Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <net/tcp.h>
79
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/io.h>
83 #include <asm/div64.h>
84 #include <asm/irq.h>
85
86 /* local include */
87 #include "s2io.h"
88 #include "s2io-regs.h"
89
90 #define DRV_VERSION "2.0.26.25"
91
92 /* S2io Driver name & version. */
93 static char s2io_driver_name[] = "Neterion";
94 static char s2io_driver_version[] = DRV_VERSION;
95
96 static int rxd_size[2] = {32,48};
97 static int rxd_count[2] = {127,85};
98
99 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 {
101 int ret;
102
103 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
104 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
105
106 return ret;
107 }
108
109 /*
110 * Cards with following subsystem_id have a link state indication
111 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
112 * macro below identifies these cards given the subsystem_id.
113 */
114 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
115 (dev_type == XFRAME_I_DEVICE) ? \
116 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
117 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118
119 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
120 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121
122 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 {
124 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
125 }
126
127 /* Ethtool related variables and Macros. */
128 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
129 "Register test\t(offline)",
130 "Eeprom test\t(offline)",
131 "Link test\t(online)",
132 "RLDRAM test\t(offline)",
133 "BIST Test\t(offline)"
134 };
135
136 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_frms"},
138 {"tmac_data_octets"},
139 {"tmac_drop_frms"},
140 {"tmac_mcst_frms"},
141 {"tmac_bcst_frms"},
142 {"tmac_pause_ctrl_frms"},
143 {"tmac_ttl_octets"},
144 {"tmac_ucst_frms"},
145 {"tmac_nucst_frms"},
146 {"tmac_any_err_frms"},
147 {"tmac_ttl_less_fb_octets"},
148 {"tmac_vld_ip_octets"},
149 {"tmac_vld_ip"},
150 {"tmac_drop_ip"},
151 {"tmac_icmp"},
152 {"tmac_rst_tcp"},
153 {"tmac_tcp"},
154 {"tmac_udp"},
155 {"rmac_vld_frms"},
156 {"rmac_data_octets"},
157 {"rmac_fcs_err_frms"},
158 {"rmac_drop_frms"},
159 {"rmac_vld_mcst_frms"},
160 {"rmac_vld_bcst_frms"},
161 {"rmac_in_rng_len_err_frms"},
162 {"rmac_out_rng_len_err_frms"},
163 {"rmac_long_frms"},
164 {"rmac_pause_ctrl_frms"},
165 {"rmac_unsup_ctrl_frms"},
166 {"rmac_ttl_octets"},
167 {"rmac_accepted_ucst_frms"},
168 {"rmac_accepted_nucst_frms"},
169 {"rmac_discarded_frms"},
170 {"rmac_drop_events"},
171 {"rmac_ttl_less_fb_octets"},
172 {"rmac_ttl_frms"},
173 {"rmac_usized_frms"},
174 {"rmac_osized_frms"},
175 {"rmac_frag_frms"},
176 {"rmac_jabber_frms"},
177 {"rmac_ttl_64_frms"},
178 {"rmac_ttl_65_127_frms"},
179 {"rmac_ttl_128_255_frms"},
180 {"rmac_ttl_256_511_frms"},
181 {"rmac_ttl_512_1023_frms"},
182 {"rmac_ttl_1024_1518_frms"},
183 {"rmac_ip"},
184 {"rmac_ip_octets"},
185 {"rmac_hdr_err_ip"},
186 {"rmac_drop_ip"},
187 {"rmac_icmp"},
188 {"rmac_tcp"},
189 {"rmac_udp"},
190 {"rmac_err_drp_udp"},
191 {"rmac_xgmii_err_sym"},
192 {"rmac_frms_q0"},
193 {"rmac_frms_q1"},
194 {"rmac_frms_q2"},
195 {"rmac_frms_q3"},
196 {"rmac_frms_q4"},
197 {"rmac_frms_q5"},
198 {"rmac_frms_q6"},
199 {"rmac_frms_q7"},
200 {"rmac_full_q0"},
201 {"rmac_full_q1"},
202 {"rmac_full_q2"},
203 {"rmac_full_q3"},
204 {"rmac_full_q4"},
205 {"rmac_full_q5"},
206 {"rmac_full_q6"},
207 {"rmac_full_q7"},
208 {"rmac_pause_cnt"},
209 {"rmac_xgmii_data_err_cnt"},
210 {"rmac_xgmii_ctrl_err_cnt"},
211 {"rmac_accepted_ip"},
212 {"rmac_err_tcp"},
213 {"rd_req_cnt"},
214 {"new_rd_req_cnt"},
215 {"new_rd_req_rtry_cnt"},
216 {"rd_rtry_cnt"},
217 {"wr_rtry_rd_ack_cnt"},
218 {"wr_req_cnt"},
219 {"new_wr_req_cnt"},
220 {"new_wr_req_rtry_cnt"},
221 {"wr_rtry_cnt"},
222 {"wr_disc_cnt"},
223 {"rd_rtry_wr_ack_cnt"},
224 {"txp_wr_cnt"},
225 {"txd_rd_cnt"},
226 {"txd_wr_cnt"},
227 {"rxd_rd_cnt"},
228 {"rxd_wr_cnt"},
229 {"txf_rd_cnt"},
230 {"rxf_wr_cnt"}
231 };
232
233 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
234 {"rmac_ttl_1519_4095_frms"},
235 {"rmac_ttl_4096_8191_frms"},
236 {"rmac_ttl_8192_max_frms"},
237 {"rmac_ttl_gt_max_frms"},
238 {"rmac_osized_alt_frms"},
239 {"rmac_jabber_alt_frms"},
240 {"rmac_gt_max_alt_frms"},
241 {"rmac_vlan_frms"},
242 {"rmac_len_discard"},
243 {"rmac_fcs_discard"},
244 {"rmac_pf_discard"},
245 {"rmac_da_discard"},
246 {"rmac_red_discard"},
247 {"rmac_rts_discard"},
248 {"rmac_ingm_full_discard"},
249 {"link_fault_cnt"}
250 };
251
252 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
253 {"\n DRIVER STATISTICS"},
254 {"single_bit_ecc_errs"},
255 {"double_bit_ecc_errs"},
256 {"parity_err_cnt"},
257 {"serious_err_cnt"},
258 {"soft_reset_cnt"},
259 {"fifo_full_cnt"},
260 {"ring_0_full_cnt"},
261 {"ring_1_full_cnt"},
262 {"ring_2_full_cnt"},
263 {"ring_3_full_cnt"},
264 {"ring_4_full_cnt"},
265 {"ring_5_full_cnt"},
266 {"ring_6_full_cnt"},
267 {"ring_7_full_cnt"},
268 {"alarm_transceiver_temp_high"},
269 {"alarm_transceiver_temp_low"},
270 {"alarm_laser_bias_current_high"},
271 {"alarm_laser_bias_current_low"},
272 {"alarm_laser_output_power_high"},
273 {"alarm_laser_output_power_low"},
274 {"warn_transceiver_temp_high"},
275 {"warn_transceiver_temp_low"},
276 {"warn_laser_bias_current_high"},
277 {"warn_laser_bias_current_low"},
278 {"warn_laser_output_power_high"},
279 {"warn_laser_output_power_low"},
280 {"lro_aggregated_pkts"},
281 {"lro_flush_both_count"},
282 {"lro_out_of_sequence_pkts"},
283 {"lro_flush_due_to_max_pkts"},
284 {"lro_avg_aggr_pkts"},
285 {"mem_alloc_fail_cnt"},
286 {"pci_map_fail_cnt"},
287 {"watchdog_timer_cnt"},
288 {"mem_allocated"},
289 {"mem_freed"},
290 {"link_up_cnt"},
291 {"link_down_cnt"},
292 {"link_up_time"},
293 {"link_down_time"},
294 {"tx_tcode_buf_abort_cnt"},
295 {"tx_tcode_desc_abort_cnt"},
296 {"tx_tcode_parity_err_cnt"},
297 {"tx_tcode_link_loss_cnt"},
298 {"tx_tcode_list_proc_err_cnt"},
299 {"rx_tcode_parity_err_cnt"},
300 {"rx_tcode_abort_cnt"},
301 {"rx_tcode_parity_abort_cnt"},
302 {"rx_tcode_rda_fail_cnt"},
303 {"rx_tcode_unkn_prot_cnt"},
304 {"rx_tcode_fcs_err_cnt"},
305 {"rx_tcode_buf_size_err_cnt"},
306 {"rx_tcode_rxd_corrupt_cnt"},
307 {"rx_tcode_unkn_err_cnt"},
308 {"tda_err_cnt"},
309 {"pfc_err_cnt"},
310 {"pcc_err_cnt"},
311 {"tti_err_cnt"},
312 {"tpa_err_cnt"},
313 {"sm_err_cnt"},
314 {"lso_err_cnt"},
315 {"mac_tmac_err_cnt"},
316 {"mac_rmac_err_cnt"},
317 {"xgxs_txgxs_err_cnt"},
318 {"xgxs_rxgxs_err_cnt"},
319 {"rc_err_cnt"},
320 {"prc_pcix_err_cnt"},
321 {"rpa_err_cnt"},
322 {"rda_err_cnt"},
323 {"rti_err_cnt"},
324 {"mc_err_cnt"}
325 };
326
327 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
328 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
329 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330
331 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
332 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333
334 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
335 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336
337 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
338 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339
340 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
341 init_timer(&timer); \
342 timer.function = handle; \
343 timer.data = (unsigned long) arg; \
344 mod_timer(&timer, (jiffies + exp)) \
345
346 /* copy mac addr to def_mac_addr array */
347 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 {
349 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
350 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
351 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
352 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
353 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
354 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
355 }
356
357 /* Add the vlan */
358 static void s2io_vlan_rx_register(struct net_device *dev,
359 struct vlan_group *grp)
360 {
361 int i;
362 struct s2io_nic *nic = netdev_priv(dev);
363 unsigned long flags[MAX_TX_FIFOS];
364 struct mac_info *mac_control = &nic->mac_control;
365 struct config_param *config = &nic->config;
366
367 for (i = 0; i < config->tx_fifo_num; i++)
368 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
369
370 nic->vlgrp = grp;
371 for (i = config->tx_fifo_num - 1; i >= 0; i--)
372 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
373 flags[i]);
374 }
375
376 /* Unregister the vlan */
377 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
378 {
379 int i;
380 struct s2io_nic *nic = netdev_priv(dev);
381 unsigned long flags[MAX_TX_FIFOS];
382 struct mac_info *mac_control = &nic->mac_control;
383 struct config_param *config = &nic->config;
384
385 for (i = 0; i < config->tx_fifo_num; i++)
386 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
387
388 if (nic->vlgrp)
389 vlan_group_set_device(nic->vlgrp, vid, NULL);
390
391 for (i = config->tx_fifo_num - 1; i >= 0; i--)
392 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
393 flags[i]);
394 }
395
396 /*
397 * Constants to be programmed into the Xena's registers, to configure
398 * the XAUI.
399 */
400
401 #define END_SIGN 0x0
402 static const u64 herc_act_dtx_cfg[] = {
403 /* Set address */
404 0x8000051536750000ULL, 0x80000515367500E0ULL,
405 /* Write data */
406 0x8000051536750004ULL, 0x80000515367500E4ULL,
407 /* Set address */
408 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
409 /* Write data */
410 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
411 /* Set address */
412 0x801205150D440000ULL, 0x801205150D4400E0ULL,
413 /* Write data */
414 0x801205150D440004ULL, 0x801205150D4400E4ULL,
415 /* Set address */
416 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
417 /* Write data */
418 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
419 /* Done */
420 END_SIGN
421 };
422
423 static const u64 xena_dtx_cfg[] = {
424 /* Set address */
425 0x8000051500000000ULL, 0x80000515000000E0ULL,
426 /* Write data */
427 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
428 /* Set address */
429 0x8001051500000000ULL, 0x80010515000000E0ULL,
430 /* Write data */
431 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
432 /* Set address */
433 0x8002051500000000ULL, 0x80020515000000E0ULL,
434 /* Write data */
435 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
436 END_SIGN
437 };
438
439 /*
440 * Constants for Fixing the MacAddress problem seen mostly on
441 * Alpha machines.
442 */
443 static const u64 fix_mac[] = {
444 0x0060000000000000ULL, 0x0060600000000000ULL,
445 0x0040600000000000ULL, 0x0000600000000000ULL,
446 0x0020600000000000ULL, 0x0060600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0000600000000000ULL,
457 0x0040600000000000ULL, 0x0060600000000000ULL,
458 END_SIGN
459 };
460
461 MODULE_LICENSE("GPL");
462 MODULE_VERSION(DRV_VERSION);
463
464
465 /* Module Loadable parameters. */
466 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
467 S2IO_PARM_INT(rx_ring_num, 1);
468 S2IO_PARM_INT(multiq, 0);
469 S2IO_PARM_INT(rx_ring_mode, 1);
470 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
471 S2IO_PARM_INT(rmac_pause_time, 0x100);
472 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
473 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
474 S2IO_PARM_INT(shared_splits, 0);
475 S2IO_PARM_INT(tmac_util_period, 5);
476 S2IO_PARM_INT(rmac_util_period, 5);
477 S2IO_PARM_INT(l3l4hdr_size, 128);
478 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
479 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
480 /* Frequency of Rx desc syncs expressed as power of 2 */
481 S2IO_PARM_INT(rxsync_frequency, 3);
482 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
483 S2IO_PARM_INT(intr_type, 2);
484 /* Large receive offload feature */
485 static unsigned int lro_enable;
486 module_param_named(lro, lro_enable, uint, 0);
487
488 /* Max pkts to be aggregated by LRO at one time. If not specified,
489 * aggregation happens until we hit max IP pkt size(64K)
490 */
491 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
492 S2IO_PARM_INT(indicate_max_pkts, 0);
493
494 S2IO_PARM_INT(napi, 1);
495 S2IO_PARM_INT(ufo, 0);
496 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
497
498 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
499 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
500 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
501 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
502 static unsigned int rts_frm_len[MAX_RX_RINGS] =
503 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
504
505 module_param_array(tx_fifo_len, uint, NULL, 0);
506 module_param_array(rx_ring_sz, uint, NULL, 0);
507 module_param_array(rts_frm_len, uint, NULL, 0);
508
509 /*
510 * S2IO device table.
511 * This table lists all the devices that this driver supports.
512 */
513 static struct pci_device_id s2io_tbl[] __devinitdata = {
514 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
515 PCI_ANY_ID, PCI_ANY_ID},
516 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
517 PCI_ANY_ID, PCI_ANY_ID},
518 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
519 PCI_ANY_ID, PCI_ANY_ID},
520 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
521 PCI_ANY_ID, PCI_ANY_ID},
522 {0,}
523 };
524
525 MODULE_DEVICE_TABLE(pci, s2io_tbl);
526
527 static struct pci_error_handlers s2io_err_handler = {
528 .error_detected = s2io_io_error_detected,
529 .slot_reset = s2io_io_slot_reset,
530 .resume = s2io_io_resume,
531 };
532
533 static struct pci_driver s2io_driver = {
534 .name = "S2IO",
535 .id_table = s2io_tbl,
536 .probe = s2io_init_nic,
537 .remove = __devexit_p(s2io_rem_nic),
538 .err_handler = &s2io_err_handler,
539 };
540
541 /* A simplifier macro used both by init and free shared_mem Fns(). */
542 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
543
544 /* netqueue manipulation helper functions */
545 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
546 {
547 if (!sp->config.multiq) {
548 int i;
549
550 for (i = 0; i < sp->config.tx_fifo_num; i++)
551 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
552 }
553 netif_tx_stop_all_queues(sp->dev);
554 }
555
556 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
557 {
558 if (!sp->config.multiq)
559 sp->mac_control.fifos[fifo_no].queue_state =
560 FIFO_QUEUE_STOP;
561
562 netif_tx_stop_all_queues(sp->dev);
563 }
564
565 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
566 {
567 if (!sp->config.multiq) {
568 int i;
569
570 for (i = 0; i < sp->config.tx_fifo_num; i++)
571 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
572 }
573 netif_tx_start_all_queues(sp->dev);
574 }
575
576 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
577 {
578 if (!sp->config.multiq)
579 sp->mac_control.fifos[fifo_no].queue_state =
580 FIFO_QUEUE_START;
581
582 netif_tx_start_all_queues(sp->dev);
583 }
584
585 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
586 {
587 if (!sp->config.multiq) {
588 int i;
589
590 for (i = 0; i < sp->config.tx_fifo_num; i++)
591 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
592 }
593 netif_tx_wake_all_queues(sp->dev);
594 }
595
596 static inline void s2io_wake_tx_queue(
597 struct fifo_info *fifo, int cnt, u8 multiq)
598 {
599
600 if (multiq) {
601 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
602 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
603 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
604 if (netif_queue_stopped(fifo->dev)) {
605 fifo->queue_state = FIFO_QUEUE_START;
606 netif_wake_queue(fifo->dev);
607 }
608 }
609 }
610
611 /**
612 * init_shared_mem - Allocation and Initialization of Memory
613 * @nic: Device private variable.
614 * Description: The function allocates all the memory areas shared
615 * between the NIC and the driver. This includes Tx descriptors,
616 * Rx descriptors and the statistics block.
617 */
618
619 static int init_shared_mem(struct s2io_nic *nic)
620 {
621 u32 size;
622 void *tmp_v_addr, *tmp_v_addr_next;
623 dma_addr_t tmp_p_addr, tmp_p_addr_next;
624 struct RxD_block *pre_rxd_blk = NULL;
625 int i, j, blk_cnt;
626 int lst_size, lst_per_page;
627 struct net_device *dev = nic->dev;
628 unsigned long tmp;
629 struct buffAdd *ba;
630
631 struct mac_info *mac_control;
632 struct config_param *config;
633 unsigned long long mem_allocated = 0;
634
635 mac_control = &nic->mac_control;
636 config = &nic->config;
637
638
639 /* Allocation and initialization of TXDLs in FIOFs */
640 size = 0;
641 for (i = 0; i < config->tx_fifo_num; i++) {
642 size += config->tx_cfg[i].fifo_len;
643 }
644 if (size > MAX_AVAILABLE_TXDS) {
645 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
646 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
647 return -EINVAL;
648 }
649
650 size = 0;
651 for (i = 0; i < config->tx_fifo_num; i++) {
652 size = config->tx_cfg[i].fifo_len;
653 /*
654 * Legal values are from 2 to 8192
655 */
656 if (size < 2) {
657 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
658 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
659 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
660 "are 2 to 8192\n");
661 return -EINVAL;
662 }
663 }
664
665 lst_size = (sizeof(struct TxD) * config->max_txds);
666 lst_per_page = PAGE_SIZE / lst_size;
667
668 for (i = 0; i < config->tx_fifo_num; i++) {
669 int fifo_len = config->tx_cfg[i].fifo_len;
670 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
671 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
672 GFP_KERNEL);
673 if (!mac_control->fifos[i].list_info) {
674 DBG_PRINT(INFO_DBG,
675 "Malloc failed for list_info\n");
676 return -ENOMEM;
677 }
678 mem_allocated += list_holder_size;
679 }
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
682 lst_per_page);
683 mac_control->fifos[i].tx_curr_put_info.offset = 0;
684 mac_control->fifos[i].tx_curr_put_info.fifo_len =
685 config->tx_cfg[i].fifo_len - 1;
686 mac_control->fifos[i].tx_curr_get_info.offset = 0;
687 mac_control->fifos[i].tx_curr_get_info.fifo_len =
688 config->tx_cfg[i].fifo_len - 1;
689 mac_control->fifos[i].fifo_no = i;
690 mac_control->fifos[i].nic = nic;
691 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
692 mac_control->fifos[i].dev = dev;
693
694 for (j = 0; j < page_num; j++) {
695 int k = 0;
696 dma_addr_t tmp_p;
697 void *tmp_v;
698 tmp_v = pci_alloc_consistent(nic->pdev,
699 PAGE_SIZE, &tmp_p);
700 if (!tmp_v) {
701 DBG_PRINT(INFO_DBG,
702 "pci_alloc_consistent ");
703 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
704 return -ENOMEM;
705 }
706 /* If we got a zero DMA address(can happen on
707 * certain platforms like PPC), reallocate.
708 * Store virtual address of page we don't want,
709 * to be freed later.
710 */
711 if (!tmp_p) {
712 mac_control->zerodma_virt_addr = tmp_v;
713 DBG_PRINT(INIT_DBG,
714 "%s: Zero DMA address for TxDL. ", dev->name);
715 DBG_PRINT(INIT_DBG,
716 "Virtual address %p\n", tmp_v);
717 tmp_v = pci_alloc_consistent(nic->pdev,
718 PAGE_SIZE, &tmp_p);
719 if (!tmp_v) {
720 DBG_PRINT(INFO_DBG,
721 "pci_alloc_consistent ");
722 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
723 return -ENOMEM;
724 }
725 mem_allocated += PAGE_SIZE;
726 }
727 while (k < lst_per_page) {
728 int l = (j * lst_per_page) + k;
729 if (l == config->tx_cfg[i].fifo_len)
730 break;
731 mac_control->fifos[i].list_info[l].list_virt_addr =
732 tmp_v + (k * lst_size);
733 mac_control->fifos[i].list_info[l].list_phy_addr =
734 tmp_p + (k * lst_size);
735 k++;
736 }
737 }
738 }
739
740 for (i = 0; i < config->tx_fifo_num; i++) {
741 size = config->tx_cfg[i].fifo_len;
742 mac_control->fifos[i].ufo_in_band_v
743 = kcalloc(size, sizeof(u64), GFP_KERNEL);
744 if (!mac_control->fifos[i].ufo_in_band_v)
745 return -ENOMEM;
746 mem_allocated += (size * sizeof(u64));
747 }
748
749 /* Allocation and initialization of RXDs in Rings */
750 size = 0;
751 for (i = 0; i < config->rx_ring_num; i++) {
752 if (config->rx_cfg[i].num_rxd %
753 (rxd_count[nic->rxd_mode] + 1)) {
754 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
755 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
756 i);
757 DBG_PRINT(ERR_DBG, "RxDs per Block");
758 return FAILURE;
759 }
760 size += config->rx_cfg[i].num_rxd;
761 mac_control->rings[i].block_count =
762 config->rx_cfg[i].num_rxd /
763 (rxd_count[nic->rxd_mode] + 1 );
764 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
765 mac_control->rings[i].block_count;
766 }
767 if (nic->rxd_mode == RXD_MODE_1)
768 size = (size * (sizeof(struct RxD1)));
769 else
770 size = (size * (sizeof(struct RxD3)));
771
772 for (i = 0; i < config->rx_ring_num; i++) {
773 mac_control->rings[i].rx_curr_get_info.block_index = 0;
774 mac_control->rings[i].rx_curr_get_info.offset = 0;
775 mac_control->rings[i].rx_curr_get_info.ring_len =
776 config->rx_cfg[i].num_rxd - 1;
777 mac_control->rings[i].rx_curr_put_info.block_index = 0;
778 mac_control->rings[i].rx_curr_put_info.offset = 0;
779 mac_control->rings[i].rx_curr_put_info.ring_len =
780 config->rx_cfg[i].num_rxd - 1;
781 mac_control->rings[i].nic = nic;
782 mac_control->rings[i].ring_no = i;
783 mac_control->rings[i].lro = lro_enable;
784
785 blk_cnt = config->rx_cfg[i].num_rxd /
786 (rxd_count[nic->rxd_mode] + 1);
787 /* Allocating all the Rx blocks */
788 for (j = 0; j < blk_cnt; j++) {
789 struct rx_block_info *rx_blocks;
790 int l;
791
792 rx_blocks = &mac_control->rings[i].rx_blocks[j];
793 size = SIZE_OF_BLOCK; //size is always page size
794 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
795 &tmp_p_addr);
796 if (tmp_v_addr == NULL) {
797 /*
798 * In case of failure, free_shared_mem()
799 * is called, which should free any
800 * memory that was alloced till the
801 * failure happened.
802 */
803 rx_blocks->block_virt_addr = tmp_v_addr;
804 return -ENOMEM;
805 }
806 mem_allocated += size;
807 memset(tmp_v_addr, 0, size);
808 rx_blocks->block_virt_addr = tmp_v_addr;
809 rx_blocks->block_dma_addr = tmp_p_addr;
810 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
811 rxd_count[nic->rxd_mode],
812 GFP_KERNEL);
813 if (!rx_blocks->rxds)
814 return -ENOMEM;
815 mem_allocated +=
816 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
817 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
818 rx_blocks->rxds[l].virt_addr =
819 rx_blocks->block_virt_addr +
820 (rxd_size[nic->rxd_mode] * l);
821 rx_blocks->rxds[l].dma_addr =
822 rx_blocks->block_dma_addr +
823 (rxd_size[nic->rxd_mode] * l);
824 }
825 }
826 /* Interlinking all Rx Blocks */
827 for (j = 0; j < blk_cnt; j++) {
828 tmp_v_addr =
829 mac_control->rings[i].rx_blocks[j].block_virt_addr;
830 tmp_v_addr_next =
831 mac_control->rings[i].rx_blocks[(j + 1) %
832 blk_cnt].block_virt_addr;
833 tmp_p_addr =
834 mac_control->rings[i].rx_blocks[j].block_dma_addr;
835 tmp_p_addr_next =
836 mac_control->rings[i].rx_blocks[(j + 1) %
837 blk_cnt].block_dma_addr;
838
839 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
840 pre_rxd_blk->reserved_2_pNext_RxD_block =
841 (unsigned long) tmp_v_addr_next;
842 pre_rxd_blk->pNext_RxD_Blk_physical =
843 (u64) tmp_p_addr_next;
844 }
845 }
846 if (nic->rxd_mode == RXD_MODE_3B) {
847 /*
848 * Allocation of Storages for buffer addresses in 2BUFF mode
849 * and the buffers as well.
850 */
851 for (i = 0; i < config->rx_ring_num; i++) {
852 blk_cnt = config->rx_cfg[i].num_rxd /
853 (rxd_count[nic->rxd_mode]+ 1);
854 mac_control->rings[i].ba =
855 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
856 GFP_KERNEL);
857 if (!mac_control->rings[i].ba)
858 return -ENOMEM;
859 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
860 for (j = 0; j < blk_cnt; j++) {
861 int k = 0;
862 mac_control->rings[i].ba[j] =
863 kmalloc((sizeof(struct buffAdd) *
864 (rxd_count[nic->rxd_mode] + 1)),
865 GFP_KERNEL);
866 if (!mac_control->rings[i].ba[j])
867 return -ENOMEM;
868 mem_allocated += (sizeof(struct buffAdd) * \
869 (rxd_count[nic->rxd_mode] + 1));
870 while (k != rxd_count[nic->rxd_mode]) {
871 ba = &mac_control->rings[i].ba[j][k];
872
873 ba->ba_0_org = (void *) kmalloc
874 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
875 if (!ba->ba_0_org)
876 return -ENOMEM;
877 mem_allocated +=
878 (BUF0_LEN + ALIGN_SIZE);
879 tmp = (unsigned long)ba->ba_0_org;
880 tmp += ALIGN_SIZE;
881 tmp &= ~((unsigned long) ALIGN_SIZE);
882 ba->ba_0 = (void *) tmp;
883
884 ba->ba_1_org = (void *) kmalloc
885 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
886 if (!ba->ba_1_org)
887 return -ENOMEM;
888 mem_allocated
889 += (BUF1_LEN + ALIGN_SIZE);
890 tmp = (unsigned long) ba->ba_1_org;
891 tmp += ALIGN_SIZE;
892 tmp &= ~((unsigned long) ALIGN_SIZE);
893 ba->ba_1 = (void *) tmp;
894 k++;
895 }
896 }
897 }
898 }
899
900 /* Allocation and initialization of Statistics block */
901 size = sizeof(struct stat_block);
902 mac_control->stats_mem = pci_alloc_consistent
903 (nic->pdev, size, &mac_control->stats_mem_phy);
904
905 if (!mac_control->stats_mem) {
906 /*
907 * In case of failure, free_shared_mem() is called, which
908 * should free any memory that was alloced till the
909 * failure happened.
910 */
911 return -ENOMEM;
912 }
913 mem_allocated += size;
914 mac_control->stats_mem_sz = size;
915
916 tmp_v_addr = mac_control->stats_mem;
917 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
918 memset(tmp_v_addr, 0, size);
919 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
920 (unsigned long long) tmp_p_addr);
921 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
922 return SUCCESS;
923 }
924
925 /**
926 * free_shared_mem - Free the allocated Memory
927 * @nic: Device private variable.
928 * Description: This function is to free all memory locations allocated by
929 * the init_shared_mem() function and return it to the kernel.
930 */
931
932 static void free_shared_mem(struct s2io_nic *nic)
933 {
934 int i, j, blk_cnt, size;
935 void *tmp_v_addr;
936 dma_addr_t tmp_p_addr;
937 struct mac_info *mac_control;
938 struct config_param *config;
939 int lst_size, lst_per_page;
940 struct net_device *dev;
941 int page_num = 0;
942
943 if (!nic)
944 return;
945
946 dev = nic->dev;
947
948 mac_control = &nic->mac_control;
949 config = &nic->config;
950
951 lst_size = (sizeof(struct TxD) * config->max_txds);
952 lst_per_page = PAGE_SIZE / lst_size;
953
954 for (i = 0; i < config->tx_fifo_num; i++) {
955 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
956 lst_per_page);
957 for (j = 0; j < page_num; j++) {
958 int mem_blks = (j * lst_per_page);
959 if (!mac_control->fifos[i].list_info)
960 return;
961 if (!mac_control->fifos[i].list_info[mem_blks].
962 list_virt_addr)
963 break;
964 pci_free_consistent(nic->pdev, PAGE_SIZE,
965 mac_control->fifos[i].
966 list_info[mem_blks].
967 list_virt_addr,
968 mac_control->fifos[i].
969 list_info[mem_blks].
