f61e717adac42d39d80eff5d711621448b77e12d
[deliverable/linux.git] / drivers / net / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <net/ip6_checksum.h>
42
43 #include "qlge.h"
44
45 char qlge_driver_name[] = DRV_NAME;
46 const char qlge_driver_version[] = DRV_VERSION;
47
48 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49 MODULE_DESCRIPTION(DRV_STRING " ");
50 MODULE_LICENSE("GPL");
51 MODULE_VERSION(DRV_VERSION);
52
53 static const u32 default_msg =
54 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55 /* NETIF_MSG_TIMER | */
56 NETIF_MSG_IFDOWN |
57 NETIF_MSG_IFUP |
58 NETIF_MSG_RX_ERR |
59 NETIF_MSG_TX_ERR |
60 /* NETIF_MSG_TX_QUEUED | */
61 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
62 /* NETIF_MSG_PKTDATA | */
63 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65 static int debug = -1; /* defaults above */
66 module_param(debug, int, 0664);
67 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69 #define MSIX_IRQ 0
70 #define MSI_IRQ 1
71 #define LEG_IRQ 2
72 static int qlge_irq_type = MSIX_IRQ;
73 module_param(qlge_irq_type, int, 0664);
74 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
75
76 static int qlge_mpi_coredump;
77 module_param(qlge_mpi_coredump, int, 0);
78 MODULE_PARM_DESC(qlge_mpi_coredump,
79 "Option to enable MPI firmware dump. "
80 "Default is OFF - Do Not allocate memory. ");
81
82 static int qlge_force_coredump;
83 module_param(qlge_force_coredump, int, 0);
84 MODULE_PARM_DESC(qlge_force_coredump,
85 "Option to allow force of firmware core dump. "
86 "Default is OFF - Do not allow.");
87
88 static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
89 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
91 /* required last entry */
92 {0,}
93 };
94
95 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
96
97 static int ql_wol(struct ql_adapter *qdev);
98 static void qlge_set_multicast_list(struct net_device *ndev);
99
100 /* This hardware semaphore causes exclusive access to
101 * resources shared between the NIC driver, MPI firmware,
102 * FCOE firmware and the FC driver.
103 */
104 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
105 {
106 u32 sem_bits = 0;
107
108 switch (sem_mask) {
109 case SEM_XGMAC0_MASK:
110 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
111 break;
112 case SEM_XGMAC1_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
114 break;
115 case SEM_ICB_MASK:
116 sem_bits = SEM_SET << SEM_ICB_SHIFT;
117 break;
118 case SEM_MAC_ADDR_MASK:
119 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
120 break;
121 case SEM_FLASH_MASK:
122 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
123 break;
124 case SEM_PROBE_MASK:
125 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
126 break;
127 case SEM_RT_IDX_MASK:
128 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
129 break;
130 case SEM_PROC_REG_MASK:
131 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
132 break;
133 default:
134 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
135 return -EINVAL;
136 }
137
138 ql_write32(qdev, SEM, sem_bits | sem_mask);
139 return !(ql_read32(qdev, SEM) & sem_bits);
140 }
141
142 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
143 {
144 unsigned int wait_count = 30;
145 do {
146 if (!ql_sem_trylock(qdev, sem_mask))
147 return 0;
148 udelay(100);
149 } while (--wait_count);
150 return -ETIMEDOUT;
151 }
152
153 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
154 {
155 ql_write32(qdev, SEM, sem_mask);
156 ql_read32(qdev, SEM); /* flush */
157 }
158
159 /* This function waits for a specific bit to come ready
160 * in a given register. It is used mostly by the initialize
161 * process, but is also used in kernel thread API such as
162 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
163 */
164 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
165 {
166 u32 temp;
167 int count = UDELAY_COUNT;
168
169 while (count) {
170 temp = ql_read32(qdev, reg);
171
172 /* check for errors */
173 if (temp & err_bit) {
174 netif_alert(qdev, probe, qdev->ndev,
175 "register 0x%.08x access error, value = 0x%.08x!.\n",
176 reg, temp);
177 return -EIO;
178 } else if (temp & bit)
179 return 0;
180 udelay(UDELAY_DELAY);
181 count--;
182 }
183 netif_alert(qdev, probe, qdev->ndev,
184 "Timed out waiting for reg %x to come ready.\n", reg);
185 return -ETIMEDOUT;
186 }
187
188 /* The CFG register is used to download TX and RX control blocks
189 * to the chip. This function waits for an operation to complete.
190 */
191 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
192 {
193 int count = UDELAY_COUNT;
194 u32 temp;
195
196 while (count) {
197 temp = ql_read32(qdev, CFG);
198 if (temp & CFG_LE)
199 return -EIO;
200 if (!(temp & bit))
201 return 0;
202 udelay(UDELAY_DELAY);
203 count--;
204 }
205 return -ETIMEDOUT;
206 }
207
208
209 /* Used to issue init control blocks to hw. Maps control block,
210 * sets address, triggers download, waits for completion.
211 */
212 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
213 u16 q_id)
214 {
215 u64 map;
216 int status = 0;
217 int direction;
218 u32 mask;
219 u32 value;
220
221 direction =
222 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
223 PCI_DMA_FROMDEVICE;
224
225 map = pci_map_single(qdev->pdev, ptr, size, direction);
226 if (pci_dma_mapping_error(qdev->pdev, map)) {
227 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
228 return -ENOMEM;
229 }
230
231 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
232 if (status)
233 return status;
234
235 status = ql_wait_cfg(qdev, bit);
236 if (status) {
237 netif_err(qdev, ifup, qdev->ndev,
238 "Timed out waiting for CFG to come ready.\n");
239 goto exit;
240 }
241
242 ql_write32(qdev, ICB_L, (u32) map);
243 ql_write32(qdev, ICB_H, (u32) (map >> 32));
244
245 mask = CFG_Q_MASK | (bit << 16);
246 value = bit | (q_id << CFG_Q_SHIFT);
247 ql_write32(qdev, CFG, (mask | value));
248
249 /*
250 * Wait for the bit to clear after signaling hw.
251 */
252 status = ql_wait_cfg(qdev, bit);
253 exit:
254 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
255 pci_unmap_single(qdev->pdev, map, size, direction);
256 return status;
257 }
258
259 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
260 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
261 u32 *value)
262 {
263 u32 offset = 0;
264 int status;
265
266 switch (type) {
267 case MAC_ADDR_TYPE_MULTI_MAC:
268 case MAC_ADDR_TYPE_CAM_MAC:
269 {
270 status =
271 ql_wait_reg_rdy(qdev,
272 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
273 if (status)
274 goto exit;
275 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
276 (index << MAC_ADDR_IDX_SHIFT) | /* index */
277 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278 status =
279 ql_wait_reg_rdy(qdev,
280 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
281 if (status)
282 goto exit;
283 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
284 status =
285 ql_wait_reg_rdy(qdev,
286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev,
294 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298 if (type == MAC_ADDR_TYPE_CAM_MAC) {
299 status =
300 ql_wait_reg_rdy(qdev,
301 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
302 if (status)
303 goto exit;
304 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
305 (index << MAC_ADDR_IDX_SHIFT) | /* index */
306 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
307 status =
308 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
309 MAC_ADDR_MR, 0);
310 if (status)
311 goto exit;
312 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
313 }
314 break;
315 }
316 case MAC_ADDR_TYPE_VLAN:
317 case MAC_ADDR_TYPE_MULTI_FLTR:
318 default:
319 netif_crit(qdev, ifup, qdev->ndev,
320 "Address type %d not yet supported.\n", type);
321 status = -EPERM;
322 }
323 exit:
324 return status;
325 }
326
327 /* Set up a MAC, multicast or VLAN address for the
328 * inbound frame matching.
329 */
330 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
331 u16 index)
332 {
333 u32 offset = 0;
334 int status = 0;
335
336 switch (type) {
337 case MAC_ADDR_TYPE_MULTI_MAC:
338 {
339 u32 upper = (addr[0] << 8) | addr[1];
340 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
341 (addr[4] << 8) | (addr[5]);
342
343 status =
344 ql_wait_reg_rdy(qdev,
345 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
346 if (status)
347 goto exit;
348 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
349 (index << MAC_ADDR_IDX_SHIFT) |
350 type | MAC_ADDR_E);
351 ql_write32(qdev, MAC_ADDR_DATA, lower);
352 status =
353 ql_wait_reg_rdy(qdev,
354 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
355 if (status)
356 goto exit;
357 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
358 (index << MAC_ADDR_IDX_SHIFT) |
359 type | MAC_ADDR_E);
360
361 ql_write32(qdev, MAC_ADDR_DATA, upper);
362 status =
363 ql_wait_reg_rdy(qdev,
364 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
365 if (status)
366 goto exit;
367 break;
368 }
369 case MAC_ADDR_TYPE_CAM_MAC:
370 {
371 u32 cam_output;
372 u32 upper = (addr[0] << 8) | addr[1];
373 u32 lower =
374 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
375 (addr[5]);
376
377 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
378 "Adding %s address %pM at index %d in the CAM.\n",
379 type == MAC_ADDR_TYPE_MULTI_MAC ?
380 "MULTICAST" : "UNICAST",
381 addr, index);
382
383 status =
384 ql_wait_reg_rdy(qdev,
385 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
386 if (status)
387 goto exit;
388 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
389 (index << MAC_ADDR_IDX_SHIFT) | /* index */
390 type); /* type */
391 ql_write32(qdev, MAC_ADDR_DATA, lower);
392 status =
393 ql_wait_reg_rdy(qdev,
394 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
395 if (status)
396 goto exit;
397 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
398 (index << MAC_ADDR_IDX_SHIFT) | /* index */
399 type); /* type */
400 ql_write32(qdev, MAC_ADDR_DATA, upper);
401 status =
402 ql_wait_reg_rdy(qdev,
403 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
404 if (status)
405 goto exit;
406 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
407 (index << MAC_ADDR_IDX_SHIFT) | /* index */
408 type); /* type */
409 /* This field should also include the queue id
410 and possibly the function id. Right now we hardcode
411 the route field to NIC core.
412 */
413 cam_output = (CAM_OUT_ROUTE_NIC |
414 (qdev->
415 func << CAM_OUT_FUNC_SHIFT) |
416 (0 << CAM_OUT_CQ_ID_SHIFT));
417 if (qdev->vlgrp)
418 cam_output |= CAM_OUT_RV;
419 /* route to NIC core */
420 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
421 break;
422 }
423 case MAC_ADDR_TYPE_VLAN:
424 {
425 u32 enable_bit = *((u32 *) &addr[0]);
426 /* For VLAN, the addr actually holds a bit that
427 * either enables or disables the vlan id we are
428 * addressing. It's either MAC_ADDR_E on or off.
429 * That's bit-27 we're talking about.
430 */
431 netif_info(qdev, ifup, qdev->ndev,
432 "%s VLAN ID %d %s the CAM.\n",
433 enable_bit ? "Adding" : "Removing",
434 index,
435 enable_bit ? "to" : "from");
436
437 status =
438 ql_wait_reg_rdy(qdev,
439 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
440 if (status)
441 goto exit;
442 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
443 (index << MAC_ADDR_IDX_SHIFT) | /* index */
444 type | /* type */
445 enable_bit); /* enable/disable */
446 break;
447 }
448 case MAC_ADDR_TYPE_MULTI_FLTR:
449 default:
450 netif_crit(qdev, ifup, qdev->ndev,
451 "Address type %d not yet supported.\n", type);
452 status = -EPERM;
453 }
454 exit:
455 return status;
456 }
457
458 /* Set or clear MAC address in hardware. We sometimes
459 * have to clear it to prevent wrong frame routing
460 * especially in a bonding environment.
461 */
462 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
463 {
464 int status;
465 char zero_mac_addr[ETH_ALEN];
466 char *addr;
467
468 if (set) {
469 addr = &qdev->current_mac_addr[0];
470 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
471 "Set Mac addr %pM\n", addr);
472 } else {
473 memset(zero_mac_addr, 0, ETH_ALEN);
474 addr = &zero_mac_addr[0];
475 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
476 "Clearing MAC address\n");
477 }
478 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
479 if (status)
480 return status;
481 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
482 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
483 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
484 if (status)
485 netif_err(qdev, ifup, qdev->ndev,
486 "Failed to init mac address.\n");
487 return status;
488 }
489
490 void ql_link_on(struct ql_adapter *qdev)
491 {
492 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
493 netif_carrier_on(qdev->ndev);
494 ql_set_mac_addr(qdev, 1);
495 }
496
497 void ql_link_off(struct ql_adapter *qdev)
498 {
499 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
500 netif_carrier_off(qdev->ndev);
501 ql_set_mac_addr(qdev, 0);
502 }
503
504 /* Get a specific frame routing value from the CAM.
505 * Used for debug and reg dump.
506 */
507 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
508 {
509 int status = 0;
510
511 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
512 if (status)
513 goto exit;
514
515 ql_write32(qdev, RT_IDX,
516 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
517 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
518 if (status)
519 goto exit;
520 *value = ql_read32(qdev, RT_DATA);
521 exit:
522 return status;
523 }
524
525 /* The NIC function for this chip has 16 routing indexes. Each one can be used
526 * to route different frame types to various inbound queues. We send broadcast/
527 * multicast/error frames to the default queue for slow handling,
528 * and CAM hit/RSS frames to the fast handling queues.
529 */
530 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
531 int enable)
532 {
533 int status = -EINVAL; /* Return error if no mask match. */
534 u32 value = 0;
535
536 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
537 "%s %s mask %s the routing reg.\n",
538 enable ? "Adding" : "Removing",
539 index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
540 index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
541 index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
542 index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
543 index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
544 index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
545 index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
546 index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
547 index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
548 index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
549 index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
550 index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
551 index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
552 index == RT_IDX_UNUSED013 ? "UNUSED13" :
553 index == RT_IDX_UNUSED014 ? "UNUSED14" :
554 index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
555 "(Bad index != RT_IDX)",
556 enable ? "to" : "from");
557
558 switch (mask) {
559 case RT_IDX_CAM_HIT:
560 {
561 value = RT_IDX_DST_CAM_Q | /* dest */
562 RT_IDX_TYPE_NICQ | /* type */
563 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
564 break;
565 }
566 case RT_IDX_VALID: /* Promiscuous Mode frames. */
567 {
568 value = RT_IDX_DST_DFLT_Q | /* dest */
569 RT_IDX_TYPE_NICQ | /* type */
570 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
571 break;
572 }
573 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
574 {
575 value = RT_IDX_DST_DFLT_Q | /* dest */
576 RT_IDX_TYPE_NICQ | /* type */
577 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
578 break;
579 }
580 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
581 {
582 value = RT_IDX_DST_DFLT_Q | /* dest */
583 RT_IDX_TYPE_NICQ | /* type */
584 (RT_IDX_IP_CSUM_ERR_SLOT <<
585 RT_IDX_IDX_SHIFT); /* index */
586 break;
587 }
588 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
589 {
590 value = RT_IDX_DST_DFLT_Q | /* dest */
591 RT_IDX_TYPE_NICQ | /* type */
592 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
593 RT_IDX_IDX_SHIFT); /* index */
594 break;
595 }
596 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
597 {
598 value = RT_IDX_DST_DFLT_Q | /* dest */
599 RT_IDX_TYPE_NICQ | /* type */
600 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
601 break;
602 }
603 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
604 {
605 value = RT_IDX_DST_DFLT_Q | /* dest */
606 RT_IDX_TYPE_NICQ | /* type */
607 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
608 break;
609 }
610 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
611 {
612 value = RT_IDX_DST_DFLT_Q | /* dest */
613 RT_IDX_TYPE_NICQ | /* type */
614 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
615 break;
616 }
617 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
618 {
619 value = RT_IDX_DST_RSS | /* dest */
620 RT_IDX_TYPE_NICQ | /* type */
621 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
622 break;
623 }
624 case 0: /* Clear the E-bit on an entry. */
625 {
626 value = RT_IDX_DST_DFLT_Q | /* dest */
627 RT_IDX_TYPE_NICQ | /* type */
628 (index << RT_IDX_IDX_SHIFT);/* index */
629 break;
630 }
631 default:
632 netif_err(qdev, ifup, qdev->ndev,
633 "Mask type %d not yet supported.\n", mask);
634 status = -EPERM;
635 goto exit;
636 }
637
638 if (value) {
639 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
640 if (status)
641 goto exit;
642 value |= (enable ? RT_IDX_E : 0);
643 ql_write32(qdev, RT_IDX, value);
644 ql_write32(qdev, RT_DATA, enable ? mask : 0);
645 }
646 exit:
647 return status;
648 }
649
650 static void ql_enable_interrupts(struct ql_adapter *qdev)
651 {
652 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
653 }
654
655 static void ql_disable_interrupts(struct ql_adapter *qdev)
656 {
657 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
658 }
659
660 /* If we're running with multiple MSI-X vectors then we enable on the fly.
661 * Otherwise, we may have multiple outstanding workers and don't want to
662 * enable until the last one finishes. In this case, the irq_cnt gets
663 * incremented every time we queue a worker and decremented every time
664 * a worker finishes. Once it hits zero we enable the interrupt.
665 */
666 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
667 {
668 u32 var = 0;
669 unsigned long hw_flags = 0;
670 struct intr_context *ctx = qdev->intr_context + intr;
671
672 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
673 /* Always enable if we're MSIX multi interrupts and
674 * it's not the default (zeroeth) interrupt.
675 */
676 ql_write32(qdev, INTR_EN,
677 ctx->intr_en_mask);
678 var = ql_read32(qdev, STS);
679 return var;
680 }
681
682 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
683 if (atomic_dec_and_test(&ctx->irq_cnt)) {
684 ql_write32(qdev, INTR_EN,
685 ctx->intr_en_mask);
686 var = ql_read32(qdev, STS);
687 }
688 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
689 return var;
690 }
691
692 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
693 {
694 u32 var = 0;
695 struct intr_context *ctx;
696
697 /* HW disables for us if we're MSIX multi interrupts and
698 * it's not the default (zeroeth) interrupt.
699 */
700 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
701 return 0;
702
703 ctx = qdev->intr_context + intr;
704 spin_lock(&qdev->hw_lock);
705 if (!atomic_read(&ctx->irq_cnt)) {
706 ql_write32(qdev, INTR_EN,
707 ctx->intr_dis_mask);
708 var = ql_read32(qdev, STS);
709 }
710 atomic_inc(&ctx->irq_cnt);
711 spin_unlock(&qdev->hw_lock);
712 return var;
713 }
714
715 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
716 {
717 int i;
718 for (i = 0; i < qdev->intr_count; i++) {
719 /* The enable call does a atomic_dec_and_test
720 * and enables only if the result is zero.
