[NET]: Introduce and use print_mac() and DECLARE_MAC_BUF()
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.26.2"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104 }
105
106 /*
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123 struct mac_info *mac_control;
124
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
131 }
132
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
134 {
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136 }
137
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
145 };
146
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148 {"tmac_frms"},
149 {"tmac_data_octets"},
150 {"tmac_drop_frms"},
151 {"tmac_mcst_frms"},
152 {"tmac_bcst_frms"},
153 {"tmac_pause_ctrl_frms"},
154 {"tmac_ttl_octets"},
155 {"tmac_ucst_frms"},
156 {"tmac_nucst_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
160 {"tmac_vld_ip"},
161 {"tmac_drop_ip"},
162 {"tmac_icmp"},
163 {"tmac_rst_tcp"},
164 {"tmac_tcp"},
165 {"tmac_udp"},
166 {"rmac_vld_frms"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
169 {"rmac_drop_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
174 {"rmac_long_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
177 {"rmac_ttl_octets"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
183 {"rmac_ttl_frms"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
186 {"rmac_frag_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
194 {"rmac_ip"},
195 {"rmac_ip_octets"},
196 {"rmac_hdr_err_ip"},
197 {"rmac_drop_ip"},
198 {"rmac_icmp"},
199 {"rmac_tcp"},
200 {"rmac_udp"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
203 {"rmac_frms_q0"},
204 {"rmac_frms_q1"},
205 {"rmac_frms_q2"},
206 {"rmac_frms_q3"},
207 {"rmac_frms_q4"},
208 {"rmac_frms_q5"},
209 {"rmac_frms_q6"},
210 {"rmac_frms_q7"},
211 {"rmac_full_q0"},
212 {"rmac_full_q1"},
213 {"rmac_full_q2"},
214 {"rmac_full_q3"},
215 {"rmac_full_q4"},
216 {"rmac_full_q5"},
217 {"rmac_full_q6"},
218 {"rmac_full_q7"},
219 {"rmac_pause_cnt"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
223 {"rmac_err_tcp"},
224 {"rd_req_cnt"},
225 {"new_rd_req_cnt"},
226 {"new_rd_req_rtry_cnt"},
227 {"rd_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
229 {"wr_req_cnt"},
230 {"new_wr_req_cnt"},
231 {"new_wr_req_rtry_cnt"},
232 {"wr_rtry_cnt"},
233 {"wr_disc_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
235 {"txp_wr_cnt"},
236 {"txd_rd_cnt"},
237 {"txd_wr_cnt"},
238 {"rxd_rd_cnt"},
239 {"rxd_wr_cnt"},
240 {"txf_rd_cnt"},
241 {"rxf_wr_cnt"}
242 };
243
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
252 {"rmac_vlan_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
255 {"rmac_pf_discard"},
256 {"rmac_da_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
260 {"link_fault_cnt"}
261 };
262
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
267 {"parity_err_cnt"},
268 {"serious_err_cnt"},
269 {"soft_reset_cnt"},
270 {"fifo_full_cnt"},
271 {"ring_0_full_cnt"},
272 {"ring_1_full_cnt"},
273 {"ring_2_full_cnt"},
274 {"ring_3_full_cnt"},
275 {"ring_4_full_cnt"},
276 {"ring_5_full_cnt"},
277 {"ring_6_full_cnt"},
278 {"ring_7_full_cnt"},
279 ("alarm_transceiver_temp_high"),
280 ("alarm_transceiver_temp_low"),
281 ("alarm_laser_bias_current_high"),
282 ("alarm_laser_bias_current_low"),
283 ("alarm_laser_output_power_high"),
284 ("alarm_laser_output_power_low"),
285 ("warn_transceiver_temp_high"),
286 ("warn_transceiver_temp_low"),
287 ("warn_laser_bias_current_high"),
288 ("warn_laser_bias_current_low"),
289 ("warn_laser_output_power_high"),
290 ("warn_laser_output_power_low"),
291 ("lro_aggregated_pkts"),
292 ("lro_flush_both_count"),
293 ("lro_out_of_sequence_pkts"),
294 ("lro_flush_due_to_max_pkts"),
295 ("lro_avg_aggr_pkts"),
296 ("mem_alloc_fail_cnt"),
297 ("pci_map_fail_cnt"),
298 ("watchdog_timer_cnt"),
299 ("mem_allocated"),
300 ("mem_freed"),
301 ("link_up_cnt"),
302 ("link_down_cnt"),
303 ("link_up_time"),
304 ("link_down_time"),
305 ("tx_tcode_buf_abort_cnt"),
306 ("tx_tcode_desc_abort_cnt"),
307 ("tx_tcode_parity_err_cnt"),
308 ("tx_tcode_link_loss_cnt"),
309 ("tx_tcode_list_proc_err_cnt"),
310 ("rx_tcode_parity_err_cnt"),
311 ("rx_tcode_abort_cnt"),
312 ("rx_tcode_parity_abort_cnt"),
313 ("rx_tcode_rda_fail_cnt"),
314 ("rx_tcode_unkn_prot_cnt"),
315 ("rx_tcode_fcs_err_cnt"),
316 ("rx_tcode_buf_size_err_cnt"),
317 ("rx_tcode_rxd_corrupt_cnt"),
318 ("rx_tcode_unkn_err_cnt"),
319 {"tda_err_cnt"},
320 {"pfc_err_cnt"},
321 {"pcc_err_cnt"},
322 {"tti_err_cnt"},
323 {"tpa_err_cnt"},
324 {"sm_err_cnt"},
325 {"lso_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
330 {"rc_err_cnt"},
331 {"prc_pcix_err_cnt"},
332 {"rpa_err_cnt"},
333 {"rda_err_cnt"},
334 {"rti_err_cnt"},
335 {"mc_err_cnt"}
336 };
337
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340 ETH_GSTRING_LEN
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
342
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348
349 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
357
358 /* Add the vlan */
359 static void s2io_vlan_rx_register(struct net_device *dev,
360 struct vlan_group *grp)
361 {
362 struct s2io_nic *nic = dev->priv;
363 unsigned long flags;
364
365 spin_lock_irqsave(&nic->tx_lock, flags);
366 nic->vlgrp = grp;
367 spin_unlock_irqrestore(&nic->tx_lock, flags);
368 }
369
370 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
371 static int vlan_strip_flag;
372
373 /*
374 * Constants to be programmed into the Xena's registers, to configure
375 * the XAUI.
376 */
377
378 #define END_SIGN 0x0
379 static const u64 herc_act_dtx_cfg[] = {
380 /* Set address */
381 0x8000051536750000ULL, 0x80000515367500E0ULL,
382 /* Write data */
383 0x8000051536750004ULL, 0x80000515367500E4ULL,
384 /* Set address */
385 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
386 /* Write data */
387 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
388 /* Set address */
389 0x801205150D440000ULL, 0x801205150D4400E0ULL,
390 /* Write data */
391 0x801205150D440004ULL, 0x801205150D4400E4ULL,
392 /* Set address */
393 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
394 /* Write data */
395 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
396 /* Done */
397 END_SIGN
398 };
399
400 static const u64 xena_dtx_cfg[] = {
401 /* Set address */
402 0x8000051500000000ULL, 0x80000515000000E0ULL,
403 /* Write data */
404 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
405 /* Set address */
406 0x8001051500000000ULL, 0x80010515000000E0ULL,
407 /* Write data */
408 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
409 /* Set address */
410 0x8002051500000000ULL, 0x80020515000000E0ULL,
411 /* Write data */
412 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
413 END_SIGN
414 };
415
416 /*
417 * Constants for Fixing the MacAddress problem seen mostly on
418 * Alpha machines.
419 */
420 static const u64 fix_mac[] = {
421 0x0060000000000000ULL, 0x0060600000000000ULL,
422 0x0040600000000000ULL, 0x0000600000000000ULL,
423 0x0020600000000000ULL, 0x0060600000000000ULL,
424 0x0020600000000000ULL, 0x0060600000000000ULL,
425 0x0020600000000000ULL, 0x0060600000000000ULL,
426 0x0020600000000000ULL, 0x0060600000000000ULL,
427 0x0020600000000000ULL, 0x0060600000000000ULL,
428 0x0020600000000000ULL, 0x0060600000000000ULL,
429 0x0020600000000000ULL, 0x0060600000000000ULL,
430 0x0020600000000000ULL, 0x0060600000000000ULL,
431 0x0020600000000000ULL, 0x0060600000000000ULL,
432 0x0020600000000000ULL, 0x0060600000000000ULL,
433 0x0020600000000000ULL, 0x0000600000000000ULL,
434 0x0040600000000000ULL, 0x0060600000000000ULL,
435 END_SIGN
436 };
437
438 MODULE_LICENSE("GPL");
439 MODULE_VERSION(DRV_VERSION);
440
441
442 /* Module Loadable parameters. */
443 S2IO_PARM_INT(tx_fifo_num, 1);
444 S2IO_PARM_INT(rx_ring_num, 1);
445
446
447 S2IO_PARM_INT(rx_ring_mode, 1);
448 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
449 S2IO_PARM_INT(rmac_pause_time, 0x100);
450 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
451 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
452 S2IO_PARM_INT(shared_splits, 0);
453 S2IO_PARM_INT(tmac_util_period, 5);
454 S2IO_PARM_INT(rmac_util_period, 5);
455 S2IO_PARM_INT(bimodal, 0);
456 S2IO_PARM_INT(l3l4hdr_size, 128);
457 /* Frequency of Rx desc syncs expressed as power of 2 */
458 S2IO_PARM_INT(rxsync_frequency, 3);
459 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
460 S2IO_PARM_INT(intr_type, 2);
461 /* Large receive offload feature */
462 S2IO_PARM_INT(lro, 0);
463 /* Max pkts to be aggregated by LRO at one time. If not specified,
464 * aggregation happens until we hit max IP pkt size(64K)
465 */
466 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
467 S2IO_PARM_INT(indicate_max_pkts, 0);
468
469 S2IO_PARM_INT(napi, 1);
470 S2IO_PARM_INT(ufo, 0);
471 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
472
473 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
474 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
475 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
476 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
477 static unsigned int rts_frm_len[MAX_RX_RINGS] =
478 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
479
480 module_param_array(tx_fifo_len, uint, NULL, 0);
481 module_param_array(rx_ring_sz, uint, NULL, 0);
482 module_param_array(rts_frm_len, uint, NULL, 0);
483
484 /*
485 * S2IO device table.
486 * This table lists all the devices that this driver supports.
487 */
488 static struct pci_device_id s2io_tbl[] __devinitdata = {
489 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
490 PCI_ANY_ID, PCI_ANY_ID},
491 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
492 PCI_ANY_ID, PCI_ANY_ID},
493 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
494 PCI_ANY_ID, PCI_ANY_ID},
495 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
496 PCI_ANY_ID, PCI_ANY_ID},
497 {0,}
498 };
499
500 MODULE_DEVICE_TABLE(pci, s2io_tbl);
501
502 static struct pci_error_handlers s2io_err_handler = {
503 .error_detected = s2io_io_error_detected,
504 .slot_reset = s2io_io_slot_reset,
505 .resume = s2io_io_resume,
506 };
507
508 static struct pci_driver s2io_driver = {
509 .name = "S2IO",
510 .id_table = s2io_tbl,
511 .probe = s2io_init_nic,
512 .remove = __devexit_p(s2io_rem_nic),
513 .err_handler = &s2io_err_handler,
514 };
515
516 /* A simplifier macro used both by init and free shared_mem Fns(). */
517 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
518
519 /**
520 * init_shared_mem - Allocation and Initialization of Memory
521 * @nic: Device private variable.
522 * Description: The function allocates all the memory areas shared
523 * between the NIC and the driver. This includes Tx descriptors,
524 * Rx descriptors and the statistics block.
525 */
526
527 static int init_shared_mem(struct s2io_nic *nic)
528 {
529 u32 size;
530 void *tmp_v_addr, *tmp_v_addr_next;
531 dma_addr_t tmp_p_addr, tmp_p_addr_next;
532 struct RxD_block *pre_rxd_blk = NULL;
533 int i, j, blk_cnt;
534 int lst_size, lst_per_page;
535 struct net_device *dev = nic->dev;
536 unsigned long tmp;
537 struct buffAdd *ba;
538
539 struct mac_info *mac_control;
540 struct config_param *config;
541 unsigned long long mem_allocated = 0;
542
543 mac_control = &nic->mac_control;
544 config = &nic->config;
545
546
547 /* Allocation and initialization of TXDLs in FIOFs */
548 size = 0;
549 for (i = 0; i < config->tx_fifo_num; i++) {
550 size += config->tx_cfg[i].fifo_len;
551 }
552 if (size > MAX_AVAILABLE_TXDS) {
553 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
554 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
555 return -EINVAL;
556 }
557
558 lst_size = (sizeof(struct TxD) * config->max_txds);
559 lst_per_page = PAGE_SIZE / lst_size;
560
561 for (i = 0; i < config->tx_fifo_num; i++) {
562 int fifo_len = config->tx_cfg[i].fifo_len;
563 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
564 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
565 GFP_KERNEL);
566 if (!mac_control->fifos[i].list_info) {
567 DBG_PRINT(INFO_DBG,
568 "Malloc failed for list_info\n");
569 return -ENOMEM;
570 }
571 mem_allocated += list_holder_size;
572 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
573 }
574 for (i = 0; i < config->tx_fifo_num; i++) {
575 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
576 lst_per_page);
577 mac_control->fifos[i].tx_curr_put_info.offset = 0;
578 mac_control->fifos[i].tx_curr_put_info.fifo_len =
579 config->tx_cfg[i].fifo_len - 1;
580 mac_control->fifos[i].tx_curr_get_info.offset = 0;
581 mac_control->fifos[i].tx_curr_get_info.fifo_len =
582 config->tx_cfg[i].fifo_len - 1;
583 mac_control->fifos[i].fifo_no = i;
584 mac_control->fifos[i].nic = nic;
585 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
586
587 for (j = 0; j < page_num; j++) {
588 int k = 0;
589 dma_addr_t tmp_p;
590 void *tmp_v;
591 tmp_v = pci_alloc_consistent(nic->pdev,
592 PAGE_SIZE, &tmp_p);
593 if (!tmp_v) {
594 DBG_PRINT(INFO_DBG,
595 "pci_alloc_consistent ");
596 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
597 return -ENOMEM;
598 }
599 /* If we got a zero DMA address(can happen on
600 * certain platforms like PPC), reallocate.
601 * Store virtual address of page we don't want,
602 * to be freed later.
603 */
604 if (!tmp_p) {
605 mac_control->zerodma_virt_addr = tmp_v;
606 DBG_PRINT(INIT_DBG,
607 "%s: Zero DMA address for TxDL. ", dev->name);
608 DBG_PRINT(INIT_DBG,
609 "Virtual address %p\n", tmp_v);
610 tmp_v = pci_alloc_consistent(nic->pdev,
611 PAGE_SIZE, &tmp_p);
612 if (!tmp_v) {
613 DBG_PRINT(INFO_DBG,
614 "pci_alloc_consistent ");
615 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
616 return -ENOMEM;
617 }
618 mem_allocated += PAGE_SIZE;
619 }
620 while (k < lst_per_page) {
621 int l = (j * lst_per_page) + k;
622 if (l == config->tx_cfg[i].fifo_len)
623 break;
624 mac_control->fifos[i].list_info[l].list_virt_addr =
625 tmp_v + (k * lst_size);
626 mac_control->fifos[i].list_info[l].list_phy_addr =
627 tmp_p + (k * lst_size);
628 k++;
629 }
630 }
631 }
632
633 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
634 if (!nic->ufo_in_band_v)
635 return -ENOMEM;
636 mem_allocated += (size * sizeof(u64));
637
638 /* Allocation and initialization of RXDs in Rings */
639 size = 0;
640 for (i = 0; i < config->rx_ring_num; i++) {
641 if (config->rx_cfg[i].num_rxd %
642 (rxd_count[nic->rxd_mode] + 1)) {
643 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
644 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
645 i);
646 DBG_PRINT(ERR_DBG, "RxDs per Block");
647 return FAILURE;
648 }
649 size += config->rx_cfg[i].num_rxd;
650 mac_control->rings[i].block_count =
651 config->rx_cfg[i].num_rxd /
652 (rxd_count[nic->rxd_mode] + 1 );
653 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
654 mac_control->rings[i].block_count;
655 }
656 if (nic->rxd_mode == RXD_MODE_1)
657 size = (size * (sizeof(struct RxD1)));
658 else
659 size = (size * (sizeof(struct RxD3)));
660
661 for (i = 0; i < config->rx_ring_num; i++) {
662 mac_control->rings[i].rx_curr_get_info.block_index = 0;
663 mac_control->rings[i].rx_curr_get_info.offset = 0;
664 mac_control->rings[i].rx_curr_get_info.ring_len =
665 config->rx_cfg[i].num_rxd - 1;
666 mac_control->rings[i].rx_curr_put_info.block_index = 0;
667 mac_control->rings[i].rx_curr_put_info.offset = 0;
668 mac_control->rings[i].rx_curr_put_info.ring_len =
669 config->rx_cfg[i].num_rxd - 1;
670 mac_control->rings[i].nic = nic;
671 mac_control->rings[i].ring_no = i;
672
673 blk_cnt = config->rx_cfg[i].num_rxd /
674 (rxd_count[nic->rxd_mode] + 1);
675 /* Allocating all the Rx blocks */
676 for (j = 0; j < blk_cnt; j++) {
677 struct rx_block_info *rx_blocks;
678 int l;
679
680 rx_blocks = &mac_control->rings[i].rx_blocks[j];
681 size = SIZE_OF_BLOCK; //size is always page size
682 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
683 &tmp_p_addr);
684 if (tmp_v_addr == NULL) {
685 /*
686 * In case of failure, free_shared_mem()
687 * is called, which should free any
688 * memory that was alloced till the
689 * failure happened.
690 */
691 rx_blocks->block_virt_addr = tmp_v_addr;
692 return -ENOMEM;
693 }
694 mem_allocated += size;
695 memset(tmp_v_addr, 0, size);
696 rx_blocks->block_virt_addr = tmp_v_addr;
697 rx_blocks->block_dma_addr = tmp_p_addr;
698 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
699 rxd_count[nic->rxd_mode],
700 GFP_KERNEL);
701 if (!rx_blocks->rxds)
702 return -ENOMEM;
703 mem_allocated +=
704 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
705 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
706 rx_blocks->rxds[l].virt_addr =
707 rx_blocks->block_virt_addr +
708 (rxd_size[nic->rxd_mode] * l);
709 rx_blocks->rxds[l].dma_addr =
710 rx_blocks->block_dma_addr +
711 (rxd_size[nic->rxd_mode] * l);
712 }
713 }
714 /* Interlinking all Rx Blocks */
715 for (j = 0; j < blk_cnt; j++) {
716 tmp_v_addr =
717 mac_control->rings[i].rx_blocks[j].block_virt_addr;
718 tmp_v_addr_next =
719 mac_control->rings[i].rx_blocks[(j + 1) %
720 blk_cnt].block_virt_addr;
721 tmp_p_addr =
722 mac_control->rings[i].rx_blocks[j].block_dma_addr;
723 tmp_p_addr_next =
724 mac_control->rings[i].rx_blocks[(j + 1) %
725 blk_cnt].block_dma_addr;
726
727 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
728 pre_rxd_blk->reserved_2_pNext_RxD_block =
729 (unsigned long) tmp_v_addr_next;
730 pre_rxd_blk->pNext_RxD_Blk_physical =
731 (u64) tmp_p_addr_next;
732 }
733 }
734 if (nic->rxd_mode == RXD_MODE_3B) {
735 /*
736 * Allocation of Storages for buffer addresses in 2BUFF mode
737 * and the buffers as well.
738 */
739 for (i = 0; i < config->rx_ring_num; i++) {
740 blk_cnt = config->rx_cfg[i].num_rxd /
741 (rxd_count[nic->rxd_mode]+ 1);
742 mac_control->rings[i].ba =
743 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
744 GFP_KERNEL);
745 if (!mac_control->rings[i].ba)
746 return -ENOMEM;
747 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
748 for (j = 0; j < blk_cnt; j++) {
749 int k = 0;
750 mac_control->rings[i].ba[j] =
751 kmalloc((sizeof(struct buffAdd) *
752 (rxd_count[nic->rxd_mode] + 1)),
753 GFP_KERNEL);
754 if (!mac_control->rings[i].ba[j])
755 return -ENOMEM;
756 mem_allocated += (sizeof(struct buffAdd) * \
757 (rxd_count[nic->rxd_mode] + 1));
758 while (k != rxd_count[nic->rxd_mode]) {
759 ba = &mac_control->rings[i].ba[j][k];
760
761 ba->ba_0_org = (void *) kmalloc
762 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
763 if (!ba->ba_0_org)
764 return -ENOMEM;
765 mem_allocated +=
766 (BUF0_LEN + ALIGN_SIZE);
767 tmp = (unsigned long)ba->ba_0_org;
768 tmp += ALIGN_SIZE;
769 tmp &= ~((unsigned long) ALIGN_SIZE);
770 ba->ba_0 = (void *) tmp;
771
772 ba->ba_1_org = (void *) kmalloc
773 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
774 if (!ba->ba_1_org)
775 return -ENOMEM;
776 mem_allocated
777 += (BUF1_LEN + ALIGN_SIZE);
778 tmp = (unsigned long) ba->ba_1_org;
779 tmp += ALIGN_SIZE;
780 tmp &= ~((unsigned long) ALIGN_SIZE);
781 ba->ba_1 = (void *) tmp;
782 k++;
783 }
784 }
785 }
786 }
787
788 /* Allocation and initialization of Statistics block */
789 size = sizeof(struct stat_block);
790 mac_control->stats_mem = pci_alloc_consistent
791 (nic->pdev, size, &mac_control->stats_mem_phy);
792
793 if (!mac_control->stats_mem) {
794 /*
795 * In case of failure, free_shared_mem() is called, which
796 * should free any memory that was alloced till the
797 * failure happened.
798 */
799 return -ENOMEM;
800 }
801 mem_allocated += size;
802 mac_control->stats_mem_sz = size;
803
804 tmp_v_addr = mac_control->stats_mem;
805 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
806 memset(tmp_v_addr, 0, size);
807 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
808 (unsigned long long) tmp_p_addr);
809 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
810 return SUCCESS;
811 }
812
813 /**
814 * free_shared_mem - Free the allocated Memory
815 * @nic: Device private variable.
816 * Description: This function is to free all memory locations allocated by
817 * the init_shared_mem() function and return it to the kernel.
818 */
819
820 static void free_shared_mem(struct s2io_nic *nic)
821 {
822 int i, j, blk_cnt, size;
823 u32 ufo_size = 0;
824 void *tmp_v_addr;
825 dma_addr_t tmp_p_addr;
826 struct mac_info *mac_control;
827 struct config_param *config;
828 int lst_size, lst_per_page;
829 struct net_device *dev;
830 int page_num = 0;
831
832 if (!nic)
833 return;
834
835 dev = nic->dev;
836
837 mac_control = &nic->mac_control;
838 config = &nic->config;
839
840 lst_size = (sizeof(struct TxD) * config->max_txds);
841 lst_per_page = PAGE_SIZE / lst_size;
842
843 for (i = 0; i < config->tx_fifo_num; i++) {
844 ufo_size += config->tx_cfg[i].fifo_len;
845 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
846 lst_per_page);
847 for (j = 0; j < page_num; j++) {
848 int mem_blks = (j * lst_per_page);
849 if (!mac_control->fifos[i].list_info)
850 return;
851 if (!mac_control->fifos[i].list_info[mem_blks].
852 list_virt_addr)
853 break;
854 pci_free_consistent(nic->pdev, PAGE_SIZE,
855 mac_control->fifos[i].
856 list_info[mem_blks].
857 list_virt_addr,
858 mac_control->fifos[i].
859 list_info[mem_blks].
860 list_phy_addr);
861 nic->mac_control.stats_info->sw_stat.mem_freed
862 += PAGE_SIZE;
863 }
864 /* If we got a zero DMA address during allocation,
865 * free the page now
866 */
867 if (mac_control->zerodma_virt_addr) {
868 pci_free_consistent(nic->pdev, PAGE_SIZE,
869 mac_control->zerodma_virt_addr,
870 (dma_addr_t)0);
871 DBG_PRINT(INIT_DBG,
872 "%s: Freeing TxDL with zero DMA addr. ",
873 dev->name);
874 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
875 mac_control->zerodma_virt_addr);
876 nic->mac_control.stats_info->sw_stat.mem_freed
877 += PAGE_SIZE;
878 }
879 kfree(mac_control->fifos[i].list_info);
880 nic->mac_control.stats_info->sw_stat.mem_freed +=
881 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
882 }
883
884 size = SIZE_OF_BLOCK;
885 for (i = 0; i < config->rx_ring_num; i++) {
886 blk_cnt = mac_control->rings[i].block_count;
887 for (j = 0; j < blk_cnt; j++) {
888 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
889 block_virt_addr;
890 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
891 block_dma_addr;
892 if (tmp_v_addr == NULL)
893 break;
894 pci_free_consistent(nic->pdev, size,
895 tmp_v_addr, tmp_p_addr);
896 nic->mac_control.stats_info->sw_stat.mem_freed += size;
897 kfree(mac_control->rings[i].rx_blocks[j].rxds);
898 nic->mac_control.stats_info->sw_stat.mem_freed +=
899 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
900 }
901 }
902
903 if (nic->rxd_mode == RXD_MODE_3B) {
904 /* Freeing buffer storage addresses in 2BUFF mode. */
905 for (i = 0; i < config->rx_ring_num; i++) {
906 blk_cnt = config->rx_cfg[i].num_rxd /
907 (rxd_count[nic->rxd_mode] + 1);
908 for (j = 0; j < blk_cnt; j++) {
909 int k = 0;
910 if (!mac_control->rings[i].ba[j])
911 continue;
912 while (k != rxd_count[nic->rxd_mode]) {
913 struct buffAdd *ba =
914 &mac_control->rings[i].ba[j][k];
915 kfree(ba->ba_0_org);
916 nic->mac_control.stats_info->sw_stat.\
917 mem_freed += (BUF0_LEN + ALIGN_SIZE);
918 kfree(ba->ba_1_org);
919 nic->mac_control.stats_info->sw_stat.\
920 mem_freed += (BUF1_LEN + ALIGN_SIZE);
921 k++;
922 }
923 kfree(mac_control->rings[i].ba[j]);
924 nic->mac_control.stats_info->sw_stat.mem_freed +=
925 (sizeof(struct buffAdd) *
926 (rxd_count[nic->rxd_mode] + 1));
927 }
928 kfree(mac_control->rings[i].ba);
929 nic->mac_control.stats_info->sw_stat.mem_freed +=
930 (sizeof(struct buffAdd *) * blk_cnt);
931 }
932 }
933
934 if (mac_control->stats_mem) {
935 pci_free_consistent(nic->pdev,
936 mac_control->stats_mem_sz,
937 mac_control->stats_mem,
938 mac_control->stats_mem_phy);
939 nic->mac_control.stats_info->sw_stat.mem_freed +=
940 mac_control->stats_mem_sz;
941 }
942 if (nic->ufo_in_band_v) {
943 kfree(nic->ufo_in_band_v);
944 nic->mac_control.stats_info->sw_stat.mem_freed
945 += (ufo_size * sizeof(u64));
946 }
947 }
948
949 /**
950 * s2io_verify_pci_mode -
951 */
952
953 static int s2io_verify_pci_mode(struct s2io_nic *nic)
954 {
955 struct XENA_dev_config __iomem *bar0 = nic->bar0;
956 register u64 val64 = 0;
957 int mode;
958
959 val64 = readq(&bar0->pci_mode);
960 mode = (u8)GET_PCI_MODE(val64);
961
962 if ( val64 & PCI_MODE_UNKNOWN_MODE)
963 return -1; /* Unknown PCI mode */
964 return mode;
965 }
966
967 #define NEC_VENID 0x1033
968 #define NEC_DEVID 0x0125
969 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
970 {
971 struct pci_dev *tdev = NULL;
972 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
973 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
974 if (tdev->bus == s2io_pdev->bus->parent)
975 pci_dev_put(tdev);
976 return 1;
977 }
978 }
979 return 0;
980 }
981
982 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
983 /**
984 * s2io_print_pci_mode -
985 */
986 static int s2io_print_pci_mode(struct s2io_nic *nic)
987 {
988 struct XENA_dev_config __iomem *bar0 = nic->bar0;
989 register u64 val64 = 0;
990 int mode;
991 struct config_param *config = &nic->config;
992
993 val64 = readq(&bar0->pci_mode);
994 mode = (u8)GET_PCI_MODE(val64);
995
996 if ( val64 & PCI_MODE_UNKNOWN_MODE)
997 return -1; /* Unknown PCI mode */
998
999 config->bus_speed = bus_speed[mode];
1000
1001 if (s2io_on_nec_bridge(nic->pdev)) {
1002 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1003 nic->dev->name);
1004 return mode;
1005 }
1006
1007 if (val64 & PCI_MODE_32_BITS) {
1008 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1009 } else {
1010 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1011 }
1012
1013 switch(mode) {
1014 case PCI_MODE_PCI_33:
1015 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1016 break;
1017 case PCI_MODE_PCI_66:
1018 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1019 break;
1020 case PCI_MODE_PCIX_M1_66:
1021 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1022 break;
1023 case PCI_MODE_PCIX_M1_100:
1024 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1025 break;
1026 case PCI_MODE_PCIX_M1_133:
1027 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1028 break;
1029 case PCI_MODE_PCIX_M2_66:
1030 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1031 break;
1032 case PCI_MODE_PCIX_M2_100:
1033 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1034 break;
1035 case PCI_MODE_PCIX_M2_133:
1036 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1037 break;
1038 default:
1039 return -1; /* Unsupported bus speed */
1040 }
1041
1042 return mode;
1043 }
1044
1045 /**
1046 * init_nic - Initialization of hardware
1047 * @nic: device peivate variable
1048 * Description: The function sequentially configures every block
1049 * of the H/W from their reset values.
1050 * Return Value: SUCCESS on success and
1051 * '-1' on failure (endian settings incorrect).
1052 */
1053
1054 static int init_nic(struct s2io_nic *nic)
1055 {
1056 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1057 struct net_device *dev = nic->dev;
1058 register u64 val64 = 0;
1059 void __iomem *add;
1060 u32 time;
1061 int i, j;
1062 struct mac_info *mac_control;
1063 struct config_param *config;
1064 int dtx_cnt = 0;
1065 unsigned long long mem_share;
1066 int mem_size;
1067
1068 mac_control = &nic->mac_control;
1069 config = &nic->config;
1070
1071 /* to set the swapper controle on the card */
1072 if(s2io_set_swapper(nic)) {
1073 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1074 return -1;
1075 }
1076
1077 /*
1078 * Herc requires EOI to be removed from reset before XGXS, so..