970 list_phy_addr);
971 nic->mac_control.stats_info->sw_stat.mem_freed
972 += PAGE_SIZE;
973 }
974 /* If we got a zero DMA address during allocation,
975 * free the page now
976 */
977 if (mac_control->zerodma_virt_addr) {
978 pci_free_consistent(nic->pdev, PAGE_SIZE,
979 mac_control->zerodma_virt_addr,
980 (dma_addr_t)0);
981 DBG_PRINT(INIT_DBG,
982 "%s: Freeing TxDL with zero DMA addr. ",
983 dev->name);
984 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
985 mac_control->zerodma_virt_addr);
986 nic->mac_control.stats_info->sw_stat.mem_freed
987 += PAGE_SIZE;
988 }
989 kfree(mac_control->fifos[i].list_info);
990 nic->mac_control.stats_info->sw_stat.mem_freed +=
991 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
992 }
993
994 size = SIZE_OF_BLOCK;
995 for (i = 0; i < config->rx_ring_num; i++) {
996 blk_cnt = mac_control->rings[i].block_count;
997 for (j = 0; j < blk_cnt; j++) {
998 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
999 block_virt_addr;
1000 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1001 block_dma_addr;
1002 if (tmp_v_addr == NULL)
1003 break;
1004 pci_free_consistent(nic->pdev, size,
1005 tmp_v_addr, tmp_p_addr);
1006 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1007 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1008 nic->mac_control.stats_info->sw_stat.mem_freed +=
1009 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1010 }
1011 }
1012
1013 if (nic->rxd_mode == RXD_MODE_3B) {
1014 /* Freeing buffer storage addresses in 2BUFF mode. */
1015 for (i = 0; i < config->rx_ring_num; i++) {
1016 blk_cnt = config->rx_cfg[i].num_rxd /
1017 (rxd_count[nic->rxd_mode] + 1);
1018 for (j = 0; j < blk_cnt; j++) {
1019 int k = 0;
1020 if (!mac_control->rings[i].ba[j])
1021 continue;
1022 while (k != rxd_count[nic->rxd_mode]) {
1023 struct buffAdd *ba =
1024 &mac_control->rings[i].ba[j][k];
1025 kfree(ba->ba_0_org);
1026 nic->mac_control.stats_info->sw_stat.\
1027 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1028 kfree(ba->ba_1_org);
1029 nic->mac_control.stats_info->sw_stat.\
1030 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1031 k++;
1032 }
1033 kfree(mac_control->rings[i].ba[j]);
1034 nic->mac_control.stats_info->sw_stat.mem_freed +=
1035 (sizeof(struct buffAdd) *
1036 (rxd_count[nic->rxd_mode] + 1));
1037 }
1038 kfree(mac_control->rings[i].ba);
1039 nic->mac_control.stats_info->sw_stat.mem_freed +=
1040 (sizeof(struct buffAdd *) * blk_cnt);
1041 }
1042 }
1043
1044 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1045 if (mac_control->fifos[i].ufo_in_band_v) {
1046 nic->mac_control.stats_info->sw_stat.mem_freed
1047 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1048 kfree(mac_control->fifos[i].ufo_in_band_v);
1049 }
1050 }
1051
1052 if (mac_control->stats_mem) {
1053 nic->mac_control.stats_info->sw_stat.mem_freed +=
1054 mac_control->stats_mem_sz;
1055 pci_free_consistent(nic->pdev,
1056 mac_control->stats_mem_sz,
1057 mac_control->stats_mem,
1058 mac_control->stats_mem_phy);
1059 }
1060 }
1061
1062 /**
1063 * s2io_verify_pci_mode -
1064 */
1065
1066 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1067 {
1068 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1069 register u64 val64 = 0;
1070 int mode;
1071
1072 val64 = readq(&bar0->pci_mode);
1073 mode = (u8)GET_PCI_MODE(val64);
1074
1075 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1076 return -1; /* Unknown PCI mode */
1077 return mode;
1078 }
1079
1080 #define NEC_VENID 0x1033
1081 #define NEC_DEVID 0x0125
1082 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1083 {
1084 struct pci_dev *tdev = NULL;
1085 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1086 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1087 if (tdev->bus == s2io_pdev->bus->parent) {
1088 pci_dev_put(tdev);
1089 return 1;
1090 }
1091 }
1092 }
1093 return 0;
1094 }
1095
1096 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1097 /**
1098 * s2io_print_pci_mode -
1099 */
1100 static int s2io_print_pci_mode(struct s2io_nic *nic)
1101 {
1102 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1103 register u64 val64 = 0;
1104 int mode;
1105 struct config_param *config = &nic->config;
1106
1107 val64 = readq(&bar0->pci_mode);
1108 mode = (u8)GET_PCI_MODE(val64);
1109
1110 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1111 return -1; /* Unknown PCI mode */
1112
1113 config->bus_speed = bus_speed[mode];
1114
1115 if (s2io_on_nec_bridge(nic->pdev)) {
1116 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1117 nic->dev->name);
1118 return mode;
1119 }
1120
1121 if (val64 & PCI_MODE_32_BITS) {
1122 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1123 } else {
1124 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1125 }
1126
1127 switch(mode) {
1128 case PCI_MODE_PCI_33:
1129 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1130 break;
1131 case PCI_MODE_PCI_66:
1132 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1133 break;
1134 case PCI_MODE_PCIX_M1_66:
1135 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1136 break;
1137 case PCI_MODE_PCIX_M1_100:
1138 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1139 break;
1140 case PCI_MODE_PCIX_M1_133:
1141 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1142 break;
1143 case PCI_MODE_PCIX_M2_66:
1144 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1145 break;
1146 case PCI_MODE_PCIX_M2_100:
1147 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1148 break;
1149 case PCI_MODE_PCIX_M2_133:
1150 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1151 break;
1152 default:
1153 return -1; /* Unsupported bus speed */
1154 }
1155
1156 return mode;
1157 }
1158
1159 /**
1160 * init_tti - Initialization transmit traffic interrupt scheme
1161 * @nic: device private variable
1162 * @link: link status (UP/DOWN) used to enable/disable continuous
1163 * transmit interrupts
1164 * Description: The function configures transmit traffic interrupts
1165 * Return Value: SUCCESS on success and
1166 * '-1' on failure
1167 */
1168
1169 static int init_tti(struct s2io_nic *nic, int link)
1170 {
1171 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1172 register u64 val64 = 0;
1173 int i;
1174 struct config_param *config;
1175
1176 config = &nic->config;
1177
1178 for (i = 0; i < config->tx_fifo_num; i++) {
1179 /*
1180 * TTI Initialization. Default Tx timer gets us about
1181 * 250 interrupts per sec. Continuous interrupts are enabled
1182 * by default.
1183 */
1184 if (nic->device_type == XFRAME_II_DEVICE) {
1185 int count = (nic->config.bus_speed * 125)/2;
1186 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1187 } else
1188 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1189
1190 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1191 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1192 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1193 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1194 if (i == 0)
1195 if (use_continuous_tx_intrs && (link == LINK_UP))
1196 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1197 writeq(val64, &bar0->tti_data1_mem);
1198
1199 if (nic->config.intr_type == MSI_X) {
1200 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1201 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1202 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1203 TTI_DATA2_MEM_TX_UFC_D(0x300);
1204 } else {
1205 if ((nic->config.tx_steering_type ==
1206 TX_DEFAULT_STEERING) &&
1207 (config->tx_fifo_num > 1) &&
1208 (i >= nic->udp_fifo_idx) &&
1209 (i < (nic->udp_fifo_idx +
1210 nic->total_udp_fifos)))
1211 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1212 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1213 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1214 TTI_DATA2_MEM_TX_UFC_D(0x120);
1215 else
1216 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1217 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1218 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1219 TTI_DATA2_MEM_TX_UFC_D(0x80);
1220 }
1221
1222 writeq(val64, &bar0->tti_data2_mem);
1223
1224 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1225 TTI_CMD_MEM_OFFSET(i);
1226 writeq(val64, &bar0->tti_command_mem);
1227
1228 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1229 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1230 return FAILURE;
1231 }
1232
1233 return SUCCESS;
1234 }
1235
1236 /**
1237 * init_nic - Initialization of hardware
1238 * @nic: device private variable
1239 * Description: The function sequentially configures every block
1240 * of the H/W from their reset values.
1241 * Return Value: SUCCESS on success and
1242 * '-1' on failure (endian settings incorrect).
1243 */
1244
1245 static int init_nic(struct s2io_nic *nic)
1246 {
1247 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1248 struct net_device *dev = nic->dev;
1249 register u64 val64 = 0;
1250 void __iomem *add;
1251 u32 time;
1252 int i, j;
1253 struct mac_info *mac_control;
1254 struct config_param *config;
1255 int dtx_cnt = 0;
1256 unsigned long long mem_share;
1257 int mem_size;
1258
1259 mac_control = &nic->mac_control;
1260 config = &nic->config;
1261
1262 /* to set the swapper controle on the card */
1263 if(s2io_set_swapper(nic)) {
1264 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1265 return -EIO;
1266 }
1267
1268 /*
1269 * Herc requires EOI to be removed from reset before XGXS, so..
1270 */
1271 if (nic->device_type & XFRAME_II_DEVICE) {
1272 val64 = 0xA500000000ULL;
1273 writeq(val64, &bar0->sw_reset);
1274 msleep(500);
1275 val64 = readq(&bar0->sw_reset);
1276 }
1277
1278 /* Remove XGXS from reset state */
1279 val64 = 0;
1280 writeq(val64, &bar0->sw_reset);
1281 msleep(500);
1282 val64 = readq(&bar0->sw_reset);
1283
1284 /* Ensure that it's safe to access registers by checking
1285 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1286 */
1287 if (nic->device_type == XFRAME_II_DEVICE) {
1288 for (i = 0; i < 50; i++) {
1289 val64 = readq(&bar0->adapter_status);
1290 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1291 break;
1292 msleep(10);
1293 }
1294 if (i == 50)
1295 return -ENODEV;
1296 }
1297
1298 /* Enable Receiving broadcasts */
1299 add = &bar0->mac_cfg;
1300 val64 = readq(&bar0->mac_cfg);
1301 val64 |= MAC_RMAC_BCAST_ENABLE;
1302 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1303 writel((u32) val64, add);
1304 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1305 writel((u32) (val64 >> 32), (add + 4));
1306
1307 /* Read registers in all blocks */
1308 val64 = readq(&bar0->mac_int_mask);
1309 val64 = readq(&bar0->mc_int_mask);
1310 val64 = readq(&bar0->xgxs_int_mask);
1311
1312 /* Set MTU */
1313 val64 = dev->mtu;
1314 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1315
1316 if (nic->device_type & XFRAME_II_DEVICE) {
1317 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1318 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1319 &bar0->dtx_control, UF);
1320 if (dtx_cnt & 0x1)
1321 msleep(1); /* Necessary!! */
1322 dtx_cnt++;
1323 }
1324 } else {
1325 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1326 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1327 &bar0->dtx_control, UF);
1328 val64 = readq(&bar0->dtx_control);
1329 dtx_cnt++;
1330 }
1331 }
1332
1333 /* Tx DMA Initialization */
1334 val64 = 0;
1335 writeq(val64, &bar0->tx_fifo_partition_0);
1336 writeq(val64, &bar0->tx_fifo_partition_1);
1337 writeq(val64, &bar0->tx_fifo_partition_2);
1338 writeq(val64, &bar0->tx_fifo_partition_3);
1339
1340
1341 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1342 val64 |=
1343 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1344 13) | vBIT(config->tx_cfg[i].fifo_priority,
1345 ((j * 32) + 5), 3);
1346
1347 if (i == (config->tx_fifo_num - 1)) {
1348 if (i % 2 == 0)
1349 i++;
1350 }
1351
1352 switch (i) {
1353 case 1:
1354 writeq(val64, &bar0->tx_fifo_partition_0);
1355 val64 = 0;
1356 j = 0;
1357 break;
1358 case 3:
1359 writeq(val64, &bar0->tx_fifo_partition_1);
1360 val64 = 0;
1361 j = 0;
1362 break;
1363 case 5:
1364 writeq(val64, &bar0->tx_fifo_partition_2);
1365 val64 = 0;
1366 j = 0;
1367 break;
1368 case 7:
1369 writeq(val64, &bar0->tx_fifo_partition_3);
1370 val64 = 0;
1371 j = 0;
1372 break;
1373 default:
1374 j++;
1375 break;
1376 }
1377 }
1378
1379 /*
1380 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1381 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1382 */
1383 if ((nic->device_type == XFRAME_I_DEVICE) &&
1384 (nic->pdev->revision < 4))
1385 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1386
1387 val64 = readq(&bar0->tx_fifo_partition_0);
1388 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1389 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1390
1391 /*
1392 * Initialization of Tx_PA_CONFIG register to ignore packet
1393 * integrity checking.
1394 */
1395 val64 = readq(&bar0->tx_pa_cfg);
1396 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1397 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1398 writeq(val64, &bar0->tx_pa_cfg);
1399
1400 /* Rx DMA intialization. */
1401 val64 = 0;
1402 for (i = 0; i < config->rx_ring_num; i++) {
1403 val64 |=
1404 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1405 3);
1406 }
1407 writeq(val64, &bar0->rx_queue_priority);
1408
1409 /*
1410 * Allocating equal share of memory to all the
1411 * configured Rings.
1412 */
1413 val64 = 0;
1414 if (nic->device_type & XFRAME_II_DEVICE)
1415 mem_size = 32;
1416 else
1417 mem_size = 64;
1418
1419 for (i = 0; i < config->rx_ring_num; i++) {
1420 switch (i) {
1421 case 0:
1422 mem_share = (mem_size / config->rx_ring_num +
1423 mem_size % config->rx_ring_num);
1424 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1425 continue;
1426 case 1:
1427 mem_share = (mem_size / config->rx_ring_num);
1428 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1429 continue;
1430 case 2:
1431 mem_share = (mem_size / config->rx_ring_num);
1432 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1433 continue;
1434 case 3:
1435 mem_share = (mem_size / config->rx_ring_num);
1436 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1437 continue;
1438 case 4:
1439 mem_share = (mem_size / config->rx_ring_num);
1440 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1441 continue;
1442 case 5:
1443 mem_share = (mem_size / config->rx_ring_num);
1444 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1445 continue;
1446 case 6:
1447 mem_share = (mem_size / config->rx_ring_num);
1448 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1449 continue;
1450 case 7:
1451 mem_share = (mem_size / config->rx_ring_num);
1452 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1453 continue;
1454 }
1455 }
1456 writeq(val64, &bar0->rx_queue_cfg);
1457
1458 /*
1459 * Filling Tx round robin registers
1460 * as per the number of FIFOs for equal scheduling priority
1461 */
1462 switch (config->tx_fifo_num) {
1463 case 1:
1464 val64 = 0x0;
1465 writeq(val64, &bar0->tx_w_round_robin_0);
1466 writeq(val64, &bar0->tx_w_round_robin_1);
1467 writeq(val64, &bar0->tx_w_round_robin_2);
1468 writeq(val64, &bar0->tx_w_round_robin_3);
1469 writeq(val64, &bar0->tx_w_round_robin_4);
1470 break;
1471 case 2:
1472 val64 = 0x0001000100010001ULL;
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 val64 = 0x0001000100000000ULL;
1478 writeq(val64, &bar0->tx_w_round_robin_4);
1479 break;
1480 case 3:
1481 val64 = 0x0001020001020001ULL;
1482 writeq(val64, &bar0->tx_w_round_robin_0);
1483 val64 = 0x0200010200010200ULL;
1484 writeq(val64, &bar0->tx_w_round_robin_1);
1485 val64 = 0x0102000102000102ULL;
1486 writeq(val64, &bar0->tx_w_round_robin_2);
1487 val64 = 0x0001020001020001ULL;
1488 writeq(val64, &bar0->tx_w_round_robin_3);
1489 val64 = 0x0200010200000000ULL;
1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1492 case 4:
1493 val64 = 0x0001020300010203ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_0);
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 val64 = 0x0001020300000000ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1501 case 5:
1502 val64 = 0x0001020304000102ULL;
1503 writeq(val64, &bar0->tx_w_round_robin_0);
1504 val64 = 0x0304000102030400ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_1);
1506 val64 = 0x0102030400010203ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_2);
1508 val64 = 0x0400010203040001ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_3);
1510 val64 = 0x0203040000000000ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_4);
1512 break;
1513 case 6:
1514 val64 = 0x0001020304050001ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_0);
1516 val64 = 0x0203040500010203ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_1);
1518 val64 = 0x0405000102030405ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_2);
1520 val64 = 0x0001020304050001ULL;
1521 writeq(val64, &bar0->tx_w_round_robin_3);
1522 val64 = 0x0203040500000000ULL;
1523 writeq(val64, &bar0->tx_w_round_robin_4);
1524 break;
1525 case 7:
1526 val64 = 0x0001020304050600ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_0);
1528 val64 = 0x0102030405060001ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_1);
1530 val64 = 0x0203040506000102ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_2);
1532 val64 = 0x0304050600010203ULL;
1533 writeq(val64, &bar0->tx_w_round_robin_3);
1534 val64 = 0x0405060000000000ULL;
1535 writeq(val64, &bar0->tx_w_round_robin_4);
1536 break;
1537 case 8:
1538 val64 = 0x0001020304050607ULL;
1539 writeq(val64, &bar0->tx_w_round_robin_0);
1540 writeq(val64, &bar0->tx_w_round_robin_1);
1541 writeq(val64, &bar0->tx_w_round_robin_2);
1542 writeq(val64, &bar0->tx_w_round_robin_3);
1543 val64 = 0x0001020300000000ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_4);
1545 break;
1546 }
1547
1548 /* Enable all configured Tx FIFO partitions */
1549 val64 = readq(&bar0->tx_fifo_partition_0);
1550 val64 |= (TX_FIFO_PARTITION_EN);
1551 writeq(val64, &bar0->tx_fifo_partition_0);
1552
1553 /* Filling the Rx round robin registers as per the
1554 * number of Rings and steering based on QoS with
1555 * equal priority.
1556 */
1557 switch (config->rx_ring_num) {
1558 case 1:
1559 val64 = 0x0;
1560 writeq(val64, &bar0->rx_w_round_robin_0);
1561 writeq(val64, &bar0->rx_w_round_robin_1);
1562 writeq(val64, &bar0->rx_w_round_robin_2);
1563 writeq(val64, &bar0->rx_w_round_robin_3);
1564 writeq(val64, &bar0->rx_w_round_robin_4);
1565
1566 val64 = 0x8080808080808080ULL;
1567 writeq(val64, &bar0->rts_qos_steering);
1568 break;
1569 case 2:
1570 val64 = 0x0001000100010001ULL;
1571 writeq(val64, &bar0->rx_w_round_robin_0);
1572 writeq(val64, &bar0->rx_w_round_robin_1);
1573 writeq(val64, &bar0->rx_w_round_robin_2);
1574 writeq(val64, &bar0->rx_w_round_robin_3);
1575 val64 = 0x0001000100000000ULL;
1576 writeq(val64, &bar0->rx_w_round_robin_4);
1577
1578 val64 = 0x8080808040404040ULL;
1579 writeq(val64, &bar0->rts_qos_steering);
1580 break;
1581 case 3:
1582 val64 = 0x0001020001020001ULL;
1583 writeq(val64, &bar0->rx_w_round_robin_0);
1584 val64 = 0x0200010200010200ULL;
1585 writeq(val64, &bar0->rx_w_round_robin_1);
1586 val64 = 0x0102000102000102ULL;
1587 writeq(val64, &bar0->rx_w_round_robin_2);
1588 val64 = 0x0001020001020001ULL;
1589 writeq(val64, &bar0->rx_w_round_robin_3);
1590 val64 = 0x0200010200000000ULL;
1591 writeq(val64, &bar0->rx_w_round_robin_4);
1592
1593 val64 = 0x8080804040402020ULL;
1594 writeq(val64, &bar0->rts_qos_steering);
1595 break;
1596 case 4:
1597 val64 = 0x0001020300010203ULL;
1598 writeq(val64, &bar0->rx_w_round_robin_0);
1599 writeq(val64, &bar0->rx_w_round_robin_1);
1600 writeq(val64, &bar0->rx_w_round_robin_2);
1601 writeq(val64, &bar0->rx_w_round_robin_3);
1602 val64 = 0x0001020300000000ULL;
1603 writeq(val64, &bar0->rx_w_round_robin_4);
1604
1605 val64 = 0x8080404020201010ULL;
1606 writeq(val64, &bar0->rts_qos_steering);
1607 break;
1608 case 5:
1609 val64 = 0x0001020304000102ULL;
1610 writeq(val64, &bar0->rx_w_round_robin_0);
1611 val64 = 0x0304000102030400ULL;
1612 writeq(val64, &bar0->rx_w_round_robin_1);
1613 val64 = 0x0102030400010203ULL;
1614 writeq(val64, &bar0->rx_w_round_robin_2);
1615 val64 = 0x0400010203040001ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_3);
1617 val64 = 0x0203040000000000ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_4);
1619
1620 val64 = 0x8080404020201008ULL;
1621 writeq(val64, &bar0->rts_qos_steering);
1622 break;
1623 case 6:
1624 val64 = 0x0001020304050001ULL;
1625 writeq(val64, &bar0->rx_w_round_robin_0);
1626 val64 = 0x0203040500010203ULL;
1627 writeq(val64, &bar0->rx_w_round_robin_1);
1628 val64 = 0x0405000102030405ULL;
1629 writeq(val64, &bar0->rx_w_round_robin_2);
1630 val64 = 0x0001020304050001ULL;
1631 writeq(val64, &bar0->rx_w_round_robin_3);
1632 val64 = 0x0203040500000000ULL;
1633 writeq(val64, &bar0->rx_w_round_robin_4);
1634
1635 val64 = 0x8080404020100804ULL;
1636 writeq(val64, &bar0->rts_qos_steering);
1637 break;
1638 case 7:
1639 val64 = 0x0001020304050600ULL;
1640 writeq(val64, &bar0->rx_w_round_robin_0);
1641 val64 = 0x0102030405060001ULL;
1642 writeq(val64, &bar0->rx_w_round_robin_1);
1643 val64 = 0x0203040506000102ULL;
1644 writeq(val64, &bar0->rx_w_round_robin_2);
1645 val64 = 0x0304050600010203ULL;
1646 writeq(val64, &bar0->rx_w_round_robin_3);
1647 val64 = 0x0405060000000000ULL;
1648 writeq(val64, &bar0->rx_w_round_robin_4);
1649
1650 val64 = 0x8080402010080402ULL;
1651 writeq(val64, &bar0->rts_qos_steering);
1652 break;
1653 case 8:
1654 val64 = 0x0001020304050607ULL;
1655 writeq(val64, &bar0->rx_w_round_robin_0);
1656 writeq(val64, &bar0->rx_w_round_robin_1);
1657 writeq(val64, &bar0->rx_w_round_robin_2);
1658 writeq(val64, &bar0->rx_w_round_robin_3);
1659 val64 = 0x0001020300000000ULL;
1660 writeq(val64, &bar0->rx_w_round_robin_4);
1661
1662 val64 = 0x8040201008040201ULL;
1663 writeq(val64, &bar0->rts_qos_steering);
1664 break;
1665 }
1666
1667 /* UDP Fix */
1668 val64 = 0;
1669 for (i = 0; i < 8; i++)
1670 writeq(val64, &bar0->rts_frm_len_n[i]);
1671
1672 /* Set the default rts frame length for the rings configured */
1673 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1674 for (i = 0 ; i < config->rx_ring_num ; i++)
1675 writeq(val64, &bar0->rts_frm_len_n[i]);
1676
1677 /* Set the frame length for the configured rings
1678 * desired by the user
1679 */
1680 for (i = 0; i < config->rx_ring_num; i++) {
1681 /* If rts_frm_len[i] == 0 then it is assumed that user not
1682 * specified frame length steering.
1683 * If the user provides the frame length then program
1684 * the rts_frm_len register for those values or else
1685 * leave it as it is.
1686 */
1687 if (rts_frm_len[i] != 0) {
1688 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1689 &bar0->rts_frm_len_n[i]);
1690 }
1691 }
1692
1693 /* Disable differentiated services steering logic */
1694 for (i = 0; i < 64; i++) {
1695 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1696 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1697 dev->name);
1698 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1699 return -ENODEV;
1700 }
1701 }
1702
1703 /* Program statistics memory */
1704 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1705
1706 if (nic->device_type == XFRAME_II_DEVICE) {
1707 val64 = STAT_BC(0x320);
1708 writeq(val64, &bar0->stat_byte_cnt);
1709 }
1710
1711 /*
1712 * Initializing the sampling rate for the device to calculate the
1713 * bandwidth utilization.
1714 */
1715 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1716 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1717 writeq(val64, &bar0->mac_link_util);
1718
1719 /*
1720 * Initializing the Transmit and Receive Traffic Interrupt
1721 * Scheme.
1722 */
1723
1724 /* Initialize TTI */
1725 if (SUCCESS != init_tti(nic, nic->last_link_state))
1726 return -ENODEV;
1727
1728 /* RTI Initialization */
1729 if (nic->device_type == XFRAME_II_DEVICE) {
1730 /*
1731 * Programmed to generate Apprx 500 Intrs per
1732 * second
1733 */
1734 int count = (nic->config.bus_speed * 125)/4;
1735 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1736 } else
1737 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1738 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1739 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1740 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1741
1742 writeq(val64, &bar0->rti_data1_mem);
1743
1744 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1745 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1746 if (nic->config.intr_type == MSI_X)
1747 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1748 RTI_DATA2_MEM_RX_UFC_D(0x40));
1749 else
1750 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1751 RTI_DATA2_MEM_RX_UFC_D(0x80));
1752 writeq(val64, &bar0->rti_data2_mem);
1753
1754 for (i = 0; i < config->rx_ring_num; i++) {
1755 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1756 | RTI_CMD_MEM_OFFSET(i);
1757 writeq(val64, &bar0->rti_command_mem);
1758
1759 /*
1760 * Once the operation completes, the Strobe bit of the
1761 * command register will be reset. We poll for this
1762 * particular condition. We wait for a maximum of 500ms
1763 * for the operation to complete, if it's not complete
1764 * by then we return error.
1765 */
1766 time = 0;
1767 while (TRUE) {
1768 val64 = readq(&bar0->rti_command_mem);
1769 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1770 break;
1771
1772 if (time > 10) {
1773 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1774 dev->name);
1775 return -ENODEV;
1776 }
1777 time++;
1778 msleep(50);
1779 }
1780 }
1781
1782 /*
1783 * Initializing proper values as Pause threshold into all
1784 * the 8 Queues on Rx side.
1785 */
1786 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1787 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1788
1789 /* Disable RMAC PAD STRIPPING */
1790 add = &bar0->mac_cfg;
1791 val64 = readq(&bar0->mac_cfg);
1792 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1793 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1794 writel((u32) (val64), add);
1795 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1796 writel((u32) (val64 >> 32), (add + 4));
1797 val64 = readq(&bar0->mac_cfg);
1798
1799 /* Enable FCS stripping by adapter */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1803 if (nic->device_type == XFRAME_II_DEVICE)
1804 writeq(val64, &bar0->mac_cfg);
1805 else {
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64), add);
1808 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1809 writel((u32) (val64 >> 32), (add + 4));
1810 }
1811
1812 /*
1813 * Set the time value to be inserted in the pause frame
1814 * generated by xena.
1815 */
1816 val64 = readq(&bar0->rmac_pause_cfg);
1817 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1818 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1819 writeq(val64, &bar0->rmac_pause_cfg);
1820
1821 /*
1822 * Set the Threshold Limit for Generating the pause frame
1823 * If the amount of data in any Queue exceeds ratio of
1824 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1825 * pause frame is generated
1826 */
1827 val64 = 0;
1828 for (i = 0; i < 4; i++) {
1829 val64 |=
1830 (((u64) 0xFF00 | nic->mac_control.
1831 mc_pause_threshold_q0q3)
1832 << (i * 2 * 8));
1833 }
1834 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1835
1836 val64 = 0;
1837 for (i = 0; i < 4; i++) {
1838 val64 |=
1839 (((u64) 0xFF00 | nic->mac_control.
1840 mc_pause_threshold_q4q7)
1841 << (i * 2 * 8));
1842 }
1843 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1844
1845 /*
1846 * TxDMA will stop Read request if the number of read split has
1847 * exceeded the limit pointed by shared_splits
1848 */
1849 val64 = readq(&bar0->pic_control);
1850 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1851 writeq(val64, &bar0->pic_control);
1852
1853 if (nic->config.bus_speed == 266) {
1854 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1855 writeq(0x0, &bar0->read_retry_delay);
1856 writeq(0x0, &bar0->write_retry_delay);
1857 }
1858
1859 /*
1860 * Programming the Herc to split every write transaction
1861 * that does not start on an ADB to reduce disconnects.
1862 */
1863 if (nic->device_type == XFRAME_II_DEVICE) {
1864 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1865 MISC_LINK_STABILITY_PRD(3);
1866 writeq(val64, &bar0->misc_control);
1867 val64 = readq(&bar0->pic_control2);
1868 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1869 writeq(val64, &bar0->pic_control2);
1870 }
1871 if (strstr(nic->product_name, "CX4")) {
1872 val64 = TMAC_AVG_IPG(0x17);
1873 writeq(val64, &bar0->tmac_avg_ipg);
1874 }
1875
1876 return SUCCESS;
1877 }
1878 #define LINK_UP_DOWN_INTERRUPT 1
1879 #define MAC_RMAC_ERR_TIMER 2
1880
1881 static int s2io_link_fault_indication(struct s2io_nic *nic)
1882 {
1883 if (nic->device_type == XFRAME_II_DEVICE)
1884 return LINK_UP_DOWN_INTERRUPT;
1885 else
1886 return MAC_RMAC_ERR_TIMER;
1887 }
1888
1889 /**
1890 * do_s2io_write_bits - update alarm bits in alarm register
1891 * @value: alarm bits
1892 * @flag: interrupt status
1893 * @addr: address value
1894 * Description: update alarm bits in alarm register
1895 * Return Value:
1896 * NONE.
1897 */
1898 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1899 {
1900 u64 temp64;
1901
1902 temp64 = readq(addr);
1903
1904 if(flag == ENABLE_INTRS)
1905 temp64 &= ~((u64) value);
1906 else
1907 temp64 |= ((u64) value);
1908 writeq(temp64, addr);
1909 }
1910
1911 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1912 {
1913 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1914 register u64 gen_int_mask = 0;
1915 u64 interruptible;
1916
1917 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1918 if (mask & TX_DMA_INTR) {
1919
1920 gen_int_mask |= TXDMA_INT_M;
1921
1922 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1923 TXDMA_PCC_INT | TXDMA_TTI_INT |
1924 TXDMA_LSO_INT | TXDMA_TPA_INT |
1925 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1926
1927 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1928 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1929 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1930 &bar0->pfc_err_mask);
1931
1932 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1933 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1934 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1935
1936 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1937 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1938 PCC_N_SERR | PCC_6_COF_OV_ERR |
1939 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1940 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1941 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1942
1943 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1944 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1945
1946 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1947 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1948 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1949 flag, &bar0->lso_err_mask);
1950
1951 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1952 flag, &bar0->tpa_err_mask);
1953
1954 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1955
1956 }
1957
1958 if (mask & TX_MAC_INTR) {
1959 gen_int_mask |= TXMAC_INT_M;
1960 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1961 &bar0->mac_int_mask);
1962 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1963 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1964 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1965 flag, &bar0->mac_tmac_err_mask);
1966 }
1967
1968 if (mask & TX_XGXS_INTR) {
1969 gen_int_mask |= TXXGXS_INT_M;
1970 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1971 &bar0->xgxs_int_mask);
1972 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1973 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1974 flag, &bar0->xgxs_txgxs_err_mask);
1975 }
1976
1977 if (mask & RX_DMA_INTR) {
1978 gen_int_mask |= RXDMA_INT_M;
1979 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1980 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1981 flag, &bar0->rxdma_int_mask);
1982 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1983 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1984 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1985 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1986 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1987 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1988 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1989 &bar0->prc_pcix_err_mask);
1990 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1991 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1992 &bar0->rpa_err_mask);
1993 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1994 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1995 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1996 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1997 flag, &bar0->rda_err_mask);
1998 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1999 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2000 flag, &bar0->rti_err_mask);
2001 }
2002
2003 if (mask & RX_MAC_INTR) {
2004 gen_int_mask |= RXMAC_INT_M;
2005 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2006 &bar0->mac_int_mask);
2007 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2008 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2009 RMAC_DOUBLE_ECC_ERR;
2010 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2011 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2012 do_s2io_write_bits(interruptible,
2013 flag, &bar0->mac_rmac_err_mask);
2014 }
2015
2016 if (mask & RX_XGXS_INTR)
2017 {
2018 gen_int_mask |= RXXGXS_INT_M;
2019 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2020 &bar0->xgxs_int_mask);
2021 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2022 &bar0->xgxs_rxgxs_err_mask);
2023 }
2024
2025 if (mask & MC_INTR) {
2026 gen_int_mask |= MC_INT_M;
2027 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2028 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2029 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2030 &bar0->mc_err_mask);
2031 }
2032 nic->general_int_mask = gen_int_mask;
2033
2034 /* Remove this line when alarm interrupts are enabled */
2035 nic->general_int_mask = 0;
2036 }
2037 /**
2038 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2039 * @nic: device private variable,
2040 * @mask: A mask indicating which Intr block must be modified and,
2041 * @flag: A flag indicating whether to enable or disable the Intrs.
2042 * Description: This function will either disable or enable the interrupts
2043 * depending on the flag argument. The mask argument can be used to
2044 * enable/disable any Intr block.
2045 * Return Value: NONE.
2046 */
2047
2048 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2049 {
2050 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2051 register u64 temp64 = 0, intr_mask = 0;
2052
2053 intr_mask = nic->general_int_mask;
2054
2055 /* Top level interrupt classification */
2056 /* PIC Interrupts */
2057 if (mask & TX_PIC_INTR) {
2058 /* Enable PIC Intrs in the general intr mask register */
2059 intr_mask |= TXPIC_INT_M;
2060 if (flag == ENABLE_INTRS) {
2061 /*
2062 * If Hercules adapter enable GPIO otherwise
2063 * disable all PCIX, Flash, MDIO, IIC and GPIO
2064 * interrupts for now.
2065 * TODO
2066 */
2067 if (s2io_link_fault_indication(nic) ==
2068 LINK_UP_DOWN_INTERRUPT ) {
2069 do_s2io_write_bits(PIC_INT_GPIO, flag,
2070 &bar0->pic_int_mask);
2071 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2072 &bar0->gpio_int_mask);
2073 } else
2074 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2075 } else if (flag == DISABLE_INTRS) {
2076 /*
2077 * Disable PIC Intrs in the general
2078 * intr mask register
2079 */
2080 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2081 }
2082 }
2083
2084 /* Tx traffic interrupts */
2085 if (mask & TX_TRAFFIC_INTR) {
2086 intr_mask |= TXTRAFFIC_INT_M;
2087 if (flag == ENABLE_INTRS) {
2088 /*
2089 * Enable all the Tx side interrupts
2090 * writing 0 Enables all 64 TX interrupt levels
2091 */
2092 writeq(0x0, &bar0->tx_traffic_mask);
2093 } else if (flag == DISABLE_INTRS) {
2094 /*
2095 * Disable Tx Traffic Intrs in the general intr mask
2096 * register.
2097 */
2098 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2099 }
2100 }
2101
2102 /* Rx traffic interrupts */
2103 if (mask & RX_TRAFFIC_INTR) {
2104 intr_mask |= RXTRAFFIC_INT_M;
2105 if (flag == ENABLE_INTRS) {
2106 /* writing 0 Enables all 8 RX interrupt levels */
2107 writeq(0x0, &bar0->rx_traffic_mask);
2108 } else if (flag == DISABLE_INTRS) {
2109 /*
2110 * Disable Rx Traffic Intrs in the general intr mask
2111 * register.
