Merge branch 'bugzilla-16244' into release
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4 *
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <linux/slab.h>
83 #include <net/tcp.h>
84
85 #include <asm/system.h>
86 #include <asm/div64.h>
87 #include <asm/irq.h>
88
89 /* local include */
90 #include "s2io.h"
91 #include "s2io-regs.h"
92
93 #define DRV_VERSION "2.0.26.25"
94
95 /* S2io Driver name & version. */
96 static char s2io_driver_name[] = "Neterion";
97 static char s2io_driver_version[] = DRV_VERSION;
98
99 static int rxd_size[2] = {32, 48};
100 static int rxd_count[2] = {127, 85};
101
102 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 {
104 int ret;
105
106 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
107 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108
109 return ret;
110 }
111
112 /*
113 * Cards with following subsystem_id have a link state indication
114 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115 * macro below identifies these cards given the subsystem_id.
116 */
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
118 (dev_type == XFRAME_I_DEVICE) ? \
119 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
120 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124
125 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 {
127 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128 }
129
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
132 "Register test\t(offline)",
133 "Eeprom test\t(offline)",
134 "Link test\t(online)",
135 "RLDRAM test\t(offline)",
136 "BIST Test\t(offline)"
137 };
138
139 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
140 {"tmac_frms"},
141 {"tmac_data_octets"},
142 {"tmac_drop_frms"},
143 {"tmac_mcst_frms"},
144 {"tmac_bcst_frms"},
145 {"tmac_pause_ctrl_frms"},
146 {"tmac_ttl_octets"},
147 {"tmac_ucst_frms"},
148 {"tmac_nucst_frms"},
149 {"tmac_any_err_frms"},
150 {"tmac_ttl_less_fb_octets"},
151 {"tmac_vld_ip_octets"},
152 {"tmac_vld_ip"},
153 {"tmac_drop_ip"},
154 {"tmac_icmp"},
155 {"tmac_rst_tcp"},
156 {"tmac_tcp"},
157 {"tmac_udp"},
158 {"rmac_vld_frms"},
159 {"rmac_data_octets"},
160 {"rmac_fcs_err_frms"},
161 {"rmac_drop_frms"},
162 {"rmac_vld_mcst_frms"},
163 {"rmac_vld_bcst_frms"},
164 {"rmac_in_rng_len_err_frms"},
165 {"rmac_out_rng_len_err_frms"},
166 {"rmac_long_frms"},
167 {"rmac_pause_ctrl_frms"},
168 {"rmac_unsup_ctrl_frms"},
169 {"rmac_ttl_octets"},
170 {"rmac_accepted_ucst_frms"},
171 {"rmac_accepted_nucst_frms"},
172 {"rmac_discarded_frms"},
173 {"rmac_drop_events"},
174 {"rmac_ttl_less_fb_octets"},
175 {"rmac_ttl_frms"},
176 {"rmac_usized_frms"},
177 {"rmac_osized_frms"},
178 {"rmac_frag_frms"},
179 {"rmac_jabber_frms"},
180 {"rmac_ttl_64_frms"},
181 {"rmac_ttl_65_127_frms"},
182 {"rmac_ttl_128_255_frms"},
183 {"rmac_ttl_256_511_frms"},
184 {"rmac_ttl_512_1023_frms"},
185 {"rmac_ttl_1024_1518_frms"},
186 {"rmac_ip"},
187 {"rmac_ip_octets"},
188 {"rmac_hdr_err_ip"},
189 {"rmac_drop_ip"},
190 {"rmac_icmp"},
191 {"rmac_tcp"},
192 {"rmac_udp"},
193 {"rmac_err_drp_udp"},
194 {"rmac_xgmii_err_sym"},
195 {"rmac_frms_q0"},
196 {"rmac_frms_q1"},
197 {"rmac_frms_q2"},
198 {"rmac_frms_q3"},
199 {"rmac_frms_q4"},
200 {"rmac_frms_q5"},
201 {"rmac_frms_q6"},
202 {"rmac_frms_q7"},
203 {"rmac_full_q0"},
204 {"rmac_full_q1"},
205 {"rmac_full_q2"},
206 {"rmac_full_q3"},
207 {"rmac_full_q4"},
208 {"rmac_full_q5"},
209 {"rmac_full_q6"},
210 {"rmac_full_q7"},
211 {"rmac_pause_cnt"},
212 {"rmac_xgmii_data_err_cnt"},
213 {"rmac_xgmii_ctrl_err_cnt"},
214 {"rmac_accepted_ip"},
215 {"rmac_err_tcp"},
216 {"rd_req_cnt"},
217 {"new_rd_req_cnt"},
218 {"new_rd_req_rtry_cnt"},
219 {"rd_rtry_cnt"},
220 {"wr_rtry_rd_ack_cnt"},
221 {"wr_req_cnt"},
222 {"new_wr_req_cnt"},
223 {"new_wr_req_rtry_cnt"},
224 {"wr_rtry_cnt"},
225 {"wr_disc_cnt"},
226 {"rd_rtry_wr_ack_cnt"},
227 {"txp_wr_cnt"},
228 {"txd_rd_cnt"},
229 {"txd_wr_cnt"},
230 {"rxd_rd_cnt"},
231 {"rxd_wr_cnt"},
232 {"txf_rd_cnt"},
233 {"rxf_wr_cnt"}
234 };
235
236 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
237 {"rmac_ttl_1519_4095_frms"},
238 {"rmac_ttl_4096_8191_frms"},
239 {"rmac_ttl_8192_max_frms"},
240 {"rmac_ttl_gt_max_frms"},
241 {"rmac_osized_alt_frms"},
242 {"rmac_jabber_alt_frms"},
243 {"rmac_gt_max_alt_frms"},
244 {"rmac_vlan_frms"},
245 {"rmac_len_discard"},
246 {"rmac_fcs_discard"},
247 {"rmac_pf_discard"},
248 {"rmac_da_discard"},
249 {"rmac_red_discard"},
250 {"rmac_rts_discard"},
251 {"rmac_ingm_full_discard"},
252 {"link_fault_cnt"}
253 };
254
255 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
256 {"\n DRIVER STATISTICS"},
257 {"single_bit_ecc_errs"},
258 {"double_bit_ecc_errs"},
259 {"parity_err_cnt"},
260 {"serious_err_cnt"},
261 {"soft_reset_cnt"},
262 {"fifo_full_cnt"},
263 {"ring_0_full_cnt"},
264 {"ring_1_full_cnt"},
265 {"ring_2_full_cnt"},
266 {"ring_3_full_cnt"},
267 {"ring_4_full_cnt"},
268 {"ring_5_full_cnt"},
269 {"ring_6_full_cnt"},
270 {"ring_7_full_cnt"},
271 {"alarm_transceiver_temp_high"},
272 {"alarm_transceiver_temp_low"},
273 {"alarm_laser_bias_current_high"},
274 {"alarm_laser_bias_current_low"},
275 {"alarm_laser_output_power_high"},
276 {"alarm_laser_output_power_low"},
277 {"warn_transceiver_temp_high"},
278 {"warn_transceiver_temp_low"},
279 {"warn_laser_bias_current_high"},
280 {"warn_laser_bias_current_low"},
281 {"warn_laser_output_power_high"},
282 {"warn_laser_output_power_low"},
283 {"lro_aggregated_pkts"},
284 {"lro_flush_both_count"},
285 {"lro_out_of_sequence_pkts"},
286 {"lro_flush_due_to_max_pkts"},
287 {"lro_avg_aggr_pkts"},
288 {"mem_alloc_fail_cnt"},
289 {"pci_map_fail_cnt"},
290 {"watchdog_timer_cnt"},
291 {"mem_allocated"},
292 {"mem_freed"},
293 {"link_up_cnt"},
294 {"link_down_cnt"},
295 {"link_up_time"},
296 {"link_down_time"},
297 {"tx_tcode_buf_abort_cnt"},
298 {"tx_tcode_desc_abort_cnt"},
299 {"tx_tcode_parity_err_cnt"},
300 {"tx_tcode_link_loss_cnt"},
301 {"tx_tcode_list_proc_err_cnt"},
302 {"rx_tcode_parity_err_cnt"},
303 {"rx_tcode_abort_cnt"},
304 {"rx_tcode_parity_abort_cnt"},
305 {"rx_tcode_rda_fail_cnt"},
306 {"rx_tcode_unkn_prot_cnt"},
307 {"rx_tcode_fcs_err_cnt"},
308 {"rx_tcode_buf_size_err_cnt"},
309 {"rx_tcode_rxd_corrupt_cnt"},
310 {"rx_tcode_unkn_err_cnt"},
311 {"tda_err_cnt"},
312 {"pfc_err_cnt"},
313 {"pcc_err_cnt"},
314 {"tti_err_cnt"},
315 {"tpa_err_cnt"},
316 {"sm_err_cnt"},
317 {"lso_err_cnt"},
318 {"mac_tmac_err_cnt"},
319 {"mac_rmac_err_cnt"},
320 {"xgxs_txgxs_err_cnt"},
321 {"xgxs_rxgxs_err_cnt"},
322 {"rc_err_cnt"},
323 {"prc_pcix_err_cnt"},
324 {"rpa_err_cnt"},
325 {"rda_err_cnt"},
326 {"rti_err_cnt"},
327 {"mc_err_cnt"}
328 };
329
330 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339
340 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
344 init_timer(&timer); \
345 timer.function = handle; \
346 timer.data = (unsigned long)arg; \
347 mod_timer(&timer, (jiffies + exp)) \
348
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 {
352 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358 }
359
360 /* Add the vlan */
361 static void s2io_vlan_rx_register(struct net_device *dev,
362 struct vlan_group *grp)
363 {
364 int i;
365 struct s2io_nic *nic = netdev_priv(dev);
366 unsigned long flags[MAX_TX_FIFOS];
367 struct config_param *config = &nic->config;
368 struct mac_info *mac_control = &nic->mac_control;
369
370 for (i = 0; i < config->tx_fifo_num; i++) {
371 struct fifo_info *fifo = &mac_control->fifos[i];
372
373 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374 }
375
376 nic->vlgrp = grp;
377
378 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379 struct fifo_info *fifo = &mac_control->fifos[i];
380
381 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382 }
383 }
384
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 {
388 int i;
389 struct s2io_nic *nic = netdev_priv(dev);
390 unsigned long flags[MAX_TX_FIFOS];
391 struct config_param *config = &nic->config;
392 struct mac_info *mac_control = &nic->mac_control;
393
394 for (i = 0; i < config->tx_fifo_num; i++) {
395 struct fifo_info *fifo = &mac_control->fifos[i];
396
397 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398 }
399
400 if (nic->vlgrp)
401 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
403 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404 struct fifo_info *fifo = &mac_control->fifos[i];
405
406 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407 }
408 }
409
410 /*
411 * Constants to be programmed into the Xena's registers, to configure
412 * the XAUI.
413 */
414
415 #define END_SIGN 0x0
416 static const u64 herc_act_dtx_cfg[] = {
417 /* Set address */
418 0x8000051536750000ULL, 0x80000515367500E0ULL,
419 /* Write data */
420 0x8000051536750004ULL, 0x80000515367500E4ULL,
421 /* Set address */
422 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423 /* Write data */
424 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425 /* Set address */
426 0x801205150D440000ULL, 0x801205150D4400E0ULL,
427 /* Write data */
428 0x801205150D440004ULL, 0x801205150D4400E4ULL,
429 /* Set address */
430 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431 /* Write data */
432 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433 /* Done */
434 END_SIGN
435 };
436
437 static const u64 xena_dtx_cfg[] = {
438 /* Set address */
439 0x8000051500000000ULL, 0x80000515000000E0ULL,
440 /* Write data */
441 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442 /* Set address */
443 0x8001051500000000ULL, 0x80010515000000E0ULL,
444 /* Write data */
445 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446 /* Set address */
447 0x8002051500000000ULL, 0x80020515000000E0ULL,
448 /* Write data */
449 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
450 END_SIGN
451 };
452
453 /*
454 * Constants for Fixing the MacAddress problem seen mostly on
455 * Alpha machines.
456 */
457 static const u64 fix_mac[] = {
458 0x0060000000000000ULL, 0x0060600000000000ULL,
459 0x0040600000000000ULL, 0x0000600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0000600000000000ULL,
471 0x0040600000000000ULL, 0x0060600000000000ULL,
472 END_SIGN
473 };
474
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION);
477
478
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
481 S2IO_PARM_INT(rx_ring_num, 1);
482 S2IO_PARM_INT(multiq, 0);
483 S2IO_PARM_INT(rx_ring_mode, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485 S2IO_PARM_INT(rmac_pause_time, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488 S2IO_PARM_INT(shared_splits, 0);
489 S2IO_PARM_INT(tmac_util_period, 5);
490 S2IO_PARM_INT(rmac_util_period, 5);
491 S2IO_PARM_INT(l3l4hdr_size, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable;
500 module_param_named(lro, lro_enable, uint, 0);
501
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503 * aggregation happens until we hit max IP pkt size(64K)
504 */
505 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts, 0);
507
508 S2IO_PARM_INT(napi, 1);
509 S2IO_PARM_INT(ufo, 0);
510 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
511
512 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
513 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
514 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
515 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
516 static unsigned int rts_frm_len[MAX_RX_RINGS] =
517 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
518
519 module_param_array(tx_fifo_len, uint, NULL, 0);
520 module_param_array(rx_ring_sz, uint, NULL, 0);
521 module_param_array(rts_frm_len, uint, NULL, 0);
522
523 /*
524 * S2IO device table.
525 * This table lists all the devices that this driver supports.
526 */
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
528 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529 PCI_ANY_ID, PCI_ANY_ID},
530 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531 PCI_ANY_ID, PCI_ANY_ID},
532 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
533 PCI_ANY_ID, PCI_ANY_ID},
534 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535 PCI_ANY_ID, PCI_ANY_ID},
536 {0,}
537 };
538
539 MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
541 static struct pci_error_handlers s2io_err_handler = {
542 .error_detected = s2io_io_error_detected,
543 .slot_reset = s2io_io_slot_reset,
544 .resume = s2io_io_resume,
545 };
546
547 static struct pci_driver s2io_driver = {
548 .name = "S2IO",
549 .id_table = s2io_tbl,
550 .probe = s2io_init_nic,
551 .remove = __devexit_p(s2io_rem_nic),
552 .err_handler = &s2io_err_handler,
553 };
554
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560 {
561 if (!sp->config.multiq) {
562 int i;
563
564 for (i = 0; i < sp->config.tx_fifo_num; i++)
565 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
566 }
567 netif_tx_stop_all_queues(sp->dev);
568 }
569
570 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571 {
572 if (!sp->config.multiq)
573 sp->mac_control.fifos[fifo_no].queue_state =
574 FIFO_QUEUE_STOP;
575
576 netif_tx_stop_all_queues(sp->dev);
577 }
578
579 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580 {
581 if (!sp->config.multiq) {
582 int i;
583
584 for (i = 0; i < sp->config.tx_fifo_num; i++)
585 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
586 }
587 netif_tx_start_all_queues(sp->dev);
588 }
589
590 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591 {
592 if (!sp->config.multiq)
593 sp->mac_control.fifos[fifo_no].queue_state =
594 FIFO_QUEUE_START;
595
596 netif_tx_start_all_queues(sp->dev);
597 }
598
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600 {
601 if (!sp->config.multiq) {
602 int i;
603
604 for (i = 0; i < sp->config.tx_fifo_num; i++)
605 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
606 }
607 netif_tx_wake_all_queues(sp->dev);
608 }
609
610 static inline void s2io_wake_tx_queue(
611 struct fifo_info *fifo, int cnt, u8 multiq)
612 {
613
614 if (multiq) {
615 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
617 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
618 if (netif_queue_stopped(fifo->dev)) {
619 fifo->queue_state = FIFO_QUEUE_START;
620 netif_wake_queue(fifo->dev);
621 }
622 }
623 }
624
625 /**
626 * init_shared_mem - Allocation and Initialization of Memory
627 * @nic: Device private variable.
628 * Description: The function allocates all the memory areas shared
629 * between the NIC and the driver. This includes Tx descriptors,
630 * Rx descriptors and the statistics block.
631 */
632
633 static int init_shared_mem(struct s2io_nic *nic)
634 {
635 u32 size;
636 void *tmp_v_addr, *tmp_v_addr_next;
637 dma_addr_t tmp_p_addr, tmp_p_addr_next;
638 struct RxD_block *pre_rxd_blk = NULL;
639 int i, j, blk_cnt;
640 int lst_size, lst_per_page;
641 struct net_device *dev = nic->dev;
642 unsigned long tmp;
643 struct buffAdd *ba;
644 struct config_param *config = &nic->config;
645 struct mac_info *mac_control = &nic->mac_control;
646 unsigned long long mem_allocated = 0;
647
648 /* Allocation and initialization of TXDLs in FIFOs */
649 size = 0;
650 for (i = 0; i < config->tx_fifo_num; i++) {
651 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653 size += tx_cfg->fifo_len;
654 }
655 if (size > MAX_AVAILABLE_TXDS) {
656 DBG_PRINT(ERR_DBG,
657 "Too many TxDs requested: %d, max supported: %d\n",
658 size, MAX_AVAILABLE_TXDS);
659 return -EINVAL;
660 }
661
662 size = 0;
663 for (i = 0; i < config->tx_fifo_num; i++) {
664 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666 size = tx_cfg->fifo_len;
667 /*
668 * Legal values are from 2 to 8192
669 */
670 if (size < 2) {
671 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672 "Valid lengths are 2 through 8192\n",
673 i, size);
674 return -EINVAL;
675 }
676 }
677
678 lst_size = (sizeof(struct TxD) * config->max_txds);
679 lst_per_page = PAGE_SIZE / lst_size;
680
681 for (i = 0; i < config->tx_fifo_num; i++) {
682 struct fifo_info *fifo = &mac_control->fifos[i];
683 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684 int fifo_len = tx_cfg->fifo_len;
685 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
686
687 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688 if (!fifo->list_info) {
689 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
690 return -ENOMEM;
691 }
692 mem_allocated += list_holder_size;
693 }
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696 lst_per_page);
697 struct fifo_info *fifo = &mac_control->fifos[i];
698 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700 fifo->tx_curr_put_info.offset = 0;
701 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702 fifo->tx_curr_get_info.offset = 0;
703 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704 fifo->fifo_no = i;
705 fifo->nic = nic;
706 fifo->max_txds = MAX_SKB_FRAGS + 2;
707 fifo->dev = dev;
708
709 for (j = 0; j < page_num; j++) {
710 int k = 0;
711 dma_addr_t tmp_p;
712 void *tmp_v;
713 tmp_v = pci_alloc_consistent(nic->pdev,
714 PAGE_SIZE, &tmp_p);
715 if (!tmp_v) {
716 DBG_PRINT(INFO_DBG,
717 "pci_alloc_consistent failed for TxDL\n");
718 return -ENOMEM;
719 }
720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
723 * to be freed later.
724 */
725 if (!tmp_p) {
726 mac_control->zerodma_virt_addr = tmp_v;
727 DBG_PRINT(INIT_DBG,
728 "%s: Zero DMA address for TxDL. "
729 "Virtual address %p\n",
730 dev->name, tmp_v);
731 tmp_v = pci_alloc_consistent(nic->pdev,
732 PAGE_SIZE, &tmp_p);
733 if (!tmp_v) {
734 DBG_PRINT(INFO_DBG,
735 "pci_alloc_consistent failed for TxDL\n");
736 return -ENOMEM;
737 }
738 mem_allocated += PAGE_SIZE;
739 }
740 while (k < lst_per_page) {
741 int l = (j * lst_per_page) + k;
742 if (l == tx_cfg->fifo_len)
743 break;
744 fifo->list_info[l].list_virt_addr =
745 tmp_v + (k * lst_size);
746 fifo->list_info[l].list_phy_addr =
747 tmp_p + (k * lst_size);
748 k++;
749 }
750 }
751 }
752
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 struct fifo_info *fifo = &mac_control->fifos[i];
755 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757 size = tx_cfg->fifo_len;
758 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759 if (!fifo->ufo_in_band_v)
760 return -ENOMEM;
761 mem_allocated += (size * sizeof(u64));
762 }
763
764 /* Allocation and initialization of RXDs in Rings */
765 size = 0;
766 for (i = 0; i < config->rx_ring_num; i++) {
767 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768 struct ring_info *ring = &mac_control->rings[i];
769
770 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
771 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772 "multiple of RxDs per Block\n",
773 dev->name, i);
774 return FAILURE;
775 }
776 size += rx_cfg->num_rxd;
777 ring->block_count = rx_cfg->num_rxd /
778 (rxd_count[nic->rxd_mode] + 1);
779 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
780 }
781 if (nic->rxd_mode == RXD_MODE_1)
782 size = (size * (sizeof(struct RxD1)));
783 else
784 size = (size * (sizeof(struct RxD3)));
785
786 for (i = 0; i < config->rx_ring_num; i++) {
787 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788 struct ring_info *ring = &mac_control->rings[i];
789
790 ring->rx_curr_get_info.block_index = 0;
791 ring->rx_curr_get_info.offset = 0;
792 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793 ring->rx_curr_put_info.block_index = 0;
794 ring->rx_curr_put_info.offset = 0;
795 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796 ring->nic = nic;
797 ring->ring_no = i;
798 ring->lro = lro_enable;
799
800 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
801 /* Allocating all the Rx blocks */
802 for (j = 0; j < blk_cnt; j++) {
803 struct rx_block_info *rx_blocks;
804 int l;
805
806 rx_blocks = &ring->rx_blocks[j];
807 size = SIZE_OF_BLOCK; /* size is always page size */
808 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
809 &tmp_p_addr);
810 if (tmp_v_addr == NULL) {
811 /*
812 * In case of failure, free_shared_mem()
813 * is called, which should free any
814 * memory that was alloced till the
815 * failure happened.
816 */
817 rx_blocks->block_virt_addr = tmp_v_addr;
818 return -ENOMEM;
819 }
820 mem_allocated += size;
821 memset(tmp_v_addr, 0, size);
822
823 size = sizeof(struct rxd_info) *
824 rxd_count[nic->rxd_mode];
825 rx_blocks->block_virt_addr = tmp_v_addr;
826 rx_blocks->block_dma_addr = tmp_p_addr;
827 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
828 if (!rx_blocks->rxds)
829 return -ENOMEM;
830 mem_allocated += size;
831 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
832 rx_blocks->rxds[l].virt_addr =
833 rx_blocks->block_virt_addr +
834 (rxd_size[nic->rxd_mode] * l);
835 rx_blocks->rxds[l].dma_addr =
836 rx_blocks->block_dma_addr +
837 (rxd_size[nic->rxd_mode] * l);
838 }
839 }
840 /* Interlinking all Rx Blocks */
841 for (j = 0; j < blk_cnt; j++) {
842 int next = (j + 1) % blk_cnt;
843 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
844 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
845 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
846 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
847
848 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
849 pre_rxd_blk->reserved_2_pNext_RxD_block =
850 (unsigned long)tmp_v_addr_next;
851 pre_rxd_blk->pNext_RxD_Blk_physical =
852 (u64)tmp_p_addr_next;
853 }
854 }
855 if (nic->rxd_mode == RXD_MODE_3B) {
856 /*
857 * Allocation of Storages for buffer addresses in 2BUFF mode
858 * and the buffers as well.
859 */
860 for (i = 0; i < config->rx_ring_num; i++) {
861 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
862 struct ring_info *ring = &mac_control->rings[i];
863
864 blk_cnt = rx_cfg->num_rxd /
865 (rxd_count[nic->rxd_mode] + 1);
866 size = sizeof(struct buffAdd *) * blk_cnt;
867 ring->ba = kmalloc(size, GFP_KERNEL);
868 if (!ring->ba)
869 return -ENOMEM;
870 mem_allocated += size;
871 for (j = 0; j < blk_cnt; j++) {
872 int k = 0;
873
874 size = sizeof(struct buffAdd) *
875 (rxd_count[nic->rxd_mode] + 1);
876 ring->ba[j] = kmalloc(size, GFP_KERNEL);
877 if (!ring->ba[j])
878 return -ENOMEM;
879 mem_allocated += size;
880 while (k != rxd_count[nic->rxd_mode]) {
881 ba = &ring->ba[j][k];
882 size = BUF0_LEN + ALIGN_SIZE;
883 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
884 if (!ba->ba_0_org)
885 return -ENOMEM;
886 mem_allocated += size;
887 tmp = (unsigned long)ba->ba_0_org;
888 tmp += ALIGN_SIZE;
889 tmp &= ~((unsigned long)ALIGN_SIZE);
890 ba->ba_0 = (void *)tmp;
891
892 size = BUF1_LEN + ALIGN_SIZE;
893 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
894 if (!ba->ba_1_org)
895 return -ENOMEM;
896 mem_allocated += size;
897 tmp = (unsigned long)ba->ba_1_org;
898 tmp += ALIGN_SIZE;
899 tmp &= ~((unsigned long)ALIGN_SIZE);
900 ba->ba_1 = (void *)tmp;
901 k++;
902 }
903 }
904 }
905 }
906
907 /* Allocation and initialization of Statistics block */
908 size = sizeof(struct stat_block);
909 mac_control->stats_mem =
910 pci_alloc_consistent(nic->pdev, size,
911 &mac_control->stats_mem_phy);
912
913 if (!mac_control->stats_mem) {
914 /*
915 * In case of failure, free_shared_mem() is called, which
916 * should free any memory that was alloced till the
917 * failure happened.