1079 */
1080 if (nic->device_type & XFRAME_II_DEVICE) {
1081 val64 = 0xA500000000ULL;
1082 writeq(val64, &bar0->sw_reset);
1083 msleep(500);
1084 val64 = readq(&bar0->sw_reset);
1085 }
1086
1087 /* Remove XGXS from reset state */
1088 val64 = 0;
1089 writeq(val64, &bar0->sw_reset);
1090 msleep(500);
1091 val64 = readq(&bar0->sw_reset);
1092
1093 /* Enable Receiving broadcasts */
1094 add = &bar0->mac_cfg;
1095 val64 = readq(&bar0->mac_cfg);
1096 val64 |= MAC_RMAC_BCAST_ENABLE;
1097 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1098 writel((u32) val64, add);
1099 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1100 writel((u32) (val64 >> 32), (add + 4));
1101
1102 /* Read registers in all blocks */
1103 val64 = readq(&bar0->mac_int_mask);
1104 val64 = readq(&bar0->mc_int_mask);
1105 val64 = readq(&bar0->xgxs_int_mask);
1106
1107 /* Set MTU */
1108 val64 = dev->mtu;
1109 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1110
1111 if (nic->device_type & XFRAME_II_DEVICE) {
1112 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1113 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1114 &bar0->dtx_control, UF);
1115 if (dtx_cnt & 0x1)
1116 msleep(1); /* Necessary!! */
1117 dtx_cnt++;
1118 }
1119 } else {
1120 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1121 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1122 &bar0->dtx_control, UF);
1123 val64 = readq(&bar0->dtx_control);
1124 dtx_cnt++;
1125 }
1126 }
1127
1128 /* Tx DMA Initialization */
1129 val64 = 0;
1130 writeq(val64, &bar0->tx_fifo_partition_0);
1131 writeq(val64, &bar0->tx_fifo_partition_1);
1132 writeq(val64, &bar0->tx_fifo_partition_2);
1133 writeq(val64, &bar0->tx_fifo_partition_3);
1134
1135
1136 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1137 val64 |=
1138 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1139 13) | vBIT(config->tx_cfg[i].fifo_priority,
1140 ((i * 32) + 5), 3);
1141
1142 if (i == (config->tx_fifo_num - 1)) {
1143 if (i % 2 == 0)
1144 i++;
1145 }
1146
1147 switch (i) {
1148 case 1:
1149 writeq(val64, &bar0->tx_fifo_partition_0);
1150 val64 = 0;
1151 break;
1152 case 3:
1153 writeq(val64, &bar0->tx_fifo_partition_1);
1154 val64 = 0;
1155 break;
1156 case 5:
1157 writeq(val64, &bar0->tx_fifo_partition_2);
1158 val64 = 0;
1159 break;
1160 case 7:
1161 writeq(val64, &bar0->tx_fifo_partition_3);
1162 break;
1163 }
1164 }
1165
1166 /*
1167 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1168 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1169 */
1170 if ((nic->device_type == XFRAME_I_DEVICE) &&
1171 (nic->pdev->revision < 4))
1172 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1173
1174 val64 = readq(&bar0->tx_fifo_partition_0);
1175 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1176 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1177
1178 /*
1179 * Initialization of Tx_PA_CONFIG register to ignore packet
1180 * integrity checking.
1181 */
1182 val64 = readq(&bar0->tx_pa_cfg);
1183 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1184 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1185 writeq(val64, &bar0->tx_pa_cfg);
1186
1187 /* Rx DMA intialization. */
1188 val64 = 0;
1189 for (i = 0; i < config->rx_ring_num; i++) {
1190 val64 |=
1191 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1192 3);
1193 }
1194 writeq(val64, &bar0->rx_queue_priority);
1195
1196 /*
1197 * Allocating equal share of memory to all the
1198 * configured Rings.
1199 */
1200 val64 = 0;
1201 if (nic->device_type & XFRAME_II_DEVICE)
1202 mem_size = 32;
1203 else
1204 mem_size = 64;
1205
1206 for (i = 0; i < config->rx_ring_num; i++) {
1207 switch (i) {
1208 case 0:
1209 mem_share = (mem_size / config->rx_ring_num +
1210 mem_size % config->rx_ring_num);
1211 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1212 continue;
1213 case 1:
1214 mem_share = (mem_size / config->rx_ring_num);
1215 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1216 continue;
1217 case 2:
1218 mem_share = (mem_size / config->rx_ring_num);
1219 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1220 continue;
1221 case 3:
1222 mem_share = (mem_size / config->rx_ring_num);
1223 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1224 continue;
1225 case 4:
1226 mem_share = (mem_size / config->rx_ring_num);
1227 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1228 continue;
1229 case 5:
1230 mem_share = (mem_size / config->rx_ring_num);
1231 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1232 continue;
1233 case 6:
1234 mem_share = (mem_size / config->rx_ring_num);
1235 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1236 continue;
1237 case 7:
1238 mem_share = (mem_size / config->rx_ring_num);
1239 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1240 continue;
1241 }
1242 }
1243 writeq(val64, &bar0->rx_queue_cfg);
1244
1245 /*
1246 * Filling Tx round robin registers
1247 * as per the number of FIFOs
1248 */
1249 switch (config->tx_fifo_num) {
1250 case 1:
1251 val64 = 0x0000000000000000ULL;
1252 writeq(val64, &bar0->tx_w_round_robin_0);
1253 writeq(val64, &bar0->tx_w_round_robin_1);
1254 writeq(val64, &bar0->tx_w_round_robin_2);
1255 writeq(val64, &bar0->tx_w_round_robin_3);
1256 writeq(val64, &bar0->tx_w_round_robin_4);
1257 break;
1258 case 2:
1259 val64 = 0x0000010000010000ULL;
1260 writeq(val64, &bar0->tx_w_round_robin_0);
1261 val64 = 0x0100000100000100ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_1);
1263 val64 = 0x0001000001000001ULL;
1264 writeq(val64, &bar0->tx_w_round_robin_2);
1265 val64 = 0x0000010000010000ULL;
1266 writeq(val64, &bar0->tx_w_round_robin_3);
1267 val64 = 0x0100000000000000ULL;
1268 writeq(val64, &bar0->tx_w_round_robin_4);
1269 break;
1270 case 3:
1271 val64 = 0x0001000102000001ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_0);
1273 val64 = 0x0001020000010001ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_1);
1275 val64 = 0x0200000100010200ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_2);
1277 val64 = 0x0001000102000001ULL;
1278 writeq(val64, &bar0->tx_w_round_robin_3);
1279 val64 = 0x0001020000000000ULL;
1280 writeq(val64, &bar0->tx_w_round_robin_4);
1281 break;
1282 case 4:
1283 val64 = 0x0001020300010200ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_0);
1285 val64 = 0x0100000102030001ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_1);
1287 val64 = 0x0200010000010203ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_2);
1289 val64 = 0x0001020001000001ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_3);
1291 val64 = 0x0203000100000000ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_4);
1293 break;
1294 case 5:
1295 val64 = 0x0001000203000102ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_0);
1297 val64 = 0x0001020001030004ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_1);
1299 val64 = 0x0001000203000102ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_2);
1301 val64 = 0x0001020001030004ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_3);
1303 val64 = 0x0001000000000000ULL;
1304 writeq(val64, &bar0->tx_w_round_robin_4);
1305 break;
1306 case 6:
1307 val64 = 0x0001020304000102ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_0);
1309 val64 = 0x0304050001020001ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_1);
1311 val64 = 0x0203000100000102ULL;
1312 writeq(val64, &bar0->tx_w_round_robin_2);
1313 val64 = 0x0304000102030405ULL;
1314 writeq(val64, &bar0->tx_w_round_robin_3);
1315 val64 = 0x0001000200000000ULL;
1316 writeq(val64, &bar0->tx_w_round_robin_4);
1317 break;
1318 case 7:
1319 val64 = 0x0001020001020300ULL;
1320 writeq(val64, &bar0->tx_w_round_robin_0);
1321 val64 = 0x0102030400010203ULL;
1322 writeq(val64, &bar0->tx_w_round_robin_1);
1323 val64 = 0x0405060001020001ULL;
1324 writeq(val64, &bar0->tx_w_round_robin_2);
1325 val64 = 0x0304050000010200ULL;
1326 writeq(val64, &bar0->tx_w_round_robin_3);
1327 val64 = 0x0102030000000000ULL;
1328 writeq(val64, &bar0->tx_w_round_robin_4);
1329 break;
1330 case 8:
1331 val64 = 0x0001020300040105ULL;
1332 writeq(val64, &bar0->tx_w_round_robin_0);
1333 val64 = 0x0200030106000204ULL;
1334 writeq(val64, &bar0->tx_w_round_robin_1);
1335 val64 = 0x0103000502010007ULL;
1336 writeq(val64, &bar0->tx_w_round_robin_2);
1337 val64 = 0x0304010002060500ULL;
1338 writeq(val64, &bar0->tx_w_round_robin_3);
1339 val64 = 0x0103020400000000ULL;
1340 writeq(val64, &bar0->tx_w_round_robin_4);
1341 break;
1342 }
1343
1344 /* Enable all configured Tx FIFO partitions */
1345 val64 = readq(&bar0->tx_fifo_partition_0);
1346 val64 |= (TX_FIFO_PARTITION_EN);
1347 writeq(val64, &bar0->tx_fifo_partition_0);
1348
1349 /* Filling the Rx round robin registers as per the
1350 * number of Rings and steering based on QoS.
1351 */
1352 switch (config->rx_ring_num) {
1353 case 1:
1354 val64 = 0x8080808080808080ULL;
1355 writeq(val64, &bar0->rts_qos_steering);
1356 break;
1357 case 2:
1358 val64 = 0x0000010000010000ULL;
1359 writeq(val64, &bar0->rx_w_round_robin_0);
1360 val64 = 0x0100000100000100ULL;
1361 writeq(val64, &bar0->rx_w_round_robin_1);
1362 val64 = 0x0001000001000001ULL;
1363 writeq(val64, &bar0->rx_w_round_robin_2);
1364 val64 = 0x0000010000010000ULL;
1365 writeq(val64, &bar0->rx_w_round_robin_3);
1366 val64 = 0x0100000000000000ULL;
1367 writeq(val64, &bar0->rx_w_round_robin_4);
1368
1369 val64 = 0x8080808040404040ULL;
1370 writeq(val64, &bar0->rts_qos_steering);
1371 break;
1372 case 3:
1373 val64 = 0x0001000102000001ULL;
1374 writeq(val64, &bar0->rx_w_round_robin_0);
1375 val64 = 0x0001020000010001ULL;
1376 writeq(val64, &bar0->rx_w_round_robin_1);
1377 val64 = 0x0200000100010200ULL;
1378 writeq(val64, &bar0->rx_w_round_robin_2);
1379 val64 = 0x0001000102000001ULL;
1380 writeq(val64, &bar0->rx_w_round_robin_3);
1381 val64 = 0x0001020000000000ULL;
1382 writeq(val64, &bar0->rx_w_round_robin_4);
1383
1384 val64 = 0x8080804040402020ULL;
1385 writeq(val64, &bar0->rts_qos_steering);
1386 break;
1387 case 4:
1388 val64 = 0x0001020300010200ULL;
1389 writeq(val64, &bar0->rx_w_round_robin_0);
1390 val64 = 0x0100000102030001ULL;
1391 writeq(val64, &bar0->rx_w_round_robin_1);
1392 val64 = 0x0200010000010203ULL;
1393 writeq(val64, &bar0->rx_w_round_robin_2);
1394 val64 = 0x0001020001000001ULL;
1395 writeq(val64, &bar0->rx_w_round_robin_3);
1396 val64 = 0x0203000100000000ULL;
1397 writeq(val64, &bar0->rx_w_round_robin_4);
1398
1399 val64 = 0x8080404020201010ULL;
1400 writeq(val64, &bar0->rts_qos_steering);
1401 break;
1402 case 5:
1403 val64 = 0x0001000203000102ULL;
1404 writeq(val64, &bar0->rx_w_round_robin_0);
1405 val64 = 0x0001020001030004ULL;
1406 writeq(val64, &bar0->rx_w_round_robin_1);
1407 val64 = 0x0001000203000102ULL;
1408 writeq(val64, &bar0->rx_w_round_robin_2);
1409 val64 = 0x0001020001030004ULL;
1410 writeq(val64, &bar0->rx_w_round_robin_3);
1411 val64 = 0x0001000000000000ULL;
1412 writeq(val64, &bar0->rx_w_round_robin_4);
1413
1414 val64 = 0x8080404020201008ULL;
1415 writeq(val64, &bar0->rts_qos_steering);
1416 break;
1417 case 6:
1418 val64 = 0x0001020304000102ULL;
1419 writeq(val64, &bar0->rx_w_round_robin_0);
1420 val64 = 0x0304050001020001ULL;
1421 writeq(val64, &bar0->rx_w_round_robin_1);
1422 val64 = 0x0203000100000102ULL;
1423 writeq(val64, &bar0->rx_w_round_robin_2);
1424 val64 = 0x0304000102030405ULL;
1425 writeq(val64, &bar0->rx_w_round_robin_3);
1426 val64 = 0x0001000200000000ULL;
1427 writeq(val64, &bar0->rx_w_round_robin_4);
1428
1429 val64 = 0x8080404020100804ULL;
1430 writeq(val64, &bar0->rts_qos_steering);
1431 break;
1432 case 7:
1433 val64 = 0x0001020001020300ULL;
1434 writeq(val64, &bar0->rx_w_round_robin_0);
1435 val64 = 0x0102030400010203ULL;
1436 writeq(val64, &bar0->rx_w_round_robin_1);
1437 val64 = 0x0405060001020001ULL;
1438 writeq(val64, &bar0->rx_w_round_robin_2);
1439 val64 = 0x0304050000010200ULL;
1440 writeq(val64, &bar0->rx_w_round_robin_3);
1441 val64 = 0x0102030000000000ULL;
1442 writeq(val64, &bar0->rx_w_round_robin_4);
1443
1444 val64 = 0x8080402010080402ULL;
1445 writeq(val64, &bar0->rts_qos_steering);
1446 break;
1447 case 8:
1448 val64 = 0x0001020300040105ULL;
1449 writeq(val64, &bar0->rx_w_round_robin_0);
1450 val64 = 0x0200030106000204ULL;
1451 writeq(val64, &bar0->rx_w_round_robin_1);
1452 val64 = 0x0103000502010007ULL;
1453 writeq(val64, &bar0->rx_w_round_robin_2);
1454 val64 = 0x0304010002060500ULL;
1455 writeq(val64, &bar0->rx_w_round_robin_3);
1456 val64 = 0x0103020400000000ULL;
1457 writeq(val64, &bar0->rx_w_round_robin_4);
1458
1459 val64 = 0x8040201008040201ULL;
1460 writeq(val64, &bar0->rts_qos_steering);
1461 break;
1462 }
1463
1464 /* UDP Fix */
1465 val64 = 0;
1466 for (i = 0; i < 8; i++)
1467 writeq(val64, &bar0->rts_frm_len_n[i]);
1468
1469 /* Set the default rts frame length for the rings configured */
1470 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1471 for (i = 0 ; i < config->rx_ring_num ; i++)
1472 writeq(val64, &bar0->rts_frm_len_n[i]);
1473
1474 /* Set the frame length for the configured rings
1475 * desired by the user
1476 */
1477 for (i = 0; i < config->rx_ring_num; i++) {
1478 /* If rts_frm_len[i] == 0 then it is assumed that user not
1479 * specified frame length steering.
1480 * If the user provides the frame length then program
1481 * the rts_frm_len register for those values or else
1482 * leave it as it is.
1483 */
1484 if (rts_frm_len[i] != 0) {
1485 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1486 &bar0->rts_frm_len_n[i]);
1487 }
1488 }
1489
1490 /* Disable differentiated services steering logic */
1491 for (i = 0; i < 64; i++) {
1492 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1493 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1494 dev->name);
1495 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1496 return FAILURE;
1497 }
1498 }
1499
1500 /* Program statistics memory */
1501 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1502
1503 if (nic->device_type == XFRAME_II_DEVICE) {
1504 val64 = STAT_BC(0x320);
1505 writeq(val64, &bar0->stat_byte_cnt);
1506 }
1507
1508 /*
1509 * Initializing the sampling rate for the device to calculate the
1510 * bandwidth utilization.
1511 */
1512 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1513 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1514 writeq(val64, &bar0->mac_link_util);
1515
1516
1517 /*
1518 * Initializing the Transmit and Receive Traffic Interrupt
1519 * Scheme.
1520 */
1521 /*
1522 * TTI Initialization. Default Tx timer gets us about
1523 * 250 interrupts per sec. Continuous interrupts are enabled
1524 * by default.
1525 */
1526 if (nic->device_type == XFRAME_II_DEVICE) {
1527 int count = (nic->config.bus_speed * 125)/2;
1528 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1529 } else {
1530
1531 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1532 }
1533 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1534 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1535 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1536 if (use_continuous_tx_intrs)
1537 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1538 writeq(val64, &bar0->tti_data1_mem);
1539
1540 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1541 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1542 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1543 writeq(val64, &bar0->tti_data2_mem);
1544
1545 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1546 writeq(val64, &bar0->tti_command_mem);
1547
1548 /*
1549 * Once the operation completes, the Strobe bit of the command
1550 * register will be reset. We poll for this particular condition
1551 * We wait for a maximum of 500ms for the operation to complete,
1552 * if it's not complete by then we return error.
1553 */
1554 time = 0;
1555 while (TRUE) {
1556 val64 = readq(&bar0->tti_command_mem);
1557 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1558 break;
1559 }
1560 if (time > 10) {
1561 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1562 dev->name);
1563 return -1;
1564 }
1565 msleep(50);
1566 time++;
1567 }
1568
1569 if (nic->config.bimodal) {
1570 int k = 0;
1571 for (k = 0; k < config->rx_ring_num; k++) {
1572 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1573 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1574 writeq(val64, &bar0->tti_command_mem);
1575
1576 /*
1577 * Once the operation completes, the Strobe bit of the command
1578 * register will be reset. We poll for this particular condition
1579 * We wait for a maximum of 500ms for the operation to complete,
1580 * if it's not complete by then we return error.
1581 */
1582 time = 0;
1583 while (TRUE) {
1584 val64 = readq(&bar0->tti_command_mem);
1585 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1586 break;
1587 }
1588 if (time > 10) {
1589 DBG_PRINT(ERR_DBG,
1590 "%s: TTI init Failed\n",
1591 dev->name);
1592 return -1;
1593 }
1594 time++;
1595 msleep(50);
1596 }
1597 }
1598 } else {
1599
1600 /* RTI Initialization */
1601 if (nic->device_type == XFRAME_II_DEVICE) {
1602 /*
1603 * Programmed to generate Apprx 500 Intrs per
1604 * second
1605 */
1606 int count = (nic->config.bus_speed * 125)/4;
1607 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1608 } else {
1609 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1610 }
1611 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1612 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1613 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1614
1615 writeq(val64, &bar0->rti_data1_mem);
1616
1617 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1618 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1619 if (nic->config.intr_type == MSI_X)
1620 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1621 RTI_DATA2_MEM_RX_UFC_D(0x40));
1622 else
1623 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1624 RTI_DATA2_MEM_RX_UFC_D(0x80));
1625 writeq(val64, &bar0->rti_data2_mem);
1626
1627 for (i = 0; i < config->rx_ring_num; i++) {
1628 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1629 | RTI_CMD_MEM_OFFSET(i);
1630 writeq(val64, &bar0->rti_command_mem);
1631
1632 /*
1633 * Once the operation completes, the Strobe bit of the
1634 * command register will be reset. We poll for this
1635 * particular condition. We wait for a maximum of 500ms
1636 * for the operation to complete, if it's not complete
1637 * by then we return error.
1638 */
1639 time = 0;
1640 while (TRUE) {
1641 val64 = readq(&bar0->rti_command_mem);
1642 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1643 break;
1644 }
1645 if (time > 10) {
1646 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1647 dev->name);
1648 return -1;
1649 }
1650 time++;
1651 msleep(50);
1652 }
1653 }
1654 }
1655
1656 /*
1657 * Initializing proper values as Pause threshold into all
1658 * the 8 Queues on Rx side.
1659 */
1660 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1661 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1662
1663 /* Disable RMAC PAD STRIPPING */
1664 add = &bar0->mac_cfg;
1665 val64 = readq(&bar0->mac_cfg);
1666 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1667 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1668 writel((u32) (val64), add);
1669 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1670 writel((u32) (val64 >> 32), (add + 4));
1671 val64 = readq(&bar0->mac_cfg);
1672
1673 /* Enable FCS stripping by adapter */
1674 add = &bar0->mac_cfg;
1675 val64 = readq(&bar0->mac_cfg);
1676 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1677 if (nic->device_type == XFRAME_II_DEVICE)
1678 writeq(val64, &bar0->mac_cfg);
1679 else {
1680 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1681 writel((u32) (val64), add);
1682 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1683 writel((u32) (val64 >> 32), (add + 4));
1684 }
1685
1686 /*
1687 * Set the time value to be inserted in the pause frame
1688 * generated by xena.
1689 */
1690 val64 = readq(&bar0->rmac_pause_cfg);
1691 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1692 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1693 writeq(val64, &bar0->rmac_pause_cfg);
1694
1695 /*
1696 * Set the Threshold Limit for Generating the pause frame
1697 * If the amount of data in any Queue exceeds ratio of
1698 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1699 * pause frame is generated
1700 */
1701 val64 = 0;
1702 for (i = 0; i < 4; i++) {
1703 val64 |=
1704 (((u64) 0xFF00 | nic->mac_control.
1705 mc_pause_threshold_q0q3)
1706 << (i * 2 * 8));
1707 }
1708 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1709
1710 val64 = 0;
1711 for (i = 0; i < 4; i++) {
1712 val64 |=
1713 (((u64) 0xFF00 | nic->mac_control.
1714 mc_pause_threshold_q4q7)
1715 << (i * 2 * 8));
1716 }
1717 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1718
1719 /*
1720 * TxDMA will stop Read request if the number of read split has
1721 * exceeded the limit pointed by shared_splits
1722 */
1723 val64 = readq(&bar0->pic_control);
1724 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1725 writeq(val64, &bar0->pic_control);
1726
1727 if (nic->config.bus_speed == 266) {
1728 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1729 writeq(0x0, &bar0->read_retry_delay);
1730 writeq(0x0, &bar0->write_retry_delay);
1731 }
1732
1733 /*
1734 * Programming the Herc to split every write transaction
1735 * that does not start on an ADB to reduce disconnects.
1736 */
1737 if (nic->device_type == XFRAME_II_DEVICE) {
1738 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1739 MISC_LINK_STABILITY_PRD(3);
1740 writeq(val64, &bar0->misc_control);
1741 val64 = readq(&bar0->pic_control2);
1742 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1743 writeq(val64, &bar0->pic_control2);
1744 }
1745 if (strstr(nic->product_name, "CX4")) {
1746 val64 = TMAC_AVG_IPG(0x17);
1747 writeq(val64, &bar0->tmac_avg_ipg);
1748 }
1749
1750 return SUCCESS;
1751 }
1752 #define LINK_UP_DOWN_INTERRUPT 1
1753 #define MAC_RMAC_ERR_TIMER 2
1754
1755 static int s2io_link_fault_indication(struct s2io_nic *nic)
1756 {
1757 if (nic->config.intr_type != INTA)
1758 return MAC_RMAC_ERR_TIMER;
1759 if (nic->device_type == XFRAME_II_DEVICE)
1760 return LINK_UP_DOWN_INTERRUPT;
1761 else
1762 return MAC_RMAC_ERR_TIMER;
1763 }
1764
1765 /**
1766 * do_s2io_write_bits - update alarm bits in alarm register
1767 * @value: alarm bits
1768 * @flag: interrupt status
1769 * @addr: address value
1770 * Description: update alarm bits in alarm register
1771 * Return Value:
1772 * NONE.
1773 */
1774 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1775 {
1776 u64 temp64;
1777
1778 temp64 = readq(addr);
1779
1780 if(flag == ENABLE_INTRS)
1781 temp64 &= ~((u64) value);
1782 else
1783 temp64 |= ((u64) value);
1784 writeq(temp64, addr);
1785 }
1786
1787 void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1788 {
1789 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1790 register u64 gen_int_mask = 0;
1791
1792 if (mask & TX_DMA_INTR) {
1793
1794 gen_int_mask |= TXDMA_INT_M;
1795
1796 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1797 TXDMA_PCC_INT | TXDMA_TTI_INT |
1798 TXDMA_LSO_INT | TXDMA_TPA_INT |
1799 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1800
1801 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1802 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1803 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1804 &bar0->pfc_err_mask);
1805
1806 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1807 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1808 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1809
1810 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1811 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1812 PCC_N_SERR | PCC_6_COF_OV_ERR |
1813 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1814 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1815 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1816
1817 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1818 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1819
1820 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1821 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1822 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1823 flag, &bar0->lso_err_mask);
1824
1825 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1826 flag, &bar0->tpa_err_mask);
1827
1828 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1829
1830 }
1831
1832 if (mask & TX_MAC_INTR) {
1833 gen_int_mask |= TXMAC_INT_M;
1834 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1835 &bar0->mac_int_mask);
1836 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1837 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1838 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1839 flag, &bar0->mac_tmac_err_mask);
1840 }
1841
1842 if (mask & TX_XGXS_INTR) {
1843 gen_int_mask |= TXXGXS_INT_M;
1844 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1845 &bar0->xgxs_int_mask);
1846 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1847 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1848 flag, &bar0->xgxs_txgxs_err_mask);
1849 }
1850
1851 if (mask & RX_DMA_INTR) {
1852 gen_int_mask |= RXDMA_INT_M;
1853 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1854 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1855 flag, &bar0->rxdma_int_mask);
1856 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1857 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1858 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1859 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1860 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1861 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1862 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1863 &bar0->prc_pcix_err_mask);
1864 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1865 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1866 &bar0->rpa_err_mask);
1867 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1868 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1869 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1870 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1871 flag, &bar0->rda_err_mask);
1872 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1873 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1874 flag, &bar0->rti_err_mask);
1875 }
1876
1877 if (mask & RX_MAC_INTR) {
1878 gen_int_mask |= RXMAC_INT_M;
1879 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1880 &bar0->mac_int_mask);
1881 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1882 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1883 RMAC_DOUBLE_ECC_ERR |
1884 RMAC_LINK_STATE_CHANGE_INT,
1885 flag, &bar0->mac_rmac_err_mask);
1886 }
1887
1888 if (mask & RX_XGXS_INTR)
1889 {
1890 gen_int_mask |= RXXGXS_INT_M;
1891 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1892 &bar0->xgxs_int_mask);
1893 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1894 &bar0->xgxs_rxgxs_err_mask);
1895 }
1896
1897 if (mask & MC_INTR) {
1898 gen_int_mask |= MC_INT_M;
1899 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1900 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1901 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1902 &bar0->mc_err_mask);
1903 }
1904 nic->general_int_mask = gen_int_mask;
1905
1906 /* Remove this line when alarm interrupts are enabled */
1907 nic->general_int_mask = 0;
1908 }
1909 /**
1910 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1911 * @nic: device private variable,
1912 * @mask: A mask indicating which Intr block must be modified and,
1913 * @flag: A flag indicating whether to enable or disable the Intrs.
1914 * Description: This function will either disable or enable the interrupts
1915 * depending on the flag argument. The mask argument can be used to
1916 * enable/disable any Intr block.
1917 * Return Value: NONE.
1918 */
1919
1920 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1921 {
1922 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1923 register u64 temp64 = 0, intr_mask = 0;
1924
1925 intr_mask = nic->general_int_mask;
1926
1927 /* Top level interrupt classification */
1928 /* PIC Interrupts */
1929 if (mask & TX_PIC_INTR) {
1930 /* Enable PIC Intrs in the general intr mask register */
1931 intr_mask |= TXPIC_INT_M;
1932 if (flag == ENABLE_INTRS) {
1933 /*
1934 * If Hercules adapter enable GPIO otherwise
1935 * disable all PCIX, Flash, MDIO, IIC and GPIO
1936 * interrupts for now.
1937 * TODO
1938 */
1939 if (s2io_link_fault_indication(nic) ==
1940 LINK_UP_DOWN_INTERRUPT ) {
1941 do_s2io_write_bits(PIC_INT_GPIO, flag,
1942 &bar0->pic_int_mask);
1943 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1944 &bar0->gpio_int_mask);
1945 } else
1946 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1947 } else if (flag == DISABLE_INTRS) {
1948 /*
1949 * Disable PIC Intrs in the general
1950 * intr mask register
1951 */
1952 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1953 }
1954 }
1955
1956 /* Tx traffic interrupts */
1957 if (mask & TX_TRAFFIC_INTR) {
1958 intr_mask |= TXTRAFFIC_INT_M;
1959 if (flag == ENABLE_INTRS) {
1960 /*
1961 * Enable all the Tx side interrupts
1962 * writing 0 Enables all 64 TX interrupt levels
1963 */
1964 writeq(0x0, &bar0->tx_traffic_mask);
1965 } else if (flag == DISABLE_INTRS) {
1966 /*
1967 * Disable Tx Traffic Intrs in the general intr mask
1968 * register.
1969 */
1970 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1971 }
1972 }
1973
1974 /* Rx traffic interrupts */
1975 if (mask & RX_TRAFFIC_INTR) {
1976 intr_mask |= RXTRAFFIC_INT_M;
1977 if (flag == ENABLE_INTRS) {
1978 /* writing 0 Enables all 8 RX interrupt levels */
1979 writeq(0x0, &bar0->rx_traffic_mask);
1980 } else if (flag == DISABLE_INTRS) {
1981 /*
1982 * Disable Rx Traffic Intrs in the general intr mask
1983 * register.
1984 */
1985 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1986 }
1987 }
1988
1989 temp64 = readq(&bar0->general_int_mask);
1990 if (flag == ENABLE_INTRS)
1991 temp64 &= ~((u64) intr_mask);
1992 else
1993 temp64 = DISABLE_ALL_INTRS;
1994 writeq(temp64, &bar0->general_int_mask);
1995
1996 nic->general_int_mask = readq(&bar0->general_int_mask);
1997 }
1998
1999 /**
2000 * verify_pcc_quiescent- Checks for PCC quiescent state
2001 * Return: 1 If PCC is quiescence
2002 * 0 If PCC is not quiescence
2003 */
2004 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2005 {
2006 int ret = 0, herc;
2007 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2008 u64 val64 = readq(&bar0->adapter_status);
2009
2010 herc = (sp->device_type == XFRAME_II_DEVICE);
2011
2012 if (flag == FALSE) {
2013 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2014 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2015 ret = 1;
2016 } else {
2017 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2018 ret = 1;
2019 }
2020 } else {
2021 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2022 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2023 ADAPTER_STATUS_RMAC_PCC_IDLE))
2024 ret = 1;
2025 } else {
2026 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2027 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2028 ret = 1;
2029 }
2030 }
2031
2032 return ret;
2033 }
2034 /**
2035 * verify_xena_quiescence - Checks whether the H/W is ready
2036 * Description: Returns whether the H/W is ready to go or not. Depending
2037 * on whether adapter enable bit was written or not the comparison
2038 * differs and the calling function passes the input argument flag to
2039 * indicate this.