721 * So we precharge it here.
722 */
723 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
724 i == 0))
725 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
726 ql_enable_completion_interrupt(qdev, i);
727 }
728
729 }
730
731 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
732 {
733 int status, i;
734 u16 csum = 0;
735 __le16 *flash = (__le16 *)&qdev->flash;
736
737 status = strncmp((char *)&qdev->flash, str, 4);
738 if (status) {
739 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
740 return status;
741 }
742
743 for (i = 0; i < size; i++)
744 csum += le16_to_cpu(*flash++);
745
746 if (csum)
747 netif_err(qdev, ifup, qdev->ndev,
748 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
749
750 return csum;
751 }
752
753 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
754 {
755 int status = 0;
756 /* wait for reg to come ready */
757 status = ql_wait_reg_rdy(qdev,
758 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
759 if (status)
760 goto exit;
761 /* set up for reg read */
762 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
763 /* wait for reg to come ready */
764 status = ql_wait_reg_rdy(qdev,
765 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
766 if (status)
767 goto exit;
768 /* This data is stored on flash as an array of
769 * __le32. Since ql_read32() returns cpu endian
770 * we need to swap it back.
771 */
772 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
773 exit:
774 return status;
775 }
776
777 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
778 {
779 u32 i, size;
780 int status;
781 __le32 *p = (__le32 *)&qdev->flash;
782 u32 offset;
783 u8 mac_addr[6];
784
785 /* Get flash offset for function and adjust
786 * for dword access.
787 */
788 if (!qdev->port)
789 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
790 else
791 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
792
793 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
794 return -ETIMEDOUT;
795
796 size = sizeof(struct flash_params_8000) / sizeof(u32);
797 for (i = 0; i < size; i++, p++) {
798 status = ql_read_flash_word(qdev, i+offset, p);
799 if (status) {
800 netif_err(qdev, ifup, qdev->ndev,
801 "Error reading flash.\n");
802 goto exit;
803 }
804 }
805
806 status = ql_validate_flash(qdev,
807 sizeof(struct flash_params_8000) / sizeof(u16),
808 "8000");
809 if (status) {
810 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
811 status = -EINVAL;
812 goto exit;
813 }
814
815 /* Extract either manufacturer or BOFM modified
816 * MAC address.
817 */
818 if (qdev->flash.flash_params_8000.data_type1 == 2)
819 memcpy(mac_addr,
820 qdev->flash.flash_params_8000.mac_addr1,
821 qdev->ndev->addr_len);
822 else
823 memcpy(mac_addr,
824 qdev->flash.flash_params_8000.mac_addr,
825 qdev->ndev->addr_len);
826
827 if (!is_valid_ether_addr(mac_addr)) {
828 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
829 status = -EINVAL;
830 goto exit;
831 }
832
833 memcpy(qdev->ndev->dev_addr,
834 mac_addr,
835 qdev->ndev->addr_len);
836
837 exit:
838 ql_sem_unlock(qdev, SEM_FLASH_MASK);
839 return status;
840 }
841
842 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
843 {
844 int i;
845 int status;
846 __le32 *p = (__le32 *)&qdev->flash;
847 u32 offset = 0;
848 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
849
850 /* Second function's parameters follow the first
851 * function's.
852 */
853 if (qdev->port)
854 offset = size;
855
856 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
857 return -ETIMEDOUT;
858
859 for (i = 0; i < size; i++, p++) {
860 status = ql_read_flash_word(qdev, i+offset, p);
861 if (status) {
862 netif_err(qdev, ifup, qdev->ndev,
863 "Error reading flash.\n");
864 goto exit;
865 }
866
867 }
868
869 status = ql_validate_flash(qdev,
870 sizeof(struct flash_params_8012) / sizeof(u16),
871 "8012");
872 if (status) {
873 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
874 status = -EINVAL;
875 goto exit;
876 }
877
878 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
879 status = -EINVAL;
880 goto exit;
881 }
882
883 memcpy(qdev->ndev->dev_addr,
884 qdev->flash.flash_params_8012.mac_addr,
885 qdev->ndev->addr_len);
886
887 exit:
888 ql_sem_unlock(qdev, SEM_FLASH_MASK);
889 return status;
890 }
891
892 /* xgmac register are located behind the xgmac_addr and xgmac_data
893 * register pair. Each read/write requires us to wait for the ready
894 * bit before reading/writing the data.
895 */
896 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
897 {
898 int status;
899 /* wait for reg to come ready */
900 status = ql_wait_reg_rdy(qdev,
901 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
902 if (status)
903 return status;
904 /* write the data to the data reg */
905 ql_write32(qdev, XGMAC_DATA, data);
906 /* trigger the write */
907 ql_write32(qdev, XGMAC_ADDR, reg);
908 return status;
909 }
910
911 /* xgmac register are located behind the xgmac_addr and xgmac_data
912 * register pair. Each read/write requires us to wait for the ready
913 * bit before reading/writing the data.
914 */
915 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
916 {
917 int status = 0;
918 /* wait for reg to come ready */
919 status = ql_wait_reg_rdy(qdev,
920 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
921 if (status)
922 goto exit;
923 /* set up for reg read */
924 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
925 /* wait for reg to come ready */
926 status = ql_wait_reg_rdy(qdev,
927 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
928 if (status)
929 goto exit;
930 /* get the data */
931 *data = ql_read32(qdev, XGMAC_DATA);
932 exit:
933 return status;
934 }
935
936 /* This is used for reading the 64-bit statistics regs. */
937 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
938 {
939 int status = 0;
940 u32 hi = 0;
941 u32 lo = 0;
942
943 status = ql_read_xgmac_reg(qdev, reg, &lo);
944 if (status)
945 goto exit;
946
947 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
948 if (status)
949 goto exit;
950
951 *data = (u64) lo | ((u64) hi << 32);
952
953 exit:
954 return status;
955 }
956
957 static int ql_8000_port_initialize(struct ql_adapter *qdev)
958 {
959 int status;
960 /*
961 * Get MPI firmware version for driver banner
962 * and ethool info.
963 */
964 status = ql_mb_about_fw(qdev);
965 if (status)
966 goto exit;
967 status = ql_mb_get_fw_state(qdev);
968 if (status)
969 goto exit;
970 /* Wake up a worker to get/set the TX/RX frame sizes. */
971 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
972 exit:
973 return status;
974 }
975
976 /* Take the MAC Core out of reset.
977 * Enable statistics counting.
978 * Take the transmitter/receiver out of reset.
979 * This functionality may be done in the MPI firmware at a
980 * later date.
981 */
982 static int ql_8012_port_initialize(struct ql_adapter *qdev)
983 {
984 int status = 0;
985 u32 data;
986
987 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
988 /* Another function has the semaphore, so
989 * wait for the port init bit to come ready.
990 */
991 netif_info(qdev, link, qdev->ndev,
992 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
993 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
994 if (status) {
995 netif_crit(qdev, link, qdev->ndev,
996 "Port initialize timed out.\n");
997 }
998 return status;
999 }
1000
1001 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
1002 /* Set the core reset. */
1003 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
1004 if (status)
1005 goto end;
1006 data |= GLOBAL_CFG_RESET;
1007 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
1008 if (status)
1009 goto end;
1010
1011 /* Clear the core reset and turn on jumbo for receiver. */
1012 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
1013 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
1014 data |= GLOBAL_CFG_TX_STAT_EN;
1015 data |= GLOBAL_CFG_RX_STAT_EN;
1016 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
1017 if (status)
1018 goto end;
1019
1020 /* Enable transmitter, and clear it's reset. */
1021 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
1022 if (status)
1023 goto end;
1024 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
1025 data |= TX_CFG_EN; /* Enable the transmitter. */
1026 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
1027 if (status)
1028 goto end;
1029
1030 /* Enable receiver and clear it's reset. */
1031 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1032 if (status)
1033 goto end;
1034 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1035 data |= RX_CFG_EN; /* Enable the receiver. */
1036 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1037 if (status)
1038 goto end;
1039
1040 /* Turn on jumbo. */
1041 status =
1042 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1043 if (status)
1044 goto end;
1045 status =
1046 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1047 if (status)
1048 goto end;
1049
1050 /* Signal to the world that the port is enabled. */
1051 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1052 end:
1053 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1054 return status;
1055 }
1056
1057 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1058 {
1059 return PAGE_SIZE << qdev->lbq_buf_order;
1060 }
1061
1062 /* Get the next large buffer. */
1063 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1064 {
1065 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1066 rx_ring->lbq_curr_idx++;
1067 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1068 rx_ring->lbq_curr_idx = 0;
1069 rx_ring->lbq_free_cnt++;
1070 return lbq_desc;
1071 }
1072
1073 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1074 struct rx_ring *rx_ring)
1075 {
1076 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1077
1078 pci_dma_sync_single_for_cpu(qdev->pdev,
1079 dma_unmap_addr(lbq_desc, mapaddr),
1080 rx_ring->lbq_buf_size,
1081 PCI_DMA_FROMDEVICE);
1082
1083 /* If it's the last chunk of our master page then
1084 * we unmap it.
1085 */
1086 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1087 == ql_lbq_block_size(qdev))
1088 pci_unmap_page(qdev->pdev,
1089 lbq_desc->p.pg_chunk.map,
1090 ql_lbq_block_size(qdev),
1091 PCI_DMA_FROMDEVICE);
1092 return lbq_desc;
1093 }
1094
1095 /* Get the next small buffer. */
1096 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1097 {
1098 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1099 rx_ring->sbq_curr_idx++;
1100 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1101 rx_ring->sbq_curr_idx = 0;
1102 rx_ring->sbq_free_cnt++;
1103 return sbq_desc;
1104 }
1105
1106 /* Update an rx ring index. */
1107 static void ql_update_cq(struct rx_ring *rx_ring)
1108 {
1109 rx_ring->cnsmr_idx++;
1110 rx_ring->curr_entry++;
1111 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1112 rx_ring->cnsmr_idx = 0;
1113 rx_ring->curr_entry = rx_ring->cq_base;
1114 }
1115 }
1116
1117 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1118 {
1119 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1120 }
1121
1122 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1123 struct bq_desc *lbq_desc)
1124 {
1125 if (!rx_ring->pg_chunk.page) {
1126 u64 map;
1127 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1128 GFP_ATOMIC,
1129 qdev->lbq_buf_order);
1130 if (unlikely(!rx_ring->pg_chunk.page)) {
1131 netif_err(qdev, drv, qdev->ndev,
1132 "page allocation failed.\n");
1133 return -ENOMEM;
1134 }
1135 rx_ring->pg_chunk.offset = 0;
1136 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1137 0, ql_lbq_block_size(qdev),
1138 PCI_DMA_FROMDEVICE);
1139 if (pci_dma_mapping_error(qdev->pdev, map)) {
1140 __free_pages(rx_ring->pg_chunk.page,
1141 qdev->lbq_buf_order);
1142 netif_err(qdev, drv, qdev->ndev,
1143 "PCI mapping failed.\n");
1144 return -ENOMEM;
1145 }
1146 rx_ring->pg_chunk.map = map;
1147 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1148 }
1149
1150 /* Copy the current master pg_chunk info
1151 * to the current descriptor.
1152 */
1153 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1154
1155 /* Adjust the master page chunk for next
1156 * buffer get.
1157 */
1158 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1159 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1160 rx_ring->pg_chunk.page = NULL;
1161 lbq_desc->p.pg_chunk.last_flag = 1;
1162 } else {
1163 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1164 get_page(rx_ring->pg_chunk.page);
1165 lbq_desc->p.pg_chunk.last_flag = 0;
1166 }
1167 return 0;
1168 }
1169 /* Process (refill) a large buffer queue. */
1170 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1171 {
1172 u32 clean_idx = rx_ring->lbq_clean_idx;
1173 u32 start_idx = clean_idx;
1174 struct bq_desc *lbq_desc;
1175 u64 map;
1176 int i;
1177
1178 while (rx_ring->lbq_free_cnt > 32) {
1179 for (i = 0; i < 16; i++) {
1180 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1181 "lbq: try cleaning clean_idx = %d.\n",
1182 clean_idx);
1183 lbq_desc = &rx_ring->lbq[clean_idx];
1184 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1185 netif_err(qdev, ifup, qdev->ndev,
1186 "Could not get a page chunk.\n");
1187 return;
1188 }
1189
1190 map = lbq_desc->p.pg_chunk.map +
1191 lbq_desc->p.pg_chunk.offset;
1192 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1193 dma_unmap_len_set(lbq_desc, maplen,
1194 rx_ring->lbq_buf_size);
1195 *lbq_desc->addr = cpu_to_le64(map);
1196
1197 pci_dma_sync_single_for_device(qdev->pdev, map,
1198 rx_ring->lbq_buf_size,
1199 PCI_DMA_FROMDEVICE);
1200 clean_idx++;
1201 if (clean_idx == rx_ring->lbq_len)
1202 clean_idx = 0;
1203 }
1204
1205 rx_ring->lbq_clean_idx = clean_idx;
1206 rx_ring->lbq_prod_idx += 16;
1207 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1208 rx_ring->lbq_prod_idx = 0;
1209 rx_ring->lbq_free_cnt -= 16;
1210 }
1211
1212 if (start_idx != clean_idx) {
1213 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1214 "lbq: updating prod idx = %d.\n",
1215 rx_ring->lbq_prod_idx);
1216 ql_write_db_reg(rx_ring->lbq_prod_idx,
1217 rx_ring->lbq_prod_idx_db_reg);
1218 }
1219 }
1220
1221 /* Process (refill) a small buffer queue. */
1222 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1223 {
1224 u32 clean_idx = rx_ring->sbq_clean_idx;
1225 u32 start_idx = clean_idx;
1226 struct bq_desc *sbq_desc;
1227 u64 map;
1228 int i;
1229
1230 while (rx_ring->sbq_free_cnt > 16) {
1231 for (i = 0; i < 16; i++) {
1232 sbq_desc = &rx_ring->sbq[clean_idx];
1233 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1234 "sbq: try cleaning clean_idx = %d.\n",
1235 clean_idx);
1236 if (sbq_desc->p.skb == NULL) {
1237 netif_printk(qdev, rx_status, KERN_DEBUG,
1238 qdev->ndev,
1239 "sbq: getting new skb for index %d.\n",
1240 sbq_desc->index);
1241 sbq_desc->p.skb =
1242 netdev_alloc_skb(qdev->ndev,
1243 SMALL_BUFFER_SIZE);
1244 if (sbq_desc->p.skb == NULL) {
1245 netif_err(qdev, probe, qdev->ndev,
1246 "Couldn't get an skb.\n");
1247 rx_ring->sbq_clean_idx = clean_idx;
1248 return;
1249 }
1250 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1251 map = pci_map_single(qdev->pdev,
1252 sbq_desc->p.skb->data,
1253 rx_ring->sbq_buf_size,
1254 PCI_DMA_FROMDEVICE);
1255 if (pci_dma_mapping_error(qdev->pdev, map)) {
1256 netif_err(qdev, ifup, qdev->ndev,
1257 "PCI mapping failed.\n");
1258 rx_ring->sbq_clean_idx = clean_idx;
1259 dev_kfree_skb_any(sbq_desc->p.skb);
1260 sbq_desc->p.skb = NULL;
1261 return;
1262 }
1263 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1264 dma_unmap_len_set(sbq_desc, maplen,
1265 rx_ring->sbq_buf_size);
1266 *sbq_desc->addr = cpu_to_le64(map);
1267 }
1268
1269 clean_idx++;
1270 if (clean_idx == rx_ring->sbq_len)
1271 clean_idx = 0;
1272 }
1273 rx_ring->sbq_clean_idx = clean_idx;
1274 rx_ring->sbq_prod_idx += 16;
1275 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1276 rx_ring->sbq_prod_idx = 0;
1277 rx_ring->sbq_free_cnt -= 16;
1278 }
1279
1280 if (start_idx != clean_idx) {
1281 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1282 "sbq: updating prod idx = %d.\n",
1283 rx_ring->sbq_prod_idx);
1284 ql_write_db_reg(rx_ring->sbq_prod_idx,
1285 rx_ring->sbq_prod_idx_db_reg);
1286 }
1287 }
1288
1289 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1290 struct rx_ring *rx_ring)
1291 {
1292 ql_update_sbq(qdev, rx_ring);
1293 ql_update_lbq(qdev, rx_ring);
1294 }
1295
1296 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1297 * fails at some stage, or from the interrupt when a tx completes.
1298 */
1299 static void ql_unmap_send(struct ql_adapter *qdev,
1300 struct tx_ring_desc *tx_ring_desc, int mapped)
1301 {
1302 int i;
1303 for (i = 0; i < mapped; i++) {
1304 if (i == 0 || (i == 7 && mapped > 7)) {
1305 /*
1306 * Unmap the skb->data area, or the
1307 * external sglist (AKA the Outbound
1308 * Address List (OAL)).
1309 * If its the zeroeth element, then it's
1310 * the skb->data area. If it's the 7th
1311 * element and there is more than 6 frags,
1312 * then its an OAL.
1313 */
1314 if (i == 7) {
1315 netif_printk(qdev, tx_done, KERN_DEBUG,
1316 qdev->ndev,
1317 "unmapping OAL area.\n");
1318 }
1319 pci_unmap_single(qdev->pdev,
1320 dma_unmap_addr(&tx_ring_desc->map[i],
1321 mapaddr),
1322 dma_unmap_len(&tx_ring_desc->map[i],
1323 maplen),
1324 PCI_DMA_TODEVICE);
1325 } else {
1326 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1327 "unmapping frag %d.\n", i);
1328 pci_unmap_page(qdev->pdev,
1329 dma_unmap_addr(&tx_ring_desc->map[i],
1330 mapaddr),
1331 dma_unmap_len(&tx_ring_desc->map[i],
1332 maplen), PCI_DMA_TODEVICE);
1333 }
1334 }
1335
1336 }
1337
1338 /* Map the buffers for this transmit. This will return
1339 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1340 */
1341 static int ql_map_send(struct ql_adapter *qdev,
1342 struct ob_mac_iocb_req *mac_iocb_ptr,
1343 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1344 {
1345 int len = skb_headlen(skb);
1346 dma_addr_t map;
1347 int frag_idx, err, map_idx = 0;
1348 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1349 int frag_cnt = skb_shinfo(skb)->nr_frags;
1350
1351 if (frag_cnt) {
1352 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1353 "frag_cnt = %d.\n", frag_cnt);
1354 }
1355 /*
1356 * Map the skb buffer first.