918 */
919 return -ENOMEM;
920 }
921 mem_allocated += size;
922 mac_control->stats_mem_sz = size;
923
924 tmp_v_addr = mac_control->stats_mem;
925 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
926 memset(tmp_v_addr, 0, size);
927 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
928 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
929 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
930 return SUCCESS;
931 }
932
933 /**
934 * free_shared_mem - Free the allocated Memory
935 * @nic: Device private variable.
936 * Description: This function is to free all memory locations allocated by
937 * the init_shared_mem() function and return it to the kernel.
938 */
939
940 static void free_shared_mem(struct s2io_nic *nic)
941 {
942 int i, j, blk_cnt, size;
943 void *tmp_v_addr;
944 dma_addr_t tmp_p_addr;
945 int lst_size, lst_per_page;
946 struct net_device *dev;
947 int page_num = 0;
948 struct config_param *config;
949 struct mac_info *mac_control;
950 struct stat_block *stats;
951 struct swStat *swstats;
952
953 if (!nic)
954 return;
955
956 dev = nic->dev;
957
958 config = &nic->config;
959 mac_control = &nic->mac_control;
960 stats = mac_control->stats_info;
961 swstats = &stats->sw_stat;
962
963 lst_size = sizeof(struct TxD) * config->max_txds;
964 lst_per_page = PAGE_SIZE / lst_size;
965
966 for (i = 0; i < config->tx_fifo_num; i++) {
967 struct fifo_info *fifo = &mac_control->fifos[i];
968 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
969
970 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
971 for (j = 0; j < page_num; j++) {
972 int mem_blks = (j * lst_per_page);
973 struct list_info_hold *fli;
974
975 if (!fifo->list_info)
976 return;
977
978 fli = &fifo->list_info[mem_blks];
979 if (!fli->list_virt_addr)
980 break;
981 pci_free_consistent(nic->pdev, PAGE_SIZE,
982 fli->list_virt_addr,
983 fli->list_phy_addr);
984 swstats->mem_freed += PAGE_SIZE;
985 }
986 /* If we got a zero DMA address during allocation,
987 * free the page now
988 */
989 if (mac_control->zerodma_virt_addr) {
990 pci_free_consistent(nic->pdev, PAGE_SIZE,
991 mac_control->zerodma_virt_addr,
992 (dma_addr_t)0);
993 DBG_PRINT(INIT_DBG,
994 "%s: Freeing TxDL with zero DMA address. "
995 "Virtual address %p\n",
996 dev->name, mac_control->zerodma_virt_addr);
997 swstats->mem_freed += PAGE_SIZE;
998 }
999 kfree(fifo->list_info);
1000 swstats->mem_freed += tx_cfg->fifo_len *
1001 sizeof(struct list_info_hold);
1002 }
1003
1004 size = SIZE_OF_BLOCK;
1005 for (i = 0; i < config->rx_ring_num; i++) {
1006 struct ring_info *ring = &mac_control->rings[i];
1007
1008 blk_cnt = ring->block_count;
1009 for (j = 0; j < blk_cnt; j++) {
1010 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1011 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1012 if (tmp_v_addr == NULL)
1013 break;
1014 pci_free_consistent(nic->pdev, size,
1015 tmp_v_addr, tmp_p_addr);
1016 swstats->mem_freed += size;
1017 kfree(ring->rx_blocks[j].rxds);
1018 swstats->mem_freed += sizeof(struct rxd_info) *
1019 rxd_count[nic->rxd_mode];
1020 }
1021 }
1022
1023 if (nic->rxd_mode == RXD_MODE_3B) {
1024 /* Freeing buffer storage addresses in 2BUFF mode. */
1025 for (i = 0; i < config->rx_ring_num; i++) {
1026 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1027 struct ring_info *ring = &mac_control->rings[i];
1028
1029 blk_cnt = rx_cfg->num_rxd /
1030 (rxd_count[nic->rxd_mode] + 1);
1031 for (j = 0; j < blk_cnt; j++) {
1032 int k = 0;
1033 if (!ring->ba[j])
1034 continue;
1035 while (k != rxd_count[nic->rxd_mode]) {
1036 struct buffAdd *ba = &ring->ba[j][k];
1037 kfree(ba->ba_0_org);
1038 swstats->mem_freed +=
1039 BUF0_LEN + ALIGN_SIZE;
1040 kfree(ba->ba_1_org);
1041 swstats->mem_freed +=
1042 BUF1_LEN + ALIGN_SIZE;
1043 k++;
1044 }
1045 kfree(ring->ba[j]);
1046 swstats->mem_freed += sizeof(struct buffAdd) *
1047 (rxd_count[nic->rxd_mode] + 1);
1048 }
1049 kfree(ring->ba);
1050 swstats->mem_freed += sizeof(struct buffAdd *) *
1051 blk_cnt;
1052 }
1053 }
1054
1055 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1056 struct fifo_info *fifo = &mac_control->fifos[i];
1057 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1058
1059 if (fifo->ufo_in_band_v) {
1060 swstats->mem_freed += tx_cfg->fifo_len *
1061 sizeof(u64);
1062 kfree(fifo->ufo_in_band_v);
1063 }
1064 }
1065
1066 if (mac_control->stats_mem) {
1067 swstats->mem_freed += mac_control->stats_mem_sz;
1068 pci_free_consistent(nic->pdev,
1069 mac_control->stats_mem_sz,
1070 mac_control->stats_mem,
1071 mac_control->stats_mem_phy);
1072 }
1073 }
1074
1075 /**
1076 * s2io_verify_pci_mode -
1077 */
1078
1079 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1080 {
1081 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1082 register u64 val64 = 0;
1083 int mode;
1084
1085 val64 = readq(&bar0->pci_mode);
1086 mode = (u8)GET_PCI_MODE(val64);
1087
1088 if (val64 & PCI_MODE_UNKNOWN_MODE)
1089 return -1; /* Unknown PCI mode */
1090 return mode;
1091 }
1092
1093 #define NEC_VENID 0x1033
1094 #define NEC_DEVID 0x0125
1095 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1096 {
1097 struct pci_dev *tdev = NULL;
1098 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1099 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1100 if (tdev->bus == s2io_pdev->bus->parent) {
1101 pci_dev_put(tdev);
1102 return 1;
1103 }
1104 }
1105 }
1106 return 0;
1107 }
1108
1109 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1110 /**
1111 * s2io_print_pci_mode -
1112 */
1113 static int s2io_print_pci_mode(struct s2io_nic *nic)
1114 {
1115 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1116 register u64 val64 = 0;
1117 int mode;
1118 struct config_param *config = &nic->config;
1119 const char *pcimode;
1120
1121 val64 = readq(&bar0->pci_mode);
1122 mode = (u8)GET_PCI_MODE(val64);
1123
1124 if (val64 & PCI_MODE_UNKNOWN_MODE)
1125 return -1; /* Unknown PCI mode */
1126
1127 config->bus_speed = bus_speed[mode];
1128
1129 if (s2io_on_nec_bridge(nic->pdev)) {
1130 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1131 nic->dev->name);
1132 return mode;
1133 }
1134
1135 switch (mode) {
1136 case PCI_MODE_PCI_33:
1137 pcimode = "33MHz PCI bus";
1138 break;
1139 case PCI_MODE_PCI_66:
1140 pcimode = "66MHz PCI bus";
1141 break;
1142 case PCI_MODE_PCIX_M1_66:
1143 pcimode = "66MHz PCIX(M1) bus";
1144 break;
1145 case PCI_MODE_PCIX_M1_100:
1146 pcimode = "100MHz PCIX(M1) bus";
1147 break;
1148 case PCI_MODE_PCIX_M1_133:
1149 pcimode = "133MHz PCIX(M1) bus";
1150 break;
1151 case PCI_MODE_PCIX_M2_66:
1152 pcimode = "133MHz PCIX(M2) bus";
1153 break;
1154 case PCI_MODE_PCIX_M2_100:
1155 pcimode = "200MHz PCIX(M2) bus";
1156 break;
1157 case PCI_MODE_PCIX_M2_133:
1158 pcimode = "266MHz PCIX(M2) bus";
1159 break;
1160 default:
1161 pcimode = "unsupported bus!";
1162 mode = -1;
1163 }
1164
1165 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1166 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1167
1168 return mode;
1169 }
1170
1171 /**
1172 * init_tti - Initialization transmit traffic interrupt scheme
1173 * @nic: device private variable
1174 * @link: link status (UP/DOWN) used to enable/disable continuous
1175 * transmit interrupts
1176 * Description: The function configures transmit traffic interrupts
1177 * Return Value: SUCCESS on success and
1178 * '-1' on failure
1179 */
1180
1181 static int init_tti(struct s2io_nic *nic, int link)
1182 {
1183 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1184 register u64 val64 = 0;
1185 int i;
1186 struct config_param *config = &nic->config;
1187
1188 for (i = 0; i < config->tx_fifo_num; i++) {
1189 /*
1190 * TTI Initialization. Default Tx timer gets us about
1191 * 250 interrupts per sec. Continuous interrupts are enabled
1192 * by default.
1193 */
1194 if (nic->device_type == XFRAME_II_DEVICE) {
1195 int count = (nic->config.bus_speed * 125)/2;
1196 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1197 } else
1198 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1199
1200 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1201 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1202 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1203 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1204 if (i == 0)
1205 if (use_continuous_tx_intrs && (link == LINK_UP))
1206 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1207 writeq(val64, &bar0->tti_data1_mem);
1208
1209 if (nic->config.intr_type == MSI_X) {
1210 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1211 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1212 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1213 TTI_DATA2_MEM_TX_UFC_D(0x300);
1214 } else {
1215 if ((nic->config.tx_steering_type ==
1216 TX_DEFAULT_STEERING) &&
1217 (config->tx_fifo_num > 1) &&
1218 (i >= nic->udp_fifo_idx) &&
1219 (i < (nic->udp_fifo_idx +
1220 nic->total_udp_fifos)))
1221 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1222 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1223 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1224 TTI_DATA2_MEM_TX_UFC_D(0x120);
1225 else
1226 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229 TTI_DATA2_MEM_TX_UFC_D(0x80);
1230 }
1231
1232 writeq(val64, &bar0->tti_data2_mem);
1233
1234 val64 = TTI_CMD_MEM_WE |
1235 TTI_CMD_MEM_STROBE_NEW_CMD |
1236 TTI_CMD_MEM_OFFSET(i);
1237 writeq(val64, &bar0->tti_command_mem);
1238
1239 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1240 TTI_CMD_MEM_STROBE_NEW_CMD,
1241 S2IO_BIT_RESET) != SUCCESS)
1242 return FAILURE;
1243 }
1244
1245 return SUCCESS;
1246 }
1247
1248 /**
1249 * init_nic - Initialization of hardware
1250 * @nic: device private variable
1251 * Description: The function sequentially configures every block
1252 * of the H/W from their reset values.
1253 * Return Value: SUCCESS on success and
1254 * '-1' on failure (endian settings incorrect).
1255 */
1256
1257 static int init_nic(struct s2io_nic *nic)
1258 {
1259 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1260 struct net_device *dev = nic->dev;
1261 register u64 val64 = 0;
1262 void __iomem *add;
1263 u32 time;
1264 int i, j;
1265 int dtx_cnt = 0;
1266 unsigned long long mem_share;
1267 int mem_size;
1268 struct config_param *config = &nic->config;
1269 struct mac_info *mac_control = &nic->mac_control;
1270
1271 /* to set the swapper controle on the card */
1272 if (s2io_set_swapper(nic)) {
1273 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1274 return -EIO;
1275 }
1276
1277 /*
1278 * Herc requires EOI to be removed from reset before XGXS, so..
1279 */
1280 if (nic->device_type & XFRAME_II_DEVICE) {
1281 val64 = 0xA500000000ULL;
1282 writeq(val64, &bar0->sw_reset);
1283 msleep(500);
1284 val64 = readq(&bar0->sw_reset);
1285 }
1286
1287 /* Remove XGXS from reset state */
1288 val64 = 0;
1289 writeq(val64, &bar0->sw_reset);
1290 msleep(500);
1291 val64 = readq(&bar0->sw_reset);
1292
1293 /* Ensure that it's safe to access registers by checking
1294 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1295 */
1296 if (nic->device_type == XFRAME_II_DEVICE) {
1297 for (i = 0; i < 50; i++) {
1298 val64 = readq(&bar0->adapter_status);
1299 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1300 break;
1301 msleep(10);
1302 }
1303 if (i == 50)
1304 return -ENODEV;
1305 }
1306
1307 /* Enable Receiving broadcasts */
1308 add = &bar0->mac_cfg;
1309 val64 = readq(&bar0->mac_cfg);
1310 val64 |= MAC_RMAC_BCAST_ENABLE;
1311 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1312 writel((u32)val64, add);
1313 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314 writel((u32) (val64 >> 32), (add + 4));
1315
1316 /* Read registers in all blocks */
1317 val64 = readq(&bar0->mac_int_mask);
1318 val64 = readq(&bar0->mc_int_mask);
1319 val64 = readq(&bar0->xgxs_int_mask);
1320
1321 /* Set MTU */
1322 val64 = dev->mtu;
1323 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1324
1325 if (nic->device_type & XFRAME_II_DEVICE) {
1326 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1327 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1328 &bar0->dtx_control, UF);
1329 if (dtx_cnt & 0x1)
1330 msleep(1); /* Necessary!! */
1331 dtx_cnt++;
1332 }
1333 } else {
1334 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1335 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1336 &bar0->dtx_control, UF);
1337 val64 = readq(&bar0->dtx_control);
1338 dtx_cnt++;
1339 }
1340 }
1341
1342 /* Tx DMA Initialization */
1343 val64 = 0;
1344 writeq(val64, &bar0->tx_fifo_partition_0);
1345 writeq(val64, &bar0->tx_fifo_partition_1);
1346 writeq(val64, &bar0->tx_fifo_partition_2);
1347 writeq(val64, &bar0->tx_fifo_partition_3);
1348
1349 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1350 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1351
1352 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1353 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1354
1355 if (i == (config->tx_fifo_num - 1)) {
1356 if (i % 2 == 0)
1357 i++;
1358 }
1359
1360 switch (i) {
1361 case 1:
1362 writeq(val64, &bar0->tx_fifo_partition_0);
1363 val64 = 0;
1364 j = 0;
1365 break;
1366 case 3:
1367 writeq(val64, &bar0->tx_fifo_partition_1);
1368 val64 = 0;
1369 j = 0;
1370 break;
1371 case 5:
1372 writeq(val64, &bar0->tx_fifo_partition_2);
1373 val64 = 0;
1374 j = 0;
1375 break;
1376 case 7:
1377 writeq(val64, &bar0->tx_fifo_partition_3);
1378 val64 = 0;
1379 j = 0;
1380 break;
1381 default:
1382 j++;
1383 break;
1384 }
1385 }
1386
1387 /*
1388 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1389 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1390 */
1391 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1392 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1393
1394 val64 = readq(&bar0->tx_fifo_partition_0);
1395 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1396 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1397
1398 /*
1399 * Initialization of Tx_PA_CONFIG register to ignore packet
1400 * integrity checking.
1401 */
1402 val64 = readq(&bar0->tx_pa_cfg);
1403 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1404 TX_PA_CFG_IGNORE_SNAP_OUI |
1405 TX_PA_CFG_IGNORE_LLC_CTRL |
1406 TX_PA_CFG_IGNORE_L2_ERR;
1407 writeq(val64, &bar0->tx_pa_cfg);
1408
1409 /* Rx DMA intialization. */
1410 val64 = 0;
1411 for (i = 0; i < config->rx_ring_num; i++) {
1412 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1413
1414 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1415 }
1416 writeq(val64, &bar0->rx_queue_priority);
1417
1418 /*
1419 * Allocating equal share of memory to all the
1420 * configured Rings.
1421 */
1422 val64 = 0;
1423 if (nic->device_type & XFRAME_II_DEVICE)
1424 mem_size = 32;
1425 else
1426 mem_size = 64;
1427
1428 for (i = 0; i < config->rx_ring_num; i++) {
1429 switch (i) {
1430 case 0:
1431 mem_share = (mem_size / config->rx_ring_num +
1432 mem_size % config->rx_ring_num);
1433 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1434 continue;
1435 case 1:
1436 mem_share = (mem_size / config->rx_ring_num);
1437 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1438 continue;
1439 case 2:
1440 mem_share = (mem_size / config->rx_ring_num);
1441 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1442 continue;
1443 case 3:
1444 mem_share = (mem_size / config->rx_ring_num);
1445 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1446 continue;
1447 case 4:
1448 mem_share = (mem_size / config->rx_ring_num);
1449 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1450 continue;
1451 case 5:
1452 mem_share = (mem_size / config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1454 continue;
1455 case 6:
1456 mem_share = (mem_size / config->rx_ring_num);
1457 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1458 continue;
1459 case 7:
1460 mem_share = (mem_size / config->rx_ring_num);
1461 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1462 continue;
1463 }
1464 }
1465 writeq(val64, &bar0->rx_queue_cfg);
1466
1467 /*
1468 * Filling Tx round robin registers
1469 * as per the number of FIFOs for equal scheduling priority
1470 */
1471 switch (config->tx_fifo_num) {
1472 case 1:
1473 val64 = 0x0;
1474 writeq(val64, &bar0->tx_w_round_robin_0);
1475 writeq(val64, &bar0->tx_w_round_robin_1);
1476 writeq(val64, &bar0->tx_w_round_robin_2);
1477 writeq(val64, &bar0->tx_w_round_robin_3);
1478 writeq(val64, &bar0->tx_w_round_robin_4);
1479 break;
1480 case 2:
1481 val64 = 0x0001000100010001ULL;
1482 writeq(val64, &bar0->tx_w_round_robin_0);
1483 writeq(val64, &bar0->tx_w_round_robin_1);
1484 writeq(val64, &bar0->tx_w_round_robin_2);
1485 writeq(val64, &bar0->tx_w_round_robin_3);
1486 val64 = 0x0001000100000000ULL;
1487 writeq(val64, &bar0->tx_w_round_robin_4);
1488 break;
1489 case 3:
1490 val64 = 0x0001020001020001ULL;
1491 writeq(val64, &bar0->tx_w_round_robin_0);
1492 val64 = 0x0200010200010200ULL;
1493 writeq(val64, &bar0->tx_w_round_robin_1);
1494 val64 = 0x0102000102000102ULL;
1495 writeq(val64, &bar0->tx_w_round_robin_2);
1496 val64 = 0x0001020001020001ULL;
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 val64 = 0x0200010200000000ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1501 case 4:
1502 val64 = 0x0001020300010203ULL;
1503 writeq(val64, &bar0->tx_w_round_robin_0);
1504 writeq(val64, &bar0->tx_w_round_robin_1);
1505 writeq(val64, &bar0->tx_w_round_robin_2);
1506 writeq(val64, &bar0->tx_w_round_robin_3);
1507 val64 = 0x0001020300000000ULL;
1508 writeq(val64, &bar0->tx_w_round_robin_4);
1509 break;
1510 case 5:
1511 val64 = 0x0001020304000102ULL;
1512 writeq(val64, &bar0->tx_w_round_robin_0);
1513 val64 = 0x0304000102030400ULL;
1514 writeq(val64, &bar0->tx_w_round_robin_1);
1515 val64 = 0x0102030400010203ULL;
1516 writeq(val64, &bar0->tx_w_round_robin_2);
1517 val64 = 0x0400010203040001ULL;
1518 writeq(val64, &bar0->tx_w_round_robin_3);
1519 val64 = 0x0203040000000000ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_4);
1521 break;
1522 case 6:
1523 val64 = 0x0001020304050001ULL;
1524 writeq(val64, &bar0->tx_w_round_robin_0);
1525 val64 = 0x0203040500010203ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_1);
1527 val64 = 0x0405000102030405ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_2);
1529 val64 = 0x0001020304050001ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_3);
1531 val64 = 0x0203040500000000ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_4);
1533 break;
1534 case 7:
1535 val64 = 0x0001020304050600ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_0);
1537 val64 = 0x0102030405060001ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_1);
1539 val64 = 0x0203040506000102ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_2);
1541 val64 = 0x0304050600010203ULL;
1542 writeq(val64, &bar0->tx_w_round_robin_3);
1543 val64 = 0x0405060000000000ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_4);
1545 break;
1546 case 8:
1547 val64 = 0x0001020304050607ULL;
1548 writeq(val64, &bar0->tx_w_round_robin_0);
1549 writeq(val64, &bar0->tx_w_round_robin_1);
1550 writeq(val64, &bar0->tx_w_round_robin_2);
1551 writeq(val64, &bar0->tx_w_round_robin_3);
1552 val64 = 0x0001020300000000ULL;
1553 writeq(val64, &bar0->tx_w_round_robin_4);
1554 break;
1555 }
1556
1557 /* Enable all configured Tx FIFO partitions */
1558 val64 = readq(&bar0->tx_fifo_partition_0);
1559 val64 |= (TX_FIFO_PARTITION_EN);
1560 writeq(val64, &bar0->tx_fifo_partition_0);
1561
1562 /* Filling the Rx round robin registers as per the
1563 * number of Rings and steering based on QoS with
1564 * equal priority.
1565 */
1566 switch (config->rx_ring_num) {
1567 case 1:
1568 val64 = 0x0;
1569 writeq(val64, &bar0->rx_w_round_robin_0);
1570 writeq(val64, &bar0->rx_w_round_robin_1);
1571 writeq(val64, &bar0->rx_w_round_robin_2);
1572 writeq(val64, &bar0->rx_w_round_robin_3);
1573 writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575 val64 = 0x8080808080808080ULL;
1576 writeq(val64, &bar0->rts_qos_steering);
1577 break;
1578 case 2:
1579 val64 = 0x0001000100010001ULL;
1580 writeq(val64, &bar0->rx_w_round_robin_0);
1581 writeq(val64, &bar0->rx_w_round_robin_1);
1582 writeq(val64, &bar0->rx_w_round_robin_2);
1583 writeq(val64, &bar0->rx_w_round_robin_3);
1584 val64 = 0x0001000100000000ULL;
1585 writeq(val64, &bar0->rx_w_round_robin_4);
1586
1587 val64 = 0x8080808040404040ULL;
1588 writeq(val64, &bar0->rts_qos_steering);
1589 break;
1590 case 3:
1591 val64 = 0x0001020001020001ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_0);
1593 val64 = 0x0200010200010200ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_1);
1595 val64 = 0x0102000102000102ULL;
1596 writeq(val64, &bar0->rx_w_round_robin_2);
1597 val64 = 0x0001020001020001ULL;
1598 writeq(val64, &bar0->rx_w_round_robin_3);
1599 val64 = 0x0200010200000000ULL;
1600 writeq(val64, &bar0->rx_w_round_robin_4);
1601
1602 val64 = 0x8080804040402020ULL;
1603 writeq(val64, &bar0->rts_qos_steering);
1604 break;
1605 case 4:
1606 val64 = 0x0001020300010203ULL;
1607 writeq(val64, &bar0->rx_w_round_robin_0);
1608 writeq(val64, &bar0->rx_w_round_robin_1);
1609 writeq(val64, &bar0->rx_w_round_robin_2);
1610 writeq(val64, &bar0->rx_w_round_robin_3);
1611 val64 = 0x0001020300000000ULL;
1612 writeq(val64, &bar0->rx_w_round_robin_4);
1613
1614 val64 = 0x8080404020201010ULL;
1615 writeq(val64, &bar0->rts_qos_steering);
1616 break;
1617 case 5:
1618 val64 = 0x0001020304000102ULL;
1619 writeq(val64, &bar0->rx_w_round_robin_0);
1620 val64 = 0x0304000102030400ULL;
1621 writeq(val64, &bar0->rx_w_round_robin_1);
1622 val64 = 0x0102030400010203ULL;
1623 writeq(val64, &bar0->rx_w_round_robin_2);
1624 val64 = 0x0400010203040001ULL;
1625 writeq(val64, &bar0->rx_w_round_robin_3);
1626 val64 = 0x0203040000000000ULL;
1627 writeq(val64, &bar0->rx_w_round_robin_4);
1628
1629 val64 = 0x8080404020201008ULL;
1630 writeq(val64, &bar0->rts_qos_steering);
1631 break;
1632 case 6:
1633 val64 = 0x0001020304050001ULL;
1634 writeq(val64, &bar0->rx_w_round_robin_0);
1635 val64 = 0x0203040500010203ULL;
1636 writeq(val64, &bar0->rx_w_round_robin_1);
1637 val64 = 0x0405000102030405ULL;
1638 writeq(val64, &bar0->rx_w_round_robin_2);
1639 val64 = 0x0001020304050001ULL;
1640 writeq(val64, &bar0->rx_w_round_robin_3);
1641 val64 = 0x0203040500000000ULL;
1642 writeq(val64, &bar0->rx_w_round_robin_4);
1643
1644 val64 = 0x8080404020100804ULL;
1645 writeq(val64, &bar0->rts_qos_steering);
1646 break;
1647 case 7:
1648 val64 = 0x0001020304050600ULL;
1649 writeq(val64, &bar0->rx_w_round_robin_0);
1650 val64 = 0x0102030405060001ULL;
1651 writeq(val64, &bar0->rx_w_round_robin_1);
1652 val64 = 0x0203040506000102ULL;
1653 writeq(val64, &bar0->rx_w_round_robin_2);
1654 val64 = 0x0304050600010203ULL;
1655 writeq(val64, &bar0->rx_w_round_robin_3);
1656 val64 = 0x0405060000000000ULL;
1657 writeq(val64, &bar0->rx_w_round_robin_4);
1658
1659 val64 = 0x8080402010080402ULL;
1660 writeq(val64, &bar0->rts_qos_steering);
1661 break;
1662 case 8:
1663 val64 = 0x0001020304050607ULL;
1664 writeq(val64, &bar0->rx_w_round_robin_0);
1665 writeq(val64, &bar0->rx_w_round_robin_1);
1666 writeq(val64, &bar0->rx_w_round_robin_2);
1667 writeq(val64, &bar0->rx_w_round_robin_3);
1668 val64 = 0x0001020300000000ULL;
1669 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671 val64 = 0x8040201008040201ULL;
1672 writeq(val64, &bar0->rts_qos_steering);
1673 break;
1674 }
1675
1676 /* UDP Fix */
1677 val64 = 0;
1678 for (i = 0; i < 8; i++)
1679 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681 /* Set the default rts frame length for the rings configured */
1682 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1683 for (i = 0 ; i < config->rx_ring_num ; i++)
1684 writeq(val64, &bar0->rts_frm_len_n[i]);
1685
1686 /* Set the frame length for the configured rings
1687 * desired by the user
1688 */
1689 for (i = 0; i < config->rx_ring_num; i++) {
1690 /* If rts_frm_len[i] == 0 then it is assumed that user not
1691 * specified frame length steering.