2040 * Return: 1 If xena is quiescence
2041 * 0 If Xena is not quiescence
2042 */
2043
2044 static int verify_xena_quiescence(struct s2io_nic *sp)
2045 {
2046 int mode;
2047 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2048 u64 val64 = readq(&bar0->adapter_status);
2049 mode = s2io_verify_pci_mode(sp);
2050
2051 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2052 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2053 return 0;
2054 }
2055 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2056 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2057 return 0;
2058 }
2059 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2060 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2061 return 0;
2062 }
2063 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2064 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2065 return 0;
2066 }
2067 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2068 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2069 return 0;
2070 }
2071 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2072 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2073 return 0;
2074 }
2075 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2076 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2077 return 0;
2078 }
2079 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2080 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2081 return 0;
2082 }
2083
2084 /*
2085 * In PCI 33 mode, the P_PLL is not used, and therefore,
2086 * the the P_PLL_LOCK bit in the adapter_status register will
2087 * not be asserted.
2088 */
2089 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2090 sp->device_type == XFRAME_II_DEVICE && mode !=
2091 PCI_MODE_PCI_33) {
2092 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2093 return 0;
2094 }
2095 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2096 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2097 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2098 return 0;
2099 }
2100 return 1;
2101 }
2102
2103 /**
2104 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2105 * @sp: Pointer to device specifc structure
2106 * Description :
2107 * New procedure to clear mac address reading problems on Alpha platforms
2108 *
2109 */
2110
2111 static void fix_mac_address(struct s2io_nic * sp)
2112 {
2113 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2114 u64 val64;
2115 int i = 0;
2116
2117 while (fix_mac[i] != END_SIGN) {
2118 writeq(fix_mac[i++], &bar0->gpio_control);
2119 udelay(10);
2120 val64 = readq(&bar0->gpio_control);
2121 }
2122 }
2123
2124 /**
2125 * start_nic - Turns the device on
2126 * @nic : device private variable.
2127 * Description:
2128 * This function actually turns the device on. Before this function is
2129 * called,all Registers are configured from their reset states
2130 * and shared memory is allocated but the NIC is still quiescent. On
2131 * calling this function, the device interrupts are cleared and the NIC is
2132 * literally switched on by writing into the adapter control register.
2133 * Return Value:
2134 * SUCCESS on success and -1 on failure.
2135 */
2136
2137 static int start_nic(struct s2io_nic *nic)
2138 {
2139 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2140 struct net_device *dev = nic->dev;
2141 register u64 val64 = 0;
2142 u16 subid, i;
2143 struct mac_info *mac_control;
2144 struct config_param *config;
2145
2146 mac_control = &nic->mac_control;
2147 config = &nic->config;
2148
2149 /* PRC Initialization and configuration */
2150 for (i = 0; i < config->rx_ring_num; i++) {
2151 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2152 &bar0->prc_rxd0_n[i]);
2153
2154 val64 = readq(&bar0->prc_ctrl_n[i]);
2155 if (nic->config.bimodal)
2156 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2157 if (nic->rxd_mode == RXD_MODE_1)
2158 val64 |= PRC_CTRL_RC_ENABLED;
2159 else
2160 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2161 if (nic->device_type == XFRAME_II_DEVICE)
2162 val64 |= PRC_CTRL_GROUP_READS;
2163 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2164 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2165 writeq(val64, &bar0->prc_ctrl_n[i]);
2166 }
2167
2168 if (nic->rxd_mode == RXD_MODE_3B) {
2169 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2170 val64 = readq(&bar0->rx_pa_cfg);
2171 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2172 writeq(val64, &bar0->rx_pa_cfg);
2173 }
2174
2175 if (vlan_tag_strip == 0) {
2176 val64 = readq(&bar0->rx_pa_cfg);
2177 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2178 writeq(val64, &bar0->rx_pa_cfg);
2179 vlan_strip_flag = 0;
2180 }
2181
2182 /*
2183 * Enabling MC-RLDRAM. After enabling the device, we timeout
2184 * for around 100ms, which is approximately the time required
2185 * for the device to be ready for operation.
2186 */
2187 val64 = readq(&bar0->mc_rldram_mrs);
2188 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2189 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2190 val64 = readq(&bar0->mc_rldram_mrs);
2191
2192 msleep(100); /* Delay by around 100 ms. */
2193
2194 /* Enabling ECC Protection. */
2195 val64 = readq(&bar0->adapter_control);
2196 val64 &= ~ADAPTER_ECC_EN;
2197 writeq(val64, &bar0->adapter_control);
2198
2199 /*
2200 * Verify if the device is ready to be enabled, if so enable
2201 * it.
2202 */
2203 val64 = readq(&bar0->adapter_status);
2204 if (!verify_xena_quiescence(nic)) {
2205 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2206 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2207 (unsigned long long) val64);
2208 return FAILURE;
2209 }
2210
2211 /*
2212 * With some switches, link might be already up at this point.
2213 * Because of this weird behavior, when we enable laser,
2214 * we may not get link. We need to handle this. We cannot
2215 * figure out which switch is misbehaving. So we are forced to
2216 * make a global change.
2217 */
2218
2219 /* Enabling Laser. */
2220 val64 = readq(&bar0->adapter_control);
2221 val64 |= ADAPTER_EOI_TX_ON;
2222 writeq(val64, &bar0->adapter_control);
2223
2224 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2225 /*
2226 * Dont see link state interrupts initally on some switches,
2227 * so directly scheduling the link state task here.
2228 */
2229 schedule_work(&nic->set_link_task);
2230 }
2231 /* SXE-002: Initialize link and activity LED */
2232 subid = nic->pdev->subsystem_device;
2233 if (((subid & 0xFF) >= 0x07) &&
2234 (nic->device_type == XFRAME_I_DEVICE)) {
2235 val64 = readq(&bar0->gpio_control);
2236 val64 |= 0x0000800000000000ULL;
2237 writeq(val64, &bar0->gpio_control);
2238 val64 = 0x0411040400000000ULL;
2239 writeq(val64, (void __iomem *)bar0 + 0x2700);
2240 }
2241
2242 return SUCCESS;
2243 }
2244 /**
2245 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2246 */
2247 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2248 TxD *txdlp, int get_off)
2249 {
2250 struct s2io_nic *nic = fifo_data->nic;
2251 struct sk_buff *skb;
2252 struct TxD *txds;
2253 u16 j, frg_cnt;
2254
2255 txds = txdlp;
2256 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2257 pci_unmap_single(nic->pdev, (dma_addr_t)
2258 txds->Buffer_Pointer, sizeof(u64),
2259 PCI_DMA_TODEVICE);
2260 txds++;
2261 }
2262
2263 skb = (struct sk_buff *) ((unsigned long)
2264 txds->Host_Control);
2265 if (!skb) {
2266 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2267 return NULL;
2268 }
2269 pci_unmap_single(nic->pdev, (dma_addr_t)
2270 txds->Buffer_Pointer,
2271 skb->len - skb->data_len,
2272 PCI_DMA_TODEVICE);
2273 frg_cnt = skb_shinfo(skb)->nr_frags;
2274 if (frg_cnt) {
2275 txds++;
2276 for (j = 0; j < frg_cnt; j++, txds++) {
2277 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2278 if (!txds->Buffer_Pointer)
2279 break;
2280 pci_unmap_page(nic->pdev, (dma_addr_t)
2281 txds->Buffer_Pointer,
2282 frag->size, PCI_DMA_TODEVICE);
2283 }
2284 }
2285 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2286 return(skb);
2287 }
2288
2289 /**
2290 * free_tx_buffers - Free all queued Tx buffers
2291 * @nic : device private variable.
2292 * Description:
2293 * Free all queued Tx buffers.
2294 * Return Value: void
2295 */
2296
2297 static void free_tx_buffers(struct s2io_nic *nic)
2298 {
2299 struct net_device *dev = nic->dev;
2300 struct sk_buff *skb;
2301 struct TxD *txdp;
2302 int i, j;
2303 struct mac_info *mac_control;
2304 struct config_param *config;
2305 int cnt = 0;
2306
2307 mac_control = &nic->mac_control;
2308 config = &nic->config;
2309
2310 for (i = 0; i < config->tx_fifo_num; i++) {
2311 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2312 txdp = (struct TxD *) \
2313 mac_control->fifos[i].list_info[j].list_virt_addr;
2314 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2315 if (skb) {
2316 nic->mac_control.stats_info->sw_stat.mem_freed
2317 += skb->truesize;
2318 dev_kfree_skb(skb);
2319 cnt++;
2320 }
2321 }
2322 DBG_PRINT(INTR_DBG,
2323 "%s:forcibly freeing %d skbs on FIFO%d\n",
2324 dev->name, cnt, i);
2325 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2326 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2327 }
2328 }
2329
2330 /**
2331 * stop_nic - To stop the nic
2332 * @nic ; device private variable.
2333 * Description:
2334 * This function does exactly the opposite of what the start_nic()
2335 * function does. This function is called to stop the device.
2336 * Return Value:
2337 * void.
2338 */
2339
2340 static void stop_nic(struct s2io_nic *nic)
2341 {
2342 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2343 register u64 val64 = 0;
2344 u16 interruptible;
2345 struct mac_info *mac_control;
2346 struct config_param *config;
2347
2348 mac_control = &nic->mac_control;
2349 config = &nic->config;
2350
2351 /* Disable all interrupts */
2352 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2353 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2354 interruptible |= TX_PIC_INTR;
2355 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2356
2357 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2358 val64 = readq(&bar0->adapter_control);
2359 val64 &= ~(ADAPTER_CNTL_EN);
2360 writeq(val64, &bar0->adapter_control);
2361 }
2362
2363 /**
2364 * fill_rx_buffers - Allocates the Rx side skbs
2365 * @nic: device private variable
2366 * @ring_no: ring number
2367 * Description:
2368 * The function allocates Rx side skbs and puts the physical
2369 * address of these buffers into the RxD buffer pointers, so that the NIC
2370 * can DMA the received frame into these locations.
2371 * The NIC supports 3 receive modes, viz
2372 * 1. single buffer,
2373 * 2. three buffer and
2374 * 3. Five buffer modes.
2375 * Each mode defines how many fragments the received frame will be split
2376 * up into by the NIC. The frame is split into L3 header, L4 Header,
2377 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2378 * is split into 3 fragments. As of now only single buffer mode is
2379 * supported.
2380 * Return Value:
2381 * SUCCESS on success or an appropriate -ve value on failure.
2382 */
2383
2384 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2385 {
2386 struct net_device *dev = nic->dev;
2387 struct sk_buff *skb;
2388 struct RxD_t *rxdp;
2389 int off, off1, size, block_no, block_no1;
2390 u32 alloc_tab = 0;
2391 u32 alloc_cnt;
2392 struct mac_info *mac_control;
2393 struct config_param *config;
2394 u64 tmp;
2395 struct buffAdd *ba;
2396 unsigned long flags;
2397 struct RxD_t *first_rxdp = NULL;
2398 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2399 struct RxD1 *rxdp1;
2400 struct RxD3 *rxdp3;
2401 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2402
2403 mac_control = &nic->mac_control;
2404 config = &nic->config;
2405 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2406 atomic_read(&nic->rx_bufs_left[ring_no]);
2407
2408 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2409 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2410 while (alloc_tab < alloc_cnt) {
2411 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2412 block_index;
2413 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2414
2415 rxdp = mac_control->rings[ring_no].
2416 rx_blocks[block_no].rxds[off].virt_addr;
2417
2418 if ((block_no == block_no1) && (off == off1) &&
2419 (rxdp->Host_Control)) {
2420 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2421 dev->name);
2422 DBG_PRINT(INTR_DBG, " info equated\n");
2423 goto end;
2424 }
2425 if (off && (off == rxd_count[nic->rxd_mode])) {
2426 mac_control->rings[ring_no].rx_curr_put_info.
2427 block_index++;
2428 if (mac_control->rings[ring_no].rx_curr_put_info.
2429 block_index == mac_control->rings[ring_no].
2430 block_count)
2431 mac_control->rings[ring_no].rx_curr_put_info.
2432 block_index = 0;
2433 block_no = mac_control->rings[ring_no].
2434 rx_curr_put_info.block_index;
2435 if (off == rxd_count[nic->rxd_mode])
2436 off = 0;
2437 mac_control->rings[ring_no].rx_curr_put_info.
2438 offset = off;
2439 rxdp = mac_control->rings[ring_no].
2440 rx_blocks[block_no].block_virt_addr;
2441 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2442 dev->name, rxdp);
2443 }
2444 if(!napi) {
2445 spin_lock_irqsave(&nic->put_lock, flags);
2446 mac_control->rings[ring_no].put_pos =
2447 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2448 spin_unlock_irqrestore(&nic->put_lock, flags);
2449 } else {
2450 mac_control->rings[ring_no].put_pos =
2451 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2452 }
2453 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2454 ((nic->rxd_mode == RXD_MODE_3B) &&
2455 (rxdp->Control_2 & BIT(0)))) {
2456 mac_control->rings[ring_no].rx_curr_put_info.
2457 offset = off;
2458 goto end;
2459 }
2460 /* calculate size of skb based on ring mode */
2461 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2462 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2463 if (nic->rxd_mode == RXD_MODE_1)
2464 size += NET_IP_ALIGN;
2465 else
2466 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2467
2468 /* allocate skb */
2469 skb = dev_alloc_skb(size);
2470 if(!skb) {
2471 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2472 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2473 if (first_rxdp) {
2474 wmb();
2475 first_rxdp->Control_1 |= RXD_OWN_XENA;
2476 }
2477 nic->mac_control.stats_info->sw_stat. \
2478 mem_alloc_fail_cnt++;
2479 return -ENOMEM ;
2480 }
2481 nic->mac_control.stats_info->sw_stat.mem_allocated
2482 += skb->truesize;
2483 if (nic->rxd_mode == RXD_MODE_1) {
2484 /* 1 buffer mode - normal operation mode */
2485 rxdp1 = (struct RxD1*)rxdp;
2486 memset(rxdp, 0, sizeof(struct RxD1));
2487 skb_reserve(skb, NET_IP_ALIGN);
2488 rxdp1->Buffer0_ptr = pci_map_single
2489 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2490 PCI_DMA_FROMDEVICE);
2491 if( (rxdp1->Buffer0_ptr == 0) ||
2492 (rxdp1->Buffer0_ptr ==
2493 DMA_ERROR_CODE))
2494 goto pci_map_failed;
2495
2496 rxdp->Control_2 =
2497 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2498
2499 } else if (nic->rxd_mode == RXD_MODE_3B) {
2500 /*
2501 * 2 buffer mode -
2502 * 2 buffer mode provides 128
2503 * byte aligned receive buffers.
2504 */
2505
2506 rxdp3 = (struct RxD3*)rxdp;
2507 /* save buffer pointers to avoid frequent dma mapping */
2508 Buffer0_ptr = rxdp3->Buffer0_ptr;
2509 Buffer1_ptr = rxdp3->Buffer1_ptr;
2510 memset(rxdp, 0, sizeof(struct RxD3));
2511 /* restore the buffer pointers for dma sync*/
2512 rxdp3->Buffer0_ptr = Buffer0_ptr;
2513 rxdp3->Buffer1_ptr = Buffer1_ptr;
2514
2515 ba = &mac_control->rings[ring_no].ba[block_no][off];
2516 skb_reserve(skb, BUF0_LEN);
2517 tmp = (u64)(unsigned long) skb->data;
2518 tmp += ALIGN_SIZE;
2519 tmp &= ~ALIGN_SIZE;
2520 skb->data = (void *) (unsigned long)tmp;
2521 skb_reset_tail_pointer(skb);
2522
2523 if (!(rxdp3->Buffer0_ptr))
2524 rxdp3->Buffer0_ptr =
2525 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2526 PCI_DMA_FROMDEVICE);
2527 else
2528 pci_dma_sync_single_for_device(nic->pdev,
2529 (dma_addr_t) rxdp3->Buffer0_ptr,
2530 BUF0_LEN, PCI_DMA_FROMDEVICE);
2531 if( (rxdp3->Buffer0_ptr == 0) ||
2532 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2533 goto pci_map_failed;
2534
2535 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2536 if (nic->rxd_mode == RXD_MODE_3B) {
2537 /* Two buffer mode */
2538
2539 /*
2540 * Buffer2 will have L3/L4 header plus
2541 * L4 payload
2542 */
2543 rxdp3->Buffer2_ptr = pci_map_single
2544 (nic->pdev, skb->data, dev->mtu + 4,
2545 PCI_DMA_FROMDEVICE);
2546
2547 if( (rxdp3->Buffer2_ptr == 0) ||
2548 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2549 goto pci_map_failed;
2550
2551 rxdp3->Buffer1_ptr =
2552 pci_map_single(nic->pdev,
2553 ba->ba_1, BUF1_LEN,
2554 PCI_DMA_FROMDEVICE);
2555 if( (rxdp3->Buffer1_ptr == 0) ||
2556 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2557 pci_unmap_single
2558 (nic->pdev,
2559 (dma_addr_t)rxdp3->Buffer2_ptr,
2560 dev->mtu + 4,
2561 PCI_DMA_FROMDEVICE);
2562 goto pci_map_failed;
2563 }
2564 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2565 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2566 (dev->mtu + 4);
2567 }
2568 rxdp->Control_2 |= BIT(0);
2569 }
2570 rxdp->Host_Control = (unsigned long) (skb);
2571 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2572 rxdp->Control_1 |= RXD_OWN_XENA;
2573 off++;
2574 if (off == (rxd_count[nic->rxd_mode] + 1))
2575 off = 0;
2576 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2577
2578 rxdp->Control_2 |= SET_RXD_MARKER;
2579 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2580 if (first_rxdp) {
2581 wmb();
2582 first_rxdp->Control_1 |= RXD_OWN_XENA;
2583 }
2584 first_rxdp = rxdp;
2585 }
2586 atomic_inc(&nic->rx_bufs_left[ring_no]);
2587 alloc_tab++;
2588 }
2589
2590 end:
2591 /* Transfer ownership of first descriptor to adapter just before
2592 * exiting. Before that, use memory barrier so that ownership
2593 * and other fields are seen by adapter correctly.
2594 */
2595 if (first_rxdp) {
2596 wmb();
2597 first_rxdp->Control_1 |= RXD_OWN_XENA;
2598 }
2599
2600 return SUCCESS;
2601 pci_map_failed:
2602 stats->pci_map_fail_cnt++;
2603 stats->mem_freed += skb->truesize;
2604 dev_kfree_skb_irq(skb);
2605 return -ENOMEM;
2606 }
2607
2608 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2609 {
2610 struct net_device *dev = sp->dev;
2611 int j;
2612 struct sk_buff *skb;
2613 struct RxD_t *rxdp;
2614 struct mac_info *mac_control;
2615 struct buffAdd *ba;
2616 struct RxD1 *rxdp1;
2617 struct RxD3 *rxdp3;
2618
2619 mac_control = &sp->mac_control;
2620 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2621 rxdp = mac_control->rings[ring_no].
2622 rx_blocks[blk].rxds[j].virt_addr;
2623 skb = (struct sk_buff *)
2624 ((unsigned long) rxdp->Host_Control);
2625 if (!skb) {
2626 continue;
2627 }
2628 if (sp->rxd_mode == RXD_MODE_1) {
2629 rxdp1 = (struct RxD1*)rxdp;
2630 pci_unmap_single(sp->pdev, (dma_addr_t)
2631 rxdp1->Buffer0_ptr,
2632 dev->mtu +
2633 HEADER_ETHERNET_II_802_3_SIZE
2634 + HEADER_802_2_SIZE +
2635 HEADER_SNAP_SIZE,
2636 PCI_DMA_FROMDEVICE);
2637 memset(rxdp, 0, sizeof(struct RxD1));
2638 } else if(sp->rxd_mode == RXD_MODE_3B) {
2639 rxdp3 = (struct RxD3*)rxdp;
2640 ba = &mac_control->rings[ring_no].
2641 ba[blk][j];
2642 pci_unmap_single(sp->pdev, (dma_addr_t)
2643 rxdp3->Buffer0_ptr,
2644 BUF0_LEN,
2645 PCI_DMA_FROMDEVICE);
2646 pci_unmap_single(sp->pdev, (dma_addr_t)
2647 rxdp3->Buffer1_ptr,
2648 BUF1_LEN,
2649 PCI_DMA_FROMDEVICE);
2650 pci_unmap_single(sp->pdev, (dma_addr_t)
2651 rxdp3->Buffer2_ptr,
2652 dev->mtu + 4,
2653 PCI_DMA_FROMDEVICE);
2654 memset(rxdp, 0, sizeof(struct RxD3));
2655 }
2656 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2657 dev_kfree_skb(skb);
2658 atomic_dec(&sp->rx_bufs_left[ring_no]);
2659 }
2660 }
2661
2662 /**
2663 * free_rx_buffers - Frees all Rx buffers
2664 * @sp: device private variable.
2665 * Description:
2666 * This function will free all Rx buffers allocated by host.
2667 * Return Value:
2668 * NONE.
2669 */
2670
2671 static void free_rx_buffers(struct s2io_nic *sp)
2672 {
2673 struct net_device *dev = sp->dev;
2674 int i, blk = 0, buf_cnt = 0;
2675 struct mac_info *mac_control;
2676 struct config_param *config;
2677
2678 mac_control = &sp->mac_control;
2679 config = &sp->config;
2680
2681 for (i = 0; i < config->rx_ring_num; i++) {
2682 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2683 free_rxd_blk(sp,i,blk);
2684
2685 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2686 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2687 mac_control->rings[i].rx_curr_put_info.offset = 0;
2688 mac_control->rings[i].rx_curr_get_info.offset = 0;
2689 atomic_set(&sp->rx_bufs_left[i], 0);
2690 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2691 dev->name, buf_cnt, i);
2692 }
2693 }
2694
2695 /**
2696 * s2io_poll - Rx interrupt handler for NAPI support
2697 * @napi : pointer to the napi structure.
2698 * @budget : The number of packets that were budgeted to be processed
2699 * during one pass through the 'Poll" function.
2700 * Description:
2701 * Comes into picture only if NAPI support has been incorporated. It does
2702 * the same thing that rx_intr_handler does, but not in a interrupt context
2703 * also It will process only a given number of packets.
2704 * Return value:
2705 * 0 on success and 1 if there are No Rx packets to be processed.
2706 */
2707
2708 static int s2io_poll(struct napi_struct *napi, int budget)
2709 {
2710 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2711 struct net_device *dev = nic->dev;
2712 int pkt_cnt = 0, org_pkts_to_process;
2713 struct mac_info *mac_control;
2714 struct config_param *config;
2715 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2716 int i;
2717
2718 if (!is_s2io_card_up(nic))
2719 return 0;
2720
2721 mac_control = &nic->mac_control;
2722 config = &nic->config;
2723
2724 nic->pkts_to_process = budget;
2725 org_pkts_to_process = nic->pkts_to_process;
2726
2727 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2728 readl(&bar0->rx_traffic_int);
2729
2730 for (i = 0; i < config->rx_ring_num; i++) {
2731 rx_intr_handler(&mac_control->rings[i]);
2732 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2733 if (!nic->pkts_to_process) {
2734 /* Quota for the current iteration has been met */
2735 goto no_rx;
2736 }
2737 }
2738
2739 netif_rx_complete(dev, napi);
2740
2741 for (i = 0; i < config->rx_ring_num; i++) {
2742 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2743 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2744 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2745 break;
2746 }
2747 }
2748 /* Re enable the Rx interrupts. */
2749 writeq(0x0, &bar0->rx_traffic_mask);
2750 readl(&bar0->rx_traffic_mask);
2751 return pkt_cnt;
2752
2753 no_rx:
2754 for (i = 0; i < config->rx_ring_num; i++) {
2755 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2756 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2757 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2758 break;
2759 }
2760 }
2761 return pkt_cnt;
2762 }
2763
2764 #ifdef CONFIG_NET_POLL_CONTROLLER
2765 /**
2766 * s2io_netpoll - netpoll event handler entry point
2767 * @dev : pointer to the device structure.
2768 * Description:
2769 * This function will be called by upper layer to check for events on the
2770 * interface in situations where interrupts are disabled. It is used for
2771 * specific in-kernel networking tasks, such as remote consoles and kernel
2772 * debugging over the network (example netdump in RedHat).
2773 */
2774 static void s2io_netpoll(struct net_device *dev)
2775 {
2776 struct s2io_nic *nic = dev->priv;
2777 struct mac_info *mac_control;
2778 struct config_param *config;
2779 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2780 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2781 int i;
2782
2783 if (pci_channel_offline(nic->pdev))
2784 return;
2785
2786 disable_irq(dev->irq);
2787
2788 mac_control = &nic->mac_control;
2789 config = &nic->config;
2790
2791 writeq(val64, &bar0->rx_traffic_int);
2792 writeq(val64, &bar0->tx_traffic_int);
2793
2794 /* we need to free up the transmitted skbufs or else netpoll will
2795 * run out of skbs and will fail and eventually netpoll application such
2796 * as netdump will fail.
2797 */
2798 for (i = 0; i < config->tx_fifo_num; i++)
2799 tx_intr_handler(&mac_control->fifos[i]);
2800
2801 /* check for received packet and indicate up to network */
2802 for (i = 0; i < config->rx_ring_num; i++)
2803 rx_intr_handler(&mac_control->rings[i]);
2804
2805 for (i = 0; i < config->rx_ring_num; i++) {
2806 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2807 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2808 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2809 break;
2810 }
2811 }
2812 enable_irq(dev->irq);
2813 return;
2814 }
2815 #endif
2816
2817 /**
2818 * rx_intr_handler - Rx interrupt handler
2819 * @nic: device private variable.
2820 * Description:
2821 * If the interrupt is because of a received frame or if the
2822 * receive ring contains fresh as yet un-processed frames,this function is
2823 * called. It picks out the RxD at which place the last Rx processing had
2824 * stopped and sends the skb to the OSM's Rx handler and then increments
2825 * the offset.
2826 * Return Value:
2827 * NONE.
2828 */
2829 static void rx_intr_handler(struct ring_info *ring_data)
2830 {
2831 struct s2io_nic *nic = ring_data->nic;
2832 struct net_device *dev = (struct net_device *) nic->dev;
2833 int get_block, put_block, put_offset;
2834 struct rx_curr_get_info get_info, put_info;
2835 struct RxD_t *rxdp;
2836 struct sk_buff *skb;
2837 int pkt_cnt = 0;
2838 int i;
2839 struct RxD1* rxdp1;
2840 struct RxD3* rxdp3;
2841
2842 spin_lock(&nic->rx_lock);
2843
2844 get_info = ring_data->rx_curr_get_info;
2845 get_block = get_info.block_index;
2846 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2847 put_block = put_info.block_index;
2848 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2849 if (!napi) {
2850 spin_lock(&nic->put_lock);
2851 put_offset = ring_data->put_pos;
2852 spin_unlock(&nic->put_lock);
2853 } else
2854 put_offset = ring_data->put_pos;
2855
2856 while (RXD_IS_UP2DT(rxdp)) {
2857 /*
2858 * If your are next to put index then it's
2859 * FIFO full condition
2860 */
2861 if ((get_block == put_block) &&
2862 (get_info.offset + 1) == put_info.offset) {
2863 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2864 break;
2865 }
2866 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2867 if (skb == NULL) {
2868 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2869 dev->name);
2870 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2871 spin_unlock(&nic->rx_lock);
2872 return;
2873 }
2874 if (nic->rxd_mode == RXD_MODE_1) {
2875 rxdp1 = (struct RxD1*)rxdp;
2876 pci_unmap_single(nic->pdev, (dma_addr_t)
2877 rxdp1->Buffer0_ptr,
2878 dev->mtu +
2879 HEADER_ETHERNET_II_802_3_SIZE +
2880 HEADER_802_2_SIZE +
2881 HEADER_SNAP_SIZE,
2882 PCI_DMA_FROMDEVICE);
2883 } else if (nic->rxd_mode == RXD_MODE_3B) {
2884 rxdp3 = (struct RxD3*)rxdp;
2885 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2886 rxdp3->Buffer0_ptr,
2887 BUF0_LEN, PCI_DMA_FROMDEVICE);
2888 pci_unmap_single(nic->pdev, (dma_addr_t)
2889 rxdp3->Buffer2_ptr,
2890 dev->mtu + 4,
2891 PCI_DMA_FROMDEVICE);
2892 }
2893 prefetch(skb->data);
2894 rx_osm_handler(ring_data, rxdp);
2895 get_info.offset++;
2896 ring_data->rx_curr_get_info.offset = get_info.offset;
2897 rxdp = ring_data->rx_blocks[get_block].
2898 rxds[get_info.offset].virt_addr;
2899 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2900 get_info.offset = 0;
2901 ring_data->rx_curr_get_info.offset = get_info.offset;
2902 get_block++;
2903 if (get_block == ring_data->block_count)
2904 get_block = 0;
2905 ring_data->rx_curr_get_info.block_index = get_block;
2906 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2907 }
2908
2909 nic->pkts_to_process -= 1;
2910 if ((napi) && (!nic->pkts_to_process))
2911 break;
2912 pkt_cnt++;
2913 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2914 break;
2915 }
2916 if (nic->lro) {
2917 /* Clear all LRO sessions before exiting */
2918 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2919 struct lro *lro = &nic->lro0_n[i];
2920 if (lro->in_use) {
2921 update_L3L4_header(nic, lro);
2922 queue_rx_frame(lro->parent);
2923 clear_lro_session(lro);
2924 }
2925 }
2926 }
2927
2928 spin_unlock(&nic->rx_lock);
2929 }
2930
2931 /**
2932 * tx_intr_handler - Transmit interrupt handler
2933 * @nic : device private variable
2934 * Description:
2935 * If an interrupt was raised to indicate DMA complete of the
2936 * Tx packet, this function is called. It identifies the last TxD
2937 * whose buffer was freed and frees all skbs whose data have already
2938 * DMA'ed into the NICs internal memory.
2939 * Return Value:
2940 * NONE
2941 */
2942
2943 static void tx_intr_handler(struct fifo_info *fifo_data)
2944 {
2945 struct s2io_nic *nic = fifo_data->nic;
2946 struct net_device *dev = (struct net_device *) nic->dev;
2947 struct tx_curr_get_info get_info, put_info;
2948 struct sk_buff *skb;
2949 struct TxD *txdlp;
2950 u8 err_mask;
2951
2952 get_info = fifo_data->tx_curr_get_info;
2953 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2954 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2955 list_virt_addr;
2956 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2957 (get_info.offset != put_info.offset) &&
2958 (txdlp->Host_Control)) {
2959 /* Check for TxD errors */
2960 if (txdlp->Control_1 & TXD_T_CODE) {
2961 unsigned long long err;
2962 err = txdlp->Control_1 & TXD_T_CODE;
2963 if (err & 0x1) {
2964 nic->mac_control.stats_info->sw_stat.
2965 parity_err_cnt++;
2966 }
2967
2968 /* update t_code statistics */
2969 err_mask = err >> 48;
2970 switch(err_mask) {
2971 case 2:
2972 nic->mac_control.stats_info->sw_stat.
2973 tx_buf_abort_cnt++;
2974 break;
2975
2976 case 3:
2977 nic->mac_control.stats_info->sw_stat.
2978 tx_desc_abort_cnt++;
2979 break;
2980
2981 case 7:
2982 nic->mac_control.stats_info->sw_stat.
2983 tx_parity_err_cnt++;
2984 break;
2985
2986 case 10:
2987 nic->mac_control.stats_info->sw_stat.
2988 tx_link_loss_cnt++;
2989 break;
2990
2991 case 15:
2992 nic->mac_control.stats_info->sw_stat.