1357 */
1358 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1359
1360 err = pci_dma_mapping_error(qdev->pdev, map);
1361 if (err) {
1362 netif_err(qdev, tx_queued, qdev->ndev,
1363 "PCI mapping failed with error: %d\n", err);
1364
1365 return NETDEV_TX_BUSY;
1366 }
1367
1368 tbd->len = cpu_to_le32(len);
1369 tbd->addr = cpu_to_le64(map);
1370 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1371 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1372 map_idx++;
1373
1374 /*
1375 * This loop fills the remainder of the 8 address descriptors
1376 * in the IOCB. If there are more than 7 fragments, then the
1377 * eighth address desc will point to an external list (OAL).
1378 * When this happens, the remainder of the frags will be stored
1379 * in this list.
1380 */
1381 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1382 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1383 tbd++;
1384 if (frag_idx == 6 && frag_cnt > 7) {
1385 /* Let's tack on an sglist.
1386 * Our control block will now
1387 * look like this:
1388 * iocb->seg[0] = skb->data
1389 * iocb->seg[1] = frag[0]
1390 * iocb->seg[2] = frag[1]
1391 * iocb->seg[3] = frag[2]
1392 * iocb->seg[4] = frag[3]
1393 * iocb->seg[5] = frag[4]
1394 * iocb->seg[6] = frag[5]
1395 * iocb->seg[7] = ptr to OAL (external sglist)
1396 * oal->seg[0] = frag[6]
1397 * oal->seg[1] = frag[7]
1398 * oal->seg[2] = frag[8]
1399 * oal->seg[3] = frag[9]
1400 * oal->seg[4] = frag[10]
1401 * etc...
1402 */
1403 /* Tack on the OAL in the eighth segment of IOCB. */
1404 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1405 sizeof(struct oal),
1406 PCI_DMA_TODEVICE);
1407 err = pci_dma_mapping_error(qdev->pdev, map);
1408 if (err) {
1409 netif_err(qdev, tx_queued, qdev->ndev,
1410 "PCI mapping outbound address list with error: %d\n",
1411 err);
1412 goto map_error;
1413 }
1414
1415 tbd->addr = cpu_to_le64(map);
1416 /*
1417 * The length is the number of fragments
1418 * that remain to be mapped times the length
1419 * of our sglist (OAL).
1420 */
1421 tbd->len =
1422 cpu_to_le32((sizeof(struct tx_buf_desc) *
1423 (frag_cnt - frag_idx)) | TX_DESC_C);
1424 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1425 map);
1426 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1427 sizeof(struct oal));
1428 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1429 map_idx++;
1430 }
1431
1432 map =
1433 pci_map_page(qdev->pdev, frag->page,
1434 frag->page_offset, frag->size,
1435 PCI_DMA_TODEVICE);
1436
1437 err = pci_dma_mapping_error(qdev->pdev, map);
1438 if (err) {
1439 netif_err(qdev, tx_queued, qdev->ndev,
1440 "PCI mapping frags failed with error: %d.\n",
1441 err);
1442 goto map_error;
1443 }
1444
1445 tbd->addr = cpu_to_le64(map);
1446 tbd->len = cpu_to_le32(frag->size);
1447 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1448 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1449 frag->size);
1450
1451 }
1452 /* Save the number of segments we've mapped. */
1453 tx_ring_desc->map_cnt = map_idx;
1454 /* Terminate the last segment. */
1455 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1456 return NETDEV_TX_OK;
1457
1458 map_error:
1459 /*
1460 * If the first frag mapping failed, then i will be zero.
1461 * This causes the unmap of the skb->data area. Otherwise
1462 * we pass in the number of frags that mapped successfully
1463 * so they can be umapped.
1464 */
1465 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1466 return NETDEV_TX_BUSY;
1467 }
1468
1469 /* Process an inbound completion from an rx ring. */
1470 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1471 struct rx_ring *rx_ring,
1472 struct ib_mac_iocb_rsp *ib_mac_rsp,
1473 u32 length,
1474 u16 vlan_id)
1475 {
1476 struct sk_buff *skb;
1477 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1478 struct skb_frag_struct *rx_frag;
1479 int nr_frags;
1480 struct napi_struct *napi = &rx_ring->napi;
1481
1482 napi->dev = qdev->ndev;
1483
1484 skb = napi_get_frags(napi);
1485 if (!skb) {
1486 netif_err(qdev, drv, qdev->ndev,
1487 "Couldn't get an skb, exiting.\n");
1488 rx_ring->rx_dropped++;
1489 put_page(lbq_desc->p.pg_chunk.page);
1490 return;
1491 }
1492 prefetch(lbq_desc->p.pg_chunk.va);
1493 rx_frag = skb_shinfo(skb)->frags;
1494 nr_frags = skb_shinfo(skb)->nr_frags;
1495 rx_frag += nr_frags;
1496 rx_frag->page = lbq_desc->p.pg_chunk.page;
1497 rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
1498 rx_frag->size = length;
1499
1500 skb->len += length;
1501 skb->data_len += length;
1502 skb->truesize += length;
1503 skb_shinfo(skb)->nr_frags++;
1504
1505 rx_ring->rx_packets++;
1506 rx_ring->rx_bytes += length;
1507 skb->ip_summed = CHECKSUM_UNNECESSARY;
1508 skb_record_rx_queue(skb, rx_ring->cq_id);
1509 if (qdev->vlgrp && (vlan_id != 0xffff))
1510 vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
1511 else
1512 napi_gro_frags(napi);
1513 }
1514
1515 /* Process an inbound completion from an rx ring. */
1516 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1517 struct rx_ring *rx_ring,
1518 struct ib_mac_iocb_rsp *ib_mac_rsp,
1519 u32 length,
1520 u16 vlan_id)
1521 {
1522 struct net_device *ndev = qdev->ndev;
1523 struct sk_buff *skb = NULL;
1524 void *addr;
1525 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1526 struct napi_struct *napi = &rx_ring->napi;
1527
1528 skb = netdev_alloc_skb(ndev, length);
1529 if (!skb) {
1530 netif_err(qdev, drv, qdev->ndev,
1531 "Couldn't get an skb, need to unwind!.\n");
1532 rx_ring->rx_dropped++;
1533 put_page(lbq_desc->p.pg_chunk.page);
1534 return;
1535 }
1536
1537 addr = lbq_desc->p.pg_chunk.va;
1538 prefetch(addr);
1539
1540
1541 /* Frame error, so drop the packet. */
1542 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1543 netif_info(qdev, drv, qdev->ndev,
1544 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1545 rx_ring->rx_errors++;
1546 goto err_out;
1547 }
1548
1549 /* The max framesize filter on this chip is set higher than
1550 * MTU since FCoE uses 2k frames.
1551 */
1552 if (skb->len > ndev->mtu + ETH_HLEN) {
1553 netif_err(qdev, drv, qdev->ndev,
1554 "Segment too small, dropping.\n");
1555 rx_ring->rx_dropped++;
1556 goto err_out;
1557 }
1558 memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
1559 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1560 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1561 length);
1562 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1563 lbq_desc->p.pg_chunk.offset+ETH_HLEN,
1564 length-ETH_HLEN);
1565 skb->len += length-ETH_HLEN;
1566 skb->data_len += length-ETH_HLEN;
1567 skb->truesize += length-ETH_HLEN;
1568
1569 rx_ring->rx_packets++;
1570 rx_ring->rx_bytes += skb->len;
1571 skb->protocol = eth_type_trans(skb, ndev);
1572 skb_checksum_none_assert(skb);
1573
1574 if (qdev->rx_csum &&
1575 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1576 /* TCP frame. */
1577 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1578 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1579 "TCP checksum done!\n");
1580 skb->ip_summed = CHECKSUM_UNNECESSARY;
1581 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1582 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1583 /* Unfragmented ipv4 UDP frame. */
1584 struct iphdr *iph = (struct iphdr *) skb->data;
1585 if (!(iph->frag_off &
1586 cpu_to_be16(IP_MF|IP_OFFSET))) {
1587 skb->ip_summed = CHECKSUM_UNNECESSARY;
1588 netif_printk(qdev, rx_status, KERN_DEBUG,
1589 qdev->ndev,
1590 "TCP checksum done!\n");
1591 }
1592 }
1593 }
1594
1595 skb_record_rx_queue(skb, rx_ring->cq_id);
1596 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1597 if (qdev->vlgrp && (vlan_id != 0xffff))
1598 vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
1599 else
1600 napi_gro_receive(napi, skb);
1601 } else {
1602 if (qdev->vlgrp && (vlan_id != 0xffff))
1603 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1604 else
1605 netif_receive_skb(skb);
1606 }
1607 return;
1608 err_out:
1609 dev_kfree_skb_any(skb);
1610 put_page(lbq_desc->p.pg_chunk.page);
1611 }
1612
1613 /* Process an inbound completion from an rx ring. */
1614 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1615 struct rx_ring *rx_ring,
1616 struct ib_mac_iocb_rsp *ib_mac_rsp,
1617 u32 length,
1618 u16 vlan_id)
1619 {
1620 struct net_device *ndev = qdev->ndev;
1621 struct sk_buff *skb = NULL;
1622 struct sk_buff *new_skb = NULL;
1623 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1624
1625 skb = sbq_desc->p.skb;
1626 /* Allocate new_skb and copy */
1627 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1628 if (new_skb == NULL) {
1629 netif_err(qdev, probe, qdev->ndev,
1630 "No skb available, drop the packet.\n");
1631 rx_ring->rx_dropped++;
1632 return;
1633 }
1634 skb_reserve(new_skb, NET_IP_ALIGN);
1635 memcpy(skb_put(new_skb, length), skb->data, length);
1636 skb = new_skb;
1637
1638 /* Frame error, so drop the packet. */
1639 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1640 netif_info(qdev, drv, qdev->ndev,
1641 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1642 dev_kfree_skb_any(skb);
1643 rx_ring->rx_errors++;
1644 return;
1645 }
1646
1647 /* loopback self test for ethtool */
1648 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1649 ql_check_lb_frame(qdev, skb);
1650 dev_kfree_skb_any(skb);
1651 return;
1652 }
1653
1654 /* The max framesize filter on this chip is set higher than
1655 * MTU since FCoE uses 2k frames.
1656 */
1657 if (skb->len > ndev->mtu + ETH_HLEN) {
1658 dev_kfree_skb_any(skb);
1659 rx_ring->rx_dropped++;
1660 return;
1661 }
1662
1663 prefetch(skb->data);
1664 skb->dev = ndev;
1665 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1666 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1667 "%s Multicast.\n",
1668 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1669 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1670 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1671 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1672 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1673 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1674 }
1675 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1676 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1677 "Promiscuous Packet.\n");
1678
1679 rx_ring->rx_packets++;
1680 rx_ring->rx_bytes += skb->len;
1681 skb->protocol = eth_type_trans(skb, ndev);
1682 skb_checksum_none_assert(skb);
1683
1684 /* If rx checksum is on, and there are no
1685 * csum or frame errors.
1686 */
1687 if (qdev->rx_csum &&
1688 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1689 /* TCP frame. */
1690 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1691 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1692 "TCP checksum done!\n");
1693 skb->ip_summed = CHECKSUM_UNNECESSARY;
1694 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1695 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1696 /* Unfragmented ipv4 UDP frame. */
1697 struct iphdr *iph = (struct iphdr *) skb->data;
1698 if (!(iph->frag_off &
1699 ntohs(IP_MF|IP_OFFSET))) {
1700 skb->ip_summed = CHECKSUM_UNNECESSARY;
1701 netif_printk(qdev, rx_status, KERN_DEBUG,
1702 qdev->ndev,
1703 "TCP checksum done!\n");
1704 }
1705 }
1706 }
1707
1708 skb_record_rx_queue(skb, rx_ring->cq_id);
1709 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1710 if (qdev->vlgrp && (vlan_id != 0xffff))
1711 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1712 vlan_id, skb);
1713 else
1714 napi_gro_receive(&rx_ring->napi, skb);
1715 } else {
1716 if (qdev->vlgrp && (vlan_id != 0xffff))
1717 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1718 else
1719 netif_receive_skb(skb);
1720 }
1721 }
1722
1723 static void ql_realign_skb(struct sk_buff *skb, int len)
1724 {
1725 void *temp_addr = skb->data;
1726
1727 /* Undo the skb_reserve(skb,32) we did before
1728 * giving to hardware, and realign data on
1729 * a 2-byte boundary.
1730 */
1731 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1732 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1733 skb_copy_to_linear_data(skb, temp_addr,
1734 (unsigned int)len);
1735 }
1736
1737 /*
1738 * This function builds an skb for the given inbound
1739 * completion. It will be rewritten for readability in the near
1740 * future, but for not it works well.
1741 */
1742 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1743 struct rx_ring *rx_ring,
1744 struct ib_mac_iocb_rsp *ib_mac_rsp)
1745 {
1746 struct bq_desc *lbq_desc;
1747 struct bq_desc *sbq_desc;
1748 struct sk_buff *skb = NULL;
1749 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1750 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1751
1752 /*
1753 * Handle the header buffer if present.
1754 */
1755 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1756 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1757 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1758 "Header of %d bytes in small buffer.\n", hdr_len);
1759 /*
1760 * Headers fit nicely into a small buffer.
1761 */
1762 sbq_desc = ql_get_curr_sbuf(rx_ring);
1763 pci_unmap_single(qdev->pdev,
1764 dma_unmap_addr(sbq_desc, mapaddr),
1765 dma_unmap_len(sbq_desc, maplen),
1766 PCI_DMA_FROMDEVICE);
1767 skb = sbq_desc->p.skb;
1768 ql_realign_skb(skb, hdr_len);
1769 skb_put(skb, hdr_len);
1770 sbq_desc->p.skb = NULL;
1771 }
1772
1773 /*
1774 * Handle the data buffer(s).
1775 */
1776 if (unlikely(!length)) { /* Is there data too? */
1777 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1778 "No Data buffer in this packet.\n");
1779 return skb;
1780 }
1781
1782 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1783 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1784 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1785 "Headers in small, data of %d bytes in small, combine them.\n",
1786 length);
1787 /*
1788 * Data is less than small buffer size so it's
1789 * stuffed in a small buffer.
1790 * For this case we append the data
1791 * from the "data" small buffer to the "header" small
1792 * buffer.
1793 */
1794 sbq_desc = ql_get_curr_sbuf(rx_ring);
1795 pci_dma_sync_single_for_cpu(qdev->pdev,
1796 dma_unmap_addr
1797 (sbq_desc, mapaddr),
1798 dma_unmap_len
1799 (sbq_desc, maplen),
1800 PCI_DMA_FROMDEVICE);
1801 memcpy(skb_put(skb, length),
1802 sbq_desc->p.skb->data, length);
1803 pci_dma_sync_single_for_device(qdev->pdev,
1804 dma_unmap_addr
1805 (sbq_desc,
1806 mapaddr),
1807 dma_unmap_len
1808 (sbq_desc,
1809 maplen),
1810 PCI_DMA_FROMDEVICE);
1811 } else {
1812 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1813 "%d bytes in a single small buffer.\n",
1814 length);
1815 sbq_desc = ql_get_curr_sbuf(rx_ring);
1816 skb = sbq_desc->p.skb;
1817 ql_realign_skb(skb, length);
1818 skb_put(skb, length);
1819 pci_unmap_single(qdev->pdev,
1820 dma_unmap_addr(sbq_desc,
1821 mapaddr),
1822 dma_unmap_len(sbq_desc,
1823 maplen),
1824 PCI_DMA_FROMDEVICE);
1825 sbq_desc->p.skb = NULL;
1826 }
1827 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1828 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1829 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1830 "Header in small, %d bytes in large. Chain large to small!\n",
1831 length);
1832 /*
1833 * The data is in a single large buffer. We
1834 * chain it to the header buffer's skb and let
1835 * it rip.
1836 */
1837 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1838 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1839 "Chaining page at offset = %d, for %d bytes to skb.\n",
1840 lbq_desc->p.pg_chunk.offset, length);
1841 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1842 lbq_desc->p.pg_chunk.offset,
1843 length);
1844 skb->len += length;
1845 skb->data_len += length;
1846 skb->truesize += length;
1847 } else {
1848 /*
1849 * The headers and data are in a single large buffer. We
1850 * copy it to a new skb and let it go. This can happen with
1851 * jumbo mtu on a non-TCP/UDP frame.
1852 */
1853 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1854 skb = netdev_alloc_skb(qdev->ndev, length);
1855 if (skb == NULL) {
1856 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1857 "No skb available, drop the packet.\n");
1858 return NULL;
1859 }
1860 pci_unmap_page(qdev->pdev,
1861 dma_unmap_addr(lbq_desc,
1862 mapaddr),
1863 dma_unmap_len(lbq_desc, maplen),
1864 PCI_DMA_FROMDEVICE);
1865 skb_reserve(skb, NET_IP_ALIGN);
1866 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1867 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1868 length);
1869 skb_fill_page_desc(skb, 0,
1870 lbq_desc->p.pg_chunk.page,
1871 lbq_desc->p.pg_chunk.offset,
1872 length);
1873 skb->len += length;
1874 skb->data_len += length;
1875 skb->truesize += length;
1876 length -= length;
1877 __pskb_pull_tail(skb,
1878 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1879 VLAN_ETH_HLEN : ETH_HLEN);
1880 }
1881 } else {
1882 /*
1883 * The data is in a chain of large buffers
1884 * pointed to by a small buffer. We loop
1885 * thru and chain them to the our small header
1886 * buffer's skb.
1887 * frags: There are 18 max frags and our small
1888 * buffer will hold 32 of them. The thing is,
1889 * we'll use 3 max for our 9000 byte jumbo
1890 * frames. If the MTU goes up we could
1891 * eventually be in trouble.
1892 */
1893 int size, i = 0;
1894 sbq_desc = ql_get_curr_sbuf(rx_ring);
1895 pci_unmap_single(qdev->pdev,
1896 dma_unmap_addr(sbq_desc, mapaddr),
1897 dma_unmap_len(sbq_desc, maplen),
1898 PCI_DMA_FROMDEVICE);
1899 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1900 /*
1901 * This is an non TCP/UDP IP frame, so
1902 * the headers aren't split into a small
1903 * buffer. We have to use the small buffer
1904 * that contains our sg list as our skb to
1905 * send upstairs. Copy the sg list here to
1906 * a local buffer and use it to find the
1907 * pages to chain.
