FE
| FSC_EPC_INBOUND
| FSC_EPC_OUTBOUND
|
3092 FSC_EC
| FSC_VM_PAGE_4K
| FSC_SH
;
3094 /* Set/clear header splitting. */
3095 mask
= FSC_VM_PAGESIZE_MASK
|
3096 FSC_DBL_MASK
| FSC_DBRST_MASK
| (value
<< 16);
3097 ql_write32(qdev
, FSC
, mask
| value
);
3099 ql_write32(qdev
, SPLT_HDR
, SPLT_HDR_EP
|
3100 min(SMALL_BUFFER_SIZE
, MAX_SPLIT_SIZE
));
3102 /* Start up the rx queues. */
3103 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
3104 status
= ql_start_rx_ring(qdev
, &qdev
->rx_ring
[i
]);
3106 QPRINTK(qdev
, IFUP
, ERR
,
3107 "Failed to start rx ring[%d].\n", i
);
3112 /* If there is more than one inbound completion queue
3113 * then download a RICB to configure RSS.
3115 if (qdev
->rss_ring_count
> 1) {
3116 status
= ql_start_rss(qdev
);
3118 QPRINTK(qdev
, IFUP
, ERR
, "Failed to start RSS.\n");
3123 /* Start up the tx queues. */
3124 for (i
= 0; i
< qdev
->tx_ring_count
; i
++) {
3125 status
= ql_start_tx_ring(qdev
, &qdev
->tx_ring
[i
]);
3127 QPRINTK(qdev
, IFUP
, ERR
,
3128 "Failed to start tx ring[%d].\n", i
);
3133 /* Initialize the port and set the max framesize. */
3134 status
= qdev
->nic_ops
->port_initialize(qdev
);
3136 QPRINTK(qdev
, IFUP
, ERR
, "Failed to start port.\n");
3140 /* Set up the MAC address and frame routing filter. */
3141 status
= ql_cam_route_initialize(qdev
);
3143 QPRINTK(qdev
, IFUP
, ERR
,
3144 "Failed to init CAM/Routing tables.\n");
3148 /* Start NAPI for the RSS queues. */
3149 for (i
= qdev
->rss_ring_first_cq_id
; i
< qdev
->rx_ring_count
; i
++) {
3150 QPRINTK(qdev
, IFUP
, DEBUG
, "Enabling NAPI for rx_ring[%d].\n",
3152 napi_enable(&qdev
->rx_ring
[i
].napi
);
3158 /* Issue soft reset to chip. */
3159 static int ql_adapter_reset(struct ql_adapter
*qdev
)
3163 unsigned long end_jiffies
= jiffies
+
3164 max((unsigned long)1, usecs_to_jiffies(30));
3166 ql_write32(qdev
, RST_FO
, (RST_FO_FR
<< 16) | RST_FO_FR
);
3169 value
= ql_read32(qdev
, RST_FO
);
3170 if ((value
& RST_FO_FR
) == 0)
3173 } while (time_before(jiffies
, end_jiffies
));
3175 if (value
& RST_FO_FR
) {
3176 QPRINTK(qdev
, IFDOWN
, ERR
,
3177 "ETIMEOUT!!! errored out of resetting the chip!\n");
3178 status
= -ETIMEDOUT
;
3184 static void ql_display_dev_info(struct net_device
*ndev
)
3186 struct ql_adapter
*qdev
= (struct ql_adapter
*)netdev_priv(ndev
);
3188 QPRINTK(qdev
, PROBE
, INFO
,
3189 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3190 "XG Roll = %d, XG Rev = %d.\n",
3192 qdev
->chip_rev_id
& 0x0000000f,
3193 qdev
->chip_rev_id
>> 4 & 0x0000000f,
3194 qdev
->chip_rev_id
>> 8 & 0x0000000f,
3195 qdev
->chip_rev_id
>> 12 & 0x0000000f);
3196 QPRINTK(qdev
, PROBE
, INFO
, "MAC address %pM\n", ndev
->dev_addr
);
3199 static int ql_adapter_down(struct ql_adapter
*qdev
)
3202 struct rx_ring
*rx_ring
;
3204 netif_carrier_off(qdev
->ndev
);
3206 /* Don't kill the reset worker thread if we
3207 * are in the process of recovery.