2112 */
2113 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2114 }
2115 }
2116
2117 temp64 = readq(&bar0->general_int_mask);
2118 if (flag == ENABLE_INTRS)
2119 temp64 &= ~((u64) intr_mask);
2120 else
2121 temp64 = DISABLE_ALL_INTRS;
2122 writeq(temp64, &bar0->general_int_mask);
2123
2124 nic->general_int_mask = readq(&bar0->general_int_mask);
2125 }
2126
2127 /**
2128 * verify_pcc_quiescent- Checks for PCC quiescent state
2129 * Return: 1 If PCC is quiescence
2130 * 0 If PCC is not quiescence
2131 */
2132 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2133 {
2134 int ret = 0, herc;
2135 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2136 u64 val64 = readq(&bar0->adapter_status);
2137
2138 herc = (sp->device_type == XFRAME_II_DEVICE);
2139
2140 if (flag == FALSE) {
2141 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2142 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2143 ret = 1;
2144 } else {
2145 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2146 ret = 1;
2147 }
2148 } else {
2149 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2151 ADAPTER_STATUS_RMAC_PCC_IDLE))
2152 ret = 1;
2153 } else {
2154 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2155 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2156 ret = 1;
2157 }
2158 }
2159
2160 return ret;
2161 }
2162 /**
2163 * verify_xena_quiescence - Checks whether the H/W is ready
2164 * Description: Returns whether the H/W is ready to go or not. Depending
2165 * on whether adapter enable bit was written or not the comparison
2166 * differs and the calling function passes the input argument flag to
2167 * indicate this.
2168 * Return: 1 If xena is quiescence
2169 * 0 If Xena is not quiescence
2170 */
2171
2172 static int verify_xena_quiescence(struct s2io_nic *sp)
2173 {
2174 int mode;
2175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2176 u64 val64 = readq(&bar0->adapter_status);
2177 mode = s2io_verify_pci_mode(sp);
2178
2179 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2180 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2181 return 0;
2182 }
2183 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2184 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2185 return 0;
2186 }
2187 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2188 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2189 return 0;
2190 }
2191 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2192 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2193 return 0;
2194 }
2195 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2196 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2197 return 0;
2198 }
2199 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2200 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2201 return 0;
2202 }
2203 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2204 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2205 return 0;
2206 }
2207 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2208 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2209 return 0;
2210 }
2211
2212 /*
2213 * In PCI 33 mode, the P_PLL is not used, and therefore,
2214 * the the P_PLL_LOCK bit in the adapter_status register will
2215 * not be asserted.
2216 */
2217 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2218 sp->device_type == XFRAME_II_DEVICE && mode !=
2219 PCI_MODE_PCI_33) {
2220 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2221 return 0;
2222 }
2223 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2224 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2225 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2226 return 0;
2227 }
2228 return 1;
2229 }
2230
2231 /**
2232 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2233 * @sp: Pointer to device specifc structure
2234 * Description :
2235 * New procedure to clear mac address reading problems on Alpha platforms
2236 *
2237 */
2238
2239 static void fix_mac_address(struct s2io_nic * sp)
2240 {
2241 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2242 u64 val64;
2243 int i = 0;
2244
2245 while (fix_mac[i] != END_SIGN) {
2246 writeq(fix_mac[i++], &bar0->gpio_control);
2247 udelay(10);
2248 val64 = readq(&bar0->gpio_control);
2249 }
2250 }
2251
2252 /**
2253 * start_nic - Turns the device on
2254 * @nic : device private variable.
2255 * Description:
2256 * This function actually turns the device on. Before this function is
2257 * called,all Registers are configured from their reset states
2258 * and shared memory is allocated but the NIC is still quiescent. On
2259 * calling this function, the device interrupts are cleared and the NIC is
2260 * literally switched on by writing into the adapter control register.
2261 * Return Value:
2262 * SUCCESS on success and -1 on failure.
2263 */
2264
2265 static int start_nic(struct s2io_nic *nic)
2266 {
2267 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2268 struct net_device *dev = nic->dev;
2269 register u64 val64 = 0;
2270 u16 subid, i;
2271 struct mac_info *mac_control;
2272 struct config_param *config;
2273
2274 mac_control = &nic->mac_control;
2275 config = &nic->config;
2276
2277 /* PRC Initialization and configuration */
2278 for (i = 0; i < config->rx_ring_num; i++) {
2279 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2280 &bar0->prc_rxd0_n[i]);
2281
2282 val64 = readq(&bar0->prc_ctrl_n[i]);
2283 if (nic->rxd_mode == RXD_MODE_1)
2284 val64 |= PRC_CTRL_RC_ENABLED;
2285 else
2286 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2287 if (nic->device_type == XFRAME_II_DEVICE)
2288 val64 |= PRC_CTRL_GROUP_READS;
2289 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2290 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2291 writeq(val64, &bar0->prc_ctrl_n[i]);
2292 }
2293
2294 if (nic->rxd_mode == RXD_MODE_3B) {
2295 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2296 val64 = readq(&bar0->rx_pa_cfg);
2297 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2298 writeq(val64, &bar0->rx_pa_cfg);
2299 }
2300
2301 if (vlan_tag_strip == 0) {
2302 val64 = readq(&bar0->rx_pa_cfg);
2303 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2304 writeq(val64, &bar0->rx_pa_cfg);
2305 nic->vlan_strip_flag = 0;
2306 }
2307
2308 /*
2309 * Enabling MC-RLDRAM. After enabling the device, we timeout
2310 * for around 100ms, which is approximately the time required
2311 * for the device to be ready for operation.
2312 */
2313 val64 = readq(&bar0->mc_rldram_mrs);
2314 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2315 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2316 val64 = readq(&bar0->mc_rldram_mrs);
2317
2318 msleep(100); /* Delay by around 100 ms. */
2319
2320 /* Enabling ECC Protection. */
2321 val64 = readq(&bar0->adapter_control);
2322 val64 &= ~ADAPTER_ECC_EN;
2323 writeq(val64, &bar0->adapter_control);
2324
2325 /*
2326 * Verify if the device is ready to be enabled, if so enable
2327 * it.
2328 */
2329 val64 = readq(&bar0->adapter_status);
2330 if (!verify_xena_quiescence(nic)) {
2331 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2332 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2333 (unsigned long long) val64);
2334 return FAILURE;
2335 }
2336
2337 /*
2338 * With some switches, link might be already up at this point.
2339 * Because of this weird behavior, when we enable laser,
2340 * we may not get link. We need to handle this. We cannot
2341 * figure out which switch is misbehaving. So we are forced to
2342 * make a global change.
2343 */
2344
2345 /* Enabling Laser. */
2346 val64 = readq(&bar0->adapter_control);
2347 val64 |= ADAPTER_EOI_TX_ON;
2348 writeq(val64, &bar0->adapter_control);
2349
2350 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2351 /*
2352 * Dont see link state interrupts initally on some switches,
2353 * so directly scheduling the link state task here.
2354 */
2355 schedule_work(&nic->set_link_task);
2356 }
2357 /* SXE-002: Initialize link and activity LED */
2358 subid = nic->pdev->subsystem_device;
2359 if (((subid & 0xFF) >= 0x07) &&
2360 (nic->device_type == XFRAME_I_DEVICE)) {
2361 val64 = readq(&bar0->gpio_control);
2362 val64 |= 0x0000800000000000ULL;
2363 writeq(val64, &bar0->gpio_control);
2364 val64 = 0x0411040400000000ULL;
2365 writeq(val64, (void __iomem *)bar0 + 0x2700);
2366 }
2367
2368 return SUCCESS;
2369 }
2370 /**
2371 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2372 */
2373 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2374 TxD *txdlp, int get_off)
2375 {
2376 struct s2io_nic *nic = fifo_data->nic;
2377 struct sk_buff *skb;
2378 struct TxD *txds;
2379 u16 j, frg_cnt;
2380
2381 txds = txdlp;
2382 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2383 pci_unmap_single(nic->pdev, (dma_addr_t)
2384 txds->Buffer_Pointer, sizeof(u64),
2385 PCI_DMA_TODEVICE);
2386 txds++;
2387 }
2388
2389 skb = (struct sk_buff *) ((unsigned long)
2390 txds->Host_Control);
2391 if (!skb) {
2392 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2393 return NULL;
2394 }
2395 pci_unmap_single(nic->pdev, (dma_addr_t)
2396 txds->Buffer_Pointer,
2397 skb->len - skb->data_len,
2398 PCI_DMA_TODEVICE);
2399 frg_cnt = skb_shinfo(skb)->nr_frags;
2400 if (frg_cnt) {
2401 txds++;
2402 for (j = 0; j < frg_cnt; j++, txds++) {
2403 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404 if (!txds->Buffer_Pointer)
2405 break;
2406 pci_unmap_page(nic->pdev, (dma_addr_t)
2407 txds->Buffer_Pointer,
2408 frag->size, PCI_DMA_TODEVICE);
2409 }
2410 }
2411 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2412 return(skb);
2413 }
2414
2415 /**
2416 * free_tx_buffers - Free all queued Tx buffers
2417 * @nic : device private variable.
2418 * Description:
2419 * Free all queued Tx buffers.
2420 * Return Value: void
2421 */
2422
2423 static void free_tx_buffers(struct s2io_nic *nic)
2424 {
2425 struct net_device *dev = nic->dev;
2426 struct sk_buff *skb;
2427 struct TxD *txdp;
2428 int i, j;
2429 struct mac_info *mac_control;
2430 struct config_param *config;
2431 int cnt = 0;
2432
2433 mac_control = &nic->mac_control;
2434 config = &nic->config;
2435
2436 for (i = 0; i < config->tx_fifo_num; i++) {
2437 unsigned long flags;
2438 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2439 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2440 txdp = (struct TxD *) \
2441 mac_control->fifos[i].list_info[j].list_virt_addr;
2442 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2443 if (skb) {
2444 nic->mac_control.stats_info->sw_stat.mem_freed
2445 += skb->truesize;
2446 dev_kfree_skb(skb);
2447 cnt++;
2448 }
2449 }
2450 DBG_PRINT(INTR_DBG,
2451 "%s:forcibly freeing %d skbs on FIFO%d\n",
2452 dev->name, cnt, i);
2453 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2454 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2455 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2456 }
2457 }
2458
2459 /**
2460 * stop_nic - To stop the nic
2461 * @nic ; device private variable.
2462 * Description:
2463 * This function does exactly the opposite of what the start_nic()
2464 * function does. This function is called to stop the device.
2465 * Return Value:
2466 * void.
2467 */
2468
2469 static void stop_nic(struct s2io_nic *nic)
2470 {
2471 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472 register u64 val64 = 0;
2473 u16 interruptible;
2474 struct mac_info *mac_control;
2475 struct config_param *config;
2476
2477 mac_control = &nic->mac_control;
2478 config = &nic->config;
2479
2480 /* Disable all interrupts */
2481 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483 interruptible |= TX_PIC_INTR;
2484 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2485
2486 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487 val64 = readq(&bar0->adapter_control);
2488 val64 &= ~(ADAPTER_CNTL_EN);
2489 writeq(val64, &bar0->adapter_control);
2490 }
2491
2492 /**
2493 * fill_rx_buffers - Allocates the Rx side skbs
2494 * @ring_info: per ring structure
2495 * @from_card_up: If this is true, we will map the buffer to get
2496 * the dma address for buf0 and buf1 to give it to the card.
2497 * Else we will sync the already mapped buffer to give it to the card.
2498 * Description:
2499 * The function allocates Rx side skbs and puts the physical
2500 * address of these buffers into the RxD buffer pointers, so that the NIC
2501 * can DMA the received frame into these locations.
2502 * The NIC supports 3 receive modes, viz
2503 * 1. single buffer,
2504 * 2. three buffer and
2505 * 3. Five buffer modes.
2506 * Each mode defines how many fragments the received frame will be split
2507 * up into by the NIC. The frame is split into L3 header, L4 Header,
2508 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509 * is split into 3 fragments. As of now only single buffer mode is
2510 * supported.
2511 * Return Value:
2512 * SUCCESS on success or an appropriate -ve value on failure.
2513 */
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2515 int from_card_up)
2516 {
2517 struct sk_buff *skb;
2518 struct RxD_t *rxdp;
2519 int off, size, block_no, block_no1;
2520 u32 alloc_tab = 0;
2521 u32 alloc_cnt;
2522 u64 tmp;
2523 struct buffAdd *ba;
2524 struct RxD_t *first_rxdp = NULL;
2525 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2526 int rxd_index = 0;
2527 struct RxD1 *rxdp1;
2528 struct RxD3 *rxdp3;
2529 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2530
2531 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2532
2533 block_no1 = ring->rx_curr_get_info.block_index;
2534 while (alloc_tab < alloc_cnt) {
2535 block_no = ring->rx_curr_put_info.block_index;
2536
2537 off = ring->rx_curr_put_info.offset;
2538
2539 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2540
2541 rxd_index = off + 1;
2542 if (block_no)
2543 rxd_index += (block_no * ring->rxd_count);
2544
2545 if ((block_no == block_no1) &&
2546 (off == ring->rx_curr_get_info.offset) &&
2547 (rxdp->Host_Control)) {
2548 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2549 ring->dev->name);
2550 DBG_PRINT(INTR_DBG, " info equated\n");
2551 goto end;
2552 }
2553 if (off && (off == ring->rxd_count)) {
2554 ring->rx_curr_put_info.block_index++;
2555 if (ring->rx_curr_put_info.block_index ==
2556 ring->block_count)
2557 ring->rx_curr_put_info.block_index = 0;
2558 block_no = ring->rx_curr_put_info.block_index;
2559 off = 0;
2560 ring->rx_curr_put_info.offset = off;
2561 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2562 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2563 ring->dev->name, rxdp);
2564
2565 }
2566
2567 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2568 ((ring->rxd_mode == RXD_MODE_3B) &&
2569 (rxdp->Control_2 & s2BIT(0)))) {
2570 ring->rx_curr_put_info.offset = off;
2571 goto end;
2572 }
2573 /* calculate size of skb based on ring mode */
2574 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2575 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576 if (ring->rxd_mode == RXD_MODE_1)
2577 size += NET_IP_ALIGN;
2578 else
2579 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2580
2581 /* allocate skb */
2582 skb = dev_alloc_skb(size);
2583 if(!skb) {
2584 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2585 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2586 if (first_rxdp) {
2587 wmb();
2588 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589 }
2590 stats->mem_alloc_fail_cnt++;
2591
2592 return -ENOMEM ;
2593 }
2594 stats->mem_allocated += skb->truesize;
2595
2596 if (ring->rxd_mode == RXD_MODE_1) {
2597 /* 1 buffer mode - normal operation mode */
2598 rxdp1 = (struct RxD1*)rxdp;
2599 memset(rxdp, 0, sizeof(struct RxD1));
2600 skb_reserve(skb, NET_IP_ALIGN);
2601 rxdp1->Buffer0_ptr = pci_map_single
2602 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
2604 if (pci_dma_mapping_error(nic->pdev,
2605 rxdp1->Buffer0_ptr))
2606 goto pci_map_failed;
2607
2608 rxdp->Control_2 =
2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610 rxdp->Host_Control = (unsigned long) (skb);
2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
2612 /*
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
2615 * byte aligned receive buffers.
2616 */
2617
2618 rxdp3 = (struct RxD3*)rxdp;
2619 /* save buffer pointers to avoid frequent dma mapping */
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
2622 memset(rxdp, 0, sizeof(struct RxD3));
2623 /* restore the buffer pointers for dma sync*/
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
2626
2627 ba = &ring->ba[block_no][off];
2628 skb_reserve(skb, BUF0_LEN);
2629 tmp = (u64)(unsigned long) skb->data;
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
2633 skb_reset_tail_pointer(skb);
2634
2635 if (from_card_up) {
2636 rxdp3->Buffer0_ptr =
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN, PCI_DMA_FROMDEVICE);
2639 if (pci_dma_mapping_error(nic->pdev,
2640 rxdp3->Buffer0_ptr))
2641 goto pci_map_failed;
2642 } else
2643 pci_dma_sync_single_for_device(ring->pdev,
2644 (dma_addr_t) rxdp3->Buffer0_ptr,
2645 BUF0_LEN, PCI_DMA_FROMDEVICE);
2646
2647 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2648 if (ring->rxd_mode == RXD_MODE_3B) {
2649 /* Two buffer mode */
2650
2651 /*
2652 * Buffer2 will have L3/L4 header plus
2653 * L4 payload
2654 */
2655 rxdp3->Buffer2_ptr = pci_map_single
2656 (ring->pdev, skb->data, ring->mtu + 4,
2657 PCI_DMA_FROMDEVICE);
2658
2659 if (pci_dma_mapping_error(nic->pdev,
2660 rxdp3->Buffer2_ptr))
2661 goto pci_map_failed;
2662
2663 if (from_card_up) {
2664 rxdp3->Buffer1_ptr =
2665 pci_map_single(ring->pdev,
2666 ba->ba_1, BUF1_LEN,
2667 PCI_DMA_FROMDEVICE);
2668
2669 if (pci_dma_mapping_error(nic->pdev,
2670 rxdp3->Buffer1_ptr)) {
2671 pci_unmap_single
2672 (ring->pdev,
2673 (dma_addr_t)(unsigned long)
2674 skb->data,
2675 ring->mtu + 4,
2676 PCI_DMA_FROMDEVICE);
2677 goto pci_map_failed;
2678 }
2679 }
2680 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2681 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2682 (ring->mtu + 4);
2683 }
2684 rxdp->Control_2 |= s2BIT(0);
2685 rxdp->Host_Control = (unsigned long) (skb);
2686 }
2687 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2688 rxdp->Control_1 |= RXD_OWN_XENA;
2689 off++;
2690 if (off == (ring->rxd_count + 1))
2691 off = 0;
2692 ring->rx_curr_put_info.offset = off;
2693
2694 rxdp->Control_2 |= SET_RXD_MARKER;
2695 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2696 if (first_rxdp) {
2697 wmb();
2698 first_rxdp->Control_1 |= RXD_OWN_XENA;
2699 }
2700 first_rxdp = rxdp;
2701 }
2702 ring->rx_bufs_left += 1;
2703 alloc_tab++;
2704 }
2705
2706 end:
2707 /* Transfer ownership of first descriptor to adapter just before
2708 * exiting. Before that, use memory barrier so that ownership
2709 * and other fields are seen by adapter correctly.
2710 */
2711 if (first_rxdp) {
2712 wmb();
2713 first_rxdp->Control_1 |= RXD_OWN_XENA;
2714 }
2715
2716 return SUCCESS;
2717 pci_map_failed:
2718 stats->pci_map_fail_cnt++;
2719 stats->mem_freed += skb->truesize;
2720 dev_kfree_skb_irq(skb);
2721 return -ENOMEM;
2722 }
2723
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725 {
2726 struct net_device *dev = sp->dev;
2727 int j;
2728 struct sk_buff *skb;
2729 struct RxD_t *rxdp;
2730 struct mac_info *mac_control;
2731 struct buffAdd *ba;
2732 struct RxD1 *rxdp1;
2733 struct RxD3 *rxdp3;
2734
2735 mac_control = &sp->mac_control;
2736 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2737 rxdp = mac_control->rings[ring_no].
2738 rx_blocks[blk].rxds[j].virt_addr;
2739 skb = (struct sk_buff *)
2740 ((unsigned long) rxdp->Host_Control);
2741 if (!skb) {
2742 continue;
2743 }
2744 if (sp->rxd_mode == RXD_MODE_1) {
2745 rxdp1 = (struct RxD1*)rxdp;
2746 pci_unmap_single(sp->pdev, (dma_addr_t)
2747 rxdp1->Buffer0_ptr,
2748 dev->mtu +
2749 HEADER_ETHERNET_II_802_3_SIZE
2750 + HEADER_802_2_SIZE +
2751 HEADER_SNAP_SIZE,
2752 PCI_DMA_FROMDEVICE);
2753 memset(rxdp, 0, sizeof(struct RxD1));
2754 } else if(sp->rxd_mode == RXD_MODE_3B) {
2755 rxdp3 = (struct RxD3*)rxdp;
2756 ba = &mac_control->rings[ring_no].
2757 ba[blk][j];
2758 pci_unmap_single(sp->pdev, (dma_addr_t)
2759 rxdp3->Buffer0_ptr,
2760 BUF0_LEN,
2761 PCI_DMA_FROMDEVICE);
2762 pci_unmap_single(sp->pdev, (dma_addr_t)
2763 rxdp3->Buffer1_ptr,
2764 BUF1_LEN,
2765 PCI_DMA_FROMDEVICE);
2766 pci_unmap_single(sp->pdev, (dma_addr_t)
2767 rxdp3->Buffer2_ptr,
2768 dev->mtu + 4,
2769 PCI_DMA_FROMDEVICE);
2770 memset(rxdp, 0, sizeof(struct RxD3));
2771 }
2772 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2773 dev_kfree_skb(skb);
2774 mac_control->rings[ring_no].rx_bufs_left -= 1;
2775 }
2776 }
2777
2778 /**
2779 * free_rx_buffers - Frees all Rx buffers
2780 * @sp: device private variable.
2781 * Description:
2782 * This function will free all Rx buffers allocated by host.
2783 * Return Value:
2784 * NONE.
2785 */
2786
2787 static void free_rx_buffers(struct s2io_nic *sp)
2788 {
2789 struct net_device *dev = sp->dev;
2790 int i, blk = 0, buf_cnt = 0;
2791 struct mac_info *mac_control;
2792 struct config_param *config;
2793
2794 mac_control = &sp->mac_control;
2795 config = &sp->config;
2796
2797 for (i = 0; i < config->rx_ring_num; i++) {
2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799 free_rxd_blk(sp,i,blk);
2800
2801 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2803 mac_control->rings[i].rx_curr_put_info.offset = 0;
2804 mac_control->rings[i].rx_curr_get_info.offset = 0;
2805 mac_control->rings[i].rx_bufs_left = 0;
2806 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2807 dev->name, buf_cnt, i);
2808 }
2809 }
2810
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2812 {
2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2815 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2816 }
2817 return 0;
2818 }
2819
2820 /**
2821 * s2io_poll - Rx interrupt handler for NAPI support
2822 * @napi : pointer to the napi structure.
2823 * @budget : The number of packets that were budgeted to be processed
2824 * during one pass through the 'Poll" function.
2825 * Description:
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2829 * Return value:
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2831 */
2832
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2834 {
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
2837 struct config_param *config;
2838 struct mac_info *mac_control;
2839 int pkts_processed = 0;
2840 u8 __iomem *addr = NULL;
2841 u8 val8 = 0;
2842 struct s2io_nic *nic = netdev_priv(dev);
2843 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2844 int budget_org = budget;
2845
2846 config = &nic->config;
2847 mac_control = &nic->mac_control;
2848
2849 if (unlikely(!is_s2io_card_up(nic)))
2850 return 0;
2851
2852 pkts_processed = rx_intr_handler(ring, budget);
2853 s2io_chk_rx_buffers(nic, ring);
2854
2855 if (pkts_processed < budget_org) {
2856 napi_complete(napi);
2857 /*Re Enable MSI-Rx Vector*/
2858 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2859 addr += 7 - ring->ring_no;
2860 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2861 writeb(val8, addr);
2862 val8 = readb(addr);
2863 }
2864 return pkts_processed;
2865 }
2866 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2867 {
2868 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2869 struct ring_info *ring;
2870 struct config_param *config;
2871 struct mac_info *mac_control;
2872 int pkts_processed = 0;
2873 int ring_pkts_processed, i;
2874 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2875 int budget_org = budget;
2876
2877 config = &nic->config;
2878 mac_control = &nic->mac_control;
2879
2880 if (unlikely(!is_s2io_card_up(nic)))
2881 return 0;
2882
2883 for (i = 0; i < config->rx_ring_num; i++) {
2884 ring = &mac_control->rings[i];
2885 ring_pkts_processed = rx_intr_handler(ring, budget);
2886 s2io_chk_rx_buffers(nic, ring);
2887 pkts_processed += ring_pkts_processed;
2888 budget -= ring_pkts_processed;
2889 if (budget <= 0)
2890 break;
2891 }
2892 if (pkts_processed < budget_org) {
2893 napi_complete(napi);
2894 /* Re enable the Rx interrupts for the ring */
2895 writeq(0, &bar0->rx_traffic_mask);
2896 readl(&bar0->rx_traffic_mask);
2897 }
2898 return pkts_processed;
2899 }
2900
2901 #ifdef CONFIG_NET_POLL_CONTROLLER
2902 /**
2903 * s2io_netpoll - netpoll event handler entry point
2904 * @dev : pointer to the device structure.
2905 * Description:
2906 * This function will be called by upper layer to check for events on the
2907 * interface in situations where interrupts are disabled. It is used for
2908 * specific in-kernel networking tasks, such as remote consoles and kernel
2909 * debugging over the network (example netdump in RedHat).
2910 */
2911 static void s2io_netpoll(struct net_device *dev)
2912 {
2913 struct s2io_nic *nic = netdev_priv(dev);
2914 struct mac_info *mac_control;
2915 struct config_param *config;
2916 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2917 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2918 int i;
2919
2920 if (pci_channel_offline(nic->pdev))
2921 return;
2922
2923 disable_irq(dev->irq);
2924
2925 mac_control = &nic->mac_control;
2926 config = &nic->config;
2927
2928 writeq(val64, &bar0->rx_traffic_int);
2929 writeq(val64, &bar0->tx_traffic_int);
2930
2931 /* we need to free up the transmitted skbufs or else netpoll will
2932 * run out of skbs and will fail and eventually netpoll application such
2933 * as netdump will fail.
2934 */
2935 for (i = 0; i < config->tx_fifo_num; i++)
2936 tx_intr_handler(&mac_control->fifos[i]);
2937
2938 /* check for received packet and indicate up to network */
2939 for (i = 0; i < config->rx_ring_num; i++)
2940 rx_intr_handler(&mac_control->rings[i], 0);
2941
2942 for (i = 0; i < config->rx_ring_num; i++) {
2943 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2944 -ENOMEM) {
2945 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2946 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2947 break;
2948 }
2949 }
2950 enable_irq(dev->irq);
2951 return;
2952 }
2953 #endif
2954
2955 /**
2956 * rx_intr_handler - Rx interrupt handler
2957 * @ring_info: per ring structure.
2958 * @budget: budget for napi processing.
2959 * Description:
2960 * If the interrupt is because of a received frame or if the
2961 * receive ring contains fresh as yet un-processed frames,this function is
2962 * called. It picks out the RxD at which place the last Rx processing had
2963 * stopped and sends the skb to the OSM's Rx handler and then increments
2964 * the offset.
2965 * Return Value:
2966 * No. of napi packets processed.
2967 */
2968 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2969 {
2970 int get_block, put_block;
2971 struct rx_curr_get_info get_info, put_info;
2972 struct RxD_t *rxdp;
2973 struct sk_buff *skb;
2974 int pkt_cnt = 0, napi_pkts = 0;
2975 int i;
2976 struct RxD1* rxdp1;
2977 struct RxD3* rxdp3;
2978
2979 get_info = ring_data->rx_curr_get_info;
2980 get_block = get_info.block_index;
2981 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2982 put_block = put_info.block_index;
2983 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2984
2985 while (RXD_IS_UP2DT(rxdp)) {
2986 /*
2987 * If your are next to put index then it's
2988 * FIFO full condition
2989 */
2990 if ((get_block == put_block) &&
2991 (get_info.offset + 1) == put_info.offset) {
2992 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2993 ring_data->dev->name);
2994 break;
2995 }
2996 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2997 if (skb == NULL) {
2998 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2999 ring_data->dev->name);
3000 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3001 return 0;
3002 }
3003 if (ring_data->rxd_mode == RXD_MODE_1) {
3004 rxdp1 = (struct RxD1*)rxdp;
3005 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3006 rxdp1->Buffer0_ptr,
3007 ring_data->mtu +
3008 HEADER_ETHERNET_II_802_3_SIZE +
3009 HEADER_802_2_SIZE +
3010 HEADER_SNAP_SIZE,
3011 PCI_DMA_FROMDEVICE);
3012 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3013 rxdp3 = (struct RxD3*)rxdp;
3014 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3015 rxdp3->Buffer0_ptr,
3016 BUF0_LEN, PCI_DMA_FROMDEVICE);
3017 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3018 rxdp3->Buffer2_ptr,
3019 ring_data->mtu + 4,
3020 PCI_DMA_FROMDEVICE);
3021 }
3022 prefetch(skb->data);
3023 rx_osm_handler(ring_data, rxdp);
3024 get_info.offset++;
3025 ring_data->rx_curr_get_info.offset = get_info.offset;
3026 rxdp = ring_data->rx_blocks[get_block].
3027 rxds[get_info.offset].virt_addr;
3028 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3029 get_info.offset = 0;
3030 ring_data->rx_curr_get_info.offset = get_info.offset;
3031 get_block++;
3032 if (get_block == ring_data->block_count)
3033 get_block = 0;
3034 ring_data->rx_curr_get_info.block_index = get_block;
3035 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3036 }
3037
3038 if (ring_data->nic->config.napi) {
3039 budget--;
3040 napi_pkts++;
3041 if (!budget)
3042 break;
3043 }
3044 pkt_cnt++;
3045 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3046 break;
3047 }
3048 if (ring_data->lro) {
3049 /* Clear all LRO sessions before exiting */
3050 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3051 struct lro *lro = &ring_data->lro0_n[i];
3052 if (lro->in_use) {
3053 update_L3L4_header(ring_data->nic, lro);
3054 queue_rx_frame(lro->parent, lro->vlan_tag);
3055 clear_lro_session(lro);
3056 }
3057 }
3058 }
3059 return(napi_pkts);
3060 }
3061
3062 /**
3063 * tx_intr_handler - Transmit interrupt handler
3064 * @nic : device private variable
3065 * Description:
3066 * If an interrupt was raised to indicate DMA complete of the
3067 * Tx packet, this function is called. It identifies the last TxD
3068 * whose buffer was freed and frees all skbs whose data have already
3069 * DMA'ed into the NICs internal memory.
3070 * Return Value:
3071 * NONE
3072 */
3073
3074 static void tx_intr_handler(struct fifo_info *fifo_data)
3075 {
3076 struct s2io_nic *nic = fifo_data->nic;
3077 struct tx_curr_get_info get_info, put_info;
3078 struct sk_buff *skb = NULL;
3079 struct TxD *txdlp;
3080 int pkt_cnt = 0;
3081 unsigned long flags = 0;
3082 u8 err_mask;
3083
3084 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3085 return;
3086
3087 get_info = fifo_data->tx_curr_get_info;
3088 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3089 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3090 list_virt_addr;
3091 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3092 (get_info.offset != put_info.offset) &&
3093 (txdlp->Host_Control)) {
3094 /* Check for TxD errors */
3095 if (txdlp->Control_1 & TXD_T_CODE) {
3096 unsigned long long err;
3097 err = txdlp->Control_1 & TXD_T_CODE;
3098 if (err & 0x1) {
3099 nic->mac_control.stats_info->sw_stat.
3100 parity_err_cnt++;
3101 }
3102
3103 /* update t_code statistics */
3104 err_mask = err >> 48;
3105 switch(err_mask) {
3106 case 2:
3107 nic->mac_control.stats_info->sw_stat.
3108 tx_buf_abort_cnt++;
3109 break;
3110
3111 case 3:
3112 nic->mac_control.stats_info->sw_stat.
3113 tx_desc_abort_cnt++;
3114 break;
3115
3116 case 7:
3117 nic->mac_control.stats_info->sw_stat.
3118 tx_parity_err_cnt++;
3119 break;
3120
3121 case 10:
3122 nic->mac_control.stats_info->sw_stat.
3123 tx_link_loss_cnt++;
3124 break;
3125
3126 case 15:
3127 nic->mac_control.stats_info->sw_stat.