2993 tx_list_proc_err_cnt++;
2994 break;
2995 }
2996 }
2997
2998 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2999 if (skb == NULL) {
3000 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3001 __FUNCTION__);
3002 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3003 return;
3004 }
3005
3006 /* Updating the statistics block */
3007 nic->stats.tx_bytes += skb->len;
3008 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3009 dev_kfree_skb_irq(skb);
3010
3011 get_info.offset++;
3012 if (get_info.offset == get_info.fifo_len + 1)
3013 get_info.offset = 0;
3014 txdlp = (struct TxD *) fifo_data->list_info
3015 [get_info.offset].list_virt_addr;
3016 fifo_data->tx_curr_get_info.offset =
3017 get_info.offset;
3018 }
3019
3020 spin_lock(&nic->tx_lock);
3021 if (netif_queue_stopped(dev))
3022 netif_wake_queue(dev);
3023 spin_unlock(&nic->tx_lock);
3024 }
3025
3026 /**
3027 * s2io_mdio_write - Function to write in to MDIO registers
3028 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3029 * @addr : address value
3030 * @value : data value
3031 * @dev : pointer to net_device structure
3032 * Description:
3033 * This function is used to write values to the MDIO registers
3034 * NONE
3035 */
3036 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3037 {
3038 u64 val64 = 0x0;
3039 struct s2io_nic *sp = dev->priv;
3040 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3041
3042 //address transaction
3043 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3044 | MDIO_MMD_DEV_ADDR(mmd_type)
3045 | MDIO_MMS_PRT_ADDR(0x0);
3046 writeq(val64, &bar0->mdio_control);
3047 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3048 writeq(val64, &bar0->mdio_control);
3049 udelay(100);
3050
3051 //Data transaction
3052 val64 = 0x0;
3053 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3054 | MDIO_MMD_DEV_ADDR(mmd_type)
3055 | MDIO_MMS_PRT_ADDR(0x0)
3056 | MDIO_MDIO_DATA(value)
3057 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3058 writeq(val64, &bar0->mdio_control);
3059 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3060 writeq(val64, &bar0->mdio_control);
3061 udelay(100);
3062
3063 val64 = 0x0;
3064 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3065 | MDIO_MMD_DEV_ADDR(mmd_type)
3066 | MDIO_MMS_PRT_ADDR(0x0)
3067 | MDIO_OP(MDIO_OP_READ_TRANS);
3068 writeq(val64, &bar0->mdio_control);
3069 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3070 writeq(val64, &bar0->mdio_control);
3071 udelay(100);
3072
3073 }
3074
3075 /**
3076 * s2io_mdio_read - Function to write in to MDIO registers
3077 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3078 * @addr : address value
3079 * @dev : pointer to net_device structure
3080 * Description:
3081 * This function is used to read values to the MDIO registers
3082 * NONE
3083 */
3084 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3085 {
3086 u64 val64 = 0x0;
3087 u64 rval64 = 0x0;
3088 struct s2io_nic *sp = dev->priv;
3089 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3090
3091 /* address transaction */
3092 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3093 | MDIO_MMD_DEV_ADDR(mmd_type)
3094 | MDIO_MMS_PRT_ADDR(0x0);
3095 writeq(val64, &bar0->mdio_control);
3096 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3097 writeq(val64, &bar0->mdio_control);
3098 udelay(100);
3099
3100 /* Data transaction */
3101 val64 = 0x0;
3102 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3103 | MDIO_MMD_DEV_ADDR(mmd_type)
3104 | MDIO_MMS_PRT_ADDR(0x0)
3105 | MDIO_OP(MDIO_OP_READ_TRANS);
3106 writeq(val64, &bar0->mdio_control);
3107 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3108 writeq(val64, &bar0->mdio_control);
3109 udelay(100);
3110
3111 /* Read the value from regs */
3112 rval64 = readq(&bar0->mdio_control);
3113 rval64 = rval64 & 0xFFFF0000;
3114 rval64 = rval64 >> 16;
3115 return rval64;
3116 }
3117 /**
3118 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3119 * @counter : couter value to be updated
3120 * @flag : flag to indicate the status
3121 * @type : counter type
3122 * Description:
3123 * This function is to check the status of the xpak counters value
3124 * NONE
3125 */
3126
3127 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3128 {
3129 u64 mask = 0x3;
3130 u64 val64;
3131 int i;
3132 for(i = 0; i <index; i++)
3133 mask = mask << 0x2;
3134
3135 if(flag > 0)
3136 {
3137 *counter = *counter + 1;
3138 val64 = *regs_stat & mask;
3139 val64 = val64 >> (index * 0x2);
3140 val64 = val64 + 1;
3141 if(val64 == 3)
3142 {
3143 switch(type)
3144 {
3145 case 1:
3146 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3147 "service. Excessive temperatures may "
3148 "result in premature transceiver "
3149 "failure \n");
3150 break;
3151 case 2:
3152 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3153 "service Excessive bias currents may "
3154 "indicate imminent laser diode "
3155 "failure \n");
3156 break;
3157 case 3:
3158 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3159 "service Excessive laser output "
3160 "power may saturate far-end "
3161 "receiver\n");
3162 break;
3163 default:
3164 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3165 "type \n");
3166 }
3167 val64 = 0x0;
3168 }
3169 val64 = val64 << (index * 0x2);
3170 *regs_stat = (*regs_stat & (~mask)) | (val64);
3171
3172 } else {
3173 *regs_stat = *regs_stat & (~mask);
3174 }
3175 }
3176
3177 /**
3178 * s2io_updt_xpak_counter - Function to update the xpak counters
3179 * @dev : pointer to net_device struct
3180 * Description:
3181 * This function is to upate the status of the xpak counters value
3182 * NONE
3183 */
3184 static void s2io_updt_xpak_counter(struct net_device *dev)
3185 {
3186 u16 flag = 0x0;
3187 u16 type = 0x0;
3188 u16 val16 = 0x0;
3189 u64 val64 = 0x0;
3190 u64 addr = 0x0;
3191
3192 struct s2io_nic *sp = dev->priv;
3193 struct stat_block *stat_info = sp->mac_control.stats_info;
3194
3195 /* Check the communication with the MDIO slave */
3196 addr = 0x0000;
3197 val64 = 0x0;
3198 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3199 if((val64 == 0xFFFF) || (val64 == 0x0000))
3200 {
3201 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3202 "Returned %llx\n", (unsigned long long)val64);
3203 return;
3204 }
3205
3206 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3207 if(val64 != 0x2040)
3208 {
3209 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3210 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3211 (unsigned long long)val64);
3212 return;
3213 }
3214
3215 /* Loading the DOM register to MDIO register */
3216 addr = 0xA100;
3217 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3218 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3219
3220 /* Reading the Alarm flags */
3221 addr = 0xA070;
3222 val64 = 0x0;
3223 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3224
3225 flag = CHECKBIT(val64, 0x7);
3226 type = 1;
3227 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3228 &stat_info->xpak_stat.xpak_regs_stat,
3229 0x0, flag, type);
3230
3231 if(CHECKBIT(val64, 0x6))
3232 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3233
3234 flag = CHECKBIT(val64, 0x3);
3235 type = 2;
3236 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3237 &stat_info->xpak_stat.xpak_regs_stat,
3238 0x2, flag, type);
3239
3240 if(CHECKBIT(val64, 0x2))
3241 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3242
3243 flag = CHECKBIT(val64, 0x1);
3244 type = 3;
3245 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3246 &stat_info->xpak_stat.xpak_regs_stat,
3247 0x4, flag, type);
3248
3249 if(CHECKBIT(val64, 0x0))
3250 stat_info->xpak_stat.alarm_laser_output_power_low++;
3251
3252 /* Reading the Warning flags */
3253 addr = 0xA074;
3254 val64 = 0x0;
3255 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3256
3257 if(CHECKBIT(val64, 0x7))
3258 stat_info->xpak_stat.warn_transceiver_temp_high++;
3259
3260 if(CHECKBIT(val64, 0x6))
3261 stat_info->xpak_stat.warn_transceiver_temp_low++;
3262
3263 if(CHECKBIT(val64, 0x3))
3264 stat_info->xpak_stat.warn_laser_bias_current_high++;
3265
3266 if(CHECKBIT(val64, 0x2))
3267 stat_info->xpak_stat.warn_laser_bias_current_low++;
3268
3269 if(CHECKBIT(val64, 0x1))
3270 stat_info->xpak_stat.warn_laser_output_power_high++;
3271
3272 if(CHECKBIT(val64, 0x0))
3273 stat_info->xpak_stat.warn_laser_output_power_low++;
3274 }
3275
3276 /**
3277 * wait_for_cmd_complete - waits for a command to complete.
3278 * @sp : private member of the device structure, which is a pointer to the
3279 * s2io_nic structure.
3280 * Description: Function that waits for a command to Write into RMAC
3281 * ADDR DATA registers to be completed and returns either success or
3282 * error depending on whether the command was complete or not.
3283 * Return value:
3284 * SUCCESS on success and FAILURE on failure.
3285 */
3286
3287 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3288 int bit_state)
3289 {
3290 int ret = FAILURE, cnt = 0, delay = 1;
3291 u64 val64;
3292
3293 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3294 return FAILURE;
3295
3296 do {
3297 val64 = readq(addr);
3298 if (bit_state == S2IO_BIT_RESET) {
3299 if (!(val64 & busy_bit)) {
3300 ret = SUCCESS;
3301 break;
3302 }
3303 } else {
3304 if (!(val64 & busy_bit)) {
3305 ret = SUCCESS;
3306 break;
3307 }
3308 }
3309
3310 if(in_interrupt())
3311 mdelay(delay);
3312 else
3313 msleep(delay);
3314
3315 if (++cnt >= 10)
3316 delay = 50;
3317 } while (cnt < 20);
3318 return ret;
3319 }
3320 /*
3321 * check_pci_device_id - Checks if the device id is supported
3322 * @id : device id
3323 * Description: Function to check if the pci device id is supported by driver.
3324 * Return value: Actual device id if supported else PCI_ANY_ID
3325 */
3326 static u16 check_pci_device_id(u16 id)
3327 {
3328 switch (id) {
3329 case PCI_DEVICE_ID_HERC_WIN:
3330 case PCI_DEVICE_ID_HERC_UNI:
3331 return XFRAME_II_DEVICE;
3332 case PCI_DEVICE_ID_S2IO_UNI:
3333 case PCI_DEVICE_ID_S2IO_WIN:
3334 return XFRAME_I_DEVICE;
3335 default:
3336 return PCI_ANY_ID;
3337 }
3338 }
3339
3340 /**
3341 * s2io_reset - Resets the card.
3342 * @sp : private member of the device structure.
3343 * Description: Function to Reset the card. This function then also
3344 * restores the previously saved PCI configuration space registers as
3345 * the card reset also resets the configuration space.
3346 * Return value:
3347 * void.
3348 */
3349
3350 static void s2io_reset(struct s2io_nic * sp)
3351 {
3352 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3353 u64 val64;
3354 u16 subid, pci_cmd;
3355 int i;
3356 u16 val16;
3357 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3358 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3359
3360 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3361 __FUNCTION__, sp->dev->name);
3362
3363 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3364 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3365
3366 val64 = SW_RESET_ALL;
3367 writeq(val64, &bar0->sw_reset);
3368 if (strstr(sp->product_name, "CX4")) {
3369 msleep(750);
3370 }
3371 msleep(250);
3372 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3373
3374 /* Restore the PCI state saved during initialization. */
3375 pci_restore_state(sp->pdev);
3376 pci_read_config_word(sp->pdev, 0x2, &val16);
3377 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3378 break;
3379 msleep(200);
3380 }
3381
3382 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3383 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3384 }
3385
3386 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3387
3388 s2io_init_pci(sp);
3389
3390 /* Set swapper to enable I/O register access */
3391 s2io_set_swapper(sp);
3392
3393 /* Restore the MSIX table entries from local variables */
3394 restore_xmsi_data(sp);
3395
3396 /* Clear certain PCI/PCI-X fields after reset */
3397 if (sp->device_type == XFRAME_II_DEVICE) {
3398 /* Clear "detected parity error" bit */
3399 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3400
3401 /* Clearing PCIX Ecc status register */
3402 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3403
3404 /* Clearing PCI_STATUS error reflected here */
3405 writeq(BIT(62), &bar0->txpic_int_reg);
3406 }
3407
3408 /* Reset device statistics maintained by OS */
3409 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3410
3411 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3412 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3413 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3414 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3415 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3416 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3417 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3418 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3419 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3420 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3421 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3422 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3423 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3424 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3425 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3426 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3427 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3428 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3429 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3430
3431 /* SXE-002: Configure link and activity LED to turn it off */
3432 subid = sp->pdev->subsystem_device;
3433 if (((subid & 0xFF) >= 0x07) &&
3434 (sp->device_type == XFRAME_I_DEVICE)) {
3435 val64 = readq(&bar0->gpio_control);
3436 val64 |= 0x0000800000000000ULL;
3437 writeq(val64, &bar0->gpio_control);
3438 val64 = 0x0411040400000000ULL;
3439 writeq(val64, (void __iomem *)bar0 + 0x2700);
3440 }
3441
3442 /*
3443 * Clear spurious ECC interrupts that would have occured on
3444 * XFRAME II cards after reset.
3445 */
3446 if (sp->device_type == XFRAME_II_DEVICE) {
3447 val64 = readq(&bar0->pcc_err_reg);
3448 writeq(val64, &bar0->pcc_err_reg);
3449 }
3450
3451 /* restore the previously assigned mac address */
3452 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3453
3454 sp->device_enabled_once = FALSE;
3455 }
3456
3457 /**
3458 * s2io_set_swapper - to set the swapper controle on the card
3459 * @sp : private member of the device structure,
3460 * pointer to the s2io_nic structure.
3461 * Description: Function to set the swapper control on the card
3462 * correctly depending on the 'endianness' of the system.
3463 * Return value:
3464 * SUCCESS on success and FAILURE on failure.
3465 */
3466
3467 static int s2io_set_swapper(struct s2io_nic * sp)
3468 {
3469 struct net_device *dev = sp->dev;
3470 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3471 u64 val64, valt, valr;
3472
3473 /*
3474 * Set proper endian settings and verify the same by reading
3475 * the PIF Feed-back register.
3476 */
3477
3478 val64 = readq(&bar0->pif_rd_swapper_fb);
3479 if (val64 != 0x0123456789ABCDEFULL) {
3480 int i = 0;
3481 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3482 0x8100008181000081ULL, /* FE=1, SE=0 */
3483 0x4200004242000042ULL, /* FE=0, SE=1 */
3484 0}; /* FE=0, SE=0 */
3485
3486 while(i<4) {
3487 writeq(value[i], &bar0->swapper_ctrl);
3488 val64 = readq(&bar0->pif_rd_swapper_fb);
3489 if (val64 == 0x0123456789ABCDEFULL)
3490 break;
3491 i++;
3492 }
3493 if (i == 4) {
3494 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3495 dev->name);
3496 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3497 (unsigned long long) val64);
3498 return FAILURE;
3499 }
3500 valr = value[i];
3501 } else {
3502 valr = readq(&bar0->swapper_ctrl);
3503 }
3504
3505 valt = 0x0123456789ABCDEFULL;
3506 writeq(valt, &bar0->xmsi_address);
3507 val64 = readq(&bar0->xmsi_address);
3508
3509 if(val64 != valt) {
3510 int i = 0;
3511 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3512 0x0081810000818100ULL, /* FE=1, SE=0 */
3513 0x0042420000424200ULL, /* FE=0, SE=1 */
3514 0}; /* FE=0, SE=0 */
3515
3516 while(i<4) {
3517 writeq((value[i] | valr), &bar0->swapper_ctrl);
3518 writeq(valt, &bar0->xmsi_address);
3519 val64 = readq(&bar0->xmsi_address);
3520 if(val64 == valt)
3521 break;
3522 i++;
3523 }
3524 if(i == 4) {
3525 unsigned long long x = val64;
3526 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3527 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3528 return FAILURE;
3529 }
3530 }
3531 val64 = readq(&bar0->swapper_ctrl);
3532 val64 &= 0xFFFF000000000000ULL;
3533
3534 #ifdef __BIG_ENDIAN
3535 /*
3536 * The device by default set to a big endian format, so a
3537 * big endian driver need not set anything.
3538 */
3539 val64 |= (SWAPPER_CTRL_TXP_FE |
3540 SWAPPER_CTRL_TXP_SE |
3541 SWAPPER_CTRL_TXD_R_FE |
3542 SWAPPER_CTRL_TXD_W_FE |
3543 SWAPPER_CTRL_TXF_R_FE |
3544 SWAPPER_CTRL_RXD_R_FE |
3545 SWAPPER_CTRL_RXD_W_FE |
3546 SWAPPER_CTRL_RXF_W_FE |
3547 SWAPPER_CTRL_XMSI_FE |
3548 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3549 if (sp->config.intr_type == INTA)
3550 val64 |= SWAPPER_CTRL_XMSI_SE;
3551 writeq(val64, &bar0->swapper_ctrl);
3552 #else
3553 /*
3554 * Initially we enable all bits to make it accessible by the
3555 * driver, then we selectively enable only those bits that
3556 * we want to set.
3557 */
3558 val64 |= (SWAPPER_CTRL_TXP_FE |
3559 SWAPPER_CTRL_TXP_SE |
3560 SWAPPER_CTRL_TXD_R_FE |
3561 SWAPPER_CTRL_TXD_R_SE |
3562 SWAPPER_CTRL_TXD_W_FE |
3563 SWAPPER_CTRL_TXD_W_SE |
3564 SWAPPER_CTRL_TXF_R_FE |
3565 SWAPPER_CTRL_RXD_R_FE |
3566 SWAPPER_CTRL_RXD_R_SE |
3567 SWAPPER_CTRL_RXD_W_FE |
3568 SWAPPER_CTRL_RXD_W_SE |
3569 SWAPPER_CTRL_RXF_W_FE |
3570 SWAPPER_CTRL_XMSI_FE |
3571 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3572 if (sp->config.intr_type == INTA)
3573 val64 |= SWAPPER_CTRL_XMSI_SE;
3574 writeq(val64, &bar0->swapper_ctrl);
3575 #endif
3576 val64 = readq(&bar0->swapper_ctrl);
3577
3578 /*
3579 * Verifying if endian settings are accurate by reading a
3580 * feedback register.
3581 */
3582 val64 = readq(&bar0->pif_rd_swapper_fb);
3583 if (val64 != 0x0123456789ABCDEFULL) {
3584 /* Endian settings are incorrect, calls for another dekko. */
3585 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3586 dev->name);
3587 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3588 (unsigned long long) val64);
3589 return FAILURE;
3590 }
3591
3592 return SUCCESS;
3593 }
3594
3595 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3596 {
3597 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3598 u64 val64;
3599 int ret = 0, cnt = 0;
3600
3601 do {
3602 val64 = readq(&bar0->xmsi_access);
3603 if (!(val64 & BIT(15)))
3604 break;
3605 mdelay(1);
3606 cnt++;
3607 } while(cnt < 5);
3608 if (cnt == 5) {
3609 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3610 ret = 1;
3611 }
3612
3613 return ret;
3614 }
3615
3616 static void restore_xmsi_data(struct s2io_nic *nic)
3617 {
3618 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3619 u64 val64;
3620 int i;
3621
3622 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3623 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3624 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3625 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3626 writeq(val64, &bar0->xmsi_access);
3627 if (wait_for_msix_trans(nic, i)) {
3628 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3629 continue;
3630 }
3631 }
3632 }
3633
3634 static void store_xmsi_data(struct s2io_nic *nic)
3635 {
3636 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3637 u64 val64, addr, data;
3638 int i;
3639
3640 /* Store and display */
3641 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3642 val64 = (BIT(15) | vBIT(i, 26, 6));
3643 writeq(val64, &bar0->xmsi_access);
3644 if (wait_for_msix_trans(nic, i)) {
3645 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3646 continue;
3647 }
3648 addr = readq(&bar0->xmsi_address);
3649 data = readq(&bar0->xmsi_data);
3650 if (addr && data) {
3651 nic->msix_info[i].addr = addr;
3652 nic->msix_info[i].data = data;
3653 }
3654 }
3655 }
3656
3657 static int s2io_enable_msi_x(struct s2io_nic *nic)
3658 {
3659 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3660 u64 tx_mat, rx_mat;
3661 u16 msi_control; /* Temp variable */
3662 int ret, i, j, msix_indx = 1;
3663
3664 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3665 GFP_KERNEL);
3666 if (nic->entries == NULL) {
3667 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3668 __FUNCTION__);
3669 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3670 return -ENOMEM;
3671 }
3672 nic->mac_control.stats_info->sw_stat.mem_allocated
3673 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3674 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3675
3676 nic->s2io_entries =
3677 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3678 GFP_KERNEL);
3679 if (nic->s2io_entries == NULL) {
3680 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3681 __FUNCTION__);
3682 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3683 kfree(nic->entries);
3684 nic->mac_control.stats_info->sw_stat.mem_freed
3685 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3686 return -ENOMEM;
3687 }
3688 nic->mac_control.stats_info->sw_stat.mem_allocated
3689 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3690 memset(nic->s2io_entries, 0,
3691 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3692
3693 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3694 nic->entries[i].entry = i;
3695 nic->s2io_entries[i].entry = i;
3696 nic->s2io_entries[i].arg = NULL;
3697 nic->s2io_entries[i].in_use = 0;
3698 }
3699
3700 tx_mat = readq(&bar0->tx_mat0_n[0]);
3701 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3702 tx_mat |= TX_MAT_SET(i, msix_indx);
3703 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3704 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3705 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3706 }
3707 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3708
3709 if (!nic->config.bimodal) {
3710 rx_mat = readq(&bar0->rx_mat);
3711 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3712 rx_mat |= RX_MAT_SET(j, msix_indx);
3713 nic->s2io_entries[msix_indx].arg
3714 = &nic->mac_control.rings[j];
3715 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3716 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3717 }
3718 writeq(rx_mat, &bar0->rx_mat);
3719 } else {
3720 tx_mat = readq(&bar0->tx_mat0_n[7]);
3721 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3722 tx_mat |= TX_MAT_SET(i, msix_indx);
3723 nic->s2io_entries[msix_indx].arg
3724 = &nic->mac_control.rings[j];
3725 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3726 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3727 }
3728 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3729 }
3730
3731 nic->avail_msix_vectors = 0;
3732 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3733 /* We fail init if error or we get less vectors than min required */
3734 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3735 nic->avail_msix_vectors = ret;
3736 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3737 }
3738 if (ret) {
3739 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3740 kfree(nic->entries);
3741 nic->mac_control.stats_info->sw_stat.mem_freed
3742 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3743 kfree(nic->s2io_entries);
3744 nic->mac_control.stats_info->sw_stat.mem_freed
3745 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3746 nic->entries = NULL;
3747 nic->s2io_entries = NULL;
3748 nic->avail_msix_vectors = 0;
3749 return -ENOMEM;
3750 }
3751 if (!nic->avail_msix_vectors)
3752 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3753
3754 /*
3755 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3756 * in the herc NIC. (Temp change, needs to be removed later)
3757 */
3758 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3759 msi_control |= 0x1; /* Enable MSI */
3760 pci_write_config_word(nic->pdev, 0x42, msi_control);
3761
3762 return 0;
3763 }
3764
3765 /* Handle software interrupt used during MSI(X) test */
3766 static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3767 {
3768 struct s2io_nic *sp = dev_id;
3769
3770 sp->msi_detected = 1;
3771 wake_up(&sp->msi_wait);
3772
3773 return IRQ_HANDLED;
3774 }
3775
3776 /* Test interrupt path by forcing a a software IRQ */
3777 static int __devinit s2io_test_msi(struct s2io_nic *sp)
3778 {
3779 struct pci_dev *pdev = sp->pdev;
3780 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3781 int err;
3782 u64 val64, saved64;
3783
3784 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3785 sp->name, sp);
3786 if (err) {
3787 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3788 sp->dev->name, pci_name(pdev), pdev->irq);
3789 return err;
3790 }
3791
3792 init_waitqueue_head (&sp->msi_wait);
3793 sp->msi_detected = 0;
3794
3795 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3796 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3797 val64 |= SCHED_INT_CTRL_TIMER_EN;
3798 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3799 writeq(val64, &bar0->scheduled_int_ctrl);
3800
3801 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3802
3803 if (!sp->msi_detected) {
3804 /* MSI(X) test failed, go back to INTx mode */
3805 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3806 "using MSI(X) during test\n", sp->dev->name,
3807 pci_name(pdev));
3808
3809 err = -EOPNOTSUPP;
3810 }
3811
3812 free_irq(sp->entries[1].vector, sp);
3813
3814 writeq(saved64, &bar0->scheduled_int_ctrl);
3815
3816 return err;
3817 }
3818 /* ********************************************************* *
3819 * Functions defined below concern the OS part of the driver *
3820 * ********************************************************* */
3821
3822 /**
3823 * s2io_open - open entry point of the driver
3824 * @dev : pointer to the device structure.
3825 * Description:
3826 * This function is the open entry point of the driver. It mainly calls a
3827 * function to allocate Rx buffers and inserts them into the buffer
3828 * descriptors and then enables the Rx part of the NIC.
3829 * Return value:
3830 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3831 * file on failure.
3832 */
3833
3834 static int s2io_open(struct net_device *dev)
3835 {
3836 struct s2io_nic *sp = dev->priv;
3837 int err = 0;
3838
3839 /*
3840 * Make sure you have link off by default every time
3841 * Nic is initialized
3842 */
3843 netif_carrier_off(dev);
3844 sp->last_link_state = 0;
3845
3846 napi_enable(&sp->napi);
3847
3848 if (sp->config.intr_type == MSI_X) {
3849 int ret = s2io_enable_msi_x(sp);
3850
3851 if (!ret) {
3852 u16 msi_control;
3853
3854 ret = s2io_test_msi(sp);
3855
3856 /* rollback MSI-X, will re-enable during add_isr() */
3857 kfree(sp->entries);
3858 sp->mac_control.stats_info->sw_stat.mem_freed +=
3859 (MAX_REQUESTED_MSI_X *
3860 sizeof(struct msix_entry));
3861 kfree(sp->s2io_entries);
3862 sp->mac_control.stats_info->sw_stat.mem_freed +=
3863 (MAX_REQUESTED_MSI_X *
3864 sizeof(struct s2io_msix_entry));
3865 sp->entries = NULL;
3866 sp->s2io_entries = NULL;
3867
3868 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3869 msi_control &= 0xFFFE; /* Disable MSI */
3870 pci_write_config_word(sp->pdev, 0x42, msi_control);
3871
3872 pci_disable_msix(sp->pdev);
3873
3874 }
3875 if (ret) {
3876
3877 DBG_PRINT(ERR_DBG,
3878 "%s: MSI-X requested but failed to enable\n",
3879 dev->name);
3880 sp->config.intr_type = INTA;
3881 }
3882 }
3883
3884 /* NAPI doesn't work well with MSI(X) */
3885 if (sp->config.intr_type != INTA) {
3886 if(sp->config.napi)
3887 sp->config.napi = 0;
3888 }
3889
3890 /* Initialize H/W and enable interrupts */
3891 err = s2io_card_up(sp);
3892 if (err) {
3893 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3894 dev->name);
3895 goto hw_init_failed;
3896 }
3897
3898 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3899 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3900 s2io_card_down(sp);
3901 err = -ENODEV;
3902 goto hw_init_failed;
3903 }
3904
3905 netif_start_queue(dev);
3906 return 0;
3907
3908 hw_init_failed:
3909 napi_disable(&sp->napi);
3910 if (sp->config.intr_type == MSI_X) {
3911 if (sp->entries) {
3912 kfree(sp->entries);
3913 sp->mac_control.stats_info->sw_stat.mem_freed
3914 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3915 }
3916 if (sp->s2io_entries) {
3917 kfree(sp->s2io_entries);
3918 sp->mac_control.stats_info->sw_stat.mem_freed
3919 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3920 }
3921 }
3922 return err;
3923 }
3924
3925 /**
3926 * s2io_close -close entry point of the driver
3927 * @dev : device pointer.
3928 * Description:
3929 * This is the stop entry point of the driver. It needs to undo exactly
3930 * whatever was done by the open entry point,thus it's usually referred to
3931 * as the close function.Among other things this function mainly stops the
3932 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3933 * Return value:
3934 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3935 * file on failure.
3936 */
3937
3938 static int s2io_close(struct net_device *dev)
3939 {
3940 struct s2io_nic *sp = dev->priv;
3941
3942 netif_stop_queue(dev);
3943 napi_disable(&sp->napi);
3944 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3945 s2io_card_down(sp);
3946
3947 return 0;
3948 }
3949
3950 /**
3951 * s2io_xmit - Tx entry point of te driver
3952 * @skb : the socket buffer containing the Tx data.
3953 * @dev : device pointer.
3954 * Description :
3955 * This function is the Tx entry point of the driver. S2IO NIC supports
3956 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3957 * NOTE: when device cant queue the pkt,just the trans_start variable will
3958 * not be upadted.
3959 * Return value:
3960 * 0 on success & 1 on failure.