3209 if (test_bit(QL_ADAPTER_UP
, &qdev
->flags
))
3210 cancel_delayed_work_sync(&qdev
->asic_reset_work
);
3211 cancel_delayed_work_sync(&qdev
->mpi_reset_work
);
3212 cancel_delayed_work_sync(&qdev
->mpi_work
);
3213 cancel_delayed_work_sync(&qdev
->mpi_idc_work
);
3214 cancel_delayed_work_sync(&qdev
->mpi_port_cfg_work
);
3216 /* The default queue at index 0 is always processed in
3219 cancel_delayed_work_sync(&qdev
->rx_ring
[0].rx_work
);
3221 /* The rest of the rx_rings are processed in
3222 * a workqueue only if it's a single interrupt
3223 * environment (MSI/Legacy).
3225 for (i
= 1; i
< qdev
->rx_ring_count
; i
++) {
3226 rx_ring
= &qdev
->rx_ring
[i
];
3227 /* Only the RSS rings use NAPI on multi irq
3228 * environment. Outbound completion processing
3229 * is done in interrupt context.
3231 if (i
>= qdev
->rss_ring_first_cq_id
) {
3232 napi_disable(&rx_ring
->napi
);
3234 cancel_delayed_work_sync(&rx_ring
->rx_work
);
3238 clear_bit(QL_ADAPTER_UP
, &qdev
->flags
);
3240 ql_disable_interrupts(qdev
);
3242 ql_tx_ring_clean(qdev
);
3244 /* Call netif_napi_del() from common point.
3246 for (i
= qdev
->rss_ring_first_cq_id
; i
< qdev
->rx_ring_count
; i
++)
3247 netif_napi_del(&qdev
->rx_ring
[i
].napi
);
3249 ql_free_rx_buffers(qdev
);
3251 spin_lock(&qdev
->hw_lock
);
3252 status
= ql_adapter_reset(qdev
);
3254 QPRINTK(qdev
, IFDOWN
, ERR
, "reset(func #%d) FAILED!\n",
3256 spin_unlock(&qdev
->hw_lock
);
3260 static int ql_adapter_up(struct ql_adapter
*qdev
)
3264 err
= ql_adapter_initialize(qdev
);
3266 QPRINTK(qdev
, IFUP
, INFO
, "Unable to initialize adapter.\n");
3267 spin_unlock(&qdev
->hw_lock
);
3270 set_bit(QL_ADAPTER_UP
, &qdev
->flags
);
3271 ql_alloc_rx_buffers(qdev
);
3272 if ((ql_read32(qdev
, STS
) & qdev
->port_init
))
3273 netif_carrier_on(qdev
->ndev
);
3274 ql_enable_interrupts(qdev
);
3275 ql_enable_all_completion_interrupts(qdev
);
3276 netif_tx_start_all_queues(qdev
->ndev
);
3280 ql_adapter_reset(qdev
);
3284 static void ql_release_adapter_resources(struct ql_adapter
*qdev
)
3286 ql_free_mem_resources(qdev
);
3290 static int ql_get_adapter_resources(struct ql_adapter
*qdev
)
3294 if (ql_alloc_mem_resources(qdev
)) {
3295 QPRINTK(qdev
, IFUP
, ERR
, "Unable to allocate memory.\n");
3298 status
= ql_request_irq(qdev
);
3303 ql_free_mem_resources(qdev
);
3307 static int qlge_close(struct net_device
*ndev
)
3309 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3312 * Wait for device to recover from a reset.
3313 * (Rarely happens, but possible.)
3315 while (!test_bit(QL_ADAPTER_UP
, &qdev
->flags
))
3317 ql_adapter_down(qdev
);
3318 ql_release_adapter_resources(qdev
);
3322 static int ql_configure_rings(struct ql_adapter
*qdev
)
3325 struct rx_ring
*rx_ring
;
3326 struct tx_ring
*tx_ring
;
3327 int cpu_cnt
= num_online_cpus();
3330 * For each processor present we allocate one
3331 * rx_ring for outbound completions, and one
3332 * rx_ring for inbound completions. Plus there is
3333 * always the one default queue. For the CPU
3334 * counts we end up with the following rx_rings:
3336 * one default queue +
3337 * (CPU count * outbound completion rx_ring) +
3338 * (CPU count * inbound (RSS) completion rx_ring)
3339 * To keep it simple we limit the total number of
3340 * queues to < 32, so we truncate CPU to 8.