1908 */
1909 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1910 "%d bytes of headers & data in chain of large.\n",
1911 length);
1912 skb = sbq_desc->p.skb;
1913 sbq_desc->p.skb = NULL;
1914 skb_reserve(skb, NET_IP_ALIGN);
1915 }
1916 while (length > 0) {
1917 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1918 size = (length < rx_ring->lbq_buf_size) ? length :
1919 rx_ring->lbq_buf_size;
1920
1921 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1922 "Adding page %d to skb for %d bytes.\n",
1923 i, size);
1924 skb_fill_page_desc(skb, i,
1925 lbq_desc->p.pg_chunk.page,
1926 lbq_desc->p.pg_chunk.offset,
1927 size);
1928 skb->len += size;
1929 skb->data_len += size;
1930 skb->truesize += size;
1931 length -= size;
1932 i++;
1933 }
1934 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1935 VLAN_ETH_HLEN : ETH_HLEN);
1936 }
1937 return skb;
1938 }
1939
1940 /* Process an inbound completion from an rx ring. */
1941 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1942 struct rx_ring *rx_ring,
1943 struct ib_mac_iocb_rsp *ib_mac_rsp,
1944 u16 vlan_id)
1945 {
1946 struct net_device *ndev = qdev->ndev;
1947 struct sk_buff *skb = NULL;
1948
1949 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1950
1951 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1952 if (unlikely(!skb)) {
1953 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1954 "No skb available, drop packet.\n");
1955 rx_ring->rx_dropped++;
1956 return;
1957 }
1958
1959 /* Frame error, so drop the packet. */
1960 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1961 netif_info(qdev, drv, qdev->ndev,
1962 "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
1963 dev_kfree_skb_any(skb);
1964 rx_ring->rx_errors++;
1965 return;
1966 }
1967
1968 /* The max framesize filter on this chip is set higher than
1969 * MTU since FCoE uses 2k frames.
1970 */
1971 if (skb->len > ndev->mtu + ETH_HLEN) {
1972 dev_kfree_skb_any(skb);
1973 rx_ring->rx_dropped++;
1974 return;
1975 }
1976
1977 /* loopback self test for ethtool */
1978 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1979 ql_check_lb_frame(qdev, skb);
1980 dev_kfree_skb_any(skb);
1981 return;
1982 }
1983
1984 prefetch(skb->data);
1985 skb->dev = ndev;
1986 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1987 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1988 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1989 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1990 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1991 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1992 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1993 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1994 rx_ring->rx_multicast++;
1995 }
1996 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1997 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1998 "Promiscuous Packet.\n");
1999 }
2000
2001 skb->protocol = eth_type_trans(skb, ndev);
2002 skb_checksum_none_assert(skb);
2003
2004 /* If rx checksum is on, and there are no
2005 * csum or frame errors.
2006 */
2007 if (qdev->rx_csum &&
2008 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2009 /* TCP frame. */
2010 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2011 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2012 "TCP checksum done!\n");
2013 skb->ip_summed = CHECKSUM_UNNECESSARY;
2014 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2015 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2016 /* Unfragmented ipv4 UDP frame. */
2017 struct iphdr *iph = (struct iphdr *) skb->data;
2018 if (!(iph->frag_off &
2019 ntohs(IP_MF|IP_OFFSET))) {
2020 skb->ip_summed = CHECKSUM_UNNECESSARY;
2021 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2022 "TCP checksum done!\n");
2023 }
2024 }
2025 }
2026
2027 rx_ring->rx_packets++;
2028 rx_ring->rx_bytes += skb->len;
2029 skb_record_rx_queue(skb, rx_ring->cq_id);
2030 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2031 if (qdev->vlgrp &&
2032 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2033 (vlan_id != 0))
2034 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
2035 vlan_id, skb);
2036 else
2037 napi_gro_receive(&rx_ring->napi, skb);
2038 } else {
2039 if (qdev->vlgrp &&
2040 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2041 (vlan_id != 0))
2042 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
2043 else
2044 netif_receive_skb(skb);
2045 }
2046 }
2047
2048 /* Process an inbound completion from an rx ring. */
2049 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2050 struct rx_ring *rx_ring,
2051 struct ib_mac_iocb_rsp *ib_mac_rsp)
2052 {
2053 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2054 u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
2055 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2056 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2057
2058 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2059
2060 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2061 /* The data and headers are split into
2062 * separate buffers.
2063 */
2064 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2065 vlan_id);
2066 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2067 /* The data fit in a single small buffer.
2068 * Allocate a new skb, copy the data and
2069 * return the buffer to the free pool.
2070 */
2071 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2072 length, vlan_id);
2073 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2074 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2075 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2076 /* TCP packet in a page chunk that's been checksummed.
2077 * Tack it on to our GRO skb and let it go.
2078 */
2079 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2080 length, vlan_id);
2081 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2082 /* Non-TCP packet in a page chunk. Allocate an
2083 * skb, tack it on frags, and send it up.
2084 */
2085 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2086 length, vlan_id);
2087 } else {
2088 /* Non-TCP/UDP large frames that span multiple buffers
2089 * can be processed corrrectly by the split frame logic.
2090 */
2091 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2092 vlan_id);
2093 }
2094
2095 return (unsigned long)length;
2096 }
2097
2098 /* Process an outbound completion from an rx ring. */
2099 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2100 struct ob_mac_iocb_rsp *mac_rsp)
2101 {
2102 struct tx_ring *tx_ring;
2103 struct tx_ring_desc *tx_ring_desc;
2104
2105 QL_DUMP_OB_MAC_RSP(mac_rsp);
2106 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2107 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2108 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2109 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2110 tx_ring->tx_packets++;
2111 dev_kfree_skb(tx_ring_desc->skb);
2112 tx_ring_desc->skb = NULL;
2113
2114 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2115 OB_MAC_IOCB_RSP_S |
2116 OB_MAC_IOCB_RSP_L |
2117 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2118 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2119 netif_warn(qdev, tx_done, qdev->ndev,
2120 "Total descriptor length did not match transfer length.\n");
2121 }
2122 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2123 netif_warn(qdev, tx_done, qdev->ndev,
2124 "Frame too short to be valid, not sent.\n");
2125 }
2126 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2127 netif_warn(qdev, tx_done, qdev->ndev,
2128 "Frame too long, but sent anyway.\n");
2129 }
2130 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2131 netif_warn(qdev, tx_done, qdev->ndev,
2132 "PCI backplane error. Frame not sent.\n");
2133 }
2134 }
2135 atomic_inc(&tx_ring->tx_count);
2136 }
2137
2138 /* Fire up a handler to reset the MPI processor. */
2139 void ql_queue_fw_error(struct ql_adapter *qdev)
2140 {
2141 ql_link_off(qdev);
2142 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2143 }
2144
2145 void ql_queue_asic_error(struct ql_adapter *qdev)
2146 {
2147 ql_link_off(qdev);
2148 ql_disable_interrupts(qdev);
2149 /* Clear adapter up bit to signal the recovery
2150 * process that it shouldn't kill the reset worker
2151 * thread
2152 */
2153 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2154 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2155 }
2156
2157 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2158 struct ib_ae_iocb_rsp *ib_ae_rsp)
2159 {
2160 switch (ib_ae_rsp->event) {
2161 case MGMT_ERR_EVENT:
2162 netif_err(qdev, rx_err, qdev->ndev,
2163 "Management Processor Fatal Error.\n");
2164 ql_queue_fw_error(qdev);
2165 return;
2166
2167 case CAM_LOOKUP_ERR_EVENT:
2168 netif_err(qdev, link, qdev->ndev,
2169 "Multiple CAM hits lookup occurred.\n");
2170 netif_err(qdev, drv, qdev->ndev,
2171 "This event shouldn't occur.\n");
2172 ql_queue_asic_error(qdev);
2173 return;
2174
2175 case SOFT_ECC_ERROR_EVENT:
2176 netif_err(qdev, rx_err, qdev->ndev,
2177 "Soft ECC error detected.\n");
2178 ql_queue_asic_error(qdev);
2179 break;
2180
2181 case PCI_ERR_ANON_BUF_RD:
2182 netif_err(qdev, rx_err, qdev->ndev,
2183 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
2184 ib_ae_rsp->q_id);
2185 ql_queue_asic_error(qdev);
2186 break;
2187
2188 default:
2189 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2190 ib_ae_rsp->event);
2191 ql_queue_asic_error(qdev);
2192 break;
2193 }
2194 }
2195
2196 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2197 {
2198 struct ql_adapter *qdev = rx_ring->qdev;
2199 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2200 struct ob_mac_iocb_rsp *net_rsp = NULL;
2201 int count = 0;
2202
2203 struct tx_ring *tx_ring;
2204 /* While there are entries in the completion queue. */
2205 while (prod != rx_ring->cnsmr_idx) {
2206
2207 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2208 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2209 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2210
2211 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2212 rmb();
2213 switch (net_rsp->opcode) {
2214
2215 case OPCODE_OB_MAC_TSO_IOCB:
2216 case OPCODE_OB_MAC_IOCB:
2217 ql_process_mac_tx_intr(qdev, net_rsp);
2218 break;
2219 default:
2220 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2221 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2222 net_rsp->opcode);
2223 }
2224 count++;
2225 ql_update_cq(rx_ring);
2226 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2227 }
2228 if (!net_rsp)
2229 return 0;
2230 ql_write_cq_idx(rx_ring);
2231 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2232 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2233 if (atomic_read(&tx_ring->queue_stopped) &&
2234 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2235 /*
2236 * The queue got stopped because the tx_ring was full.
2237 * Wake it up, because it's now at least 25% empty.
2238 */
2239 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2240 }
2241
2242 return count;
2243 }
2244
2245 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2246 {
2247 struct ql_adapter *qdev = rx_ring->qdev;
2248 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2249 struct ql_net_rsp_iocb *net_rsp;
2250 int count = 0;
2251
2252 /* While there are entries in the completion queue. */
2253 while (prod != rx_ring->cnsmr_idx) {
2254
2255 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2256 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2257 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2258
2259 net_rsp = rx_ring->curr_entry;
2260 rmb();
2261 switch (net_rsp->opcode) {
2262 case OPCODE_IB_MAC_IOCB:
2263 ql_process_mac_rx_intr(qdev, rx_ring,
2264 (struct ib_mac_iocb_rsp *)
2265 net_rsp);
2266 break;
2267
2268 case OPCODE_IB_AE_IOCB:
2269 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2270 net_rsp);
2271 break;
2272 default:
2273 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2274 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2275 net_rsp->opcode);
2276 break;
2277 }
2278 count++;
2279 ql_update_cq(rx_ring);
2280 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2281 if (count == budget)
2282 break;
2283 }
2284 ql_update_buffer_queues(qdev, rx_ring);
2285 ql_write_cq_idx(rx_ring);
2286 return count;
2287 }
2288
2289 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2290 {
2291 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2292 struct ql_adapter *qdev = rx_ring->qdev;
2293 struct rx_ring *trx_ring;
2294 int i, work_done = 0;
2295 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2296
2297 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2298 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2299
2300 /* Service the TX rings first. They start
2301 * right after the RSS rings. */
2302 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2303 trx_ring = &qdev->rx_ring[i];
2304 /* If this TX completion ring belongs to this vector and
2305 * it's not empty then service it.
2306 */
2307 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2308 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2309 trx_ring->cnsmr_idx)) {
2310 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2311 "%s: Servicing TX completion ring %d.\n",
2312 __func__, trx_ring->cq_id);
2313 ql_clean_outbound_rx_ring(trx_ring);
2314 }
2315 }
2316
2317 /*
2318 * Now service the RSS ring if it's active.
2319 */
2320 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2321 rx_ring->cnsmr_idx) {
2322 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2323 "%s: Servicing RX completion ring %d.\n",
2324 __func__, rx_ring->cq_id);
2325 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2326 }
2327
2328 if (work_done < budget) {
2329 napi_complete(napi);
2330 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2331 }
2332 return work_done;
2333 }
2334
2335 static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
2336 {
2337 struct ql_adapter *qdev = netdev_priv(ndev);
2338
2339 qdev->vlgrp = grp;
2340 if (grp) {
2341 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
2342 "Turning on VLAN in NIC_RCV_CFG.\n");
2343 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2344 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2345 } else {
2346 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
2347 "Turning off VLAN in NIC_RCV_CFG.\n");
2348 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2349 }
2350 }
2351
2352 static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2353 {
2354 struct ql_adapter *qdev = netdev_priv(ndev);
2355 u32 enable_bit = MAC_ADDR_E;
2356 int status;
2357
2358 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2359 if (status)
2360 return;
2361 if (ql_set_mac_addr_reg
2362 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2363 netif_err(qdev, ifup, qdev->ndev,
2364 "Failed to init vlan address.\n");
2365 }
2366 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2367 }
2368
2369 static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2370 {
2371 struct ql_adapter *qdev = netdev_priv(ndev);
2372 u32 enable_bit = 0;
2373 int status;
2374
2375 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2376 if (status)
2377 return;
2378
2379 if (ql_set_mac_addr_reg
2380 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
2381 netif_err(qdev, ifup, qdev->ndev,
2382 "Failed to clear vlan address.\n");
2383 }
2384 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2385
2386 }
2387
2388 static void qlge_restore_vlan(struct ql_adapter *qdev)
2389 {
2390 qlge_vlan_rx_register(qdev->ndev, qdev->vlgrp);
2391
2392 if (qdev->vlgrp) {
2393 u16 vid;
2394 for (vid = 0; vid < VLAN_N_VID; vid++) {
2395 if (!vlan_group_get_device(qdev->vlgrp, vid))
2396 continue;
2397 qlge_vlan_rx_add_vid(qdev->ndev, vid);
2398 }
2399 }
2400 }
2401
2402 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2403 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2404 {
2405 struct rx_ring *rx_ring = dev_id;
2406 napi_schedule(&rx_ring->napi);
2407 return IRQ_HANDLED;
2408 }
2409
2410 /* This handles a fatal error, MPI activity, and the default
2411 * rx_ring in an MSI-X multiple vector environment.
2412 * In MSI/Legacy environment it also process the rest of
2413 * the rx_rings.
2414 */
2415 static irqreturn_t qlge_isr(int irq, void *dev_id)
2416 {
2417 struct rx_ring *rx_ring = dev_id;
2418 struct ql_adapter *qdev = rx_ring->qdev;
2419 struct intr_context *intr_context = &qdev->intr_context[0];
2420 u32 var;
2421 int work_done = 0;
2422
2423 spin_lock(&qdev->hw_lock);
2424 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2425 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2426 "Shared Interrupt, Not ours!\n");
2427 spin_unlock(&qdev->hw_lock);
2428 return IRQ_NONE;
2429 }
2430 spin_unlock(&qdev->hw_lock);
2431
2432 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2433
2434 /*
2435 * Check for fatal error.
2436 */
2437 if (var & STS_FE) {
2438 ql_queue_asic_error(qdev);
2439 netif_err(qdev, intr, qdev->ndev,
2440 "Got fatal error, STS = %x.\n", var);
2441 var = ql_read32(qdev, ERR_STS);
2442 netif_err(qdev, intr, qdev->ndev,
2443 "Resetting chip. Error Status Register = 0x%x\n", var);
2444 return IRQ_HANDLED;
2445 }
2446
2447 /*
2448 * Check MPI processor activity.
2449 */
2450 if ((var & STS_PI) &&
2451 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2452 /*
2453 * We've got an async event or mailbox completion.
2454 * Handle it and clear the source of the interrupt.
2455 */
2456 netif_err(qdev, intr, qdev->ndev,
2457 "Got MPI processor interrupt.\n");
2458 ql_disable_completion_interrupt(qdev, intr_context->intr);
2459 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2460 queue_delayed_work_on(smp_processor_id(),
2461 qdev->workqueue, &qdev->mpi_work, 0);
2462 work_done++;
2463 }
2464
2465 /*
2466 * Get the bit-mask that shows the active queues for this
2467 * pass. Compare it to the queues that this irq services
2468 * and call napi if there's a match.
2469 */
2470 var = ql_read32(qdev, ISR1);
2471 if (var & intr_context->irq_mask) {
2472 netif_info(qdev, intr, qdev->ndev,
2473 "Waking handler for rx_ring[0].\n");
2474 ql_disable_completion_interrupt(qdev, intr_context->intr);
2475 napi_schedule(&rx_ring->napi);
2476 work_done++;
2477 }
2478 ql_enable_completion_interrupt(qdev, intr_context->intr);
2479 return work_done ? IRQ_HANDLED : IRQ_NONE;
2480 }
2481
2482 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2483 {
2484
2485 if (skb_is_gso(skb)) {
2486 int err;
2487 if (skb_header_cloned(skb)) {
2488 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2489 if (err)
2490 return err;
2491 }
2492
2493 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2494 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2495 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2496 mac_iocb_ptr->total_hdrs_len =
2497 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2498 mac_iocb_ptr->net_trans_offset =
2499 cpu_to_le16(skb_network_offset(skb) |
2500 skb_transport_offset(skb)
2501 << OB_MAC_TRANSPORT_HDR_SHIFT);
2502 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2503 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2504 if (likely(skb->protocol == htons(ETH_P_IP))) {
2505 struct iphdr *iph = ip_hdr(skb);
2506 iph->check = 0;
2507 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2508 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2509 iph->daddr, 0,
2510 IPPROTO_TCP,
2511 0);
2512 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2513 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2514 tcp_hdr(skb)->check =
2515 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2516 &ipv6_hdr(skb)->daddr,
2517 0, IPPROTO_TCP, 0);
2518 }
2519 return 1;
2520 }
2521 return 0;
2522 }
2523
2524 static void ql_hw_csum_setup(struct sk_buff *skb,
2525 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2526 {
2527 int len;
2528 struct iphdr *iph = ip_hdr(skb);
2529 __sum16 *check;
2530 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2531 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2532 mac_iocb_ptr->net_trans_offset =
2533 cpu_to_le16(skb_network_offset(skb) |
2534 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2535
2536 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2537 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2538 if (likely(iph->protocol == IPPROTO_TCP)) {
2539 check = &(tcp_hdr(skb)->check);
2540 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2541 mac_iocb_ptr->total_hdrs_len =
2542 cpu_to_le16(skb_transport_offset(skb) +
2543 (tcp_hdr(skb)->doff << 2));
2544 } else {
2545 check = &(udp_hdr(skb)->check);
2546 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2547 mac_iocb_ptr->total_hdrs_len =
2548 cpu_to_le16(skb_transport_offset(skb) +
2549 sizeof(struct udphdr));
2550 }
2551 *check = ~csum_tcpudp_magic(iph->saddr,
2552 iph->daddr, len, iph->protocol, 0);
2553 }
2554
2555 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2556 {
2557 struct tx_ring_desc *tx_ring_desc;
2558 struct ob_mac_iocb_req *mac_iocb_ptr;
2559 struct ql_adapter *qdev = netdev_priv(ndev);
2560 int tso;
2561 struct tx_ring *tx_ring;
2562 u32 tx_ring_idx = (u32) skb->queue_mapping;
2563
2564 tx_ring = &qdev->tx_ring[tx_ring_idx];
2565
2566 if (skb_padto(skb, ETH_ZLEN))
2567 return NETDEV_TX_OK;
2568
2569 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2570 netif_info(qdev, tx_queued, qdev->ndev,
2571 "%s: shutting down tx queue %d du to lack of resources.\n",
2572 __func__, tx_ring_idx);
2573 netif_stop_subqueue(ndev, tx_ring->wq_id);
2574 atomic_inc(&tx_ring->queue_stopped);
2575 tx_ring->tx_errors++;
2576 return NETDEV_TX_BUSY;
2577 }
2578 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2579 mac_iocb_ptr = tx_ring_desc->queue_entry;
2580 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2581
2582 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2583 mac_iocb_ptr->tid = tx_ring_desc->index;
2584 /* We use the upper 32-bits to store the tx queue for this IO.