3961 */
3962
3963 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3964 {
3965 struct s2io_nic *sp = dev->priv;
3966 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3967 register u64 val64;
3968 struct TxD *txdp;
3969 struct TxFIFO_element __iomem *tx_fifo;
3970 unsigned long flags;
3971 u16 vlan_tag = 0;
3972 int vlan_priority = 0;
3973 struct mac_info *mac_control;
3974 struct config_param *config;
3975 int offload_type;
3976 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3977
3978 mac_control = &sp->mac_control;
3979 config = &sp->config;
3980
3981 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3982
3983 if (unlikely(skb->len <= 0)) {
3984 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3985 dev_kfree_skb_any(skb);
3986 return 0;
3987 }
3988
3989 spin_lock_irqsave(&sp->tx_lock, flags);
3990 if (!is_s2io_card_up(sp)) {
3991 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3992 dev->name);
3993 spin_unlock_irqrestore(&sp->tx_lock, flags);
3994 dev_kfree_skb(skb);
3995 return 0;
3996 }
3997
3998 queue = 0;
3999 /* Get Fifo number to Transmit based on vlan priority */
4000 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4001 vlan_tag = vlan_tx_tag_get(skb);
4002 vlan_priority = vlan_tag >> 13;
4003 queue = config->fifo_mapping[vlan_priority];
4004 }
4005
4006 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4007 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4008 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4009 list_virt_addr;
4010
4011 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4012 /* Avoid "put" pointer going beyond "get" pointer */
4013 if (txdp->Host_Control ||
4014 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4015 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4016 netif_stop_queue(dev);
4017 dev_kfree_skb(skb);
4018 spin_unlock_irqrestore(&sp->tx_lock, flags);
4019 return 0;
4020 }
4021
4022 offload_type = s2io_offload_type(skb);
4023 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4024 txdp->Control_1 |= TXD_TCP_LSO_EN;
4025 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4026 }
4027 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4028 txdp->Control_2 |=
4029 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4030 TXD_TX_CKO_UDP_EN);
4031 }
4032 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4033 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4034 txdp->Control_2 |= config->tx_intr_type;
4035
4036 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4037 txdp->Control_2 |= TXD_VLAN_ENABLE;
4038 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4039 }
4040
4041 frg_len = skb->len - skb->data_len;
4042 if (offload_type == SKB_GSO_UDP) {
4043 int ufo_size;
4044
4045 ufo_size = s2io_udp_mss(skb);
4046 ufo_size &= ~7;
4047 txdp->Control_1 |= TXD_UFO_EN;
4048 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4049 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4050 #ifdef __BIG_ENDIAN
4051 sp->ufo_in_band_v[put_off] =
4052 (u64)skb_shinfo(skb)->ip6_frag_id;
4053 #else
4054 sp->ufo_in_band_v[put_off] =
4055 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4056 #endif
4057 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4058 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4059 sp->ufo_in_band_v,
4060 sizeof(u64), PCI_DMA_TODEVICE);
4061 if((txdp->Buffer_Pointer == 0) ||
4062 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4063 goto pci_map_failed;
4064 txdp++;
4065 }
4066
4067 txdp->Buffer_Pointer = pci_map_single
4068 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4069 if((txdp->Buffer_Pointer == 0) ||
4070 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4071 goto pci_map_failed;
4072
4073 txdp->Host_Control = (unsigned long) skb;
4074 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4075 if (offload_type == SKB_GSO_UDP)
4076 txdp->Control_1 |= TXD_UFO_EN;
4077
4078 frg_cnt = skb_shinfo(skb)->nr_frags;
4079 /* For fragmented SKB. */
4080 for (i = 0; i < frg_cnt; i++) {
4081 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4082 /* A '0' length fragment will be ignored */
4083 if (!frag->size)
4084 continue;
4085 txdp++;
4086 txdp->Buffer_Pointer = (u64) pci_map_page
4087 (sp->pdev, frag->page, frag->page_offset,
4088 frag->size, PCI_DMA_TODEVICE);
4089 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4090 if (offload_type == SKB_GSO_UDP)
4091 txdp->Control_1 |= TXD_UFO_EN;
4092 }
4093 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4094
4095 if (offload_type == SKB_GSO_UDP)
4096 frg_cnt++; /* as Txd0 was used for inband header */
4097
4098 tx_fifo = mac_control->tx_FIFO_start[queue];
4099 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4100 writeq(val64, &tx_fifo->TxDL_Pointer);
4101
4102 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4103 TX_FIFO_LAST_LIST);
4104 if (offload_type)
4105 val64 |= TX_FIFO_SPECIAL_FUNC;
4106
4107 writeq(val64, &tx_fifo->List_Control);
4108
4109 mmiowb();
4110
4111 put_off++;
4112 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4113 put_off = 0;
4114 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4115
4116 /* Avoid "put" pointer going beyond "get" pointer */
4117 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4118 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4119 DBG_PRINT(TX_DBG,
4120 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4121 put_off, get_off);
4122 netif_stop_queue(dev);
4123 }
4124 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4125 dev->trans_start = jiffies;
4126 spin_unlock_irqrestore(&sp->tx_lock, flags);
4127
4128 return 0;
4129 pci_map_failed:
4130 stats->pci_map_fail_cnt++;
4131 netif_stop_queue(dev);
4132 stats->mem_freed += skb->truesize;
4133 dev_kfree_skb(skb);
4134 spin_unlock_irqrestore(&sp->tx_lock, flags);
4135 return 0;
4136 }
4137
4138 static void
4139 s2io_alarm_handle(unsigned long data)
4140 {
4141 struct s2io_nic *sp = (struct s2io_nic *)data;
4142 struct net_device *dev = sp->dev;
4143
4144 s2io_handle_errors(dev);
4145 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4146 }
4147
4148 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4149 {
4150 int rxb_size, level;
4151
4152 if (!sp->lro) {
4153 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4154 level = rx_buffer_level(sp, rxb_size, rng_n);
4155
4156 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4157 int ret;
4158 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4159 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4160 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4161 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4162 __FUNCTION__);
4163 clear_bit(0, (&sp->tasklet_status));
4164 return -1;
4165 }
4166 clear_bit(0, (&sp->tasklet_status));
4167 } else if (level == LOW)
4168 tasklet_schedule(&sp->task);
4169
4170 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4171 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4172 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4173 }
4174 return 0;
4175 }
4176
4177 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4178 {
4179 struct ring_info *ring = (struct ring_info *)dev_id;
4180 struct s2io_nic *sp = ring->nic;
4181
4182 if (!is_s2io_card_up(sp))
4183 return IRQ_HANDLED;
4184
4185 rx_intr_handler(ring);
4186 s2io_chk_rx_buffers(sp, ring->ring_no);
4187
4188 return IRQ_HANDLED;
4189 }
4190
4191 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4192 {
4193 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4194 struct s2io_nic *sp = fifo->nic;
4195
4196 if (!is_s2io_card_up(sp))
4197 return IRQ_HANDLED;
4198
4199 tx_intr_handler(fifo);
4200 return IRQ_HANDLED;
4201 }
4202 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4203 {
4204 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4205 u64 val64;
4206
4207 val64 = readq(&bar0->pic_int_status);
4208 if (val64 & PIC_INT_GPIO) {
4209 val64 = readq(&bar0->gpio_int_reg);
4210 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4211 (val64 & GPIO_INT_REG_LINK_UP)) {
4212 /*
4213 * This is unstable state so clear both up/down
4214 * interrupt and adapter to re-evaluate the link state.
4215 */
4216 val64 |= GPIO_INT_REG_LINK_DOWN;
4217 val64 |= GPIO_INT_REG_LINK_UP;
4218 writeq(val64, &bar0->gpio_int_reg);
4219 val64 = readq(&bar0->gpio_int_mask);
4220 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4221 GPIO_INT_MASK_LINK_DOWN);
4222 writeq(val64, &bar0->gpio_int_mask);
4223 }
4224 else if (val64 & GPIO_INT_REG_LINK_UP) {
4225 val64 = readq(&bar0->adapter_status);
4226 /* Enable Adapter */
4227 val64 = readq(&bar0->adapter_control);
4228 val64 |= ADAPTER_CNTL_EN;
4229 writeq(val64, &bar0->adapter_control);
4230 val64 |= ADAPTER_LED_ON;
4231 writeq(val64, &bar0->adapter_control);
4232 if (!sp->device_enabled_once)
4233 sp->device_enabled_once = 1;
4234
4235 s2io_link(sp, LINK_UP);
4236 /*
4237 * unmask link down interrupt and mask link-up
4238 * intr
4239 */
4240 val64 = readq(&bar0->gpio_int_mask);
4241 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4242 val64 |= GPIO_INT_MASK_LINK_UP;
4243 writeq(val64, &bar0->gpio_int_mask);
4244
4245 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4246 val64 = readq(&bar0->adapter_status);
4247 s2io_link(sp, LINK_DOWN);
4248 /* Link is down so unmaks link up interrupt */
4249 val64 = readq(&bar0->gpio_int_mask);
4250 val64 &= ~GPIO_INT_MASK_LINK_UP;
4251 val64 |= GPIO_INT_MASK_LINK_DOWN;
4252 writeq(val64, &bar0->gpio_int_mask);
4253
4254 /* turn off LED */
4255 val64 = readq(&bar0->adapter_control);
4256 val64 = val64 &(~ADAPTER_LED_ON);
4257 writeq(val64, &bar0->adapter_control);
4258 }
4259 }
4260 val64 = readq(&bar0->gpio_int_mask);
4261 }
4262
4263 /**
4264 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4265 * @value: alarm bits
4266 * @addr: address value
4267 * @cnt: counter variable
4268 * Description: Check for alarm and increment the counter
4269 * Return Value:
4270 * 1 - if alarm bit set
4271 * 0 - if alarm bit is not set
4272 */
4273 int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4274 unsigned long long *cnt)
4275 {
4276 u64 val64;
4277 val64 = readq(addr);
4278 if ( val64 & value ) {
4279 writeq(val64, addr);
4280 (*cnt)++;
4281 return 1;
4282 }
4283 return 0;
4284
4285 }
4286
4287 /**
4288 * s2io_handle_errors - Xframe error indication handler
4289 * @nic: device private variable
4290 * Description: Handle alarms such as loss of link, single or
4291 * double ECC errors, critical and serious errors.
4292 * Return Value:
4293 * NONE
4294 */
4295 static void s2io_handle_errors(void * dev_id)
4296 {
4297 struct net_device *dev = (struct net_device *) dev_id;
4298 struct s2io_nic *sp = dev->priv;
4299 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4300 u64 temp64 = 0,val64=0;
4301 int i = 0;
4302
4303 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4304 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4305
4306 if (!is_s2io_card_up(sp))
4307 return;
4308
4309 if (pci_channel_offline(sp->pdev))
4310 return;
4311
4312 memset(&sw_stat->ring_full_cnt, 0,
4313 sizeof(sw_stat->ring_full_cnt));
4314
4315 /* Handling the XPAK counters update */
4316 if(stats->xpak_timer_count < 72000) {
4317 /* waiting for an hour */
4318 stats->xpak_timer_count++;
4319 } else {
4320 s2io_updt_xpak_counter(dev);
4321 /* reset the count to zero */
4322 stats->xpak_timer_count = 0;
4323 }
4324
4325 /* Handling link status change error Intr */
4326 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4327 val64 = readq(&bar0->mac_rmac_err_reg);
4328 writeq(val64, &bar0->mac_rmac_err_reg);
4329 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4330 schedule_work(&sp->set_link_task);
4331 }
4332
4333 /* In case of a serious error, the device will be Reset. */
4334 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4335 &sw_stat->serious_err_cnt))
4336 goto reset;
4337
4338 /* Check for data parity error */
4339 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4340 &sw_stat->parity_err_cnt))
4341 goto reset;
4342
4343 /* Check for ring full counter */
4344 if (sp->device_type == XFRAME_II_DEVICE) {
4345 val64 = readq(&bar0->ring_bump_counter1);
4346 for (i=0; i<4; i++) {
4347 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4348 temp64 >>= 64 - ((i+1)*16);
4349 sw_stat->ring_full_cnt[i] += temp64;
4350 }
4351
4352 val64 = readq(&bar0->ring_bump_counter2);
4353 for (i=0; i<4; i++) {
4354 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4355 temp64 >>= 64 - ((i+1)*16);
4356 sw_stat->ring_full_cnt[i+4] += temp64;
4357 }
4358 }
4359
4360 val64 = readq(&bar0->txdma_int_status);
4361 /*check for pfc_err*/
4362 if (val64 & TXDMA_PFC_INT) {
4363 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4364 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4365 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4366 &sw_stat->pfc_err_cnt))
4367 goto reset;
4368 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4369 &sw_stat->pfc_err_cnt);
4370 }
4371
4372 /*check for tda_err*/
4373 if (val64 & TXDMA_TDA_INT) {
4374 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4375 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4376 &sw_stat->tda_err_cnt))
4377 goto reset;
4378 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4379 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4380 }
4381 /*check for pcc_err*/
4382 if (val64 & TXDMA_PCC_INT) {
4383 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4384 | PCC_N_SERR | PCC_6_COF_OV_ERR
4385 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4386 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4387 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4388 &sw_stat->pcc_err_cnt))
4389 goto reset;
4390 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4391 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4392 }
4393
4394 /*check for tti_err*/
4395 if (val64 & TXDMA_TTI_INT) {
4396 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4397 &sw_stat->tti_err_cnt))
4398 goto reset;
4399 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4400 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4401 }
4402
4403 /*check for lso_err*/
4404 if (val64 & TXDMA_LSO_INT) {
4405 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4406 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4407 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4408 goto reset;
4409 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4410 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4411 }
4412
4413 /*check for tpa_err*/
4414 if (val64 & TXDMA_TPA_INT) {
4415 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4416 &sw_stat->tpa_err_cnt))
4417 goto reset;
4418 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4419 &sw_stat->tpa_err_cnt);
4420 }
4421
4422 /*check for sm_err*/
4423 if (val64 & TXDMA_SM_INT) {
4424 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4425 &sw_stat->sm_err_cnt))
4426 goto reset;
4427 }
4428
4429 val64 = readq(&bar0->mac_int_status);
4430 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4431 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4432 &bar0->mac_tmac_err_reg,
4433 &sw_stat->mac_tmac_err_cnt))
4434 goto reset;
4435 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4436 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4437 &bar0->mac_tmac_err_reg,
4438 &sw_stat->mac_tmac_err_cnt);
4439 }
4440
4441 val64 = readq(&bar0->xgxs_int_status);
4442 if (val64 & XGXS_INT_STATUS_TXGXS) {
4443 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4444 &bar0->xgxs_txgxs_err_reg,
4445 &sw_stat->xgxs_txgxs_err_cnt))
4446 goto reset;
4447 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4448 &bar0->xgxs_txgxs_err_reg,
4449 &sw_stat->xgxs_txgxs_err_cnt);
4450 }
4451
4452 val64 = readq(&bar0->rxdma_int_status);
4453 if (val64 & RXDMA_INT_RC_INT_M) {
4454 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4455 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4456 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4457 goto reset;
4458 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4459 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4460 &sw_stat->rc_err_cnt);
4461 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4462 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4463 &sw_stat->prc_pcix_err_cnt))
4464 goto reset;
4465 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4466 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4467 &sw_stat->prc_pcix_err_cnt);
4468 }
4469
4470 if (val64 & RXDMA_INT_RPA_INT_M) {
4471 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4472 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4473 goto reset;
4474 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4475 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4476 }
4477
4478 if (val64 & RXDMA_INT_RDA_INT_M) {
4479 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4480 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4481 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4482 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4483 goto reset;
4484 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4485 | RDA_MISC_ERR | RDA_PCIX_ERR,
4486 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4487 }
4488
4489 if (val64 & RXDMA_INT_RTI_INT_M) {
4490 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4491 &sw_stat->rti_err_cnt))
4492 goto reset;
4493 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4494 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4495 }
4496
4497 val64 = readq(&bar0->mac_int_status);
4498 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4499 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4500 &bar0->mac_rmac_err_reg,
4501 &sw_stat->mac_rmac_err_cnt))
4502 goto reset;
4503 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4504 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4505 &sw_stat->mac_rmac_err_cnt);
4506 }
4507
4508 val64 = readq(&bar0->xgxs_int_status);
4509 if (val64 & XGXS_INT_STATUS_RXGXS) {
4510 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4511 &bar0->xgxs_rxgxs_err_reg,
4512 &sw_stat->xgxs_rxgxs_err_cnt))
4513 goto reset;
4514 }
4515
4516 val64 = readq(&bar0->mc_int_status);
4517 if(val64 & MC_INT_STATUS_MC_INT) {
4518 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4519 &sw_stat->mc_err_cnt))
4520 goto reset;
4521
4522 /* Handling Ecc errors */
4523 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4524 writeq(val64, &bar0->mc_err_reg);
4525 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4526 sw_stat->double_ecc_errs++;
4527 if (sp->device_type != XFRAME_II_DEVICE) {
4528 /*
4529 * Reset XframeI only if critical error
4530 */
4531 if (val64 &
4532 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4533 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4534 goto reset;
4535 }
4536 } else
4537 sw_stat->single_ecc_errs++;
4538 }
4539 }
4540 return;
4541
4542 reset:
4543 netif_stop_queue(dev);
4544 schedule_work(&sp->rst_timer_task);
4545 sw_stat->soft_reset_cnt++;
4546 return;
4547 }
4548
4549 /**
4550 * s2io_isr - ISR handler of the device .
4551 * @irq: the irq of the device.
4552 * @dev_id: a void pointer to the dev structure of the NIC.
4553 * Description: This function is the ISR handler of the device. It
4554 * identifies the reason for the interrupt and calls the relevant
4555 * service routines. As a contongency measure, this ISR allocates the
4556 * recv buffers, if their numbers are below the panic value which is
4557 * presently set to 25% of the original number of rcv buffers allocated.
4558 * Return value:
4559 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4560 * IRQ_NONE: will be returned if interrupt is not from our device
4561 */
4562 static irqreturn_t s2io_isr(int irq, void *dev_id)
4563 {
4564 struct net_device *dev = (struct net_device *) dev_id;
4565 struct s2io_nic *sp = dev->priv;
4566 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4567 int i;
4568 u64 reason = 0;
4569 struct mac_info *mac_control;
4570 struct config_param *config;
4571
4572 /* Pretend we handled any irq's from a disconnected card */
4573 if (pci_channel_offline(sp->pdev))
4574 return IRQ_NONE;
4575
4576 if (!is_s2io_card_up(sp))
4577 return IRQ_NONE;
4578
4579 mac_control = &sp->mac_control;
4580 config = &sp->config;
4581
4582 /*
4583 * Identify the cause for interrupt and call the appropriate
4584 * interrupt handler. Causes for the interrupt could be;
4585 * 1. Rx of packet.
4586 * 2. Tx complete.
4587 * 3. Link down.
4588 */
4589 reason = readq(&bar0->general_int_status);
4590
4591 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4592 /* Nothing much can be done. Get out */
4593 return IRQ_HANDLED;
4594 }
4595
4596 if (reason & (GEN_INTR_RXTRAFFIC |
4597 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4598 {
4599 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4600
4601 if (config->napi) {
4602 if (reason & GEN_INTR_RXTRAFFIC) {
4603 if (likely(netif_rx_schedule_prep(dev,
4604 &sp->napi))) {
4605 __netif_rx_schedule(dev, &sp->napi);
4606 writeq(S2IO_MINUS_ONE,
4607 &bar0->rx_traffic_mask);
4608 } else
4609 writeq(S2IO_MINUS_ONE,
4610 &bar0->rx_traffic_int);
4611 }
4612 } else {
4613 /*
4614 * rx_traffic_int reg is an R1 register, writing all 1's
4615 * will ensure that the actual interrupt causing bit
4616 * get's cleared and hence a read can be avoided.
4617 */
4618 if (reason & GEN_INTR_RXTRAFFIC)
4619 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4620
4621 for (i = 0; i < config->rx_ring_num; i++)
4622 rx_intr_handler(&mac_control->rings[i]);
4623 }
4624
4625 /*
4626 * tx_traffic_int reg is an R1 register, writing all 1's
4627 * will ensure that the actual interrupt causing bit get's
4628 * cleared and hence a read can be avoided.
4629 */
4630 if (reason & GEN_INTR_TXTRAFFIC)
4631 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4632
4633 for (i = 0; i < config->tx_fifo_num; i++)
4634 tx_intr_handler(&mac_control->fifos[i]);
4635
4636 if (reason & GEN_INTR_TXPIC)
4637 s2io_txpic_intr_handle(sp);
4638
4639 /*
4640 * Reallocate the buffers from the interrupt handler itself.
4641 */
4642 if (!config->napi) {
4643 for (i = 0; i < config->rx_ring_num; i++)
4644 s2io_chk_rx_buffers(sp, i);
4645 }
4646 writeq(sp->general_int_mask, &bar0->general_int_mask);
4647 readl(&bar0->general_int_status);
4648
4649 return IRQ_HANDLED;
4650
4651 }
4652 else if (!reason) {
4653 /* The interrupt was not raised by us */
4654 return IRQ_NONE;
4655 }
4656
4657 return IRQ_HANDLED;
4658 }
4659
4660 /**
4661 * s2io_updt_stats -
4662 */
4663 static void s2io_updt_stats(struct s2io_nic *sp)
4664 {
4665 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4666 u64 val64;
4667 int cnt = 0;
4668
4669 if (is_s2io_card_up(sp)) {
4670 /* Apprx 30us on a 133 MHz bus */
4671 val64 = SET_UPDT_CLICKS(10) |
4672 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4673 writeq(val64, &bar0->stat_cfg);
4674 do {
4675 udelay(100);
4676 val64 = readq(&bar0->stat_cfg);
4677 if (!(val64 & BIT(0)))
4678 break;
4679 cnt++;
4680 if (cnt == 5)
4681 break; /* Updt failed */
4682 } while(1);
4683 }
4684 }
4685
4686 /**
4687 * s2io_get_stats - Updates the device statistics structure.
4688 * @dev : pointer to the device structure.
4689 * Description:
4690 * This function updates the device statistics structure in the s2io_nic
4691 * structure and returns a pointer to the same.
4692 * Return value:
4693 * pointer to the updated net_device_stats structure.
4694 */
4695
4696 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4697 {
4698 struct s2io_nic *sp = dev->priv;
4699 struct mac_info *mac_control;
4700 struct config_param *config;
4701
4702
4703 mac_control = &sp->mac_control;
4704 config = &sp->config;
4705
4706 /* Configure Stats for immediate updt */
4707 s2io_updt_stats(sp);
4708
4709 sp->stats.tx_packets =
4710 le32_to_cpu(mac_control->stats_info->tmac_frms);
4711 sp->stats.tx_errors =
4712 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4713 sp->stats.rx_errors =
4714 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4715 sp->stats.multicast =
4716 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4717 sp->stats.rx_length_errors =
4718 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4719
4720 return (&sp->stats);
4721 }
4722
4723 /**
4724 * s2io_set_multicast - entry point for multicast address enable/disable.
4725 * @dev : pointer to the device structure
4726 * Description:
4727 * This function is a driver entry point which gets called by the kernel
4728 * whenever multicast addresses must be enabled/disabled. This also gets
4729 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4730 * determine, if multicast address must be enabled or if promiscuous mode
4731 * is to be disabled etc.
4732 * Return value:
4733 * void.
4734 */
4735
4736 static void s2io_set_multicast(struct net_device *dev)
4737 {
4738 int i, j, prev_cnt;
4739 struct dev_mc_list *mclist;
4740 struct s2io_nic *sp = dev->priv;
4741 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4742 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4743 0xfeffffffffffULL;
4744 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4745 void __iomem *add;
4746
4747 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4748 /* Enable all Multicast addresses */
4749 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4750 &bar0->rmac_addr_data0_mem);
4751 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4752 &bar0->rmac_addr_data1_mem);
4753 val64 = RMAC_ADDR_CMD_MEM_WE |
4754 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4755 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4756 writeq(val64, &bar0->rmac_addr_cmd_mem);
4757 /* Wait till command completes */
4758 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4759 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4760 S2IO_BIT_RESET);
4761
4762 sp->m_cast_flg = 1;
4763 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4764 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4765 /* Disable all Multicast addresses */
4766 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4767 &bar0->rmac_addr_data0_mem);
4768 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4769 &bar0->rmac_addr_data1_mem);
4770 val64 = RMAC_ADDR_CMD_MEM_WE |
4771 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4772 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4773 writeq(val64, &bar0->rmac_addr_cmd_mem);
4774 /* Wait till command completes */
4775 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4776 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4777 S2IO_BIT_RESET);
4778
4779 sp->m_cast_flg = 0;
4780 sp->all_multi_pos = 0;
4781 }
4782
4783 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4784 /* Put the NIC into promiscuous mode */
4785 add = &bar0->mac_cfg;
4786 val64 = readq(&bar0->mac_cfg);
4787 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4788
4789 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4790 writel((u32) val64, add);
4791 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4792 writel((u32) (val64 >> 32), (add + 4));
4793
4794 if (vlan_tag_strip != 1) {
4795 val64 = readq(&bar0->rx_pa_cfg);
4796 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4797 writeq(val64, &bar0->rx_pa_cfg);
4798 vlan_strip_flag = 0;
4799 }
4800
4801 val64 = readq(&bar0->mac_cfg);
4802 sp->promisc_flg = 1;
4803 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4804 dev->name);
4805 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4806 /* Remove the NIC from promiscuous mode */
4807 add = &bar0->mac_cfg;
4808 val64 = readq(&bar0->mac_cfg);
4809 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4810
4811 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4812 writel((u32) val64, add);
4813 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4814 writel((u32) (val64 >> 32), (add + 4));
4815
4816 if (vlan_tag_strip != 0) {
4817 val64 = readq(&bar0->rx_pa_cfg);
4818 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4819 writeq(val64, &bar0->rx_pa_cfg);
4820 vlan_strip_flag = 1;
4821 }
4822
4823 val64 = readq(&bar0->mac_cfg);
4824 sp->promisc_flg = 0;
4825 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4826 dev->name);
4827 }
4828
4829 /* Update individual M_CAST address list */
4830 if ((!sp->m_cast_flg) && dev->mc_count) {
4831 if (dev->mc_count >
4832 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4833 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4834 dev->name);
4835 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4836 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4837 return;
4838 }
4839
4840 prev_cnt = sp->mc_addr_count;
4841 sp->mc_addr_count = dev->mc_count;
4842
4843 /* Clear out the previous list of Mc in the H/W. */
4844 for (i = 0; i < prev_cnt; i++) {
4845 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4846 &bar0->rmac_addr_data0_mem);
4847 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4848 &bar0->rmac_addr_data1_mem);
4849 val64 = RMAC_ADDR_CMD_MEM_WE |
4850 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4851 RMAC_ADDR_CMD_MEM_OFFSET
4852 (MAC_MC_ADDR_START_OFFSET + i);
4853 writeq(val64, &bar0->rmac_addr_cmd_mem);
4854
4855 /* Wait for command completes */
4856 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4857 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4858 S2IO_BIT_RESET)) {
4859 DBG_PRINT(ERR_DBG, "%s: Adding ",
4860 dev->name);
4861 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4862 return;
4863 }
4864 }
4865
4866 /* Create the new Rx filter list and update the same in H/W. */
4867 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4868 i++, mclist = mclist->next) {
4869 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4870 ETH_ALEN);
4871 mac_addr = 0;
4872 for (j = 0; j < ETH_ALEN; j++) {
4873 mac_addr |= mclist->dmi_addr[j];
4874 mac_addr <<= 8;
4875 }
4876 mac_addr >>= 8;
4877 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4878 &bar0->rmac_addr_data0_mem);
4879 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4880 &bar0->rmac_addr_data1_mem);
4881 val64 = RMAC_ADDR_CMD_MEM_WE |
4882 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4883 RMAC_ADDR_CMD_MEM_OFFSET
4884 (i + MAC_MC_ADDR_START_OFFSET);
4885 writeq(val64, &bar0->rmac_addr_cmd_mem);
4886
4887 /* Wait for command completes */
4888 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4889 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4890 S2IO_BIT_RESET)) {
4891 DBG_PRINT(ERR_DBG, "%s: Adding ",
4892 dev->name);
4893 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4894 return;
4895 }
4896 }
4897 }
4898 }
4899
4900 /**
4901 * s2io_set_mac_addr - Programs the Xframe mac address
4902 * @dev : pointer to the device structure.
4903 * @addr: a uchar pointer to the new mac address which is to be set.
4904 * Description : This procedure will program the Xframe to receive
4905 * frames with new Mac Address
4906 * Return value: SUCCESS on success and an appropriate (-)ve integer
4907 * as defined in errno.h file on failure.
4908 */
4909
4910 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4911 {
4912 struct s2io_nic *sp = dev->priv;
4913 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4914 register u64 val64, mac_addr = 0;
4915 int i;
4916 u64 old_mac_addr = 0;
4917
4918 /*
4919 * Set the new MAC address as the new unicast filter and reflect this
4920 * change on the device address registered with the OS. It will be
4921 * at offset 0.
4922 */
4923 for (i = 0; i < ETH_ALEN; i++) {
4924 mac_addr <<= 8;
4925 mac_addr |= addr[i];
4926 old_mac_addr <<= 8;
4927 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4928 }
4929
4930 if(0 == mac_addr)
4931 return SUCCESS;
4932
4933 /* Update the internal structure with this new mac address */
4934 if(mac_addr != old_mac_addr) {
4935 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4936 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4937 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4938 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4939 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4940 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4941 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4942 }
4943
4944 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4945 &bar0->rmac_addr_data0_mem);
4946
4947 val64 =
4948 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4949 RMAC_ADDR_CMD_MEM_OFFSET(0);
4950 writeq(val64, &bar0->rmac_addr_cmd_mem);
4951 /* Wait till command completes */
4952 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4953 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4954 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4955 return FAILURE;
4956 }
4957
4958 return SUCCESS;
4959 }
4960
4961 /**
4962 * s2io_ethtool_sset - Sets different link parameters.
4963 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4964 * @info: pointer to the structure with parameters given by ethtool to set
4965 * link information.
4966 * Description:
4967 * The function sets different link parameters provided by the user onto
4968 * the NIC.
4969 * Return value:
4970 * 0 on success.
4971 */
4972
4973 static int s2io_ethtool_sset(struct net_device *dev,
4974 struct ethtool_cmd *info)
4975 {
4976 struct s2io_nic *sp = dev->priv;
4977 if ((info->autoneg == AUTONEG_ENABLE) ||
4978 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4979 return -EINVAL;
4980 else {
4981 s2io_close(sp->dev);
4982 s2io_open(sp->dev);
4983 }
4984
4985 return 0;
4986 }
4987
4988 /**
4989 * s2io_ethtol_gset - Return link specific information.
4990 * @sp : private member of the device structure, pointer to the
4991 * s2io_nic structure.
4992 * @info : pointer to the structure with parameters given by ethtool
4993 * to return link information.
4994 * Description:
4995 * Returns link specific information like speed, duplex etc.. to ethtool.
4996 * Return value :
4997 * return 0 on success.
4998 */
4999
5000 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5001 {
5002 struct s2io_nic *sp = dev->priv;
5003 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5004 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5005 info->port = PORT_FIBRE;
5006 /* info->transceiver?? TODO */
5007
5008 if (netif_carrier_ok(sp->dev)) {
5009 info->speed = 10000;
5010 info->duplex = DUPLEX_FULL;
5011 } else {
5012 info->speed = -1;
5013 info->duplex = -1;
5014 }
5015
5016 info->autoneg = AUTONEG_DISABLE;
5017 return 0;
5018 }
5019
5020 /**
5021 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5022 * @sp : private member of the device structure, which is a pointer to the
5023 * s2io_nic structure.
5024 * @info : pointer to the structure with parameters given by ethtool to
5025 * return driver information.
5026 * Description:
5027 * Returns driver specefic information like name, version etc.. to ethtool.
5028 * Return value:
5029 * void
5030 */
5031
5032 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5033 struct ethtool_drvinfo *info)
5034 {
5035 struct s2io_nic *sp = dev->priv;
5036
5037 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5038 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5039 strncpy(info->fw_version, "", sizeof(info->fw_version));
5040 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5041 info->regdump_len = XENA_REG_SPACE;
5042 info->eedump_len = XENA_EEPROM_SPACE;
5043 info->testinfo_len = S2IO_TEST_LEN;
5044
5045 if (sp->device_type == XFRAME_I_DEVICE)
5046 info->n_stats = XFRAME_I_STAT_LEN;
5047 else
5048 info->n_stats = XFRAME_II_STAT_LEN;
5049 }
5050
5051 /**
5052 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5053 * @sp: private member of the device structure, which is a pointer to the
5054 * s2io_nic structure.
5055 * @regs : pointer to the structure with parameters given by ethtool for
5056 * dumping the registers.
5057 * @reg_space: The input argumnet into which all the registers are dumped.
5058 * Description:
5059 * Dumps the entire register space of xFrame NIC into the user given
5060 * buffer area.
5061 * Return value :
5062 * void .
5063 */
5064
5065 static void s2io_ethtool_gregs(struct net_device *dev,
5066 struct ethtool_regs *regs, void *space)
5067 {
5068 int i;
5069 u64 reg;
5070 u8 *reg_space = (u8 *) space;
5071 struct s2io_nic *sp = dev->priv;
5072
5073 regs->len = XENA_REG_SPACE;
5074 regs->version = sp->pdev->subsystem_device;
5075
5076 for (i = 0; i < regs->len; i += 8) {
5077 reg = readq(sp->bar0 + i);
5078 memcpy((reg_space + i), &reg, 8);
5079 }
5080 }
5081
5082 /**
5083 * s2io_phy_id - timer function that alternates adapter LED.