1692 * If the user provides the frame length then program
1693 * the rts_frm_len register for those values or else
1694 * leave it as it is.
1695 */
1696 if (rts_frm_len[i] != 0) {
1697 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1698 &bar0->rts_frm_len_n[i]);
1699 }
1700 }
1701
1702 /* Disable differentiated services steering logic */
1703 for (i = 0; i < 64; i++) {
1704 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1705 DBG_PRINT(ERR_DBG,
1706 "%s: rts_ds_steer failed on codepoint %d\n",
1707 dev->name, i);
1708 return -ENODEV;
1709 }
1710 }
1711
1712 /* Program statistics memory */
1713 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1714
1715 if (nic->device_type == XFRAME_II_DEVICE) {
1716 val64 = STAT_BC(0x320);
1717 writeq(val64, &bar0->stat_byte_cnt);
1718 }
1719
1720 /*
1721 * Initializing the sampling rate for the device to calculate the
1722 * bandwidth utilization.
1723 */
1724 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1725 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1726 writeq(val64, &bar0->mac_link_util);
1727
1728 /*
1729 * Initializing the Transmit and Receive Traffic Interrupt
1730 * Scheme.
1731 */
1732
1733 /* Initialize TTI */
1734 if (SUCCESS != init_tti(nic, nic->last_link_state))
1735 return -ENODEV;
1736
1737 /* RTI Initialization */
1738 if (nic->device_type == XFRAME_II_DEVICE) {
1739 /*
1740 * Programmed to generate Apprx 500 Intrs per
1741 * second
1742 */
1743 int count = (nic->config.bus_speed * 125)/4;
1744 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1745 } else
1746 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1747 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1748 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1749 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1750 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1751
1752 writeq(val64, &bar0->rti_data1_mem);
1753
1754 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756 if (nic->config.intr_type == MSI_X)
1757 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1758 RTI_DATA2_MEM_RX_UFC_D(0x40));
1759 else
1760 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1761 RTI_DATA2_MEM_RX_UFC_D(0x80));
1762 writeq(val64, &bar0->rti_data2_mem);
1763
1764 for (i = 0; i < config->rx_ring_num; i++) {
1765 val64 = RTI_CMD_MEM_WE |
1766 RTI_CMD_MEM_STROBE_NEW_CMD |
1767 RTI_CMD_MEM_OFFSET(i);
1768 writeq(val64, &bar0->rti_command_mem);
1769
1770 /*
1771 * Once the operation completes, the Strobe bit of the
1772 * command register will be reset. We poll for this
1773 * particular condition. We wait for a maximum of 500ms
1774 * for the operation to complete, if it's not complete
1775 * by then we return error.
1776 */
1777 time = 0;
1778 while (true) {
1779 val64 = readq(&bar0->rti_command_mem);
1780 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1781 break;
1782
1783 if (time > 10) {
1784 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1785 dev->name);
1786 return -ENODEV;
1787 }
1788 time++;
1789 msleep(50);
1790 }
1791 }
1792
1793 /*
1794 * Initializing proper values as Pause threshold into all
1795 * the 8 Queues on Rx side.
1796 */
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1798 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799
1800 /* Disable RMAC PAD STRIPPING */
1801 add = &bar0->mac_cfg;
1802 val64 = readq(&bar0->mac_cfg);
1803 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1804 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1805 writel((u32) (val64), add);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64 >> 32), (add + 4));
1808 val64 = readq(&bar0->mac_cfg);
1809
1810 /* Enable FCS stripping by adapter */
1811 add = &bar0->mac_cfg;
1812 val64 = readq(&bar0->mac_cfg);
1813 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1814 if (nic->device_type == XFRAME_II_DEVICE)
1815 writeq(val64, &bar0->mac_cfg);
1816 else {
1817 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818 writel((u32) (val64), add);
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820 writel((u32) (val64 >> 32), (add + 4));
1821 }
1822
1823 /*
1824 * Set the time value to be inserted in the pause frame
1825 * generated by xena.
1826 */
1827 val64 = readq(&bar0->rmac_pause_cfg);
1828 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1829 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1830 writeq(val64, &bar0->rmac_pause_cfg);
1831
1832 /*
1833 * Set the Threshold Limit for Generating the pause frame
1834 * If the amount of data in any Queue exceeds ratio of
1835 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1836 * pause frame is generated
1837 */
1838 val64 = 0;
1839 for (i = 0; i < 4; i++) {
1840 val64 |= (((u64)0xFF00 |
1841 nic->mac_control.mc_pause_threshold_q0q3)
1842 << (i * 2 * 8));
1843 }
1844 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1845
1846 val64 = 0;
1847 for (i = 0; i < 4; i++) {
1848 val64 |= (((u64)0xFF00 |
1849 nic->mac_control.mc_pause_threshold_q4q7)
1850 << (i * 2 * 8));
1851 }
1852 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1853
1854 /*
1855 * TxDMA will stop Read request if the number of read split has
1856 * exceeded the limit pointed by shared_splits
1857 */
1858 val64 = readq(&bar0->pic_control);
1859 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1860 writeq(val64, &bar0->pic_control);
1861
1862 if (nic->config.bus_speed == 266) {
1863 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1864 writeq(0x0, &bar0->read_retry_delay);
1865 writeq(0x0, &bar0->write_retry_delay);
1866 }
1867
1868 /*
1869 * Programming the Herc to split every write transaction
1870 * that does not start on an ADB to reduce disconnects.
1871 */
1872 if (nic->device_type == XFRAME_II_DEVICE) {
1873 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1874 MISC_LINK_STABILITY_PRD(3);
1875 writeq(val64, &bar0->misc_control);
1876 val64 = readq(&bar0->pic_control2);
1877 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1878 writeq(val64, &bar0->pic_control2);
1879 }
1880 if (strstr(nic->product_name, "CX4")) {
1881 val64 = TMAC_AVG_IPG(0x17);
1882 writeq(val64, &bar0->tmac_avg_ipg);
1883 }
1884
1885 return SUCCESS;
1886 }
1887 #define LINK_UP_DOWN_INTERRUPT 1
1888 #define MAC_RMAC_ERR_TIMER 2
1889
1890 static int s2io_link_fault_indication(struct s2io_nic *nic)
1891 {
1892 if (nic->device_type == XFRAME_II_DEVICE)
1893 return LINK_UP_DOWN_INTERRUPT;
1894 else
1895 return MAC_RMAC_ERR_TIMER;
1896 }
1897
1898 /**
1899 * do_s2io_write_bits - update alarm bits in alarm register
1900 * @value: alarm bits
1901 * @flag: interrupt status
1902 * @addr: address value
1903 * Description: update alarm bits in alarm register
1904 * Return Value:
1905 * NONE.
1906 */
1907 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1908 {
1909 u64 temp64;
1910
1911 temp64 = readq(addr);
1912
1913 if (flag == ENABLE_INTRS)
1914 temp64 &= ~((u64)value);
1915 else
1916 temp64 |= ((u64)value);
1917 writeq(temp64, addr);
1918 }
1919
1920 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1921 {
1922 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1923 register u64 gen_int_mask = 0;
1924 u64 interruptible;
1925
1926 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1927 if (mask & TX_DMA_INTR) {
1928 gen_int_mask |= TXDMA_INT_M;
1929
1930 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1931 TXDMA_PCC_INT | TXDMA_TTI_INT |
1932 TXDMA_LSO_INT | TXDMA_TPA_INT |
1933 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1934
1935 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1936 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1937 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1938 &bar0->pfc_err_mask);
1939
1940 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1941 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1942 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1943
1944 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1945 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1946 PCC_N_SERR | PCC_6_COF_OV_ERR |
1947 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1948 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1949 PCC_TXB_ECC_SG_ERR,
1950 flag, &bar0->pcc_err_mask);
1951
1952 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1953 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1954
1955 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1956 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1957 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1958 flag, &bar0->lso_err_mask);
1959
1960 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1961 flag, &bar0->tpa_err_mask);
1962
1963 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1964 }
1965
1966 if (mask & TX_MAC_INTR) {
1967 gen_int_mask |= TXMAC_INT_M;
1968 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1969 &bar0->mac_int_mask);
1970 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1971 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1972 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1973 flag, &bar0->mac_tmac_err_mask);
1974 }
1975
1976 if (mask & TX_XGXS_INTR) {
1977 gen_int_mask |= TXXGXS_INT_M;
1978 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1979 &bar0->xgxs_int_mask);
1980 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1981 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1982 flag, &bar0->xgxs_txgxs_err_mask);
1983 }
1984
1985 if (mask & RX_DMA_INTR) {
1986 gen_int_mask |= RXDMA_INT_M;
1987 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1988 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1989 flag, &bar0->rxdma_int_mask);
1990 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1991 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1992 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1993 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1994 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1995 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1996 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1997 &bar0->prc_pcix_err_mask);
1998 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1999 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2000 &bar0->rpa_err_mask);
2001 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2002 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2003 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2004 RDA_FRM_ECC_SG_ERR |
2005 RDA_MISC_ERR|RDA_PCIX_ERR,
2006 flag, &bar0->rda_err_mask);
2007 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2008 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2009 flag, &bar0->rti_err_mask);
2010 }
2011
2012 if (mask & RX_MAC_INTR) {
2013 gen_int_mask |= RXMAC_INT_M;
2014 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2015 &bar0->mac_int_mask);
2016 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2017 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2018 RMAC_DOUBLE_ECC_ERR);
2019 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2020 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2021 do_s2io_write_bits(interruptible,
2022 flag, &bar0->mac_rmac_err_mask);
2023 }
2024
2025 if (mask & RX_XGXS_INTR) {
2026 gen_int_mask |= RXXGXS_INT_M;
2027 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2028 &bar0->xgxs_int_mask);
2029 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2030 &bar0->xgxs_rxgxs_err_mask);
2031 }
2032
2033 if (mask & MC_INTR) {
2034 gen_int_mask |= MC_INT_M;
2035 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2036 flag, &bar0->mc_int_mask);
2037 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2038 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2039 &bar0->mc_err_mask);
2040 }
2041 nic->general_int_mask = gen_int_mask;
2042
2043 /* Remove this line when alarm interrupts are enabled */
2044 nic->general_int_mask = 0;
2045 }
2046
2047 /**
2048 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2049 * @nic: device private variable,
2050 * @mask: A mask indicating which Intr block must be modified and,
2051 * @flag: A flag indicating whether to enable or disable the Intrs.
2052 * Description: This function will either disable or enable the interrupts
2053 * depending on the flag argument. The mask argument can be used to
2054 * enable/disable any Intr block.
2055 * Return Value: NONE.
2056 */
2057
2058 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2059 {
2060 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2061 register u64 temp64 = 0, intr_mask = 0;
2062
2063 intr_mask = nic->general_int_mask;
2064
2065 /* Top level interrupt classification */
2066 /* PIC Interrupts */
2067 if (mask & TX_PIC_INTR) {
2068 /* Enable PIC Intrs in the general intr mask register */
2069 intr_mask |= TXPIC_INT_M;
2070 if (flag == ENABLE_INTRS) {
2071 /*
2072 * If Hercules adapter enable GPIO otherwise
2073 * disable all PCIX, Flash, MDIO, IIC and GPIO
2074 * interrupts for now.
2075 * TODO
2076 */
2077 if (s2io_link_fault_indication(nic) ==
2078 LINK_UP_DOWN_INTERRUPT) {
2079 do_s2io_write_bits(PIC_INT_GPIO, flag,
2080 &bar0->pic_int_mask);
2081 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2082 &bar0->gpio_int_mask);
2083 } else
2084 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2085 } else if (flag == DISABLE_INTRS) {
2086 /*
2087 * Disable PIC Intrs in the general
2088 * intr mask register
2089 */
2090 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2091 }
2092 }
2093
2094 /* Tx traffic interrupts */
2095 if (mask & TX_TRAFFIC_INTR) {
2096 intr_mask |= TXTRAFFIC_INT_M;
2097 if (flag == ENABLE_INTRS) {
2098 /*
2099 * Enable all the Tx side interrupts
2100 * writing 0 Enables all 64 TX interrupt levels
2101 */
2102 writeq(0x0, &bar0->tx_traffic_mask);
2103 } else if (flag == DISABLE_INTRS) {
2104 /*
2105 * Disable Tx Traffic Intrs in the general intr mask
2106 * register.
2107 */
2108 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2109 }
2110 }
2111
2112 /* Rx traffic interrupts */
2113 if (mask & RX_TRAFFIC_INTR) {
2114 intr_mask |= RXTRAFFIC_INT_M;
2115 if (flag == ENABLE_INTRS) {
2116 /* writing 0 Enables all 8 RX interrupt levels */
2117 writeq(0x0, &bar0->rx_traffic_mask);
2118 } else if (flag == DISABLE_INTRS) {
2119 /*
2120 * Disable Rx Traffic Intrs in the general intr mask
2121 * register.
2122 */
2123 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2124 }
2125 }
2126
2127 temp64 = readq(&bar0->general_int_mask);
2128 if (flag == ENABLE_INTRS)
2129 temp64 &= ~((u64)intr_mask);
2130 else
2131 temp64 = DISABLE_ALL_INTRS;
2132 writeq(temp64, &bar0->general_int_mask);
2133
2134 nic->general_int_mask = readq(&bar0->general_int_mask);
2135 }
2136
2137 /**
2138 * verify_pcc_quiescent- Checks for PCC quiescent state
2139 * Return: 1 If PCC is quiescence
2140 * 0 If PCC is not quiescence
2141 */
2142 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2143 {
2144 int ret = 0, herc;
2145 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2146 u64 val64 = readq(&bar0->adapter_status);
2147
2148 herc = (sp->device_type == XFRAME_II_DEVICE);
2149
2150 if (flag == false) {
2151 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2152 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2153 ret = 1;
2154 } else {
2155 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2156 ret = 1;
2157 }
2158 } else {
2159 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2160 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2161 ADAPTER_STATUS_RMAC_PCC_IDLE))
2162 ret = 1;
2163 } else {
2164 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2165 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2166 ret = 1;
2167 }
2168 }
2169
2170 return ret;
2171 }
2172 /**
2173 * verify_xena_quiescence - Checks whether the H/W is ready
2174 * Description: Returns whether the H/W is ready to go or not. Depending
2175 * on whether adapter enable bit was written or not the comparison
2176 * differs and the calling function passes the input argument flag to
2177 * indicate this.
2178 * Return: 1 If xena is quiescence
2179 * 0 If Xena is not quiescence
2180 */
2181
2182 static int verify_xena_quiescence(struct s2io_nic *sp)
2183 {
2184 int mode;
2185 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2186 u64 val64 = readq(&bar0->adapter_status);
2187 mode = s2io_verify_pci_mode(sp);
2188
2189 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2190 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2191 return 0;
2192 }
2193 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2194 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2195 return 0;
2196 }
2197 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2198 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2199 return 0;
2200 }
2201 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2202 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2206 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2207 return 0;
2208 }
2209 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2210 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2211 return 0;
2212 }
2213 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2214 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2215 return 0;
2216 }
2217 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2218 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2219 return 0;
2220 }
2221
2222 /*
2223 * In PCI 33 mode, the P_PLL is not used, and therefore,
2224 * the the P_PLL_LOCK bit in the adapter_status register will
2225 * not be asserted.
2226 */
2227 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2228 sp->device_type == XFRAME_II_DEVICE &&
2229 mode != PCI_MODE_PCI_33) {
2230 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2231 return 0;
2232 }
2233 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2234 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2235 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2236 return 0;
2237 }
2238 return 1;
2239 }
2240
2241 /**
2242 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2243 * @sp: Pointer to device specifc structure
2244 * Description :
2245 * New procedure to clear mac address reading problems on Alpha platforms
2246 *
2247 */
2248
2249 static void fix_mac_address(struct s2io_nic *sp)
2250 {
2251 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2252 u64 val64;
2253 int i = 0;
2254
2255 while (fix_mac[i] != END_SIGN) {
2256 writeq(fix_mac[i++], &bar0->gpio_control);
2257 udelay(10);
2258 val64 = readq(&bar0->gpio_control);
2259 }
2260 }
2261
2262 /**
2263 * start_nic - Turns the device on
2264 * @nic : device private variable.
2265 * Description:
2266 * This function actually turns the device on. Before this function is
2267 * called,all Registers are configured from their reset states
2268 * and shared memory is allocated but the NIC is still quiescent. On
2269 * calling this function, the device interrupts are cleared and the NIC is
2270 * literally switched on by writing into the adapter control register.
2271 * Return Value:
2272 * SUCCESS on success and -1 on failure.
2273 */
2274
2275 static int start_nic(struct s2io_nic *nic)
2276 {
2277 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2278 struct net_device *dev = nic->dev;
2279 register u64 val64 = 0;
2280 u16 subid, i;
2281 struct config_param *config = &nic->config;
2282 struct mac_info *mac_control = &nic->mac_control;
2283
2284 /* PRC Initialization and configuration */
2285 for (i = 0; i < config->rx_ring_num; i++) {
2286 struct ring_info *ring = &mac_control->rings[i];
2287
2288 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2289 &bar0->prc_rxd0_n[i]);
2290
2291 val64 = readq(&bar0->prc_ctrl_n[i]);
2292 if (nic->rxd_mode == RXD_MODE_1)
2293 val64 |= PRC_CTRL_RC_ENABLED;
2294 else
2295 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2296 if (nic->device_type == XFRAME_II_DEVICE)
2297 val64 |= PRC_CTRL_GROUP_READS;
2298 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2299 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2300 writeq(val64, &bar0->prc_ctrl_n[i]);
2301 }
2302
2303 if (nic->rxd_mode == RXD_MODE_3B) {
2304 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2305 val64 = readq(&bar0->rx_pa_cfg);
2306 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2307 writeq(val64, &bar0->rx_pa_cfg);
2308 }
2309
2310 if (vlan_tag_strip == 0) {
2311 val64 = readq(&bar0->rx_pa_cfg);
2312 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2313 writeq(val64, &bar0->rx_pa_cfg);
2314 nic->vlan_strip_flag = 0;
2315 }
2316
2317 /*
2318 * Enabling MC-RLDRAM. After enabling the device, we timeout
2319 * for around 100ms, which is approximately the time required
2320 * for the device to be ready for operation.
2321 */
2322 val64 = readq(&bar0->mc_rldram_mrs);
2323 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2324 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2325 val64 = readq(&bar0->mc_rldram_mrs);
2326
2327 msleep(100); /* Delay by around 100 ms. */
2328
2329 /* Enabling ECC Protection. */
2330 val64 = readq(&bar0->adapter_control);
2331 val64 &= ~ADAPTER_ECC_EN;
2332 writeq(val64, &bar0->adapter_control);
2333
2334 /*
2335 * Verify if the device is ready to be enabled, if so enable
2336 * it.
2337 */
2338 val64 = readq(&bar0->adapter_status);
2339 if (!verify_xena_quiescence(nic)) {
2340 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2341 "Adapter status reads: 0x%llx\n",
2342 dev->name, (unsigned long long)val64);
2343 return FAILURE;
2344 }
2345
2346 /*
2347 * With some switches, link might be already up at this point.
2348 * Because of this weird behavior, when we enable laser,
2349 * we may not get link. We need to handle this. We cannot
2350 * figure out which switch is misbehaving. So we are forced to
2351 * make a global change.
2352 */
2353
2354 /* Enabling Laser. */
2355 val64 = readq(&bar0->adapter_control);
2356 val64 |= ADAPTER_EOI_TX_ON;
2357 writeq(val64, &bar0->adapter_control);
2358
2359 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360 /*
2361 * Dont see link state interrupts initally on some switches,
2362 * so directly scheduling the link state task here.
2363 */
2364 schedule_work(&nic->set_link_task);
2365 }
2366 /* SXE-002: Initialize link and activity LED */
2367 subid = nic->pdev->subsystem_device;
2368 if (((subid & 0xFF) >= 0x07) &&
2369 (nic->device_type == XFRAME_I_DEVICE)) {
2370 val64 = readq(&bar0->gpio_control);
2371 val64 |= 0x0000800000000000ULL;
2372 writeq(val64, &bar0->gpio_control);
2373 val64 = 0x0411040400000000ULL;
2374 writeq(val64, (void __iomem *)bar0 + 0x2700);
2375 }
2376
2377 return SUCCESS;
2378 }
2379 /**
2380 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 */
2382 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2383 struct TxD *txdlp, int get_off)
2384 {
2385 struct s2io_nic *nic = fifo_data->nic;
2386 struct sk_buff *skb;
2387 struct TxD *txds;
2388 u16 j, frg_cnt;
2389
2390 txds = txdlp;
2391 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2392 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2393 sizeof(u64), PCI_DMA_TODEVICE);
2394 txds++;
2395 }
2396
2397 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2398 if (!skb) {
2399 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2400 return NULL;
2401 }
2402 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2403 skb_headlen(skb), PCI_DMA_TODEVICE);
2404 frg_cnt = skb_shinfo(skb)->nr_frags;
2405 if (frg_cnt) {
2406 txds++;
2407 for (j = 0; j < frg_cnt; j++, txds++) {
2408 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2409 if (!txds->Buffer_Pointer)
2410 break;
2411 pci_unmap_page(nic->pdev,
2412 (dma_addr_t)txds->Buffer_Pointer,
2413 frag->size, PCI_DMA_TODEVICE);
2414 }
2415 }
2416 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2417 return skb;
2418 }
2419
2420 /**
2421 * free_tx_buffers - Free all queued Tx buffers
2422 * @nic : device private variable.
2423 * Description:
2424 * Free all queued Tx buffers.
2425 * Return Value: void
2426 */
2427
2428 static void free_tx_buffers(struct s2io_nic *nic)
2429 {
2430 struct net_device *dev = nic->dev;
2431 struct sk_buff *skb;
2432 struct TxD *txdp;
2433 int i, j;
2434 int cnt = 0;
2435 struct config_param *config = &nic->config;
2436 struct mac_info *mac_control = &nic->mac_control;
2437 struct stat_block *stats = mac_control->stats_info;
2438 struct swStat *swstats = &stats->sw_stat;
2439
2440 for (i = 0; i < config->tx_fifo_num; i++) {
2441 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2442 struct fifo_info *fifo = &mac_control->fifos[i];
2443 unsigned long flags;
2444
2445 spin_lock_irqsave(&fifo->tx_lock, flags);
2446 for (j = 0; j < tx_cfg->fifo_len; j++) {
2447 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2448 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2449 if (skb) {
2450 swstats->mem_freed += skb->truesize;
2451 dev_kfree_skb(skb);
2452 cnt++;
2453 }
2454 }
2455 DBG_PRINT(INTR_DBG,
2456 "%s: forcibly freeing %d skbs on FIFO%d\n",
2457 dev->name, cnt, i);
2458 fifo->tx_curr_get_info.offset = 0;
2459 fifo->tx_curr_put_info.offset = 0;
2460 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2461 }
2462 }
2463
2464 /**
2465 * stop_nic - To stop the nic
2466 * @nic ; device private variable.
2467 * Description:
2468 * This function does exactly the opposite of what the start_nic()
2469 * function does. This function is called to stop the device.
2470 * Return Value:
2471 * void.