3341 * This limitation can be removed when requested.
3344 if (cpu_cnt
> MAX_CPUS
)
3348 * rx_ring[0] is always the default queue.
3350 /* Allocate outbound completion ring for each CPU. */
3351 qdev
->tx_ring_count
= cpu_cnt
;
3352 /* Allocate inbound completion (RSS) ring for each CPU. */
3353 qdev
->rss_ring_count
= cpu_cnt
;
3354 /* cq_id for the first inbound ring handler. */
3355 qdev
->rss_ring_first_cq_id
= cpu_cnt
+ 1;
3357 * qdev->rx_ring_count:
3358 * Total number of rx_rings. This includes the one
3359 * default queue, a number of outbound completion
3360 * handler rx_rings, and the number of inbound
3361 * completion handler rx_rings.
3363 qdev
->rx_ring_count
= qdev
->tx_ring_count
+ qdev
->rss_ring_count
+ 1;
3364 netif_set_gso_max_size(qdev
->ndev
, 65536);
3366 for (i
= 0; i
< qdev
->tx_ring_count
; i
++) {
3367 tx_ring
= &qdev
->tx_ring
[i
];
3368 memset((void *)tx_ring
, 0, sizeof(tx_ring
));
3369 tx_ring
->qdev
= qdev
;
3371 tx_ring
->wq_len
= qdev
->tx_ring_size
;
3373 tx_ring
->wq_len
* sizeof(struct ob_mac_iocb_req
);
3376 * The completion queue ID for the tx rings start
3377 * immediately after the default Q ID, which is zero.
3379 tx_ring
->cq_id
= i
+ 1;
3382 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
3383 rx_ring
= &qdev
->rx_ring
[i
];
3384 memset((void *)rx_ring
, 0, sizeof(rx_ring
));
3385 rx_ring
->qdev
= qdev
;
3387 rx_ring
->cpu
= i
% cpu_cnt
; /* CPU to run handler on. */
3388 if (i
== 0) { /* Default queue at index 0. */
3390 * Default queue handles bcast/mcast plus
3391 * async events. Needs buffers.
3393 rx_ring
->cq_len
= qdev
->rx_ring_size
;
3395 rx_ring
->cq_len
* sizeof(struct ql_net_rsp_iocb
);
3396 rx_ring
->lbq_len
= NUM_LARGE_BUFFERS
;
3398 rx_ring
->lbq_len
* sizeof(__le64
);
3399 rx_ring
->lbq_buf_size
= LARGE_BUFFER_SIZE
;
3400 rx_ring
->sbq_len
= NUM_SMALL_BUFFERS
;
3402 rx_ring
->sbq_len
* sizeof(__le64
);
3403 rx_ring
->sbq_buf_size
= SMALL_BUFFER_SIZE
* 2;
3404 rx_ring
->type
= DEFAULT_Q
;
3405 } else if (i
< qdev
->rss_ring_first_cq_id
) {
3407 * Outbound queue handles outbound completions only.
3409 /* outbound cq is same size as tx_ring it services. */
3410 rx_ring
->cq_len
= qdev
->tx_ring_size
;
3412 rx_ring
->cq_len
* sizeof(struct ql_net_rsp_iocb
);
3413 rx_ring
->lbq_len
= 0;
3414 rx_ring
->lbq_size
= 0;
3415 rx_ring
->lbq_buf_size
= 0;
3416 rx_ring
->sbq_len
= 0;
3417 rx_ring
->sbq_size
= 0;
3418 rx_ring
->sbq_buf_size
= 0;
3419 rx_ring
->type
= TX_Q
;
3420 } else { /* Inbound completions (RSS) queues */
3422 * Inbound queues handle unicast frames only.