3128 tx_list_proc_err_cnt++;
3129 break;
3130 }
3131 }
3132
3133 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3134 if (skb == NULL) {
3135 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3136 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3137 __func__);
3138 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3139 return;
3140 }
3141 pkt_cnt++;
3142
3143 /* Updating the statistics block */
3144 nic->dev->stats.tx_bytes += skb->len;
3145 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3146 dev_kfree_skb_irq(skb);
3147
3148 get_info.offset++;
3149 if (get_info.offset == get_info.fifo_len + 1)
3150 get_info.offset = 0;
3151 txdlp = (struct TxD *) fifo_data->list_info
3152 [get_info.offset].list_virt_addr;
3153 fifo_data->tx_curr_get_info.offset =
3154 get_info.offset;
3155 }
3156
3157 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3158
3159 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3160 }
3161
3162 /**
3163 * s2io_mdio_write - Function to write in to MDIO registers
3164 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3165 * @addr : address value
3166 * @value : data value
3167 * @dev : pointer to net_device structure
3168 * Description:
3169 * This function is used to write values to the MDIO registers
3170 * NONE
3171 */
3172 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3173 {
3174 u64 val64 = 0x0;
3175 struct s2io_nic *sp = netdev_priv(dev);
3176 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3177
3178 //address transaction
3179 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3180 | MDIO_MMD_DEV_ADDR(mmd_type)
3181 | MDIO_MMS_PRT_ADDR(0x0);
3182 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64, &bar0->mdio_control);
3185 udelay(100);
3186
3187 //Data transaction
3188 val64 = 0x0;
3189 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3190 | MDIO_MMD_DEV_ADDR(mmd_type)
3191 | MDIO_MMS_PRT_ADDR(0x0)
3192 | MDIO_MDIO_DATA(value)
3193 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3194 writeq(val64, &bar0->mdio_control);
3195 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3196 writeq(val64, &bar0->mdio_control);
3197 udelay(100);
3198
3199 val64 = 0x0;
3200 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3201 | MDIO_MMD_DEV_ADDR(mmd_type)
3202 | MDIO_MMS_PRT_ADDR(0x0)
3203 | MDIO_OP(MDIO_OP_READ_TRANS);
3204 writeq(val64, &bar0->mdio_control);
3205 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3206 writeq(val64, &bar0->mdio_control);
3207 udelay(100);
3208
3209 }
3210
3211 /**
3212 * s2io_mdio_read - Function to write in to MDIO registers
3213 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3214 * @addr : address value
3215 * @dev : pointer to net_device structure
3216 * Description:
3217 * This function is used to read values to the MDIO registers
3218 * NONE
3219 */
3220 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3221 {
3222 u64 val64 = 0x0;
3223 u64 rval64 = 0x0;
3224 struct s2io_nic *sp = netdev_priv(dev);
3225 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3226
3227 /* address transaction */
3228 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3229 | MDIO_MMD_DEV_ADDR(mmd_type)
3230 | MDIO_MMS_PRT_ADDR(0x0);
3231 writeq(val64, &bar0->mdio_control);
3232 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233 writeq(val64, &bar0->mdio_control);
3234 udelay(100);
3235
3236 /* Data transaction */
3237 val64 = 0x0;
3238 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3239 | MDIO_MMD_DEV_ADDR(mmd_type)
3240 | MDIO_MMS_PRT_ADDR(0x0)
3241 | MDIO_OP(MDIO_OP_READ_TRANS);
3242 writeq(val64, &bar0->mdio_control);
3243 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3244 writeq(val64, &bar0->mdio_control);
3245 udelay(100);
3246
3247 /* Read the value from regs */
3248 rval64 = readq(&bar0->mdio_control);
3249 rval64 = rval64 & 0xFFFF0000;
3250 rval64 = rval64 >> 16;
3251 return rval64;
3252 }
3253 /**
3254 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3255 * @counter : couter value to be updated
3256 * @flag : flag to indicate the status
3257 * @type : counter type
3258 * Description:
3259 * This function is to check the status of the xpak counters value
3260 * NONE
3261 */
3262
3263 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3264 {
3265 u64 mask = 0x3;
3266 u64 val64;
3267 int i;
3268 for(i = 0; i <index; i++)
3269 mask = mask << 0x2;
3270
3271 if(flag > 0)
3272 {
3273 *counter = *counter + 1;
3274 val64 = *regs_stat & mask;
3275 val64 = val64 >> (index * 0x2);
3276 val64 = val64 + 1;
3277 if(val64 == 3)
3278 {
3279 switch(type)
3280 {
3281 case 1:
3282 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3283 "service. Excessive temperatures may "
3284 "result in premature transceiver "
3285 "failure \n");
3286 break;
3287 case 2:
3288 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3289 "service Excessive bias currents may "
3290 "indicate imminent laser diode "
3291 "failure \n");
3292 break;
3293 case 3:
3294 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3295 "service Excessive laser output "
3296 "power may saturate far-end "
3297 "receiver\n");
3298 break;
3299 default:
3300 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3301 "type \n");
3302 }
3303 val64 = 0x0;
3304 }
3305 val64 = val64 << (index * 0x2);
3306 *regs_stat = (*regs_stat & (~mask)) | (val64);
3307
3308 } else {
3309 *regs_stat = *regs_stat & (~mask);
3310 }
3311 }
3312
3313 /**
3314 * s2io_updt_xpak_counter - Function to update the xpak counters
3315 * @dev : pointer to net_device struct
3316 * Description:
3317 * This function is to upate the status of the xpak counters value
3318 * NONE
3319 */
3320 static void s2io_updt_xpak_counter(struct net_device *dev)
3321 {
3322 u16 flag = 0x0;
3323 u16 type = 0x0;
3324 u16 val16 = 0x0;
3325 u64 val64 = 0x0;
3326 u64 addr = 0x0;
3327
3328 struct s2io_nic *sp = netdev_priv(dev);
3329 struct stat_block *stat_info = sp->mac_control.stats_info;
3330
3331 /* Check the communication with the MDIO slave */
3332 addr = MDIO_CTRL1;
3333 val64 = 0x0;
3334 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3335 if((val64 == 0xFFFF) || (val64 == 0x0000))
3336 {
3337 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3338 "Returned %llx\n", (unsigned long long)val64);
3339 return;
3340 }
3341
3342 /* Check for the expected value of control reg 1 */
3343 if(val64 != MDIO_CTRL1_SPEED10G)
3344 {
3345 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3346 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
3347 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3348 return;
3349 }
3350
3351 /* Loading the DOM register to MDIO register */
3352 addr = 0xA100;
3353 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3354 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3355
3356 /* Reading the Alarm flags */
3357 addr = 0xA070;
3358 val64 = 0x0;
3359 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3360
3361 flag = CHECKBIT(val64, 0x7);
3362 type = 1;
3363 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3364 &stat_info->xpak_stat.xpak_regs_stat,
3365 0x0, flag, type);
3366
3367 if(CHECKBIT(val64, 0x6))
3368 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3369
3370 flag = CHECKBIT(val64, 0x3);
3371 type = 2;
3372 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3373 &stat_info->xpak_stat.xpak_regs_stat,
3374 0x2, flag, type);
3375
3376 if(CHECKBIT(val64, 0x2))
3377 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3378
3379 flag = CHECKBIT(val64, 0x1);
3380 type = 3;
3381 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3382 &stat_info->xpak_stat.xpak_regs_stat,
3383 0x4, flag, type);
3384
3385 if(CHECKBIT(val64, 0x0))
3386 stat_info->xpak_stat.alarm_laser_output_power_low++;
3387
3388 /* Reading the Warning flags */
3389 addr = 0xA074;
3390 val64 = 0x0;
3391 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3392
3393 if(CHECKBIT(val64, 0x7))
3394 stat_info->xpak_stat.warn_transceiver_temp_high++;
3395
3396 if(CHECKBIT(val64, 0x6))
3397 stat_info->xpak_stat.warn_transceiver_temp_low++;
3398
3399 if(CHECKBIT(val64, 0x3))
3400 stat_info->xpak_stat.warn_laser_bias_current_high++;
3401
3402 if(CHECKBIT(val64, 0x2))
3403 stat_info->xpak_stat.warn_laser_bias_current_low++;
3404
3405 if(CHECKBIT(val64, 0x1))
3406 stat_info->xpak_stat.warn_laser_output_power_high++;
3407
3408 if(CHECKBIT(val64, 0x0))
3409 stat_info->xpak_stat.warn_laser_output_power_low++;
3410 }
3411
3412 /**
3413 * wait_for_cmd_complete - waits for a command to complete.
3414 * @sp : private member of the device structure, which is a pointer to the
3415 * s2io_nic structure.
3416 * Description: Function that waits for a command to Write into RMAC
3417 * ADDR DATA registers to be completed and returns either success or
3418 * error depending on whether the command was complete or not.
3419 * Return value:
3420 * SUCCESS on success and FAILURE on failure.
3421 */
3422
3423 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3424 int bit_state)
3425 {
3426 int ret = FAILURE, cnt = 0, delay = 1;
3427 u64 val64;
3428
3429 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3430 return FAILURE;
3431
3432 do {
3433 val64 = readq(addr);
3434 if (bit_state == S2IO_BIT_RESET) {
3435 if (!(val64 & busy_bit)) {
3436 ret = SUCCESS;
3437 break;
3438 }
3439 } else {
3440 if (!(val64 & busy_bit)) {
3441 ret = SUCCESS;
3442 break;
3443 }
3444 }
3445
3446 if(in_interrupt())
3447 mdelay(delay);
3448 else
3449 msleep(delay);
3450
3451 if (++cnt >= 10)
3452 delay = 50;
3453 } while (cnt < 20);
3454 return ret;
3455 }
3456 /*
3457 * check_pci_device_id - Checks if the device id is supported
3458 * @id : device id
3459 * Description: Function to check if the pci device id is supported by driver.
3460 * Return value: Actual device id if supported else PCI_ANY_ID
3461 */
3462 static u16 check_pci_device_id(u16 id)
3463 {
3464 switch (id) {
3465 case PCI_DEVICE_ID_HERC_WIN:
3466 case PCI_DEVICE_ID_HERC_UNI:
3467 return XFRAME_II_DEVICE;
3468 case PCI_DEVICE_ID_S2IO_UNI:
3469 case PCI_DEVICE_ID_S2IO_WIN:
3470 return XFRAME_I_DEVICE;
3471 default:
3472 return PCI_ANY_ID;
3473 }
3474 }
3475
3476 /**
3477 * s2io_reset - Resets the card.
3478 * @sp : private member of the device structure.
3479 * Description: Function to Reset the card. This function then also
3480 * restores the previously saved PCI configuration space registers as
3481 * the card reset also resets the configuration space.
3482 * Return value:
3483 * void.
3484 */
3485
3486 static void s2io_reset(struct s2io_nic * sp)
3487 {
3488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3489 u64 val64;
3490 u16 subid, pci_cmd;
3491 int i;
3492 u16 val16;
3493 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3494 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3495
3496 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3497 __func__, sp->dev->name);
3498
3499 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3500 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3501
3502 val64 = SW_RESET_ALL;
3503 writeq(val64, &bar0->sw_reset);
3504 if (strstr(sp->product_name, "CX4")) {
3505 msleep(750);
3506 }
3507 msleep(250);
3508 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3509
3510 /* Restore the PCI state saved during initialization. */
3511 pci_restore_state(sp->pdev);
3512 pci_read_config_word(sp->pdev, 0x2, &val16);
3513 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3514 break;
3515 msleep(200);
3516 }
3517
3518 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3519 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3520 }
3521
3522 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3523
3524 s2io_init_pci(sp);
3525
3526 /* Set swapper to enable I/O register access */
3527 s2io_set_swapper(sp);
3528
3529 /* restore mac_addr entries */
3530 do_s2io_restore_unicast_mc(sp);
3531
3532 /* Restore the MSIX table entries from local variables */
3533 restore_xmsi_data(sp);
3534
3535 /* Clear certain PCI/PCI-X fields after reset */
3536 if (sp->device_type == XFRAME_II_DEVICE) {
3537 /* Clear "detected parity error" bit */
3538 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3539
3540 /* Clearing PCIX Ecc status register */
3541 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3542
3543 /* Clearing PCI_STATUS error reflected here */
3544 writeq(s2BIT(62), &bar0->txpic_int_reg);
3545 }
3546
3547 /* Reset device statistics maintained by OS */
3548 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3549
3550 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3551 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3552 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3553 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3554 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3555 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3556 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3557 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3558 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3559 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3560 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3561 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3562 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3563 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3564 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3565 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3566 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3567 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3568 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3569
3570 /* SXE-002: Configure link and activity LED to turn it off */
3571 subid = sp->pdev->subsystem_device;
3572 if (((subid & 0xFF) >= 0x07) &&
3573 (sp->device_type == XFRAME_I_DEVICE)) {
3574 val64 = readq(&bar0->gpio_control);
3575 val64 |= 0x0000800000000000ULL;
3576 writeq(val64, &bar0->gpio_control);
3577 val64 = 0x0411040400000000ULL;
3578 writeq(val64, (void __iomem *)bar0 + 0x2700);
3579 }
3580
3581 /*
3582 * Clear spurious ECC interrupts that would have occured on
3583 * XFRAME II cards after reset.
3584 */
3585 if (sp->device_type == XFRAME_II_DEVICE) {
3586 val64 = readq(&bar0->pcc_err_reg);
3587 writeq(val64, &bar0->pcc_err_reg);
3588 }
3589
3590 sp->device_enabled_once = FALSE;
3591 }
3592
3593 /**
3594 * s2io_set_swapper - to set the swapper controle on the card
3595 * @sp : private member of the device structure,
3596 * pointer to the s2io_nic structure.
3597 * Description: Function to set the swapper control on the card
3598 * correctly depending on the 'endianness' of the system.
3599 * Return value:
3600 * SUCCESS on success and FAILURE on failure.
3601 */
3602
3603 static int s2io_set_swapper(struct s2io_nic * sp)
3604 {
3605 struct net_device *dev = sp->dev;
3606 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3607 u64 val64, valt, valr;
3608
3609 /*
3610 * Set proper endian settings and verify the same by reading
3611 * the PIF Feed-back register.
3612 */
3613
3614 val64 = readq(&bar0->pif_rd_swapper_fb);
3615 if (val64 != 0x0123456789ABCDEFULL) {
3616 int i = 0;
3617 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3618 0x8100008181000081ULL, /* FE=1, SE=0 */
3619 0x4200004242000042ULL, /* FE=0, SE=1 */
3620 0}; /* FE=0, SE=0 */
3621
3622 while(i<4) {
3623 writeq(value[i], &bar0->swapper_ctrl);
3624 val64 = readq(&bar0->pif_rd_swapper_fb);
3625 if (val64 == 0x0123456789ABCDEFULL)
3626 break;
3627 i++;
3628 }
3629 if (i == 4) {
3630 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3631 dev->name);
3632 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3633 (unsigned long long) val64);
3634 return FAILURE;
3635 }
3636 valr = value[i];
3637 } else {
3638 valr = readq(&bar0->swapper_ctrl);
3639 }
3640
3641 valt = 0x0123456789ABCDEFULL;
3642 writeq(valt, &bar0->xmsi_address);
3643 val64 = readq(&bar0->xmsi_address);
3644
3645 if(val64 != valt) {
3646 int i = 0;
3647 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3648 0x0081810000818100ULL, /* FE=1, SE=0 */
3649 0x0042420000424200ULL, /* FE=0, SE=1 */
3650 0}; /* FE=0, SE=0 */
3651
3652 while(i<4) {
3653 writeq((value[i] | valr), &bar0->swapper_ctrl);
3654 writeq(valt, &bar0->xmsi_address);
3655 val64 = readq(&bar0->xmsi_address);
3656 if(val64 == valt)
3657 break;
3658 i++;
3659 }
3660 if(i == 4) {
3661 unsigned long long x = val64;
3662 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3663 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3664 return FAILURE;
3665 }
3666 }
3667 val64 = readq(&bar0->swapper_ctrl);
3668 val64 &= 0xFFFF000000000000ULL;
3669
3670 #ifdef __BIG_ENDIAN
3671 /*
3672 * The device by default set to a big endian format, so a
3673 * big endian driver need not set anything.
3674 */
3675 val64 |= (SWAPPER_CTRL_TXP_FE |
3676 SWAPPER_CTRL_TXP_SE |
3677 SWAPPER_CTRL_TXD_R_FE |
3678 SWAPPER_CTRL_TXD_W_FE |
3679 SWAPPER_CTRL_TXF_R_FE |
3680 SWAPPER_CTRL_RXD_R_FE |
3681 SWAPPER_CTRL_RXD_W_FE |
3682 SWAPPER_CTRL_RXF_W_FE |
3683 SWAPPER_CTRL_XMSI_FE |
3684 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3685 if (sp->config.intr_type == INTA)
3686 val64 |= SWAPPER_CTRL_XMSI_SE;
3687 writeq(val64, &bar0->swapper_ctrl);
3688 #else
3689 /*
3690 * Initially we enable all bits to make it accessible by the
3691 * driver, then we selectively enable only those bits that
3692 * we want to set.
3693 */
3694 val64 |= (SWAPPER_CTRL_TXP_FE |
3695 SWAPPER_CTRL_TXP_SE |
3696 SWAPPER_CTRL_TXD_R_FE |
3697 SWAPPER_CTRL_TXD_R_SE |
3698 SWAPPER_CTRL_TXD_W_FE |
3699 SWAPPER_CTRL_TXD_W_SE |
3700 SWAPPER_CTRL_TXF_R_FE |
3701 SWAPPER_CTRL_RXD_R_FE |
3702 SWAPPER_CTRL_RXD_R_SE |
3703 SWAPPER_CTRL_RXD_W_FE |
3704 SWAPPER_CTRL_RXD_W_SE |
3705 SWAPPER_CTRL_RXF_W_FE |
3706 SWAPPER_CTRL_XMSI_FE |
3707 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3708 if (sp->config.intr_type == INTA)
3709 val64 |= SWAPPER_CTRL_XMSI_SE;
3710 writeq(val64, &bar0->swapper_ctrl);
3711 #endif
3712 val64 = readq(&bar0->swapper_ctrl);
3713
3714 /*
3715 * Verifying if endian settings are accurate by reading a
3716 * feedback register.
3717 */
3718 val64 = readq(&bar0->pif_rd_swapper_fb);
3719 if (val64 != 0x0123456789ABCDEFULL) {
3720 /* Endian settings are incorrect, calls for another dekko. */
3721 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3722 dev->name);
3723 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3724 (unsigned long long) val64);
3725 return FAILURE;
3726 }
3727
3728 return SUCCESS;
3729 }
3730
3731 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3732 {
3733 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3734 u64 val64;
3735 int ret = 0, cnt = 0;
3736
3737 do {
3738 val64 = readq(&bar0->xmsi_access);
3739 if (!(val64 & s2BIT(15)))
3740 break;
3741 mdelay(1);
3742 cnt++;
3743 } while(cnt < 5);
3744 if (cnt == 5) {
3745 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3746 ret = 1;
3747 }
3748
3749 return ret;
3750 }
3751
3752 static void restore_xmsi_data(struct s2io_nic *nic)
3753 {
3754 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3755 u64 val64;
3756 int i, msix_index;
3757
3758
3759 if (nic->device_type == XFRAME_I_DEVICE)
3760 return;
3761
3762 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3763 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3764 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3765 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3766 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3767 writeq(val64, &bar0->xmsi_access);
3768 if (wait_for_msix_trans(nic, msix_index)) {
3769 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3770 continue;
3771 }
3772 }
3773 }
3774
3775 static void store_xmsi_data(struct s2io_nic *nic)
3776 {
3777 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3778 u64 val64, addr, data;
3779 int i, msix_index;
3780
3781 if (nic->device_type == XFRAME_I_DEVICE)
3782 return;
3783
3784 /* Store and display */
3785 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3786 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3787 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3788 writeq(val64, &bar0->xmsi_access);
3789 if (wait_for_msix_trans(nic, msix_index)) {
3790 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3791 continue;
3792 }
3793 addr = readq(&bar0->xmsi_address);
3794 data = readq(&bar0->xmsi_data);
3795 if (addr && data) {
3796 nic->msix_info[i].addr = addr;
3797 nic->msix_info[i].data = data;
3798 }
3799 }
3800 }
3801
3802 static int s2io_enable_msi_x(struct s2io_nic *nic)
3803 {
3804 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3805 u64 rx_mat;
3806 u16 msi_control; /* Temp variable */
3807 int ret, i, j, msix_indx = 1;
3808
3809 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3810 GFP_KERNEL);
3811 if (!nic->entries) {
3812 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3813 __func__);
3814 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3815 return -ENOMEM;
3816 }
3817 nic->mac_control.stats_info->sw_stat.mem_allocated
3818 += (nic->num_entries * sizeof(struct msix_entry));
3819
3820 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3821
3822 nic->s2io_entries =
3823 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3824 GFP_KERNEL);
3825 if (!nic->s2io_entries) {
3826 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3827 __func__);
3828 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3829 kfree(nic->entries);
3830 nic->mac_control.stats_info->sw_stat.mem_freed
3831 += (nic->num_entries * sizeof(struct msix_entry));
3832 return -ENOMEM;
3833 }
3834 nic->mac_control.stats_info->sw_stat.mem_allocated
3835 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3836 memset(nic->s2io_entries, 0,
3837 nic->num_entries * sizeof(struct s2io_msix_entry));
3838
3839 nic->entries[0].entry = 0;
3840 nic->s2io_entries[0].entry = 0;
3841 nic->s2io_entries[0].in_use = MSIX_FLG;
3842 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3843 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3844
3845 for (i = 1; i < nic->num_entries; i++) {
3846 nic->entries[i].entry = ((i - 1) * 8) + 1;
3847 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3848 nic->s2io_entries[i].arg = NULL;
3849 nic->s2io_entries[i].in_use = 0;
3850 }
3851
3852 rx_mat = readq(&bar0->rx_mat);
3853 for (j = 0; j < nic->config.rx_ring_num; j++) {
3854 rx_mat |= RX_MAT_SET(j, msix_indx);
3855 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3856 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3857 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3858 msix_indx += 8;
3859 }
3860 writeq(rx_mat, &bar0->rx_mat);
3861 readq(&bar0->rx_mat);
3862
3863 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3864 /* We fail init if error or we get less vectors than min required */
3865 if (ret) {
3866 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
3867 kfree(nic->entries);
3868 nic->mac_control.stats_info->sw_stat.mem_freed
3869 += (nic->num_entries * sizeof(struct msix_entry));
3870 kfree(nic->s2io_entries);
3871 nic->mac_control.stats_info->sw_stat.mem_freed
3872 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3873 nic->entries = NULL;
3874 nic->s2io_entries = NULL;
3875 return -ENOMEM;
3876 }
3877
3878 /*
3879 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3880 * in the herc NIC. (Temp change, needs to be removed later)
3881 */
3882 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3883 msi_control |= 0x1; /* Enable MSI */
3884 pci_write_config_word(nic->pdev, 0x42, msi_control);
3885
3886 return 0;
3887 }
3888
3889 /* Handle software interrupt used during MSI(X) test */
3890 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3891 {
3892 struct s2io_nic *sp = dev_id;
3893
3894 sp->msi_detected = 1;
3895 wake_up(&sp->msi_wait);
3896
3897 return IRQ_HANDLED;
3898 }
3899
3900 /* Test interrupt path by forcing a a software IRQ */
3901 static int s2io_test_msi(struct s2io_nic *sp)
3902 {
3903 struct pci_dev *pdev = sp->pdev;
3904 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3905 int err;
3906 u64 val64, saved64;
3907
3908 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3909 sp->name, sp);
3910 if (err) {
3911 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3912 sp->dev->name, pci_name(pdev), pdev->irq);
3913 return err;
3914 }
3915
3916 init_waitqueue_head (&sp->msi_wait);
3917 sp->msi_detected = 0;
3918
3919 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3920 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3921 val64 |= SCHED_INT_CTRL_TIMER_EN;
3922 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3923 writeq(val64, &bar0->scheduled_int_ctrl);
3924
3925 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3926
3927 if (!sp->msi_detected) {
3928 /* MSI(X) test failed, go back to INTx mode */
3929 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3930 "using MSI(X) during test\n", sp->dev->name,
3931 pci_name(pdev));
3932
3933 err = -EOPNOTSUPP;
3934 }
3935
3936 free_irq(sp->entries[1].vector, sp);
3937
3938 writeq(saved64, &bar0->scheduled_int_ctrl);
3939
3940 return err;
3941 }
3942
3943 static void remove_msix_isr(struct s2io_nic *sp)
3944 {
3945 int i;
3946 u16 msi_control;
3947
3948 for (i = 0; i < sp->num_entries; i++) {
3949 if (sp->s2io_entries[i].in_use ==
3950 MSIX_REGISTERED_SUCCESS) {
3951 int vector = sp->entries[i].vector;
3952 void *arg = sp->s2io_entries[i].arg;
3953 free_irq(vector, arg);
3954 }
3955 }
3956
3957 kfree(sp->entries);
3958 kfree(sp->s2io_entries);
3959 sp->entries = NULL;
3960 sp->s2io_entries = NULL;
3961
3962 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3963 msi_control &= 0xFFFE; /* Disable MSI */
3964 pci_write_config_word(sp->pdev, 0x42, msi_control);
3965
3966 pci_disable_msix(sp->pdev);
3967 }
3968
3969 static void remove_inta_isr(struct s2io_nic *sp)
3970 {
3971 struct net_device *dev = sp->dev;
3972
3973 free_irq(sp->pdev->irq, dev);
3974 }
3975
3976 /* ********************************************************* *
3977 * Functions defined below concern the OS part of the driver *
3978 * ********************************************************* */
3979
3980 /**
3981 * s2io_open - open entry point of the driver
3982 * @dev : pointer to the device structure.
3983 * Description:
3984 * This function is the open entry point of the driver. It mainly calls a
3985 * function to allocate Rx buffers and inserts them into the buffer
3986 * descriptors and then enables the Rx part of the NIC.
3987 * Return value:
3988 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3989 * file on failure.
3990 */
3991
3992 static int s2io_open(struct net_device *dev)
3993 {
3994 struct s2io_nic *sp = netdev_priv(dev);
3995 int err = 0;
3996
3997 /*
3998 * Make sure you have link off by default every time
3999 * Nic is initialized
4000 */
4001 netif_carrier_off(dev);
4002 sp->last_link_state = 0;
4003
4004 /* Initialize H/W and enable interrupts */
4005 err = s2io_card_up(sp);
4006 if (err) {
4007 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4008 dev->name);
4009 goto hw_init_failed;
4010 }
4011
4012 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4013 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4014 s2io_card_down(sp);
4015 err = -ENODEV;
4016 goto hw_init_failed;
4017 }
4018 s2io_start_all_tx_queue(sp);
4019 return 0;
4020
4021 hw_init_failed:
4022 if (sp->config.intr_type == MSI_X) {
4023 if (sp->entries) {
4024 kfree(sp->entries);
4025 sp->mac_control.stats_info->sw_stat.mem_freed
4026 += (sp->num_entries * sizeof(struct msix_entry));
4027 }
4028 if (sp->s2io_entries) {
4029 kfree(sp->s2io_entries);
4030 sp->mac_control.stats_info->sw_stat.mem_freed
4031 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4032 }
4033 }
4034 return err;
4035 }
4036
4037 /**
4038 * s2io_close -close entry point of the driver
4039 * @dev : device pointer.
4040 * Description:
4041 * This is the stop entry point of the driver. It needs to undo exactly
4042 * whatever was done by the open entry point,thus it's usually referred to
4043 * as the close function.Among other things this function mainly stops the
4044 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4045 * Return value:
4046 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4047 * file on failure.
4048 */
4049
4050 static int s2io_close(struct net_device *dev)
4051 {
4052 struct s2io_nic *sp = netdev_priv(dev);
4053 struct config_param *config = &sp->config;
4054 u64 tmp64;
4055 int offset;
4056
4057 /* Return if the device is already closed *
4058 * Can happen when s2io_card_up failed in change_mtu *
4059 */
4060 if (!is_s2io_card_up(sp))
4061 return 0;
4062
4063 s2io_stop_all_tx_queue(sp);
4064 /* delete all populated mac entries */
4065 for (offset = 1; offset < config->max_mc_addr; offset++) {
4066 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4067 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4068 do_s2io_delete_unicast_mc(sp, tmp64);
4069 }
4070
4071 s2io_card_down(sp);
4072
4073 return 0;
4074 }
4075
4076 /**
4077 * s2io_xmit - Tx entry point of te driver
4078 * @skb : the socket buffer containing the Tx data.
4079 * @dev : device pointer.
4080 * Description :
4081 * This function is the Tx entry point of the driver. S2IO NIC supports
4082 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4083 * NOTE: when device cant queue the pkt,just the trans_start variable will
4084 * not be upadted.
4085 * Return value:
4086 * 0 on success & 1 on failure.