2585 * When we get the completion we can use it to establish the context.
2586 */
2587 mac_iocb_ptr->txq_idx = tx_ring_idx;
2588 tx_ring_desc->skb = skb;
2589
2590 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2591
2592 if (vlan_tx_tag_present(skb)) {
2593 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2594 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2595 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2596 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2597 }
2598 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2599 if (tso < 0) {
2600 dev_kfree_skb_any(skb);
2601 return NETDEV_TX_OK;
2602 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2603 ql_hw_csum_setup(skb,
2604 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2605 }
2606 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2607 NETDEV_TX_OK) {
2608 netif_err(qdev, tx_queued, qdev->ndev,
2609 "Could not map the segments.\n");
2610 tx_ring->tx_errors++;
2611 return NETDEV_TX_BUSY;
2612 }
2613 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2614 tx_ring->prod_idx++;
2615 if (tx_ring->prod_idx == tx_ring->wq_len)
2616 tx_ring->prod_idx = 0;
2617 wmb();
2618
2619 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2620 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2621 "tx queued, slot %d, len %d\n",
2622 tx_ring->prod_idx, skb->len);
2623
2624 atomic_dec(&tx_ring->tx_count);
2625 return NETDEV_TX_OK;
2626 }
2627
2628
2629 static void ql_free_shadow_space(struct ql_adapter *qdev)
2630 {
2631 if (qdev->rx_ring_shadow_reg_area) {
2632 pci_free_consistent(qdev->pdev,
2633 PAGE_SIZE,
2634 qdev->rx_ring_shadow_reg_area,
2635 qdev->rx_ring_shadow_reg_dma);
2636 qdev->rx_ring_shadow_reg_area = NULL;
2637 }
2638 if (qdev->tx_ring_shadow_reg_area) {
2639 pci_free_consistent(qdev->pdev,
2640 PAGE_SIZE,
2641 qdev->tx_ring_shadow_reg_area,
2642 qdev->tx_ring_shadow_reg_dma);
2643 qdev->tx_ring_shadow_reg_area = NULL;
2644 }
2645 }
2646
2647 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2648 {
2649 qdev->rx_ring_shadow_reg_area =
2650 pci_alloc_consistent(qdev->pdev,
2651 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2652 if (qdev->rx_ring_shadow_reg_area == NULL) {
2653 netif_err(qdev, ifup, qdev->ndev,
2654 "Allocation of RX shadow space failed.\n");
2655 return -ENOMEM;
2656 }
2657 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2658 qdev->tx_ring_shadow_reg_area =
2659 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2660 &qdev->tx_ring_shadow_reg_dma);
2661 if (qdev->tx_ring_shadow_reg_area == NULL) {
2662 netif_err(qdev, ifup, qdev->ndev,
2663 "Allocation of TX shadow space failed.\n");
2664 goto err_wqp_sh_area;
2665 }
2666 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2667 return 0;
2668
2669 err_wqp_sh_area:
2670 pci_free_consistent(qdev->pdev,
2671 PAGE_SIZE,
2672 qdev->rx_ring_shadow_reg_area,
2673 qdev->rx_ring_shadow_reg_dma);
2674 return -ENOMEM;
2675 }
2676
2677 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2678 {
2679 struct tx_ring_desc *tx_ring_desc;
2680 int i;
2681 struct ob_mac_iocb_req *mac_iocb_ptr;
2682
2683 mac_iocb_ptr = tx_ring->wq_base;
2684 tx_ring_desc = tx_ring->q;
2685 for (i = 0; i < tx_ring->wq_len; i++) {
2686 tx_ring_desc->index = i;
2687 tx_ring_desc->skb = NULL;
2688 tx_ring_desc->queue_entry = mac_iocb_ptr;
2689 mac_iocb_ptr++;
2690 tx_ring_desc++;
2691 }
2692 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2693 atomic_set(&tx_ring->queue_stopped, 0);
2694 }
2695
2696 static void ql_free_tx_resources(struct ql_adapter *qdev,
2697 struct tx_ring *tx_ring)
2698 {
2699 if (tx_ring->wq_base) {
2700 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2701 tx_ring->wq_base, tx_ring->wq_base_dma);
2702 tx_ring->wq_base = NULL;
2703 }
2704 kfree(tx_ring->q);
2705 tx_ring->q = NULL;
2706 }
2707
2708 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2709 struct tx_ring *tx_ring)
2710 {
2711 tx_ring->wq_base =
2712 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2713 &tx_ring->wq_base_dma);
2714
2715 if ((tx_ring->wq_base == NULL) ||
2716 tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2717 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2718 return -ENOMEM;
2719 }
2720 tx_ring->q =
2721 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2722 if (tx_ring->q == NULL)
2723 goto err;
2724
2725 return 0;
2726 err:
2727 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2728 tx_ring->wq_base, tx_ring->wq_base_dma);
2729 return -ENOMEM;
2730 }
2731
2732 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2733 {
2734 struct bq_desc *lbq_desc;
2735
2736 uint32_t curr_idx, clean_idx;
2737
2738 curr_idx = rx_ring->lbq_curr_idx;
2739 clean_idx = rx_ring->lbq_clean_idx;
2740 while (curr_idx != clean_idx) {
2741 lbq_desc = &rx_ring->lbq[curr_idx];
2742
2743 if (lbq_desc->p.pg_chunk.last_flag) {
2744 pci_unmap_page(qdev->pdev,
2745 lbq_desc->p.pg_chunk.map,
2746 ql_lbq_block_size(qdev),
2747 PCI_DMA_FROMDEVICE);
2748 lbq_desc->p.pg_chunk.last_flag = 0;
2749 }
2750
2751 put_page(lbq_desc->p.pg_chunk.page);
2752 lbq_desc->p.pg_chunk.page = NULL;
2753
2754 if (++curr_idx == rx_ring->lbq_len)
2755 curr_idx = 0;
2756
2757 }
2758 }
2759
2760 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2761 {
2762 int i;
2763 struct bq_desc *sbq_desc;
2764
2765 for (i = 0; i < rx_ring->sbq_len; i++) {
2766 sbq_desc = &rx_ring->sbq[i];
2767 if (sbq_desc == NULL) {
2768 netif_err(qdev, ifup, qdev->ndev,
2769 "sbq_desc %d is NULL.\n", i);
2770 return;
2771 }
2772 if (sbq_desc->p.skb) {
2773 pci_unmap_single(qdev->pdev,
2774 dma_unmap_addr(sbq_desc, mapaddr),
2775 dma_unmap_len(sbq_desc, maplen),
2776 PCI_DMA_FROMDEVICE);
2777 dev_kfree_skb(sbq_desc->p.skb);
2778 sbq_desc->p.skb = NULL;
2779 }
2780 }
2781 }
2782
2783 /* Free all large and small rx buffers associated
2784 * with the completion queues for this device.
2785 */
2786 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2787 {
2788 int i;
2789 struct rx_ring *rx_ring;
2790
2791 for (i = 0; i < qdev->rx_ring_count; i++) {
2792 rx_ring = &qdev->rx_ring[i];
2793 if (rx_ring->lbq)
2794 ql_free_lbq_buffers(qdev, rx_ring);
2795 if (rx_ring->sbq)
2796 ql_free_sbq_buffers(qdev, rx_ring);
2797 }
2798 }
2799
2800 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2801 {
2802 struct rx_ring *rx_ring;
2803 int i;
2804
2805 for (i = 0; i < qdev->rx_ring_count; i++) {
2806 rx_ring = &qdev->rx_ring[i];
2807 if (rx_ring->type != TX_Q)
2808 ql_update_buffer_queues(qdev, rx_ring);
2809 }
2810 }
2811
2812 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2813 struct rx_ring *rx_ring)
2814 {
2815 int i;
2816 struct bq_desc *lbq_desc;
2817 __le64 *bq = rx_ring->lbq_base;
2818
2819 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2820 for (i = 0; i < rx_ring->lbq_len; i++) {
2821 lbq_desc = &rx_ring->lbq[i];
2822 memset(lbq_desc, 0, sizeof(*lbq_desc));
2823 lbq_desc->index = i;
2824 lbq_desc->addr = bq;
2825 bq++;
2826 }
2827 }
2828
2829 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2830 struct rx_ring *rx_ring)
2831 {
2832 int i;
2833 struct bq_desc *sbq_desc;
2834 __le64 *bq = rx_ring->sbq_base;
2835
2836 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2837 for (i = 0; i < rx_ring->sbq_len; i++) {
2838 sbq_desc = &rx_ring->sbq[i];
2839 memset(sbq_desc, 0, sizeof(*sbq_desc));
2840 sbq_desc->index = i;
2841 sbq_desc->addr = bq;
2842 bq++;
2843 }
2844 }
2845
2846 static void ql_free_rx_resources(struct ql_adapter *qdev,
2847 struct rx_ring *rx_ring)
2848 {
2849 /* Free the small buffer queue. */
2850 if (rx_ring->sbq_base) {
2851 pci_free_consistent(qdev->pdev,
2852 rx_ring->sbq_size,
2853 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2854 rx_ring->sbq_base = NULL;
2855 }
2856
2857 /* Free the small buffer queue control blocks. */
2858 kfree(rx_ring->sbq);
2859 rx_ring->sbq = NULL;
2860
2861 /* Free the large buffer queue. */
2862 if (rx_ring->lbq_base) {
2863 pci_free_consistent(qdev->pdev,
2864 rx_ring->lbq_size,
2865 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2866 rx_ring->lbq_base = NULL;
2867 }
2868
2869 /* Free the large buffer queue control blocks. */
2870 kfree(rx_ring->lbq);
2871 rx_ring->lbq = NULL;
2872
2873 /* Free the rx queue. */
2874 if (rx_ring->cq_base) {
2875 pci_free_consistent(qdev->pdev,
2876 rx_ring->cq_size,
2877 rx_ring->cq_base, rx_ring->cq_base_dma);
2878 rx_ring->cq_base = NULL;
2879 }
2880 }
2881
2882 /* Allocate queues and buffers for this completions queue based
2883 * on the values in the parameter structure. */
2884 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2885 struct rx_ring *rx_ring)
2886 {
2887
2888 /*
2889 * Allocate the completion queue for this rx_ring.
2890 */
2891 rx_ring->cq_base =
2892 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2893 &rx_ring->cq_base_dma);
2894
2895 if (rx_ring->cq_base == NULL) {
2896 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2897 return -ENOMEM;
2898 }
2899
2900 if (rx_ring->sbq_len) {
2901 /*
2902 * Allocate small buffer queue.
2903 */
2904 rx_ring->sbq_base =
2905 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2906 &rx_ring->sbq_base_dma);
2907
2908 if (rx_ring->sbq_base == NULL) {
2909 netif_err(qdev, ifup, qdev->ndev,
2910 "Small buffer queue allocation failed.\n");
2911 goto err_mem;
2912 }
2913
2914 /*
2915 * Allocate small buffer queue control blocks.
2916 */
2917 rx_ring->sbq =
2918 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2919 GFP_KERNEL);
2920 if (rx_ring->sbq == NULL) {
2921 netif_err(qdev, ifup, qdev->ndev,
2922 "Small buffer queue control block allocation failed.\n");
2923 goto err_mem;
2924 }
2925
2926 ql_init_sbq_ring(qdev, rx_ring);
2927 }
2928
2929 if (rx_ring->lbq_len) {
2930 /*
2931 * Allocate large buffer queue.
2932 */
2933 rx_ring->lbq_base =
2934 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2935 &rx_ring->lbq_base_dma);
2936
2937 if (rx_ring->lbq_base == NULL) {
2938 netif_err(qdev, ifup, qdev->ndev,
2939 "Large buffer queue allocation failed.\n");
2940 goto err_mem;
2941 }
2942 /*
2943 * Allocate large buffer queue control blocks.
2944 */
2945 rx_ring->lbq =
2946 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2947 GFP_KERNEL);
2948 if (rx_ring->lbq == NULL) {
2949 netif_err(qdev, ifup, qdev->ndev,
2950 "Large buffer queue control block allocation failed.\n");
2951 goto err_mem;
2952 }
2953
2954 ql_init_lbq_ring(qdev, rx_ring);
2955 }
2956
2957 return 0;
2958
2959 err_mem:
2960 ql_free_rx_resources(qdev, rx_ring);
2961 return -ENOMEM;
2962 }
2963
2964 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2965 {
2966 struct tx_ring *tx_ring;
2967 struct tx_ring_desc *tx_ring_desc;
2968 int i, j;
2969
2970 /*
2971 * Loop through all queues and free
2972 * any resources.
2973 */
2974 for (j = 0; j < qdev->tx_ring_count; j++) {
2975 tx_ring = &qdev->tx_ring[j];
2976 for (i = 0; i < tx_ring->wq_len; i++) {
2977 tx_ring_desc = &tx_ring->q[i];
2978 if (tx_ring_desc && tx_ring_desc->skb) {
2979 netif_err(qdev, ifdown, qdev->ndev,
2980 "Freeing lost SKB %p, from queue %d, index %d.\n",
2981 tx_ring_desc->skb, j,
2982 tx_ring_desc->index);
2983 ql_unmap_send(qdev, tx_ring_desc,
2984 tx_ring_desc->map_cnt);
2985 dev_kfree_skb(tx_ring_desc->skb);
2986 tx_ring_desc->skb = NULL;
2987 }
2988 }
2989 }
2990 }
2991
2992 static void ql_free_mem_resources(struct ql_adapter *qdev)
2993 {
2994 int i;
2995
2996 for (i = 0; i < qdev->tx_ring_count; i++)
2997 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2998 for (i = 0; i < qdev->rx_ring_count; i++)
2999 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3000 ql_free_shadow_space(qdev);
3001 }
3002
3003 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3004 {
3005 int i;
3006
3007 /* Allocate space for our shadow registers and such. */
3008 if (ql_alloc_shadow_space(qdev))
3009 return -ENOMEM;
3010
3011 for (i = 0; i < qdev->rx_ring_count; i++) {
3012 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3013 netif_err(qdev, ifup, qdev->ndev,
3014 "RX resource allocation failed.\n");
3015 goto err_mem;
3016 }
3017 }
3018 /* Allocate tx queue resources */
3019 for (i = 0; i < qdev->tx_ring_count; i++) {
3020 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3021 netif_err(qdev, ifup, qdev->ndev,
3022 "TX resource allocation failed.\n");
3023 goto err_mem;
3024 }
3025 }
3026 return 0;
3027
3028 err_mem:
3029 ql_free_mem_resources(qdev);
3030 return -ENOMEM;
3031 }
3032
3033 /* Set up the rx ring control block and pass it to the chip.
3034 * The control block is defined as
3035 * "Completion Queue Initialization Control Block", or cqicb.
3036 */
3037 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3038 {
3039 struct cqicb *cqicb = &rx_ring->cqicb;
3040 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3041 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3042 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3043 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3044 void __iomem *doorbell_area =
3045 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3046 int err = 0;
3047 u16 bq_len;
3048 u64 tmp;
3049 __le64 *base_indirect_ptr;
3050 int page_entries;
3051
3052 /* Set up the shadow registers for this ring. */
3053 rx_ring->prod_idx_sh_reg = shadow_reg;
3054 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3055 *rx_ring->prod_idx_sh_reg = 0;
3056 shadow_reg += sizeof(u64);
3057 shadow_reg_dma += sizeof(u64);
3058 rx_ring->lbq_base_indirect = shadow_reg;
3059 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3060 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3061 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3062 rx_ring->sbq_base_indirect = shadow_reg;
3063 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3064
3065 /* PCI doorbell mem area + 0x00 for consumer index register */
3066 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3067 rx_ring->cnsmr_idx = 0;
3068 rx_ring->curr_entry = rx_ring->cq_base;
3069
3070 /* PCI doorbell mem area + 0x04 for valid register */
3071 rx_ring->valid_db_reg = doorbell_area + 0x04;
3072
3073 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3074 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3075
3076 /* PCI doorbell mem area + 0x1c */
3077 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3078
3079 memset((void *)cqicb, 0, sizeof(struct cqicb));
3080 cqicb->msix_vect = rx_ring->irq;
3081
3082 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3083 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3084
3085 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3086
3087 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3088
3089 /*
3090 * Set up the control block load flags.
3091 */
3092 cqicb->flags = FLAGS_LC | /* Load queue base address */
3093 FLAGS_LV | /* Load MSI-X vector */
3094 FLAGS_LI; /* Load irq delay values */
3095 if (rx_ring->lbq_len) {
3096 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3097 tmp = (u64)rx_ring->lbq_base_dma;
3098 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
3099 page_entries = 0;
3100 do {
3101 *base_indirect_ptr = cpu_to_le64(tmp);
3102 tmp += DB_PAGE_SIZE;
3103 base_indirect_ptr++;
3104 page_entries++;
3105 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3106 cqicb->lbq_addr =
3107 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3108 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3109 (u16) rx_ring->lbq_buf_size;
3110 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3111 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3112 (u16) rx_ring->lbq_len;
3113 cqicb->lbq_len = cpu_to_le16(bq_len);
3114 rx_ring->lbq_prod_idx = 0;
3115 rx_ring->lbq_curr_idx = 0;
3116 rx_ring->lbq_clean_idx = 0;
3117 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3118 }
3119 if (rx_ring->sbq_len) {
3120 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3121 tmp = (u64)rx_ring->sbq_base_dma;
3122 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
3123 page_entries = 0;
3124 do {
3125 *base_indirect_ptr = cpu_to_le64(tmp);
3126 tmp += DB_PAGE_SIZE;
3127 base_indirect_ptr++;
3128 page_entries++;
3129 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3130 cqicb->sbq_addr =
3131 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3132 cqicb->sbq_buf_size =
3133 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3134 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3135 (u16) rx_ring->sbq_len;
3136 cqicb->sbq_len = cpu_to_le16(bq_len);
3137 rx_ring->sbq_prod_idx = 0;
3138 rx_ring->sbq_curr_idx = 0;
3139 rx_ring->sbq_clean_idx = 0;
3140 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3141 }
3142 switch (rx_ring->type) {
3143 case TX_Q:
3144 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3145 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3146 break;
3147 case RX_Q:
3148 /* Inbound completion handling rx_rings run in
3149 * separate NAPI contexts.