3424 rx_ring
->cq_len
= qdev
->rx_ring_size
;
3426 rx_ring
->cq_len
* sizeof(struct ql_net_rsp_iocb
);
3427 rx_ring
->lbq_len
= NUM_LARGE_BUFFERS
;
3429 rx_ring
->lbq_len
* sizeof(__le64
);
3430 rx_ring
->lbq_buf_size
= LARGE_BUFFER_SIZE
;
3431 rx_ring
->sbq_len
= NUM_SMALL_BUFFERS
;
3433 rx_ring
->sbq_len
* sizeof(__le64
);
3434 rx_ring
->sbq_buf_size
= SMALL_BUFFER_SIZE
* 2;
3435 rx_ring
->type
= RX_Q
;
3441 static int qlge_open(struct net_device
*ndev
)
3444 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3446 err
= ql_configure_rings(qdev
);
3450 err
= ql_get_adapter_resources(qdev
);
3454 err
= ql_adapter_up(qdev
);
3461 ql_release_adapter_resources(qdev
);
3465 static int qlge_change_mtu(struct net_device
*ndev
, int new_mtu
)
3467 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3469 if (ndev
->mtu
== 1500 && new_mtu
== 9000) {
3470 QPRINTK(qdev
, IFUP
, ERR
, "Changing to jumbo MTU.\n");
3471 queue_delayed_work(qdev
->workqueue
,
3472 &qdev
->mpi_port_cfg_work
, 0);
3473 } else if (ndev
->mtu
== 9000 && new_mtu
== 1500) {
3474 QPRINTK(qdev
, IFUP
, ERR
, "Changing to normal MTU.\n");
3475 } else if ((ndev
->mtu
== 1500 && new_mtu
== 1500) ||
3476 (ndev
->mtu
== 9000 && new_mtu
== 9000)) {
3480 ndev
->mtu
= new_mtu
;
3484 static struct net_device_stats
*qlge_get_stats(struct net_device
3487 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3488 return &qdev
->stats
;
3491 static void qlge_set_multicast_list(struct net_device
*ndev
)
3493 struct ql_adapter
*qdev
= (struct ql_adapter
*)netdev_priv(ndev
);
3494 struct dev_mc_list
*mc_ptr
;
3497 status
= ql_sem_spinlock(qdev
, SEM_RT_IDX_MASK
);
3500 spin_lock(&qdev
->hw_lock
);
3502 * Set or clear promiscuous mode if a
3503 * transition is taking place.
3505 if (ndev
->flags
& IFF_PROMISC
) {
3506 if (!test_bit(QL_PROMISCUOUS
, &qdev
->flags
)) {
3507 if (ql_set_routing_reg
3508 (qdev
, RT_IDX_PROMISCUOUS_SLOT
, RT_IDX_VALID
, 1)) {
3509 QPRINTK(qdev
, HW
, ERR
,
3510 "Failed to set promiscous mode.\n");
3512 set_bit(QL_PROMISCUOUS
, &qdev
->flags
);
3516 if (test_bit(QL_PROMISCUOUS
, &qdev
->flags
)) {
3517 if (ql_set_routing_reg
3518 (qdev
, RT_IDX_PROMISCUOUS_SLOT
, RT_IDX_VALID
, 0)) {
3519 QPRINTK(qdev
, HW
, ERR
,
3520 "Failed to clear promiscous mode.\n");
3522 clear_bit(QL_PROMISCUOUS
, &qdev
->flags
);
3528 * Set or clear all multicast mode if a
3529 * transition is taking place.
3531 if ((ndev
->flags
& IFF_ALLMULTI
) ||
3532 (ndev
->mc_count
> MAX_MULTICAST_ENTRIES
)) {
3533 if (!test_bit(QL_ALLMULTI
, &qdev
->flags
)) {
3534 if (ql_set_routing_reg
3535 (qdev
, RT_IDX_ALLMULTI_SLOT
, RT_IDX_MCAST
, 1)) {
3536 QPRINTK(qdev
, HW
, ERR
,
3537 "Failed to set all-multi mode.\n");
3539 set_bit(QL_ALLMULTI
, &qdev
->flags
);
3543 if (test_bit(QL_ALLMULTI
, &qdev
->flags
)) {
3544 if (ql_set_routing_reg
3545 (qdev
, RT_IDX_ALLMULTI_SLOT
, RT_IDX_MCAST
, 0)) {
3546 QPRINTK(qdev
, HW
, ERR
,
3547 "Failed to clear all-multi mode.\n");
3549 clear_bit(QL_ALLMULTI
, &qdev
->flags
);
3554 if (ndev
->mc_count
) {
3555 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
3558 for (i
= 0, mc_ptr
= ndev