4087 */
4088
4089 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4090 {
4091 struct s2io_nic *sp = netdev_priv(dev);
4092 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4093 register u64 val64;
4094 struct TxD *txdp;
4095 struct TxFIFO_element __iomem *tx_fifo;
4096 unsigned long flags = 0;
4097 u16 vlan_tag = 0;
4098 struct fifo_info *fifo = NULL;
4099 struct mac_info *mac_control;
4100 struct config_param *config;
4101 int do_spin_lock = 1;
4102 int offload_type;
4103 int enable_per_list_interrupt = 0;
4104 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4105
4106 mac_control = &sp->mac_control;
4107 config = &sp->config;
4108
4109 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4110
4111 if (unlikely(skb->len <= 0)) {
4112 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4113 dev_kfree_skb_any(skb);
4114 return 0;
4115 }
4116
4117 if (!is_s2io_card_up(sp)) {
4118 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4119 dev->name);
4120 dev_kfree_skb(skb);
4121 return 0;
4122 }
4123
4124 queue = 0;
4125 if (sp->vlgrp && vlan_tx_tag_present(skb))
4126 vlan_tag = vlan_tx_tag_get(skb);
4127 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4128 if (skb->protocol == htons(ETH_P_IP)) {
4129 struct iphdr *ip;
4130 struct tcphdr *th;
4131 ip = ip_hdr(skb);
4132
4133 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4134 th = (struct tcphdr *)(((unsigned char *)ip) +
4135 ip->ihl*4);
4136
4137 if (ip->protocol == IPPROTO_TCP) {
4138 queue_len = sp->total_tcp_fifos;
4139 queue = (ntohs(th->source) +
4140 ntohs(th->dest)) &
4141 sp->fifo_selector[queue_len - 1];
4142 if (queue >= queue_len)
4143 queue = queue_len - 1;
4144 } else if (ip->protocol == IPPROTO_UDP) {
4145 queue_len = sp->total_udp_fifos;
4146 queue = (ntohs(th->source) +
4147 ntohs(th->dest)) &
4148 sp->fifo_selector[queue_len - 1];
4149 if (queue >= queue_len)
4150 queue = queue_len - 1;
4151 queue += sp->udp_fifo_idx;
4152 if (skb->len > 1024)
4153 enable_per_list_interrupt = 1;
4154 do_spin_lock = 0;
4155 }
4156 }
4157 }
4158 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4159 /* get fifo number based on skb->priority value */
4160 queue = config->fifo_mapping
4161 [skb->priority & (MAX_TX_FIFOS - 1)];
4162 fifo = &mac_control->fifos[queue];
4163
4164 if (do_spin_lock)
4165 spin_lock_irqsave(&fifo->tx_lock, flags);
4166 else {
4167 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4168 return NETDEV_TX_LOCKED;
4169 }
4170
4171 if (sp->config.multiq) {
4172 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4173 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174 return NETDEV_TX_BUSY;
4175 }
4176 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4177 if (netif_queue_stopped(dev)) {
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 return NETDEV_TX_BUSY;
4180 }
4181 }
4182
4183 put_off = (u16) fifo->tx_curr_put_info.offset;
4184 get_off = (u16) fifo->tx_curr_get_info.offset;
4185 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4186
4187 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4188 /* Avoid "put" pointer going beyond "get" pointer */
4189 if (txdp->Host_Control ||
4190 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4191 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4192 s2io_stop_tx_queue(sp, fifo->fifo_no);
4193 dev_kfree_skb(skb);
4194 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4195 return 0;
4196 }
4197
4198 offload_type = s2io_offload_type(skb);
4199 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4200 txdp->Control_1 |= TXD_TCP_LSO_EN;
4201 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4202 }
4203 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4204 txdp->Control_2 |=
4205 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4206 TXD_TX_CKO_UDP_EN);
4207 }
4208 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4210 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4211 if (enable_per_list_interrupt)
4212 if (put_off & (queue_len >> 5))
4213 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4214 if (vlan_tag) {
4215 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4217 }
4218
4219 frg_len = skb->len - skb->data_len;
4220 if (offload_type == SKB_GSO_UDP) {
4221 int ufo_size;
4222
4223 ufo_size = s2io_udp_mss(skb);
4224 ufo_size &= ~7;
4225 txdp->Control_1 |= TXD_UFO_EN;
4226 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4228 #ifdef __BIG_ENDIAN
4229 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230 fifo->ufo_in_band_v[put_off] =
4231 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4232 #else
4233 fifo->ufo_in_band_v[put_off] =
4234 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4235 #endif
4236 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4237 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4238 fifo->ufo_in_band_v,
4239 sizeof(u64), PCI_DMA_TODEVICE);
4240 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4241 goto pci_map_failed;
4242 txdp++;
4243 }
4244
4245 txdp->Buffer_Pointer = pci_map_single
4246 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4247 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4248 goto pci_map_failed;
4249
4250 txdp->Host_Control = (unsigned long) skb;
4251 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4252 if (offload_type == SKB_GSO_UDP)
4253 txdp->Control_1 |= TXD_UFO_EN;
4254
4255 frg_cnt = skb_shinfo(skb)->nr_frags;
4256 /* For fragmented SKB. */
4257 for (i = 0; i < frg_cnt; i++) {
4258 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4259 /* A '0' length fragment will be ignored */
4260 if (!frag->size)
4261 continue;
4262 txdp++;
4263 txdp->Buffer_Pointer = (u64) pci_map_page
4264 (sp->pdev, frag->page, frag->page_offset,
4265 frag->size, PCI_DMA_TODEVICE);
4266 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4267 if (offload_type == SKB_GSO_UDP)
4268 txdp->Control_1 |= TXD_UFO_EN;
4269 }
4270 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4271
4272 if (offload_type == SKB_GSO_UDP)
4273 frg_cnt++; /* as Txd0 was used for inband header */
4274
4275 tx_fifo = mac_control->tx_FIFO_start[queue];
4276 val64 = fifo->list_info[put_off].list_phy_addr;
4277 writeq(val64, &tx_fifo->TxDL_Pointer);
4278
4279 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4280 TX_FIFO_LAST_LIST);
4281 if (offload_type)
4282 val64 |= TX_FIFO_SPECIAL_FUNC;
4283
4284 writeq(val64, &tx_fifo->List_Control);
4285
4286 mmiowb();
4287
4288 put_off++;
4289 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4290 put_off = 0;
4291 fifo->tx_curr_put_info.offset = put_off;
4292
4293 /* Avoid "put" pointer going beyond "get" pointer */
4294 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4295 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4296 DBG_PRINT(TX_DBG,
4297 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4298 put_off, get_off);
4299 s2io_stop_tx_queue(sp, fifo->fifo_no);
4300 }
4301 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4302 dev->trans_start = jiffies;
4303 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4304
4305 if (sp->config.intr_type == MSI_X)
4306 tx_intr_handler(fifo);
4307
4308 return 0;
4309 pci_map_failed:
4310 stats->pci_map_fail_cnt++;
4311 s2io_stop_tx_queue(sp, fifo->fifo_no);
4312 stats->mem_freed += skb->truesize;
4313 dev_kfree_skb(skb);
4314 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4315 return 0;
4316 }
4317
4318 static void
4319 s2io_alarm_handle(unsigned long data)
4320 {
4321 struct s2io_nic *sp = (struct s2io_nic *)data;
4322 struct net_device *dev = sp->dev;
4323
4324 s2io_handle_errors(dev);
4325 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4326 }
4327
4328 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4329 {
4330 struct ring_info *ring = (struct ring_info *)dev_id;
4331 struct s2io_nic *sp = ring->nic;
4332 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4333
4334 if (unlikely(!is_s2io_card_up(sp)))
4335 return IRQ_HANDLED;
4336
4337 if (sp->config.napi) {
4338 u8 __iomem *addr = NULL;
4339 u8 val8 = 0;
4340
4341 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4342 addr += (7 - ring->ring_no);
4343 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4344 writeb(val8, addr);
4345 val8 = readb(addr);
4346 napi_schedule(&ring->napi);
4347 } else {
4348 rx_intr_handler(ring, 0);
4349 s2io_chk_rx_buffers(sp, ring);
4350 }
4351
4352 return IRQ_HANDLED;
4353 }
4354
4355 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4356 {
4357 int i;
4358 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4359 struct s2io_nic *sp = fifos->nic;
4360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4361 struct config_param *config = &sp->config;
4362 u64 reason;
4363
4364 if (unlikely(!is_s2io_card_up(sp)))
4365 return IRQ_NONE;
4366
4367 reason = readq(&bar0->general_int_status);
4368 if (unlikely(reason == S2IO_MINUS_ONE))
4369 /* Nothing much can be done. Get out */
4370 return IRQ_HANDLED;
4371
4372 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4373 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4374
4375 if (reason & GEN_INTR_TXPIC)
4376 s2io_txpic_intr_handle(sp);
4377
4378 if (reason & GEN_INTR_TXTRAFFIC)
4379 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4380
4381 for (i = 0; i < config->tx_fifo_num; i++)
4382 tx_intr_handler(&fifos[i]);
4383
4384 writeq(sp->general_int_mask, &bar0->general_int_mask);
4385 readl(&bar0->general_int_status);
4386 return IRQ_HANDLED;
4387 }
4388 /* The interrupt was not raised by us */
4389 return IRQ_NONE;
4390 }
4391
4392 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4393 {
4394 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4395 u64 val64;
4396
4397 val64 = readq(&bar0->pic_int_status);
4398 if (val64 & PIC_INT_GPIO) {
4399 val64 = readq(&bar0->gpio_int_reg);
4400 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4401 (val64 & GPIO_INT_REG_LINK_UP)) {
4402 /*
4403 * This is unstable state so clear both up/down
4404 * interrupt and adapter to re-evaluate the link state.
4405 */
4406 val64 |= GPIO_INT_REG_LINK_DOWN;
4407 val64 |= GPIO_INT_REG_LINK_UP;
4408 writeq(val64, &bar0->gpio_int_reg);
4409 val64 = readq(&bar0->gpio_int_mask);
4410 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4411 GPIO_INT_MASK_LINK_DOWN);
4412 writeq(val64, &bar0->gpio_int_mask);
4413 }
4414 else if (val64 & GPIO_INT_REG_LINK_UP) {
4415 val64 = readq(&bar0->adapter_status);
4416 /* Enable Adapter */
4417 val64 = readq(&bar0->adapter_control);
4418 val64 |= ADAPTER_CNTL_EN;
4419 writeq(val64, &bar0->adapter_control);
4420 val64 |= ADAPTER_LED_ON;
4421 writeq(val64, &bar0->adapter_control);
4422 if (!sp->device_enabled_once)
4423 sp->device_enabled_once = 1;
4424
4425 s2io_link(sp, LINK_UP);
4426 /*
4427 * unmask link down interrupt and mask link-up
4428 * intr
4429 */
4430 val64 = readq(&bar0->gpio_int_mask);
4431 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4432 val64 |= GPIO_INT_MASK_LINK_UP;
4433 writeq(val64, &bar0->gpio_int_mask);
4434
4435 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4436 val64 = readq(&bar0->adapter_status);
4437 s2io_link(sp, LINK_DOWN);
4438 /* Link is down so unmaks link up interrupt */
4439 val64 = readq(&bar0->gpio_int_mask);
4440 val64 &= ~GPIO_INT_MASK_LINK_UP;
4441 val64 |= GPIO_INT_MASK_LINK_DOWN;
4442 writeq(val64, &bar0->gpio_int_mask);
4443
4444 /* turn off LED */
4445 val64 = readq(&bar0->adapter_control);
4446 val64 = val64 &(~ADAPTER_LED_ON);
4447 writeq(val64, &bar0->adapter_control);
4448 }
4449 }
4450 val64 = readq(&bar0->gpio_int_mask);
4451 }
4452
4453 /**
4454 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4455 * @value: alarm bits
4456 * @addr: address value
4457 * @cnt: counter variable
4458 * Description: Check for alarm and increment the counter
4459 * Return Value:
4460 * 1 - if alarm bit set
4461 * 0 - if alarm bit is not set
4462 */
4463 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4464 unsigned long long *cnt)
4465 {
4466 u64 val64;
4467 val64 = readq(addr);
4468 if ( val64 & value ) {
4469 writeq(val64, addr);
4470 (*cnt)++;
4471 return 1;
4472 }
4473 return 0;
4474
4475 }
4476
4477 /**
4478 * s2io_handle_errors - Xframe error indication handler
4479 * @nic: device private variable
4480 * Description: Handle alarms such as loss of link, single or
4481 * double ECC errors, critical and serious errors.
4482 * Return Value:
4483 * NONE
4484 */
4485 static void s2io_handle_errors(void * dev_id)
4486 {
4487 struct net_device *dev = (struct net_device *) dev_id;
4488 struct s2io_nic *sp = netdev_priv(dev);
4489 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4490 u64 temp64 = 0,val64=0;
4491 int i = 0;
4492
4493 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4494 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4495
4496 if (!is_s2io_card_up(sp))
4497 return;
4498
4499 if (pci_channel_offline(sp->pdev))
4500 return;
4501
4502 memset(&sw_stat->ring_full_cnt, 0,
4503 sizeof(sw_stat->ring_full_cnt));
4504
4505 /* Handling the XPAK counters update */
4506 if(stats->xpak_timer_count < 72000) {
4507 /* waiting for an hour */
4508 stats->xpak_timer_count++;
4509 } else {
4510 s2io_updt_xpak_counter(dev);
4511 /* reset the count to zero */
4512 stats->xpak_timer_count = 0;
4513 }
4514
4515 /* Handling link status change error Intr */
4516 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4517 val64 = readq(&bar0->mac_rmac_err_reg);
4518 writeq(val64, &bar0->mac_rmac_err_reg);
4519 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4520 schedule_work(&sp->set_link_task);
4521 }
4522
4523 /* In case of a serious error, the device will be Reset. */
4524 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4525 &sw_stat->serious_err_cnt))
4526 goto reset;
4527
4528 /* Check for data parity error */
4529 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4530 &sw_stat->parity_err_cnt))
4531 goto reset;
4532
4533 /* Check for ring full counter */
4534 if (sp->device_type == XFRAME_II_DEVICE) {
4535 val64 = readq(&bar0->ring_bump_counter1);
4536 for (i=0; i<4; i++) {
4537 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4538 temp64 >>= 64 - ((i+1)*16);
4539 sw_stat->ring_full_cnt[i] += temp64;
4540 }
4541
4542 val64 = readq(&bar0->ring_bump_counter2);
4543 for (i=0; i<4; i++) {
4544 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4545 temp64 >>= 64 - ((i+1)*16);
4546 sw_stat->ring_full_cnt[i+4] += temp64;
4547 }
4548 }
4549
4550 val64 = readq(&bar0->txdma_int_status);
4551 /*check for pfc_err*/
4552 if (val64 & TXDMA_PFC_INT) {
4553 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4554 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4555 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4556 &sw_stat->pfc_err_cnt))
4557 goto reset;
4558 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4559 &sw_stat->pfc_err_cnt);
4560 }
4561
4562 /*check for tda_err*/
4563 if (val64 & TXDMA_TDA_INT) {
4564 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4565 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4566 &sw_stat->tda_err_cnt))
4567 goto reset;
4568 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4569 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4570 }
4571 /*check for pcc_err*/
4572 if (val64 & TXDMA_PCC_INT) {
4573 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4574 | PCC_N_SERR | PCC_6_COF_OV_ERR
4575 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4576 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4577 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4578 &sw_stat->pcc_err_cnt))
4579 goto reset;
4580 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4581 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4582 }
4583
4584 /*check for tti_err*/
4585 if (val64 & TXDMA_TTI_INT) {
4586 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4587 &sw_stat->tti_err_cnt))
4588 goto reset;
4589 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4590 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4591 }
4592
4593 /*check for lso_err*/
4594 if (val64 & TXDMA_LSO_INT) {
4595 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4596 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4597 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4598 goto reset;
4599 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4600 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4601 }
4602
4603 /*check for tpa_err*/
4604 if (val64 & TXDMA_TPA_INT) {
4605 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4606 &sw_stat->tpa_err_cnt))
4607 goto reset;
4608 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4609 &sw_stat->tpa_err_cnt);
4610 }
4611
4612 /*check for sm_err*/
4613 if (val64 & TXDMA_SM_INT) {
4614 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4615 &sw_stat->sm_err_cnt))
4616 goto reset;
4617 }
4618
4619 val64 = readq(&bar0->mac_int_status);
4620 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4622 &bar0->mac_tmac_err_reg,
4623 &sw_stat->mac_tmac_err_cnt))
4624 goto reset;
4625 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4626 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4627 &bar0->mac_tmac_err_reg,
4628 &sw_stat->mac_tmac_err_cnt);
4629 }
4630
4631 val64 = readq(&bar0->xgxs_int_status);
4632 if (val64 & XGXS_INT_STATUS_TXGXS) {
4633 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634 &bar0->xgxs_txgxs_err_reg,
4635 &sw_stat->xgxs_txgxs_err_cnt))
4636 goto reset;
4637 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638 &bar0->xgxs_txgxs_err_reg,
4639 &sw_stat->xgxs_txgxs_err_cnt);
4640 }
4641
4642 val64 = readq(&bar0->rxdma_int_status);
4643 if (val64 & RXDMA_INT_RC_INT_M) {
4644 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4645 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4646 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4647 goto reset;
4648 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4649 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4650 &sw_stat->rc_err_cnt);
4651 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4652 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4653 &sw_stat->prc_pcix_err_cnt))
4654 goto reset;
4655 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4656 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4657 &sw_stat->prc_pcix_err_cnt);
4658 }
4659
4660 if (val64 & RXDMA_INT_RPA_INT_M) {
4661 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4662 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4663 goto reset;
4664 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4665 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4666 }
4667
4668 if (val64 & RXDMA_INT_RDA_INT_M) {
4669 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4670 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4671 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4672 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4673 goto reset;
4674 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4675 | RDA_MISC_ERR | RDA_PCIX_ERR,
4676 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4677 }
4678
4679 if (val64 & RXDMA_INT_RTI_INT_M) {
4680 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4681 &sw_stat->rti_err_cnt))
4682 goto reset;
4683 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4684 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4685 }
4686
4687 val64 = readq(&bar0->mac_int_status);
4688 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4689 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4690 &bar0->mac_rmac_err_reg,
4691 &sw_stat->mac_rmac_err_cnt))
4692 goto reset;
4693 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4694 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4695 &sw_stat->mac_rmac_err_cnt);
4696 }
4697
4698 val64 = readq(&bar0->xgxs_int_status);
4699 if (val64 & XGXS_INT_STATUS_RXGXS) {
4700 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4701 &bar0->xgxs_rxgxs_err_reg,
4702 &sw_stat->xgxs_rxgxs_err_cnt))
4703 goto reset;
4704 }
4705
4706 val64 = readq(&bar0->mc_int_status);
4707 if(val64 & MC_INT_STATUS_MC_INT) {
4708 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4709 &sw_stat->mc_err_cnt))
4710 goto reset;
4711
4712 /* Handling Ecc errors */
4713 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4714 writeq(val64, &bar0->mc_err_reg);
4715 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4716 sw_stat->double_ecc_errs++;
4717 if (sp->device_type != XFRAME_II_DEVICE) {
4718 /*
4719 * Reset XframeI only if critical error
4720 */
4721 if (val64 &
4722 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4723 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4724 goto reset;
4725 }
4726 } else
4727 sw_stat->single_ecc_errs++;
4728 }
4729 }
4730 return;
4731
4732 reset:
4733 s2io_stop_all_tx_queue(sp);
4734 schedule_work(&sp->rst_timer_task);
4735 sw_stat->soft_reset_cnt++;
4736 return;
4737 }
4738
4739 /**
4740 * s2io_isr - ISR handler of the device .
4741 * @irq: the irq of the device.
4742 * @dev_id: a void pointer to the dev structure of the NIC.
4743 * Description: This function is the ISR handler of the device. It
4744 * identifies the reason for the interrupt and calls the relevant
4745 * service routines. As a contongency measure, this ISR allocates the
4746 * recv buffers, if their numbers are below the panic value which is
4747 * presently set to 25% of the original number of rcv buffers allocated.
4748 * Return value:
4749 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4750 * IRQ_NONE: will be returned if interrupt is not from our device
4751 */
4752 static irqreturn_t s2io_isr(int irq, void *dev_id)
4753 {
4754 struct net_device *dev = (struct net_device *) dev_id;
4755 struct s2io_nic *sp = netdev_priv(dev);
4756 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4757 int i;
4758 u64 reason = 0;
4759 struct mac_info *mac_control;
4760 struct config_param *config;
4761
4762 /* Pretend we handled any irq's from a disconnected card */
4763 if (pci_channel_offline(sp->pdev))
4764 return IRQ_NONE;
4765
4766 if (!is_s2io_card_up(sp))
4767 return IRQ_NONE;
4768
4769 mac_control = &sp->mac_control;
4770 config = &sp->config;
4771
4772 /*
4773 * Identify the cause for interrupt and call the appropriate
4774 * interrupt handler. Causes for the interrupt could be;
4775 * 1. Rx of packet.
4776 * 2. Tx complete.
4777 * 3. Link down.
4778 */
4779 reason = readq(&bar0->general_int_status);
4780
4781 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4782 /* Nothing much can be done. Get out */
4783 return IRQ_HANDLED;
4784 }
4785
4786 if (reason & (GEN_INTR_RXTRAFFIC |
4787 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4788 {
4789 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4790
4791 if (config->napi) {
4792 if (reason & GEN_INTR_RXTRAFFIC) {
4793 napi_schedule(&sp->napi);
4794 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4795 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4796 readl(&bar0->rx_traffic_int);
4797 }
4798 } else {
4799 /*
4800 * rx_traffic_int reg is an R1 register, writing all 1's
4801 * will ensure that the actual interrupt causing bit
4802 * get's cleared and hence a read can be avoided.
4803 */
4804 if (reason & GEN_INTR_RXTRAFFIC)
4805 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4806
4807 for (i = 0; i < config->rx_ring_num; i++)
4808 rx_intr_handler(&mac_control->rings[i], 0);
4809 }
4810
4811 /*
4812 * tx_traffic_int reg is an R1 register, writing all 1's
4813 * will ensure that the actual interrupt causing bit get's
4814 * cleared and hence a read can be avoided.
4815 */
4816 if (reason & GEN_INTR_TXTRAFFIC)
4817 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4818
4819 for (i = 0; i < config->tx_fifo_num; i++)
4820 tx_intr_handler(&mac_control->fifos[i]);
4821
4822 if (reason & GEN_INTR_TXPIC)
4823 s2io_txpic_intr_handle(sp);
4824
4825 /*
4826 * Reallocate the buffers from the interrupt handler itself.
4827 */
4828 if (!config->napi) {
4829 for (i = 0; i < config->rx_ring_num; i++)
4830 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4831 }
4832 writeq(sp->general_int_mask, &bar0->general_int_mask);
4833 readl(&bar0->general_int_status);
4834
4835 return IRQ_HANDLED;
4836
4837 }
4838 else if (!reason) {
4839 /* The interrupt was not raised by us */
4840 return IRQ_NONE;
4841 }
4842
4843 return IRQ_HANDLED;
4844 }
4845
4846 /**
4847 * s2io_updt_stats -
4848 */
4849 static void s2io_updt_stats(struct s2io_nic *sp)
4850 {
4851 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4852 u64 val64;
4853 int cnt = 0;
4854
4855 if (is_s2io_card_up(sp)) {
4856 /* Apprx 30us on a 133 MHz bus */
4857 val64 = SET_UPDT_CLICKS(10) |
4858 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4859 writeq(val64, &bar0->stat_cfg);
4860 do {
4861 udelay(100);
4862 val64 = readq(&bar0->stat_cfg);
4863 if (!(val64 & s2BIT(0)))
4864 break;
4865 cnt++;
4866 if (cnt == 5)
4867 break; /* Updt failed */
4868 } while(1);
4869 }
4870 }
4871
4872 /**
4873 * s2io_get_stats - Updates the device statistics structure.
4874 * @dev : pointer to the device structure.
4875 * Description:
4876 * This function updates the device statistics structure in the s2io_nic
4877 * structure and returns a pointer to the same.
4878 * Return value:
4879 * pointer to the updated net_device_stats structure.
4880 */
4881
4882 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4883 {
4884 struct s2io_nic *sp = netdev_priv(dev);
4885 struct mac_info *mac_control;
4886 struct config_param *config;
4887 int i;
4888
4889
4890 mac_control = &sp->mac_control;
4891 config = &sp->config;
4892
4893 /* Configure Stats for immediate updt */
4894 s2io_updt_stats(sp);
4895
4896 /* Using sp->stats as a staging area, because reset (due to mtu
4897 change, for example) will clear some hardware counters */
4898 dev->stats.tx_packets +=
4899 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4900 sp->stats.tx_packets;
4901 sp->stats.tx_packets =
4902 le32_to_cpu(mac_control->stats_info->tmac_frms);
4903 dev->stats.tx_errors +=
4904 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4905 sp->stats.tx_errors;
4906 sp->stats.tx_errors =
4907 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4908 dev->stats.rx_errors +=
4909 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4910 sp->stats.rx_errors;
4911 sp->stats.rx_errors =
4912 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4913 dev->stats.multicast =
4914 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4915 sp->stats.multicast;
4916 sp->stats.multicast =
4917 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4918 dev->stats.rx_length_errors =
4919 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4920 sp->stats.rx_length_errors;
4921 sp->stats.rx_length_errors =
4922 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4923
4924 /* collect per-ring rx_packets and rx_bytes */
4925 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4926 for (i = 0; i < config->rx_ring_num; i++) {
4927 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4928 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4929 }
4930
4931 return (&dev->stats);
4932 }
4933
4934 /**
4935 * s2io_set_multicast - entry point for multicast address enable/disable.
4936 * @dev : pointer to the device structure
4937 * Description:
4938 * This function is a driver entry point which gets called by the kernel
4939 * whenever multicast addresses must be enabled/disabled. This also gets
4940 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4941 * determine, if multicast address must be enabled or if promiscuous mode
4942 * is to be disabled etc.
4943 * Return value:
4944 * void.
4945 */
4946
4947 static void s2io_set_multicast(struct net_device *dev)
4948 {
4949 int i, j, prev_cnt;
4950 struct dev_mc_list *mclist;
4951 struct s2io_nic *sp = netdev_priv(dev);
4952 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4953 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4954 0xfeffffffffffULL;
4955 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4956 void __iomem *add;
4957 struct config_param *config = &sp->config;
4958
4959 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4960 /* Enable all Multicast addresses */
4961 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4962 &bar0->rmac_addr_data0_mem);
4963 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4964 &bar0->rmac_addr_data1_mem);
4965 val64 = RMAC_ADDR_CMD_MEM_WE |
4966 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4967 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4968 writeq(val64, &bar0->rmac_addr_cmd_mem);
4969 /* Wait till command completes */
4970 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4971 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4972 S2IO_BIT_RESET);
4973
4974 sp->m_cast_flg = 1;
4975 sp->all_multi_pos = config->max_mc_addr - 1;
4976 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4977 /* Disable all Multicast addresses */
4978 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4979 &bar0->rmac_addr_data0_mem);
4980 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4981 &bar0->rmac_addr_data1_mem);
4982 val64 = RMAC_ADDR_CMD_MEM_WE |
4983 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4984 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4985 writeq(val64, &bar0->rmac_addr_cmd_mem);
4986 /* Wait till command completes */
4987 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4988 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4989 S2IO_BIT_RESET);
4990
4991 sp->m_cast_flg = 0;
4992 sp->all_multi_pos = 0;
4993 }
4994
4995 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4996 /* Put the NIC into promiscuous mode */
4997 add = &bar0->mac_cfg;
4998 val64 = readq(&bar0->mac_cfg);
4999 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5000
5001 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5002 writel((u32) val64, add);
5003 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5004 writel((u32) (val64 >> 32), (add + 4));
5005
5006 if (vlan_tag_strip != 1) {
5007 val64 = readq(&bar0->rx_pa_cfg);
5008 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5009 writeq(val64, &bar0->rx_pa_cfg);
5010 sp->vlan_strip_flag = 0;
5011 }
5012
5013 val64 = readq(&bar0->mac_cfg);
5014 sp->promisc_flg = 1;
5015 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5016 dev->name);
5017 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5018 /* Remove the NIC from promiscuous mode */
5019 add = &bar0->mac_cfg;
5020 val64 = readq(&bar0->mac_cfg);
5021 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5022
5023 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5024 writel((u32) val64, add);
5025 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5026 writel((u32) (val64 >> 32), (add + 4));
5027
5028 if (vlan_tag_strip != 0) {
5029 val64 = readq(&bar0->rx_pa_cfg);
5030 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5031 writeq(val64, &bar0->rx_pa_cfg);
5032 sp->vlan_strip_flag = 1;
5033 }
5034
5035 val64 = readq(&bar0->mac_cfg);
5036 sp->promisc_flg = 0;
5037 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5038 dev->name);
5039 }
5040
5041 /* Update individual M_CAST address list */
5042 if ((!sp->m_cast_flg) && dev->mc_count) {
5043 if (dev->mc_count >
5044 (config->max_mc_addr - config->max_mac_addr)) {
5045 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5046 dev->name);
5047 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5048 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5049 return;
5050 }
5051
5052 prev_cnt = sp->mc_addr_count;
5053 sp->mc_addr_count = dev->mc_count;
5054
5055 /* Clear out the previous list of Mc in the H/W. */
5056 for (i = 0; i < prev_cnt; i++) {
5057 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5058 &bar0->rmac_addr_data0_mem);
5059 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5060 &bar0->rmac_addr_data1_mem);
5061 val64 = RMAC_ADDR_CMD_MEM_WE |
5062 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5063 RMAC_ADDR_CMD_MEM_OFFSET
5064 (config->mc_start_offset + i);
5065 writeq(val64, &bar0->rmac_addr_cmd_mem);
5066
5067 /* Wait for command completes */
5068 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5069 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5070 S2IO_BIT_RESET)) {
5071 DBG_PRINT(ERR_DBG, "%s: Adding ",
5072 dev->name);
5073 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5074 return;
5075 }
5076 }
5077
5078 /* Create the new Rx filter list and update the same in H/W. */
5079 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5080 i++, mclist = mclist->next) {
5081 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5082 ETH_ALEN);
5083 mac_addr = 0;
5084 for (j = 0; j < ETH_ALEN; j++) {
5085 mac_addr |= mclist->dmi_addr[j];
5086 mac_addr <<= 8;
5087 }
5088 mac_addr >>= 8;
5089 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5090 &bar0->rmac_addr_data0_mem);
5091 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5092 &bar0->rmac_addr_data1_mem);
5093 val64 = RMAC_ADDR_CMD_MEM_WE |
5094 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5095 RMAC_ADDR_CMD_MEM_OFFSET
5096 (i + config->mc_start_offset);
5097 writeq(val64, &bar0->rmac_addr_cmd_mem);
5098
5099 /* Wait for command completes */
5100 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5101 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5102 S2IO_BIT_RESET)) {
5103 DBG_PRINT(ERR_DBG, "%s: Adding ",
5104 dev->name);
5105 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5106 return;
5107 }
5108 }
5109 }
5110 }
5111
5112 /* read from CAM unicast & multicast addresses and store it in
5113 * def_mac_addr structure
5114 */
5115 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5116 {
5117 int offset;
5118 u64 mac_addr = 0x0;
5119 struct config_param *config = &sp->config;
5120
5121 /* store unicast & multicast mac addresses */
5122 for (offset = 0; offset < config->max_mc_addr; offset++) {
5123 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5124 /* if read fails disable the entry */
5125 if (mac_addr == FAILURE)
5126 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5127 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5128 }
5129 }
5130
5131 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5132 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5133 {
5134 int offset;
5135 struct config_param *config = &sp->config;
5136 /* restore unicast mac address */
5137 for (offset = 0; offset < config->max_mac_addr; offset++)
5138 do_s2io_prog_unicast(sp->dev,
5139 sp->def_mac_addr[offset].mac_addr);
5140
5141 /* restore multicast mac address */
5142 for (offset = config->mc_start_offset;
5143 offset < config->max_mc_addr; offset++)
5144 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5145 }
5146
5147 /* add a multicast MAC address to CAM */
5148 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5149 {
5150 int i;
5151 u64 mac_addr = 0;
5152 struct config_param *config = &sp->config;
5153
5154 for (i = 0; i < ETH_ALEN; i++) {
5155 mac_addr <<= 8;
5156 mac_addr |= addr[i];
5157 }
5158 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5159 return SUCCESS;
5160
5161 /* check if the multicast mac already preset in CAM */
5162 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5163 u64 tmp64;
5164 tmp64 = do_s2io_read_unicast_mc(sp, i);
5165 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5166 break;
5167
5168 if (tmp64 == mac_addr)
5169 return SUCCESS;
5170 }
5171 if (i == config->max_mc_addr) {
5172 DBG_PRINT(ERR_DBG,
5173 "CAM full no space left for multicast MAC\n");
5174 return FAILURE;
5175 }
5176 /* Update the internal structure with this new mac address */
5177 do_s2io_copy_mac_addr(sp, i, mac_addr);
5178
5179 return (do_s2io_add_mac(sp, mac_addr, i));
5180 }
5181
5182 /* add MAC address to CAM */
5183 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5184 {
5185 u64 val64;
5186 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5187
5188 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5189 &bar0->rmac_addr_data0_mem);
5190
5191 val64 =
5192 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5193 RMAC_ADDR_CMD_MEM_OFFSET(off);
5194 writeq(val64, &bar0->rmac_addr_cmd_mem);
5195
5196 /* Wait till command completes */
5197 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5198 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5199 S2IO_BIT_RESET)) {
5200 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5201 return FAILURE;
5202 }
5203 return SUCCESS;
5204 }
5205 /* deletes a specified unicast/multicast mac entry from CAM */
5206 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5207 {
5208 int offset;
5209 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5210 struct config_param *config = &sp->config;
5211
5212 for (offset = 1;
5213 offset < config->max_mc_addr; offset++) {
5214 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5215 if (tmp64 == addr) {
5216 /* disable the entry by writing 0xffffffffffffULL */
5217 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5218 return FAILURE;
5219 /* store the new mac list from CAM */
5220 do_s2io_store_unicast_mc(sp);
5221 return SUCCESS;
5222 }
5223 }
5224 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5225 (unsigned long long)addr);
5226 return FAILURE;
5227 }
5228
5229 /* read mac entries from CAM */
5230 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5231 {
5232 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5233 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5234
5235 /* read mac addr */
5236 val64 =
5237 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5238 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5239 writeq(val64, &bar0->rmac_addr_cmd_mem);
5240
5241 /* Wait till command completes */
5242 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5243 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5244 S2IO_BIT_RESET)) {
5245 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5246 return FAILURE;
5247 }
5248 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5249 return (tmp64 >> 16);
5250 }
5251
5252 /**
5253 * s2io_set_mac_addr driver entry point
5254 */
5255
5256 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5257 {
5258 struct sockaddr *addr = p;
5259
5260 if (!is_valid_ether_addr(addr->sa_data))
5261 return -EINVAL;
5262
5263 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5264
5265 /* store the MAC address in CAM */
5266 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5267 }
5268 /**
5269 * do_s2io_prog_unicast - Programs the Xframe mac address
5270 * @dev : pointer to the device structure.
5271 * @addr: a uchar pointer to the new mac address which is to be set.
5272 * Description : This procedure will program the Xframe to receive
5273 * frames with new Mac Address
5274 * Return value: SUCCESS on success and an appropriate (-)ve integer
5275 * as defined in errno.h file on failure.
5276 */
5277
5278 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5279 {
5280 struct s2io_nic *sp = netdev_priv(dev);
5281 register u64 mac_addr = 0, perm_addr = 0;
5282 int i;
5283 u64 tmp64;
5284 struct config_param *config = &sp->config;
5285
5286 /*
5287 * Set the new MAC address as the new unicast filter and reflect this
5288 * change on the device address registered with the OS. It will be
5289 * at offset 0.
5290 */
5291 for (i = 0; i < ETH_ALEN; i++) {
5292 mac_addr <<= 8;
5293 mac_addr |= addr[i];
5294 perm_addr <<= 8;
5295 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5296 }
5297
5298 /* check if the dev_addr is different than perm_addr */
5299 if (mac_addr == perm_addr)
5300 return SUCCESS;
5301
5302 /* check if the mac already preset in CAM */
5303 for (i = 1; i < config->max_mac_addr; i++) {
5304 tmp64 = do_s2io_read_unicast_mc(sp, i);
5305 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5306 break;
5307
5308 if (tmp64 == mac_addr) {
5309 DBG_PRINT(INFO_DBG,
5310 "MAC addr:0x%llx already present in CAM\n",
5311 (unsigned long long)mac_addr);
5312 return SUCCESS;
5313 }
5314 }
5315 if (i == config->max_mac_addr) {
5316 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5317 return FAILURE;
5318 }
5319 /* Update the internal structure with this new mac address */
5320 do_s2io_copy_mac_addr(sp, i, mac_addr);
5321 return (do_s2io_add_mac(sp, mac_addr, i));
5322 }
5323
5324 /**
5325 * s2io_ethtool_sset - Sets different link parameters.
5326 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5327 * @info: pointer to the structure with parameters given by ethtool to set
5328 * link information.
5329 * Description:
5330 * The function sets different link parameters provided by the user onto
5331 * the NIC.
5332 * Return value:
5333 * 0 on success.