3150 */
3151 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3152 64);
3153 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3154 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3155 break;
3156 default:
3157 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3158 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3159 }
3160 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3161 "Initializing rx work queue.\n");
3162 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3163 CFG_LCQ, rx_ring->cq_id);
3164 if (err) {
3165 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3166 return err;
3167 }
3168 return err;
3169 }
3170
3171 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3172 {
3173 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3174 void __iomem *doorbell_area =
3175 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3176 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3177 (tx_ring->wq_id * sizeof(u64));
3178 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3179 (tx_ring->wq_id * sizeof(u64));
3180 int err = 0;
3181
3182 /*
3183 * Assign doorbell registers for this tx_ring.
3184 */
3185 /* TX PCI doorbell mem area for tx producer index */
3186 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3187 tx_ring->prod_idx = 0;
3188 /* TX PCI doorbell mem area + 0x04 */
3189 tx_ring->valid_db_reg = doorbell_area + 0x04;
3190
3191 /*
3192 * Assign shadow registers for this tx_ring.
3193 */
3194 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3195 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3196
3197 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3198 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3199 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3200 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3201 wqicb->rid = 0;
3202 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3203
3204 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3205
3206 ql_init_tx_ring(qdev, tx_ring);
3207
3208 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3209 (u16) tx_ring->wq_id);
3210 if (err) {
3211 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3212 return err;
3213 }
3214 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3215 "Successfully loaded WQICB.\n");
3216 return err;
3217 }
3218
3219 static void ql_disable_msix(struct ql_adapter *qdev)
3220 {
3221 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3222 pci_disable_msix(qdev->pdev);
3223 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3224 kfree(qdev->msi_x_entry);
3225 qdev->msi_x_entry = NULL;
3226 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3227 pci_disable_msi(qdev->pdev);
3228 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3229 }
3230 }
3231
3232 /* We start by trying to get the number of vectors
3233 * stored in qdev->intr_count. If we don't get that
3234 * many then we reduce the count and try again.
3235 */
3236 static void ql_enable_msix(struct ql_adapter *qdev)
3237 {
3238 int i, err;
3239
3240 /* Get the MSIX vectors. */
3241 if (qlge_irq_type == MSIX_IRQ) {
3242 /* Try to alloc space for the msix struct,
3243 * if it fails then go to MSI/legacy.
3244 */
3245 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3246 sizeof(struct msix_entry),
3247 GFP_KERNEL);
3248 if (!qdev->msi_x_entry) {
3249 qlge_irq_type = MSI_IRQ;
3250 goto msi;
3251 }
3252
3253 for (i = 0; i < qdev->intr_count; i++)
3254 qdev->msi_x_entry[i].entry = i;
3255
3256 /* Loop to get our vectors. We start with
3257 * what we want and settle for what we get.
3258 */
3259 do {
3260 err = pci_enable_msix(qdev->pdev,
3261 qdev->msi_x_entry, qdev->intr_count);
3262 if (err > 0)
3263 qdev->intr_count = err;
3264 } while (err > 0);
3265
3266 if (err < 0) {
3267 kfree(qdev->msi_x_entry);
3268 qdev->msi_x_entry = NULL;
3269 netif_warn(qdev, ifup, qdev->ndev,
3270 "MSI-X Enable failed, trying MSI.\n");
3271 qdev->intr_count = 1;
3272 qlge_irq_type = MSI_IRQ;
3273 } else if (err == 0) {
3274 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3275 netif_info(qdev, ifup, qdev->ndev,
3276 "MSI-X Enabled, got %d vectors.\n",
3277 qdev->intr_count);
3278 return;
3279 }
3280 }
3281 msi:
3282 qdev->intr_count = 1;
3283 if (qlge_irq_type == MSI_IRQ) {
3284 if (!pci_enable_msi(qdev->pdev)) {
3285 set_bit(QL_MSI_ENABLED, &qdev->flags);
3286 netif_info(qdev, ifup, qdev->ndev,
3287 "Running with MSI interrupts.\n");
3288 return;
3289 }
3290 }
3291 qlge_irq_type = LEG_IRQ;
3292 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3293 "Running with legacy interrupts.\n");
3294 }
3295
3296 /* Each vector services 1 RSS ring and and 1 or more
3297 * TX completion rings. This function loops through
3298 * the TX completion rings and assigns the vector that
3299 * will service it. An example would be if there are
3300 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3301 * This would mean that vector 0 would service RSS ring 0
3302 * and TX completion rings 0,1,2 and 3. Vector 1 would
3303 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3304 */
3305 static void ql_set_tx_vect(struct ql_adapter *qdev)
3306 {
3307 int i, j, vect;
3308 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3309
3310 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3311 /* Assign irq vectors to TX rx_rings.*/
3312 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3313 i < qdev->rx_ring_count; i++) {
3314 if (j == tx_rings_per_vector) {
3315 vect++;
3316 j = 0;
3317 }
3318 qdev->rx_ring[i].irq = vect;
3319 j++;
3320 }
3321 } else {
3322 /* For single vector all rings have an irq
3323 * of zero.
3324 */
3325 for (i = 0; i < qdev->rx_ring_count; i++)
3326 qdev->rx_ring[i].irq = 0;
3327 }
3328 }
3329
3330 /* Set the interrupt mask for this vector. Each vector
3331 * will service 1 RSS ring and 1 or more TX completion
3332 * rings. This function sets up a bit mask per vector
3333 * that indicates which rings it services.
3334 */
3335 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3336 {
3337 int j, vect = ctx->intr;
3338 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3339
3340 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3341 /* Add the RSS ring serviced by this vector
3342 * to the mask.
3343 */
3344 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3345 /* Add the TX ring(s) serviced by this vector
3346 * to the mask. */
3347 for (j = 0; j < tx_rings_per_vector; j++) {
3348 ctx->irq_mask |=
3349 (1 << qdev->rx_ring[qdev->rss_ring_count +
3350 (vect * tx_rings_per_vector) + j].cq_id);
3351 }
3352 } else {
3353 /* For single vector we just shift each queue's
3354 * ID into the mask.
3355 */
3356 for (j = 0; j < qdev->rx_ring_count; j++)
3357 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3358 }
3359 }
3360
3361 /*
3362 * Here we build the intr_context structures based on
3363 * our rx_ring count and intr vector count.
3364 * The intr_context structure is used to hook each vector
3365 * to possibly different handlers.
3366 */
3367 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3368 {
3369 int i = 0;
3370 struct intr_context *intr_context = &qdev->intr_context[0];
3371
3372 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3373 /* Each rx_ring has it's
3374 * own intr_context since we have separate
3375 * vectors for each queue.
3376 */
3377 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3378 qdev->rx_ring[i].irq = i;
3379 intr_context->intr = i;
3380 intr_context->qdev = qdev;
3381 /* Set up this vector's bit-mask that indicates
3382 * which queues it services.
3383 */
3384 ql_set_irq_mask(qdev, intr_context);
3385 /*
3386 * We set up each vectors enable/disable/read bits so
3387 * there's no bit/mask calculations in the critical path.
3388 */
3389 intr_context->intr_en_mask =
3390 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3391 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3392 | i;
3393 intr_context->intr_dis_mask =
3394 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3395 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3396 INTR_EN_IHD | i;
3397 intr_context->intr_read_mask =
3398 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3399 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3400 i;
3401 if (i == 0) {
3402 /* The first vector/queue handles
3403 * broadcast/multicast, fatal errors,
3404 * and firmware events. This in addition
3405 * to normal inbound NAPI processing.
3406 */
3407 intr_context->handler = qlge_isr;
3408 sprintf(intr_context->name, "%s-rx-%d",
3409 qdev->ndev->name, i);
3410 } else {
3411 /*
3412 * Inbound queues handle unicast frames only.
3413 */
3414 intr_context->handler = qlge_msix_rx_isr;
3415 sprintf(intr_context->name, "%s-rx-%d",
3416 qdev->ndev->name, i);
3417 }
3418 }
3419 } else {
3420 /*
3421 * All rx_rings use the same intr_context since
3422 * there is only one vector.
3423 */
3424 intr_context->intr = 0;
3425 intr_context->qdev = qdev;
3426 /*
3427 * We set up each vectors enable/disable/read bits so
3428 * there's no bit/mask calculations in the critical path.
3429 */
3430 intr_context->intr_en_mask =
3431 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3432 intr_context->intr_dis_mask =
3433 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3434 INTR_EN_TYPE_DISABLE;
3435 intr_context->intr_read_mask =
3436 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3437 /*
3438 * Single interrupt means one handler for all rings.
3439 */
3440 intr_context->handler = qlge_isr;
3441 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3442 /* Set up this vector's bit-mask that indicates
3443 * which queues it services. In this case there is
3444 * a single vector so it will service all RSS and
3445 * TX completion rings.
3446 */
3447 ql_set_irq_mask(qdev, intr_context);
3448 }
3449 /* Tell the TX completion rings which MSIx vector
3450 * they will be using.
3451 */
3452 ql_set_tx_vect(qdev);
3453 }
3454
3455 static void ql_free_irq(struct ql_adapter *qdev)
3456 {
3457 int i;
3458 struct intr_context *intr_context = &qdev->intr_context[0];
3459
3460 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3461 if (intr_context->hooked) {
3462 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3463 free_irq(qdev->msi_x_entry[i].vector,
3464 &qdev->rx_ring[i]);
3465 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3466 "freeing msix interrupt %d.\n", i);
3467 } else {
3468 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3469 netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
3470 "freeing msi interrupt %d.\n", i);
3471 }
3472 }
3473 }
3474 ql_disable_msix(qdev);
3475 }
3476
3477 static int ql_request_irq(struct ql_adapter *qdev)
3478 {
3479 int i;
3480 int status = 0;
3481 struct pci_dev *pdev = qdev->pdev;
3482 struct intr_context *intr_context = &qdev->intr_context[0];
3483
3484 ql_resolve_queues_to_irqs(qdev);
3485
3486 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3487 atomic_set(&intr_context->irq_cnt, 0);
3488 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3489 status = request_irq(qdev->msi_x_entry[i].vector,
3490 intr_context->handler,
3491 0,
3492 intr_context->name,
3493 &qdev->rx_ring[i]);
3494 if (status) {
3495 netif_err(qdev, ifup, qdev->ndev,
3496 "Failed request for MSIX interrupt %d.\n",
3497 i);
3498 goto err_irq;
3499 } else {
3500 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3501 "Hooked intr %d, queue type %s, with name %s.\n",
3502 i,
3503 qdev->rx_ring[i].type == DEFAULT_Q ?
3504 "DEFAULT_Q" :
3505 qdev->rx_ring[i].type == TX_Q ?
3506 "TX_Q" :
3507 qdev->rx_ring[i].type == RX_Q ?
3508 "RX_Q" : "",
3509 intr_context->name);
3510 }
3511 } else {
3512 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3513 "trying msi or legacy interrupts.\n");
3514 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3515 "%s: irq = %d.\n", __func__, pdev->irq);
3516 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3517 "%s: context->name = %s.\n", __func__,
3518 intr_context->name);
3519 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3520 "%s: dev_id = 0x%p.\n", __func__,
3521 &qdev->rx_ring[0]);
3522 status =
3523 request_irq(pdev->irq, qlge_isr,
3524 test_bit(QL_MSI_ENABLED,
3525 &qdev->
3526 flags) ? 0 : IRQF_SHARED,
3527 intr_context->name, &qdev->rx_ring[0]);
3528 if (status)
3529 goto err_irq;
3530
3531 netif_err(qdev, ifup, qdev->ndev,
3532 "Hooked intr %d, queue type %s, with name %s.\n",
3533 i,
3534 qdev->rx_ring[0].type == DEFAULT_Q ?
3535 "DEFAULT_Q" :
3536 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3537 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3538 intr_context->name);
3539 }
3540 intr_context->hooked = 1;
3541 }
3542 return status;
3543 err_irq:
3544 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
3545 ql_free_irq(qdev);
3546 return status;
3547 }
3548
3549 static int ql_start_rss(struct ql_adapter *qdev)
3550 {
3551 static const u8 init_hash_seed[] = {
3552 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3553 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3554 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3555 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3556 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3557 };
3558 struct ricb *ricb = &qdev->ricb;
3559 int status = 0;
3560 int i;
3561 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3562
3563 memset((void *)ricb, 0, sizeof(*ricb));
3564
3565 ricb->base_cq = RSS_L4K;
3566 ricb->flags =
3567 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3568 ricb->mask = cpu_to_le16((u16)(0x3ff));
3569
3570 /*
3571 * Fill out the Indirection Table.
3572 */
3573 for (i = 0; i < 1024; i++)
3574 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3575
3576 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3577 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3578
3579 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
3580
3581 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3582 if (status) {
3583 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3584 return status;
3585 }
3586 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3587 "Successfully loaded RICB.\n");
3588 return status;
3589 }
3590
3591 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3592 {
3593 int i, status = 0;
3594
3595 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3596 if (status)
3597 return status;
3598 /* Clear all the entries in the routing table. */
3599 for (i = 0; i < 16; i++) {
3600 status = ql_set_routing_reg(qdev, i, 0, 0);
3601 if (status) {
3602 netif_err(qdev, ifup, qdev->ndev,
3603 "Failed to init routing register for CAM packets.\n");
3604 break;
3605 }
3606 }
3607 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3608 return status;
3609 }
3610
3611 /* Initialize the frame-to-queue routing. */
3612 static int ql_route_initialize(struct ql_adapter *qdev)
3613 {
3614 int status = 0;
3615
3616 /* Clear all the entries in the routing table. */
3617 status = ql_clear_routing_entries(qdev);
3618 if (status)
3619 return status;
3620
3621 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3622 if (status)
3623 return status;
3624
3625 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3626 RT_IDX_IP_CSUM_ERR, 1);
3627 if (status) {
3628 netif_err(qdev, ifup, qdev->ndev,
3629 "Failed to init routing register "
3630 "for IP CSUM error packets.\n");
3631 goto exit;
3632 }
3633 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3634 RT_IDX_TU_CSUM_ERR, 1);
3635 if (status) {
3636 netif_err(qdev, ifup, qdev->ndev,
3637 "Failed to init routing register "
3638 "for TCP/UDP CSUM error packets.\n");
3639 goto exit;
3640 }
3641 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3642 if (status) {
3643 netif_err(qdev, ifup, qdev->ndev,
3644 "Failed to init routing register for broadcast packets.\n");
3645 goto exit;
3646 }
3647 /* If we have more than one inbound queue, then turn on RSS in the
3648 * routing block.
3649 */
3650 if (qdev->rss_ring_count > 1) {
3651 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3652 RT_IDX_RSS_MATCH, 1);
3653 if (status) {
3654 netif_err(qdev, ifup, qdev->ndev,
3655 "Failed to init routing register for MATCH RSS packets.\n");
3656 goto exit;
3657 }
3658 }
3659
3660 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3661 RT_IDX_CAM_HIT, 1);
3662 if (status)
3663 netif_err(qdev, ifup, qdev->ndev,
3664 "Failed to init routing register for CAM packets.\n");
3665 exit:
3666 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3667 return status;
3668 }
3669
3670 int ql_cam_route_initialize(struct ql_adapter *qdev)
3671 {
3672 int status, set;
3673
3674 /* If check if the link is up and use to
3675 * determine if we are setting or clearing
3676 * the MAC address in the CAM.
3677 */
3678 set = ql_read32(qdev, STS);
3679 set &= qdev->port_link_up;
3680 status = ql_set_mac_addr(qdev, set);
3681 if (status) {
3682 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3683 return status;
3684 }
3685
3686 status = ql_route_initialize(qdev);
3687 if (status)
3688 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3689
3690 return status;
3691 }
3692
3693 static int ql_adapter_initialize(struct ql_adapter *qdev)
3694 {
3695 u32 value, mask;
3696 int i;
3697 int status = 0;
3698
3699 /*
3700 * Set up the System register to halt on errors.
3701 */
3702 value = SYS_EFE | SYS_FAE;
3703 mask = value << 16;
3704 ql_write32(qdev, SYS, mask | value);
3705
3706 /* Set the default queue, and VLAN behavior. */
3707 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3708 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3709 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3710
3711 /* Set the MPI interrupt to enabled. */
3712 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3713
3714 /* Enable the function, set pagesize, enable error checking. */
3715 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3716 FSC_EC | FSC_VM_PAGE_4K;
3717 value |= SPLT_SETTING;
3718
3719 /* Set/clear header splitting. */
3720 mask = FSC_VM_PAGESIZE_MASK |
3721 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3722 ql_write32(qdev, FSC, mask | value);
3723
3724 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3725
3726 /* Set RX packet routing to use port/pci function on which the
3727 * packet arrived on in addition to usual frame routing.
3728 * This is helpful on bonding where both interfaces can have
3729 * the same MAC address.
3730 */
3731 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3732 /* Reroute all packets to our Interface.
3733 * They may have been routed to MPI firmware
3734 * due to WOL.
3735 */
3736 value = ql_read32(qdev, MGMT_RCV_CFG);
3737 value &= ~MGMT_RCV_CFG_RM;
3738 mask = 0xffff0000;
3739
3740 /* Sticky reg needs clearing due to WOL. */
3741 ql_write32(qdev, MGMT_RCV_CFG, mask);
3742 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3743
3744 /* Default WOL is enable on Mezz cards */
3745 if (qdev->pdev->subsystem_device == 0x0068 ||
3746 qdev->pdev->subsystem_device == 0x0180)
3747 qdev->wol = WAKE_MAGIC;
3748
3749 /* Start up the rx queues. */
3750 for (i = 0; i < qdev->rx_ring_count; i++) {
3751 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3752 if (status) {
3753 netif_err(qdev, ifup, qdev->ndev,
3754 "Failed to start rx ring[%d].\n", i);
3755 return status;
3756 }
3757 }
3758
3759 /* If there is more than one inbound completion queue
3760 * then download a RICB to configure RSS.