2472 */
2473
2474 static void stop_nic(struct s2io_nic *nic)
2475 {
2476 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2477 register u64 val64 = 0;
2478 u16 interruptible;
2479
2480 /* Disable all interrupts */
2481 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483 interruptible |= TX_PIC_INTR;
2484 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2485
2486 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487 val64 = readq(&bar0->adapter_control);
2488 val64 &= ~(ADAPTER_CNTL_EN);
2489 writeq(val64, &bar0->adapter_control);
2490 }
2491
2492 /**
2493 * fill_rx_buffers - Allocates the Rx side skbs
2494 * @ring_info: per ring structure
2495 * @from_card_up: If this is true, we will map the buffer to get
2496 * the dma address for buf0 and buf1 to give it to the card.
2497 * Else we will sync the already mapped buffer to give it to the card.
2498 * Description:
2499 * The function allocates Rx side skbs and puts the physical
2500 * address of these buffers into the RxD buffer pointers, so that the NIC
2501 * can DMA the received frame into these locations.
2502 * The NIC supports 3 receive modes, viz
2503 * 1. single buffer,
2504 * 2. three buffer and
2505 * 3. Five buffer modes.
2506 * Each mode defines how many fragments the received frame will be split
2507 * up into by the NIC. The frame is split into L3 header, L4 Header,
2508 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509 * is split into 3 fragments. As of now only single buffer mode is
2510 * supported.
2511 * Return Value:
2512 * SUCCESS on success or an appropriate -ve value on failure.
2513 */
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2515 int from_card_up)
2516 {
2517 struct sk_buff *skb;
2518 struct RxD_t *rxdp;
2519 int off, size, block_no, block_no1;
2520 u32 alloc_tab = 0;
2521 u32 alloc_cnt;
2522 u64 tmp;
2523 struct buffAdd *ba;
2524 struct RxD_t *first_rxdp = NULL;
2525 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2526 int rxd_index = 0;
2527 struct RxD1 *rxdp1;
2528 struct RxD3 *rxdp3;
2529 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2530
2531 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2532
2533 block_no1 = ring->rx_curr_get_info.block_index;
2534 while (alloc_tab < alloc_cnt) {
2535 block_no = ring->rx_curr_put_info.block_index;
2536
2537 off = ring->rx_curr_put_info.offset;
2538
2539 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2540
2541 rxd_index = off + 1;
2542 if (block_no)
2543 rxd_index += (block_no * ring->rxd_count);
2544
2545 if ((block_no == block_no1) &&
2546 (off == ring->rx_curr_get_info.offset) &&
2547 (rxdp->Host_Control)) {
2548 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2549 ring->dev->name);
2550 goto end;
2551 }
2552 if (off && (off == ring->rxd_count)) {
2553 ring->rx_curr_put_info.block_index++;
2554 if (ring->rx_curr_put_info.block_index ==
2555 ring->block_count)
2556 ring->rx_curr_put_info.block_index = 0;
2557 block_no = ring->rx_curr_put_info.block_index;
2558 off = 0;
2559 ring->rx_curr_put_info.offset = off;
2560 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2561 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2562 ring->dev->name, rxdp);
2563
2564 }
2565
2566 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2567 ((ring->rxd_mode == RXD_MODE_3B) &&
2568 (rxdp->Control_2 & s2BIT(0)))) {
2569 ring->rx_curr_put_info.offset = off;
2570 goto end;
2571 }
2572 /* calculate size of skb based on ring mode */
2573 size = ring->mtu +
2574 HEADER_ETHERNET_II_802_3_SIZE +
2575 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576 if (ring->rxd_mode == RXD_MODE_1)
2577 size += NET_IP_ALIGN;
2578 else
2579 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2580
2581 /* allocate skb */
2582 skb = dev_alloc_skb(size);
2583 if (!skb) {
2584 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2585 ring->dev->name);
2586 if (first_rxdp) {
2587 wmb();
2588 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589 }
2590 swstats->mem_alloc_fail_cnt++;
2591
2592 return -ENOMEM ;
2593 }
2594 swstats->mem_allocated += skb->truesize;
2595
2596 if (ring->rxd_mode == RXD_MODE_1) {
2597 /* 1 buffer mode - normal operation mode */
2598 rxdp1 = (struct RxD1 *)rxdp;
2599 memset(rxdp, 0, sizeof(struct RxD1));
2600 skb_reserve(skb, NET_IP_ALIGN);
2601 rxdp1->Buffer0_ptr =
2602 pci_map_single(ring->pdev, skb->data,
2603 size - NET_IP_ALIGN,
2604 PCI_DMA_FROMDEVICE);
2605 if (pci_dma_mapping_error(nic->pdev,
2606 rxdp1->Buffer0_ptr))
2607 goto pci_map_failed;
2608
2609 rxdp->Control_2 =
2610 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2611 rxdp->Host_Control = (unsigned long)skb;
2612 } else if (ring->rxd_mode == RXD_MODE_3B) {
2613 /*
2614 * 2 buffer mode -
2615 * 2 buffer mode provides 128
2616 * byte aligned receive buffers.
2617 */
2618
2619 rxdp3 = (struct RxD3 *)rxdp;
2620 /* save buffer pointers to avoid frequent dma mapping */
2621 Buffer0_ptr = rxdp3->Buffer0_ptr;
2622 Buffer1_ptr = rxdp3->Buffer1_ptr;
2623 memset(rxdp, 0, sizeof(struct RxD3));
2624 /* restore the buffer pointers for dma sync*/
2625 rxdp3->Buffer0_ptr = Buffer0_ptr;
2626 rxdp3->Buffer1_ptr = Buffer1_ptr;
2627
2628 ba = &ring->ba[block_no][off];
2629 skb_reserve(skb, BUF0_LEN);
2630 tmp = (u64)(unsigned long)skb->data;
2631 tmp += ALIGN_SIZE;
2632 tmp &= ~ALIGN_SIZE;
2633 skb->data = (void *) (unsigned long)tmp;
2634 skb_reset_tail_pointer(skb);
2635
2636 if (from_card_up) {
2637 rxdp3->Buffer0_ptr =
2638 pci_map_single(ring->pdev, ba->ba_0,
2639 BUF0_LEN,
2640 PCI_DMA_FROMDEVICE);
2641 if (pci_dma_mapping_error(nic->pdev,
2642 rxdp3->Buffer0_ptr))
2643 goto pci_map_failed;
2644 } else
2645 pci_dma_sync_single_for_device(ring->pdev,
2646 (dma_addr_t)rxdp3->Buffer0_ptr,
2647 BUF0_LEN,
2648 PCI_DMA_FROMDEVICE);
2649
2650 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2651 if (ring->rxd_mode == RXD_MODE_3B) {
2652 /* Two buffer mode */
2653
2654 /*
2655 * Buffer2 will have L3/L4 header plus
2656 * L4 payload
2657 */
2658 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2659 skb->data,
2660 ring->mtu + 4,
2661 PCI_DMA_FROMDEVICE);
2662
2663 if (pci_dma_mapping_error(nic->pdev,
2664 rxdp3->Buffer2_ptr))
2665 goto pci_map_failed;
2666
2667 if (from_card_up) {
2668 rxdp3->Buffer1_ptr =
2669 pci_map_single(ring->pdev,
2670 ba->ba_1,
2671 BUF1_LEN,
2672 PCI_DMA_FROMDEVICE);
2673
2674 if (pci_dma_mapping_error(nic->pdev,
2675 rxdp3->Buffer1_ptr)) {
2676 pci_unmap_single(ring->pdev,
2677 (dma_addr_t)(unsigned long)
2678 skb->data,
2679 ring->mtu + 4,
2680 PCI_DMA_FROMDEVICE);
2681 goto pci_map_failed;
2682 }
2683 }
2684 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2685 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2686 (ring->mtu + 4);
2687 }
2688 rxdp->Control_2 |= s2BIT(0);
2689 rxdp->Host_Control = (unsigned long) (skb);
2690 }
2691 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2692 rxdp->Control_1 |= RXD_OWN_XENA;
2693 off++;
2694 if (off == (ring->rxd_count + 1))
2695 off = 0;
2696 ring->rx_curr_put_info.offset = off;
2697
2698 rxdp->Control_2 |= SET_RXD_MARKER;
2699 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2700 if (first_rxdp) {
2701 wmb();
2702 first_rxdp->Control_1 |= RXD_OWN_XENA;
2703 }
2704 first_rxdp = rxdp;
2705 }
2706 ring->rx_bufs_left += 1;
2707 alloc_tab++;
2708 }
2709
2710 end:
2711 /* Transfer ownership of first descriptor to adapter just before
2712 * exiting. Before that, use memory barrier so that ownership
2713 * and other fields are seen by adapter correctly.
2714 */
2715 if (first_rxdp) {
2716 wmb();
2717 first_rxdp->Control_1 |= RXD_OWN_XENA;
2718 }
2719
2720 return SUCCESS;
2721
2722 pci_map_failed:
2723 swstats->pci_map_fail_cnt++;
2724 swstats->mem_freed += skb->truesize;
2725 dev_kfree_skb_irq(skb);
2726 return -ENOMEM;
2727 }
2728
2729 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2730 {
2731 struct net_device *dev = sp->dev;
2732 int j;
2733 struct sk_buff *skb;
2734 struct RxD_t *rxdp;
2735 struct buffAdd *ba;
2736 struct RxD1 *rxdp1;
2737 struct RxD3 *rxdp3;
2738 struct mac_info *mac_control = &sp->mac_control;
2739 struct stat_block *stats = mac_control->stats_info;
2740 struct swStat *swstats = &stats->sw_stat;
2741
2742 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2743 rxdp = mac_control->rings[ring_no].
2744 rx_blocks[blk].rxds[j].virt_addr;
2745 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2746 if (!skb)
2747 continue;
2748 if (sp->rxd_mode == RXD_MODE_1) {
2749 rxdp1 = (struct RxD1 *)rxdp;
2750 pci_unmap_single(sp->pdev,
2751 (dma_addr_t)rxdp1->Buffer0_ptr,
2752 dev->mtu +
2753 HEADER_ETHERNET_II_802_3_SIZE +
2754 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2755 PCI_DMA_FROMDEVICE);
2756 memset(rxdp, 0, sizeof(struct RxD1));
2757 } else if (sp->rxd_mode == RXD_MODE_3B) {
2758 rxdp3 = (struct RxD3 *)rxdp;
2759 ba = &mac_control->rings[ring_no].ba[blk][j];
2760 pci_unmap_single(sp->pdev,
2761 (dma_addr_t)rxdp3->Buffer0_ptr,
2762 BUF0_LEN,
2763 PCI_DMA_FROMDEVICE);
2764 pci_unmap_single(sp->pdev,
2765 (dma_addr_t)rxdp3->Buffer1_ptr,
2766 BUF1_LEN,
2767 PCI_DMA_FROMDEVICE);
2768 pci_unmap_single(sp->pdev,
2769 (dma_addr_t)rxdp3->Buffer2_ptr,
2770 dev->mtu + 4,
2771 PCI_DMA_FROMDEVICE);
2772 memset(rxdp, 0, sizeof(struct RxD3));
2773 }
2774 swstats->mem_freed += skb->truesize;
2775 dev_kfree_skb(skb);
2776 mac_control->rings[ring_no].rx_bufs_left -= 1;
2777 }
2778 }
2779
2780 /**
2781 * free_rx_buffers - Frees all Rx buffers
2782 * @sp: device private variable.
2783 * Description:
2784 * This function will free all Rx buffers allocated by host.
2785 * Return Value:
2786 * NONE.
2787 */
2788
2789 static void free_rx_buffers(struct s2io_nic *sp)
2790 {
2791 struct net_device *dev = sp->dev;
2792 int i, blk = 0, buf_cnt = 0;
2793 struct config_param *config = &sp->config;
2794 struct mac_info *mac_control = &sp->mac_control;
2795
2796 for (i = 0; i < config->rx_ring_num; i++) {
2797 struct ring_info *ring = &mac_control->rings[i];
2798
2799 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2800 free_rxd_blk(sp, i, blk);
2801
2802 ring->rx_curr_put_info.block_index = 0;
2803 ring->rx_curr_get_info.block_index = 0;
2804 ring->rx_curr_put_info.offset = 0;
2805 ring->rx_curr_get_info.offset = 0;
2806 ring->rx_bufs_left = 0;
2807 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2808 dev->name, buf_cnt, i);
2809 }
2810 }
2811
2812 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2813 {
2814 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2815 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2816 ring->dev->name);
2817 }
2818 return 0;
2819 }
2820
2821 /**
2822 * s2io_poll - Rx interrupt handler for NAPI support
2823 * @napi : pointer to the napi structure.
2824 * @budget : The number of packets that were budgeted to be processed
2825 * during one pass through the 'Poll" function.
2826 * Description:
2827 * Comes into picture only if NAPI support has been incorporated. It does
2828 * the same thing that rx_intr_handler does, but not in a interrupt context
2829 * also It will process only a given number of packets.
2830 * Return value:
2831 * 0 on success and 1 if there are No Rx packets to be processed.
2832 */
2833
2834 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2835 {
2836 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2837 struct net_device *dev = ring->dev;
2838 int pkts_processed = 0;
2839 u8 __iomem *addr = NULL;
2840 u8 val8 = 0;
2841 struct s2io_nic *nic = netdev_priv(dev);
2842 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843 int budget_org = budget;
2844
2845 if (unlikely(!is_s2io_card_up(nic)))
2846 return 0;
2847
2848 pkts_processed = rx_intr_handler(ring, budget);
2849 s2io_chk_rx_buffers(nic, ring);
2850
2851 if (pkts_processed < budget_org) {
2852 napi_complete(napi);
2853 /*Re Enable MSI-Rx Vector*/
2854 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2855 addr += 7 - ring->ring_no;
2856 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2857 writeb(val8, addr);
2858 val8 = readb(addr);
2859 }
2860 return pkts_processed;
2861 }
2862
2863 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2864 {
2865 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2866 int pkts_processed = 0;
2867 int ring_pkts_processed, i;
2868 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2869 int budget_org = budget;
2870 struct config_param *config = &nic->config;
2871 struct mac_info *mac_control = &nic->mac_control;
2872
2873 if (unlikely(!is_s2io_card_up(nic)))
2874 return 0;
2875
2876 for (i = 0; i < config->rx_ring_num; i++) {
2877 struct ring_info *ring = &mac_control->rings[i];
2878 ring_pkts_processed = rx_intr_handler(ring, budget);
2879 s2io_chk_rx_buffers(nic, ring);
2880 pkts_processed += ring_pkts_processed;
2881 budget -= ring_pkts_processed;
2882 if (budget <= 0)
2883 break;
2884 }
2885 if (pkts_processed < budget_org) {
2886 napi_complete(napi);
2887 /* Re enable the Rx interrupts for the ring */
2888 writeq(0, &bar0->rx_traffic_mask);
2889 readl(&bar0->rx_traffic_mask);
2890 }
2891 return pkts_processed;
2892 }
2893
2894 #ifdef CONFIG_NET_POLL_CONTROLLER
2895 /**
2896 * s2io_netpoll - netpoll event handler entry point
2897 * @dev : pointer to the device structure.
2898 * Description:
2899 * This function will be called by upper layer to check for events on the
2900 * interface in situations where interrupts are disabled. It is used for
2901 * specific in-kernel networking tasks, such as remote consoles and kernel
2902 * debugging over the network (example netdump in RedHat).
2903 */
2904 static void s2io_netpoll(struct net_device *dev)
2905 {
2906 struct s2io_nic *nic = netdev_priv(dev);
2907 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2908 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2909 int i;
2910 struct config_param *config = &nic->config;
2911 struct mac_info *mac_control = &nic->mac_control;
2912
2913 if (pci_channel_offline(nic->pdev))
2914 return;
2915
2916 disable_irq(dev->irq);
2917
2918 writeq(val64, &bar0->rx_traffic_int);
2919 writeq(val64, &bar0->tx_traffic_int);
2920
2921 /* we need to free up the transmitted skbufs or else netpoll will
2922 * run out of skbs and will fail and eventually netpoll application such
2923 * as netdump will fail.
2924 */
2925 for (i = 0; i < config->tx_fifo_num; i++)
2926 tx_intr_handler(&mac_control->fifos[i]);
2927
2928 /* check for received packet and indicate up to network */
2929 for (i = 0; i < config->rx_ring_num; i++) {
2930 struct ring_info *ring = &mac_control->rings[i];
2931
2932 rx_intr_handler(ring, 0);
2933 }
2934
2935 for (i = 0; i < config->rx_ring_num; i++) {
2936 struct ring_info *ring = &mac_control->rings[i];
2937
2938 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2939 DBG_PRINT(INFO_DBG,
2940 "%s: Out of memory in Rx Netpoll!!\n",
2941 dev->name);
2942 break;
2943 }
2944 }
2945 enable_irq(dev->irq);
2946 }
2947 #endif
2948
2949 /**
2950 * rx_intr_handler - Rx interrupt handler
2951 * @ring_info: per ring structure.
2952 * @budget: budget for napi processing.
2953 * Description:
2954 * If the interrupt is because of a received frame or if the
2955 * receive ring contains fresh as yet un-processed frames,this function is
2956 * called. It picks out the RxD at which place the last Rx processing had
2957 * stopped and sends the skb to the OSM's Rx handler and then increments
2958 * the offset.
2959 * Return Value:
2960 * No. of napi packets processed.
2961 */
2962 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2963 {
2964 int get_block, put_block;
2965 struct rx_curr_get_info get_info, put_info;
2966 struct RxD_t *rxdp;
2967 struct sk_buff *skb;
2968 int pkt_cnt = 0, napi_pkts = 0;
2969 int i;
2970 struct RxD1 *rxdp1;
2971 struct RxD3 *rxdp3;
2972
2973 get_info = ring_data->rx_curr_get_info;
2974 get_block = get_info.block_index;
2975 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2976 put_block = put_info.block_index;
2977 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2978
2979 while (RXD_IS_UP2DT(rxdp)) {
2980 /*
2981 * If your are next to put index then it's
2982 * FIFO full condition
2983 */
2984 if ((get_block == put_block) &&
2985 (get_info.offset + 1) == put_info.offset) {
2986 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2987 ring_data->dev->name);
2988 break;
2989 }
2990 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2991 if (skb == NULL) {
2992 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2993 ring_data->dev->name);
2994 return 0;
2995 }
2996 if (ring_data->rxd_mode == RXD_MODE_1) {
2997 rxdp1 = (struct RxD1 *)rxdp;
2998 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2999 rxdp1->Buffer0_ptr,
3000 ring_data->mtu +
3001 HEADER_ETHERNET_II_802_3_SIZE +
3002 HEADER_802_2_SIZE +
3003 HEADER_SNAP_SIZE,
3004 PCI_DMA_FROMDEVICE);
3005 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3006 rxdp3 = (struct RxD3 *)rxdp;
3007 pci_dma_sync_single_for_cpu(ring_data->pdev,
3008 (dma_addr_t)rxdp3->Buffer0_ptr,
3009 BUF0_LEN,
3010 PCI_DMA_FROMDEVICE);
3011 pci_unmap_single(ring_data->pdev,
3012 (dma_addr_t)rxdp3->Buffer2_ptr,
3013 ring_data->mtu + 4,
3014 PCI_DMA_FROMDEVICE);
3015 }
3016 prefetch(skb->data);
3017 rx_osm_handler(ring_data, rxdp);
3018 get_info.offset++;
3019 ring_data->rx_curr_get_info.offset = get_info.offset;
3020 rxdp = ring_data->rx_blocks[get_block].
3021 rxds[get_info.offset].virt_addr;
3022 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3023 get_info.offset = 0;
3024 ring_data->rx_curr_get_info.offset = get_info.offset;
3025 get_block++;
3026 if (get_block == ring_data->block_count)
3027 get_block = 0;
3028 ring_data->rx_curr_get_info.block_index = get_block;
3029 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3030 }
3031
3032 if (ring_data->nic->config.napi) {
3033 budget--;
3034 napi_pkts++;
3035 if (!budget)
3036 break;
3037 }
3038 pkt_cnt++;
3039 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3040 break;
3041 }
3042 if (ring_data->lro) {
3043 /* Clear all LRO sessions before exiting */
3044 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3045 struct lro *lro = &ring_data->lro0_n[i];
3046 if (lro->in_use) {
3047 update_L3L4_header(ring_data->nic, lro);
3048 queue_rx_frame(lro->parent, lro->vlan_tag);
3049 clear_lro_session(lro);
3050 }
3051 }
3052 }
3053 return napi_pkts;
3054 }
3055
3056 /**
3057 * tx_intr_handler - Transmit interrupt handler
3058 * @nic : device private variable
3059 * Description:
3060 * If an interrupt was raised to indicate DMA complete of the
3061 * Tx packet, this function is called. It identifies the last TxD
3062 * whose buffer was freed and frees all skbs whose data have already
3063 * DMA'ed into the NICs internal memory.