5084 * @data : address of the private member of the device structure, which
5085 * is a pointer to the s2io_nic structure, provided as an u32.
5086 * Description: This is actually the timer function that alternates the
5087 * adapter LED bit of the adapter control bit to set/reset every time on
5088 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5089 * once every second.
5090 */
5091 static void s2io_phy_id(unsigned long data)
5092 {
5093 struct s2io_nic *sp = (struct s2io_nic *) data;
5094 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5095 u64 val64 = 0;
5096 u16 subid;
5097
5098 subid = sp->pdev->subsystem_device;
5099 if ((sp->device_type == XFRAME_II_DEVICE) ||
5100 ((subid & 0xFF) >= 0x07)) {
5101 val64 = readq(&bar0->gpio_control);
5102 val64 ^= GPIO_CTRL_GPIO_0;
5103 writeq(val64, &bar0->gpio_control);
5104 } else {
5105 val64 = readq(&bar0->adapter_control);
5106 val64 ^= ADAPTER_LED_ON;
5107 writeq(val64, &bar0->adapter_control);
5108 }
5109
5110 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5111 }
5112
5113 /**
5114 * s2io_ethtool_idnic - To physically identify the nic on the system.
5115 * @sp : private member of the device structure, which is a pointer to the
5116 * s2io_nic structure.
5117 * @id : pointer to the structure with identification parameters given by
5118 * ethtool.
5119 * Description: Used to physically identify the NIC on the system.
5120 * The Link LED will blink for a time specified by the user for
5121 * identification.
5122 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5123 * identification is possible only if it's link is up.
5124 * Return value:
5125 * int , returns 0 on success
5126 */
5127
5128 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5129 {
5130 u64 val64 = 0, last_gpio_ctrl_val;
5131 struct s2io_nic *sp = dev->priv;
5132 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5133 u16 subid;
5134
5135 subid = sp->pdev->subsystem_device;
5136 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5137 if ((sp->device_type == XFRAME_I_DEVICE) &&
5138 ((subid & 0xFF) < 0x07)) {
5139 val64 = readq(&bar0->adapter_control);
5140 if (!(val64 & ADAPTER_CNTL_EN)) {
5141 printk(KERN_ERR
5142 "Adapter Link down, cannot blink LED\n");
5143 return -EFAULT;
5144 }
5145 }
5146 if (sp->id_timer.function == NULL) {
5147 init_timer(&sp->id_timer);
5148 sp->id_timer.function = s2io_phy_id;
5149 sp->id_timer.data = (unsigned long) sp;
5150 }
5151 mod_timer(&sp->id_timer, jiffies);
5152 if (data)
5153 msleep_interruptible(data * HZ);
5154 else
5155 msleep_interruptible(MAX_FLICKER_TIME);
5156 del_timer_sync(&sp->id_timer);
5157
5158 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5159 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5160 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5161 }
5162
5163 return 0;
5164 }
5165
5166 static void s2io_ethtool_gringparam(struct net_device *dev,
5167 struct ethtool_ringparam *ering)
5168 {
5169 struct s2io_nic *sp = dev->priv;
5170 int i,tx_desc_count=0,rx_desc_count=0;
5171
5172 if (sp->rxd_mode == RXD_MODE_1)
5173 ering->rx_max_pending = MAX_RX_DESC_1;
5174 else if (sp->rxd_mode == RXD_MODE_3B)
5175 ering->rx_max_pending = MAX_RX_DESC_2;
5176
5177 ering->tx_max_pending = MAX_TX_DESC;
5178 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5179 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5180
5181 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5182 ering->tx_pending = tx_desc_count;
5183 rx_desc_count = 0;
5184 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5185 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5186
5187 ering->rx_pending = rx_desc_count;
5188
5189 ering->rx_mini_max_pending = 0;
5190 ering->rx_mini_pending = 0;
5191 if(sp->rxd_mode == RXD_MODE_1)
5192 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5193 else if (sp->rxd_mode == RXD_MODE_3B)
5194 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5195 ering->rx_jumbo_pending = rx_desc_count;
5196 }
5197
5198 /**
5199 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5200 * @sp : private member of the device structure, which is a pointer to the
5201 * s2io_nic structure.
5202 * @ep : pointer to the structure with pause parameters given by ethtool.
5203 * Description:
5204 * Returns the Pause frame generation and reception capability of the NIC.
5205 * Return value:
5206 * void
5207 */
5208 static void s2io_ethtool_getpause_data(struct net_device *dev,
5209 struct ethtool_pauseparam *ep)
5210 {
5211 u64 val64;
5212 struct s2io_nic *sp = dev->priv;
5213 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5214
5215 val64 = readq(&bar0->rmac_pause_cfg);
5216 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5217 ep->tx_pause = TRUE;
5218 if (val64 & RMAC_PAUSE_RX_ENABLE)
5219 ep->rx_pause = TRUE;
5220 ep->autoneg = FALSE;
5221 }
5222
5223 /**
5224 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5225 * @sp : private member of the device structure, which is a pointer to the
5226 * s2io_nic structure.
5227 * @ep : pointer to the structure with pause parameters given by ethtool.
5228 * Description:
5229 * It can be used to set or reset Pause frame generation or reception
5230 * support of the NIC.
5231 * Return value:
5232 * int, returns 0 on Success
5233 */
5234
5235 static int s2io_ethtool_setpause_data(struct net_device *dev,
5236 struct ethtool_pauseparam *ep)
5237 {
5238 u64 val64;
5239 struct s2io_nic *sp = dev->priv;
5240 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5241
5242 val64 = readq(&bar0->rmac_pause_cfg);
5243 if (ep->tx_pause)
5244 val64 |= RMAC_PAUSE_GEN_ENABLE;
5245 else
5246 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5247 if (ep->rx_pause)
5248 val64 |= RMAC_PAUSE_RX_ENABLE;
5249 else
5250 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5251 writeq(val64, &bar0->rmac_pause_cfg);
5252 return 0;
5253 }
5254
5255 /**
5256 * read_eeprom - reads 4 bytes of data from user given offset.
5257 * @sp : private member of the device structure, which is a pointer to the
5258 * s2io_nic structure.
5259 * @off : offset at which the data must be written
5260 * @data : Its an output parameter where the data read at the given
5261 * offset is stored.
5262 * Description:
5263 * Will read 4 bytes of data from the user given offset and return the
5264 * read data.
5265 * NOTE: Will allow to read only part of the EEPROM visible through the
5266 * I2C bus.
5267 * Return value:
5268 * -1 on failure and 0 on success.
5269 */
5270
5271 #define S2IO_DEV_ID 5
5272 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5273 {
5274 int ret = -1;
5275 u32 exit_cnt = 0;
5276 u64 val64;
5277 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5278
5279 if (sp->device_type == XFRAME_I_DEVICE) {
5280 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5281 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5282 I2C_CONTROL_CNTL_START;
5283 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5284
5285 while (exit_cnt < 5) {
5286 val64 = readq(&bar0->i2c_control);
5287 if (I2C_CONTROL_CNTL_END(val64)) {
5288 *data = I2C_CONTROL_GET_DATA(val64);
5289 ret = 0;
5290 break;
5291 }
5292 msleep(50);
5293 exit_cnt++;
5294 }
5295 }
5296
5297 if (sp->device_type == XFRAME_II_DEVICE) {
5298 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5299 SPI_CONTROL_BYTECNT(0x3) |
5300 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5301 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5302 val64 |= SPI_CONTROL_REQ;
5303 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5304 while (exit_cnt < 5) {
5305 val64 = readq(&bar0->spi_control);
5306 if (val64 & SPI_CONTROL_NACK) {
5307 ret = 1;
5308 break;
5309 } else if (val64 & SPI_CONTROL_DONE) {
5310 *data = readq(&bar0->spi_data);
5311 *data &= 0xffffff;
5312 ret = 0;
5313 break;
5314 }
5315 msleep(50);
5316 exit_cnt++;
5317 }
5318 }
5319 return ret;
5320 }
5321
5322 /**
5323 * write_eeprom - actually writes the relevant part of the data value.
5324 * @sp : private member of the device structure, which is a pointer to the
5325 * s2io_nic structure.
5326 * @off : offset at which the data must be written
5327 * @data : The data that is to be written
5328 * @cnt : Number of bytes of the data that are actually to be written into
5329 * the Eeprom. (max of 3)
5330 * Description:
5331 * Actually writes the relevant part of the data value into the Eeprom
5332 * through the I2C bus.
5333 * Return value:
5334 * 0 on success, -1 on failure.
5335 */
5336
5337 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5338 {
5339 int exit_cnt = 0, ret = -1;
5340 u64 val64;
5341 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5342
5343 if (sp->device_type == XFRAME_I_DEVICE) {
5344 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5345 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5346 I2C_CONTROL_CNTL_START;
5347 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5348
5349 while (exit_cnt < 5) {
5350 val64 = readq(&bar0->i2c_control);
5351 if (I2C_CONTROL_CNTL_END(val64)) {
5352 if (!(val64 & I2C_CONTROL_NACK))
5353 ret = 0;
5354 break;
5355 }
5356 msleep(50);
5357 exit_cnt++;
5358 }
5359 }
5360
5361 if (sp->device_type == XFRAME_II_DEVICE) {
5362 int write_cnt = (cnt == 8) ? 0 : cnt;
5363 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5364
5365 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5366 SPI_CONTROL_BYTECNT(write_cnt) |
5367 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5368 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5369 val64 |= SPI_CONTROL_REQ;
5370 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5371 while (exit_cnt < 5) {
5372 val64 = readq(&bar0->spi_control);
5373 if (val64 & SPI_CONTROL_NACK) {
5374 ret = 1;
5375 break;
5376 } else if (val64 & SPI_CONTROL_DONE) {
5377 ret = 0;
5378 break;
5379 }
5380 msleep(50);
5381 exit_cnt++;
5382 }
5383 }
5384 return ret;
5385 }
5386 static void s2io_vpd_read(struct s2io_nic *nic)
5387 {
5388 u8 *vpd_data;
5389 u8 data;
5390 int i=0, cnt, fail = 0;
5391 int vpd_addr = 0x80;
5392
5393 if (nic->device_type == XFRAME_II_DEVICE) {
5394 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5395 vpd_addr = 0x80;
5396 }
5397 else {
5398 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5399 vpd_addr = 0x50;
5400 }
5401 strcpy(nic->serial_num, "NOT AVAILABLE");
5402
5403 vpd_data = kmalloc(256, GFP_KERNEL);
5404 if (!vpd_data) {
5405 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5406 return;
5407 }
5408 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5409
5410 for (i = 0; i < 256; i +=4 ) {
5411 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5412 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5413 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5414 for (cnt = 0; cnt <5; cnt++) {
5415 msleep(2);
5416 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5417 if (data == 0x80)
5418 break;
5419 }
5420 if (cnt >= 5) {
5421 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5422 fail = 1;
5423 break;
5424 }
5425 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5426 (u32 *)&vpd_data[i]);
5427 }
5428
5429 if(!fail) {
5430 /* read serial number of adapter */
5431 for (cnt = 0; cnt < 256; cnt++) {
5432 if ((vpd_data[cnt] == 'S') &&
5433 (vpd_data[cnt+1] == 'N') &&
5434 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5435 memset(nic->serial_num, 0, VPD_STRING_LEN);
5436 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5437 vpd_data[cnt+2]);
5438 break;
5439 }
5440 }
5441 }
5442
5443 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5444 memset(nic->product_name, 0, vpd_data[1]);
5445 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5446 }
5447 kfree(vpd_data);
5448 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5449 }
5450
5451 /**
5452 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5453 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5454 * @eeprom : pointer to the user level structure provided by ethtool,
5455 * containing all relevant information.
5456 * @data_buf : user defined value to be written into Eeprom.
5457 * Description: Reads the values stored in the Eeprom at given offset
5458 * for a given length. Stores these values int the input argument data
5459 * buffer 'data_buf' and returns these to the caller (ethtool.)
5460 * Return value:
5461 * int 0 on success
5462 */
5463
5464 static int s2io_ethtool_geeprom(struct net_device *dev,
5465 struct ethtool_eeprom *eeprom, u8 * data_buf)
5466 {
5467 u32 i, valid;
5468 u64 data;
5469 struct s2io_nic *sp = dev->priv;
5470
5471 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5472
5473 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5474 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5475
5476 for (i = 0; i < eeprom->len; i += 4) {
5477 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5478 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5479 return -EFAULT;
5480 }
5481 valid = INV(data);
5482 memcpy((data_buf + i), &valid, 4);
5483 }
5484 return 0;
5485 }
5486
5487 /**
5488 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5489 * @sp : private member of the device structure, which is a pointer to the
5490 * s2io_nic structure.
5491 * @eeprom : pointer to the user level structure provided by ethtool,
5492 * containing all relevant information.
5493 * @data_buf ; user defined value to be written into Eeprom.
5494 * Description:
5495 * Tries to write the user provided value in the Eeprom, at the offset
5496 * given by the user.
5497 * Return value:
5498 * 0 on success, -EFAULT on failure.
5499 */
5500
5501 static int s2io_ethtool_seeprom(struct net_device *dev,
5502 struct ethtool_eeprom *eeprom,
5503 u8 * data_buf)
5504 {
5505 int len = eeprom->len, cnt = 0;
5506 u64 valid = 0, data;
5507 struct s2io_nic *sp = dev->priv;
5508
5509 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5510 DBG_PRINT(ERR_DBG,
5511 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5512 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5513 eeprom->magic);
5514 return -EFAULT;
5515 }
5516
5517 while (len) {
5518 data = (u32) data_buf[cnt] & 0x000000FF;
5519 if (data) {
5520 valid = (u32) (data << 24);
5521 } else
5522 valid = data;
5523
5524 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5525 DBG_PRINT(ERR_DBG,
5526 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5527 DBG_PRINT(ERR_DBG,
5528 "write into the specified offset\n");
5529 return -EFAULT;
5530 }
5531 cnt++;
5532 len--;
5533 }
5534
5535 return 0;
5536 }
5537
5538 /**
5539 * s2io_register_test - reads and writes into all clock domains.
5540 * @sp : private member of the device structure, which is a pointer to the
5541 * s2io_nic structure.
5542 * @data : variable that returns the result of each of the test conducted b
5543 * by the driver.
5544 * Description:
5545 * Read and write into all clock domains. The NIC has 3 clock domains,
5546 * see that registers in all the three regions are accessible.
5547 * Return value:
5548 * 0 on success.
5549 */
5550
5551 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5552 {
5553 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5554 u64 val64 = 0, exp_val;
5555 int fail = 0;
5556
5557 val64 = readq(&bar0->pif_rd_swapper_fb);
5558 if (val64 != 0x123456789abcdefULL) {
5559 fail = 1;
5560 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5561 }
5562
5563 val64 = readq(&bar0->rmac_pause_cfg);
5564 if (val64 != 0xc000ffff00000000ULL) {
5565 fail = 1;
5566 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5567 }
5568
5569 val64 = readq(&bar0->rx_queue_cfg);
5570 if (sp->device_type == XFRAME_II_DEVICE)
5571 exp_val = 0x0404040404040404ULL;
5572 else
5573 exp_val = 0x0808080808080808ULL;
5574 if (val64 != exp_val) {
5575 fail = 1;
5576 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5577 }
5578
5579 val64 = readq(&bar0->xgxs_efifo_cfg);
5580 if (val64 != 0x000000001923141EULL) {
5581 fail = 1;
5582 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5583 }
5584
5585 val64 = 0x5A5A5A5A5A5A5A5AULL;
5586 writeq(val64, &bar0->xmsi_data);
5587 val64 = readq(&bar0->xmsi_data);
5588 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5589 fail = 1;
5590 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5591 }
5592
5593 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5594 writeq(val64, &bar0->xmsi_data);
5595 val64 = readq(&bar0->xmsi_data);
5596 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5597 fail = 1;
5598 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5599 }
5600
5601 *data = fail;
5602 return fail;
5603 }
5604
5605 /**
5606 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5607 * @sp : private member of the device structure, which is a pointer to the
5608 * s2io_nic structure.
5609 * @data:variable that returns the result of each of the test conducted by
5610 * the driver.
5611 * Description:
5612 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5613 * register.
5614 * Return value:
5615 * 0 on success.
5616 */
5617
5618 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5619 {
5620 int fail = 0;
5621 u64 ret_data, org_4F0, org_7F0;
5622 u8 saved_4F0 = 0, saved_7F0 = 0;
5623 struct net_device *dev = sp->dev;
5624
5625 /* Test Write Error at offset 0 */
5626 /* Note that SPI interface allows write access to all areas
5627 * of EEPROM. Hence doing all negative testing only for Xframe I.
5628 */
5629 if (sp->device_type == XFRAME_I_DEVICE)
5630 if (!write_eeprom(sp, 0, 0, 3))
5631 fail = 1;
5632
5633 /* Save current values at offsets 0x4F0 and 0x7F0 */
5634 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5635 saved_4F0 = 1;
5636 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5637 saved_7F0 = 1;
5638
5639 /* Test Write at offset 4f0 */
5640 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5641 fail = 1;
5642 if (read_eeprom(sp, 0x4F0, &ret_data))
5643 fail = 1;
5644
5645 if (ret_data != 0x012345) {
5646 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5647 "Data written %llx Data read %llx\n",
5648 dev->name, (unsigned long long)0x12345,
5649 (unsigned long long)ret_data);
5650 fail = 1;
5651 }
5652
5653 /* Reset the EEPROM data go FFFF */
5654 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5655
5656 /* Test Write Request Error at offset 0x7c */
5657 if (sp->device_type == XFRAME_I_DEVICE)
5658 if (!write_eeprom(sp, 0x07C, 0, 3))
5659 fail = 1;
5660
5661 /* Test Write Request at offset 0x7f0 */
5662 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5663 fail = 1;
5664 if (read_eeprom(sp, 0x7F0, &ret_data))
5665 fail = 1;
5666
5667 if (ret_data != 0x012345) {
5668 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5669 "Data written %llx Data read %llx\n",
5670 dev->name, (unsigned long long)0x12345,
5671 (unsigned long long)ret_data);
5672 fail = 1;
5673 }
5674
5675 /* Reset the EEPROM data go FFFF */
5676 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5677
5678 if (sp->device_type == XFRAME_I_DEVICE) {
5679 /* Test Write Error at offset 0x80 */
5680 if (!write_eeprom(sp, 0x080, 0, 3))
5681 fail = 1;
5682
5683 /* Test Write Error at offset 0xfc */
5684 if (!write_eeprom(sp, 0x0FC, 0, 3))
5685 fail = 1;
5686
5687 /* Test Write Error at offset 0x100 */
5688 if (!write_eeprom(sp, 0x100, 0, 3))
5689 fail = 1;
5690
5691 /* Test Write Error at offset 4ec */
5692 if (!write_eeprom(sp, 0x4EC, 0, 3))
5693 fail = 1;
5694 }
5695
5696 /* Restore values at offsets 0x4F0 and 0x7F0 */
5697 if (saved_4F0)
5698 write_eeprom(sp, 0x4F0, org_4F0, 3);
5699 if (saved_7F0)
5700 write_eeprom(sp, 0x7F0, org_7F0, 3);
5701
5702 *data = fail;
5703 return fail;
5704 }
5705
5706 /**
5707 * s2io_bist_test - invokes the MemBist test of the card .
5708 * @sp : private member of the device structure, which is a pointer to the
5709 * s2io_nic structure.
5710 * @data:variable that returns the result of each of the test conducted by
5711 * the driver.
5712 * Description:
5713 * This invokes the MemBist test of the card. We give around
5714 * 2 secs time for the Test to complete. If it's still not complete
5715 * within this peiod, we consider that the test failed.
5716 * Return value:
5717 * 0 on success and -1 on failure.
5718 */
5719
5720 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5721 {
5722 u8 bist = 0;
5723 int cnt = 0, ret = -1;
5724
5725 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5726 bist |= PCI_BIST_START;
5727 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5728
5729 while (cnt < 20) {
5730 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5731 if (!(bist & PCI_BIST_START)) {
5732 *data = (bist & PCI_BIST_CODE_MASK);
5733 ret = 0;
5734 break;
5735 }
5736 msleep(100);
5737 cnt++;
5738 }
5739
5740 return ret;
5741 }
5742
5743 /**
5744 * s2io-link_test - verifies the link state of the nic
5745 * @sp ; private member of the device structure, which is a pointer to the
5746 * s2io_nic structure.
5747 * @data: variable that returns the result of each of the test conducted by
5748 * the driver.
5749 * Description:
5750 * The function verifies the link state of the NIC and updates the input
5751 * argument 'data' appropriately.
5752 * Return value:
5753 * 0 on success.
5754 */
5755
5756 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5757 {
5758 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5759 u64 val64;
5760
5761 val64 = readq(&bar0->adapter_status);
5762 if(!(LINK_IS_UP(val64)))
5763 *data = 1;
5764 else
5765 *data = 0;
5766
5767 return *data;
5768 }
5769
5770 /**
5771 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5772 * @sp - private member of the device structure, which is a pointer to the
5773 * s2io_nic structure.
5774 * @data - variable that returns the result of each of the test
5775 * conducted by the driver.
5776 * Description:
5777 * This is one of the offline test that tests the read and write
5778 * access to the RldRam chip on the NIC.
5779 * Return value:
5780 * 0 on success.
5781 */
5782
5783 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5784 {
5785 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5786 u64 val64;
5787 int cnt, iteration = 0, test_fail = 0;
5788
5789 val64 = readq(&bar0->adapter_control);
5790 val64 &= ~ADAPTER_ECC_EN;
5791 writeq(val64, &bar0->adapter_control);
5792
5793 val64 = readq(&bar0->mc_rldram_test_ctrl);
5794 val64 |= MC_RLDRAM_TEST_MODE;
5795 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5796
5797 val64 = readq(&bar0->mc_rldram_mrs);
5798 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5799 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5800
5801 val64 |= MC_RLDRAM_MRS_ENABLE;
5802 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5803
5804 while (iteration < 2) {
5805 val64 = 0x55555555aaaa0000ULL;
5806 if (iteration == 1) {
5807 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5808 }
5809 writeq(val64, &bar0->mc_rldram_test_d0);
5810
5811 val64 = 0xaaaa5a5555550000ULL;
5812 if (iteration == 1) {
5813 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5814 }
5815 writeq(val64, &bar0->mc_rldram_test_d1);
5816
5817 val64 = 0x55aaaaaaaa5a0000ULL;
5818 if (iteration == 1) {
5819 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5820 }
5821 writeq(val64, &bar0->mc_rldram_test_d2);
5822
5823 val64 = (u64) (0x0000003ffffe0100ULL);
5824 writeq(val64, &bar0->mc_rldram_test_add);
5825
5826 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5827 MC_RLDRAM_TEST_GO;
5828 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5829
5830 for (cnt = 0; cnt < 5; cnt++) {
5831 val64 = readq(&bar0->mc_rldram_test_ctrl);
5832 if (val64 & MC_RLDRAM_TEST_DONE)
5833 break;
5834 msleep(200);
5835 }
5836
5837 if (cnt == 5)
5838 break;
5839
5840 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5841 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5842
5843 for (cnt = 0; cnt < 5; cnt++) {
5844 val64 = readq(&bar0->mc_rldram_test_ctrl);
5845 if (val64 & MC_RLDRAM_TEST_DONE)
5846 break;
5847 msleep(500);
5848 }
5849
5850 if (cnt == 5)
5851 break;
5852
5853 val64 = readq(&bar0->mc_rldram_test_ctrl);
5854 if (!(val64 & MC_RLDRAM_TEST_PASS))
5855 test_fail = 1;
5856
5857 iteration++;
5858 }
5859
5860 *data = test_fail;
5861
5862 /* Bring the adapter out of test mode */
5863 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5864
5865 return test_fail;
5866 }
5867
5868 /**
5869 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5870 * @sp : private member of the device structure, which is a pointer to the
5871 * s2io_nic structure.
5872 * @ethtest : pointer to a ethtool command specific structure that will be
5873 * returned to the user.
5874 * @data : variable that returns the result of each of the test
5875 * conducted by the driver.
5876 * Description:
5877 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5878 * the health of the card.
5879 * Return value:
5880 * void
5881 */
5882
5883 static void s2io_ethtool_test(struct net_device *dev,
5884 struct ethtool_test *ethtest,
5885 uint64_t * data)
5886 {
5887 struct s2io_nic *sp = dev->priv;
5888 int orig_state = netif_running(sp->dev);
5889
5890 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5891 /* Offline Tests. */
5892 if (orig_state)
5893 s2io_close(sp->dev);
5894
5895 if (s2io_register_test(sp, &data[0]))
5896 ethtest->flags |= ETH_TEST_FL_FAILED;
5897
5898 s2io_reset(sp);
5899
5900 if (s2io_rldram_test(sp, &data[3]))
5901 ethtest->flags |= ETH_TEST_FL_FAILED;
5902
5903 s2io_reset(sp);
5904
5905 if (s2io_eeprom_test(sp, &data[1]))
5906 ethtest->flags |= ETH_TEST_FL_FAILED;
5907
5908 if (s2io_bist_test(sp, &data[4]))
5909 ethtest->flags |= ETH_TEST_FL_FAILED;
5910
5911 if (orig_state)
5912 s2io_open(sp->dev);
5913
5914 data[2] = 0;
5915 } else {
5916 /* Online Tests. */
5917 if (!orig_state) {
5918 DBG_PRINT(ERR_DBG,
5919 "%s: is not up, cannot run test\n",
5920 dev->name);
5921 data[0] = -1;
5922 data[1] = -1;
5923 data[2] = -1;
5924 data[3] = -1;
5925 data[4] = -1;
5926 }
5927
5928 if (s2io_link_test(sp, &data[2]))
5929 ethtest->flags |= ETH_TEST_FL_FAILED;
5930
5931 data[0] = 0;
5932 data[1] = 0;
5933 data[3] = 0;
5934 data[4] = 0;
5935 }
5936 }
5937
5938 static void s2io_get_ethtool_stats(struct net_device *dev,
5939 struct ethtool_stats *estats,
5940 u64 * tmp_stats)
5941 {
5942 int i = 0, k;
5943 struct s2io_nic *sp = dev->priv;
5944 struct stat_block *stat_info = sp->mac_control.stats_info;
5945
5946 s2io_updt_stats(sp);
5947 tmp_stats[i++] =
5948 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5949 le32_to_cpu(stat_info->tmac_frms);
5950 tmp_stats[i++] =
5951 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5952 le32_to_cpu(stat_info->tmac_data_octets);
5953 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5954 tmp_stats[i++] =
5955 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5956 le32_to_cpu(stat_info->tmac_mcst_frms);
5957 tmp_stats[i++] =
5958 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5959 le32_to_cpu(stat_info->tmac_bcst_frms);
5960 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5961 tmp_stats[i++] =
5962 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5963 le32_to_cpu(stat_info->tmac_ttl_octets);
5964 tmp_stats[i++] =
5965 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5966 le32_to_cpu(stat_info->tmac_ucst_frms);
5967 tmp_stats[i++] =
5968 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5969 le32_to_cpu(stat_info->tmac_nucst_frms);
5970 tmp_stats[i++] =
5971 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5972 le32_to_cpu(stat_info->tmac_any_err_frms);
5973 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5974 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5975 tmp_stats[i++] =
5976 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5977 le32_to_cpu(stat_info->tmac_vld_ip);
5978 tmp_stats[i++] =
5979 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5980 le32_to_cpu(stat_info->tmac_drop_ip);
5981 tmp_stats[i++] =
5982 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5983 le32_to_cpu(stat_info->tmac_icmp);
5984 tmp_stats[i++] =
5985 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5986 le32_to_cpu(stat_info->tmac_rst_tcp);
5987 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5988 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5989 le32_to_cpu(stat_info->tmac_udp);
5990 tmp_stats[i++] =
5991 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5992 le32_to_cpu(stat_info->rmac_vld_frms);
5993 tmp_stats[i++] =
5994 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5995 le32_to_cpu(stat_info->rmac_data_octets);
5996 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5997 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5998 tmp_stats[i++] =
5999 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6000 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6001 tmp_stats[i++] =
6002 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6003 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6004 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6005 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6006 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6007 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6008 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6009 tmp_stats[i++] =
6010 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6011 le32_to_cpu(stat_info->rmac_ttl_octets);
6012 tmp_stats[i++] =
6013 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6014 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6015 tmp_stats[i++] =
6016 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6017 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6018 tmp_stats[i++] =
6019 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6020 le32_to_cpu(stat_info->rmac_discarded_frms);
6021 tmp_stats[i++] =
6022 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6023 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6024 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6025 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6026 tmp_stats[i++] =
6027 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6028 le32_to_cpu(stat_info->rmac_usized_frms);
6029 tmp_stats[i++] =
6030 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6031 le32_to_cpu(stat_info->rmac_osized_frms);
6032 tmp_stats[i++] =
6033 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6034 le32_to_cpu(stat_info->rmac_frag_frms);
6035 tmp_stats[i++] =
6036 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6037 le32_to_cpu(stat_info->rmac_jabber_frms);
6038 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6039 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6040 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6041 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6042 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6043 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6044 tmp_stats[i++] =
6045 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6046 le32_to_cpu(stat_info->rmac_ip);
6047 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6048 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6049 tmp_stats[i++] =
6050 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6051 le32_to_cpu(stat_info->rmac_drop_ip);
6052 tmp_stats[i++] =
6053 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6054 le32_to_cpu(stat_info->rmac_icmp);
6055 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6056 tmp_stats[i++] =
6057 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6058 le32_to_cpu(stat_info->rmac_udp);
6059 tmp_stats[i++] =
6060 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6061 le32_to_cpu(stat_info->rmac_err_drp_udp);
6062 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6063 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6064 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6065 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6066 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6067 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6068 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6069 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6070 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6071 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6072 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6073 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6074 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6075 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6076 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6077 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6078 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6079 tmp_stats[i++] =
6080 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6081 le32_to_cpu(stat_info->rmac_pause_cnt);
6082 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6083 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6084 tmp_stats[i++] =
6085 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6086 le32_to_cpu(stat_info->rmac_accepted_ip);
6087 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6088 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6089 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6090 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6091 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6092 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6093 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6094 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6095 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6096 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6097 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6098 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6099 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6100 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6101 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6102 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6103 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6104 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6105 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6106
6107 /* Enhanced statistics exist only for Hercules */
6108 if(sp->device_type == XFRAME_II_DEVICE) {
6109 tmp_stats[i++] =
6110 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6111 tmp_stats[i++] =
6112 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6113 tmp_stats[i++] =
6114 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6115 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6116 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6117 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6118 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6119 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6120 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6121 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6122 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6123 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6124 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6125 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6126 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6127 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6128 }
6129
6130 tmp_stats[i++] = 0;
6131 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6132 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6133 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6134 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6135 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6136 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6137 for (k = 0; k < MAX_RX_RINGS; k++)
6138 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6139 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6140 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6141 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6142 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6143 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6144 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6145 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6146 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6147 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6148 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6149 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6150 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6151 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6152 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6153 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6154 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6155 if (stat_info->sw_stat.num_aggregations) {
6156 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6157 int count = 0;
6158 /*
6159 * Since 64-bit divide does not work on all platforms,
6160 * do repeated subtraction.