->mc_list
; mc_ptr
;
3559 i
++, mc_ptr
= mc_ptr
->next
)
3560 if (ql_set_mac_addr_reg(qdev
, (u8
*) mc_ptr
->dmi_addr
,
3561 MAC_ADDR_TYPE_MULTI_MAC
, i
)) {
3562 QPRINTK(qdev
, HW
, ERR
,
3563 "Failed to loadmulticast address.\n");
3564 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
3567 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
3568 if (ql_set_routing_reg
3569 (qdev
, RT_IDX_MCAST_MATCH_SLOT
, RT_IDX_MCAST_MATCH
, 1)) {
3570 QPRINTK(qdev
, HW
, ERR
,
3571 "Failed to set multicast match mode.\n");
3573 set_bit(QL_ALLMULTI
, &qdev
->flags
);
3577 spin_unlock(&qdev
->hw_lock
);
3578 ql_sem_unlock(qdev
, SEM_RT_IDX_MASK
);
3581 static int qlge_set_mac_address(struct net_device
*ndev
, void *p
)
3583 struct ql_adapter
*qdev
= (struct ql_adapter
*)netdev_priv(ndev
);
3584 struct sockaddr
*addr
= p
;
3587 if (netif_running(ndev
))
3590 if (!is_valid_ether_addr(addr
->sa_data
))
3591 return -EADDRNOTAVAIL
;
3592 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
3594 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
3597 spin_lock(&qdev
->hw_lock
);
3598 status
= ql_set_mac_addr_reg(qdev
, (u8
*) ndev
->dev_addr
,
3599 MAC_ADDR_TYPE_CAM_MAC
, qdev
->func
* MAX_CQ
);
3600 spin_unlock(&qdev
->hw_lock
);
3602 QPRINTK(qdev
, HW
, ERR
, "Failed to load MAC address.\n");
3603 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
3607 static void qlge_tx_timeout(struct net_device
*ndev
)
3609 struct ql_adapter
*qdev
= (struct ql_adapter
*)netdev_priv(ndev
);
3610 ql_queue_asic_error(qdev
);
3613 static void ql_asic_reset_work(struct work_struct
*work
)
3615 struct ql_adapter
*qdev
=
3616 container_of(work
, struct ql_adapter
, asic_reset_work
.work
);
3619 status
= ql_adapter_down(qdev
);
3623 status
= ql_adapter_up(qdev
);
3629 QPRINTK(qdev
, IFUP
, ALERT
,
3630 "Driver up/down cycle failed, closing device\n");
3632 set_bit(QL_ADAPTER_UP
, &qdev
->flags
);
3633 dev_close(qdev
->ndev
);
3637 static struct nic_operations qla8012_nic_ops
= {
3638 .get_flash
= ql_get_8012_flash_params
,
3639 .port_initialize
= ql_8012_port_initialize
,
3642 static struct nic_operations qla8000_nic_ops
= {
3643 .get_flash
= ql_get_8000_flash_params
,
3644 .port_initialize
= ql_8000_port_initialize
,
3648 static void ql_get_board_info(struct ql_adapter
*qdev
)
3651 (ql_read32(qdev
, STS
) & STS_FUNC_ID_MASK
) >> STS_FUNC_ID_SHIFT
;
3653 qdev
->xg_sem_mask
= SEM_XGMAC1_MASK
;
3654 qdev
->port_link_up
= STS_PL1
;
3655 qdev
->port_init
= STS_PI1
;
3656 qdev
->mailbox_in
= PROC_ADDR_MPI_RISC
| PROC_ADDR_FUNC2_MBI
;
3657 qdev
->mailbox_out
= PROC_ADDR_MPI_RISC
| PROC_ADDR_FUNC2_MBO
;
3659 qdev
->xg_sem_mask
= SEM_XGMAC0_MASK
;
3660 qdev
->port_link_up
= STS_PL0
;
3661 qdev
->port_init
= STS_PI0
;
3662 qdev
->mailbox_in
= PROC_ADDR_MPI_RISC
| PROC_ADDR_FUNC0_MBI
;
3663 qdev
->mailbox_out
= PROC_ADDR_MPI_RISC
| PROC_ADDR_FUNC0_MBO
;
3665 qdev
->chip_rev_id
= ql_read32(qdev
, REV_ID
);
3666 qdev
->device_id
= qdev
->pdev
->device
;
3667 if (qdev
->device_id
== QLGE_DEVICE_ID_8012
)
3668 qdev
->nic_ops
= &qla8012_nic_ops
;
3669 else if (qdev
->device_id
== QLGE_DEVICE_ID_8000