3064 * Return Value:
3065 * NONE
3066 */
3067
3068 static void tx_intr_handler(struct fifo_info *fifo_data)
3069 {
3070 struct s2io_nic *nic = fifo_data->nic;
3071 struct tx_curr_get_info get_info, put_info;
3072 struct sk_buff *skb = NULL;
3073 struct TxD *txdlp;
3074 int pkt_cnt = 0;
3075 unsigned long flags = 0;
3076 u8 err_mask;
3077 struct stat_block *stats = nic->mac_control.stats_info;
3078 struct swStat *swstats = &stats->sw_stat;
3079
3080 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3081 return;
3082
3083 get_info = fifo_data->tx_curr_get_info;
3084 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3085 txdlp = (struct TxD *)
3086 fifo_data->list_info[get_info.offset].list_virt_addr;
3087 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3088 (get_info.offset != put_info.offset) &&
3089 (txdlp->Host_Control)) {
3090 /* Check for TxD errors */
3091 if (txdlp->Control_1 & TXD_T_CODE) {
3092 unsigned long long err;
3093 err = txdlp->Control_1 & TXD_T_CODE;
3094 if (err & 0x1) {
3095 swstats->parity_err_cnt++;
3096 }
3097
3098 /* update t_code statistics */
3099 err_mask = err >> 48;
3100 switch (err_mask) {
3101 case 2:
3102 swstats->tx_buf_abort_cnt++;
3103 break;
3104
3105 case 3:
3106 swstats->tx_desc_abort_cnt++;
3107 break;
3108
3109 case 7:
3110 swstats->tx_parity_err_cnt++;
3111 break;
3112
3113 case 10:
3114 swstats->tx_link_loss_cnt++;
3115 break;
3116
3117 case 15:
3118 swstats->tx_list_proc_err_cnt++;
3119 break;
3120 }
3121 }
3122
3123 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3124 if (skb == NULL) {
3125 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3126 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3127 __func__);
3128 return;
3129 }
3130 pkt_cnt++;
3131
3132 /* Updating the statistics block */
3133 swstats->mem_freed += skb->truesize;
3134 dev_kfree_skb_irq(skb);
3135
3136 get_info.offset++;
3137 if (get_info.offset == get_info.fifo_len + 1)
3138 get_info.offset = 0;
3139 txdlp = (struct TxD *)
3140 fifo_data->list_info[get_info.offset].list_virt_addr;
3141 fifo_data->tx_curr_get_info.offset = get_info.offset;
3142 }
3143
3144 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3145
3146 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3147 }
3148
3149 /**
3150 * s2io_mdio_write - Function to write in to MDIO registers
3151 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3152 * @addr : address value
3153 * @value : data value
3154 * @dev : pointer to net_device structure
3155 * Description:
3156 * This function is used to write values to the MDIO registers
3157 * NONE
3158 */
3159 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3160 struct net_device *dev)
3161 {
3162 u64 val64;
3163 struct s2io_nic *sp = netdev_priv(dev);
3164 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3165
3166 /* address transaction */
3167 val64 = MDIO_MMD_INDX_ADDR(addr) |
3168 MDIO_MMD_DEV_ADDR(mmd_type) |
3169 MDIO_MMS_PRT_ADDR(0x0);
3170 writeq(val64, &bar0->mdio_control);
3171 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3172 writeq(val64, &bar0->mdio_control);
3173 udelay(100);
3174
3175 /* Data transaction */
3176 val64 = MDIO_MMD_INDX_ADDR(addr) |
3177 MDIO_MMD_DEV_ADDR(mmd_type) |
3178 MDIO_MMS_PRT_ADDR(0x0) |
3179 MDIO_MDIO_DATA(value) |
3180 MDIO_OP(MDIO_OP_WRITE_TRANS);
3181 writeq(val64, &bar0->mdio_control);
3182 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64, &bar0->mdio_control);
3184 udelay(100);
3185
3186 val64 = MDIO_MMD_INDX_ADDR(addr) |
3187 MDIO_MMD_DEV_ADDR(mmd_type) |
3188 MDIO_MMS_PRT_ADDR(0x0) |
3189 MDIO_OP(MDIO_OP_READ_TRANS);
3190 writeq(val64, &bar0->mdio_control);
3191 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3192 writeq(val64, &bar0->mdio_control);
3193 udelay(100);
3194 }
3195
3196 /**
3197 * s2io_mdio_read - Function to write in to MDIO registers
3198 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3199 * @addr : address value
3200 * @dev : pointer to net_device structure
3201 * Description:
3202 * This function is used to read values to the MDIO registers
3203 * NONE
3204 */
3205 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3206 {
3207 u64 val64 = 0x0;
3208 u64 rval64 = 0x0;
3209 struct s2io_nic *sp = netdev_priv(dev);
3210 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3211
3212 /* address transaction */
3213 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3214 | MDIO_MMD_DEV_ADDR(mmd_type)
3215 | MDIO_MMS_PRT_ADDR(0x0));
3216 writeq(val64, &bar0->mdio_control);
3217 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3218 writeq(val64, &bar0->mdio_control);
3219 udelay(100);
3220
3221 /* Data transaction */
3222 val64 = MDIO_MMD_INDX_ADDR(addr) |
3223 MDIO_MMD_DEV_ADDR(mmd_type) |
3224 MDIO_MMS_PRT_ADDR(0x0) |
3225 MDIO_OP(MDIO_OP_READ_TRANS);
3226 writeq(val64, &bar0->mdio_control);
3227 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3228 writeq(val64, &bar0->mdio_control);
3229 udelay(100);
3230
3231 /* Read the value from regs */
3232 rval64 = readq(&bar0->mdio_control);
3233 rval64 = rval64 & 0xFFFF0000;
3234 rval64 = rval64 >> 16;
3235 return rval64;
3236 }
3237
3238 /**
3239 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3240 * @counter : counter value to be updated
3241 * @flag : flag to indicate the status
3242 * @type : counter type
3243 * Description:
3244 * This function is to check the status of the xpak counters value
3245 * NONE
3246 */
3247
3248 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3249 u16 flag, u16 type)
3250 {
3251 u64 mask = 0x3;
3252 u64 val64;
3253 int i;
3254 for (i = 0; i < index; i++)
3255 mask = mask << 0x2;
3256
3257 if (flag > 0) {
3258 *counter = *counter + 1;
3259 val64 = *regs_stat & mask;
3260 val64 = val64 >> (index * 0x2);
3261 val64 = val64 + 1;
3262 if (val64 == 3) {
3263 switch (type) {
3264 case 1:
3265 DBG_PRINT(ERR_DBG,
3266 "Take Xframe NIC out of service.\n");
3267 DBG_PRINT(ERR_DBG,
3268 "Excessive temperatures may result in premature transceiver failure.\n");
3269 break;
3270 case 2:
3271 DBG_PRINT(ERR_DBG,
3272 "Take Xframe NIC out of service.\n");
3273 DBG_PRINT(ERR_DBG,
3274 "Excessive bias currents may indicate imminent laser diode failure.\n");
3275 break;
3276 case 3:
3277 DBG_PRINT(ERR_DBG,
3278 "Take Xframe NIC out of service.\n");
3279 DBG_PRINT(ERR_DBG,
3280 "Excessive laser output power may saturate far-end receiver.\n");
3281 break;
3282 default:
3283 DBG_PRINT(ERR_DBG,
3284 "Incorrect XPAK Alarm type\n");
3285 }
3286 val64 = 0x0;
3287 }
3288 val64 = val64 << (index * 0x2);
3289 *regs_stat = (*regs_stat & (~mask)) | (val64);
3290
3291 } else {
3292 *regs_stat = *regs_stat & (~mask);
3293 }
3294 }
3295
3296 /**
3297 * s2io_updt_xpak_counter - Function to update the xpak counters
3298 * @dev : pointer to net_device struct
3299 * Description:
3300 * This function is to upate the status of the xpak counters value
3301 * NONE
3302 */
3303 static void s2io_updt_xpak_counter(struct net_device *dev)
3304 {
3305 u16 flag = 0x0;
3306 u16 type = 0x0;
3307 u16 val16 = 0x0;
3308 u64 val64 = 0x0;
3309 u64 addr = 0x0;
3310
3311 struct s2io_nic *sp = netdev_priv(dev);
3312 struct stat_block *stats = sp->mac_control.stats_info;
3313 struct xpakStat *xstats = &stats->xpak_stat;
3314
3315 /* Check the communication with the MDIO slave */
3316 addr = MDIO_CTRL1;
3317 val64 = 0x0;
3318 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3319 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3320 DBG_PRINT(ERR_DBG,
3321 "ERR: MDIO slave access failed - Returned %llx\n",
3322 (unsigned long long)val64);
3323 return;
3324 }
3325
3326 /* Check for the expected value of control reg 1 */
3327 if (val64 != MDIO_CTRL1_SPEED10G) {
3328 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3329 "Returned: %llx- Expected: 0x%x\n",
3330 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3331 return;
3332 }
3333
3334 /* Loading the DOM register to MDIO register */
3335 addr = 0xA100;
3336 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3337 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3338
3339 /* Reading the Alarm flags */
3340 addr = 0xA070;
3341 val64 = 0x0;
3342 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3343
3344 flag = CHECKBIT(val64, 0x7);
3345 type = 1;
3346 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3347 &xstats->xpak_regs_stat,
3348 0x0, flag, type);
3349
3350 if (CHECKBIT(val64, 0x6))
3351 xstats->alarm_transceiver_temp_low++;
3352
3353 flag = CHECKBIT(val64, 0x3);
3354 type = 2;
3355 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3356 &xstats->xpak_regs_stat,
3357 0x2, flag, type);
3358
3359 if (CHECKBIT(val64, 0x2))
3360 xstats->alarm_laser_bias_current_low++;
3361
3362 flag = CHECKBIT(val64, 0x1);
3363 type = 3;
3364 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3365 &xstats->xpak_regs_stat,
3366 0x4, flag, type);
3367
3368 if (CHECKBIT(val64, 0x0))
3369 xstats->alarm_laser_output_power_low++;
3370
3371 /* Reading the Warning flags */
3372 addr = 0xA074;
3373 val64 = 0x0;
3374 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3375
3376 if (CHECKBIT(val64, 0x7))
3377 xstats->warn_transceiver_temp_high++;
3378
3379 if (CHECKBIT(val64, 0x6))
3380 xstats->warn_transceiver_temp_low++;
3381
3382 if (CHECKBIT(val64, 0x3))
3383 xstats->warn_laser_bias_current_high++;
3384
3385 if (CHECKBIT(val64, 0x2))
3386 xstats->warn_laser_bias_current_low++;
3387
3388 if (CHECKBIT(val64, 0x1))
3389 xstats->warn_laser_output_power_high++;
3390
3391 if (CHECKBIT(val64, 0x0))
3392 xstats->warn_laser_output_power_low++;
3393 }
3394
3395 /**
3396 * wait_for_cmd_complete - waits for a command to complete.
3397 * @sp : private member of the device structure, which is a pointer to the
3398 * s2io_nic structure.
3399 * Description: Function that waits for a command to Write into RMAC
3400 * ADDR DATA registers to be completed and returns either success or
3401 * error depending on whether the command was complete or not.
3402 * Return value:
3403 * SUCCESS on success and FAILURE on failure.
3404 */
3405
3406 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3407 int bit_state)
3408 {
3409 int ret = FAILURE, cnt = 0, delay = 1;
3410 u64 val64;
3411
3412 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3413 return FAILURE;
3414
3415 do {
3416 val64 = readq(addr);
3417 if (bit_state == S2IO_BIT_RESET) {
3418 if (!(val64 & busy_bit)) {
3419 ret = SUCCESS;
3420 break;
3421 }
3422 } else {
3423 if (val64 & busy_bit) {
3424 ret = SUCCESS;
3425 break;
3426 }
3427 }
3428
3429 if (in_interrupt())
3430 mdelay(delay);
3431 else
3432 msleep(delay);
3433
3434 if (++cnt >= 10)
3435 delay = 50;
3436 } while (cnt < 20);
3437 return ret;
3438 }
3439 /*
3440 * check_pci_device_id - Checks if the device id is supported
3441 * @id : device id
3442 * Description: Function to check if the pci device id is supported by driver.
3443 * Return value: Actual device id if supported else PCI_ANY_ID
3444 */
3445 static u16 check_pci_device_id(u16 id)
3446 {
3447 switch (id) {
3448 case PCI_DEVICE_ID_HERC_WIN:
3449 case PCI_DEVICE_ID_HERC_UNI:
3450 return XFRAME_II_DEVICE;
3451 case PCI_DEVICE_ID_S2IO_UNI:
3452 case PCI_DEVICE_ID_S2IO_WIN:
3453 return XFRAME_I_DEVICE;
3454 default:
3455 return PCI_ANY_ID;
3456 }
3457 }
3458
3459 /**
3460 * s2io_reset - Resets the card.
3461 * @sp : private member of the device structure.
3462 * Description: Function to Reset the card. This function then also
3463 * restores the previously saved PCI configuration space registers as
3464 * the card reset also resets the configuration space.
3465 * Return value:
3466 * void.
3467 */
3468
3469 static void s2io_reset(struct s2io_nic *sp)
3470 {
3471 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3472 u64 val64;
3473 u16 subid, pci_cmd;
3474 int i;
3475 u16 val16;
3476 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3477 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3478 struct stat_block *stats;
3479 struct swStat *swstats;
3480
3481 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3482 __func__, pci_name(sp->pdev));
3483
3484 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3485 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3486
3487 val64 = SW_RESET_ALL;
3488 writeq(val64, &bar0->sw_reset);
3489 if (strstr(sp->product_name, "CX4"))
3490 msleep(750);
3491 msleep(250);
3492 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3493
3494 /* Restore the PCI state saved during initialization. */
3495 pci_restore_state(sp->pdev);
3496 pci_save_state(sp->pdev);
3497 pci_read_config_word(sp->pdev, 0x2, &val16);
3498 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3499 break;
3500 msleep(200);
3501 }
3502
3503 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3504 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3505
3506 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3507
3508 s2io_init_pci(sp);
3509
3510 /* Set swapper to enable I/O register access */
3511 s2io_set_swapper(sp);
3512
3513 /* restore mac_addr entries */
3514 do_s2io_restore_unicast_mc(sp);
3515
3516 /* Restore the MSIX table entries from local variables */
3517 restore_xmsi_data(sp);
3518
3519 /* Clear certain PCI/PCI-X fields after reset */
3520 if (sp->device_type == XFRAME_II_DEVICE) {
3521 /* Clear "detected parity error" bit */
3522 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3523
3524 /* Clearing PCIX Ecc status register */
3525 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3526
3527 /* Clearing PCI_STATUS error reflected here */
3528 writeq(s2BIT(62), &bar0->txpic_int_reg);
3529 }
3530
3531 /* Reset device statistics maintained by OS */
3532 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3533
3534 stats = sp->mac_control.stats_info;
3535 swstats = &stats->sw_stat;
3536
3537 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3538 up_cnt = swstats->link_up_cnt;
3539 down_cnt = swstats->link_down_cnt;
3540 up_time = swstats->link_up_time;
3541 down_time = swstats->link_down_time;
3542 reset_cnt = swstats->soft_reset_cnt;
3543 mem_alloc_cnt = swstats->mem_allocated;
3544 mem_free_cnt = swstats->mem_freed;
3545 watchdog_cnt = swstats->watchdog_timer_cnt;
3546
3547 memset(stats, 0, sizeof(struct stat_block));
3548
3549 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3550 swstats->link_up_cnt = up_cnt;
3551 swstats->link_down_cnt = down_cnt;
3552 swstats->link_up_time = up_time;
3553 swstats->link_down_time = down_time;
3554 swstats->soft_reset_cnt = reset_cnt;
3555 swstats->mem_allocated = mem_alloc_cnt;
3556 swstats->mem_freed = mem_free_cnt;
3557 swstats->watchdog_timer_cnt = watchdog_cnt;
3558
3559 /* SXE-002: Configure link and activity LED to turn it off */
3560 subid = sp->pdev->subsystem_device;
3561 if (((subid & 0xFF) >= 0x07) &&
3562 (sp->device_type == XFRAME_I_DEVICE)) {
3563 val64 = readq(&bar0->gpio_control);
3564 val64 |= 0x0000800000000000ULL;
3565 writeq(val64, &bar0->gpio_control);
3566 val64 = 0x0411040400000000ULL;
3567 writeq(val64, (void __iomem *)bar0 + 0x2700);
3568 }
3569
3570 /*
3571 * Clear spurious ECC interrupts that would have occured on
3572 * XFRAME II cards after reset.
3573 */
3574 if (sp->device_type == XFRAME_II_DEVICE) {
3575 val64 = readq(&bar0->pcc_err_reg);
3576 writeq(val64, &bar0->pcc_err_reg);
3577 }
3578
3579 sp->device_enabled_once = false;
3580 }
3581
3582 /**
3583 * s2io_set_swapper - to set the swapper controle on the card
3584 * @sp : private member of the device structure,
3585 * pointer to the s2io_nic structure.
3586 * Description: Function to set the swapper control on the card
3587 * correctly depending on the 'endianness' of the system.
3588 * Return value:
3589 * SUCCESS on success and FAILURE on failure.
3590 */
3591
3592 static int s2io_set_swapper(struct s2io_nic *sp)
3593 {
3594 struct net_device *dev = sp->dev;
3595 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3596 u64 val64, valt, valr;
3597
3598 /*
3599 * Set proper endian settings and verify the same by reading
3600 * the PIF Feed-back register.
3601 */
3602
3603 val64 = readq(&bar0->pif_rd_swapper_fb);
3604 if (val64 != 0x0123456789ABCDEFULL) {
3605 int i = 0;
3606 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3607 0x8100008181000081ULL, /* FE=1, SE=0 */
3608 0x4200004242000042ULL, /* FE=0, SE=1 */
3609 0}; /* FE=0, SE=0 */
3610
3611 while (i < 4) {
3612 writeq(value[i], &bar0->swapper_ctrl);
3613 val64 = readq(&bar0->pif_rd_swapper_fb);
3614 if (val64 == 0x0123456789ABCDEFULL)
3615 break;
3616 i++;
3617 }
3618 if (i == 4) {
3619 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3620 "feedback read %llx\n",
3621 dev->name, (unsigned long long)val64);
3622 return FAILURE;
3623 }
3624 valr = value[i];
3625 } else {
3626 valr = readq(&bar0->swapper_ctrl);
3627 }
3628
3629 valt = 0x0123456789ABCDEFULL;
3630 writeq(valt, &bar0->xmsi_address);
3631 val64 = readq(&bar0->xmsi_address);
3632
3633 if (val64 != valt) {
3634 int i = 0;
3635 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3636 0x0081810000818100ULL, /* FE=1, SE=0 */
3637 0x0042420000424200ULL, /* FE=0, SE=1 */
3638 0}; /* FE=0, SE=0 */
3639
3640 while (i < 4) {
3641 writeq((value[i] | valr), &bar0->swapper_ctrl);
3642 writeq(valt, &bar0->xmsi_address);
3643 val64 = readq(&bar0->xmsi_address);
3644 if (val64 == valt)
3645 break;
3646 i++;
3647 }
3648 if (i == 4) {
3649 unsigned long long x = val64;
3650 DBG_PRINT(ERR_DBG,
3651 "Write failed, Xmsi_addr reads:0x%llx\n", x);
3652 return FAILURE;
3653 }
3654 }
3655 val64 = readq(&bar0->swapper_ctrl);
3656 val64 &= 0xFFFF000000000000ULL;
3657
3658 #ifdef __BIG_ENDIAN
3659 /*
3660 * The device by default set to a big endian format, so a
3661 * big endian driver need not set anything.
3662 */
3663 val64 |= (SWAPPER_CTRL_TXP_FE |
3664 SWAPPER_CTRL_TXP_SE |
3665 SWAPPER_CTRL_TXD_R_FE |
3666 SWAPPER_CTRL_TXD_W_FE |
3667 SWAPPER_CTRL_TXF_R_FE |
3668 SWAPPER_CTRL_RXD_R_FE |
3669 SWAPPER_CTRL_RXD_W_FE |
3670 SWAPPER_CTRL_RXF_W_FE |
3671 SWAPPER_CTRL_XMSI_FE |
3672 SWAPPER_CTRL_STATS_FE |
3673 SWAPPER_CTRL_STATS_SE);
3674 if (sp->config.intr_type == INTA)
3675 val64 |= SWAPPER_CTRL_XMSI_SE;
3676 writeq(val64, &bar0->swapper_ctrl);
3677 #else
3678 /*
3679 * Initially we enable all bits to make it accessible by the
3680 * driver, then we selectively enable only those bits that
3681 * we want to set.
3682 */
3683 val64 |= (SWAPPER_CTRL_TXP_FE |
3684 SWAPPER_CTRL_TXP_SE |
3685 SWAPPER_CTRL_TXD_R_FE |
3686 SWAPPER_CTRL_TXD_R_SE |
3687 SWAPPER_CTRL_TXD_W_FE |
3688 SWAPPER_CTRL_TXD_W_SE |
3689 SWAPPER_CTRL_TXF_R_FE |
3690 SWAPPER_CTRL_RXD_R_FE |
3691 SWAPPER_CTRL_RXD_R_SE |
3692 SWAPPER_CTRL_RXD_W_FE |
3693 SWAPPER_CTRL_RXD_W_SE |
3694 SWAPPER_CTRL_RXF_W_FE |
3695 SWAPPER_CTRL_XMSI_FE |
3696 SWAPPER_CTRL_STATS_FE |
3697 SWAPPER_CTRL_STATS_SE);
3698 if (sp->config.intr_type == INTA)
3699 val64 |= SWAPPER_CTRL_XMSI_SE;
3700 writeq(val64, &bar0->swapper_ctrl);
3701 #endif
3702 val64 = readq(&bar0->swapper_ctrl);
3703
3704 /*
3705 * Verifying if endian settings are accurate by reading a
3706 * feedback register.
3707 */
3708 val64 = readq(&bar0->pif_rd_swapper_fb);
3709 if (val64 != 0x0123456789ABCDEFULL) {
3710 /* Endian settings are incorrect, calls for another dekko. */
3711 DBG_PRINT(ERR_DBG,
3712 "%s: Endian settings are wrong, feedback read %llx\n",
3713 dev->name, (unsigned long long)val64);
3714 return FAILURE;
3715 }
3716
3717 return SUCCESS;
3718 }
3719
3720 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3721 {
3722 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3723 u64 val64;
3724 int ret = 0, cnt = 0;
3725
3726 do {
3727 val64 = readq(&bar0->xmsi_access);
3728 if (!(val64 & s2BIT(15)))
3729 break;
3730 mdelay(1);
3731 cnt++;
3732 } while (cnt < 5);
3733 if (cnt == 5) {
3734 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3735 ret = 1;
3736 }
3737
3738 return ret;
3739 }
3740
3741 static void restore_xmsi_data(struct s2io_nic *nic)
3742 {
3743 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3744 u64 val64;
3745 int i, msix_index;
3746
3747 if (nic->device_type == XFRAME_I_DEVICE)
3748 return;
3749
3750 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3751 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3752 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3753 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3754 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3755 writeq(val64, &bar0->xmsi_access);
3756 if (wait_for_msix_trans(nic, msix_index)) {
3757 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3758 __func__, msix_index);
3759 continue;
3760 }
3761 }
3762 }
3763
3764 static void store_xmsi_data(struct s2io_nic *nic)
3765 {
3766 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3767 u64 val64, addr, data;
3768 int i, msix_index;
3769
3770 if (nic->device_type == XFRAME_I_DEVICE)
3771 return;
3772
3773 /* Store and display */
3774 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3775 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3776 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3777 writeq(val64, &bar0->xmsi_access);
3778 if (wait_for_msix_trans(nic, msix_index)) {
3779 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3780 __func__, msix_index);
3781 continue;
3782 }
3783 addr = readq(&bar0->xmsi_address);
3784 data = readq(&bar0->xmsi_data);
3785 if (addr && data) {
3786 nic->msix_info[i].addr = addr;
3787 nic->msix_info[i].data = data;
3788 }
3789 }
3790 }
3791
3792 static int s2io_enable_msi_x(struct s2io_nic *nic)
3793 {
3794 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3795 u64 rx_mat;
3796 u16 msi_control; /* Temp variable */
3797 int ret, i, j, msix_indx = 1;
3798 int size;
3799 struct stat_block *stats = nic->mac_control.stats_info;
3800 struct swStat *swstats = &stats->sw_stat;
3801
3802 size = nic->num_entries * sizeof(struct msix_entry);
3803 nic->entries = kzalloc(size, GFP_KERNEL);
3804 if (!nic->entries) {
3805 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3806 __func__);
3807 swstats->mem_alloc_fail_cnt++;
3808 return -ENOMEM;
3809 }
3810 swstats->mem_allocated += size;
3811
3812 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3813 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3814 if (!nic->s2io_entries) {
3815 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3816 __func__);
3817 swstats->mem_alloc_fail_cnt++;
3818 kfree(nic->entries);
3819 swstats->mem_freed
3820 += (nic->num_entries * sizeof(struct msix_entry));
3821 return -ENOMEM;
3822 }
3823 swstats->mem_allocated += size;
3824
3825 nic->entries[0].entry = 0;
3826 nic->s2io_entries[0].entry = 0;
3827 nic->s2io_entries[0].in_use = MSIX_FLG;
3828 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3829 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3830
3831 for (i = 1; i < nic->num_entries; i++) {
3832 nic->entries[i].entry = ((i - 1) * 8) + 1;
3833 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3834 nic->s2io_entries[i].arg = NULL;
3835 nic->s2io_entries[i].in_use = 0;
3836 }
3837
3838 rx_mat = readq(&bar0->rx_mat);
3839 for (j = 0; j < nic->config.rx_ring_num; j++) {
3840 rx_mat |= RX_MAT_SET(j, msix_indx);
3841 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3842 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3843 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3844 msix_indx += 8;
3845 }
3846 writeq(rx_mat, &bar0->rx_mat);
3847 readq(&bar0->rx_mat);
3848
3849 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3850 /* We fail init if error or we get less vectors than min required */
3851 if (ret) {
3852 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3853 kfree(nic->entries);
3854 swstats->mem_freed += nic->num_entries *
3855 sizeof(struct msix_entry);
3856 kfree(nic->s2io_entries);
3857 swstats->mem_freed += nic->num_entries *
3858 sizeof(struct s2io_msix_entry);
3859 nic->entries = NULL;
3860 nic->s2io_entries = NULL;
3861 return -ENOMEM;
3862 }
3863
3864 /*
3865 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3866 * in the herc NIC. (Temp change, needs to be removed later)
3867 */
3868 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3869 msi_control |= 0x1; /* Enable MSI */
3870 pci_write_config_word(nic->pdev, 0x42, msi_control);
3871
3872 return 0;
3873 }
3874
3875 /* Handle software interrupt used during MSI(X) test */
3876 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3877 {
3878 struct s2io_nic *sp = dev_id;
3879
3880 sp->msi_detected = 1;
3881 wake_up(&sp->msi_wait);
3882
3883 return IRQ_HANDLED;
3884 }
3885
3886 /* Test interrupt path by forcing a a software IRQ */
3887 static int s2io_test_msi(struct s2io_nic *sp)
3888 {
3889 struct pci_dev *pdev = sp->pdev;
3890 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3891 int err;
3892 u64 val64, saved64;
3893
3894 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3895 sp->name, sp);
3896 if (err) {
3897 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3898 sp->dev->name, pci_name(pdev), pdev->irq);
3899 return err;
3900 }
3901
3902 init_waitqueue_head(&sp->msi_wait);
3903 sp->msi_detected = 0;
3904
3905 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3906 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3907 val64 |= SCHED_INT_CTRL_TIMER_EN;
3908 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3909 writeq(val64, &bar0->scheduled_int_ctrl);
3910
3911 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3912
3913 if (!sp->msi_detected) {
3914 /* MSI(X) test failed, go back to INTx mode */
3915 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3916 "using MSI(X) during test\n",
3917 sp->dev->name, pci_name(pdev));
3918
3919 err = -EOPNOTSUPP;
3920 }
3921
3922 free_irq(sp->entries[1].vector, sp);
3923
3924 writeq(saved64, &bar0->scheduled_int_ctrl);
3925
3926 return err;
3927 }
3928
3929 static void remove_msix_isr(struct s2io_nic *sp)
3930 {
3931 int i;
3932 u16 msi_control;
3933
3934 for (i = 0; i < sp->num_entries; i++) {
3935 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3936 int vector = sp->entries[i].vector;
3937 void *arg = sp->s2io_entries[i].arg;
3938 free_irq(vector, arg);
3939 }
3940 }
3941
3942 kfree(sp->entries);
3943 kfree(sp->s2io_entries);
3944 sp->entries = NULL;
3945 sp->s2io_entries = NULL;
3946
3947 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3948 msi_control &= 0xFFFE; /* Disable MSI */
3949 pci_write_config_word(sp->pdev, 0x42, msi_control);
3950
3951 pci_disable_msix(sp->pdev);
3952 }
3953
3954 static void remove_inta_isr(struct s2io_nic *sp)
3955 {
3956 struct net_device *dev = sp->dev;
3957
3958 free_irq(sp->pdev->irq, dev);
3959 }
3960
3961 /* ********************************************************* *
3962 * Functions defined below concern the OS part of the driver *
3963 * ********************************************************* */
3964
3965 /**
3966 * s2io_open - open entry point of the driver
3967 * @dev : pointer to the device structure.