6161 */
6162 while (tmp >= stat_info->sw_stat.num_aggregations) {
6163 tmp -= stat_info->sw_stat.num_aggregations;
6164 count++;
6165 }
6166 tmp_stats[i++] = count;
6167 }
6168 else
6169 tmp_stats[i++] = 0;
6170 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6171 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6172 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6173 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6174 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6175 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6176 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6177 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6178 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6179
6180 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6181 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6182 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6183 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6184 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6185
6186 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6187 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6188 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6189 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6190 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6191 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6192 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6193 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6194 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6195 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6196 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6197 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6198 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6199 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6200 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6201 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6202 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6203 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6204 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6205 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6206 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6207 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6208 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6209 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6210 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6211 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6212 }
6213
6214 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6215 {
6216 return (XENA_REG_SPACE);
6217 }
6218
6219
6220 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6221 {
6222 struct s2io_nic *sp = dev->priv;
6223
6224 return (sp->rx_csum);
6225 }
6226
6227 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6228 {
6229 struct s2io_nic *sp = dev->priv;
6230
6231 if (data)
6232 sp->rx_csum = 1;
6233 else
6234 sp->rx_csum = 0;
6235
6236 return 0;
6237 }
6238
6239 static int s2io_get_eeprom_len(struct net_device *dev)
6240 {
6241 return (XENA_EEPROM_SPACE);
6242 }
6243
6244 static int s2io_ethtool_self_test_count(struct net_device *dev)
6245 {
6246 return (S2IO_TEST_LEN);
6247 }
6248
6249 static void s2io_ethtool_get_strings(struct net_device *dev,
6250 u32 stringset, u8 * data)
6251 {
6252 int stat_size = 0;
6253 struct s2io_nic *sp = dev->priv;
6254
6255 switch (stringset) {
6256 case ETH_SS_TEST:
6257 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6258 break;
6259 case ETH_SS_STATS:
6260 stat_size = sizeof(ethtool_xena_stats_keys);
6261 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6262 if(sp->device_type == XFRAME_II_DEVICE) {
6263 memcpy(data + stat_size,
6264 &ethtool_enhanced_stats_keys,
6265 sizeof(ethtool_enhanced_stats_keys));
6266 stat_size += sizeof(ethtool_enhanced_stats_keys);
6267 }
6268
6269 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6270 sizeof(ethtool_driver_stats_keys));
6271 }
6272 }
6273 static int s2io_ethtool_get_stats_count(struct net_device *dev)
6274 {
6275 struct s2io_nic *sp = dev->priv;
6276 int stat_count = 0;
6277 switch(sp->device_type) {
6278 case XFRAME_I_DEVICE:
6279 stat_count = XFRAME_I_STAT_LEN;
6280 break;
6281
6282 case XFRAME_II_DEVICE:
6283 stat_count = XFRAME_II_STAT_LEN;
6284 break;
6285 }
6286
6287 return stat_count;
6288 }
6289
6290 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6291 {
6292 if (data)
6293 dev->features |= NETIF_F_IP_CSUM;
6294 else
6295 dev->features &= ~NETIF_F_IP_CSUM;
6296
6297 return 0;
6298 }
6299
6300 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6301 {
6302 return (dev->features & NETIF_F_TSO) != 0;
6303 }
6304 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6305 {
6306 if (data)
6307 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6308 else
6309 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6310
6311 return 0;
6312 }
6313
6314 static const struct ethtool_ops netdev_ethtool_ops = {
6315 .get_settings = s2io_ethtool_gset,
6316 .set_settings = s2io_ethtool_sset,
6317 .get_drvinfo = s2io_ethtool_gdrvinfo,
6318 .get_regs_len = s2io_ethtool_get_regs_len,
6319 .get_regs = s2io_ethtool_gregs,
6320 .get_link = ethtool_op_get_link,
6321 .get_eeprom_len = s2io_get_eeprom_len,
6322 .get_eeprom = s2io_ethtool_geeprom,
6323 .set_eeprom = s2io_ethtool_seeprom,
6324 .get_ringparam = s2io_ethtool_gringparam,
6325 .get_pauseparam = s2io_ethtool_getpause_data,
6326 .set_pauseparam = s2io_ethtool_setpause_data,
6327 .get_rx_csum = s2io_ethtool_get_rx_csum,
6328 .set_rx_csum = s2io_ethtool_set_rx_csum,
6329 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6330 .set_sg = ethtool_op_set_sg,
6331 .get_tso = s2io_ethtool_op_get_tso,
6332 .set_tso = s2io_ethtool_op_set_tso,
6333 .set_ufo = ethtool_op_set_ufo,
6334 .self_test_count = s2io_ethtool_self_test_count,
6335 .self_test = s2io_ethtool_test,
6336 .get_strings = s2io_ethtool_get_strings,
6337 .phys_id = s2io_ethtool_idnic,
6338 .get_stats_count = s2io_ethtool_get_stats_count,
6339 .get_ethtool_stats = s2io_get_ethtool_stats
6340 };
6341
6342 /**
6343 * s2io_ioctl - Entry point for the Ioctl
6344 * @dev : Device pointer.
6345 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6346 * a proprietary structure used to pass information to the driver.
6347 * @cmd : This is used to distinguish between the different commands that
6348 * can be passed to the IOCTL functions.
6349 * Description:
6350 * Currently there are no special functionality supported in IOCTL, hence
6351 * function always return EOPNOTSUPPORTED
6352 */
6353
6354 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6355 {
6356 return -EOPNOTSUPP;
6357 }
6358
6359 /**
6360 * s2io_change_mtu - entry point to change MTU size for the device.
6361 * @dev : device pointer.
6362 * @new_mtu : the new MTU size for the device.
6363 * Description: A driver entry point to change MTU size for the device.
6364 * Before changing the MTU the device must be stopped.
6365 * Return value:
6366 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6367 * file on failure.
6368 */
6369
6370 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6371 {
6372 struct s2io_nic *sp = dev->priv;
6373
6374 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6375 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6376 dev->name);
6377 return -EPERM;
6378 }
6379
6380 dev->mtu = new_mtu;
6381 if (netif_running(dev)) {
6382 s2io_card_down(sp);
6383 netif_stop_queue(dev);
6384 if (s2io_card_up(sp)) {
6385 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6386 __FUNCTION__);
6387 }
6388 if (netif_queue_stopped(dev))
6389 netif_wake_queue(dev);
6390 } else { /* Device is down */
6391 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6392 u64 val64 = new_mtu;
6393
6394 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6395 }
6396
6397 return 0;
6398 }
6399
6400 /**
6401 * s2io_tasklet - Bottom half of the ISR.
6402 * @dev_adr : address of the device structure in dma_addr_t format.
6403 * Description:
6404 * This is the tasklet or the bottom half of the ISR. This is
6405 * an extension of the ISR which is scheduled by the scheduler to be run
6406 * when the load on the CPU is low. All low priority tasks of the ISR can
6407 * be pushed into the tasklet. For now the tasklet is used only to
6408 * replenish the Rx buffers in the Rx buffer descriptors.
6409 * Return value:
6410 * void.
6411 */
6412
6413 static void s2io_tasklet(unsigned long dev_addr)
6414 {
6415 struct net_device *dev = (struct net_device *) dev_addr;
6416 struct s2io_nic *sp = dev->priv;
6417 int i, ret;
6418 struct mac_info *mac_control;
6419 struct config_param *config;
6420
6421 mac_control = &sp->mac_control;
6422 config = &sp->config;
6423
6424 if (!TASKLET_IN_USE) {
6425 for (i = 0; i < config->rx_ring_num; i++) {
6426 ret = fill_rx_buffers(sp, i);
6427 if (ret == -ENOMEM) {
6428 DBG_PRINT(INFO_DBG, "%s: Out of ",
6429 dev->name);
6430 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6431 break;
6432 } else if (ret == -EFILL) {
6433 DBG_PRINT(INFO_DBG,
6434 "%s: Rx Ring %d is full\n",
6435 dev->name, i);
6436 break;
6437 }
6438 }
6439 clear_bit(0, (&sp->tasklet_status));
6440 }
6441 }
6442
6443 /**
6444 * s2io_set_link - Set the LInk status
6445 * @data: long pointer to device private structue
6446 * Description: Sets the link status for the adapter
6447 */
6448
6449 static void s2io_set_link(struct work_struct *work)
6450 {
6451 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6452 struct net_device *dev = nic->dev;
6453 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6454 register u64 val64;
6455 u16 subid;
6456
6457 rtnl_lock();
6458
6459 if (!netif_running(dev))
6460 goto out_unlock;
6461
6462 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6463 /* The card is being reset, no point doing anything */
6464 goto out_unlock;
6465 }
6466
6467 subid = nic->pdev->subsystem_device;
6468 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6469 /*
6470 * Allow a small delay for the NICs self initiated
6471 * cleanup to complete.
6472 */
6473 msleep(100);
6474 }
6475
6476 val64 = readq(&bar0->adapter_status);
6477 if (LINK_IS_UP(val64)) {
6478 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6479 if (verify_xena_quiescence(nic)) {
6480 val64 = readq(&bar0->adapter_control);
6481 val64 |= ADAPTER_CNTL_EN;
6482 writeq(val64, &bar0->adapter_control);
6483 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6484 nic->device_type, subid)) {
6485 val64 = readq(&bar0->gpio_control);
6486 val64 |= GPIO_CTRL_GPIO_0;
6487 writeq(val64, &bar0->gpio_control);
6488 val64 = readq(&bar0->gpio_control);
6489 } else {
6490 val64 |= ADAPTER_LED_ON;
6491 writeq(val64, &bar0->adapter_control);
6492 }
6493 nic->device_enabled_once = TRUE;
6494 } else {
6495 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6496 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6497 netif_stop_queue(dev);
6498 }
6499 }
6500 val64 = readq(&bar0->adapter_control);
6501 val64 |= ADAPTER_LED_ON;
6502 writeq(val64, &bar0->adapter_control);
6503 s2io_link(nic, LINK_UP);
6504 } else {
6505 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6506 subid)) {
6507 val64 = readq(&bar0->gpio_control);
6508 val64 &= ~GPIO_CTRL_GPIO_0;
6509 writeq(val64, &bar0->gpio_control);
6510 val64 = readq(&bar0->gpio_control);
6511 }
6512 /* turn off LED */
6513 val64 = readq(&bar0->adapter_control);
6514 val64 = val64 &(~ADAPTER_LED_ON);
6515 writeq(val64, &bar0->adapter_control);
6516 s2io_link(nic, LINK_DOWN);
6517 }
6518 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6519
6520 out_unlock:
6521 rtnl_unlock();
6522 }
6523
6524 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6525 struct buffAdd *ba,
6526 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6527 u64 *temp2, int size)
6528 {
6529 struct net_device *dev = sp->dev;
6530 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6531
6532 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6533 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6534 /* allocate skb */
6535 if (*skb) {
6536 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6537 /*
6538 * As Rx frame are not going to be processed,
6539 * using same mapped address for the Rxd
6540 * buffer pointer
6541 */
6542 rxdp1->Buffer0_ptr = *temp0;
6543 } else {
6544 *skb = dev_alloc_skb(size);
6545 if (!(*skb)) {
6546 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6547 DBG_PRINT(INFO_DBG, "memory to allocate ");
6548 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6549 sp->mac_control.stats_info->sw_stat. \
6550 mem_alloc_fail_cnt++;
6551 return -ENOMEM ;
6552 }
6553 sp->mac_control.stats_info->sw_stat.mem_allocated
6554 += (*skb)->truesize;
6555 /* storing the mapped addr in a temp variable
6556 * such it will be used for next rxd whose
6557 * Host Control is NULL
6558 */
6559 rxdp1->Buffer0_ptr = *temp0 =
6560 pci_map_single( sp->pdev, (*skb)->data,
6561 size - NET_IP_ALIGN,
6562 PCI_DMA_FROMDEVICE);
6563 if( (rxdp1->Buffer0_ptr == 0) ||
6564 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6565 goto memalloc_failed;
6566 }
6567 rxdp->Host_Control = (unsigned long) (*skb);
6568 }
6569 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6570 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6571 /* Two buffer Mode */
6572 if (*skb) {
6573 rxdp3->Buffer2_ptr = *temp2;
6574 rxdp3->Buffer0_ptr = *temp0;
6575 rxdp3->Buffer1_ptr = *temp1;
6576 } else {
6577 *skb = dev_alloc_skb(size);
6578 if (!(*skb)) {
6579 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6580 DBG_PRINT(INFO_DBG, "memory to allocate ");
6581 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6582 sp->mac_control.stats_info->sw_stat. \
6583 mem_alloc_fail_cnt++;
6584 return -ENOMEM;
6585 }
6586 sp->mac_control.stats_info->sw_stat.mem_allocated
6587 += (*skb)->truesize;
6588 rxdp3->Buffer2_ptr = *temp2 =
6589 pci_map_single(sp->pdev, (*skb)->data,
6590 dev->mtu + 4,
6591 PCI_DMA_FROMDEVICE);
6592 if( (rxdp3->Buffer2_ptr == 0) ||
6593 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6594 goto memalloc_failed;
6595 }
6596 rxdp3->Buffer0_ptr = *temp0 =
6597 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6598 PCI_DMA_FROMDEVICE);
6599 if( (rxdp3->Buffer0_ptr == 0) ||
6600 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6601 pci_unmap_single (sp->pdev,
6602 (dma_addr_t)rxdp3->Buffer2_ptr,
6603 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6604 goto memalloc_failed;
6605 }
6606 rxdp->Host_Control = (unsigned long) (*skb);
6607
6608 /* Buffer-1 will be dummy buffer not used */
6609 rxdp3->Buffer1_ptr = *temp1 =
6610 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6611 PCI_DMA_FROMDEVICE);
6612 if( (rxdp3->Buffer1_ptr == 0) ||
6613 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6614 pci_unmap_single (sp->pdev,
6615 (dma_addr_t)rxdp3->Buffer0_ptr,
6616 BUF0_LEN, PCI_DMA_FROMDEVICE);
6617 pci_unmap_single (sp->pdev,
6618 (dma_addr_t)rxdp3->Buffer2_ptr,
6619 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6620 goto memalloc_failed;
6621 }
6622 }
6623 }
6624 return 0;
6625 memalloc_failed:
6626 stats->pci_map_fail_cnt++;
6627 stats->mem_freed += (*skb)->truesize;
6628 dev_kfree_skb(*skb);
6629 return -ENOMEM;
6630 }
6631
6632 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6633 int size)
6634 {
6635 struct net_device *dev = sp->dev;
6636 if (sp->rxd_mode == RXD_MODE_1) {
6637 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6638 } else if (sp->rxd_mode == RXD_MODE_3B) {
6639 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6640 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6641 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6642 }
6643 }
6644
6645 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6646 {
6647 int i, j, k, blk_cnt = 0, size;
6648 struct mac_info * mac_control = &sp->mac_control;
6649 struct config_param *config = &sp->config;
6650 struct net_device *dev = sp->dev;
6651 struct RxD_t *rxdp = NULL;
6652 struct sk_buff *skb = NULL;
6653 struct buffAdd *ba = NULL;
6654 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6655
6656 /* Calculate the size based on ring mode */
6657 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6658 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6659 if (sp->rxd_mode == RXD_MODE_1)
6660 size += NET_IP_ALIGN;
6661 else if (sp->rxd_mode == RXD_MODE_3B)
6662 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6663
6664 for (i = 0; i < config->rx_ring_num; i++) {
6665 blk_cnt = config->rx_cfg[i].num_rxd /
6666 (rxd_count[sp->rxd_mode] +1);
6667
6668 for (j = 0; j < blk_cnt; j++) {
6669 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6670 rxdp = mac_control->rings[i].
6671 rx_blocks[j].rxds[k].virt_addr;
6672 if(sp->rxd_mode == RXD_MODE_3B)
6673 ba = &mac_control->rings[i].ba[j][k];
6674 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6675 &skb,(u64 *)&temp0_64,
6676 (u64 *)&temp1_64,
6677 (u64 *)&temp2_64,
6678 size) == ENOMEM) {
6679 return 0;
6680 }
6681
6682 set_rxd_buffer_size(sp, rxdp, size);
6683 wmb();
6684 /* flip the Ownership bit to Hardware */
6685 rxdp->Control_1 |= RXD_OWN_XENA;
6686 }
6687 }
6688 }
6689 return 0;
6690
6691 }
6692
6693 static int s2io_add_isr(struct s2io_nic * sp)
6694 {
6695 int ret = 0;
6696 struct net_device *dev = sp->dev;
6697 int err = 0;
6698
6699 if (sp->config.intr_type == MSI_X)
6700 ret = s2io_enable_msi_x(sp);
6701 if (ret) {
6702 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6703 sp->config.intr_type = INTA;
6704 }
6705
6706 /* Store the values of the MSIX table in the struct s2io_nic structure */
6707 store_xmsi_data(sp);
6708
6709 /* After proper initialization of H/W, register ISR */
6710 if (sp->config.intr_type == MSI_X) {
6711 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6712
6713 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6714 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6715 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6716 dev->name, i);
6717 err = request_irq(sp->entries[i].vector,
6718 s2io_msix_fifo_handle, 0, sp->desc[i],
6719 sp->s2io_entries[i].arg);
6720 /* If either data or addr is zero print it */
6721 if(!(sp->msix_info[i].addr &&
6722 sp->msix_info[i].data)) {
6723 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6724 "Data:0x%lx\n",sp->desc[i],
6725 (unsigned long long)
6726 sp->msix_info[i].addr,
6727 (unsigned long)
6728 ntohl(sp->msix_info[i].data));
6729 } else {
6730 msix_tx_cnt++;
6731 }
6732 } else {
6733 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6734 dev->name, i);
6735 err = request_irq(sp->entries[i].vector,
6736 s2io_msix_ring_handle, 0, sp->desc[i],
6737 sp->s2io_entries[i].arg);
6738 /* If either data or addr is zero print it */
6739 if(!(sp->msix_info[i].addr &&
6740 sp->msix_info[i].data)) {
6741 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6742 "Data:0x%lx\n",sp->desc[i],
6743 (unsigned long long)
6744 sp->msix_info[i].addr,
6745 (unsigned long)
6746 ntohl(sp->msix_info[i].data));
6747 } else {
6748 msix_rx_cnt++;
6749 }
6750 }
6751 if (err) {
6752 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6753 "failed\n", dev->name, i);
6754 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6755 return -1;
6756 }
6757 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6758 }
6759 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6760 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6761 }
6762 if (sp->config.intr_type == INTA) {
6763 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6764 sp->name, dev);
6765 if (err) {
6766 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6767 dev->name);
6768 return -1;
6769 }
6770 }
6771 return 0;
6772 }
6773 static void s2io_rem_isr(struct s2io_nic * sp)
6774 {
6775 struct net_device *dev = sp->dev;
6776 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6777
6778 if (sp->config.intr_type == MSI_X) {
6779 int i;
6780 u16 msi_control;
6781
6782 for (i=1; (sp->s2io_entries[i].in_use ==
6783 MSIX_REGISTERED_SUCCESS); i++) {
6784 int vector = sp->entries[i].vector;
6785 void *arg = sp->s2io_entries[i].arg;
6786
6787 synchronize_irq(vector);
6788 free_irq(vector, arg);
6789 }
6790
6791 kfree(sp->entries);
6792 stats->mem_freed +=
6793 (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
6794 kfree(sp->s2io_entries);
6795 stats->mem_freed +=
6796 (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
6797 sp->entries = NULL;
6798 sp->s2io_entries = NULL;
6799
6800 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6801 msi_control &= 0xFFFE; /* Disable MSI */
6802 pci_write_config_word(sp->pdev, 0x42, msi_control);
6803
6804 pci_disable_msix(sp->pdev);
6805 } else {
6806 synchronize_irq(sp->pdev->irq);
6807 free_irq(sp->pdev->irq, dev);
6808 }
6809 }
6810
6811 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6812 {
6813 int cnt = 0;
6814 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6815 unsigned long flags;
6816 register u64 val64 = 0;
6817
6818 del_timer_sync(&sp->alarm_timer);
6819 /* If s2io_set_link task is executing, wait till it completes. */
6820 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6821 msleep(50);
6822 }
6823 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6824
6825 /* disable Tx and Rx traffic on the NIC */
6826 if (do_io)
6827 stop_nic(sp);
6828
6829 s2io_rem_isr(sp);
6830
6831 /* Kill tasklet. */
6832 tasklet_kill(&sp->task);
6833
6834 /* Check if the device is Quiescent and then Reset the NIC */
6835 while(do_io) {
6836 /* As per the HW requirement we need to replenish the
6837 * receive buffer to avoid the ring bump. Since there is
6838 * no intention of processing the Rx frame at this pointwe are
6839 * just settting the ownership bit of rxd in Each Rx
6840 * ring to HW and set the appropriate buffer size
6841 * based on the ring mode
6842 */
6843 rxd_owner_bit_reset(sp);
6844
6845 val64 = readq(&bar0->adapter_status);
6846 if (verify_xena_quiescence(sp)) {
6847 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6848 break;
6849 }
6850
6851 msleep(50);
6852 cnt++;
6853 if (cnt == 10) {
6854 DBG_PRINT(ERR_DBG,
6855 "s2io_close:Device not Quiescent ");
6856 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6857 (unsigned long long) val64);
6858 break;
6859 }
6860 }
6861 if (do_io)
6862 s2io_reset(sp);
6863
6864 spin_lock_irqsave(&sp->tx_lock, flags);
6865 /* Free all Tx buffers */
6866 free_tx_buffers(sp);
6867 spin_unlock_irqrestore(&sp->tx_lock, flags);
6868
6869 /* Free all Rx buffers */
6870 spin_lock_irqsave(&sp->rx_lock, flags);
6871 free_rx_buffers(sp);
6872 spin_unlock_irqrestore(&sp->rx_lock, flags);
6873
6874 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6875 }
6876
6877 static void s2io_card_down(struct s2io_nic * sp)
6878 {
6879 do_s2io_card_down(sp, 1);
6880 }
6881
6882 static int s2io_card_up(struct s2io_nic * sp)
6883 {
6884 int i, ret = 0;
6885 struct mac_info *mac_control;
6886 struct config_param *config;
6887 struct net_device *dev = (struct net_device *) sp->dev;
6888 u16 interruptible;
6889
6890 /* Initialize the H/W I/O registers */
6891 if (init_nic(sp) != 0) {
6892 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6893 dev->name);
6894 s2io_reset(sp);
6895 return -ENODEV;
6896 }
6897
6898 /*
6899 * Initializing the Rx buffers. For now we are considering only 1
6900 * Rx ring and initializing buffers into 30 Rx blocks
6901 */
6902 mac_control = &sp->mac_control;
6903 config = &sp->config;
6904
6905 for (i = 0; i < config->rx_ring_num; i++) {
6906 if ((ret = fill_rx_buffers(sp, i))) {
6907 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6908 dev->name);
6909 s2io_reset(sp);
6910 free_rx_buffers(sp);
6911 return -ENOMEM;
6912 }
6913 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6914 atomic_read(&sp->rx_bufs_left[i]));
6915 }
6916 /* Maintain the state prior to the open */
6917 if (sp->promisc_flg)
6918 sp->promisc_flg = 0;
6919 if (sp->m_cast_flg) {
6920 sp->m_cast_flg = 0;
6921 sp->all_multi_pos= 0;
6922 }
6923
6924 /* Setting its receive mode */
6925 s2io_set_multicast(dev);
6926
6927 if (sp->lro) {
6928 /* Initialize max aggregatable pkts per session based on MTU */
6929 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6930 /* Check if we can use(if specified) user provided value */
6931 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6932 sp->lro_max_aggr_per_sess = lro_max_pkts;
6933 }
6934
6935 /* Enable Rx Traffic and interrupts on the NIC */
6936 if (start_nic(sp)) {
6937 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6938 s2io_reset(sp);
6939 free_rx_buffers(sp);
6940 return -ENODEV;
6941 }
6942
6943 /* Add interrupt service routine */
6944 if (s2io_add_isr(sp) != 0) {
6945 if (sp->config.intr_type == MSI_X)
6946 s2io_rem_isr(sp);
6947 s2io_reset(sp);
6948 free_rx_buffers(sp);
6949 return -ENODEV;
6950 }
6951
6952 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6953
6954 /* Enable tasklet for the device */
6955 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6956
6957 /* Enable select interrupts */
6958 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6959 if (sp->config.intr_type != INTA)
6960 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6961 else {
6962 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6963 interruptible |= TX_PIC_INTR;
6964 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6965 }
6966
6967 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6968 return 0;
6969 }
6970
6971 /**
6972 * s2io_restart_nic - Resets the NIC.
6973 * @data : long pointer to the device private structure
6974 * Description:
6975 * This function is scheduled to be run by the s2io_tx_watchdog
6976 * function after 0.5 secs to reset the NIC. The idea is to reduce
6977 * the run time of the watch dog routine which is run holding a
6978 * spin lock.
6979 */
6980
6981 static void s2io_restart_nic(struct work_struct *work)
6982 {
6983 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6984 struct net_device *dev = sp->dev;
6985
6986 rtnl_lock();
6987
6988 if (!netif_running(dev))
6989 goto out_unlock;
6990
6991 s2io_card_down(sp);
6992 if (s2io_card_up(sp)) {
6993 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6994 dev->name);
6995 }
6996 netif_wake_queue(dev);
6997 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6998 dev->name);
6999 out_unlock:
7000 rtnl_unlock();
7001 }
7002
7003 /**
7004 * s2io_tx_watchdog - Watchdog for transmit side.
7005 * @dev : Pointer to net device structure
7006 * Description:
7007 * This function is triggered if the Tx Queue is stopped
7008 * for a pre-defined amount of time when the Interface is still up.
7009 * If the Interface is jammed in such a situation, the hardware is
7010 * reset (by s2io_close) and restarted again (by s2io_open) to
7011 * overcome any problem that might have been caused in the hardware.
7012 * Return value:
7013 * void
7014 */
7015
7016 static void s2io_tx_watchdog(struct net_device *dev)
7017 {
7018 struct s2io_nic *sp = dev->priv;
7019
7020 if (netif_carrier_ok(dev)) {
7021 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7022 schedule_work(&sp->rst_timer_task);
7023 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7024 }
7025 }
7026
7027 /**
7028 * rx_osm_handler - To perform some OS related operations on SKB.
7029 * @sp: private member of the device structure,pointer to s2io_nic structure.
7030 * @skb : the socket buffer pointer.
7031 * @len : length of the packet
7032 * @cksum : FCS checksum of the frame.
7033 * @ring_no : the ring from which this RxD was extracted.
7034 * Description:
7035 * This function is called by the Rx interrupt serivce routine to perform
7036 * some OS related operations on the SKB before passing it to the upper
7037 * layers. It mainly checks if the checksum is OK, if so adds it to the
7038 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7039 * to the upper layer. If the checksum is wrong, it increments the Rx
7040 * packet error count, frees the SKB and returns error.
7041 * Return value:
7042 * SUCCESS on success and -1 on failure.
7043 */
7044 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7045 {
7046 struct s2io_nic *sp = ring_data->nic;
7047 struct net_device *dev = (struct net_device *) sp->dev;
7048 struct sk_buff *skb = (struct sk_buff *)
7049 ((unsigned long) rxdp->Host_Control);
7050 int ring_no = ring_data->ring_no;
7051 u16 l3_csum, l4_csum;
7052 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7053 struct lro *lro;
7054 u8 err_mask;
7055
7056 skb->dev = dev;
7057
7058 if (err) {
7059 /* Check for parity error */
7060 if (err & 0x1) {
7061 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7062 }
7063 err_mask = err >> 48;
7064 switch(err_mask) {
7065 case 1:
7066 sp->mac_control.stats_info->sw_stat.
7067 rx_parity_err_cnt++;
7068 break;
7069
7070 case 2:
7071 sp->mac_control.stats_info->sw_stat.
7072 rx_abort_cnt++;
7073 break;
7074
7075 case 3:
7076 sp->mac_control.stats_info->sw_stat.
7077 rx_parity_abort_cnt++;
7078 break;
7079
7080 case 4:
7081 sp->mac_control.stats_info->sw_stat.
7082 rx_rda_fail_cnt++;
7083 break;
7084
7085 case 5:
7086 sp->mac_control.stats_info->sw_stat.
7087 rx_unkn_prot_cnt++;
7088 break;
7089
7090 case 6:
7091 sp->mac_control.stats_info->sw_stat.
7092 rx_fcs_err_cnt++;
7093 break;
7094
7095 case 7:
7096 sp->mac_control.stats_info->sw_stat.
7097 rx_buf_size_err_cnt++;
7098 break;
7099
7100 case 8:
7101 sp->mac_control.stats_info->sw_stat.
7102 rx_rxd_corrupt_cnt++;
7103 break;
7104
7105 case 15:
7106 sp->mac_control.stats_info->sw_stat.
7107 rx_unkn_err_cnt++;
7108 break;
7109 }
7110 /*
7111 * Drop the packet if bad transfer code. Exception being
7112 * 0x5, which could be due to unsupported IPv6 extension header.
7113 * In this case, we let stack handle the packet.
7114 * Note that in this case, since checksum will be incorrect,
7115 * stack will validate the same.
7116 */
7117 if (err_mask != 0x5) {
7118 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7119 dev->name, err_mask);
7120 sp->stats.rx_crc_errors++;
7121 sp->mac_control.stats_info->sw_stat.mem_freed
7122 += skb->truesize;
7123 dev_kfree_skb(skb);
7124 atomic_dec(&sp->rx_bufs_left[ring_no]);
7125 rxdp->Host_Control = 0;
7126 return 0;
7127 }
7128 }
7129
7130 /* Updating statistics */
7131 sp->stats.rx_packets++;
7132 rxdp->Host_Control = 0;
7133 if (sp->rxd_mode == RXD_MODE_1) {
7134 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7135
7136 sp->stats.rx_bytes += len;
7137 skb_put(skb, len);
7138
7139 } else if (sp->rxd_mode == RXD_MODE_3B) {
7140 int get_block = ring_data->rx_curr_get_info.block_index;
7141 int get_off = ring_data->rx_curr_get_info.offset;
7142 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7143 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7144 unsigned char *buff = skb_push(skb, buf0_len);
7145
7146 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7147 sp->stats.rx_bytes += buf0_len + buf2_len;
7148 memcpy(buff, ba->ba_0, buf0_len);
7149 skb_put(skb, buf2_len);
7150 }
7151
7152 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7153 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7154 (sp->rx_csum)) {
7155 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7156 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7157 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7158 /*
7159 * NIC verifies if the Checksum of the received
7160 * frame is Ok or not and accordingly returns
7161 * a flag in the RxD.