)
3670 qdev
->nic_ops
= &qla8000_nic_ops
;
3673 static void ql_release_all(struct pci_dev
*pdev
)
3675 struct net_device
*ndev
= pci_get_drvdata(pdev
);
3676 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3678 if (qdev
->workqueue
) {
3679 destroy_workqueue(qdev
->workqueue
);
3680 qdev
->workqueue
= NULL
;
3682 if (qdev
->q_workqueue
) {
3683 destroy_workqueue(qdev
->q_workqueue
);
3684 qdev
->q_workqueue
= NULL
;
3687 iounmap(qdev
->reg_base
);
3688 if (qdev
->doorbell_area
)
3689 iounmap(qdev
->doorbell_area
);
3690 pci_release_regions(pdev
);
3691 pci_set_drvdata(pdev
, NULL
);
3694 static int __devinit
ql_init_device(struct pci_dev
*pdev
,
3695 struct net_device
*ndev
, int cards_found
)
3697 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3701 memset((void *)qdev
, 0, sizeof(qdev
));
3702 err
= pci_enable_device(pdev
);
3704 dev_err(&pdev
->dev
, "PCI device enable failed.\n");
3708 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
3710 dev_err(&pdev
->dev
, PFX
"Cannot find PCI Express capability, "
3714 pci_read_config_word(pdev
, pos
+ PCI_EXP_DEVCTL
, &val16
);
3715 val16
&= ~PCI_EXP_DEVCTL_NOSNOOP_EN
;
3716 val16
|= (PCI_EXP_DEVCTL_CERE
|
3717 PCI_EXP_DEVCTL_NFERE
|
3718 PCI_EXP_DEVCTL_FERE
| PCI_EXP_DEVCTL_URRE
);
3719 pci_write_config_word(pdev
, pos
+ PCI_EXP_DEVCTL
, val16
);
3722 err
= pci_request_regions(pdev
, DRV_NAME
);
3724 dev_err(&pdev
->dev
, "PCI region request failed.\n");
3728 pci_set_master(pdev
);
3729 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3730 set_bit(QL_DMA64
, &qdev
->flags
);
3731 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3733 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
3735 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3739 dev_err(&pdev
->dev
, "No usable DMA configuration.\n");
3743 pci_set_drvdata(pdev
, ndev
);
3745 ioremap_nocache(pci_resource_start(pdev
, 1),
3746 pci_resource_len(pdev
, 1));
3747 if (!qdev
->reg_base
) {
3748 dev_err(&pdev
->dev
, "Register mapping failed.\n");
3753 qdev
->doorbell_area_size
= pci_resource_len(pdev
, 3);
3754 qdev
->doorbell_area
=
3755 ioremap_nocache(pci_resource_start(pdev
, 3),
3756 pci_resource_len(pdev
, 3));
3757 if (!qdev
->doorbell_area
) {
3758 dev_err(&pdev
->dev
, "Doorbell register mapping failed.\n");
3765 ql_get_board_info(qdev
);
3766 qdev
->msg_enable
= netif_msg_init(debug
, default_msg
);
3767 spin_lock_init(&qdev
->hw_lock
);
3768 spin_lock_init(&qdev
->stats_lock
);
3770 /* make sure the EEPROM is good */
3771 err
= qdev
->nic_ops
->get_flash(qdev
);
3773 dev_err(&pdev
->dev
, "Invalid FLASH.\n");
3777 memcpy(ndev
->perm_addr
, ndev
->dev_addr
, ndev
->addr_len
);
3779 /* Set up the default ring sizes. */
3780 qdev
->tx_ring_size
= NUM_TX_RING_ENTRIES
;
3781 qdev
->rx_ring_size
= NUM_RX_RING_ENTRIES
;
3783 /* Set up the coalescing parameters. */
3784 qdev
->rx_coalesce_usecs
= DFLT_COALESCE_WAIT
;
3785 qdev
->tx_coalesce_usecs
= DFLT_COALESCE_WAIT
;
3786 qdev
->rx_max_coalesced_frames
= DFLT_INTER_FRAME_WAIT
;
3787 qdev
->tx_max_coalesced_frames
= DFLT_INTER_FRAME_WAIT
;
3790 * Set up the operating parameters.