3968 * Description:
3969 * This function is the open entry point of the driver. It mainly calls a
3970 * function to allocate Rx buffers and inserts them into the buffer
3971 * descriptors and then enables the Rx part of the NIC.
3972 * Return value:
3973 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3974 * file on failure.
3975 */
3976
3977 static int s2io_open(struct net_device *dev)
3978 {
3979 struct s2io_nic *sp = netdev_priv(dev);
3980 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3981 int err = 0;
3982
3983 /*
3984 * Make sure you have link off by default every time
3985 * Nic is initialized
3986 */
3987 netif_carrier_off(dev);
3988 sp->last_link_state = 0;
3989
3990 /* Initialize H/W and enable interrupts */
3991 err = s2io_card_up(sp);
3992 if (err) {
3993 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3994 dev->name);
3995 goto hw_init_failed;
3996 }
3997
3998 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3999 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4000 s2io_card_down(sp);
4001 err = -ENODEV;
4002 goto hw_init_failed;
4003 }
4004 s2io_start_all_tx_queue(sp);
4005 return 0;
4006
4007 hw_init_failed:
4008 if (sp->config.intr_type == MSI_X) {
4009 if (sp->entries) {
4010 kfree(sp->entries);
4011 swstats->mem_freed += sp->num_entries *
4012 sizeof(struct msix_entry);
4013 }
4014 if (sp->s2io_entries) {
4015 kfree(sp->s2io_entries);
4016 swstats->mem_freed += sp->num_entries *
4017 sizeof(struct s2io_msix_entry);
4018 }
4019 }
4020 return err;
4021 }
4022
4023 /**
4024 * s2io_close -close entry point of the driver
4025 * @dev : device pointer.
4026 * Description:
4027 * This is the stop entry point of the driver. It needs to undo exactly
4028 * whatever was done by the open entry point,thus it's usually referred to
4029 * as the close function.Among other things this function mainly stops the
4030 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4031 * Return value:
4032 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4033 * file on failure.
4034 */
4035
4036 static int s2io_close(struct net_device *dev)
4037 {
4038 struct s2io_nic *sp = netdev_priv(dev);
4039 struct config_param *config = &sp->config;
4040 u64 tmp64;
4041 int offset;
4042
4043 /* Return if the device is already closed *
4044 * Can happen when s2io_card_up failed in change_mtu *
4045 */
4046 if (!is_s2io_card_up(sp))
4047 return 0;
4048
4049 s2io_stop_all_tx_queue(sp);
4050 /* delete all populated mac entries */
4051 for (offset = 1; offset < config->max_mc_addr; offset++) {
4052 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4053 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4054 do_s2io_delete_unicast_mc(sp, tmp64);
4055 }
4056
4057 s2io_card_down(sp);
4058
4059 return 0;
4060 }
4061
4062 /**
4063 * s2io_xmit - Tx entry point of te driver
4064 * @skb : the socket buffer containing the Tx data.
4065 * @dev : device pointer.
4066 * Description :
4067 * This function is the Tx entry point of the driver. S2IO NIC supports
4068 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4069 * NOTE: when device cant queue the pkt,just the trans_start variable will
4070 * not be upadted.
4071 * Return value:
4072 * 0 on success & 1 on failure.
4073 */
4074
4075 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4076 {
4077 struct s2io_nic *sp = netdev_priv(dev);
4078 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4079 register u64 val64;
4080 struct TxD *txdp;
4081 struct TxFIFO_element __iomem *tx_fifo;
4082 unsigned long flags = 0;
4083 u16 vlan_tag = 0;
4084 struct fifo_info *fifo = NULL;
4085 int do_spin_lock = 1;
4086 int offload_type;
4087 int enable_per_list_interrupt = 0;
4088 struct config_param *config = &sp->config;
4089 struct mac_info *mac_control = &sp->mac_control;
4090 struct stat_block *stats = mac_control->stats_info;
4091 struct swStat *swstats = &stats->sw_stat;
4092
4093 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4094
4095 if (unlikely(skb->len <= 0)) {
4096 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4097 dev_kfree_skb_any(skb);
4098 return NETDEV_TX_OK;
4099 }
4100
4101 if (!is_s2io_card_up(sp)) {
4102 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4103 dev->name);
4104 dev_kfree_skb(skb);
4105 return NETDEV_TX_OK;
4106 }
4107
4108 queue = 0;
4109 if (sp->vlgrp && vlan_tx_tag_present(skb))
4110 vlan_tag = vlan_tx_tag_get(skb);
4111 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4112 if (skb->protocol == htons(ETH_P_IP)) {
4113 struct iphdr *ip;
4114 struct tcphdr *th;
4115 ip = ip_hdr(skb);
4116
4117 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4118 th = (struct tcphdr *)(((unsigned char *)ip) +
4119 ip->ihl*4);
4120
4121 if (ip->protocol == IPPROTO_TCP) {
4122 queue_len = sp->total_tcp_fifos;
4123 queue = (ntohs(th->source) +
4124 ntohs(th->dest)) &
4125 sp->fifo_selector[queue_len - 1];
4126 if (queue >= queue_len)
4127 queue = queue_len - 1;
4128 } else if (ip->protocol == IPPROTO_UDP) {
4129 queue_len = sp->total_udp_fifos;
4130 queue = (ntohs(th->source) +
4131 ntohs(th->dest)) &
4132 sp->fifo_selector[queue_len - 1];
4133 if (queue >= queue_len)
4134 queue = queue_len - 1;
4135 queue += sp->udp_fifo_idx;
4136 if (skb->len > 1024)
4137 enable_per_list_interrupt = 1;
4138 do_spin_lock = 0;
4139 }
4140 }
4141 }
4142 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4143 /* get fifo number based on skb->priority value */
4144 queue = config->fifo_mapping
4145 [skb->priority & (MAX_TX_FIFOS - 1)];
4146 fifo = &mac_control->fifos[queue];
4147
4148 if (do_spin_lock)
4149 spin_lock_irqsave(&fifo->tx_lock, flags);
4150 else {
4151 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4152 return NETDEV_TX_LOCKED;
4153 }
4154
4155 if (sp->config.multiq) {
4156 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4157 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4158 return NETDEV_TX_BUSY;
4159 }
4160 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4161 if (netif_queue_stopped(dev)) {
4162 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4163 return NETDEV_TX_BUSY;
4164 }
4165 }
4166
4167 put_off = (u16)fifo->tx_curr_put_info.offset;
4168 get_off = (u16)fifo->tx_curr_get_info.offset;
4169 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4170
4171 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4172 /* Avoid "put" pointer going beyond "get" pointer */
4173 if (txdp->Host_Control ||
4174 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4175 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4176 s2io_stop_tx_queue(sp, fifo->fifo_no);
4177 dev_kfree_skb(skb);
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 return NETDEV_TX_OK;
4180 }
4181
4182 offload_type = s2io_offload_type(skb);
4183 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4184 txdp->Control_1 |= TXD_TCP_LSO_EN;
4185 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4186 }
4187 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4188 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4189 TXD_TX_CKO_TCP_EN |
4190 TXD_TX_CKO_UDP_EN);
4191 }
4192 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4193 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4194 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4195 if (enable_per_list_interrupt)
4196 if (put_off & (queue_len >> 5))
4197 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4198 if (vlan_tag) {
4199 txdp->Control_2 |= TXD_VLAN_ENABLE;
4200 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4201 }
4202
4203 frg_len = skb_headlen(skb);
4204 if (offload_type == SKB_GSO_UDP) {
4205 int ufo_size;
4206
4207 ufo_size = s2io_udp_mss(skb);
4208 ufo_size &= ~7;
4209 txdp->Control_1 |= TXD_UFO_EN;
4210 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4211 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4212 #ifdef __BIG_ENDIAN
4213 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4214 fifo->ufo_in_band_v[put_off] =
4215 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4216 #else
4217 fifo->ufo_in_band_v[put_off] =
4218 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4219 #endif
4220 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4221 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4222 fifo->ufo_in_band_v,
4223 sizeof(u64),
4224 PCI_DMA_TODEVICE);
4225 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4226 goto pci_map_failed;
4227 txdp++;
4228 }
4229
4230 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4231 frg_len, PCI_DMA_TODEVICE);
4232 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4233 goto pci_map_failed;
4234
4235 txdp->Host_Control = (unsigned long)skb;
4236 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4237 if (offload_type == SKB_GSO_UDP)
4238 txdp->Control_1 |= TXD_UFO_EN;
4239
4240 frg_cnt = skb_shinfo(skb)->nr_frags;
4241 /* For fragmented SKB. */
4242 for (i = 0; i < frg_cnt; i++) {
4243 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4244 /* A '0' length fragment will be ignored */
4245 if (!frag->size)
4246 continue;
4247 txdp++;
4248 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4249 frag->page_offset,
4250 frag->size,
4251 PCI_DMA_TODEVICE);
4252 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4253 if (offload_type == SKB_GSO_UDP)
4254 txdp->Control_1 |= TXD_UFO_EN;
4255 }
4256 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4257
4258 if (offload_type == SKB_GSO_UDP)
4259 frg_cnt++; /* as Txd0 was used for inband header */
4260
4261 tx_fifo = mac_control->tx_FIFO_start[queue];
4262 val64 = fifo->list_info[put_off].list_phy_addr;
4263 writeq(val64, &tx_fifo->TxDL_Pointer);
4264
4265 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4266 TX_FIFO_LAST_LIST);
4267 if (offload_type)
4268 val64 |= TX_FIFO_SPECIAL_FUNC;
4269
4270 writeq(val64, &tx_fifo->List_Control);
4271
4272 mmiowb();
4273
4274 put_off++;
4275 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4276 put_off = 0;
4277 fifo->tx_curr_put_info.offset = put_off;
4278
4279 /* Avoid "put" pointer going beyond "get" pointer */
4280 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4281 swstats->fifo_full_cnt++;
4282 DBG_PRINT(TX_DBG,
4283 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4284 put_off, get_off);
4285 s2io_stop_tx_queue(sp, fifo->fifo_no);
4286 }
4287 swstats->mem_allocated += skb->truesize;
4288 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4289
4290 if (sp->config.intr_type == MSI_X)
4291 tx_intr_handler(fifo);
4292
4293 return NETDEV_TX_OK;
4294
4295 pci_map_failed:
4296 swstats->pci_map_fail_cnt++;
4297 s2io_stop_tx_queue(sp, fifo->fifo_no);
4298 swstats->mem_freed += skb->truesize;
4299 dev_kfree_skb(skb);
4300 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4301 return NETDEV_TX_OK;
4302 }
4303
4304 static void
4305 s2io_alarm_handle(unsigned long data)
4306 {
4307 struct s2io_nic *sp = (struct s2io_nic *)data;
4308 struct net_device *dev = sp->dev;
4309
4310 s2io_handle_errors(dev);
4311 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4312 }
4313
4314 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4315 {
4316 struct ring_info *ring = (struct ring_info *)dev_id;
4317 struct s2io_nic *sp = ring->nic;
4318 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4319
4320 if (unlikely(!is_s2io_card_up(sp)))
4321 return IRQ_HANDLED;
4322
4323 if (sp->config.napi) {
4324 u8 __iomem *addr = NULL;
4325 u8 val8 = 0;
4326
4327 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4328 addr += (7 - ring->ring_no);
4329 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4330 writeb(val8, addr);
4331 val8 = readb(addr);
4332 napi_schedule(&ring->napi);
4333 } else {
4334 rx_intr_handler(ring, 0);
4335 s2io_chk_rx_buffers(sp, ring);
4336 }
4337
4338 return IRQ_HANDLED;
4339 }
4340
4341 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4342 {
4343 int i;
4344 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4345 struct s2io_nic *sp = fifos->nic;
4346 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4347 struct config_param *config = &sp->config;
4348 u64 reason;
4349
4350 if (unlikely(!is_s2io_card_up(sp)))
4351 return IRQ_NONE;
4352
4353 reason = readq(&bar0->general_int_status);
4354 if (unlikely(reason == S2IO_MINUS_ONE))
4355 /* Nothing much can be done. Get out */
4356 return IRQ_HANDLED;
4357
4358 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4359 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4360
4361 if (reason & GEN_INTR_TXPIC)
4362 s2io_txpic_intr_handle(sp);
4363
4364 if (reason & GEN_INTR_TXTRAFFIC)
4365 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4366
4367 for (i = 0; i < config->tx_fifo_num; i++)
4368 tx_intr_handler(&fifos[i]);
4369
4370 writeq(sp->general_int_mask, &bar0->general_int_mask);
4371 readl(&bar0->general_int_status);
4372 return IRQ_HANDLED;
4373 }
4374 /* The interrupt was not raised by us */
4375 return IRQ_NONE;
4376 }
4377
4378 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4379 {
4380 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4381 u64 val64;
4382
4383 val64 = readq(&bar0->pic_int_status);
4384 if (val64 & PIC_INT_GPIO) {
4385 val64 = readq(&bar0->gpio_int_reg);
4386 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4387 (val64 & GPIO_INT_REG_LINK_UP)) {
4388 /*
4389 * This is unstable state so clear both up/down
4390 * interrupt and adapter to re-evaluate the link state.
4391 */
4392 val64 |= GPIO_INT_REG_LINK_DOWN;
4393 val64 |= GPIO_INT_REG_LINK_UP;
4394 writeq(val64, &bar0->gpio_int_reg);
4395 val64 = readq(&bar0->gpio_int_mask);
4396 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4397 GPIO_INT_MASK_LINK_DOWN);
4398 writeq(val64, &bar0->gpio_int_mask);
4399 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4400 val64 = readq(&bar0->adapter_status);
4401 /* Enable Adapter */
4402 val64 = readq(&bar0->adapter_control);
4403 val64 |= ADAPTER_CNTL_EN;
4404 writeq(val64, &bar0->adapter_control);
4405 val64 |= ADAPTER_LED_ON;
4406 writeq(val64, &bar0->adapter_control);
4407 if (!sp->device_enabled_once)
4408 sp->device_enabled_once = 1;
4409
4410 s2io_link(sp, LINK_UP);
4411 /*
4412 * unmask link down interrupt and mask link-up
4413 * intr
4414 */
4415 val64 = readq(&bar0->gpio_int_mask);
4416 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4417 val64 |= GPIO_INT_MASK_LINK_UP;
4418 writeq(val64, &bar0->gpio_int_mask);
4419
4420 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4421 val64 = readq(&bar0->adapter_status);
4422 s2io_link(sp, LINK_DOWN);
4423 /* Link is down so unmaks link up interrupt */
4424 val64 = readq(&bar0->gpio_int_mask);
4425 val64 &= ~GPIO_INT_MASK_LINK_UP;
4426 val64 |= GPIO_INT_MASK_LINK_DOWN;
4427 writeq(val64, &bar0->gpio_int_mask);
4428
4429 /* turn off LED */
4430 val64 = readq(&bar0->adapter_control);
4431 val64 = val64 & (~ADAPTER_LED_ON);
4432 writeq(val64, &bar0->adapter_control);
4433 }
4434 }
4435 val64 = readq(&bar0->gpio_int_mask);
4436 }
4437
4438 /**
4439 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4440 * @value: alarm bits
4441 * @addr: address value
4442 * @cnt: counter variable
4443 * Description: Check for alarm and increment the counter
4444 * Return Value:
4445 * 1 - if alarm bit set
4446 * 0 - if alarm bit is not set
4447 */
4448 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4449 unsigned long long *cnt)
4450 {
4451 u64 val64;
4452 val64 = readq(addr);
4453 if (val64 & value) {
4454 writeq(val64, addr);
4455 (*cnt)++;
4456 return 1;
4457 }
4458 return 0;
4459
4460 }
4461
4462 /**
4463 * s2io_handle_errors - Xframe error indication handler
4464 * @nic: device private variable
4465 * Description: Handle alarms such as loss of link, single or
4466 * double ECC errors, critical and serious errors.
4467 * Return Value:
4468 * NONE
4469 */
4470 static void s2io_handle_errors(void *dev_id)
4471 {
4472 struct net_device *dev = (struct net_device *)dev_id;
4473 struct s2io_nic *sp = netdev_priv(dev);
4474 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4475 u64 temp64 = 0, val64 = 0;
4476 int i = 0;
4477
4478 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4479 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4480
4481 if (!is_s2io_card_up(sp))
4482 return;
4483
4484 if (pci_channel_offline(sp->pdev))
4485 return;
4486
4487 memset(&sw_stat->ring_full_cnt, 0,
4488 sizeof(sw_stat->ring_full_cnt));
4489
4490 /* Handling the XPAK counters update */
4491 if (stats->xpak_timer_count < 72000) {
4492 /* waiting for an hour */
4493 stats->xpak_timer_count++;
4494 } else {
4495 s2io_updt_xpak_counter(dev);
4496 /* reset the count to zero */
4497 stats->xpak_timer_count = 0;
4498 }
4499
4500 /* Handling link status change error Intr */
4501 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4502 val64 = readq(&bar0->mac_rmac_err_reg);
4503 writeq(val64, &bar0->mac_rmac_err_reg);
4504 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4505 schedule_work(&sp->set_link_task);
4506 }
4507
4508 /* In case of a serious error, the device will be Reset. */
4509 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4510 &sw_stat->serious_err_cnt))
4511 goto reset;
4512
4513 /* Check for data parity error */
4514 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4515 &sw_stat->parity_err_cnt))
4516 goto reset;
4517
4518 /* Check for ring full counter */
4519 if (sp->device_type == XFRAME_II_DEVICE) {
4520 val64 = readq(&bar0->ring_bump_counter1);
4521 for (i = 0; i < 4; i++) {
4522 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4523 temp64 >>= 64 - ((i+1)*16);
4524 sw_stat->ring_full_cnt[i] += temp64;
4525 }
4526
4527 val64 = readq(&bar0->ring_bump_counter2);
4528 for (i = 0; i < 4; i++) {
4529 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4530 temp64 >>= 64 - ((i+1)*16);
4531 sw_stat->ring_full_cnt[i+4] += temp64;
4532 }
4533 }
4534
4535 val64 = readq(&bar0->txdma_int_status);
4536 /*check for pfc_err*/
4537 if (val64 & TXDMA_PFC_INT) {
4538 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4539 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4540 PFC_PCIX_ERR,
4541 &bar0->pfc_err_reg,
4542 &sw_stat->pfc_err_cnt))
4543 goto reset;
4544 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4545 &bar0->pfc_err_reg,
4546 &sw_stat->pfc_err_cnt);
4547 }
4548
4549 /*check for tda_err*/
4550 if (val64 & TXDMA_TDA_INT) {
4551 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4552 TDA_SM0_ERR_ALARM |
4553 TDA_SM1_ERR_ALARM,
4554 &bar0->tda_err_reg,
4555 &sw_stat->tda_err_cnt))
4556 goto reset;
4557 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4558 &bar0->tda_err_reg,
4559 &sw_stat->tda_err_cnt);
4560 }
4561 /*check for pcc_err*/
4562 if (val64 & TXDMA_PCC_INT) {
4563 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4564 PCC_N_SERR | PCC_6_COF_OV_ERR |
4565 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4566 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4567 PCC_TXB_ECC_DB_ERR,
4568 &bar0->pcc_err_reg,
4569 &sw_stat->pcc_err_cnt))
4570 goto reset;
4571 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4572 &bar0->pcc_err_reg,
4573 &sw_stat->pcc_err_cnt);
4574 }
4575
4576 /*check for tti_err*/
4577 if (val64 & TXDMA_TTI_INT) {
4578 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4579 &bar0->tti_err_reg,
4580 &sw_stat->tti_err_cnt))
4581 goto reset;
4582 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4583 &bar0->tti_err_reg,
4584 &sw_stat->tti_err_cnt);
4585 }
4586
4587 /*check for lso_err*/
4588 if (val64 & TXDMA_LSO_INT) {
4589 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4590 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4591 &bar0->lso_err_reg,
4592 &sw_stat->lso_err_cnt))
4593 goto reset;
4594 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4595 &bar0->lso_err_reg,
4596 &sw_stat->lso_err_cnt);
4597 }
4598
4599 /*check for tpa_err*/
4600 if (val64 & TXDMA_TPA_INT) {
4601 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4602 &bar0->tpa_err_reg,
4603 &sw_stat->tpa_err_cnt))
4604 goto reset;
4605 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4606 &bar0->tpa_err_reg,
4607 &sw_stat->tpa_err_cnt);
4608 }
4609
4610 /*check for sm_err*/
4611 if (val64 & TXDMA_SM_INT) {
4612 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4613 &bar0->sm_err_reg,
4614 &sw_stat->sm_err_cnt))
4615 goto reset;
4616 }
4617
4618 val64 = readq(&bar0->mac_int_status);
4619 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621 &bar0->mac_tmac_err_reg,
4622 &sw_stat->mac_tmac_err_cnt))
4623 goto reset;
4624 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4625 TMAC_DESC_ECC_SG_ERR |
4626 TMAC_DESC_ECC_DB_ERR,
4627 &bar0->mac_tmac_err_reg,
4628 &sw_stat->mac_tmac_err_cnt);
4629 }
4630
4631 val64 = readq(&bar0->xgxs_int_status);
4632 if (val64 & XGXS_INT_STATUS_TXGXS) {
4633 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634 &bar0->xgxs_txgxs_err_reg,
4635 &sw_stat->xgxs_txgxs_err_cnt))
4636 goto reset;
4637 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638 &bar0->xgxs_txgxs_err_reg,
4639 &sw_stat->xgxs_txgxs_err_cnt);
4640 }
4641
4642 val64 = readq(&bar0->rxdma_int_status);
4643 if (val64 & RXDMA_INT_RC_INT_M) {
4644 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4645 RC_FTC_ECC_DB_ERR |
4646 RC_PRCn_SM_ERR_ALARM |
4647 RC_FTC_SM_ERR_ALARM,
4648 &bar0->rc_err_reg,
4649 &sw_stat->rc_err_cnt))
4650 goto reset;
4651 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4652 RC_FTC_ECC_SG_ERR |
4653 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4654 &sw_stat->rc_err_cnt);
4655 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4656 PRC_PCI_AB_WR_Rn |
4657 PRC_PCI_AB_F_WR_Rn,
4658 &bar0->prc_pcix_err_reg,
4659 &sw_stat->prc_pcix_err_cnt))
4660 goto reset;
4661 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4662 PRC_PCI_DP_WR_Rn |
4663 PRC_PCI_DP_F_WR_Rn,
4664 &bar0->prc_pcix_err_reg,
4665 &sw_stat->prc_pcix_err_cnt);
4666 }
4667
4668 if (val64 & RXDMA_INT_RPA_INT_M) {
4669 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4670 &bar0->rpa_err_reg,
4671 &sw_stat->rpa_err_cnt))
4672 goto reset;
4673 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4674 &bar0->rpa_err_reg,
4675 &sw_stat->rpa_err_cnt);
4676 }
4677
4678 if (val64 & RXDMA_INT_RDA_INT_M) {
4679 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4680 RDA_FRM_ECC_DB_N_AERR |
4681 RDA_SM1_ERR_ALARM |
4682 RDA_SM0_ERR_ALARM |
4683 RDA_RXD_ECC_DB_SERR,
4684 &bar0->rda_err_reg,
4685 &sw_stat->rda_err_cnt))
4686 goto reset;
4687 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4688 RDA_FRM_ECC_SG_ERR |
4689 RDA_MISC_ERR |
4690 RDA_PCIX_ERR,
4691 &bar0->rda_err_reg,
4692 &sw_stat->rda_err_cnt);
4693 }
4694
4695 if (val64 & RXDMA_INT_RTI_INT_M) {
4696 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4697 &bar0->rti_err_reg,
4698 &sw_stat->rti_err_cnt))
4699 goto reset;
4700 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4701 &bar0->rti_err_reg,
4702 &sw_stat->rti_err_cnt);
4703 }
4704
4705 val64 = readq(&bar0->mac_int_status);
4706 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4707 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4708 &bar0->mac_rmac_err_reg,
4709 &sw_stat->mac_rmac_err_cnt))
4710 goto reset;
4711 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4712 RMAC_SINGLE_ECC_ERR |
4713 RMAC_DOUBLE_ECC_ERR,
4714 &bar0->mac_rmac_err_reg,
4715 &sw_stat->mac_rmac_err_cnt);
4716 }
4717
4718 val64 = readq(&bar0->xgxs_int_status);
4719 if (val64 & XGXS_INT_STATUS_RXGXS) {
4720 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4721 &bar0->xgxs_rxgxs_err_reg,
4722 &sw_stat->xgxs_rxgxs_err_cnt))
4723 goto reset;
4724 }
4725
4726 val64 = readq(&bar0->mc_int_status);
4727 if (val64 & MC_INT_STATUS_MC_INT) {
4728 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4729 &bar0->mc_err_reg,
4730 &sw_stat->mc_err_cnt))
4731 goto reset;
4732
4733 /* Handling Ecc errors */
4734 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4735 writeq(val64, &bar0->mc_err_reg);
4736 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4737 sw_stat->double_ecc_errs++;
4738 if (sp->device_type != XFRAME_II_DEVICE) {
4739 /*
4740 * Reset XframeI only if critical error
4741 */
4742 if (val64 &
4743 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4744 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4745 goto reset;
4746 }
4747 } else
4748 sw_stat->single_ecc_errs++;
4749 }
4750 }
4751 return;
4752
4753 reset:
4754 s2io_stop_all_tx_queue(sp);
4755 schedule_work(&sp->rst_timer_task);
4756 sw_stat->soft_reset_cnt++;
4757 }
4758
4759 /**
4760 * s2io_isr - ISR handler of the device .