5334 */
5335
5336 static int s2io_ethtool_sset(struct net_device *dev,
5337 struct ethtool_cmd *info)
5338 {
5339 struct s2io_nic *sp = netdev_priv(dev);
5340 if ((info->autoneg == AUTONEG_ENABLE) ||
5341 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5342 return -EINVAL;
5343 else {
5344 s2io_close(sp->dev);
5345 s2io_open(sp->dev);
5346 }
5347
5348 return 0;
5349 }
5350
5351 /**
5352 * s2io_ethtol_gset - Return link specific information.
5353 * @sp : private member of the device structure, pointer to the
5354 * s2io_nic structure.
5355 * @info : pointer to the structure with parameters given by ethtool
5356 * to return link information.
5357 * Description:
5358 * Returns link specific information like speed, duplex etc.. to ethtool.
5359 * Return value :
5360 * return 0 on success.
5361 */
5362
5363 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5364 {
5365 struct s2io_nic *sp = netdev_priv(dev);
5366 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5368 info->port = PORT_FIBRE;
5369
5370 /* info->transceiver */
5371 info->transceiver = XCVR_EXTERNAL;
5372
5373 if (netif_carrier_ok(sp->dev)) {
5374 info->speed = 10000;
5375 info->duplex = DUPLEX_FULL;
5376 } else {
5377 info->speed = -1;
5378 info->duplex = -1;
5379 }
5380
5381 info->autoneg = AUTONEG_DISABLE;
5382 return 0;
5383 }
5384
5385 /**
5386 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5387 * @sp : private member of the device structure, which is a pointer to the
5388 * s2io_nic structure.
5389 * @info : pointer to the structure with parameters given by ethtool to
5390 * return driver information.
5391 * Description:
5392 * Returns driver specefic information like name, version etc.. to ethtool.
5393 * Return value:
5394 * void
5395 */
5396
5397 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5398 struct ethtool_drvinfo *info)
5399 {
5400 struct s2io_nic *sp = netdev_priv(dev);
5401
5402 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5403 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5404 strncpy(info->fw_version, "", sizeof(info->fw_version));
5405 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5406 info->regdump_len = XENA_REG_SPACE;
5407 info->eedump_len = XENA_EEPROM_SPACE;
5408 }
5409
5410 /**
5411 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5412 * @sp: private member of the device structure, which is a pointer to the
5413 * s2io_nic structure.
5414 * @regs : pointer to the structure with parameters given by ethtool for
5415 * dumping the registers.
5416 * @reg_space: The input argumnet into which all the registers are dumped.
5417 * Description:
5418 * Dumps the entire register space of xFrame NIC into the user given
5419 * buffer area.
5420 * Return value :
5421 * void .
5422 */
5423
5424 static void s2io_ethtool_gregs(struct net_device *dev,
5425 struct ethtool_regs *regs, void *space)
5426 {
5427 int i;
5428 u64 reg;
5429 u8 *reg_space = (u8 *) space;
5430 struct s2io_nic *sp = netdev_priv(dev);
5431
5432 regs->len = XENA_REG_SPACE;
5433 regs->version = sp->pdev->subsystem_device;
5434
5435 for (i = 0; i < regs->len; i += 8) {
5436 reg = readq(sp->bar0 + i);
5437 memcpy((reg_space + i), &reg, 8);
5438 }
5439 }
5440
5441 /**
5442 * s2io_phy_id - timer function that alternates adapter LED.
5443 * @data : address of the private member of the device structure, which
5444 * is a pointer to the s2io_nic structure, provided as an u32.
5445 * Description: This is actually the timer function that alternates the
5446 * adapter LED bit of the adapter control bit to set/reset every time on
5447 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5448 * once every second.
5449 */
5450 static void s2io_phy_id(unsigned long data)
5451 {
5452 struct s2io_nic *sp = (struct s2io_nic *) data;
5453 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5454 u64 val64 = 0;
5455 u16 subid;
5456
5457 subid = sp->pdev->subsystem_device;
5458 if ((sp->device_type == XFRAME_II_DEVICE) ||
5459 ((subid & 0xFF) >= 0x07)) {
5460 val64 = readq(&bar0->gpio_control);
5461 val64 ^= GPIO_CTRL_GPIO_0;
5462 writeq(val64, &bar0->gpio_control);
5463 } else {
5464 val64 = readq(&bar0->adapter_control);
5465 val64 ^= ADAPTER_LED_ON;
5466 writeq(val64, &bar0->adapter_control);
5467 }
5468
5469 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5470 }
5471
5472 /**
5473 * s2io_ethtool_idnic - To physically identify the nic on the system.
5474 * @sp : private member of the device structure, which is a pointer to the
5475 * s2io_nic structure.
5476 * @id : pointer to the structure with identification parameters given by
5477 * ethtool.
5478 * Description: Used to physically identify the NIC on the system.
5479 * The Link LED will blink for a time specified by the user for
5480 * identification.
5481 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5482 * identification is possible only if it's link is up.
5483 * Return value:
5484 * int , returns 0 on success
5485 */
5486
5487 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5488 {
5489 u64 val64 = 0, last_gpio_ctrl_val;
5490 struct s2io_nic *sp = netdev_priv(dev);
5491 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5492 u16 subid;
5493
5494 subid = sp->pdev->subsystem_device;
5495 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5496 if ((sp->device_type == XFRAME_I_DEVICE) &&
5497 ((subid & 0xFF) < 0x07)) {
5498 val64 = readq(&bar0->adapter_control);
5499 if (!(val64 & ADAPTER_CNTL_EN)) {
5500 printk(KERN_ERR
5501 "Adapter Link down, cannot blink LED\n");
5502 return -EFAULT;
5503 }
5504 }
5505 if (sp->id_timer.function == NULL) {
5506 init_timer(&sp->id_timer);
5507 sp->id_timer.function = s2io_phy_id;
5508 sp->id_timer.data = (unsigned long) sp;
5509 }
5510 mod_timer(&sp->id_timer, jiffies);
5511 if (data)
5512 msleep_interruptible(data * HZ);
5513 else
5514 msleep_interruptible(MAX_FLICKER_TIME);
5515 del_timer_sync(&sp->id_timer);
5516
5517 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5518 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5519 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5520 }
5521
5522 return 0;
5523 }
5524
5525 static void s2io_ethtool_gringparam(struct net_device *dev,
5526 struct ethtool_ringparam *ering)
5527 {
5528 struct s2io_nic *sp = netdev_priv(dev);
5529 int i,tx_desc_count=0,rx_desc_count=0;
5530
5531 if (sp->rxd_mode == RXD_MODE_1)
5532 ering->rx_max_pending = MAX_RX_DESC_1;
5533 else if (sp->rxd_mode == RXD_MODE_3B)
5534 ering->rx_max_pending = MAX_RX_DESC_2;
5535
5536 ering->tx_max_pending = MAX_TX_DESC;
5537 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5538 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5539
5540 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5541 ering->tx_pending = tx_desc_count;
5542 rx_desc_count = 0;
5543 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5544 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5545
5546 ering->rx_pending = rx_desc_count;
5547
5548 ering->rx_mini_max_pending = 0;
5549 ering->rx_mini_pending = 0;
5550 if(sp->rxd_mode == RXD_MODE_1)
5551 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5552 else if (sp->rxd_mode == RXD_MODE_3B)
5553 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5554 ering->rx_jumbo_pending = rx_desc_count;
5555 }
5556
5557 /**
5558 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5559 * @sp : private member of the device structure, which is a pointer to the
5560 * s2io_nic structure.
5561 * @ep : pointer to the structure with pause parameters given by ethtool.
5562 * Description:
5563 * Returns the Pause frame generation and reception capability of the NIC.
5564 * Return value:
5565 * void
5566 */
5567 static void s2io_ethtool_getpause_data(struct net_device *dev,
5568 struct ethtool_pauseparam *ep)
5569 {
5570 u64 val64;
5571 struct s2io_nic *sp = netdev_priv(dev);
5572 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5573
5574 val64 = readq(&bar0->rmac_pause_cfg);
5575 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5576 ep->tx_pause = TRUE;
5577 if (val64 & RMAC_PAUSE_RX_ENABLE)
5578 ep->rx_pause = TRUE;
5579 ep->autoneg = FALSE;
5580 }
5581
5582 /**
5583 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5584 * @sp : private member of the device structure, which is a pointer to the
5585 * s2io_nic structure.
5586 * @ep : pointer to the structure with pause parameters given by ethtool.
5587 * Description:
5588 * It can be used to set or reset Pause frame generation or reception
5589 * support of the NIC.
5590 * Return value:
5591 * int, returns 0 on Success
5592 */
5593
5594 static int s2io_ethtool_setpause_data(struct net_device *dev,
5595 struct ethtool_pauseparam *ep)
5596 {
5597 u64 val64;
5598 struct s2io_nic *sp = netdev_priv(dev);
5599 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5600
5601 val64 = readq(&bar0->rmac_pause_cfg);
5602 if (ep->tx_pause)
5603 val64 |= RMAC_PAUSE_GEN_ENABLE;
5604 else
5605 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5606 if (ep->rx_pause)
5607 val64 |= RMAC_PAUSE_RX_ENABLE;
5608 else
5609 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5610 writeq(val64, &bar0->rmac_pause_cfg);
5611 return 0;
5612 }
5613
5614 /**
5615 * read_eeprom - reads 4 bytes of data from user given offset.
5616 * @sp : private member of the device structure, which is a pointer to the
5617 * s2io_nic structure.
5618 * @off : offset at which the data must be written
5619 * @data : Its an output parameter where the data read at the given
5620 * offset is stored.
5621 * Description:
5622 * Will read 4 bytes of data from the user given offset and return the
5623 * read data.
5624 * NOTE: Will allow to read only part of the EEPROM visible through the
5625 * I2C bus.
5626 * Return value:
5627 * -1 on failure and 0 on success.
5628 */
5629
5630 #define S2IO_DEV_ID 5
5631 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5632 {
5633 int ret = -1;
5634 u32 exit_cnt = 0;
5635 u64 val64;
5636 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5637
5638 if (sp->device_type == XFRAME_I_DEVICE) {
5639 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5640 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5641 I2C_CONTROL_CNTL_START;
5642 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5643
5644 while (exit_cnt < 5) {
5645 val64 = readq(&bar0->i2c_control);
5646 if (I2C_CONTROL_CNTL_END(val64)) {
5647 *data = I2C_CONTROL_GET_DATA(val64);
5648 ret = 0;
5649 break;
5650 }
5651 msleep(50);
5652 exit_cnt++;
5653 }
5654 }
5655
5656 if (sp->device_type == XFRAME_II_DEVICE) {
5657 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5658 SPI_CONTROL_BYTECNT(0x3) |
5659 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5660 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5661 val64 |= SPI_CONTROL_REQ;
5662 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5663 while (exit_cnt < 5) {
5664 val64 = readq(&bar0->spi_control);
5665 if (val64 & SPI_CONTROL_NACK) {
5666 ret = 1;
5667 break;
5668 } else if (val64 & SPI_CONTROL_DONE) {
5669 *data = readq(&bar0->spi_data);
5670 *data &= 0xffffff;
5671 ret = 0;
5672 break;
5673 }
5674 msleep(50);
5675 exit_cnt++;
5676 }
5677 }
5678 return ret;
5679 }
5680
5681 /**
5682 * write_eeprom - actually writes the relevant part of the data value.
5683 * @sp : private member of the device structure, which is a pointer to the
5684 * s2io_nic structure.
5685 * @off : offset at which the data must be written
5686 * @data : The data that is to be written
5687 * @cnt : Number of bytes of the data that are actually to be written into
5688 * the Eeprom. (max of 3)
5689 * Description:
5690 * Actually writes the relevant part of the data value into the Eeprom
5691 * through the I2C bus.
5692 * Return value:
5693 * 0 on success, -1 on failure.
5694 */
5695
5696 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5697 {
5698 int exit_cnt = 0, ret = -1;
5699 u64 val64;
5700 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5701
5702 if (sp->device_type == XFRAME_I_DEVICE) {
5703 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5704 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5705 I2C_CONTROL_CNTL_START;
5706 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5707
5708 while (exit_cnt < 5) {
5709 val64 = readq(&bar0->i2c_control);
5710 if (I2C_CONTROL_CNTL_END(val64)) {
5711 if (!(val64 & I2C_CONTROL_NACK))
5712 ret = 0;
5713 break;
5714 }
5715 msleep(50);
5716 exit_cnt++;
5717 }
5718 }
5719
5720 if (sp->device_type == XFRAME_II_DEVICE) {
5721 int write_cnt = (cnt == 8) ? 0 : cnt;
5722 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5723
5724 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5725 SPI_CONTROL_BYTECNT(write_cnt) |
5726 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5727 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5728 val64 |= SPI_CONTROL_REQ;
5729 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5730 while (exit_cnt < 5) {
5731 val64 = readq(&bar0->spi_control);
5732 if (val64 & SPI_CONTROL_NACK) {
5733 ret = 1;
5734 break;
5735 } else if (val64 & SPI_CONTROL_DONE) {
5736 ret = 0;
5737 break;
5738 }
5739 msleep(50);
5740 exit_cnt++;
5741 }
5742 }
5743 return ret;
5744 }
5745 static void s2io_vpd_read(struct s2io_nic *nic)
5746 {
5747 u8 *vpd_data;
5748 u8 data;
5749 int i=0, cnt, fail = 0;
5750 int vpd_addr = 0x80;
5751
5752 if (nic->device_type == XFRAME_II_DEVICE) {
5753 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5754 vpd_addr = 0x80;
5755 }
5756 else {
5757 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5758 vpd_addr = 0x50;
5759 }
5760 strcpy(nic->serial_num, "NOT AVAILABLE");
5761
5762 vpd_data = kmalloc(256, GFP_KERNEL);
5763 if (!vpd_data) {
5764 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5765 return;
5766 }
5767 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5768
5769 for (i = 0; i < 256; i +=4 ) {
5770 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5771 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5772 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5773 for (cnt = 0; cnt <5; cnt++) {
5774 msleep(2);
5775 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5776 if (data == 0x80)
5777 break;
5778 }
5779 if (cnt >= 5) {
5780 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5781 fail = 1;
5782 break;
5783 }
5784 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5785 (u32 *)&vpd_data[i]);
5786 }
5787
5788 if(!fail) {
5789 /* read serial number of adapter */
5790 for (cnt = 0; cnt < 256; cnt++) {
5791 if ((vpd_data[cnt] == 'S') &&
5792 (vpd_data[cnt+1] == 'N') &&
5793 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5794 memset(nic->serial_num, 0, VPD_STRING_LEN);
5795 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5796 vpd_data[cnt+2]);
5797 break;
5798 }
5799 }
5800 }
5801
5802 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5803 memset(nic->product_name, 0, vpd_data[1]);
5804 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5805 }
5806 kfree(vpd_data);
5807 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5808 }
5809
5810 /**
5811 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5812 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5813 * @eeprom : pointer to the user level structure provided by ethtool,
5814 * containing all relevant information.
5815 * @data_buf : user defined value to be written into Eeprom.
5816 * Description: Reads the values stored in the Eeprom at given offset
5817 * for a given length. Stores these values int the input argument data
5818 * buffer 'data_buf' and returns these to the caller (ethtool.)
5819 * Return value:
5820 * int 0 on success
5821 */
5822
5823 static int s2io_ethtool_geeprom(struct net_device *dev,
5824 struct ethtool_eeprom *eeprom, u8 * data_buf)
5825 {
5826 u32 i, valid;
5827 u64 data;
5828 struct s2io_nic *sp = netdev_priv(dev);
5829
5830 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5831
5832 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5833 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5834
5835 for (i = 0; i < eeprom->len; i += 4) {
5836 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5837 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5838 return -EFAULT;
5839 }
5840 valid = INV(data);
5841 memcpy((data_buf + i), &valid, 4);
5842 }
5843 return 0;
5844 }
5845
5846 /**
5847 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5848 * @sp : private member of the device structure, which is a pointer to the
5849 * s2io_nic structure.
5850 * @eeprom : pointer to the user level structure provided by ethtool,
5851 * containing all relevant information.
5852 * @data_buf ; user defined value to be written into Eeprom.
5853 * Description:
5854 * Tries to write the user provided value in the Eeprom, at the offset
5855 * given by the user.
5856 * Return value:
5857 * 0 on success, -EFAULT on failure.
5858 */
5859
5860 static int s2io_ethtool_seeprom(struct net_device *dev,
5861 struct ethtool_eeprom *eeprom,
5862 u8 * data_buf)
5863 {
5864 int len = eeprom->len, cnt = 0;
5865 u64 valid = 0, data;
5866 struct s2io_nic *sp = netdev_priv(dev);
5867
5868 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5869 DBG_PRINT(ERR_DBG,
5870 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5871 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5872 eeprom->magic);
5873 return -EFAULT;
5874 }
5875
5876 while (len) {
5877 data = (u32) data_buf[cnt] & 0x000000FF;
5878 if (data) {
5879 valid = (u32) (data << 24);
5880 } else
5881 valid = data;
5882
5883 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5884 DBG_PRINT(ERR_DBG,
5885 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5886 DBG_PRINT(ERR_DBG,
5887 "write into the specified offset\n");
5888 return -EFAULT;
5889 }
5890 cnt++;
5891 len--;
5892 }
5893
5894 return 0;
5895 }
5896
5897 /**
5898 * s2io_register_test - reads and writes into all clock domains.
5899 * @sp : private member of the device structure, which is a pointer to the
5900 * s2io_nic structure.
5901 * @data : variable that returns the result of each of the test conducted b
5902 * by the driver.
5903 * Description:
5904 * Read and write into all clock domains. The NIC has 3 clock domains,
5905 * see that registers in all the three regions are accessible.
5906 * Return value:
5907 * 0 on success.
5908 */
5909
5910 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5911 {
5912 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5913 u64 val64 = 0, exp_val;
5914 int fail = 0;
5915
5916 val64 = readq(&bar0->pif_rd_swapper_fb);
5917 if (val64 != 0x123456789abcdefULL) {
5918 fail = 1;
5919 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5920 }
5921
5922 val64 = readq(&bar0->rmac_pause_cfg);
5923 if (val64 != 0xc000ffff00000000ULL) {
5924 fail = 1;
5925 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5926 }
5927
5928 val64 = readq(&bar0->rx_queue_cfg);
5929 if (sp->device_type == XFRAME_II_DEVICE)
5930 exp_val = 0x0404040404040404ULL;
5931 else
5932 exp_val = 0x0808080808080808ULL;
5933 if (val64 != exp_val) {
5934 fail = 1;
5935 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5936 }
5937
5938 val64 = readq(&bar0->xgxs_efifo_cfg);
5939 if (val64 != 0x000000001923141EULL) {
5940 fail = 1;
5941 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5942 }
5943
5944 val64 = 0x5A5A5A5A5A5A5A5AULL;
5945 writeq(val64, &bar0->xmsi_data);
5946 val64 = readq(&bar0->xmsi_data);
5947 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5948 fail = 1;
5949 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5950 }
5951
5952 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5953 writeq(val64, &bar0->xmsi_data);
5954 val64 = readq(&bar0->xmsi_data);
5955 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5956 fail = 1;
5957 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5958 }
5959
5960 *data = fail;
5961 return fail;
5962 }
5963
5964 /**
5965 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5966 * @sp : private member of the device structure, which is a pointer to the
5967 * s2io_nic structure.
5968 * @data:variable that returns the result of each of the test conducted by
5969 * the driver.
5970 * Description:
5971 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5972 * register.
5973 * Return value:
5974 * 0 on success.
5975 */
5976
5977 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5978 {
5979 int fail = 0;
5980 u64 ret_data, org_4F0, org_7F0;
5981 u8 saved_4F0 = 0, saved_7F0 = 0;
5982 struct net_device *dev = sp->dev;
5983
5984 /* Test Write Error at offset 0 */
5985 /* Note that SPI interface allows write access to all areas
5986 * of EEPROM. Hence doing all negative testing only for Xframe I.
5987 */
5988 if (sp->device_type == XFRAME_I_DEVICE)
5989 if (!write_eeprom(sp, 0, 0, 3))
5990 fail = 1;
5991
5992 /* Save current values at offsets 0x4F0 and 0x7F0 */
5993 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5994 saved_4F0 = 1;
5995 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5996 saved_7F0 = 1;
5997
5998 /* Test Write at offset 4f0 */
5999 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6000 fail = 1;
6001 if (read_eeprom(sp, 0x4F0, &ret_data))
6002 fail = 1;
6003
6004 if (ret_data != 0x012345) {
6005 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6006 "Data written %llx Data read %llx\n",
6007 dev->name, (unsigned long long)0x12345,
6008 (unsigned long long)ret_data);
6009 fail = 1;
6010 }
6011
6012 /* Reset the EEPROM data go FFFF */
6013 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6014
6015 /* Test Write Request Error at offset 0x7c */
6016 if (sp->device_type == XFRAME_I_DEVICE)
6017 if (!write_eeprom(sp, 0x07C, 0, 3))
6018 fail = 1;
6019
6020 /* Test Write Request at offset 0x7f0 */
6021 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6022 fail = 1;
6023 if (read_eeprom(sp, 0x7F0, &ret_data))
6024 fail = 1;
6025
6026 if (ret_data != 0x012345) {
6027 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6028 "Data written %llx Data read %llx\n",
6029 dev->name, (unsigned long long)0x12345,
6030 (unsigned long long)ret_data);
6031 fail = 1;
6032 }
6033
6034 /* Reset the EEPROM data go FFFF */
6035 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6036
6037 if (sp->device_type == XFRAME_I_DEVICE) {
6038 /* Test Write Error at offset 0x80 */
6039 if (!write_eeprom(sp, 0x080, 0, 3))
6040 fail = 1;
6041
6042 /* Test Write Error at offset 0xfc */
6043 if (!write_eeprom(sp, 0x0FC, 0, 3))
6044 fail = 1;
6045
6046 /* Test Write Error at offset 0x100 */
6047 if (!write_eeprom(sp, 0x100, 0, 3))
6048 fail = 1;
6049
6050 /* Test Write Error at offset 4ec */
6051 if (!write_eeprom(sp, 0x4EC, 0, 3))
6052 fail = 1;
6053 }
6054
6055 /* Restore values at offsets 0x4F0 and 0x7F0 */
6056 if (saved_4F0)
6057 write_eeprom(sp, 0x4F0, org_4F0, 3);
6058 if (saved_7F0)
6059 write_eeprom(sp, 0x7F0, org_7F0, 3);
6060
6061 *data = fail;
6062 return fail;
6063 }
6064
6065 /**
6066 * s2io_bist_test - invokes the MemBist test of the card .
6067 * @sp : private member of the device structure, which is a pointer to the
6068 * s2io_nic structure.
6069 * @data:variable that returns the result of each of the test conducted by
6070 * the driver.
6071 * Description:
6072 * This invokes the MemBist test of the card. We give around
6073 * 2 secs time for the Test to complete. If it's still not complete
6074 * within this peiod, we consider that the test failed.
6075 * Return value:
6076 * 0 on success and -1 on failure.
6077 */
6078
6079 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6080 {
6081 u8 bist = 0;
6082 int cnt = 0, ret = -1;
6083
6084 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6085 bist |= PCI_BIST_START;
6086 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6087
6088 while (cnt < 20) {
6089 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6090 if (!(bist & PCI_BIST_START)) {
6091 *data = (bist & PCI_BIST_CODE_MASK);
6092 ret = 0;
6093 break;
6094 }
6095 msleep(100);
6096 cnt++;
6097 }
6098
6099 return ret;
6100 }
6101
6102 /**
6103 * s2io-link_test - verifies the link state of the nic
6104 * @sp ; private member of the device structure, which is a pointer to the
6105 * s2io_nic structure.
6106 * @data: variable that returns the result of each of the test conducted by
6107 * the driver.
6108 * Description:
6109 * The function verifies the link state of the NIC and updates the input
6110 * argument 'data' appropriately.
6111 * Return value:
6112 * 0 on success.
6113 */
6114
6115 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6116 {
6117 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6118 u64 val64;
6119
6120 val64 = readq(&bar0->adapter_status);
6121 if(!(LINK_IS_UP(val64)))
6122 *data = 1;
6123 else
6124 *data = 0;
6125
6126 return *data;
6127 }
6128
6129 /**
6130 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6131 * @sp - private member of the device structure, which is a pointer to the
6132 * s2io_nic structure.
6133 * @data - variable that returns the result of each of the test
6134 * conducted by the driver.
6135 * Description:
6136 * This is one of the offline test that tests the read and write
6137 * access to the RldRam chip on the NIC.
6138 * Return value:
6139 * 0 on success.
6140 */
6141
6142 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6143 {
6144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6145 u64 val64;
6146 int cnt, iteration = 0, test_fail = 0;
6147
6148 val64 = readq(&bar0->adapter_control);
6149 val64 &= ~ADAPTER_ECC_EN;
6150 writeq(val64, &bar0->adapter_control);
6151
6152 val64 = readq(&bar0->mc_rldram_test_ctrl);
6153 val64 |= MC_RLDRAM_TEST_MODE;
6154 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6155
6156 val64 = readq(&bar0->mc_rldram_mrs);
6157 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6158 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6159
6160 val64 |= MC_RLDRAM_MRS_ENABLE;
6161 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6162
6163 while (iteration < 2) {
6164 val64 = 0x55555555aaaa0000ULL;
6165 if (iteration == 1) {
6166 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6167 }
6168 writeq(val64, &bar0->mc_rldram_test_d0);
6169
6170 val64 = 0xaaaa5a5555550000ULL;
6171 if (iteration == 1) {
6172 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6173 }
6174 writeq(val64, &bar0->mc_rldram_test_d1);
6175
6176 val64 = 0x55aaaaaaaa5a0000ULL;
6177 if (iteration == 1) {
6178 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6179 }
6180 writeq(val64, &bar0->mc_rldram_test_d2);
6181
6182 val64 = (u64) (0x0000003ffffe0100ULL);
6183 writeq(val64, &bar0->mc_rldram_test_add);
6184
6185 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6186 MC_RLDRAM_TEST_GO;
6187 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6188
6189 for (cnt = 0; cnt < 5; cnt++) {
6190 val64 = readq(&bar0->mc_rldram_test_ctrl);
6191 if (val64 & MC_RLDRAM_TEST_DONE)
6192 break;
6193 msleep(200);
6194 }
6195
6196 if (cnt == 5)
6197 break;
6198
6199 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6200 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6201
6202 for (cnt = 0; cnt < 5; cnt++) {
6203 val64 = readq(&bar0->mc_rldram_test_ctrl);
6204 if (val64 & MC_RLDRAM_TEST_DONE)
6205 break;
6206 msleep(500);
6207 }
6208
6209 if (cnt == 5)
6210 break;
6211
6212 val64 = readq(&bar0->mc_rldram_test_ctrl);
6213 if (!(val64 & MC_RLDRAM_TEST_PASS))
6214 test_fail = 1;
6215
6216 iteration++;
6217 }
6218
6219 *data = test_fail;
6220
6221 /* Bring the adapter out of test mode */
6222 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6223
6224 return test_fail;
6225 }
6226
6227 /**
6228 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6229 * @sp : private member of the device structure, which is a pointer to the
6230 * s2io_nic structure.
6231 * @ethtest : pointer to a ethtool command specific structure that will be
6232 * returned to the user.
6233 * @data : variable that returns the result of each of the test
6234 * conducted by the driver.
6235 * Description:
6236 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6237 * the health of the card.
6238 * Return value:
6239 * void
6240 */
6241
6242 static void s2io_ethtool_test(struct net_device *dev,
6243 struct ethtool_test *ethtest,
6244 uint64_t * data)
6245 {
6246 struct s2io_nic *sp = netdev_priv(dev);
6247 int orig_state = netif_running(sp->dev);
6248
6249 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6250 /* Offline Tests. */
6251 if (orig_state)
6252 s2io_close(sp->dev);
6253
6254 if (s2io_register_test(sp, &data[0]))
6255 ethtest->flags |= ETH_TEST_FL_FAILED;
6256
6257 s2io_reset(sp);
6258
6259 if (s2io_rldram_test(sp, &data[3]))
6260 ethtest->flags |= ETH_TEST_FL_FAILED;
6261
6262 s2io_reset(sp);
6263
6264 if (s2io_eeprom_test(sp, &data[1]))
6265 ethtest->flags |= ETH_TEST_FL_FAILED;
6266
6267 if (s2io_bist_test(sp, &data[4]))
6268 ethtest->flags |= ETH_TEST_FL_FAILED;
6269
6270 if (orig_state)
6271 s2io_open(sp->dev);
6272
6273 data[2] = 0;
6274 } else {
6275 /* Online Tests. */
6276 if (!orig_state) {
6277 DBG_PRINT(ERR_DBG,
6278 "%s: is not up, cannot run test\n",
6279 dev->name);
6280 data[0] = -1;
6281 data[1] = -1;
6282 data[2] = -1;
6283 data[3] = -1;
6284 data[4] = -1;
6285 }
6286
6287 if (s2io_link_test(sp, &data[2]))
6288 ethtest->flags |= ETH_TEST_FL_FAILED;
6289
6290 data[0] = 0;
6291 data[1] = 0;
6292 data[3] = 0;
6293 data[4] = 0;
6294 }
6295 }
6296
6297 static void s2io_get_ethtool_stats(struct net_device *dev,
6298 struct ethtool_stats *estats,
6299 u64 * tmp_stats)
6300 {
6301 int i = 0, k;
6302 struct s2io_nic *sp = netdev_priv(dev);
6303 struct stat_block *stat_info = sp->mac_control.stats_info;
6304
6305 s2io_updt_stats(sp);
6306 tmp_stats[i++] =
6307 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6308 le32_to_cpu(stat_info->tmac_frms);
6309 tmp_stats[i++] =
6310 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6311 le32_to_cpu(stat_info->tmac_data_octets);
6312 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6313 tmp_stats[i++] =
6314 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6315 le32_to_cpu(stat_info->tmac_mcst_frms);
6316 tmp_stats[i++] =
6317 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6318 le32_to_cpu(stat_info->tmac_bcst_frms);
6319 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6320 tmp_stats[i++] =
6321 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6322 le32_to_cpu(stat_info->tmac_ttl_octets);
6323 tmp_stats[i++] =
6324 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6325 le32_to_cpu(stat_info->tmac_ucst_frms);
6326 tmp_stats[i++] =
6327 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6328 le32_to_cpu(stat_info->tmac_nucst_frms);
6329 tmp_stats[i++] =
6330 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6331 le32_to_cpu(stat_info->tmac_any_err_frms);
6332 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6333 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6336 le32_to_cpu(stat_info->tmac_vld_ip);
6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6339 le32_to_cpu(stat_info->tmac_drop_ip);
6340 tmp_stats[i++] =
6341 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6342 le32_to_cpu(stat_info->tmac_icmp);
6343 tmp_stats[i++] =
6344 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6345 le32_to_cpu(stat_info->tmac_rst_tcp);
6346 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6347 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6348 le32_to_cpu(stat_info->tmac_udp);
6349 tmp_stats[i++] =
6350 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6351 le32_to_cpu(stat_info->rmac_vld_frms);
6352 tmp_stats[i++] =
6353 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6354 le32_to_cpu(stat_info->rmac_data_octets);
6355 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6356 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6359 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6362 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6363 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6364 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6367 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6370 le32_to_cpu(stat_info->rmac_ttl_octets);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6373 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6374 tmp_stats[i++] =
6375 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6376 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6379 le32_to_cpu(stat_info->rmac_discarded_frms);
6380 tmp_stats[i++] =
6381 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6382 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6387 le32_to_cpu(stat_info->rmac_usized_frms);
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6390 le32_to_cpu(stat_info->rmac_osized_frms);
6391 tmp_stats[i++] =
6392 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6393 le32_to_cpu(stat_info->rmac_frag_frms);
6394 tmp_stats[i++] =
6395 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6396 le32_to_cpu(stat_info->rmac_jabber_frms);
6397 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6398 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6399 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6403 tmp_stats[i++] =
6404 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6405 le32_to_cpu(stat_info->rmac_ip);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6407 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6408 tmp_stats[i++] =
6409 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6410 le32_to_cpu(stat_info->rmac_drop_ip);
6411 tmp_stats[i++] =
6412 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6413 le32_to_cpu(stat_info->rmac_icmp);
6414 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6415 tmp_stats[i++] =
6416 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6417 le32_to_cpu(stat_info->rmac_udp);
6418 tmp_stats[i++] =
6419 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6420 le32_to_cpu(stat_info->rmac_err_drp_udp);
6421 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6425 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6430 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6431 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6432 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6433 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6434 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6437 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6438 tmp_stats[i++] =
6439 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6440 le32_to_cpu(stat_info->rmac_pause_cnt);
6441 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6442 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6443 tmp_stats[i++] =
6444 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6445 le32_to_cpu(stat_info->rmac_accepted_ip);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6447 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6465
6466 /* Enhanced statistics exist only for Hercules */
6467 if(sp->device_type == XFRAME_II_DEVICE) {
6468 tmp_stats[i++] =
6469 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6470 tmp_stats[i++] =
6471 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6472 tmp_stats[i++] =
6473 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6478 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6479 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6480 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6481 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6482 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6483 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6486 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6487 }
6488
6489 tmp_stats[i++] = 0;
6490 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6491 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6492 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6493 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6495 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6496 for (k = 0; k < MAX_RX_RINGS; k++)
6497 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6498 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6499 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6500 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6501 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6502 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6503 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6504 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6505 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6506 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6507 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6508 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6509 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6510 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6511 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6512 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6513 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6514 if (stat_info->sw_stat.num_aggregations) {
6515 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6516 int count = 0;
6517 /*
6518 * Since 64-bit divide does not work on all platforms,
6519 * do repeated subtraction.