3761 */
3762 if (qdev->rss_ring_count > 1) {
3763 status = ql_start_rss(qdev);
3764 if (status) {
3765 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3766 return status;
3767 }
3768 }
3769
3770 /* Start up the tx queues. */
3771 for (i = 0; i < qdev->tx_ring_count; i++) {
3772 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3773 if (status) {
3774 netif_err(qdev, ifup, qdev->ndev,
3775 "Failed to start tx ring[%d].\n", i);
3776 return status;
3777 }
3778 }
3779
3780 /* Initialize the port and set the max framesize. */
3781 status = qdev->nic_ops->port_initialize(qdev);
3782 if (status)
3783 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3784
3785 /* Set up the MAC address and frame routing filter. */
3786 status = ql_cam_route_initialize(qdev);
3787 if (status) {
3788 netif_err(qdev, ifup, qdev->ndev,
3789 "Failed to init CAM/Routing tables.\n");
3790 return status;
3791 }
3792
3793 /* Start NAPI for the RSS queues. */
3794 for (i = 0; i < qdev->rss_ring_count; i++) {
3795 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3796 "Enabling NAPI for rx_ring[%d].\n", i);
3797 napi_enable(&qdev->rx_ring[i].napi);
3798 }
3799
3800 return status;
3801 }
3802
3803 /* Issue soft reset to chip. */
3804 static int ql_adapter_reset(struct ql_adapter *qdev)
3805 {
3806 u32 value;
3807 int status = 0;
3808 unsigned long end_jiffies;
3809
3810 /* Clear all the entries in the routing table. */
3811 status = ql_clear_routing_entries(qdev);
3812 if (status) {
3813 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3814 return status;
3815 }
3816
3817 end_jiffies = jiffies +
3818 max((unsigned long)1, usecs_to_jiffies(30));
3819
3820 /* Stop management traffic. */
3821 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3822
3823 /* Wait for the NIC and MGMNT FIFOs to empty. */
3824 ql_wait_fifo_empty(qdev);
3825
3826 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3827
3828 do {
3829 value = ql_read32(qdev, RST_FO);
3830 if ((value & RST_FO_FR) == 0)
3831 break;
3832 cpu_relax();
3833 } while (time_before(jiffies, end_jiffies));
3834
3835 if (value & RST_FO_FR) {
3836 netif_err(qdev, ifdown, qdev->ndev,
3837 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3838 status = -ETIMEDOUT;
3839 }
3840
3841 /* Resume management traffic. */
3842 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3843 return status;
3844 }
3845
3846 static void ql_display_dev_info(struct net_device *ndev)
3847 {
3848 struct ql_adapter *qdev = netdev_priv(ndev);
3849
3850 netif_info(qdev, probe, qdev->ndev,
3851 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3852 "XG Roll = %d, XG Rev = %d.\n",
3853 qdev->func,
3854 qdev->port,
3855 qdev->chip_rev_id & 0x0000000f,
3856 qdev->chip_rev_id >> 4 & 0x0000000f,
3857 qdev->chip_rev_id >> 8 & 0x0000000f,
3858 qdev->chip_rev_id >> 12 & 0x0000000f);
3859 netif_info(qdev, probe, qdev->ndev,
3860 "MAC address %pM\n", ndev->dev_addr);
3861 }
3862
3863 static int ql_wol(struct ql_adapter *qdev)
3864 {
3865 int status = 0;
3866 u32 wol = MB_WOL_DISABLE;
3867
3868 /* The CAM is still intact after a reset, but if we
3869 * are doing WOL, then we may need to program the
3870 * routing regs. We would also need to issue the mailbox
3871 * commands to instruct the MPI what to do per the ethtool
3872 * settings.
3873 */
3874
3875 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3876 WAKE_MCAST | WAKE_BCAST)) {
3877 netif_err(qdev, ifdown, qdev->ndev,
3878 "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
3879 qdev->wol);
3880 return -EINVAL;
3881 }
3882
3883 if (qdev->wol & WAKE_MAGIC) {
3884 status = ql_mb_wol_set_magic(qdev, 1);
3885 if (status) {
3886 netif_err(qdev, ifdown, qdev->ndev,
3887 "Failed to set magic packet on %s.\n",
3888 qdev->ndev->name);
3889 return status;
3890 } else
3891 netif_info(qdev, drv, qdev->ndev,
3892 "Enabled magic packet successfully on %s.\n",
3893 qdev->ndev->name);
3894
3895 wol |= MB_WOL_MAGIC_PKT;
3896 }
3897
3898 if (qdev->wol) {
3899 wol |= MB_WOL_MODE_ON;
3900 status = ql_mb_wol_mode(qdev, wol);
3901 netif_err(qdev, drv, qdev->ndev,
3902 "WOL %s (wol code 0x%x) on %s\n",
3903 (status == 0) ? "Successfully set" : "Failed",
3904 wol, qdev->ndev->name);
3905 }
3906
3907 return status;
3908 }
3909
3910 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3911 {
3912
3913 /* Don't kill the reset worker thread if we
3914 * are in the process of recovery.
3915 */
3916 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3917 cancel_delayed_work_sync(&qdev->asic_reset_work);
3918 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3919 cancel_delayed_work_sync(&qdev->mpi_work);
3920 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3921 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3922 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3923 }
3924
3925 static int ql_adapter_down(struct ql_adapter *qdev)
3926 {
3927 int i, status = 0;
3928
3929 ql_link_off(qdev);
3930
3931 ql_cancel_all_work_sync(qdev);
3932
3933 for (i = 0; i < qdev->rss_ring_count; i++)
3934 napi_disable(&qdev->rx_ring[i].napi);
3935
3936 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3937
3938 ql_disable_interrupts(qdev);
3939
3940 ql_tx_ring_clean(qdev);
3941
3942 /* Call netif_napi_del() from common point.
3943 */
3944 for (i = 0; i < qdev->rss_ring_count; i++)
3945 netif_napi_del(&qdev->rx_ring[i].napi);
3946
3947 status = ql_adapter_reset(qdev);
3948 if (status)
3949 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
3950 qdev->func);
3951 ql_free_rx_buffers(qdev);
3952
3953 return status;
3954 }
3955
3956 static int ql_adapter_up(struct ql_adapter *qdev)
3957 {
3958 int err = 0;
3959
3960 err = ql_adapter_initialize(qdev);
3961 if (err) {
3962 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
3963 goto err_init;
3964 }
3965 set_bit(QL_ADAPTER_UP, &qdev->flags);
3966 ql_alloc_rx_buffers(qdev);
3967 /* If the port is initialized and the
3968 * link is up the turn on the carrier.
3969 */
3970 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3971 (ql_read32(qdev, STS) & qdev->port_link_up))
3972 ql_link_on(qdev);
3973 /* Restore rx mode. */
3974 clear_bit(QL_ALLMULTI, &qdev->flags);
3975 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3976 qlge_set_multicast_list(qdev->ndev);
3977
3978 /* Restore vlan setting. */
3979 qlge_restore_vlan(qdev);
3980
3981 ql_enable_interrupts(qdev);
3982 ql_enable_all_completion_interrupts(qdev);
3983 netif_tx_start_all_queues(qdev->ndev);
3984
3985 return 0;
3986 err_init:
3987 ql_adapter_reset(qdev);
3988 return err;
3989 }
3990
3991 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3992 {
3993 ql_free_mem_resources(qdev);
3994 ql_free_irq(qdev);
3995 }
3996
3997 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3998 {
3999 int status = 0;
4000
4001 if (ql_alloc_mem_resources(qdev)) {
4002 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4003 return -ENOMEM;
4004 }
4005 status = ql_request_irq(qdev);
4006 return status;
4007 }
4008
4009 static int qlge_close(struct net_device *ndev)
4010 {
4011 struct ql_adapter *qdev = netdev_priv(ndev);
4012
4013 /* If we hit pci_channel_io_perm_failure
4014 * failure condition, then we already
4015 * brought the adapter down.
4016 */
4017 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4018 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4019 clear_bit(QL_EEH_FATAL, &qdev->flags);
4020 return 0;
4021 }
4022
4023 /*
4024 * Wait for device to recover from a reset.
4025 * (Rarely happens, but possible.)
4026 */
4027 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4028 msleep(1);
4029 ql_adapter_down(qdev);
4030 ql_release_adapter_resources(qdev);
4031 return 0;
4032 }
4033
4034 static int ql_configure_rings(struct ql_adapter *qdev)
4035 {
4036 int i;
4037 struct rx_ring *rx_ring;
4038 struct tx_ring *tx_ring;
4039 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4040 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4041 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4042
4043 qdev->lbq_buf_order = get_order(lbq_buf_len);
4044
4045 /* In a perfect world we have one RSS ring for each CPU
4046 * and each has it's own vector. To do that we ask for
4047 * cpu_cnt vectors. ql_enable_msix() will adjust the
4048 * vector count to what we actually get. We then
4049 * allocate an RSS ring for each.
4050 * Essentially, we are doing min(cpu_count, msix_vector_count).
4051 */
4052 qdev->intr_count = cpu_cnt;
4053 ql_enable_msix(qdev);
4054 /* Adjust the RSS ring count to the actual vector count. */
4055 qdev->rss_ring_count = qdev->intr_count;
4056 qdev->tx_ring_count = cpu_cnt;
4057 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4058
4059 for (i = 0; i < qdev->tx_ring_count; i++) {
4060 tx_ring = &qdev->tx_ring[i];
4061 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4062 tx_ring->qdev = qdev;
4063 tx_ring->wq_id = i;
4064 tx_ring->wq_len = qdev->tx_ring_size;
4065 tx_ring->wq_size =
4066 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4067
4068 /*
4069 * The completion queue ID for the tx rings start
4070 * immediately after the rss rings.
4071 */
4072 tx_ring->cq_id = qdev->rss_ring_count + i;
4073 }
4074
4075 for (i = 0; i < qdev->rx_ring_count; i++) {
4076 rx_ring = &qdev->rx_ring[i];
4077 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4078 rx_ring->qdev = qdev;
4079 rx_ring->cq_id = i;
4080 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4081 if (i < qdev->rss_ring_count) {
4082 /*
4083 * Inbound (RSS) queues.
4084 */
4085 rx_ring->cq_len = qdev->rx_ring_size;
4086 rx_ring->cq_size =
4087 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4088 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4089 rx_ring->lbq_size =
4090 rx_ring->lbq_len * sizeof(__le64);
4091 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4092 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
4093 "lbq_buf_size %d, order = %d\n",
4094 rx_ring->lbq_buf_size,
4095 qdev->lbq_buf_order);
4096 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4097 rx_ring->sbq_size =
4098 rx_ring->sbq_len * sizeof(__le64);
4099 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4100 rx_ring->type = RX_Q;
4101 } else {
4102 /*
4103 * Outbound queue handles outbound completions only.
4104 */
4105 /* outbound cq is same size as tx_ring it services. */
4106 rx_ring->cq_len = qdev->tx_ring_size;
4107 rx_ring->cq_size =
4108 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4109 rx_ring->lbq_len = 0;
4110 rx_ring->lbq_size = 0;
4111 rx_ring->lbq_buf_size = 0;
4112 rx_ring->sbq_len = 0;
4113 rx_ring->sbq_size = 0;
4114 rx_ring->sbq_buf_size = 0;
4115 rx_ring->type = TX_Q;
4116 }
4117 }
4118 return 0;
4119 }
4120
4121 static int qlge_open(struct net_device *ndev)
4122 {
4123 int err = 0;
4124 struct ql_adapter *qdev = netdev_priv(ndev);
4125
4126 err = ql_adapter_reset(qdev);
4127 if (err)
4128 return err;
4129
4130 err = ql_configure_rings(qdev);
4131 if (err)
4132 return err;
4133
4134 err = ql_get_adapter_resources(qdev);
4135 if (err)
4136 goto error_up;
4137
4138 err = ql_adapter_up(qdev);
4139 if (err)
4140 goto error_up;
4141
4142 return err;
4143
4144 error_up:
4145 ql_release_adapter_resources(qdev);
4146 return err;
4147 }
4148
4149 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4150 {
4151 struct rx_ring *rx_ring;
4152 int i, status;
4153 u32 lbq_buf_len;
4154
4155 /* Wait for an outstanding reset to complete. */
4156 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4157 int i = 3;
4158 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4159 netif_err(qdev, ifup, qdev->ndev,
4160 "Waiting for adapter UP...\n");
4161 ssleep(1);
4162 }
4163
4164 if (!i) {
4165 netif_err(qdev, ifup, qdev->ndev,
4166 "Timed out waiting for adapter UP\n");
4167 return -ETIMEDOUT;
4168 }
4169 }
4170
4171 status = ql_adapter_down(qdev);
4172 if (status)
4173 goto error;
4174
4175 /* Get the new rx buffer size. */
4176 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4177 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4178 qdev->lbq_buf_order = get_order(lbq_buf_len);
4179
4180 for (i = 0; i < qdev->rss_ring_count; i++) {
4181 rx_ring = &qdev->rx_ring[i];
4182 /* Set the new size. */
4183 rx_ring->lbq_buf_size = lbq_buf_len;
4184 }
4185
4186 status = ql_adapter_up(qdev);
4187 if (status)
4188 goto error;
4189
4190 return status;
4191 error:
4192 netif_alert(qdev, ifup, qdev->ndev,
4193 "Driver up/down cycle failed, closing device.\n");
4194 set_bit(QL_ADAPTER_UP, &qdev->flags);
4195 dev_close(qdev->ndev);
4196 return status;
4197 }
4198
4199 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4200 {
4201 struct ql_adapter *qdev = netdev_priv(ndev);
4202 int status;
4203
4204 if (ndev->mtu == 1500 && new_mtu == 9000) {
4205 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4206 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4207 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4208 } else
4209 return -EINVAL;
4210
4211 queue_delayed_work(qdev->workqueue,
4212 &qdev->mpi_port_cfg_work, 3*HZ);
4213
4214 ndev->mtu = new_mtu;
4215
4216 if (!netif_running(qdev->ndev)) {
4217 return 0;
4218 }
4219
4220 status = ql_change_rx_buffers(qdev);
4221 if (status) {
4222 netif_err(qdev, ifup, qdev->ndev,
4223 "Changing MTU failed.\n");
4224 }
4225
4226 return status;
4227 }
4228
4229 static struct net_device_stats *qlge_get_stats(struct net_device
4230 *ndev)
4231 {
4232 struct ql_adapter *qdev = netdev_priv(ndev);
4233 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4234 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4235 unsigned long pkts, mcast, dropped, errors, bytes;
4236 int i;
4237
4238 /* Get RX stats. */
4239 pkts = mcast = dropped = errors = bytes = 0;
4240 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4241 pkts += rx_ring->rx_packets;
4242 bytes += rx_ring->rx_bytes;
4243 dropped += rx_ring->rx_dropped;
4244 errors += rx_ring->rx_errors;
4245 mcast += rx_ring->rx_multicast;
4246 }
4247 ndev->stats.rx_packets = pkts;
4248 ndev->stats.rx_bytes = bytes;
4249 ndev->stats.rx_dropped = dropped;
4250 ndev->stats.rx_errors = errors;
4251 ndev->stats.multicast = mcast;
4252
4253 /* Get TX stats. */
4254 pkts = errors = bytes = 0;
4255 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4256 pkts += tx_ring->tx_packets;
4257 bytes += tx_ring->tx_bytes;
4258 errors += tx_ring->tx_errors;
4259 }
4260 ndev->stats.tx_packets = pkts;
4261 ndev->stats.tx_bytes = bytes;
4262 ndev->stats.tx_errors = errors;
4263 return &ndev->stats;
4264 }
4265
4266 static void qlge_set_multicast_list(struct net_device *ndev)
4267 {
4268 struct ql_adapter *qdev = netdev_priv(ndev);
4269 struct netdev_hw_addr *ha;
4270 int i, status;
4271
4272 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4273 if (status)
4274 return;
4275 /*
4276 * Set or clear promiscuous mode if a
4277 * transition is taking place.
4278 */
4279 if (ndev->flags & IFF_PROMISC) {
4280 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4281 if (ql_set_routing_reg
4282 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4283 netif_err(qdev, hw, qdev->ndev,
4284 "Failed to set promiscuous mode.\n");
4285 } else {
4286 set_bit(QL_PROMISCUOUS, &qdev->flags);
4287 }
4288 }
4289 } else {
4290 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4291 if (ql_set_routing_reg
4292 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4293 netif_err(qdev, hw, qdev->ndev,
4294 "Failed to clear promiscuous mode.\n");
4295 } else {
4296 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4297 }
4298 }
4299 }
4300
4301 /*
4302 * Set or clear all multicast mode if a
4303 * transition is taking place.
4304 */
4305 if ((ndev->flags & IFF_ALLMULTI) ||
4306 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4307 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4308 if (ql_set_routing_reg
4309 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4310 netif_err(qdev, hw, qdev->ndev,
4311 "Failed to set all-multi mode.\n");
4312 } else {
4313 set_bit(QL_ALLMULTI, &qdev->flags);
4314 }
4315 }
4316 } else {
4317 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4318 if (ql_set_routing_reg
4319 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4320 netif_err(qdev, hw, qdev->ndev,
4321 "Failed to clear all-multi mode.\n");
4322 } else {
4323 clear_bit(QL_ALLMULTI, &qdev->flags);
4324 }
4325 }
4326 }
4327
4328 if (!netdev_mc_empty(ndev)) {
4329 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4330 if (status)
4331 goto exit;
4332 i = 0;
4333 netdev_for_each_mc_addr(ha, ndev) {
4334 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4335 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4336 netif_err(qdev, hw, qdev->ndev,
4337 "Failed to loadmulticast address.\n");
4338 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4339 goto exit;
4340 }
4341 i++;
4342 }
4343 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4344 if (ql_set_routing_reg
4345 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4346 netif_err(qdev, hw, qdev->ndev,
4347 "Failed to set multicast match mode.\n");
4348 } else {
4349 set_bit(QL_ALLMULTI, &qdev->flags);
4350 }
4351 }
4352 exit:
4353 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4354 }
4355
4356 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4357 {
4358 struct ql_adapter *qdev = netdev_priv(ndev);
4359 struct sockaddr *addr = p;
4360 int status;
4361
4362 if (!is_valid_ether_addr(addr->sa_data))
4363 return -EADDRNOTAVAIL;
4364 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4365 /* Update local copy of current mac address. */
4366 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4367
4368 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4369 if (status)
4370 return status;
4371 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4372 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4373 if (status)
4374 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4375 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4376 return status;
4377 }
4378
4379 static void qlge_tx_timeout(struct net_device *ndev)
4380 {
4381 struct ql_adapter *qdev = netdev_priv(ndev);
4382 ql_queue_asic_error(qdev);
4383 }
4384
4385 static void ql_asic_reset_work(struct work_struct *work)
4386 {
4387 struct ql_adapter *qdev =
4388 container_of(work, struct ql_adapter, asic_reset_work.work);
4389 int status;
4390 rtnl_lock();
4391 status = ql_adapter_down(qdev);
4392 if (status)
4393 goto error;
4394
4395 status = ql_adapter_up(qdev);
4396 if (status)
4397 goto error;
4398
4399 /* Restore rx mode. */
4400 clear_bit(QL_ALLMULTI, &qdev->flags);
4401 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4402 qlge_set_multicast_list(qdev->ndev);
4403
4404 rtnl_unlock();
4405 return;
4406 error:
4407 netif_alert(qdev, ifup, qdev->ndev,
4408 "Driver up/down cycle failed, closing device\n");
4409
4410 set_bit(QL_ADAPTER_UP, &qdev->flags);
4411 dev_close(qdev->ndev);
4412 rtnl_unlock();
4413 }
4414
4415 static const struct nic_operations qla8012_nic_ops = {
4416 .get_flash = ql_get_8012_flash_params,
4417 .port_initialize = ql_8012_port_initialize,
4418 };
4419
4420 static const struct nic_operations qla8000_nic_ops = {
4421 .get_flash = ql_get_8000_flash_params,
4422 .port_initialize = ql_8000_port_initialize,
4423 };
4424
4425 /* Find the pcie function number for the other NIC
4426 * on this chip. Since both NIC functions share a
4427 * common firmware we have the lowest enabled function
4428 * do any common work. Examples would be resetting
4429 * after a fatal firmware error, or doing a firmware
4430 * coredump.