7162 */
7163 skb->ip_summed = CHECKSUM_UNNECESSARY;
7164 if (sp->lro) {
7165 u32 tcp_len;
7166 u8 *tcp;
7167 int ret = 0;
7168
7169 ret = s2io_club_tcp_session(skb->data, &tcp,
7170 &tcp_len, &lro, rxdp, sp);
7171 switch (ret) {
7172 case 3: /* Begin anew */
7173 lro->parent = skb;
7174 goto aggregate;
7175 case 1: /* Aggregate */
7176 {
7177 lro_append_pkt(sp, lro,
7178 skb, tcp_len);
7179 goto aggregate;
7180 }
7181 case 4: /* Flush session */
7182 {
7183 lro_append_pkt(sp, lro,
7184 skb, tcp_len);
7185 queue_rx_frame(lro->parent);
7186 clear_lro_session(lro);
7187 sp->mac_control.stats_info->
7188 sw_stat.flush_max_pkts++;
7189 goto aggregate;
7190 }
7191 case 2: /* Flush both */
7192 lro->parent->data_len =
7193 lro->frags_len;
7194 sp->mac_control.stats_info->
7195 sw_stat.sending_both++;
7196 queue_rx_frame(lro->parent);
7197 clear_lro_session(lro);
7198 goto send_up;
7199 case 0: /* sessions exceeded */
7200 case -1: /* non-TCP or not
7201 * L2 aggregatable
7202 */
7203 case 5: /*
7204 * First pkt in session not
7205 * L3/L4 aggregatable
7206 */
7207 break;
7208 default:
7209 DBG_PRINT(ERR_DBG,
7210 "%s: Samadhana!!\n",
7211 __FUNCTION__);
7212 BUG();
7213 }
7214 }
7215 } else {
7216 /*
7217 * Packet with erroneous checksum, let the
7218 * upper layers deal with it.
7219 */
7220 skb->ip_summed = CHECKSUM_NONE;
7221 }
7222 } else {
7223 skb->ip_summed = CHECKSUM_NONE;
7224 }
7225 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7226 if (!sp->lro) {
7227 skb->protocol = eth_type_trans(skb, dev);
7228 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7229 vlan_strip_flag)) {
7230 /* Queueing the vlan frame to the upper layer */
7231 if (napi)
7232 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7233 RXD_GET_VLAN_TAG(rxdp->Control_2));
7234 else
7235 vlan_hwaccel_rx(skb, sp->vlgrp,
7236 RXD_GET_VLAN_TAG(rxdp->Control_2));
7237 } else {
7238 if (napi)
7239 netif_receive_skb(skb);
7240 else
7241 netif_rx(skb);
7242 }
7243 } else {
7244 send_up:
7245 queue_rx_frame(skb);
7246 }
7247 dev->last_rx = jiffies;
7248 aggregate:
7249 atomic_dec(&sp->rx_bufs_left[ring_no]);
7250 return SUCCESS;
7251 }
7252
7253 /**
7254 * s2io_link - stops/starts the Tx queue.
7255 * @sp : private member of the device structure, which is a pointer to the
7256 * s2io_nic structure.
7257 * @link : inidicates whether link is UP/DOWN.
7258 * Description:
7259 * This function stops/starts the Tx queue depending on whether the link
7260 * status of the NIC is is down or up. This is called by the Alarm
7261 * interrupt handler whenever a link change interrupt comes up.
7262 * Return value:
7263 * void.
7264 */
7265
7266 static void s2io_link(struct s2io_nic * sp, int link)
7267 {
7268 struct net_device *dev = (struct net_device *) sp->dev;
7269
7270 if (link != sp->last_link_state) {
7271 if (link == LINK_DOWN) {
7272 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7273 netif_carrier_off(dev);
7274 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7275 sp->mac_control.stats_info->sw_stat.link_up_time =
7276 jiffies - sp->start_time;
7277 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7278 } else {
7279 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7280 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7281 sp->mac_control.stats_info->sw_stat.link_down_time =
7282 jiffies - sp->start_time;
7283 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7284 netif_carrier_on(dev);
7285 }
7286 }
7287 sp->last_link_state = link;
7288 sp->start_time = jiffies;
7289 }
7290
7291 /**
7292 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7293 * @sp : private member of the device structure, which is a pointer to the
7294 * s2io_nic structure.
7295 * Description:
7296 * This function initializes a few of the PCI and PCI-X configuration registers
7297 * with recommended values.
7298 * Return value:
7299 * void
7300 */
7301
7302 static void s2io_init_pci(struct s2io_nic * sp)
7303 {
7304 u16 pci_cmd = 0, pcix_cmd = 0;
7305
7306 /* Enable Data Parity Error Recovery in PCI-X command register. */
7307 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7308 &(pcix_cmd));
7309 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7310 (pcix_cmd | 1));
7311 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7312 &(pcix_cmd));
7313
7314 /* Set the PErr Response bit in PCI command register. */
7315 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7316 pci_write_config_word(sp->pdev, PCI_COMMAND,
7317 (pci_cmd | PCI_COMMAND_PARITY));
7318 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7319 }
7320
7321 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7322 {
7323 if ( tx_fifo_num > 8) {
7324 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7325 "supported\n");
7326 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7327 tx_fifo_num = 8;
7328 }
7329 if ( rx_ring_num > 8) {
7330 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7331 "supported\n");
7332 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7333 rx_ring_num = 8;
7334 }
7335 if (*dev_intr_type != INTA)
7336 napi = 0;
7337
7338 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7339 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7340 "Defaulting to INTA\n");
7341 *dev_intr_type = INTA;
7342 }
7343
7344 if ((*dev_intr_type == MSI_X) &&
7345 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7346 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7347 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7348 "Defaulting to INTA\n");
7349 *dev_intr_type = INTA;
7350 }
7351
7352 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7353 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7354 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7355 rx_ring_mode = 1;
7356 }
7357 return SUCCESS;
7358 }
7359
7360 /**
7361 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7362 * or Traffic class respectively.
7363 * @nic: device peivate variable
7364 * Description: The function configures the receive steering to
7365 * desired receive ring.
7366 * Return Value: SUCCESS on success and
7367 * '-1' on failure (endian settings incorrect).
7368 */
7369 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7370 {
7371 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7372 register u64 val64 = 0;
7373
7374 if (ds_codepoint > 63)
7375 return FAILURE;
7376
7377 val64 = RTS_DS_MEM_DATA(ring);
7378 writeq(val64, &bar0->rts_ds_mem_data);
7379
7380 val64 = RTS_DS_MEM_CTRL_WE |
7381 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7382 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7383
7384 writeq(val64, &bar0->rts_ds_mem_ctrl);
7385
7386 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7387 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7388 S2IO_BIT_RESET);
7389 }
7390
7391 /**
7392 * s2io_init_nic - Initialization of the adapter .
7393 * @pdev : structure containing the PCI related information of the device.
7394 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7395 * Description:
7396 * The function initializes an adapter identified by the pci_dec structure.
7397 * All OS related initialization including memory and device structure and
7398 * initlaization of the device private variable is done. Also the swapper
7399 * control register is initialized to enable read and write into the I/O
7400 * registers of the device.
7401 * Return value:
7402 * returns 0 on success and negative on failure.
7403 */
7404
7405 static int __devinit
7406 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7407 {
7408 struct s2io_nic *sp;
7409 struct net_device *dev;
7410 int i, j, ret;
7411 int dma_flag = FALSE;
7412 u32 mac_up, mac_down;
7413 u64 val64 = 0, tmp64 = 0;
7414 struct XENA_dev_config __iomem *bar0 = NULL;
7415 u16 subid;
7416 struct mac_info *mac_control;
7417 struct config_param *config;
7418 int mode;
7419 u8 dev_intr_type = intr_type;
7420 DECLARE_MAC_BUF(mac);
7421
7422 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7423 return ret;
7424
7425 if ((ret = pci_enable_device(pdev))) {
7426 DBG_PRINT(ERR_DBG,
7427 "s2io_init_nic: pci_enable_device failed\n");
7428 return ret;
7429 }
7430
7431 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7432 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7433 dma_flag = TRUE;
7434 if (pci_set_consistent_dma_mask
7435 (pdev, DMA_64BIT_MASK)) {
7436 DBG_PRINT(ERR_DBG,
7437 "Unable to obtain 64bit DMA for \
7438 consistent allocations\n");
7439 pci_disable_device(pdev);
7440 return -ENOMEM;
7441 }
7442 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7443 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7444 } else {
7445 pci_disable_device(pdev);
7446 return -ENOMEM;
7447 }
7448 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7449 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7450 pci_disable_device(pdev);
7451 return -ENODEV;
7452 }
7453
7454 dev = alloc_etherdev(sizeof(struct s2io_nic));
7455 if (dev == NULL) {
7456 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7457 pci_disable_device(pdev);
7458 pci_release_regions(pdev);
7459 return -ENODEV;
7460 }
7461
7462 pci_set_master(pdev);
7463 pci_set_drvdata(pdev, dev);
7464 SET_NETDEV_DEV(dev, &pdev->dev);
7465
7466 /* Private member variable initialized to s2io NIC structure */
7467 sp = dev->priv;
7468 memset(sp, 0, sizeof(struct s2io_nic));
7469 sp->dev = dev;
7470 sp->pdev = pdev;
7471 sp->high_dma_flag = dma_flag;
7472 sp->device_enabled_once = FALSE;
7473 if (rx_ring_mode == 1)
7474 sp->rxd_mode = RXD_MODE_1;
7475 if (rx_ring_mode == 2)
7476 sp->rxd_mode = RXD_MODE_3B;
7477
7478 sp->config.intr_type = dev_intr_type;
7479
7480 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7481 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7482 sp->device_type = XFRAME_II_DEVICE;
7483 else
7484 sp->device_type = XFRAME_I_DEVICE;
7485
7486 sp->lro = lro;
7487
7488 /* Initialize some PCI/PCI-X fields of the NIC. */
7489 s2io_init_pci(sp);
7490
7491 /*
7492 * Setting the device configuration parameters.
7493 * Most of these parameters can be specified by the user during
7494 * module insertion as they are module loadable parameters. If
7495 * these parameters are not not specified during load time, they
7496 * are initialized with default values.
7497 */
7498 mac_control = &sp->mac_control;
7499 config = &sp->config;
7500
7501 config->napi = napi;
7502
7503 /* Tx side parameters. */
7504 config->tx_fifo_num = tx_fifo_num;
7505 for (i = 0; i < MAX_TX_FIFOS; i++) {
7506 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7507 config->tx_cfg[i].fifo_priority = i;
7508 }
7509
7510 /* mapping the QoS priority to the configured fifos */
7511 for (i = 0; i < MAX_TX_FIFOS; i++)
7512 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7513
7514 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7515 for (i = 0; i < config->tx_fifo_num; i++) {
7516 config->tx_cfg[i].f_no_snoop =
7517 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7518 if (config->tx_cfg[i].fifo_len < 65) {
7519 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7520 break;
7521 }
7522 }
7523 /* + 2 because one Txd for skb->data and one Txd for UFO */
7524 config->max_txds = MAX_SKB_FRAGS + 2;
7525
7526 /* Rx side parameters. */
7527 config->rx_ring_num = rx_ring_num;
7528 for (i = 0; i < MAX_RX_RINGS; i++) {
7529 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7530 (rxd_count[sp->rxd_mode] + 1);
7531 config->rx_cfg[i].ring_priority = i;
7532 }
7533
7534 for (i = 0; i < rx_ring_num; i++) {
7535 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7536 config->rx_cfg[i].f_no_snoop =
7537 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7538 }
7539
7540 /* Setting Mac Control parameters */
7541 mac_control->rmac_pause_time = rmac_pause_time;
7542 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7543 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7544
7545
7546 /* Initialize Ring buffer parameters. */
7547 for (i = 0; i < config->rx_ring_num; i++)
7548 atomic_set(&sp->rx_bufs_left[i], 0);
7549
7550 /* initialize the shared memory used by the NIC and the host */
7551 if (init_shared_mem(sp)) {
7552 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7553 dev->name);
7554 ret = -ENOMEM;
7555 goto mem_alloc_failed;
7556 }
7557
7558 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7559 pci_resource_len(pdev, 0));
7560 if (!sp->bar0) {
7561 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7562 dev->name);
7563 ret = -ENOMEM;
7564 goto bar0_remap_failed;
7565 }
7566
7567 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7568 pci_resource_len(pdev, 2));
7569 if (!sp->bar1) {
7570 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7571 dev->name);
7572 ret = -ENOMEM;
7573 goto bar1_remap_failed;
7574 }
7575
7576 dev->irq = pdev->irq;
7577 dev->base_addr = (unsigned long) sp->bar0;
7578
7579 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7580 for (j = 0; j < MAX_TX_FIFOS; j++) {
7581 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7582 (sp->bar1 + (j * 0x00020000));
7583 }
7584
7585 /* Driver entry points */
7586 dev->open = &s2io_open;
7587 dev->stop = &s2io_close;
7588 dev->hard_start_xmit = &s2io_xmit;
7589 dev->get_stats = &s2io_get_stats;
7590 dev->set_multicast_list = &s2io_set_multicast;
7591 dev->do_ioctl = &s2io_ioctl;
7592 dev->change_mtu = &s2io_change_mtu;
7593 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7594 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7595 dev->vlan_rx_register = s2io_vlan_rx_register;
7596
7597 /*
7598 * will use eth_mac_addr() for dev->set_mac_address
7599 * mac address will be set every time dev->open() is called
7600 */
7601 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7602
7603 #ifdef CONFIG_NET_POLL_CONTROLLER
7604 dev->poll_controller = s2io_netpoll;
7605 #endif
7606
7607 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7608 if (sp->high_dma_flag == TRUE)
7609 dev->features |= NETIF_F_HIGHDMA;
7610 dev->features |= NETIF_F_TSO;
7611 dev->features |= NETIF_F_TSO6;
7612 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7613 dev->features |= NETIF_F_UFO;
7614 dev->features |= NETIF_F_HW_CSUM;
7615 }
7616
7617 dev->tx_timeout = &s2io_tx_watchdog;
7618 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7619 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7620 INIT_WORK(&sp->set_link_task, s2io_set_link);
7621
7622 pci_save_state(sp->pdev);
7623
7624 /* Setting swapper control on the NIC, for proper reset operation */
7625 if (s2io_set_swapper(sp)) {
7626 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7627 dev->name);
7628 ret = -EAGAIN;
7629 goto set_swap_failed;
7630 }
7631
7632 /* Verify if the Herc works on the slot its placed into */
7633 if (sp->device_type & XFRAME_II_DEVICE) {
7634 mode = s2io_verify_pci_mode(sp);
7635 if (mode < 0) {
7636 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7637 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7638 ret = -EBADSLT;
7639 goto set_swap_failed;
7640 }
7641 }
7642
7643 /* Not needed for Herc */
7644 if (sp->device_type & XFRAME_I_DEVICE) {
7645 /*
7646 * Fix for all "FFs" MAC address problems observed on
7647 * Alpha platforms
7648 */
7649 fix_mac_address(sp);
7650 s2io_reset(sp);
7651 }
7652
7653 /*
7654 * MAC address initialization.
7655 * For now only one mac address will be read and used.
7656 */
7657 bar0 = sp->bar0;
7658 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7659 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7660 writeq(val64, &bar0->rmac_addr_cmd_mem);
7661 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7662 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7663 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7664 mac_down = (u32) tmp64;
7665 mac_up = (u32) (tmp64 >> 32);
7666
7667 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7668 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7669 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7670 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7671 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7672 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7673
7674 /* Set the factory defined MAC address initially */
7675 dev->addr_len = ETH_ALEN;
7676 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7677
7678 /* Store the values of the MSIX table in the s2io_nic structure */
7679 store_xmsi_data(sp);
7680 /* reset Nic and bring it to known state */
7681 s2io_reset(sp);
7682
7683 /*
7684 * Initialize the tasklet status and link state flags
7685 * and the card state parameter
7686 */
7687 sp->tasklet_status = 0;
7688 sp->state = 0;
7689
7690 /* Initialize spinlocks */
7691 spin_lock_init(&sp->tx_lock);
7692
7693 if (!napi)
7694 spin_lock_init(&sp->put_lock);
7695 spin_lock_init(&sp->rx_lock);
7696
7697 /*
7698 * SXE-002: Configure link and activity LED to init state
7699 * on driver load.
7700 */
7701 subid = sp->pdev->subsystem_device;
7702 if ((subid & 0xFF) >= 0x07) {
7703 val64 = readq(&bar0->gpio_control);
7704 val64 |= 0x0000800000000000ULL;
7705 writeq(val64, &bar0->gpio_control);
7706 val64 = 0x0411040400000000ULL;
7707 writeq(val64, (void __iomem *) bar0 + 0x2700);
7708 val64 = readq(&bar0->gpio_control);
7709 }
7710
7711 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7712
7713 if (register_netdev(dev)) {
7714 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7715 ret = -ENODEV;
7716 goto register_failed;
7717 }
7718 s2io_vpd_read(sp);
7719 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7720 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7721 sp->product_name, pdev->revision);
7722 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7723 s2io_driver_version);
7724 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7725 dev->name, print_mac(mac, dev->dev_addr));
7726 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7727 if (sp->device_type & XFRAME_II_DEVICE) {
7728 mode = s2io_print_pci_mode(sp);
7729 if (mode < 0) {
7730 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7731 ret = -EBADSLT;
7732 unregister_netdev(dev);
7733 goto set_swap_failed;
7734 }
7735 }
7736 switch(sp->rxd_mode) {
7737 case RXD_MODE_1:
7738 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7739 dev->name);
7740 break;
7741 case RXD_MODE_3B:
7742 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7743 dev->name);
7744 break;
7745 }
7746
7747 if (napi)
7748 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7749 switch(sp->config.intr_type) {
7750 case INTA:
7751 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7752 break;
7753 case MSI_X:
7754 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7755 break;
7756 }
7757 if (sp->lro)
7758 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7759 dev->name);
7760 if (ufo)
7761 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7762 " enabled\n", dev->name);
7763 /* Initialize device name */
7764 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7765
7766 /* Initialize bimodal Interrupts */
7767 sp->config.bimodal = bimodal;
7768 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7769 sp->config.bimodal = 0;
7770 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7771 dev->name);
7772 }
7773
7774 /*
7775 * Make Link state as off at this point, when the Link change
7776 * interrupt comes the state will be automatically changed to
7777 * the right state.
7778 */
7779 netif_carrier_off(dev);
7780
7781 return 0;
7782
7783 register_failed:
7784 set_swap_failed:
7785 iounmap(sp->bar1);
7786 bar1_remap_failed:
7787 iounmap(sp->bar0);
7788 bar0_remap_failed:
7789 mem_alloc_failed:
7790 free_shared_mem(sp);
7791 pci_disable_device(pdev);
7792 pci_release_regions(pdev);
7793 pci_set_drvdata(pdev, NULL);
7794 free_netdev(dev);
7795
7796 return ret;
7797 }
7798
7799 /**
7800 * s2io_rem_nic - Free the PCI device
7801 * @pdev: structure containing the PCI related information of the device.
7802 * Description: This function is called by the Pci subsystem to release a
7803 * PCI device and free up all resource held up by the device. This could
7804 * be in response to a Hot plug event or when the driver is to be removed
7805 * from memory.
7806 */
7807
7808 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7809 {
7810 struct net_device *dev =
7811 (struct net_device *) pci_get_drvdata(pdev);
7812 struct s2io_nic *sp;
7813
7814 if (dev == NULL) {
7815 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7816 return;
7817 }
7818
7819 flush_scheduled_work();
7820
7821 sp = dev->priv;
7822 unregister_netdev(dev);
7823
7824 free_shared_mem(sp);
7825 iounmap(sp->bar0);
7826 iounmap(sp->bar1);
7827 pci_release_regions(pdev);
7828 pci_set_drvdata(pdev, NULL);
7829 free_netdev(dev);
7830 pci_disable_device(pdev);
7831 }
7832
7833 /**
7834 * s2io_starter - Entry point for the driver
7835 * Description: This function is the entry point for the driver. It verifies
7836 * the module loadable parameters and initializes PCI configuration space.
7837 */
7838
7839 int __init s2io_starter(void)
7840 {
7841 return pci_register_driver(&s2io_driver);
7842 }
7843
7844 /**
7845 * s2io_closer - Cleanup routine for the driver
7846 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7847 */
7848
7849 static __exit void s2io_closer(void)
7850 {
7851 pci_unregister_driver(&s2io_driver);
7852 DBG_PRINT(INIT_DBG, "cleanup done\n");
7853 }
7854
7855 module_init(s2io_starter);
7856 module_exit(s2io_closer);
7857
7858 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7859 struct tcphdr **tcp, struct RxD_t *rxdp)
7860 {
7861 int ip_off;
7862 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7863
7864 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7865 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7866 __FUNCTION__);
7867 return -1;
7868 }
7869
7870 /* TODO:
7871 * By default the VLAN field in the MAC is stripped by the card, if this
7872 * feature is turned off in rx_pa_cfg register, then the ip_off field
7873 * has to be shifted by a further 2 bytes
7874 */
7875 switch (l2_type) {
7876 case 0: /* DIX type */
7877 case 4: /* DIX type with VLAN */
7878 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7879 break;
7880 /* LLC, SNAP etc are considered non-mergeable */
7881 default:
7882 return -1;
7883 }
7884
7885 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7886 ip_len = (u8)((*ip)->ihl);
7887 ip_len <<= 2;
7888 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7889
7890 return 0;
7891 }
7892
7893 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7894 struct tcphdr *tcp)
7895 {
7896 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7897 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7898 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7899 return -1;
7900 return 0;
7901 }
7902
7903 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7904 {
7905 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7906 }
7907
7908 static void initiate_new_session(struct lro *lro, u8 *l2h,
7909 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7910 {
7911 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7912 lro->l2h = l2h;
7913 lro->iph = ip;
7914 lro->tcph = tcp;
7915 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7916 lro->tcp_ack = ntohl(tcp->ack_seq);
7917 lro->sg_num = 1;
7918 lro->total_len = ntohs(ip->tot_len);
7919 lro->frags_len = 0;
7920 /*
7921 * check if we saw TCP timestamp. Other consistency checks have
7922 * already been done.
7923 */
7924 if (tcp->doff == 8) {
7925 u32 *ptr;
7926 ptr = (u32 *)(tcp+1);
7927 lro->saw_ts = 1;
7928 lro->cur_tsval = *(ptr+1);
7929 lro->cur_tsecr = *(ptr+2);
7930 }
7931 lro->in_use = 1;
7932 }
7933
7934 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7935 {
7936 struct iphdr *ip = lro->iph;
7937 struct tcphdr *tcp = lro->tcph;
7938 __sum16 nchk;
7939 struct stat_block *statinfo = sp->mac_control.stats_info;
7940 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7941
7942 /* Update L3 header */
7943 ip->tot_len = htons(lro->total_len);
7944 ip->check = 0;
7945 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7946 ip->check = nchk;
7947
7948 /* Update L4 header */
7949 tcp->ack_seq = lro->tcp_ack;
7950 tcp->window = lro->window;
7951
7952 /* Update tsecr field if this session has timestamps enabled */
7953 if (lro->saw_ts) {
7954 u32 *ptr = (u32 *)(tcp + 1);
7955 *(ptr+2) = lro->cur_tsecr;
7956 }
7957
7958 /* Update counters required for calculation of
7959 * average no. of packets aggregated.
7960 */
7961 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7962 statinfo->sw_stat.num_aggregations++;
7963 }
7964
7965 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7966 struct tcphdr *tcp, u32 l4_pyld)
7967 {
7968 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7969 lro->total_len += l4_pyld;
7970 lro->frags_len += l4_pyld;
7971 lro->tcp_next_seq += l4_pyld;
7972 lro->sg_num++;
7973
7974 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7975 lro->tcp_ack = tcp->ack_seq;
7976 lro->window = tcp->window;
7977
7978 if (lro->saw_ts) {
7979 u32 *ptr;
7980 /* Update tsecr and tsval from this packet */
7981 ptr = (u32 *) (tcp + 1);
7982 lro->cur_tsval = *(ptr + 1);
7983 lro->cur_tsecr = *(ptr + 2);
7984 }
7985 }
7986
7987 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7988 struct tcphdr *tcp, u32 tcp_pyld_len)
7989 {
7990 u8 *ptr;
7991
7992 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7993
7994 if (!tcp_pyld_len) {
7995 /* Runt frame or a pure ack */
7996 return -1;
7997 }
7998
7999 if (ip->ihl != 5) /* IP has options */
8000 return -1;
8001
8002 /* If we see CE codepoint in IP header, packet is not mergeable */
8003 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8004 return -1;
8005
8006 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8007 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8008 tcp->ece || tcp->cwr || !tcp->ack) {
8009 /*
8010 * Currently recognize only the ack control word and
8011 * any other control field being set would result in
8012 * flushing the LRO session
8013 */
8014 return -1;
8015 }
8016
8017 /*
8018 * Allow only one TCP timestamp option. Don't aggregate if
8019 * any other options are detected.
8020 */
8021 if (tcp->doff != 5 && tcp->doff != 8)
8022 return -1;
8023
8024 if (tcp->doff == 8) {
8025 ptr = (u8 *)(tcp + 1);
8026 while (*ptr == TCPOPT_NOP)
8027 ptr++;
8028 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8029 return -1;
8030
8031 /* Ensure timestamp value increases monotonically */
8032 if (l_lro)
8033 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8034 return -1;
8035
8036 /* timestamp echo reply should be non-zero */
8037 if (*((u32 *)(ptr+6)) == 0)
8038 return -1;
8039 }
8040
8041 return 0;
8042 }
8043
8044 static int
8045 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8046 struct RxD_t *rxdp, struct s2io_nic *sp)
8047 {
8048 struct iphdr *ip;
8049 struct tcphdr *tcph;
8050 int ret = 0, i;
8051
8052 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8053 rxdp))) {
8054 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8055 ip->saddr, ip->daddr);
8056 } else {
8057 return ret;
8058 }
8059
8060 tcph = (struct tcphdr *)*tcp;
8061 *tcp_len = get_l4_pyld_length(ip, tcph);
8062 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8063 struct lro *l_lro = &sp->lro0_n[i];
8064 if (l_lro->in_use) {
8065 if (check_for_socket_match(l_lro, ip, tcph))
8066 continue;
8067 /* Sock pair matched */
8068 *lro = l_lro;
8069
8070 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8071 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8072 "0x%x, actual 0x%x\n", __FUNCTION__,
8073 (*lro)->tcp_next_seq,
8074 ntohl(tcph->seq));
8075
8076 sp->mac_control.stats_info->
8077 sw_stat.outof_sequence_pkts++;
8078 ret = 2;
8079 break;
8080 }
8081
8082 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8083 ret = 1; /* Aggregate */
8084 else
8085 ret = 2; /* Flush both */
8086 break;
8087 }
8088 }
8089
8090 if (ret == 0) {
8091 /* Before searching for available LRO objects,
8092 * check if the pkt is L3/L4 aggregatable. If not
8093 * don't create new LRO session. Just send this
8094 * packet up.
8095 */
8096 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8097 return 5;
8098 }
8099
8100 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8101 struct lro *l_lro = &sp->lro0_n[i];
8102 if (!(l_lro->in_use)) {
8103 *lro = l_lro;
8104 ret = 3; /* Begin anew */
8105 break;
8106 }
8107 }
8108 }
8109
8110 if (ret == 0) { /* sessions exceeded */
8111 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8112 __FUNCTION__);
8113 *lro = NULL;
8114 return ret;
8115 }
8116
8117 switch (ret) {
8118 case 3:
8119 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8120 break;
8121 case 2:
8122 update_L3L4_header(sp, *lro);
8123 break;
8124 case 1:
8125 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8126 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8127 update_L3L4_header(sp, *lro);
8128 ret = 4; /* Flush the LRO */
8129 }
8130 break;
8131 default:
8132 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8133 __FUNCTION__);
8134 break;
8135 }
8136
8137 return ret;
8138 }
8139
8140 static void clear_lro_session(struct lro *lro)
8141 {
8142 static u16 lro_struct_size = sizeof(struct lro);
8143
8144 memset(lro, 0, lro_struct_size);
8145 }
8146
8147 static void queue_rx_frame(struct sk_buff *skb)
8148 {
8149 struct net_device *dev = skb->dev;
8150
8151 skb->protocol = eth_type_trans(skb, dev);
8152 if (napi)
8153 netif_receive_skb(skb);
8154 else
8155 netif_rx(skb);
8156 }
8157
8158 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8159 struct sk_buff *skb,
8160 u32 tcp_len)
8161 {
8162 struct sk_buff *first = lro->parent;
8163
8164 first->len += tcp_len;
8165 first->data_len = lro->frags_len;
8166 skb_pull(skb, (skb->len - tcp_len));
8167 if (skb_shinfo(first)->frag_list)
8168 lro->last_frag->next = skb;
8169 else
8170 skb_shinfo(first)->frag_list = skb;
8171 first->truesize += skb->truesize;
8172 lro->last_frag = skb;
8173 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8174 return;
8175 }
8176
8177 /**
8178 * s2io_io_error_detected - called when PCI error is detected
8179 * @pdev: Pointer to PCI device
8180 * @state: The current pci connection state
8181 *
8182 * This function is called after a PCI bus error affecting
8183 * this device has been detected.
8184 */
8185 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8186 pci_channel_state_t state)
8187 {
8188 struct net_device *netdev = pci_get_drvdata(pdev);
8189 struct s2io_nic *sp = netdev->priv;
8190
8191 netif_device_detach(netdev);
8192
8193 if (netif_running(netdev)) {
8194 /* Bring down the card, while avoiding PCI I/O */
8195 do_s2io_card_down(sp, 0);
8196 }
8197 pci_disable_device(pdev);
8198
8199 return PCI_ERS_RESULT_NEED_RESET;
8200 }
8201
8202 /**
8203 * s2io_io_slot_reset - called after the pci bus has been reset.
8204 * @pdev: Pointer to PCI device
8205 *
8206 * Restart the card from scratch, as if from a cold-boot.
8207 * At this point, the card has exprienced a hard reset,
8208 * followed by fixups by BIOS, and has its config space
8209 * set up identically to what it was at cold boot.
8210 */
8211 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8212 {
8213 struct net_device *netdev = pci_get_drvdata(pdev);
8214 struct s2io_nic *sp = netdev->priv;
8215
8216 if (pci_enable_device(pdev)) {
8217 printk(KERN_ERR "s2io: "
8218 "Cannot re-enable PCI device after reset.\n");
8219 return PCI_ERS_RESULT_DISCONNECT;
8220 }
8221
8222 pci_set_master(pdev);
8223 s2io_reset(sp);
8224
8225 return PCI_ERS_RESULT_RECOVERED;
8226 }
8227
8228 /**
8229 * s2io_io_resume - called when traffic can start flowing again.
8230 * @pdev: Pointer to PCI device
8231 *
8232 * This callback is called when the error recovery driver tells
8233 * us that its OK to resume normal operation.
8234 */
8235 static void s2io_io_resume(struct pci_dev *pdev)
8236 {
8237 struct net_device *netdev = pci_get_drvdata(pdev);
8238 struct s2io_nic *sp = netdev->priv;
8239
8240 if (netif_running(netdev)) {
8241 if (s2io_card_up(sp)) {
8242 printk(KERN_ERR "s2io: "
8243 "Can't bring device back up after reset.\n");
8244 return;
8245 }
8246
8247 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8248 s2io_card_down(sp);
8249 printk(KERN_ERR "s2io: "
8250 "Can't resetore mac addr after reset.\n");
8251 return;
8252 }
8253 }
8254
8255 netif_device_attach(netdev);
8256 netif_wake_queue(netdev);
8257 }
This page took 0.208329 seconds and 5 git commands to generate.