6520 */
6521 while (tmp >= stat_info->sw_stat.num_aggregations) {
6522 tmp -= stat_info->sw_stat.num_aggregations;
6523 count++;
6524 }
6525 tmp_stats[i++] = count;
6526 }
6527 else
6528 tmp_stats[i++] = 0;
6529 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6530 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6531 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6532 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6533 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6534 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6536 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6537 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6538
6539 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6544
6545 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6571 }
6572
6573 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6574 {
6575 return (XENA_REG_SPACE);
6576 }
6577
6578
6579 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6580 {
6581 struct s2io_nic *sp = netdev_priv(dev);
6582
6583 return (sp->rx_csum);
6584 }
6585
6586 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6587 {
6588 struct s2io_nic *sp = netdev_priv(dev);
6589
6590 if (data)
6591 sp->rx_csum = 1;
6592 else
6593 sp->rx_csum = 0;
6594
6595 return 0;
6596 }
6597
6598 static int s2io_get_eeprom_len(struct net_device *dev)
6599 {
6600 return (XENA_EEPROM_SPACE);
6601 }
6602
6603 static int s2io_get_sset_count(struct net_device *dev, int sset)
6604 {
6605 struct s2io_nic *sp = netdev_priv(dev);
6606
6607 switch (sset) {
6608 case ETH_SS_TEST:
6609 return S2IO_TEST_LEN;
6610 case ETH_SS_STATS:
6611 switch(sp->device_type) {
6612 case XFRAME_I_DEVICE:
6613 return XFRAME_I_STAT_LEN;
6614 case XFRAME_II_DEVICE:
6615 return XFRAME_II_STAT_LEN;
6616 default:
6617 return 0;
6618 }
6619 default:
6620 return -EOPNOTSUPP;
6621 }
6622 }
6623
6624 static void s2io_ethtool_get_strings(struct net_device *dev,
6625 u32 stringset, u8 * data)
6626 {
6627 int stat_size = 0;
6628 struct s2io_nic *sp = netdev_priv(dev);
6629
6630 switch (stringset) {
6631 case ETH_SS_TEST:
6632 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6633 break;
6634 case ETH_SS_STATS:
6635 stat_size = sizeof(ethtool_xena_stats_keys);
6636 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6637 if(sp->device_type == XFRAME_II_DEVICE) {
6638 memcpy(data + stat_size,
6639 &ethtool_enhanced_stats_keys,
6640 sizeof(ethtool_enhanced_stats_keys));
6641 stat_size += sizeof(ethtool_enhanced_stats_keys);
6642 }
6643
6644 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6645 sizeof(ethtool_driver_stats_keys));
6646 }
6647 }
6648
6649 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6650 {
6651 if (data)
6652 dev->features |= NETIF_F_IP_CSUM;
6653 else
6654 dev->features &= ~NETIF_F_IP_CSUM;
6655
6656 return 0;
6657 }
6658
6659 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6660 {
6661 return (dev->features & NETIF_F_TSO) != 0;
6662 }
6663 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6664 {
6665 if (data)
6666 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6667 else
6668 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6669
6670 return 0;
6671 }
6672
6673 static const struct ethtool_ops netdev_ethtool_ops = {
6674 .get_settings = s2io_ethtool_gset,
6675 .set_settings = s2io_ethtool_sset,
6676 .get_drvinfo = s2io_ethtool_gdrvinfo,
6677 .get_regs_len = s2io_ethtool_get_regs_len,
6678 .get_regs = s2io_ethtool_gregs,
6679 .get_link = ethtool_op_get_link,
6680 .get_eeprom_len = s2io_get_eeprom_len,
6681 .get_eeprom = s2io_ethtool_geeprom,
6682 .set_eeprom = s2io_ethtool_seeprom,
6683 .get_ringparam = s2io_ethtool_gringparam,
6684 .get_pauseparam = s2io_ethtool_getpause_data,
6685 .set_pauseparam = s2io_ethtool_setpause_data,
6686 .get_rx_csum = s2io_ethtool_get_rx_csum,
6687 .set_rx_csum = s2io_ethtool_set_rx_csum,
6688 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6689 .set_sg = ethtool_op_set_sg,
6690 .get_tso = s2io_ethtool_op_get_tso,
6691 .set_tso = s2io_ethtool_op_set_tso,
6692 .set_ufo = ethtool_op_set_ufo,
6693 .self_test = s2io_ethtool_test,
6694 .get_strings = s2io_ethtool_get_strings,
6695 .phys_id = s2io_ethtool_idnic,
6696 .get_ethtool_stats = s2io_get_ethtool_stats,
6697 .get_sset_count = s2io_get_sset_count,
6698 };
6699
6700 /**
6701 * s2io_ioctl - Entry point for the Ioctl
6702 * @dev : Device pointer.
6703 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6704 * a proprietary structure used to pass information to the driver.
6705 * @cmd : This is used to distinguish between the different commands that
6706 * can be passed to the IOCTL functions.
6707 * Description:
6708 * Currently there are no special functionality supported in IOCTL, hence
6709 * function always return EOPNOTSUPPORTED
6710 */
6711
6712 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6713 {
6714 return -EOPNOTSUPP;
6715 }
6716
6717 /**
6718 * s2io_change_mtu - entry point to change MTU size for the device.
6719 * @dev : device pointer.
6720 * @new_mtu : the new MTU size for the device.
6721 * Description: A driver entry point to change MTU size for the device.
6722 * Before changing the MTU the device must be stopped.
6723 * Return value:
6724 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6725 * file on failure.
6726 */
6727
6728 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6729 {
6730 struct s2io_nic *sp = netdev_priv(dev);
6731 int ret = 0;
6732
6733 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6734 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6735 dev->name);
6736 return -EPERM;
6737 }
6738
6739 dev->mtu = new_mtu;
6740 if (netif_running(dev)) {
6741 s2io_stop_all_tx_queue(sp);
6742 s2io_card_down(sp);
6743 ret = s2io_card_up(sp);
6744 if (ret) {
6745 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6746 __func__);
6747 return ret;
6748 }
6749 s2io_wake_all_tx_queue(sp);
6750 } else { /* Device is down */
6751 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6752 u64 val64 = new_mtu;
6753
6754 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6755 }
6756
6757 return ret;
6758 }
6759
6760 /**
6761 * s2io_set_link - Set the LInk status
6762 * @data: long pointer to device private structue
6763 * Description: Sets the link status for the adapter
6764 */
6765
6766 static void s2io_set_link(struct work_struct *work)
6767 {
6768 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6769 struct net_device *dev = nic->dev;
6770 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6771 register u64 val64;
6772 u16 subid;
6773
6774 rtnl_lock();
6775
6776 if (!netif_running(dev))
6777 goto out_unlock;
6778
6779 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6780 /* The card is being reset, no point doing anything */
6781 goto out_unlock;
6782 }
6783
6784 subid = nic->pdev->subsystem_device;
6785 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6786 /*
6787 * Allow a small delay for the NICs self initiated
6788 * cleanup to complete.
6789 */
6790 msleep(100);
6791 }
6792
6793 val64 = readq(&bar0->adapter_status);
6794 if (LINK_IS_UP(val64)) {
6795 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6796 if (verify_xena_quiescence(nic)) {
6797 val64 = readq(&bar0->adapter_control);
6798 val64 |= ADAPTER_CNTL_EN;
6799 writeq(val64, &bar0->adapter_control);
6800 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6801 nic->device_type, subid)) {
6802 val64 = readq(&bar0->gpio_control);
6803 val64 |= GPIO_CTRL_GPIO_0;
6804 writeq(val64, &bar0->gpio_control);
6805 val64 = readq(&bar0->gpio_control);
6806 } else {
6807 val64 |= ADAPTER_LED_ON;
6808 writeq(val64, &bar0->adapter_control);
6809 }
6810 nic->device_enabled_once = TRUE;
6811 } else {
6812 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6813 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6814 s2io_stop_all_tx_queue(nic);
6815 }
6816 }
6817 val64 = readq(&bar0->adapter_control);
6818 val64 |= ADAPTER_LED_ON;
6819 writeq(val64, &bar0->adapter_control);
6820 s2io_link(nic, LINK_UP);
6821 } else {
6822 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6823 subid)) {
6824 val64 = readq(&bar0->gpio_control);
6825 val64 &= ~GPIO_CTRL_GPIO_0;
6826 writeq(val64, &bar0->gpio_control);
6827 val64 = readq(&bar0->gpio_control);
6828 }
6829 /* turn off LED */
6830 val64 = readq(&bar0->adapter_control);
6831 val64 = val64 &(~ADAPTER_LED_ON);
6832 writeq(val64, &bar0->adapter_control);
6833 s2io_link(nic, LINK_DOWN);
6834 }
6835 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6836
6837 out_unlock:
6838 rtnl_unlock();
6839 }
6840
6841 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6842 struct buffAdd *ba,
6843 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6844 u64 *temp2, int size)
6845 {
6846 struct net_device *dev = sp->dev;
6847 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6848
6849 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6850 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6851 /* allocate skb */
6852 if (*skb) {
6853 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6854 /*
6855 * As Rx frame are not going to be processed,
6856 * using same mapped address for the Rxd
6857 * buffer pointer
6858 */
6859 rxdp1->Buffer0_ptr = *temp0;
6860 } else {
6861 *skb = dev_alloc_skb(size);
6862 if (!(*skb)) {
6863 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6864 DBG_PRINT(INFO_DBG, "memory to allocate ");
6865 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6866 sp->mac_control.stats_info->sw_stat. \
6867 mem_alloc_fail_cnt++;
6868 return -ENOMEM ;
6869 }
6870 sp->mac_control.stats_info->sw_stat.mem_allocated
6871 += (*skb)->truesize;
6872 /* storing the mapped addr in a temp variable
6873 * such it will be used for next rxd whose
6874 * Host Control is NULL
6875 */
6876 rxdp1->Buffer0_ptr = *temp0 =
6877 pci_map_single( sp->pdev, (*skb)->data,
6878 size - NET_IP_ALIGN,
6879 PCI_DMA_FROMDEVICE);
6880 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6881 goto memalloc_failed;
6882 rxdp->Host_Control = (unsigned long) (*skb);
6883 }
6884 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6885 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6886 /* Two buffer Mode */
6887 if (*skb) {
6888 rxdp3->Buffer2_ptr = *temp2;
6889 rxdp3->Buffer0_ptr = *temp0;
6890 rxdp3->Buffer1_ptr = *temp1;
6891 } else {
6892 *skb = dev_alloc_skb(size);
6893 if (!(*skb)) {
6894 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6895 DBG_PRINT(INFO_DBG, "memory to allocate ");
6896 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6897 sp->mac_control.stats_info->sw_stat. \
6898 mem_alloc_fail_cnt++;
6899 return -ENOMEM;
6900 }
6901 sp->mac_control.stats_info->sw_stat.mem_allocated
6902 += (*skb)->truesize;
6903 rxdp3->Buffer2_ptr = *temp2 =
6904 pci_map_single(sp->pdev, (*skb)->data,
6905 dev->mtu + 4,
6906 PCI_DMA_FROMDEVICE);
6907 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6908 goto memalloc_failed;
6909 rxdp3->Buffer0_ptr = *temp0 =
6910 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6911 PCI_DMA_FROMDEVICE);
6912 if (pci_dma_mapping_error(sp->pdev,
6913 rxdp3->Buffer0_ptr)) {
6914 pci_unmap_single (sp->pdev,
6915 (dma_addr_t)rxdp3->Buffer2_ptr,
6916 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6917 goto memalloc_failed;
6918 }
6919 rxdp->Host_Control = (unsigned long) (*skb);
6920
6921 /* Buffer-1 will be dummy buffer not used */
6922 rxdp3->Buffer1_ptr = *temp1 =
6923 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6924 PCI_DMA_FROMDEVICE);
6925 if (pci_dma_mapping_error(sp->pdev,
6926 rxdp3->Buffer1_ptr)) {
6927 pci_unmap_single (sp->pdev,
6928 (dma_addr_t)rxdp3->Buffer0_ptr,
6929 BUF0_LEN, PCI_DMA_FROMDEVICE);
6930 pci_unmap_single (sp->pdev,
6931 (dma_addr_t)rxdp3->Buffer2_ptr,
6932 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6933 goto memalloc_failed;
6934 }
6935 }
6936 }
6937 return 0;
6938 memalloc_failed:
6939 stats->pci_map_fail_cnt++;
6940 stats->mem_freed += (*skb)->truesize;
6941 dev_kfree_skb(*skb);
6942 return -ENOMEM;
6943 }
6944
6945 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6946 int size)
6947 {
6948 struct net_device *dev = sp->dev;
6949 if (sp->rxd_mode == RXD_MODE_1) {
6950 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6951 } else if (sp->rxd_mode == RXD_MODE_3B) {
6952 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6953 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6954 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6955 }
6956 }
6957
6958 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6959 {
6960 int i, j, k, blk_cnt = 0, size;
6961 struct mac_info * mac_control = &sp->mac_control;
6962 struct config_param *config = &sp->config;
6963 struct net_device *dev = sp->dev;
6964 struct RxD_t *rxdp = NULL;
6965 struct sk_buff *skb = NULL;
6966 struct buffAdd *ba = NULL;
6967 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6968
6969 /* Calculate the size based on ring mode */
6970 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6971 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6972 if (sp->rxd_mode == RXD_MODE_1)
6973 size += NET_IP_ALIGN;
6974 else if (sp->rxd_mode == RXD_MODE_3B)
6975 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6976
6977 for (i = 0; i < config->rx_ring_num; i++) {
6978 blk_cnt = config->rx_cfg[i].num_rxd /
6979 (rxd_count[sp->rxd_mode] +1);
6980
6981 for (j = 0; j < blk_cnt; j++) {
6982 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6983 rxdp = mac_control->rings[i].
6984 rx_blocks[j].rxds[k].virt_addr;
6985 if(sp->rxd_mode == RXD_MODE_3B)
6986 ba = &mac_control->rings[i].ba[j][k];
6987 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6988 &skb,(u64 *)&temp0_64,
6989 (u64 *)&temp1_64,
6990 (u64 *)&temp2_64,
6991 size) == -ENOMEM) {
6992 return 0;
6993 }
6994
6995 set_rxd_buffer_size(sp, rxdp, size);
6996 wmb();
6997 /* flip the Ownership bit to Hardware */
6998 rxdp->Control_1 |= RXD_OWN_XENA;
6999 }
7000 }
7001 }
7002 return 0;
7003
7004 }
7005
7006 static int s2io_add_isr(struct s2io_nic * sp)
7007 {
7008 int ret = 0;
7009 struct net_device *dev = sp->dev;
7010 int err = 0;
7011
7012 if (sp->config.intr_type == MSI_X)
7013 ret = s2io_enable_msi_x(sp);
7014 if (ret) {
7015 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7016 sp->config.intr_type = INTA;
7017 }
7018
7019 /* Store the values of the MSIX table in the struct s2io_nic structure */
7020 store_xmsi_data(sp);
7021
7022 /* After proper initialization of H/W, register ISR */
7023 if (sp->config.intr_type == MSI_X) {
7024 int i, msix_rx_cnt = 0;
7025
7026 for (i = 0; i < sp->num_entries; i++) {
7027 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7028 if (sp->s2io_entries[i].type ==
7029 MSIX_RING_TYPE) {
7030 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7031 dev->name, i);
7032 err = request_irq(sp->entries[i].vector,
7033 s2io_msix_ring_handle, 0,
7034 sp->desc[i],
7035 sp->s2io_entries[i].arg);
7036 } else if (sp->s2io_entries[i].type ==
7037 MSIX_ALARM_TYPE) {
7038 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7039 dev->name, i);
7040 err = request_irq(sp->entries[i].vector,
7041 s2io_msix_fifo_handle, 0,
7042 sp->desc[i],
7043 sp->s2io_entries[i].arg);
7044
7045 }
7046 /* if either data or addr is zero print it. */
7047 if (!(sp->msix_info[i].addr &&
7048 sp->msix_info[i].data)) {
7049 DBG_PRINT(ERR_DBG,
7050 "%s @Addr:0x%llx Data:0x%llx\n",
7051 sp->desc[i],
7052 (unsigned long long)
7053 sp->msix_info[i].addr,
7054 (unsigned long long)
7055 ntohl(sp->msix_info[i].data));
7056 } else
7057 msix_rx_cnt++;
7058 if (err) {
7059 remove_msix_isr(sp);
7060
7061 DBG_PRINT(ERR_DBG,
7062 "%s:MSI-X-%d registration "
7063 "failed\n", dev->name, i);
7064
7065 DBG_PRINT(ERR_DBG,
7066 "%s: Defaulting to INTA\n",
7067 dev->name);
7068 sp->config.intr_type = INTA;
7069 break;
7070 }
7071 sp->s2io_entries[i].in_use =
7072 MSIX_REGISTERED_SUCCESS;
7073 }
7074 }
7075 if (!err) {
7076 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7077 --msix_rx_cnt);
7078 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7079 " through alarm vector\n");
7080 }
7081 }
7082 if (sp->config.intr_type == INTA) {
7083 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7084 sp->name, dev);
7085 if (err) {
7086 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7087 dev->name);
7088 return -1;
7089 }
7090 }
7091 return 0;
7092 }
7093 static void s2io_rem_isr(struct s2io_nic * sp)
7094 {
7095 if (sp->config.intr_type == MSI_X)
7096 remove_msix_isr(sp);
7097 else
7098 remove_inta_isr(sp);
7099 }
7100
7101 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7102 {
7103 int cnt = 0;
7104 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7105 register u64 val64 = 0;
7106 struct config_param *config;
7107 config = &sp->config;
7108
7109 if (!is_s2io_card_up(sp))
7110 return;
7111
7112 del_timer_sync(&sp->alarm_timer);
7113 /* If s2io_set_link task is executing, wait till it completes. */
7114 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7115 msleep(50);
7116 }
7117 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7118
7119 /* Disable napi */
7120 if (sp->config.napi) {
7121 int off = 0;
7122 if (config->intr_type == MSI_X) {
7123 for (; off < sp->config.rx_ring_num; off++)
7124 napi_disable(&sp->mac_control.rings[off].napi);
7125 }
7126 else
7127 napi_disable(&sp->napi);
7128 }
7129
7130 /* disable Tx and Rx traffic on the NIC */
7131 if (do_io)
7132 stop_nic(sp);
7133
7134 s2io_rem_isr(sp);
7135
7136 /* stop the tx queue, indicate link down */
7137 s2io_link(sp, LINK_DOWN);
7138
7139 /* Check if the device is Quiescent and then Reset the NIC */
7140 while(do_io) {
7141 /* As per the HW requirement we need to replenish the
7142 * receive buffer to avoid the ring bump. Since there is
7143 * no intention of processing the Rx frame at this pointwe are
7144 * just settting the ownership bit of rxd in Each Rx
7145 * ring to HW and set the appropriate buffer size
7146 * based on the ring mode
7147 */
7148 rxd_owner_bit_reset(sp);
7149
7150 val64 = readq(&bar0->adapter_status);
7151 if (verify_xena_quiescence(sp)) {
7152 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7153 break;
7154 }
7155
7156 msleep(50);
7157 cnt++;
7158 if (cnt == 10) {
7159 DBG_PRINT(ERR_DBG,
7160 "s2io_close:Device not Quiescent ");
7161 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7162 (unsigned long long) val64);
7163 break;
7164 }
7165 }
7166 if (do_io)
7167 s2io_reset(sp);
7168
7169 /* Free all Tx buffers */
7170 free_tx_buffers(sp);
7171
7172 /* Free all Rx buffers */
7173 free_rx_buffers(sp);
7174
7175 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7176 }
7177
7178 static void s2io_card_down(struct s2io_nic * sp)
7179 {
7180 do_s2io_card_down(sp, 1);
7181 }
7182
7183 static int s2io_card_up(struct s2io_nic * sp)
7184 {
7185 int i, ret = 0;
7186 struct mac_info *mac_control;
7187 struct config_param *config;
7188 struct net_device *dev = (struct net_device *) sp->dev;
7189 u16 interruptible;
7190
7191 /* Initialize the H/W I/O registers */
7192 ret = init_nic(sp);
7193 if (ret != 0) {
7194 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7195 dev->name);
7196 if (ret != -EIO)
7197 s2io_reset(sp);
7198 return ret;
7199 }
7200
7201 /*
7202 * Initializing the Rx buffers. For now we are considering only 1
7203 * Rx ring and initializing buffers into 30 Rx blocks
7204 */
7205 mac_control = &sp->mac_control;
7206 config = &sp->config;
7207
7208 for (i = 0; i < config->rx_ring_num; i++) {
7209 mac_control->rings[i].mtu = dev->mtu;
7210 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7211 if (ret) {
7212 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7213 dev->name);
7214 s2io_reset(sp);
7215 free_rx_buffers(sp);
7216 return -ENOMEM;
7217 }
7218 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7219 mac_control->rings[i].rx_bufs_left);
7220 }
7221
7222 /* Initialise napi */
7223 if (config->napi) {
7224 if (config->intr_type == MSI_X) {
7225 for (i = 0; i < sp->config.rx_ring_num; i++)
7226 napi_enable(&sp->mac_control.rings[i].napi);
7227 } else {
7228 napi_enable(&sp->napi);
7229 }
7230 }
7231
7232 /* Maintain the state prior to the open */
7233 if (sp->promisc_flg)
7234 sp->promisc_flg = 0;
7235 if (sp->m_cast_flg) {
7236 sp->m_cast_flg = 0;
7237 sp->all_multi_pos= 0;
7238 }
7239
7240 /* Setting its receive mode */
7241 s2io_set_multicast(dev);
7242
7243 if (sp->lro) {
7244 /* Initialize max aggregatable pkts per session based on MTU */
7245 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7246 /* Check if we can use(if specified) user provided value */
7247 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7248 sp->lro_max_aggr_per_sess = lro_max_pkts;
7249 }
7250
7251 /* Enable Rx Traffic and interrupts on the NIC */
7252 if (start_nic(sp)) {
7253 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7254 s2io_reset(sp);
7255 free_rx_buffers(sp);
7256 return -ENODEV;
7257 }
7258
7259 /* Add interrupt service routine */
7260 if (s2io_add_isr(sp) != 0) {
7261 if (sp->config.intr_type == MSI_X)
7262 s2io_rem_isr(sp);
7263 s2io_reset(sp);
7264 free_rx_buffers(sp);
7265 return -ENODEV;
7266 }
7267
7268 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7269
7270 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7271
7272 /* Enable select interrupts */
7273 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7274 if (sp->config.intr_type != INTA) {
7275 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7276 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7277 } else {
7278 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7279 interruptible |= TX_PIC_INTR;
7280 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7281 }
7282
7283 return 0;
7284 }
7285
7286 /**
7287 * s2io_restart_nic - Resets the NIC.
7288 * @data : long pointer to the device private structure
7289 * Description:
7290 * This function is scheduled to be run by the s2io_tx_watchdog
7291 * function after 0.5 secs to reset the NIC. The idea is to reduce
7292 * the run time of the watch dog routine which is run holding a
7293 * spin lock.
7294 */
7295
7296 static void s2io_restart_nic(struct work_struct *work)
7297 {
7298 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7299 struct net_device *dev = sp->dev;
7300
7301 rtnl_lock();
7302
7303 if (!netif_running(dev))
7304 goto out_unlock;
7305
7306 s2io_card_down(sp);
7307 if (s2io_card_up(sp)) {
7308 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7309 dev->name);
7310 }
7311 s2io_wake_all_tx_queue(sp);
7312 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7313 dev->name);
7314 out_unlock:
7315 rtnl_unlock();
7316 }
7317
7318 /**
7319 * s2io_tx_watchdog - Watchdog for transmit side.
7320 * @dev : Pointer to net device structure
7321 * Description:
7322 * This function is triggered if the Tx Queue is stopped
7323 * for a pre-defined amount of time when the Interface is still up.
7324 * If the Interface is jammed in such a situation, the hardware is
7325 * reset (by s2io_close) and restarted again (by s2io_open) to
7326 * overcome any problem that might have been caused in the hardware.
7327 * Return value:
7328 * void
7329 */
7330
7331 static void s2io_tx_watchdog(struct net_device *dev)
7332 {
7333 struct s2io_nic *sp = netdev_priv(dev);
7334
7335 if (netif_carrier_ok(dev)) {
7336 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7337 schedule_work(&sp->rst_timer_task);
7338 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7339 }
7340 }
7341
7342 /**
7343 * rx_osm_handler - To perform some OS related operations on SKB.
7344 * @sp: private member of the device structure,pointer to s2io_nic structure.
7345 * @skb : the socket buffer pointer.
7346 * @len : length of the packet
7347 * @cksum : FCS checksum of the frame.
7348 * @ring_no : the ring from which this RxD was extracted.
7349 * Description:
7350 * This function is called by the Rx interrupt serivce routine to perform
7351 * some OS related operations on the SKB before passing it to the upper
7352 * layers. It mainly checks if the checksum is OK, if so adds it to the
7353 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7354 * to the upper layer. If the checksum is wrong, it increments the Rx
7355 * packet error count, frees the SKB and returns error.
7356 * Return value:
7357 * SUCCESS on success and -1 on failure.
7358 */
7359 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7360 {
7361 struct s2io_nic *sp = ring_data->nic;
7362 struct net_device *dev = (struct net_device *) ring_data->dev;
7363 struct sk_buff *skb = (struct sk_buff *)
7364 ((unsigned long) rxdp->Host_Control);
7365 int ring_no = ring_data->ring_no;
7366 u16 l3_csum, l4_csum;
7367 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7368 struct lro *uninitialized_var(lro);
7369 u8 err_mask;
7370
7371 skb->dev = dev;
7372
7373 if (err) {
7374 /* Check for parity error */
7375 if (err & 0x1) {
7376 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7377 }
7378 err_mask = err >> 48;
7379 switch(err_mask) {
7380 case 1:
7381 sp->mac_control.stats_info->sw_stat.
7382 rx_parity_err_cnt++;
7383 break;
7384
7385 case 2:
7386 sp->mac_control.stats_info->sw_stat.
7387 rx_abort_cnt++;
7388 break;
7389
7390 case 3:
7391 sp->mac_control.stats_info->sw_stat.
7392 rx_parity_abort_cnt++;
7393 break;
7394
7395 case 4:
7396 sp->mac_control.stats_info->sw_stat.
7397 rx_rda_fail_cnt++;
7398 break;
7399
7400 case 5:
7401 sp->mac_control.stats_info->sw_stat.
7402 rx_unkn_prot_cnt++;
7403 break;
7404
7405 case 6:
7406 sp->mac_control.stats_info->sw_stat.
7407 rx_fcs_err_cnt++;
7408 break;
7409
7410 case 7:
7411 sp->mac_control.stats_info->sw_stat.
7412 rx_buf_size_err_cnt++;
7413 break;
7414
7415 case 8:
7416 sp->mac_control.stats_info->sw_stat.
7417 rx_rxd_corrupt_cnt++;
7418 break;
7419
7420 case 15:
7421 sp->mac_control.stats_info->sw_stat.
7422 rx_unkn_err_cnt++;
7423 break;
7424 }
7425 /*
7426 * Drop the packet if bad transfer code. Exception being
7427 * 0x5, which could be due to unsupported IPv6 extension header.
7428 * In this case, we let stack handle the packet.
7429 * Note that in this case, since checksum will be incorrect,
7430 * stack will validate the same.
7431 */
7432 if (err_mask != 0x5) {
7433 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7434 dev->name, err_mask);
7435 dev->stats.rx_crc_errors++;
7436 sp->mac_control.stats_info->sw_stat.mem_freed
7437 += skb->truesize;
7438 dev_kfree_skb(skb);
7439 ring_data->rx_bufs_left -= 1;
7440 rxdp->Host_Control = 0;
7441 return 0;
7442 }
7443 }
7444
7445 /* Updating statistics */
7446 ring_data->rx_packets++;
7447 rxdp->Host_Control = 0;
7448 if (sp->rxd_mode == RXD_MODE_1) {
7449 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7450
7451 ring_data->rx_bytes += len;
7452 skb_put(skb, len);
7453
7454 } else if (sp->rxd_mode == RXD_MODE_3B) {
7455 int get_block = ring_data->rx_curr_get_info.block_index;
7456 int get_off = ring_data->rx_curr_get_info.offset;
7457 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7458 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7459 unsigned char *buff = skb_push(skb, buf0_len);
7460
7461 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7462 ring_data->rx_bytes += buf0_len + buf2_len;
7463 memcpy(buff, ba->ba_0, buf0_len);
7464 skb_put(skb, buf2_len);
7465 }
7466
7467 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7468 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7469 (sp->rx_csum)) {
7470 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7471 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7472 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7473 /*
7474 * NIC verifies if the Checksum of the received
7475 * frame is Ok or not and accordingly returns
7476 * a flag in the RxD.
7477 */
7478 skb->ip_summed = CHECKSUM_UNNECESSARY;
7479 if (ring_data->lro) {
7480 u32 tcp_len;
7481 u8 *tcp;
7482 int ret = 0;
7483
7484 ret = s2io_club_tcp_session(ring_data,
7485 skb->data, &tcp, &tcp_len, &lro,
7486 rxdp, sp);
7487 switch (ret) {
7488 case 3: /* Begin anew */
7489 lro->parent = skb;
7490 goto aggregate;
7491 case 1: /* Aggregate */
7492 {
7493 lro_append_pkt(sp, lro,
7494 skb, tcp_len);
7495 goto aggregate;
7496 }
7497 case 4: /* Flush session */
7498 {
7499 lro_append_pkt(sp, lro,
7500 skb, tcp_len);
7501 queue_rx_frame(lro->parent,
7502 lro->vlan_tag);
7503 clear_lro_session(lro);
7504 sp->mac_control.stats_info->
7505 sw_stat.flush_max_pkts++;
7506 goto aggregate;
7507 }
7508 case 2: /* Flush both */
7509 lro->parent->data_len =
7510 lro->frags_len;
7511 sp->mac_control.stats_info->
7512 sw_stat.sending_both++;
7513 queue_rx_frame(lro->parent,
7514 lro->vlan_tag);
7515 clear_lro_session(lro);
7516 goto send_up;
7517 case 0: /* sessions exceeded */
7518 case -1: /* non-TCP or not
7519 * L2 aggregatable
7520 */
7521 case 5: /*
7522 * First pkt in session not
7523 * L3/L4 aggregatable
7524 */
7525 break;
7526 default:
7527 DBG_PRINT(ERR_DBG,
7528 "%s: Samadhana!!\n",
7529 __func__);
7530 BUG();
7531 }
7532 }
7533 } else {
7534 /*
7535 * Packet with erroneous checksum, let the
7536 * upper layers deal with it.
7537 */
7538 skb->ip_summed = CHECKSUM_NONE;
7539 }
7540 } else
7541 skb->ip_summed = CHECKSUM_NONE;
7542
7543 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7544 send_up:
7545 skb_record_rx_queue(skb, ring_no);
7546 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7547 aggregate:
7548 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7549 return SUCCESS;
7550 }
7551
7552 /**
7553 * s2io_link - stops/starts the Tx queue.
7554 * @sp : private member of the device structure, which is a pointer to the
7555 * s2io_nic structure.
7556 * @link : inidicates whether link is UP/DOWN.
7557 * Description:
7558 * This function stops/starts the Tx queue depending on whether the link
7559 * status of the NIC is is down or up. This is called by the Alarm
7560 * interrupt handler whenever a link change interrupt comes up.
7561 * Return value:
7562 * void.
7563 */
7564
7565 static void s2io_link(struct s2io_nic * sp, int link)
7566 {
7567 struct net_device *dev = (struct net_device *) sp->dev;
7568
7569 if (link != sp->last_link_state) {
7570 init_tti(sp, link);
7571 if (link == LINK_DOWN) {
7572 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7573 s2io_stop_all_tx_queue(sp);
7574 netif_carrier_off(dev);
7575 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7576 sp->mac_control.stats_info->sw_stat.link_up_time =
7577 jiffies - sp->start_time;
7578 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7579 } else {
7580 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7581 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7582 sp->mac_control.stats_info->sw_stat.link_down_time =
7583 jiffies - sp->start_time;
7584 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7585 netif_carrier_on(dev);
7586 s2io_wake_all_tx_queue(sp);
7587 }
7588 }
7589 sp->last_link_state = link;
7590 sp->start_time = jiffies;
7591 }
7592
7593 /**
7594 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7595 * @sp : private member of the device structure, which is a pointer to the
7596 * s2io_nic structure.