4431 */
4432 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4433 {
4434 int status = 0;
4435 u32 temp;
4436 u32 nic_func1, nic_func2;
4437
4438 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4439 &temp);
4440 if (status)
4441 return status;
4442
4443 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4444 MPI_TEST_NIC_FUNC_MASK);
4445 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4446 MPI_TEST_NIC_FUNC_MASK);
4447
4448 if (qdev->func == nic_func1)
4449 qdev->alt_func = nic_func2;
4450 else if (qdev->func == nic_func2)
4451 qdev->alt_func = nic_func1;
4452 else
4453 status = -EIO;
4454
4455 return status;
4456 }
4457
4458 static int ql_get_board_info(struct ql_adapter *qdev)
4459 {
4460 int status;
4461 qdev->func =
4462 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4463 if (qdev->func > 3)
4464 return -EIO;
4465
4466 status = ql_get_alt_pcie_func(qdev);
4467 if (status)
4468 return status;
4469
4470 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4471 if (qdev->port) {
4472 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4473 qdev->port_link_up = STS_PL1;
4474 qdev->port_init = STS_PI1;
4475 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4476 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4477 } else {
4478 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4479 qdev->port_link_up = STS_PL0;
4480 qdev->port_init = STS_PI0;
4481 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4482 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4483 }
4484 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4485 qdev->device_id = qdev->pdev->device;
4486 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4487 qdev->nic_ops = &qla8012_nic_ops;
4488 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4489 qdev->nic_ops = &qla8000_nic_ops;
4490 return status;
4491 }
4492
4493 static void ql_release_all(struct pci_dev *pdev)
4494 {
4495 struct net_device *ndev = pci_get_drvdata(pdev);
4496 struct ql_adapter *qdev = netdev_priv(ndev);
4497
4498 if (qdev->workqueue) {
4499 destroy_workqueue(qdev->workqueue);
4500 qdev->workqueue = NULL;
4501 }
4502
4503 if (qdev->reg_base)
4504 iounmap(qdev->reg_base);
4505 if (qdev->doorbell_area)
4506 iounmap(qdev->doorbell_area);
4507 vfree(qdev->mpi_coredump);
4508 pci_release_regions(pdev);
4509 pci_set_drvdata(pdev, NULL);
4510 }
4511
4512 static int __devinit ql_init_device(struct pci_dev *pdev,
4513 struct net_device *ndev, int cards_found)
4514 {
4515 struct ql_adapter *qdev = netdev_priv(ndev);
4516 int err = 0;
4517
4518 memset((void *)qdev, 0, sizeof(*qdev));
4519 err = pci_enable_device(pdev);
4520 if (err) {
4521 dev_err(&pdev->dev, "PCI device enable failed.\n");
4522 return err;
4523 }
4524
4525 qdev->ndev = ndev;
4526 qdev->pdev = pdev;
4527 pci_set_drvdata(pdev, ndev);
4528
4529 /* Set PCIe read request size */
4530 err = pcie_set_readrq(pdev, 4096);
4531 if (err) {
4532 dev_err(&pdev->dev, "Set readrq failed.\n");
4533 goto err_out1;
4534 }
4535
4536 err = pci_request_regions(pdev, DRV_NAME);
4537 if (err) {
4538 dev_err(&pdev->dev, "PCI region request failed.\n");
4539 return err;
4540 }
4541
4542 pci_set_master(pdev);
4543 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4544 set_bit(QL_DMA64, &qdev->flags);
4545 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4546 } else {
4547 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4548 if (!err)
4549 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4550 }
4551
4552 if (err) {
4553 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4554 goto err_out2;
4555 }
4556
4557 /* Set PCIe reset type for EEH to fundamental. */
4558 pdev->needs_freset = 1;
4559 pci_save_state(pdev);
4560 qdev->reg_base =
4561 ioremap_nocache(pci_resource_start(pdev, 1),
4562 pci_resource_len(pdev, 1));
4563 if (!qdev->reg_base) {
4564 dev_err(&pdev->dev, "Register mapping failed.\n");
4565 err = -ENOMEM;
4566 goto err_out2;
4567 }
4568
4569 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4570 qdev->doorbell_area =
4571 ioremap_nocache(pci_resource_start(pdev, 3),
4572 pci_resource_len(pdev, 3));
4573 if (!qdev->doorbell_area) {
4574 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4575 err = -ENOMEM;
4576 goto err_out2;
4577 }
4578
4579 err = ql_get_board_info(qdev);
4580 if (err) {
4581 dev_err(&pdev->dev, "Register access failed.\n");
4582 err = -EIO;
4583 goto err_out2;
4584 }
4585 qdev->msg_enable = netif_msg_init(debug, default_msg);
4586 spin_lock_init(&qdev->hw_lock);
4587 spin_lock_init(&qdev->stats_lock);
4588
4589 if (qlge_mpi_coredump) {
4590 qdev->mpi_coredump =
4591 vmalloc(sizeof(struct ql_mpi_coredump));
4592 if (qdev->mpi_coredump == NULL) {
4593 dev_err(&pdev->dev, "Coredump alloc failed.\n");
4594 err = -ENOMEM;
4595 goto err_out2;
4596 }
4597 if (qlge_force_coredump)
4598 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4599 }
4600 /* make sure the EEPROM is good */
4601 err = qdev->nic_ops->get_flash(qdev);
4602 if (err) {
4603 dev_err(&pdev->dev, "Invalid FLASH.\n");
4604 goto err_out2;
4605 }
4606
4607 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4608 /* Keep local copy of current mac address. */
4609 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4610
4611 /* Set up the default ring sizes. */
4612 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4613 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4614
4615 /* Set up the coalescing parameters. */
4616 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4617 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4618 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4619 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4620
4621 /*
4622 * Set up the operating parameters.
4623 */
4624 qdev->rx_csum = 1;
4625 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4626 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4627 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4628 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4629 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4630 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4631 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4632 init_completion(&qdev->ide_completion);
4633 mutex_init(&qdev->mpi_mutex);
4634
4635 if (!cards_found) {
4636 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4637 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4638 DRV_NAME, DRV_VERSION);
4639 }
4640 return 0;
4641 err_out2:
4642 ql_release_all(pdev);
4643 err_out1:
4644 pci_disable_device(pdev);
4645 return err;
4646 }
4647
4648 static const struct net_device_ops qlge_netdev_ops = {
4649 .ndo_open = qlge_open,
4650 .ndo_stop = qlge_close,
4651 .ndo_start_xmit = qlge_send,
4652 .ndo_change_mtu = qlge_change_mtu,
4653 .ndo_get_stats = qlge_get_stats,
4654 .ndo_set_multicast_list = qlge_set_multicast_list,
4655 .ndo_set_mac_address = qlge_set_mac_address,
4656 .ndo_validate_addr = eth_validate_addr,
4657 .ndo_tx_timeout = qlge_tx_timeout,
4658 .ndo_vlan_rx_register = qlge_vlan_rx_register,
4659 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4660 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4661 };
4662
4663 static void ql_timer(unsigned long data)
4664 {
4665 struct ql_adapter *qdev = (struct ql_adapter *)data;
4666 u32 var = 0;
4667
4668 var = ql_read32(qdev, STS);
4669 if (pci_channel_offline(qdev->pdev)) {
4670 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4671 return;
4672 }
4673
4674 mod_timer(&qdev->timer, jiffies + (5*HZ));
4675 }
4676
4677 static int __devinit qlge_probe(struct pci_dev *pdev,
4678 const struct pci_device_id *pci_entry)
4679 {
4680 struct net_device *ndev = NULL;
4681 struct ql_adapter *qdev = NULL;
4682 static int cards_found = 0;
4683 int err = 0;
4684
4685 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4686 min(MAX_CPUS, (int)num_online_cpus()));
4687 if (!ndev)
4688 return -ENOMEM;
4689
4690 err = ql_init_device(pdev, ndev, cards_found);
4691 if (err < 0) {
4692 free_netdev(ndev);
4693 return err;
4694 }
4695
4696 qdev = netdev_priv(ndev);
4697 SET_NETDEV_DEV(ndev, &pdev->dev);
4698 ndev->features = (0
4699 | NETIF_F_IP_CSUM
4700 | NETIF_F_SG
4701 | NETIF_F_TSO
4702 | NETIF_F_TSO6
4703 | NETIF_F_TSO_ECN
4704 | NETIF_F_HW_VLAN_TX
4705 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
4706 ndev->features |= NETIF_F_GRO;
4707
4708 if (test_bit(QL_DMA64, &qdev->flags))
4709 ndev->features |= NETIF_F_HIGHDMA;
4710
4711 /*
4712 * Set up net_device structure.
4713 */
4714 ndev->tx_queue_len = qdev->tx_ring_size;
4715 ndev->irq = pdev->irq;
4716
4717 ndev->netdev_ops = &qlge_netdev_ops;
4718 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4719 ndev->watchdog_timeo = 10 * HZ;
4720
4721 err = register_netdev(ndev);
4722 if (err) {
4723 dev_err(&pdev->dev, "net device registration failed.\n");
4724 ql_release_all(pdev);
4725 pci_disable_device(pdev);
4726 return err;
4727 }
4728 /* Start up the timer to trigger EEH if
4729 * the bus goes dead
4730 */
4731 init_timer_deferrable(&qdev->timer);
4732 qdev->timer.data = (unsigned long)qdev;
4733 qdev->timer.function = ql_timer;
4734 qdev->timer.expires = jiffies + (5*HZ);
4735 add_timer(&qdev->timer);
4736 ql_link_off(qdev);
4737 ql_display_dev_info(ndev);
4738 atomic_set(&qdev->lb_count, 0);
4739 cards_found++;
4740 return 0;
4741 }
4742
4743 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4744 {
4745 return qlge_send(skb, ndev);
4746 }
4747
4748 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4749 {
4750 return ql_clean_inbound_rx_ring(rx_ring, budget);
4751 }
4752
4753 static void __devexit qlge_remove(struct pci_dev *pdev)
4754 {
4755 struct net_device *ndev = pci_get_drvdata(pdev);
4756 struct ql_adapter *qdev = netdev_priv(ndev);
4757 del_timer_sync(&qdev->timer);
4758 ql_cancel_all_work_sync(qdev);
4759 unregister_netdev(ndev);
4760 ql_release_all(pdev);
4761 pci_disable_device(pdev);
4762 free_netdev(ndev);
4763 }
4764
4765 /* Clean up resources without touching hardware. */
4766 static void ql_eeh_close(struct net_device *ndev)
4767 {
4768 int i;
4769 struct ql_adapter *qdev = netdev_priv(ndev);
4770
4771 if (netif_carrier_ok(ndev)) {
4772 netif_carrier_off(ndev);
4773 netif_stop_queue(ndev);
4774 }
4775
4776 /* Disabling the timer */
4777 del_timer_sync(&qdev->timer);
4778 ql_cancel_all_work_sync(qdev);
4779
4780 for (i = 0; i < qdev->rss_ring_count; i++)
4781 netif_napi_del(&qdev->rx_ring[i].napi);
4782
4783 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4784 ql_tx_ring_clean(qdev);
4785 ql_free_rx_buffers(qdev);
4786 ql_release_adapter_resources(qdev);
4787 }
4788
4789 /*
4790 * This callback is called by the PCI subsystem whenever
4791 * a PCI bus error is detected.
4792 */
4793 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4794 enum pci_channel_state state)
4795 {
4796 struct net_device *ndev = pci_get_drvdata(pdev);
4797 struct ql_adapter *qdev = netdev_priv(ndev);
4798
4799 switch (state) {
4800 case pci_channel_io_normal:
4801 return PCI_ERS_RESULT_CAN_RECOVER;
4802 case pci_channel_io_frozen:
4803 netif_device_detach(ndev);
4804 if (netif_running(ndev))
4805 ql_eeh_close(ndev);
4806 pci_disable_device(pdev);
4807 return PCI_ERS_RESULT_NEED_RESET;
4808 case pci_channel_io_perm_failure:
4809 dev_err(&pdev->dev,
4810 "%s: pci_channel_io_perm_failure.\n", __func__);
4811 ql_eeh_close(ndev);
4812 set_bit(QL_EEH_FATAL, &qdev->flags);
4813 return PCI_ERS_RESULT_DISCONNECT;
4814 }
4815
4816 /* Request a slot reset. */
4817 return PCI_ERS_RESULT_NEED_RESET;
4818 }
4819
4820 /*
4821 * This callback is called after the PCI buss has been reset.
4822 * Basically, this tries to restart the card from scratch.
4823 * This is a shortened version of the device probe/discovery code,
4824 * it resembles the first-half of the () routine.
4825 */
4826 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4827 {
4828 struct net_device *ndev = pci_get_drvdata(pdev);
4829 struct ql_adapter *qdev = netdev_priv(ndev);
4830
4831 pdev->error_state = pci_channel_io_normal;
4832
4833 pci_restore_state(pdev);
4834 if (pci_enable_device(pdev)) {
4835 netif_err(qdev, ifup, qdev->ndev,
4836 "Cannot re-enable PCI device after reset.\n");
4837 return PCI_ERS_RESULT_DISCONNECT;
4838 }
4839 pci_set_master(pdev);
4840
4841 if (ql_adapter_reset(qdev)) {
4842 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4843 set_bit(QL_EEH_FATAL, &qdev->flags);
4844 return PCI_ERS_RESULT_DISCONNECT;
4845 }
4846
4847 return PCI_ERS_RESULT_RECOVERED;
4848 }
4849
4850 static void qlge_io_resume(struct pci_dev *pdev)
4851 {
4852 struct net_device *ndev = pci_get_drvdata(pdev);
4853 struct ql_adapter *qdev = netdev_priv(ndev);
4854 int err = 0;
4855
4856 if (netif_running(ndev)) {
4857 err = qlge_open(ndev);
4858 if (err) {
4859 netif_err(qdev, ifup, qdev->ndev,
4860 "Device initialization failed after reset.\n");
4861 return;
4862 }
4863 } else {
4864 netif_err(qdev, ifup, qdev->ndev,
4865 "Device was not running prior to EEH.\n");
4866 }
4867 mod_timer(&qdev->timer, jiffies + (5*HZ));
4868 netif_device_attach(ndev);
4869 }
4870
4871 static struct pci_error_handlers qlge_err_handler = {
4872 .error_detected = qlge_io_error_detected,
4873 .slot_reset = qlge_io_slot_reset,
4874 .resume = qlge_io_resume,
4875 };
4876
4877 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4878 {
4879 struct net_device *ndev = pci_get_drvdata(pdev);
4880 struct ql_adapter *qdev = netdev_priv(ndev);
4881 int err;
4882
4883 netif_device_detach(ndev);
4884 del_timer_sync(&qdev->timer);
4885
4886 if (netif_running(ndev)) {
4887 err = ql_adapter_down(qdev);
4888 if (!err)
4889 return err;
4890 }
4891
4892 ql_wol(qdev);
4893 err = pci_save_state(pdev);
4894 if (err)
4895 return err;
4896
4897 pci_disable_device(pdev);
4898
4899 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4900
4901 return 0;
4902 }
4903
4904 #ifdef CONFIG_PM
4905 static int qlge_resume(struct pci_dev *pdev)
4906 {
4907 struct net_device *ndev = pci_get_drvdata(pdev);
4908 struct ql_adapter *qdev = netdev_priv(ndev);
4909 int err;
4910
4911 pci_set_power_state(pdev, PCI_D0);
4912 pci_restore_state(pdev);
4913 err = pci_enable_device(pdev);
4914 if (err) {
4915 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4916 return err;
4917 }
4918 pci_set_master(pdev);
4919
4920 pci_enable_wake(pdev, PCI_D3hot, 0);
4921 pci_enable_wake(pdev, PCI_D3cold, 0);
4922
4923 if (netif_running(ndev)) {
4924 err = ql_adapter_up(qdev);
4925 if (err)
4926 return err;
4927 }
4928
4929 mod_timer(&qdev->timer, jiffies + (5*HZ));
4930 netif_device_attach(ndev);
4931
4932 return 0;
4933 }
4934 #endif /* CONFIG_PM */
4935
4936 static void qlge_shutdown(struct pci_dev *pdev)
4937 {
4938 qlge_suspend(pdev, PMSG_SUSPEND);
4939 }
4940
4941 static struct pci_driver qlge_driver = {
4942 .name = DRV_NAME,
4943 .id_table = qlge_pci_tbl,
4944 .probe = qlge_probe,
4945 .remove = __devexit_p(qlge_remove),
4946 #ifdef CONFIG_PM
4947 .suspend = qlge_suspend,
4948 .resume = qlge_resume,
4949 #endif
4950 .shutdown = qlge_shutdown,
4951 .err_handler = &qlge_err_handler
4952 };
4953
4954 static int __init qlge_init_module(void)
4955 {
4956 return pci_register_driver(&qlge_driver);
4957 }
4958
4959 static void __exit qlge_exit(void)
4960 {
4961 pci_unregister_driver(&qlge_driver);
4962 }
4963
4964 module_init(qlge_init_module);
4965 module_exit(qlge_exit);
This page took 0.136573 seconds and 4 git commands to generate.