4761 * @irq: the irq of the device.
4762 * @dev_id: a void pointer to the dev structure of the NIC.
4763 * Description: This function is the ISR handler of the device. It
4764 * identifies the reason for the interrupt and calls the relevant
4765 * service routines. As a contongency measure, this ISR allocates the
4766 * recv buffers, if their numbers are below the panic value which is
4767 * presently set to 25% of the original number of rcv buffers allocated.
4768 * Return value:
4769 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4770 * IRQ_NONE: will be returned if interrupt is not from our device
4771 */
4772 static irqreturn_t s2io_isr(int irq, void *dev_id)
4773 {
4774 struct net_device *dev = (struct net_device *)dev_id;
4775 struct s2io_nic *sp = netdev_priv(dev);
4776 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4777 int i;
4778 u64 reason = 0;
4779 struct mac_info *mac_control;
4780 struct config_param *config;
4781
4782 /* Pretend we handled any irq's from a disconnected card */
4783 if (pci_channel_offline(sp->pdev))
4784 return IRQ_NONE;
4785
4786 if (!is_s2io_card_up(sp))
4787 return IRQ_NONE;
4788
4789 config = &sp->config;
4790 mac_control = &sp->mac_control;
4791
4792 /*
4793 * Identify the cause for interrupt and call the appropriate
4794 * interrupt handler. Causes for the interrupt could be;
4795 * 1. Rx of packet.
4796 * 2. Tx complete.
4797 * 3. Link down.
4798 */
4799 reason = readq(&bar0->general_int_status);
4800
4801 if (unlikely(reason == S2IO_MINUS_ONE))
4802 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4803
4804 if (reason &
4805 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4806 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4807
4808 if (config->napi) {
4809 if (reason & GEN_INTR_RXTRAFFIC) {
4810 napi_schedule(&sp->napi);
4811 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4812 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4813 readl(&bar0->rx_traffic_int);
4814 }
4815 } else {
4816 /*
4817 * rx_traffic_int reg is an R1 register, writing all 1's
4818 * will ensure that the actual interrupt causing bit
4819 * get's cleared and hence a read can be avoided.
4820 */
4821 if (reason & GEN_INTR_RXTRAFFIC)
4822 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4823
4824 for (i = 0; i < config->rx_ring_num; i++) {
4825 struct ring_info *ring = &mac_control->rings[i];
4826
4827 rx_intr_handler(ring, 0);
4828 }
4829 }
4830
4831 /*
4832 * tx_traffic_int reg is an R1 register, writing all 1's
4833 * will ensure that the actual interrupt causing bit get's
4834 * cleared and hence a read can be avoided.
4835 */
4836 if (reason & GEN_INTR_TXTRAFFIC)
4837 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4838
4839 for (i = 0; i < config->tx_fifo_num; i++)
4840 tx_intr_handler(&mac_control->fifos[i]);
4841
4842 if (reason & GEN_INTR_TXPIC)
4843 s2io_txpic_intr_handle(sp);
4844
4845 /*
4846 * Reallocate the buffers from the interrupt handler itself.
4847 */
4848 if (!config->napi) {
4849 for (i = 0; i < config->rx_ring_num; i++) {
4850 struct ring_info *ring = &mac_control->rings[i];
4851
4852 s2io_chk_rx_buffers(sp, ring);
4853 }
4854 }
4855 writeq(sp->general_int_mask, &bar0->general_int_mask);
4856 readl(&bar0->general_int_status);
4857
4858 return IRQ_HANDLED;
4859
4860 } else if (!reason) {
4861 /* The interrupt was not raised by us */
4862 return IRQ_NONE;
4863 }
4864
4865 return IRQ_HANDLED;
4866 }
4867
4868 /**
4869 * s2io_updt_stats -
4870 */
4871 static void s2io_updt_stats(struct s2io_nic *sp)
4872 {
4873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4874 u64 val64;
4875 int cnt = 0;
4876
4877 if (is_s2io_card_up(sp)) {
4878 /* Apprx 30us on a 133 MHz bus */
4879 val64 = SET_UPDT_CLICKS(10) |
4880 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4881 writeq(val64, &bar0->stat_cfg);
4882 do {
4883 udelay(100);
4884 val64 = readq(&bar0->stat_cfg);
4885 if (!(val64 & s2BIT(0)))
4886 break;
4887 cnt++;
4888 if (cnt == 5)
4889 break; /* Updt failed */
4890 } while (1);
4891 }
4892 }
4893
4894 /**
4895 * s2io_get_stats - Updates the device statistics structure.
4896 * @dev : pointer to the device structure.
4897 * Description:
4898 * This function updates the device statistics structure in the s2io_nic
4899 * structure and returns a pointer to the same.
4900 * Return value:
4901 * pointer to the updated net_device_stats structure.
4902 */
4903 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4904 {
4905 struct s2io_nic *sp = netdev_priv(dev);
4906 struct mac_info *mac_control = &sp->mac_control;
4907 struct stat_block *stats = mac_control->stats_info;
4908 u64 delta;
4909
4910 /* Configure Stats for immediate updt */
4911 s2io_updt_stats(sp);
4912
4913 /* A device reset will cause the on-adapter statistics to be zero'ed.
4914 * This can be done while running by changing the MTU. To prevent the
4915 * system from having the stats zero'ed, the driver keeps a copy of the
4916 * last update to the system (which is also zero'ed on reset). This
4917 * enables the driver to accurately know the delta between the last
4918 * update and the current update.
4919 */
4920 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4921 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4922 sp->stats.rx_packets += delta;
4923 dev->stats.rx_packets += delta;
4924
4925 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4926 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4927 sp->stats.tx_packets += delta;
4928 dev->stats.tx_packets += delta;
4929
4930 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4931 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4932 sp->stats.rx_bytes += delta;
4933 dev->stats.rx_bytes += delta;
4934
4935 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4936 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4937 sp->stats.tx_bytes += delta;
4938 dev->stats.tx_bytes += delta;
4939
4940 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4941 sp->stats.rx_errors += delta;
4942 dev->stats.rx_errors += delta;
4943
4944 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4945 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4946 sp->stats.tx_errors += delta;
4947 dev->stats.tx_errors += delta;
4948
4949 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4950 sp->stats.rx_dropped += delta;
4951 dev->stats.rx_dropped += delta;
4952
4953 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4954 sp->stats.tx_dropped += delta;
4955 dev->stats.tx_dropped += delta;
4956
4957 /* The adapter MAC interprets pause frames as multicast packets, but
4958 * does not pass them up. This erroneously increases the multicast
4959 * packet count and needs to be deducted when the multicast frame count
4960 * is queried.
4961 */
4962 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4963 le32_to_cpu(stats->rmac_vld_mcst_frms);
4964 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4965 delta -= sp->stats.multicast;
4966 sp->stats.multicast += delta;
4967 dev->stats.multicast += delta;
4968
4969 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4970 le32_to_cpu(stats->rmac_usized_frms)) +
4971 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4972 sp->stats.rx_length_errors += delta;
4973 dev->stats.rx_length_errors += delta;
4974
4975 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4976 sp->stats.rx_crc_errors += delta;
4977 dev->stats.rx_crc_errors += delta;
4978
4979 return &dev->stats;
4980 }
4981
4982 /**
4983 * s2io_set_multicast - entry point for multicast address enable/disable.
4984 * @dev : pointer to the device structure
4985 * Description:
4986 * This function is a driver entry point which gets called by the kernel
4987 * whenever multicast addresses must be enabled/disabled. This also gets
4988 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4989 * determine, if multicast address must be enabled or if promiscuous mode
4990 * is to be disabled etc.
4991 * Return value:
4992 * void.
4993 */
4994
4995 static void s2io_set_multicast(struct net_device *dev)
4996 {
4997 int i, j, prev_cnt;
4998 struct netdev_hw_addr *ha;
4999 struct s2io_nic *sp = netdev_priv(dev);
5000 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5001 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
5002 0xfeffffffffffULL;
5003 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5004 void __iomem *add;
5005 struct config_param *config = &sp->config;
5006
5007 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5008 /* Enable all Multicast addresses */
5009 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5010 &bar0->rmac_addr_data0_mem);
5011 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5012 &bar0->rmac_addr_data1_mem);
5013 val64 = RMAC_ADDR_CMD_MEM_WE |
5014 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5015 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5016 writeq(val64, &bar0->rmac_addr_cmd_mem);
5017 /* Wait till command completes */
5018 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5019 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5020 S2IO_BIT_RESET);
5021
5022 sp->m_cast_flg = 1;
5023 sp->all_multi_pos = config->max_mc_addr - 1;
5024 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5025 /* Disable all Multicast addresses */
5026 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5027 &bar0->rmac_addr_data0_mem);
5028 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5029 &bar0->rmac_addr_data1_mem);
5030 val64 = RMAC_ADDR_CMD_MEM_WE |
5031 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5032 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5033 writeq(val64, &bar0->rmac_addr_cmd_mem);
5034 /* Wait till command completes */
5035 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5036 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5037 S2IO_BIT_RESET);
5038
5039 sp->m_cast_flg = 0;
5040 sp->all_multi_pos = 0;
5041 }
5042
5043 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5044 /* Put the NIC into promiscuous mode */
5045 add = &bar0->mac_cfg;
5046 val64 = readq(&bar0->mac_cfg);
5047 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5048
5049 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5050 writel((u32)val64, add);
5051 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5052 writel((u32) (val64 >> 32), (add + 4));
5053
5054 if (vlan_tag_strip != 1) {
5055 val64 = readq(&bar0->rx_pa_cfg);
5056 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5057 writeq(val64, &bar0->rx_pa_cfg);
5058 sp->vlan_strip_flag = 0;
5059 }
5060
5061 val64 = readq(&bar0->mac_cfg);
5062 sp->promisc_flg = 1;
5063 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5064 dev->name);
5065 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5066 /* Remove the NIC from promiscuous mode */
5067 add = &bar0->mac_cfg;
5068 val64 = readq(&bar0->mac_cfg);
5069 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5070
5071 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5072 writel((u32)val64, add);
5073 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5074 writel((u32) (val64 >> 32), (add + 4));
5075
5076 if (vlan_tag_strip != 0) {
5077 val64 = readq(&bar0->rx_pa_cfg);
5078 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5079 writeq(val64, &bar0->rx_pa_cfg);
5080 sp->vlan_strip_flag = 1;
5081 }
5082
5083 val64 = readq(&bar0->mac_cfg);
5084 sp->promisc_flg = 0;
5085 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5086 }
5087
5088 /* Update individual M_CAST address list */
5089 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5090 if (netdev_mc_count(dev) >
5091 (config->max_mc_addr - config->max_mac_addr)) {
5092 DBG_PRINT(ERR_DBG,
5093 "%s: No more Rx filters can be added - "
5094 "please enable ALL_MULTI instead\n",
5095 dev->name);
5096 return;
5097 }
5098
5099 prev_cnt = sp->mc_addr_count;
5100 sp->mc_addr_count = netdev_mc_count(dev);
5101
5102 /* Clear out the previous list of Mc in the H/W. */
5103 for (i = 0; i < prev_cnt; i++) {
5104 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5105 &bar0->rmac_addr_data0_mem);
5106 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5107 &bar0->rmac_addr_data1_mem);
5108 val64 = RMAC_ADDR_CMD_MEM_WE |
5109 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5110 RMAC_ADDR_CMD_MEM_OFFSET
5111 (config->mc_start_offset + i);
5112 writeq(val64, &bar0->rmac_addr_cmd_mem);
5113
5114 /* Wait for command completes */
5115 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5116 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5117 S2IO_BIT_RESET)) {
5118 DBG_PRINT(ERR_DBG,
5119 "%s: Adding Multicasts failed\n",
5120 dev->name);
5121 return;
5122 }
5123 }
5124
5125 /* Create the new Rx filter list and update the same in H/W. */
5126 i = 0;
5127 netdev_for_each_mc_addr(ha, dev) {
5128 memcpy(sp->usr_addrs[i].addr, ha->addr,
5129 ETH_ALEN);
5130 mac_addr = 0;
5131 for (j = 0; j < ETH_ALEN; j++) {
5132 mac_addr |= ha->addr[j];
5133 mac_addr <<= 8;
5134 }
5135 mac_addr >>= 8;
5136 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5137 &bar0->rmac_addr_data0_mem);
5138 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5139 &bar0->rmac_addr_data1_mem);
5140 val64 = RMAC_ADDR_CMD_MEM_WE |
5141 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5142 RMAC_ADDR_CMD_MEM_OFFSET
5143 (i + config->mc_start_offset);
5144 writeq(val64, &bar0->rmac_addr_cmd_mem);
5145
5146 /* Wait for command completes */
5147 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5148 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5149 S2IO_BIT_RESET)) {
5150 DBG_PRINT(ERR_DBG,
5151 "%s: Adding Multicasts failed\n",
5152 dev->name);
5153 return;
5154 }
5155 i++;
5156 }
5157 }
5158 }
5159
5160 /* read from CAM unicast & multicast addresses and store it in
5161 * def_mac_addr structure
5162 */
5163 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5164 {
5165 int offset;
5166 u64 mac_addr = 0x0;
5167 struct config_param *config = &sp->config;
5168
5169 /* store unicast & multicast mac addresses */
5170 for (offset = 0; offset < config->max_mc_addr; offset++) {
5171 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5172 /* if read fails disable the entry */
5173 if (mac_addr == FAILURE)
5174 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5175 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5176 }
5177 }
5178
5179 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5180 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5181 {
5182 int offset;
5183 struct config_param *config = &sp->config;
5184 /* restore unicast mac address */
5185 for (offset = 0; offset < config->max_mac_addr; offset++)
5186 do_s2io_prog_unicast(sp->dev,
5187 sp->def_mac_addr[offset].mac_addr);
5188
5189 /* restore multicast mac address */
5190 for (offset = config->mc_start_offset;
5191 offset < config->max_mc_addr; offset++)
5192 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5193 }
5194
5195 /* add a multicast MAC address to CAM */
5196 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5197 {
5198 int i;
5199 u64 mac_addr = 0;
5200 struct config_param *config = &sp->config;
5201
5202 for (i = 0; i < ETH_ALEN; i++) {
5203 mac_addr <<= 8;
5204 mac_addr |= addr[i];
5205 }
5206 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5207 return SUCCESS;
5208
5209 /* check if the multicast mac already preset in CAM */
5210 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5211 u64 tmp64;
5212 tmp64 = do_s2io_read_unicast_mc(sp, i);
5213 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5214 break;
5215
5216 if (tmp64 == mac_addr)
5217 return SUCCESS;
5218 }
5219 if (i == config->max_mc_addr) {
5220 DBG_PRINT(ERR_DBG,
5221 "CAM full no space left for multicast MAC\n");
5222 return FAILURE;
5223 }
5224 /* Update the internal structure with this new mac address */
5225 do_s2io_copy_mac_addr(sp, i, mac_addr);
5226
5227 return do_s2io_add_mac(sp, mac_addr, i);
5228 }
5229
5230 /* add MAC address to CAM */
5231 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5232 {
5233 u64 val64;
5234 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5235
5236 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5237 &bar0->rmac_addr_data0_mem);
5238
5239 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5240 RMAC_ADDR_CMD_MEM_OFFSET(off);
5241 writeq(val64, &bar0->rmac_addr_cmd_mem);
5242
5243 /* Wait till command completes */
5244 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5245 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5246 S2IO_BIT_RESET)) {
5247 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5248 return FAILURE;
5249 }
5250 return SUCCESS;
5251 }
5252 /* deletes a specified unicast/multicast mac entry from CAM */
5253 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5254 {
5255 int offset;
5256 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5257 struct config_param *config = &sp->config;
5258
5259 for (offset = 1;
5260 offset < config->max_mc_addr; offset++) {
5261 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5262 if (tmp64 == addr) {
5263 /* disable the entry by writing 0xffffffffffffULL */
5264 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5265 return FAILURE;
5266 /* store the new mac list from CAM */
5267 do_s2io_store_unicast_mc(sp);
5268 return SUCCESS;
5269 }
5270 }
5271 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5272 (unsigned long long)addr);
5273 return FAILURE;
5274 }
5275
5276 /* read mac entries from CAM */
5277 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5278 {
5279 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5280 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5281
5282 /* read mac addr */
5283 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5284 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5285 writeq(val64, &bar0->rmac_addr_cmd_mem);
5286
5287 /* Wait till command completes */
5288 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5289 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5290 S2IO_BIT_RESET)) {
5291 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5292 return FAILURE;
5293 }
5294 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5295
5296 return tmp64 >> 16;
5297 }
5298
5299 /**
5300 * s2io_set_mac_addr driver entry point
5301 */
5302
5303 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5304 {
5305 struct sockaddr *addr = p;
5306
5307 if (!is_valid_ether_addr(addr->sa_data))
5308 return -EINVAL;
5309
5310 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5311
5312 /* store the MAC address in CAM */
5313 return do_s2io_prog_unicast(dev, dev->dev_addr);
5314 }
5315 /**
5316 * do_s2io_prog_unicast - Programs the Xframe mac address
5317 * @dev : pointer to the device structure.
5318 * @addr: a uchar pointer to the new mac address which is to be set.
5319 * Description : This procedure will program the Xframe to receive
5320 * frames with new Mac Address
5321 * Return value: SUCCESS on success and an appropriate (-)ve integer
5322 * as defined in errno.h file on failure.
5323 */
5324
5325 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5326 {
5327 struct s2io_nic *sp = netdev_priv(dev);
5328 register u64 mac_addr = 0, perm_addr = 0;
5329 int i;
5330 u64 tmp64;
5331 struct config_param *config = &sp->config;
5332
5333 /*
5334 * Set the new MAC address as the new unicast filter and reflect this
5335 * change on the device address registered with the OS. It will be
5336 * at offset 0.
5337 */
5338 for (i = 0; i < ETH_ALEN; i++) {
5339 mac_addr <<= 8;
5340 mac_addr |= addr[i];
5341 perm_addr <<= 8;
5342 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5343 }
5344
5345 /* check if the dev_addr is different than perm_addr */
5346 if (mac_addr == perm_addr)
5347 return SUCCESS;
5348
5349 /* check if the mac already preset in CAM */
5350 for (i = 1; i < config->max_mac_addr; i++) {
5351 tmp64 = do_s2io_read_unicast_mc(sp, i);
5352 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5353 break;
5354
5355 if (tmp64 == mac_addr) {
5356 DBG_PRINT(INFO_DBG,
5357 "MAC addr:0x%llx already present in CAM\n",
5358 (unsigned long long)mac_addr);
5359 return SUCCESS;
5360 }
5361 }
5362 if (i == config->max_mac_addr) {
5363 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5364 return FAILURE;
5365 }
5366 /* Update the internal structure with this new mac address */
5367 do_s2io_copy_mac_addr(sp, i, mac_addr);
5368
5369 return do_s2io_add_mac(sp, mac_addr, i);
5370 }
5371
5372 /**
5373 * s2io_ethtool_sset - Sets different link parameters.
5374 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5375 * @info: pointer to the structure with parameters given by ethtool to set
5376 * link information.
5377 * Description:
5378 * The function sets different link parameters provided by the user onto
5379 * the NIC.
5380 * Return value:
5381 * 0 on success.
5382 */
5383
5384 static int s2io_ethtool_sset(struct net_device *dev,
5385 struct ethtool_cmd *info)
5386 {
5387 struct s2io_nic *sp = netdev_priv(dev);
5388 if ((info->autoneg == AUTONEG_ENABLE) ||
5389 (info->speed != SPEED_10000) ||
5390 (info->duplex != DUPLEX_FULL))
5391 return -EINVAL;
5392 else {
5393 s2io_close(sp->dev);
5394 s2io_open(sp->dev);
5395 }
5396
5397 return 0;
5398 }
5399
5400 /**
5401 * s2io_ethtol_gset - Return link specific information.
5402 * @sp : private member of the device structure, pointer to the
5403 * s2io_nic structure.
5404 * @info : pointer to the structure with parameters given by ethtool
5405 * to return link information.
5406 * Description:
5407 * Returns link specific information like speed, duplex etc.. to ethtool.
5408 * Return value :
5409 * return 0 on success.
5410 */
5411
5412 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5413 {
5414 struct s2io_nic *sp = netdev_priv(dev);
5415 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5416 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5417 info->port = PORT_FIBRE;
5418
5419 /* info->transceiver */
5420 info->transceiver = XCVR_EXTERNAL;
5421
5422 if (netif_carrier_ok(sp->dev)) {
5423 info->speed = 10000;
5424 info->duplex = DUPLEX_FULL;
5425 } else {
5426 info->speed = -1;
5427 info->duplex = -1;
5428 }
5429
5430 info->autoneg = AUTONEG_DISABLE;
5431 return 0;
5432 }
5433
5434 /**
5435 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5436 * @sp : private member of the device structure, which is a pointer to the
5437 * s2io_nic structure.
5438 * @info : pointer to the structure with parameters given by ethtool to
5439 * return driver information.
5440 * Description:
5441 * Returns driver specefic information like name, version etc.. to ethtool.
5442 * Return value:
5443 * void
5444 */
5445
5446 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5447 struct ethtool_drvinfo *info)
5448 {
5449 struct s2io_nic *sp = netdev_priv(dev);
5450
5451 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5452 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5453 strncpy(info->fw_version, "", sizeof(info->fw_version));
5454 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5455 info->regdump_len = XENA_REG_SPACE;
5456 info->eedump_len = XENA_EEPROM_SPACE;
5457 }
5458
5459 /**
5460 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5461 * @sp: private member of the device structure, which is a pointer to the
5462 * s2io_nic structure.
5463 * @regs : pointer to the structure with parameters given by ethtool for
5464 * dumping the registers.
5465 * @reg_space: The input argumnet into which all the registers are dumped.
5466 * Description:
5467 * Dumps the entire register space of xFrame NIC into the user given
5468 * buffer area.
5469 * Return value :
5470 * void .
5471 */
5472
5473 static void s2io_ethtool_gregs(struct net_device *dev,
5474 struct ethtool_regs *regs, void *space)
5475 {
5476 int i;
5477 u64 reg;
5478 u8 *reg_space = (u8 *)space;
5479 struct s2io_nic *sp = netdev_priv(dev);
5480
5481 regs->len = XENA_REG_SPACE;
5482 regs->version = sp->pdev->subsystem_device;
5483
5484 for (i = 0; i < regs->len; i += 8) {
5485 reg = readq(sp->bar0 + i);
5486 memcpy((reg_space + i), &reg, 8);
5487 }
5488 }
5489
5490 /**
5491 * s2io_phy_id - timer function that alternates adapter LED.
5492 * @data : address of the private member of the device structure, which
5493 * is a pointer to the s2io_nic structure, provided as an u32.
5494 * Description: This is actually the timer function that alternates the
5495 * adapter LED bit of the adapter control bit to set/reset every time on
5496 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5497 * once every second.
5498 */
5499 static void s2io_phy_id(unsigned long data)
5500 {
5501 struct s2io_nic *sp = (struct s2io_nic *)data;
5502 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5503 u64 val64 = 0;
5504 u16 subid;
5505
5506 subid = sp->pdev->subsystem_device;
5507 if ((sp->device_type == XFRAME_II_DEVICE) ||
5508 ((subid & 0xFF) >= 0x07)) {
5509 val64 = readq(&bar0->gpio_control);
5510 val64 ^= GPIO_CTRL_GPIO_0;
5511 writeq(val64, &bar0->gpio_control);
5512 } else {
5513 val64 = readq(&bar0->adapter_control);
5514 val64 ^= ADAPTER_LED_ON;
5515 writeq(val64, &bar0->adapter_control);
5516 }
5517
5518 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5519 }
5520
5521 /**
5522 * s2io_ethtool_idnic - To physically identify the nic on the system.
5523 * @sp : private member of the device structure, which is a pointer to the
5524 * s2io_nic structure.
5525 * @id : pointer to the structure with identification parameters given by
5526 * ethtool.
5527 * Description: Used to physically identify the NIC on the system.
5528 * The Link LED will blink for a time specified by the user for
5529 * identification.
5530 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5531 * identification is possible only if it's link is up.