7597 * Description:
7598 * This function initializes a few of the PCI and PCI-X configuration registers
7599 * with recommended values.
7600 * Return value:
7601 * void
7602 */
7603
7604 static void s2io_init_pci(struct s2io_nic * sp)
7605 {
7606 u16 pci_cmd = 0, pcix_cmd = 0;
7607
7608 /* Enable Data Parity Error Recovery in PCI-X command register. */
7609 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7610 &(pcix_cmd));
7611 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7612 (pcix_cmd | 1));
7613 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7614 &(pcix_cmd));
7615
7616 /* Set the PErr Response bit in PCI command register. */
7617 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7618 pci_write_config_word(sp->pdev, PCI_COMMAND,
7619 (pci_cmd | PCI_COMMAND_PARITY));
7620 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7621 }
7622
7623 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7624 u8 *dev_multiq)
7625 {
7626 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7627 (tx_fifo_num < 1)) {
7628 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7629 "(%d) not supported\n", tx_fifo_num);
7630
7631 if (tx_fifo_num < 1)
7632 tx_fifo_num = 1;
7633 else
7634 tx_fifo_num = MAX_TX_FIFOS;
7635
7636 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7637 DBG_PRINT(ERR_DBG, "tx fifos\n");
7638 }
7639
7640 if (multiq)
7641 *dev_multiq = multiq;
7642
7643 if (tx_steering_type && (1 == tx_fifo_num)) {
7644 if (tx_steering_type != TX_DEFAULT_STEERING)
7645 DBG_PRINT(ERR_DBG,
7646 "s2io: Tx steering is not supported with "
7647 "one fifo. Disabling Tx steering.\n");
7648 tx_steering_type = NO_STEERING;
7649 }
7650
7651 if ((tx_steering_type < NO_STEERING) ||
7652 (tx_steering_type > TX_DEFAULT_STEERING)) {
7653 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7654 "supported\n");
7655 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7656 tx_steering_type = NO_STEERING;
7657 }
7658
7659 if (rx_ring_num > MAX_RX_RINGS) {
7660 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7661 "supported\n");
7662 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7663 MAX_RX_RINGS);
7664 rx_ring_num = MAX_RX_RINGS;
7665 }
7666
7667 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7668 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7669 "Defaulting to INTA\n");
7670 *dev_intr_type = INTA;
7671 }
7672
7673 if ((*dev_intr_type == MSI_X) &&
7674 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7675 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7676 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7677 "Defaulting to INTA\n");
7678 *dev_intr_type = INTA;
7679 }
7680
7681 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7682 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7683 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7684 rx_ring_mode = 1;
7685 }
7686 return SUCCESS;
7687 }
7688
7689 /**
7690 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7691 * or Traffic class respectively.
7692 * @nic: device private variable
7693 * Description: The function configures the receive steering to
7694 * desired receive ring.
7695 * Return Value: SUCCESS on success and
7696 * '-1' on failure (endian settings incorrect).
7697 */
7698 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7699 {
7700 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7701 register u64 val64 = 0;
7702
7703 if (ds_codepoint > 63)
7704 return FAILURE;
7705
7706 val64 = RTS_DS_MEM_DATA(ring);
7707 writeq(val64, &bar0->rts_ds_mem_data);
7708
7709 val64 = RTS_DS_MEM_CTRL_WE |
7710 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7711 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7712
7713 writeq(val64, &bar0->rts_ds_mem_ctrl);
7714
7715 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7716 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7717 S2IO_BIT_RESET);
7718 }
7719
7720 static const struct net_device_ops s2io_netdev_ops = {
7721 .ndo_open = s2io_open,
7722 .ndo_stop = s2io_close,
7723 .ndo_get_stats = s2io_get_stats,
7724 .ndo_start_xmit = s2io_xmit,
7725 .ndo_validate_addr = eth_validate_addr,
7726 .ndo_set_multicast_list = s2io_set_multicast,
7727 .ndo_do_ioctl = s2io_ioctl,
7728 .ndo_set_mac_address = s2io_set_mac_addr,
7729 .ndo_change_mtu = s2io_change_mtu,
7730 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7731 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7732 .ndo_tx_timeout = s2io_tx_watchdog,
7733 #ifdef CONFIG_NET_POLL_CONTROLLER
7734 .ndo_poll_controller = s2io_netpoll,
7735 #endif
7736 };
7737
7738 /**
7739 * s2io_init_nic - Initialization of the adapter .
7740 * @pdev : structure containing the PCI related information of the device.
7741 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7742 * Description:
7743 * The function initializes an adapter identified by the pci_dec structure.
7744 * All OS related initialization including memory and device structure and
7745 * initlaization of the device private variable is done. Also the swapper
7746 * control register is initialized to enable read and write into the I/O
7747 * registers of the device.
7748 * Return value:
7749 * returns 0 on success and negative on failure.
7750 */
7751
7752 static int __devinit
7753 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7754 {
7755 struct s2io_nic *sp;
7756 struct net_device *dev;
7757 int i, j, ret;
7758 int dma_flag = FALSE;
7759 u32 mac_up, mac_down;
7760 u64 val64 = 0, tmp64 = 0;
7761 struct XENA_dev_config __iomem *bar0 = NULL;
7762 u16 subid;
7763 struct mac_info *mac_control;
7764 struct config_param *config;
7765 int mode;
7766 u8 dev_intr_type = intr_type;
7767 u8 dev_multiq = 0;
7768
7769 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7770 if (ret)
7771 return ret;
7772
7773 if ((ret = pci_enable_device(pdev))) {
7774 DBG_PRINT(ERR_DBG,
7775 "s2io_init_nic: pci_enable_device failed\n");
7776 return ret;
7777 }
7778
7779 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7780 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7781 dma_flag = TRUE;
7782 if (pci_set_consistent_dma_mask
7783 (pdev, DMA_BIT_MASK(64))) {
7784 DBG_PRINT(ERR_DBG,
7785 "Unable to obtain 64bit DMA for \
7786 consistent allocations\n");
7787 pci_disable_device(pdev);
7788 return -ENOMEM;
7789 }
7790 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7791 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7792 } else {
7793 pci_disable_device(pdev);
7794 return -ENOMEM;
7795 }
7796 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7797 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7798 pci_disable_device(pdev);
7799 return -ENODEV;
7800 }
7801 if (dev_multiq)
7802 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7803 else
7804 dev = alloc_etherdev(sizeof(struct s2io_nic));
7805 if (dev == NULL) {
7806 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7807 pci_disable_device(pdev);
7808 pci_release_regions(pdev);
7809 return -ENODEV;
7810 }
7811
7812 pci_set_master(pdev);
7813 pci_set_drvdata(pdev, dev);
7814 SET_NETDEV_DEV(dev, &pdev->dev);
7815
7816 /* Private member variable initialized to s2io NIC structure */
7817 sp = netdev_priv(dev);
7818 memset(sp, 0, sizeof(struct s2io_nic));
7819 sp->dev = dev;
7820 sp->pdev = pdev;
7821 sp->high_dma_flag = dma_flag;
7822 sp->device_enabled_once = FALSE;
7823 if (rx_ring_mode == 1)
7824 sp->rxd_mode = RXD_MODE_1;
7825 if (rx_ring_mode == 2)
7826 sp->rxd_mode = RXD_MODE_3B;
7827
7828 sp->config.intr_type = dev_intr_type;
7829
7830 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7831 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7832 sp->device_type = XFRAME_II_DEVICE;
7833 else
7834 sp->device_type = XFRAME_I_DEVICE;
7835
7836 sp->lro = lro_enable;
7837
7838 /* Initialize some PCI/PCI-X fields of the NIC. */
7839 s2io_init_pci(sp);
7840
7841 /*
7842 * Setting the device configuration parameters.
7843 * Most of these parameters can be specified by the user during
7844 * module insertion as they are module loadable parameters. If
7845 * these parameters are not not specified during load time, they
7846 * are initialized with default values.
7847 */
7848 mac_control = &sp->mac_control;
7849 config = &sp->config;
7850
7851 config->napi = napi;
7852 config->tx_steering_type = tx_steering_type;
7853
7854 /* Tx side parameters. */
7855 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7856 config->tx_fifo_num = MAX_TX_FIFOS;
7857 else
7858 config->tx_fifo_num = tx_fifo_num;
7859
7860 /* Initialize the fifos used for tx steering */
7861 if (config->tx_fifo_num < 5) {
7862 if (config->tx_fifo_num == 1)
7863 sp->total_tcp_fifos = 1;
7864 else
7865 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7866 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7867 sp->total_udp_fifos = 1;
7868 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7869 } else {
7870 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7871 FIFO_OTHER_MAX_NUM);
7872 sp->udp_fifo_idx = sp->total_tcp_fifos;
7873 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7874 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7875 }
7876
7877 config->multiq = dev_multiq;
7878 for (i = 0; i < config->tx_fifo_num; i++) {
7879 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7880 config->tx_cfg[i].fifo_priority = i;
7881 }
7882
7883 /* mapping the QoS priority to the configured fifos */
7884 for (i = 0; i < MAX_TX_FIFOS; i++)
7885 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7886
7887 /* map the hashing selector table to the configured fifos */
7888 for (i = 0; i < config->tx_fifo_num; i++)
7889 sp->fifo_selector[i] = fifo_selector[i];
7890
7891
7892 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7893 for (i = 0; i < config->tx_fifo_num; i++) {
7894 config->tx_cfg[i].f_no_snoop =
7895 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7896 if (config->tx_cfg[i].fifo_len < 65) {
7897 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7898 break;
7899 }
7900 }
7901 /* + 2 because one Txd for skb->data and one Txd for UFO */
7902 config->max_txds = MAX_SKB_FRAGS + 2;
7903
7904 /* Rx side parameters. */
7905 config->rx_ring_num = rx_ring_num;
7906 for (i = 0; i < config->rx_ring_num; i++) {
7907 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7908 (rxd_count[sp->rxd_mode] + 1);
7909 config->rx_cfg[i].ring_priority = i;
7910 mac_control->rings[i].rx_bufs_left = 0;
7911 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7912 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7913 mac_control->rings[i].pdev = sp->pdev;
7914 mac_control->rings[i].dev = sp->dev;
7915 }
7916
7917 for (i = 0; i < rx_ring_num; i++) {
7918 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7919 config->rx_cfg[i].f_no_snoop =
7920 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7921 }
7922
7923 /* Setting Mac Control parameters */
7924 mac_control->rmac_pause_time = rmac_pause_time;
7925 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7926 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7927
7928
7929 /* initialize the shared memory used by the NIC and the host */
7930 if (init_shared_mem(sp)) {
7931 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7932 dev->name);
7933 ret = -ENOMEM;
7934 goto mem_alloc_failed;
7935 }
7936
7937 sp->bar0 = pci_ioremap_bar(pdev, 0);
7938 if (!sp->bar0) {
7939 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7940 dev->name);
7941 ret = -ENOMEM;
7942 goto bar0_remap_failed;
7943 }
7944
7945 sp->bar1 = pci_ioremap_bar(pdev, 2);
7946 if (!sp->bar1) {
7947 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7948 dev->name);
7949 ret = -ENOMEM;
7950 goto bar1_remap_failed;
7951 }
7952
7953 dev->irq = pdev->irq;
7954 dev->base_addr = (unsigned long) sp->bar0;
7955
7956 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7957 for (j = 0; j < MAX_TX_FIFOS; j++) {
7958 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7959 (sp->bar1 + (j * 0x00020000));
7960 }
7961
7962 /* Driver entry points */
7963 dev->netdev_ops = &s2io_netdev_ops;
7964 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7965 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7966
7967 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7968 if (sp->high_dma_flag == TRUE)
7969 dev->features |= NETIF_F_HIGHDMA;
7970 dev->features |= NETIF_F_TSO;
7971 dev->features |= NETIF_F_TSO6;
7972 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7973 dev->features |= NETIF_F_UFO;
7974 dev->features |= NETIF_F_HW_CSUM;
7975 }
7976 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7977 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7978 INIT_WORK(&sp->set_link_task, s2io_set_link);
7979
7980 pci_save_state(sp->pdev);
7981
7982 /* Setting swapper control on the NIC, for proper reset operation */
7983 if (s2io_set_swapper(sp)) {
7984 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7985 dev->name);
7986 ret = -EAGAIN;
7987 goto set_swap_failed;
7988 }
7989
7990 /* Verify if the Herc works on the slot its placed into */
7991 if (sp->device_type & XFRAME_II_DEVICE) {
7992 mode = s2io_verify_pci_mode(sp);
7993 if (mode < 0) {
7994 DBG_PRINT(ERR_DBG, "%s: ", __func__);
7995 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7996 ret = -EBADSLT;
7997 goto set_swap_failed;
7998 }
7999 }
8000
8001 if (sp->config.intr_type == MSI_X) {
8002 sp->num_entries = config->rx_ring_num + 1;
8003 ret = s2io_enable_msi_x(sp);
8004
8005 if (!ret) {
8006 ret = s2io_test_msi(sp);
8007 /* rollback MSI-X, will re-enable during add_isr() */
8008 remove_msix_isr(sp);
8009 }
8010 if (ret) {
8011
8012 DBG_PRINT(ERR_DBG,
8013 "s2io: MSI-X requested but failed to enable\n");
8014 sp->config.intr_type = INTA;
8015 }
8016 }
8017
8018 if (config->intr_type == MSI_X) {
8019 for (i = 0; i < config->rx_ring_num ; i++)
8020 netif_napi_add(dev, &mac_control->rings[i].napi,
8021 s2io_poll_msix, 64);
8022 } else {
8023 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8024 }
8025
8026 /* Not needed for Herc */
8027 if (sp->device_type & XFRAME_I_DEVICE) {
8028 /*
8029 * Fix for all "FFs" MAC address problems observed on
8030 * Alpha platforms
8031 */
8032 fix_mac_address(sp);
8033 s2io_reset(sp);
8034 }
8035
8036 /*
8037 * MAC address initialization.
8038 * For now only one mac address will be read and used.
8039 */
8040 bar0 = sp->bar0;
8041 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8042 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8043 writeq(val64, &bar0->rmac_addr_cmd_mem);
8044 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8045 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8046 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8047 mac_down = (u32) tmp64;
8048 mac_up = (u32) (tmp64 >> 32);
8049
8050 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8051 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8052 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8053 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8054 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8055 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8056
8057 /* Set the factory defined MAC address initially */
8058 dev->addr_len = ETH_ALEN;
8059 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8060 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8061
8062 /* initialize number of multicast & unicast MAC entries variables */
8063 if (sp->device_type == XFRAME_I_DEVICE) {
8064 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8065 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8066 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8067 } else if (sp->device_type == XFRAME_II_DEVICE) {
8068 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8069 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8070 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8071 }
8072
8073 /* store mac addresses from CAM to s2io_nic structure */
8074 do_s2io_store_unicast_mc(sp);
8075
8076 /* Configure MSIX vector for number of rings configured plus one */
8077 if ((sp->device_type == XFRAME_II_DEVICE) &&
8078 (config->intr_type == MSI_X))
8079 sp->num_entries = config->rx_ring_num + 1;
8080
8081 /* Store the values of the MSIX table in the s2io_nic structure */
8082 store_xmsi_data(sp);
8083 /* reset Nic and bring it to known state */
8084 s2io_reset(sp);
8085
8086 /*
8087 * Initialize link state flags
8088 * and the card state parameter
8089 */
8090 sp->state = 0;
8091
8092 /* Initialize spinlocks */
8093 for (i = 0; i < sp->config.tx_fifo_num; i++)
8094 spin_lock_init(&mac_control->fifos[i].tx_lock);
8095
8096 /*
8097 * SXE-002: Configure link and activity LED to init state
8098 * on driver load.
8099 */
8100 subid = sp->pdev->subsystem_device;
8101 if ((subid & 0xFF) >= 0x07) {
8102 val64 = readq(&bar0->gpio_control);
8103 val64 |= 0x0000800000000000ULL;
8104 writeq(val64, &bar0->gpio_control);
8105 val64 = 0x0411040400000000ULL;
8106 writeq(val64, (void __iomem *) bar0 + 0x2700);
8107 val64 = readq(&bar0->gpio_control);
8108 }
8109
8110 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8111
8112 if (register_netdev(dev)) {
8113 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8114 ret = -ENODEV;
8115 goto register_failed;
8116 }
8117 s2io_vpd_read(sp);
8118 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8119 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8120 sp->product_name, pdev->revision);
8121 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8122 s2io_driver_version);
8123 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8124 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8125 if (sp->device_type & XFRAME_II_DEVICE) {
8126 mode = s2io_print_pci_mode(sp);
8127 if (mode < 0) {
8128 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8129 ret = -EBADSLT;
8130 unregister_netdev(dev);
8131 goto set_swap_failed;
8132 }
8133 }
8134 switch(sp->rxd_mode) {
8135 case RXD_MODE_1:
8136 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8137 dev->name);
8138 break;
8139 case RXD_MODE_3B:
8140 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8141 dev->name);
8142 break;
8143 }
8144
8145 switch (sp->config.napi) {
8146 case 0:
8147 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8148 break;
8149 case 1:
8150 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8151 break;
8152 }
8153
8154 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8155 sp->config.tx_fifo_num);
8156
8157 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8158 sp->config.rx_ring_num);
8159
8160 switch(sp->config.intr_type) {
8161 case INTA:
8162 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8163 break;
8164 case MSI_X:
8165 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8166 break;
8167 }
8168 if (sp->config.multiq) {
8169 for (i = 0; i < sp->config.tx_fifo_num; i++)
8170 mac_control->fifos[i].multiq = config->multiq;
8171 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8172 dev->name);
8173 } else
8174 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8175 dev->name);
8176
8177 switch (sp->config.tx_steering_type) {
8178 case NO_STEERING:
8179 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8180 " transmit\n", dev->name);
8181 break;
8182 case TX_PRIORITY_STEERING:
8183 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8184 " transmit\n", dev->name);
8185 break;
8186 case TX_DEFAULT_STEERING:
8187 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8188 " transmit\n", dev->name);
8189 }
8190
8191 if (sp->lro)
8192 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8193 dev->name);
8194 if (ufo)
8195 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8196 " enabled\n", dev->name);
8197 /* Initialize device name */
8198 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8199
8200 if (vlan_tag_strip)
8201 sp->vlan_strip_flag = 1;
8202 else
8203 sp->vlan_strip_flag = 0;
8204
8205 /*
8206 * Make Link state as off at this point, when the Link change
8207 * interrupt comes the state will be automatically changed to
8208 * the right state.
8209 */
8210 netif_carrier_off(dev);
8211
8212 return 0;
8213
8214 register_failed:
8215 set_swap_failed:
8216 iounmap(sp->bar1);
8217 bar1_remap_failed:
8218 iounmap(sp->bar0);
8219 bar0_remap_failed:
8220 mem_alloc_failed:
8221 free_shared_mem(sp);
8222 pci_disable_device(pdev);
8223 pci_release_regions(pdev);
8224 pci_set_drvdata(pdev, NULL);
8225 free_netdev(dev);
8226
8227 return ret;
8228 }
8229
8230 /**
8231 * s2io_rem_nic - Free the PCI device
8232 * @pdev: structure containing the PCI related information of the device.
8233 * Description: This function is called by the Pci subsystem to release a
8234 * PCI device and free up all resource held up by the device. This could
8235 * be in response to a Hot plug event or when the driver is to be removed
8236 * from memory.
8237 */
8238
8239 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8240 {
8241 struct net_device *dev =
8242 (struct net_device *) pci_get_drvdata(pdev);
8243 struct s2io_nic *sp;
8244
8245 if (dev == NULL) {
8246 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8247 return;
8248 }
8249
8250 flush_scheduled_work();
8251
8252 sp = netdev_priv(dev);
8253 unregister_netdev(dev);
8254
8255 free_shared_mem(sp);
8256 iounmap(sp->bar0);
8257 iounmap(sp->bar1);
8258 pci_release_regions(pdev);
8259 pci_set_drvdata(pdev, NULL);
8260 free_netdev(dev);
8261 pci_disable_device(pdev);
8262 }
8263
8264 /**
8265 * s2io_starter - Entry point for the driver
8266 * Description: This function is the entry point for the driver. It verifies
8267 * the module loadable parameters and initializes PCI configuration space.
8268 */
8269
8270 static int __init s2io_starter(void)
8271 {
8272 return pci_register_driver(&s2io_driver);
8273 }
8274
8275 /**
8276 * s2io_closer - Cleanup routine for the driver
8277 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8278 */
8279
8280 static __exit void s2io_closer(void)
8281 {
8282 pci_unregister_driver(&s2io_driver);
8283 DBG_PRINT(INIT_DBG, "cleanup done\n");
8284 }
8285
8286 module_init(s2io_starter);
8287 module_exit(s2io_closer);
8288
8289 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8290 struct tcphdr **tcp, struct RxD_t *rxdp,
8291 struct s2io_nic *sp)
8292 {
8293 int ip_off;
8294 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8295
8296 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8297 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8298 __func__);
8299 return -1;
8300 }
8301
8302 /* Checking for DIX type or DIX type with VLAN */
8303 if ((l2_type == 0)
8304 || (l2_type == 4)) {
8305 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8306 /*
8307 * If vlan stripping is disabled and the frame is VLAN tagged,
8308 * shift the offset by the VLAN header size bytes.
8309 */
8310 if ((!sp->vlan_strip_flag) &&
8311 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8312 ip_off += HEADER_VLAN_SIZE;
8313 } else {
8314 /* LLC, SNAP etc are considered non-mergeable */
8315 return -1;
8316 }
8317
8318 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8319 ip_len = (u8)((*ip)->ihl);
8320 ip_len <<= 2;
8321 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8322
8323 return 0;
8324 }
8325
8326 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8327 struct tcphdr *tcp)
8328 {
8329 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8330 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8331 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8332 return -1;
8333 return 0;
8334 }
8335
8336 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8337 {
8338 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8339 }
8340
8341 static void initiate_new_session(struct lro *lro, u8 *l2h,
8342 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8343 {
8344 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8345 lro->l2h = l2h;
8346 lro->iph = ip;
8347 lro->tcph = tcp;
8348 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8349 lro->tcp_ack = tcp->ack_seq;
8350 lro->sg_num = 1;
8351 lro->total_len = ntohs(ip->tot_len);
8352 lro->frags_len = 0;
8353 lro->vlan_tag = vlan_tag;
8354 /*
8355 * check if we saw TCP timestamp. Other consistency checks have
8356 * already been done.
8357 */
8358 if (tcp->doff == 8) {
8359 __be32 *ptr;
8360 ptr = (__be32 *)(tcp+1);
8361 lro->saw_ts = 1;
8362 lro->cur_tsval = ntohl(*(ptr+1));
8363 lro->cur_tsecr = *(ptr+2);
8364 }
8365 lro->in_use = 1;
8366 }
8367
8368 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8369 {
8370 struct iphdr *ip = lro->iph;
8371 struct tcphdr *tcp = lro->tcph;
8372 __sum16 nchk;
8373 struct stat_block *statinfo = sp->mac_control.stats_info;
8374 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8375
8376 /* Update L3 header */
8377 ip->tot_len = htons(lro->total_len);
8378 ip->check = 0;
8379 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8380 ip->check = nchk;
8381
8382 /* Update L4 header */
8383 tcp->ack_seq = lro->tcp_ack;
8384 tcp->window = lro->window;
8385
8386 /* Update tsecr field if this session has timestamps enabled */
8387 if (lro->saw_ts) {
8388 __be32 *ptr = (__be32 *)(tcp + 1);
8389 *(ptr+2) = lro->cur_tsecr;
8390 }
8391
8392 /* Update counters required for calculation of
8393 * average no. of packets aggregated.
8394 */
8395 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8396 statinfo->sw_stat.num_aggregations++;
8397 }
8398
8399 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8400 struct tcphdr *tcp, u32 l4_pyld)
8401 {
8402 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8403 lro->total_len += l4_pyld;
8404 lro->frags_len += l4_pyld;
8405 lro->tcp_next_seq += l4_pyld;
8406 lro->sg_num++;
8407
8408 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8409 lro->tcp_ack = tcp->ack_seq;
8410 lro->window = tcp->window;
8411
8412 if (lro->saw_ts) {
8413 __be32 *ptr;
8414 /* Update tsecr and tsval from this packet */
8415 ptr = (__be32 *)(tcp+1);
8416 lro->cur_tsval = ntohl(*(ptr+1));
8417 lro->cur_tsecr = *(ptr + 2);
8418 }
8419 }
8420
8421 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8422 struct tcphdr *tcp, u32 tcp_pyld_len)
8423 {
8424 u8 *ptr;
8425
8426 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8427
8428 if (!tcp_pyld_len) {
8429 /* Runt frame or a pure ack */
8430 return -1;
8431 }
8432
8433 if (ip->ihl != 5) /* IP has options */
8434 return -1;
8435
8436 /* If we see CE codepoint in IP header, packet is not mergeable */
8437 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8438 return -1;
8439
8440 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8441 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8442 tcp->ece || tcp->cwr || !tcp->ack) {
8443 /*
8444 * Currently recognize only the ack control word and
8445 * any other control field being set would result in
8446 * flushing the LRO session
8447 */
8448 return -1;
8449 }
8450
8451 /*
8452 * Allow only one TCP timestamp option. Don't aggregate if
8453 * any other options are detected.
8454 */
8455 if (tcp->doff != 5 && tcp->doff != 8)
8456 return -1;
8457
8458 if (tcp->doff == 8) {
8459 ptr = (u8 *)(tcp + 1);
8460 while (*ptr == TCPOPT_NOP)
8461 ptr++;
8462 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8463 return -1;
8464
8465 /* Ensure timestamp value increases monotonically */
8466 if (l_lro)
8467 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8468 return -1;
8469
8470 /* timestamp echo reply should be non-zero */
8471 if (*((__be32 *)(ptr+6)) == 0)
8472 return -1;
8473 }
8474
8475 return 0;
8476 }
8477
8478 static int
8479 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8480 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8481 struct s2io_nic *sp)
8482 {
8483 struct iphdr *ip;
8484 struct tcphdr *tcph;
8485 int ret = 0, i;
8486 u16 vlan_tag = 0;
8487
8488 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8489 rxdp, sp))) {
8490 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8491 ip->saddr, ip->daddr);
8492 } else
8493 return ret;
8494
8495 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8496 tcph = (struct tcphdr *)*tcp;
8497 *tcp_len = get_l4_pyld_length(ip, tcph);
8498 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8499 struct lro *l_lro = &ring_data->lro0_n[i];
8500 if (l_lro->in_use) {
8501 if (check_for_socket_match(l_lro, ip, tcph))
8502 continue;
8503 /* Sock pair matched */
8504 *lro = l_lro;
8505
8506 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8507 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8508 "0x%x, actual 0x%x\n", __func__,
8509 (*lro)->tcp_next_seq,
8510 ntohl(tcph->seq));
8511
8512 sp->mac_control.stats_info->
8513 sw_stat.outof_sequence_pkts++;
8514 ret = 2;
8515 break;
8516 }
8517
8518 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8519 ret = 1; /* Aggregate */
8520 else
8521 ret = 2; /* Flush both */
8522 break;
8523 }
8524 }
8525
8526 if (ret == 0) {
8527 /* Before searching for available LRO objects,
8528 * check if the pkt is L3/L4 aggregatable. If not
8529 * don't create new LRO session. Just send this
8530 * packet up.
8531 */
8532 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8533 return 5;
8534 }
8535
8536 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8537 struct lro *l_lro = &ring_data->lro0_n[i];
8538 if (!(l_lro->in_use)) {
8539 *lro = l_lro;
8540 ret = 3; /* Begin anew */
8541 break;
8542 }
8543 }
8544 }
8545
8546 if (ret == 0) { /* sessions exceeded */
8547 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8548 __func__);
8549 *lro = NULL;
8550 return ret;
8551 }
8552
8553 switch (ret) {
8554 case 3:
8555 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8556 vlan_tag);
8557 break;
8558 case 2:
8559 update_L3L4_header(sp, *lro);
8560 break;
8561 case 1:
8562 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8563 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8564 update_L3L4_header(sp, *lro);
8565 ret = 4; /* Flush the LRO */
8566 }
8567 break;
8568 default:
8569 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8570 __func__);
8571 break;
8572 }
8573
8574 return ret;
8575 }
8576
8577 static void clear_lro_session(struct lro *lro)
8578 {
8579 static u16 lro_struct_size = sizeof(struct lro);
8580
8581 memset(lro, 0, lro_struct_size);
8582 }
8583
8584 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8585 {
8586 struct net_device *dev = skb->dev;
8587 struct s2io_nic *sp = netdev_priv(dev);
8588
8589 skb->protocol = eth_type_trans(skb, dev);
8590 if (sp->vlgrp && vlan_tag
8591 && (sp->vlan_strip_flag)) {
8592 /* Queueing the vlan frame to the upper layer */
8593 if (sp->config.napi)
8594 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8595 else
8596 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8597 } else {
8598 if (sp->config.napi)
8599 netif_receive_skb(skb);
8600 else
8601 netif_rx(skb);
8602 }
8603 }
8604
8605 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8606 struct sk_buff *skb,
8607 u32 tcp_len)
8608 {
8609 struct sk_buff *first = lro->parent;
8610
8611 first->len += tcp_len;
8612 first->data_len = lro->frags_len;
8613 skb_pull(skb, (skb->len - tcp_len));
8614 if (skb_shinfo(first)->frag_list)
8615 lro->last_frag->next = skb;
8616 else
8617 skb_shinfo(first)->frag_list = skb;
8618 first->truesize += skb->truesize;
8619 lro->last_frag = skb;
8620 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8621 return;
8622 }
8623
8624 /**
8625 * s2io_io_error_detected - called when PCI error is detected
8626 * @pdev: Pointer to PCI device
8627 * @state: The current pci connection state
8628 *
8629 * This function is called after a PCI bus error affecting
8630 * this device has been detected.
8631 */
8632 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8633 pci_channel_state_t state)
8634 {
8635 struct net_device *netdev = pci_get_drvdata(pdev);
8636 struct s2io_nic *sp = netdev_priv(netdev);
8637
8638 netif_device_detach(netdev);
8639
8640 if (netif_running(netdev)) {
8641 /* Bring down the card, while avoiding PCI I/O */
8642 do_s2io_card_down(sp, 0);
8643 }
8644 pci_disable_device(pdev);
8645
8646 return PCI_ERS_RESULT_NEED_RESET;
8647 }
8648
8649 /**
8650 * s2io_io_slot_reset - called after the pci bus has been reset.
8651 * @pdev: Pointer to PCI device
8652 *
8653 * Restart the card from scratch, as if from a cold-boot.
8654 * At this point, the card has exprienced a hard reset,
8655 * followed by fixups by BIOS, and has its config space
8656 * set up identically to what it was at cold boot.
8657 */
8658 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8659 {
8660 struct net_device *netdev = pci_get_drvdata(pdev);
8661 struct s2io_nic *sp = netdev_priv(netdev);
8662
8663 if (pci_enable_device(pdev)) {
8664 printk(KERN_ERR "s2io: "
8665 "Cannot re-enable PCI device after reset.\n");
8666 return PCI_ERS_RESULT_DISCONNECT;
8667 }
8668
8669 pci_set_master(pdev);
8670 s2io_reset(sp);
8671
8672 return PCI_ERS_RESULT_RECOVERED;
8673 }
8674
8675 /**
8676 * s2io_io_resume - called when traffic can start flowing again.
8677 * @pdev: Pointer to PCI device
8678 *
8679 * This callback is called when the error recovery driver tells
8680 * us that its OK to resume normal operation.
8681 */
8682 static void s2io_io_resume(struct pci_dev *pdev)
8683 {
8684 struct net_device *netdev = pci_get_drvdata(pdev);
8685 struct s2io_nic *sp = netdev_priv(netdev);
8686
8687 if (netif_running(netdev)) {
8688 if (s2io_card_up(sp)) {
8689 printk(KERN_ERR "s2io: "
8690 "Can't bring device back up after reset.\n");
8691 return;
8692 }
8693
8694 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8695 s2io_card_down(sp);
8696 printk(KERN_ERR "s2io: "
8697 "Can't resetore mac addr after reset.\n");
8698 return;
8699 }
8700 }
8701
8702 netif_device_attach(netdev);
8703 netif_tx_wake_all_queues(netdev);
8704 }
This page took 0.198635 seconds and 6 git commands to generate.