3794 qdev
->q_workqueue
= create_workqueue(ndev
->name
);
3795 qdev
->workqueue
= create_singlethread_workqueue(ndev
->name
);
3796 INIT_DELAYED_WORK(&qdev
->asic_reset_work
, ql_asic_reset_work
);
3797 INIT_DELAYED_WORK(&qdev
->mpi_reset_work
, ql_mpi_reset_work
);
3798 INIT_DELAYED_WORK(&qdev
->mpi_work
, ql_mpi_work
);
3799 INIT_DELAYED_WORK(&qdev
->mpi_port_cfg_work
, ql_mpi_port_cfg_work
);
3800 INIT_DELAYED_WORK(&qdev
->mpi_idc_work
, ql_mpi_idc_work
);
3801 mutex_init(&qdev
->mpi_mutex
);
3802 init_completion(&qdev
->ide_completion
);
3805 dev_info(&pdev
->dev
, "%s\n", DRV_STRING
);
3806 dev_info(&pdev
->dev
, "Driver name: %s, Version: %s.\n",
3807 DRV_NAME
, DRV_VERSION
);
3811 ql_release_all(pdev
);
3812 pci_disable_device(pdev
);
3817 static const struct net_device_ops qlge_netdev_ops
= {
3818 .ndo_open
= qlge_open
,
3819 .ndo_stop
= qlge_close
,
3820 .ndo_start_xmit
= qlge_send
,
3821 .ndo_change_mtu
= qlge_change_mtu
,
3822 .ndo_get_stats
= qlge_get_stats
,
3823 .ndo_set_multicast_list
= qlge_set_multicast_list
,
3824 .ndo_set_mac_address
= qlge_set_mac_address
,
3825 .ndo_validate_addr
= eth_validate_addr
,
3826 .ndo_tx_timeout
= qlge_tx_timeout
,
3827 .ndo_vlan_rx_register
= ql_vlan_rx_register
,
3828 .ndo_vlan_rx_add_vid
= ql_vlan_rx_add_vid
,
3829 .ndo_vlan_rx_kill_vid
= ql_vlan_rx_kill_vid
,
3832 static int __devinit
qlge_probe(struct pci_dev
*pdev
,
3833 const struct pci_device_id
*pci_entry
)
3835 struct net_device
*ndev
= NULL
;
3836 struct ql_adapter
*qdev
= NULL
;
3837 static int cards_found
= 0;
3840 ndev
= alloc_etherdev_mq(sizeof(struct ql_adapter
),
3841 min(MAX_CPUS
, (int)num_online_cpus()));
3845 err
= ql_init_device(pdev
, ndev
, cards_found
);
3851 qdev
= netdev_priv(ndev
);
3852 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
3859 | NETIF_F_HW_VLAN_TX
3860 | NETIF_F_HW_VLAN_RX
| NETIF_F_HW_VLAN_FILTER
);
3861 ndev
->features
|= NETIF_F_GRO
;
3863 if (test_bit(QL_DMA64
, &qdev
->flags
))
3864 ndev
->features
|= NETIF_F_HIGHDMA
;
3867 * Set up net_device structure.
3869 ndev
->tx_queue_len
= qdev
->tx_ring_size
;
3870 ndev
->irq
= pdev
->irq
;
3872 ndev
->netdev_ops
= &qlge_netdev_ops
;
3873 SET_ETHTOOL_OPS(ndev
, &qlge_ethtool_ops
);
3874 ndev
->watchdog_timeo
= 10 * HZ
;
3876 err
= register_netdev(ndev
);
3878 dev_err(&pdev
->dev
, "net device registration failed.\n");
3879 ql_release_all(pdev
);
3880 pci_disable_device(pdev
);
3883 netif_carrier_off(ndev
);
3884 ql_display_dev_info(ndev
);
3889 static void __devexit
qlge_remove(struct pci_dev
*pdev
)
3891 struct net_device
*ndev
= pci_get_drvdata(pdev
);
3892 unregister_netdev(ndev
);
3893 ql_release_all(pdev
);
3894 pci_disable_device(pdev
);
3899 * This callback is called by the PCI subsystem whenever
3900 * a PCI bus error is detected.
3902 static pci_ers_result_t
qlge_io_error_detected(struct pci_dev
*pdev
,
3903 enum pci_channel_state state
)
3905 struct net_device
*ndev
= pci_get_drvdata(pdev
);
3906 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3908 if (netif_running(ndev
))
3909 ql_adapter_down(qdev
);
3911 pci_disable_device(pdev
);
3913 /* Request a slot reset. */
3914 return PCI_ERS_RESULT_NEED_RESET
;
3918 * This callback is called after the PCI buss has been reset.
3919 * Basically, this tries to restart the card from scratch.
3920 * This is a shortened version of the device probe/discovery code,
3921 * it resembles the first-half of the () routine.
3923 static pci_ers_result_t
qlge_io_slot_reset(struct pci_dev
*pdev
)
3925 struct net_device
*ndev
= pci_get_drvdata(pdev
);
3926 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3928 if (pci_enable_device(pdev
)) {
3929 QPRINTK(qdev
, IFUP
, ERR
,
3930 "Cannot re-enable PCI device after reset.\n");
3931 return PCI_ERS_RESULT_DISCONNECT
;
3934 pci_set_master(pdev
);
3936 netif_carrier_off(ndev
);
3937 ql_adapter_reset(qdev
);
3939 /* Make sure the EEPROM is good */
3940 memcpy(ndev
->perm_addr
, ndev
->dev_addr
, ndev
->addr_len
);
3942 if (!is_valid_ether_addr(ndev
->perm_addr
)) {
3943 QPRINTK(qdev
, IFUP
, ERR
, "After reset, invalid MAC address.\n");
3944 return PCI_ERS_RESULT_DISCONNECT
;
3947 return PCI_ERS_RESULT_RECOVERED
;
3950 static void qlge_io_resume(struct pci_dev
*pdev
)
3952 struct net_device
*ndev
= pci_get_drvdata(pdev
);
3953 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3955 pci_set_master(pdev
);
3957 if (netif_running(ndev
)) {
3958 if (ql_adapter_up(qdev
)) {
3959 QPRINTK(qdev
, IFUP
, ERR
,
3960 "Device initialization failed after reset.\n");
3965 netif_device_attach(ndev
);
3968 static struct pci_error_handlers qlge_err_handler
= {
3969 .error_detected
= qlge_io_error_detected
,
3970 .slot_reset
= qlge_io_slot_reset
,
3971 .resume
= qlge_io_resume
,
3974 static int qlge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3976 struct net_device
*ndev
= pci_get_drvdata(pdev
);
3977 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3980 netif_device_detach(ndev
);
3982 if (netif_running(ndev
)) {
3983 err
= ql_adapter_down(qdev
);
3988 err
= pci_save_state(pdev
);
3992 pci_disable_device(pdev
);
3994 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4000 static int qlge_resume(struct pci_dev
*pdev
)
4002 struct net_device
*ndev
= pci_get_drvdata(pdev
);
4003 struct ql_adapter
*qdev
= netdev_priv(ndev
);
4006 pci_set_power_state(pdev
, PCI_D0
);
4007 pci_restore_state(pdev
);
4008 err
= pci_enable_device(pdev
);
4010 QPRINTK(qdev
, IFUP
, ERR
, "Cannot enable PCI device from suspend\n");
4013 pci_set_master(pdev
);
4015 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4016 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4018 if (netif_running(ndev
)) {
4019 err
= ql_adapter_up(qdev
);
4024 netif_device_attach(ndev
);
4028 #endif /* CONFIG_PM */
4030 static void qlge_shutdown(struct pci_dev
*pdev
)
4032 qlge_suspend(pdev
, PMSG_SUSPEND
);
4035 static struct pci_driver qlge_driver
= {
4037 .id_table
= qlge_pci_tbl
,
4038 .probe
= qlge_probe
,
4039 .remove
= __devexit_p(qlge_remove
),
4041 .suspend
= qlge_suspend
,
4042 .resume
= qlge_resume
,
4044 .shutdown
= qlge_shutdown
,
4045 .err_handler
= &qlge_err_handler
4048 static int __init
qlge_init_module(void)
4050 return pci_register_driver(&qlge_driver
);
4053 static void __exit
qlge_exit(void)
4055 pci_unregister_driver(&qlge_driver
);
4058 module_init(qlge_init_module
);
4059 module_exit(qlge_exit
);