5532 * Return value:
5533 * int , returns 0 on success
5534 */
5535
5536 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5537 {
5538 u64 val64 = 0, last_gpio_ctrl_val;
5539 struct s2io_nic *sp = netdev_priv(dev);
5540 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5541 u16 subid;
5542
5543 subid = sp->pdev->subsystem_device;
5544 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5545 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5546 val64 = readq(&bar0->adapter_control);
5547 if (!(val64 & ADAPTER_CNTL_EN)) {
5548 pr_err("Adapter Link down, cannot blink LED\n");
5549 return -EFAULT;
5550 }
5551 }
5552 if (sp->id_timer.function == NULL) {
5553 init_timer(&sp->id_timer);
5554 sp->id_timer.function = s2io_phy_id;
5555 sp->id_timer.data = (unsigned long)sp;
5556 }
5557 mod_timer(&sp->id_timer, jiffies);
5558 if (data)
5559 msleep_interruptible(data * HZ);
5560 else
5561 msleep_interruptible(MAX_FLICKER_TIME);
5562 del_timer_sync(&sp->id_timer);
5563
5564 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5565 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5566 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5567 }
5568
5569 return 0;
5570 }
5571
5572 static void s2io_ethtool_gringparam(struct net_device *dev,
5573 struct ethtool_ringparam *ering)
5574 {
5575 struct s2io_nic *sp = netdev_priv(dev);
5576 int i, tx_desc_count = 0, rx_desc_count = 0;
5577
5578 if (sp->rxd_mode == RXD_MODE_1)
5579 ering->rx_max_pending = MAX_RX_DESC_1;
5580 else if (sp->rxd_mode == RXD_MODE_3B)
5581 ering->rx_max_pending = MAX_RX_DESC_2;
5582
5583 ering->tx_max_pending = MAX_TX_DESC;
5584 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5585 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5586
5587 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5588 ering->tx_pending = tx_desc_count;
5589 rx_desc_count = 0;
5590 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5591 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5592
5593 ering->rx_pending = rx_desc_count;
5594
5595 ering->rx_mini_max_pending = 0;
5596 ering->rx_mini_pending = 0;
5597 if (sp->rxd_mode == RXD_MODE_1)
5598 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5599 else if (sp->rxd_mode == RXD_MODE_3B)
5600 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5601 ering->rx_jumbo_pending = rx_desc_count;
5602 }
5603
5604 /**
5605 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5606 * @sp : private member of the device structure, which is a pointer to the
5607 * s2io_nic structure.
5608 * @ep : pointer to the structure with pause parameters given by ethtool.
5609 * Description:
5610 * Returns the Pause frame generation and reception capability of the NIC.
5611 * Return value:
5612 * void
5613 */
5614 static void s2io_ethtool_getpause_data(struct net_device *dev,
5615 struct ethtool_pauseparam *ep)
5616 {
5617 u64 val64;
5618 struct s2io_nic *sp = netdev_priv(dev);
5619 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5620
5621 val64 = readq(&bar0->rmac_pause_cfg);
5622 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5623 ep->tx_pause = true;
5624 if (val64 & RMAC_PAUSE_RX_ENABLE)
5625 ep->rx_pause = true;
5626 ep->autoneg = false;
5627 }
5628
5629 /**
5630 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5631 * @sp : private member of the device structure, which is a pointer to the
5632 * s2io_nic structure.
5633 * @ep : pointer to the structure with pause parameters given by ethtool.
5634 * Description:
5635 * It can be used to set or reset Pause frame generation or reception
5636 * support of the NIC.
5637 * Return value:
5638 * int, returns 0 on Success
5639 */
5640
5641 static int s2io_ethtool_setpause_data(struct net_device *dev,
5642 struct ethtool_pauseparam *ep)
5643 {
5644 u64 val64;
5645 struct s2io_nic *sp = netdev_priv(dev);
5646 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5647
5648 val64 = readq(&bar0->rmac_pause_cfg);
5649 if (ep->tx_pause)
5650 val64 |= RMAC_PAUSE_GEN_ENABLE;
5651 else
5652 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5653 if (ep->rx_pause)
5654 val64 |= RMAC_PAUSE_RX_ENABLE;
5655 else
5656 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5657 writeq(val64, &bar0->rmac_pause_cfg);
5658 return 0;
5659 }
5660
5661 /**
5662 * read_eeprom - reads 4 bytes of data from user given offset.
5663 * @sp : private member of the device structure, which is a pointer to the
5664 * s2io_nic structure.
5665 * @off : offset at which the data must be written
5666 * @data : Its an output parameter where the data read at the given
5667 * offset is stored.
5668 * Description:
5669 * Will read 4 bytes of data from the user given offset and return the
5670 * read data.
5671 * NOTE: Will allow to read only part of the EEPROM visible through the
5672 * I2C bus.
5673 * Return value:
5674 * -1 on failure and 0 on success.
5675 */
5676
5677 #define S2IO_DEV_ID 5
5678 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5679 {
5680 int ret = -1;
5681 u32 exit_cnt = 0;
5682 u64 val64;
5683 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5684
5685 if (sp->device_type == XFRAME_I_DEVICE) {
5686 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5687 I2C_CONTROL_ADDR(off) |
5688 I2C_CONTROL_BYTE_CNT(0x3) |
5689 I2C_CONTROL_READ |
5690 I2C_CONTROL_CNTL_START;
5691 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5692
5693 while (exit_cnt < 5) {
5694 val64 = readq(&bar0->i2c_control);
5695 if (I2C_CONTROL_CNTL_END(val64)) {
5696 *data = I2C_CONTROL_GET_DATA(val64);
5697 ret = 0;
5698 break;
5699 }
5700 msleep(50);
5701 exit_cnt++;
5702 }
5703 }
5704
5705 if (sp->device_type == XFRAME_II_DEVICE) {
5706 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5707 SPI_CONTROL_BYTECNT(0x3) |
5708 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5709 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5710 val64 |= SPI_CONTROL_REQ;
5711 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5712 while (exit_cnt < 5) {
5713 val64 = readq(&bar0->spi_control);
5714 if (val64 & SPI_CONTROL_NACK) {
5715 ret = 1;
5716 break;
5717 } else if (val64 & SPI_CONTROL_DONE) {
5718 *data = readq(&bar0->spi_data);
5719 *data &= 0xffffff;
5720 ret = 0;
5721 break;
5722 }
5723 msleep(50);
5724 exit_cnt++;
5725 }
5726 }
5727 return ret;
5728 }
5729
5730 /**
5731 * write_eeprom - actually writes the relevant part of the data value.
5732 * @sp : private member of the device structure, which is a pointer to the
5733 * s2io_nic structure.
5734 * @off : offset at which the data must be written
5735 * @data : The data that is to be written
5736 * @cnt : Number of bytes of the data that are actually to be written into
5737 * the Eeprom. (max of 3)
5738 * Description:
5739 * Actually writes the relevant part of the data value into the Eeprom
5740 * through the I2C bus.
5741 * Return value:
5742 * 0 on success, -1 on failure.
5743 */
5744
5745 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5746 {
5747 int exit_cnt = 0, ret = -1;
5748 u64 val64;
5749 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5750
5751 if (sp->device_type == XFRAME_I_DEVICE) {
5752 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5753 I2C_CONTROL_ADDR(off) |
5754 I2C_CONTROL_BYTE_CNT(cnt) |
5755 I2C_CONTROL_SET_DATA((u32)data) |
5756 I2C_CONTROL_CNTL_START;
5757 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5758
5759 while (exit_cnt < 5) {
5760 val64 = readq(&bar0->i2c_control);
5761 if (I2C_CONTROL_CNTL_END(val64)) {
5762 if (!(val64 & I2C_CONTROL_NACK))
5763 ret = 0;
5764 break;
5765 }
5766 msleep(50);
5767 exit_cnt++;
5768 }
5769 }
5770
5771 if (sp->device_type == XFRAME_II_DEVICE) {
5772 int write_cnt = (cnt == 8) ? 0 : cnt;
5773 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5774
5775 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5776 SPI_CONTROL_BYTECNT(write_cnt) |
5777 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5778 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5779 val64 |= SPI_CONTROL_REQ;
5780 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5781 while (exit_cnt < 5) {
5782 val64 = readq(&bar0->spi_control);
5783 if (val64 & SPI_CONTROL_NACK) {
5784 ret = 1;
5785 break;
5786 } else if (val64 & SPI_CONTROL_DONE) {
5787 ret = 0;
5788 break;
5789 }
5790 msleep(50);
5791 exit_cnt++;
5792 }
5793 }
5794 return ret;
5795 }
5796 static void s2io_vpd_read(struct s2io_nic *nic)
5797 {
5798 u8 *vpd_data;
5799 u8 data;
5800 int i = 0, cnt, fail = 0;
5801 int vpd_addr = 0x80;
5802 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5803
5804 if (nic->device_type == XFRAME_II_DEVICE) {
5805 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5806 vpd_addr = 0x80;
5807 } else {
5808 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5809 vpd_addr = 0x50;
5810 }
5811 strcpy(nic->serial_num, "NOT AVAILABLE");
5812
5813 vpd_data = kmalloc(256, GFP_KERNEL);
5814 if (!vpd_data) {
5815 swstats->mem_alloc_fail_cnt++;
5816 return;
5817 }
5818 swstats->mem_allocated += 256;
5819
5820 for (i = 0; i < 256; i += 4) {
5821 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5822 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5823 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5824 for (cnt = 0; cnt < 5; cnt++) {
5825 msleep(2);
5826 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5827 if (data == 0x80)
5828 break;
5829 }
5830 if (cnt >= 5) {
5831 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5832 fail = 1;
5833 break;
5834 }
5835 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5836 (u32 *)&vpd_data[i]);
5837 }
5838
5839 if (!fail) {
5840 /* read serial number of adapter */
5841 for (cnt = 0; cnt < 256; cnt++) {
5842 if ((vpd_data[cnt] == 'S') &&
5843 (vpd_data[cnt+1] == 'N') &&
5844 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5845 memset(nic->serial_num, 0, VPD_STRING_LEN);
5846 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5847 vpd_data[cnt+2]);
5848 break;
5849 }
5850 }
5851 }
5852
5853 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
5854 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5855 kfree(vpd_data);
5856 swstats->mem_freed += 256;
5857 }
5858
5859 /**
5860 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5861 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5862 * @eeprom : pointer to the user level structure provided by ethtool,
5863 * containing all relevant information.
5864 * @data_buf : user defined value to be written into Eeprom.
5865 * Description: Reads the values stored in the Eeprom at given offset
5866 * for a given length. Stores these values int the input argument data
5867 * buffer 'data_buf' and returns these to the caller (ethtool.)
5868 * Return value:
5869 * int 0 on success
5870 */
5871
5872 static int s2io_ethtool_geeprom(struct net_device *dev,
5873 struct ethtool_eeprom *eeprom, u8 * data_buf)
5874 {
5875 u32 i, valid;
5876 u64 data;
5877 struct s2io_nic *sp = netdev_priv(dev);
5878
5879 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5880
5881 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5882 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5883
5884 for (i = 0; i < eeprom->len; i += 4) {
5885 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5886 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5887 return -EFAULT;
5888 }
5889 valid = INV(data);
5890 memcpy((data_buf + i), &valid, 4);
5891 }
5892 return 0;
5893 }
5894
5895 /**
5896 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5897 * @sp : private member of the device structure, which is a pointer to the
5898 * s2io_nic structure.
5899 * @eeprom : pointer to the user level structure provided by ethtool,
5900 * containing all relevant information.
5901 * @data_buf ; user defined value to be written into Eeprom.
5902 * Description:
5903 * Tries to write the user provided value in the Eeprom, at the offset
5904 * given by the user.
5905 * Return value:
5906 * 0 on success, -EFAULT on failure.
5907 */
5908
5909 static int s2io_ethtool_seeprom(struct net_device *dev,
5910 struct ethtool_eeprom *eeprom,
5911 u8 *data_buf)
5912 {
5913 int len = eeprom->len, cnt = 0;
5914 u64 valid = 0, data;
5915 struct s2io_nic *sp = netdev_priv(dev);
5916
5917 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5918 DBG_PRINT(ERR_DBG,
5919 "ETHTOOL_WRITE_EEPROM Err: "
5920 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5921 (sp->pdev->vendor | (sp->pdev->device << 16)),
5922 eeprom->magic);
5923 return -EFAULT;
5924 }
5925
5926 while (len) {
5927 data = (u32)data_buf[cnt] & 0x000000FF;
5928 if (data)
5929 valid = (u32)(data << 24);
5930 else
5931 valid = data;
5932
5933 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5934 DBG_PRINT(ERR_DBG,
5935 "ETHTOOL_WRITE_EEPROM Err: "
5936 "Cannot write into the specified offset\n");
5937 return -EFAULT;
5938 }
5939 cnt++;
5940 len--;
5941 }
5942
5943 return 0;
5944 }
5945
5946 /**
5947 * s2io_register_test - reads and writes into all clock domains.
5948 * @sp : private member of the device structure, which is a pointer to the
5949 * s2io_nic structure.
5950 * @data : variable that returns the result of each of the test conducted b
5951 * by the driver.
5952 * Description:
5953 * Read and write into all clock domains. The NIC has 3 clock domains,
5954 * see that registers in all the three regions are accessible.
5955 * Return value:
5956 * 0 on success.
5957 */
5958
5959 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5960 {
5961 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5962 u64 val64 = 0, exp_val;
5963 int fail = 0;
5964
5965 val64 = readq(&bar0->pif_rd_swapper_fb);
5966 if (val64 != 0x123456789abcdefULL) {
5967 fail = 1;
5968 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5969 }
5970
5971 val64 = readq(&bar0->rmac_pause_cfg);
5972 if (val64 != 0xc000ffff00000000ULL) {
5973 fail = 1;
5974 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5975 }
5976
5977 val64 = readq(&bar0->rx_queue_cfg);
5978 if (sp->device_type == XFRAME_II_DEVICE)
5979 exp_val = 0x0404040404040404ULL;
5980 else
5981 exp_val = 0x0808080808080808ULL;
5982 if (val64 != exp_val) {
5983 fail = 1;
5984 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5985 }
5986
5987 val64 = readq(&bar0->xgxs_efifo_cfg);
5988 if (val64 != 0x000000001923141EULL) {
5989 fail = 1;
5990 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5991 }
5992
5993 val64 = 0x5A5A5A5A5A5A5A5AULL;
5994 writeq(val64, &bar0->xmsi_data);
5995 val64 = readq(&bar0->xmsi_data);
5996 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5997 fail = 1;
5998 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5999 }
6000
6001 val64 = 0xA5A5A5A5A5A5A5A5ULL;
6002 writeq(val64, &bar0->xmsi_data);
6003 val64 = readq(&bar0->xmsi_data);
6004 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6005 fail = 1;
6006 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6007 }
6008
6009 *data = fail;
6010 return fail;
6011 }
6012
6013 /**
6014 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6015 * @sp : private member of the device structure, which is a pointer to the
6016 * s2io_nic structure.
6017 * @data:variable that returns the result of each of the test conducted by
6018 * the driver.
6019 * Description:
6020 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6021 * register.
6022 * Return value:
6023 * 0 on success.
6024 */
6025
6026 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6027 {
6028 int fail = 0;
6029 u64 ret_data, org_4F0, org_7F0;
6030 u8 saved_4F0 = 0, saved_7F0 = 0;
6031 struct net_device *dev = sp->dev;
6032
6033 /* Test Write Error at offset 0 */
6034 /* Note that SPI interface allows write access to all areas
6035 * of EEPROM. Hence doing all negative testing only for Xframe I.
6036 */
6037 if (sp->device_type == XFRAME_I_DEVICE)
6038 if (!write_eeprom(sp, 0, 0, 3))
6039 fail = 1;
6040
6041 /* Save current values at offsets 0x4F0 and 0x7F0 */
6042 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6043 saved_4F0 = 1;
6044 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6045 saved_7F0 = 1;
6046
6047 /* Test Write at offset 4f0 */
6048 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6049 fail = 1;
6050 if (read_eeprom(sp, 0x4F0, &ret_data))
6051 fail = 1;
6052
6053 if (ret_data != 0x012345) {
6054 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6055 "Data written %llx Data read %llx\n",
6056 dev->name, (unsigned long long)0x12345,
6057 (unsigned long long)ret_data);
6058 fail = 1;
6059 }
6060
6061 /* Reset the EEPROM data go FFFF */
6062 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6063
6064 /* Test Write Request Error at offset 0x7c */
6065 if (sp->device_type == XFRAME_I_DEVICE)
6066 if (!write_eeprom(sp, 0x07C, 0, 3))
6067 fail = 1;
6068
6069 /* Test Write Request at offset 0x7f0 */
6070 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6071 fail = 1;
6072 if (read_eeprom(sp, 0x7F0, &ret_data))
6073 fail = 1;
6074
6075 if (ret_data != 0x012345) {
6076 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6077 "Data written %llx Data read %llx\n",
6078 dev->name, (unsigned long long)0x12345,
6079 (unsigned long long)ret_data);
6080 fail = 1;
6081 }
6082
6083 /* Reset the EEPROM data go FFFF */
6084 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6085
6086 if (sp->device_type == XFRAME_I_DEVICE) {
6087 /* Test Write Error at offset 0x80 */
6088 if (!write_eeprom(sp, 0x080, 0, 3))
6089 fail = 1;
6090
6091 /* Test Write Error at offset 0xfc */
6092 if (!write_eeprom(sp, 0x0FC, 0, 3))
6093 fail = 1;
6094
6095 /* Test Write Error at offset 0x100 */
6096 if (!write_eeprom(sp, 0x100, 0, 3))
6097 fail = 1;
6098
6099 /* Test Write Error at offset 4ec */
6100 if (!write_eeprom(sp, 0x4EC, 0, 3))
6101 fail = 1;
6102 }
6103
6104 /* Restore values at offsets 0x4F0 and 0x7F0 */
6105 if (saved_4F0)
6106 write_eeprom(sp, 0x4F0, org_4F0, 3);
6107 if (saved_7F0)
6108 write_eeprom(sp, 0x7F0, org_7F0, 3);
6109
6110 *data = fail;
6111 return fail;
6112 }
6113
6114 /**
6115 * s2io_bist_test - invokes the MemBist test of the card .
6116 * @sp : private member of the device structure, which is a pointer to the
6117 * s2io_nic structure.
6118 * @data:variable that returns the result of each of the test conducted by
6119 * the driver.
6120 * Description:
6121 * This invokes the MemBist test of the card. We give around
6122 * 2 secs time for the Test to complete. If it's still not complete
6123 * within this peiod, we consider that the test failed.
6124 * Return value:
6125 * 0 on success and -1 on failure.
6126 */
6127
6128 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6129 {
6130 u8 bist = 0;
6131 int cnt = 0, ret = -1;
6132
6133 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6134 bist |= PCI_BIST_START;
6135 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6136
6137 while (cnt < 20) {
6138 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6139 if (!(bist & PCI_BIST_START)) {
6140 *data = (bist & PCI_BIST_CODE_MASK);
6141 ret = 0;
6142 break;
6143 }
6144 msleep(100);
6145 cnt++;
6146 }
6147
6148 return ret;
6149 }
6150
6151 /**
6152 * s2io-link_test - verifies the link state of the nic
6153 * @sp ; private member of the device structure, which is a pointer to the
6154 * s2io_nic structure.
6155 * @data: variable that returns the result of each of the test conducted by
6156 * the driver.
6157 * Description:
6158 * The function verifies the link state of the NIC and updates the input
6159 * argument 'data' appropriately.
6160 * Return value:
6161 * 0 on success.
6162 */
6163
6164 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6165 {
6166 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6167 u64 val64;
6168
6169 val64 = readq(&bar0->adapter_status);
6170 if (!(LINK_IS_UP(val64)))
6171 *data = 1;
6172 else
6173 *data = 0;
6174
6175 return *data;
6176 }
6177
6178 /**
6179 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6180 * @sp - private member of the device structure, which is a pointer to the
6181 * s2io_nic structure.
6182 * @data - variable that returns the result of each of the test
6183 * conducted by the driver.
6184 * Description:
6185 * This is one of the offline test that tests the read and write
6186 * access to the RldRam chip on the NIC.
6187 * Return value:
6188 * 0 on success.
6189 */
6190
6191 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6192 {
6193 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6194 u64 val64;
6195 int cnt, iteration = 0, test_fail = 0;
6196
6197 val64 = readq(&bar0->adapter_control);
6198 val64 &= ~ADAPTER_ECC_EN;
6199 writeq(val64, &bar0->adapter_control);
6200
6201 val64 = readq(&bar0->mc_rldram_test_ctrl);
6202 val64 |= MC_RLDRAM_TEST_MODE;
6203 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6204
6205 val64 = readq(&bar0->mc_rldram_mrs);
6206 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6207 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6208
6209 val64 |= MC_RLDRAM_MRS_ENABLE;
6210 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6211
6212 while (iteration < 2) {
6213 val64 = 0x55555555aaaa0000ULL;
6214 if (iteration == 1)
6215 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6216 writeq(val64, &bar0->mc_rldram_test_d0);
6217
6218 val64 = 0xaaaa5a5555550000ULL;
6219 if (iteration == 1)
6220 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6221 writeq(val64, &bar0->mc_rldram_test_d1);
6222
6223 val64 = 0x55aaaaaaaa5a0000ULL;
6224 if (iteration == 1)
6225 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6226 writeq(val64, &bar0->mc_rldram_test_d2);
6227
6228 val64 = (u64) (0x0000003ffffe0100ULL);
6229 writeq(val64, &bar0->mc_rldram_test_add);
6230
6231 val64 = MC_RLDRAM_TEST_MODE |
6232 MC_RLDRAM_TEST_WRITE |
6233 MC_RLDRAM_TEST_GO;
6234 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6235
6236 for (cnt = 0; cnt < 5; cnt++) {
6237 val64 = readq(&bar0->mc_rldram_test_ctrl);
6238 if (val64 & MC_RLDRAM_TEST_DONE)
6239 break;
6240 msleep(200);
6241 }
6242
6243 if (cnt == 5)
6244 break;
6245
6246 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6247 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6248
6249 for (cnt = 0; cnt < 5; cnt++) {
6250 val64 = readq(&bar0->mc_rldram_test_ctrl);
6251 if (val64 & MC_RLDRAM_TEST_DONE)
6252 break;
6253 msleep(500);
6254 }
6255
6256 if (cnt == 5)
6257 break;
6258
6259 val64 = readq(&bar0->mc_rldram_test_ctrl);
6260 if (!(val64 & MC_RLDRAM_TEST_PASS))
6261 test_fail = 1;
6262
6263 iteration++;
6264 }
6265
6266 *data = test_fail;
6267
6268 /* Bring the adapter out of test mode */
6269 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6270
6271 return test_fail;
6272 }
6273
6274 /**
6275 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6276 * @sp : private member of the device structure, which is a pointer to the
6277 * s2io_nic structure.
6278 * @ethtest : pointer to a ethtool command specific structure that will be
6279 * returned to the user.
6280 * @data : variable that returns the result of each of the test
6281 * conducted by the driver.
6282 * Description:
6283 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6284 * the health of the card.
6285 * Return value:
6286 * void
6287 */
6288
6289 static void s2io_ethtool_test(struct net_device *dev,
6290 struct ethtool_test *ethtest,
6291 uint64_t *data)
6292 {
6293 struct s2io_nic *sp = netdev_priv(dev);
6294 int orig_state = netif_running(sp->dev);
6295
6296 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6297 /* Offline Tests. */
6298 if (orig_state)
6299 s2io_close(sp->dev);
6300
6301 if (s2io_register_test(sp, &data[0]))
6302 ethtest->flags |= ETH_TEST_FL_FAILED;
6303
6304 s2io_reset(sp);
6305
6306 if (s2io_rldram_test(sp, &data[3]))
6307 ethtest->flags |= ETH_TEST_FL_FAILED;
6308
6309 s2io_reset(sp);
6310
6311 if (s2io_eeprom_test(sp, &data[1]))
6312 ethtest->flags |= ETH_TEST_FL_FAILED;
6313
6314 if (s2io_bist_test(sp, &data[4]))
6315 ethtest->flags |= ETH_TEST_FL_FAILED;
6316
6317 if (orig_state)
6318 s2io_open(sp->dev);
6319
6320 data[2] = 0;
6321 } else {
6322 /* Online Tests. */
6323 if (!orig_state) {
6324 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6325 dev->name);
6326 data[0] = -1;
6327 data[1] = -1;
6328 data[2] = -1;
6329 data[3] = -1;
6330 data[4] = -1;
6331 }
6332
6333 if (s2io_link_test(sp, &data[2]))
6334 ethtest->flags |= ETH_TEST_FL_FAILED;
6335
6336 data[0] = 0;
6337 data[1] = 0;
6338 data[3] = 0;
6339 data[4] = 0;
6340 }
6341 }
6342
6343 static void s2io_get_ethtool_stats(struct net_device *dev,
6344 struct ethtool_stats *estats,
6345 u64 *tmp_stats)
6346 {
6347 int i = 0, k;
6348 struct s2io_nic *sp = netdev_priv(dev);
6349 struct stat_block *stats = sp->mac_control.stats_info;
6350 struct swStat *swstats = &stats->sw_stat;
6351 struct xpakStat *xstats = &stats->xpak_stat;
6352
6353 s2io_updt_stats(sp);
6354 tmp_stats[i++] =
6355 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6356 le32_to_cpu(stats->tmac_frms);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6359 le32_to_cpu(stats->tmac_data_octets);
6360 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6361 tmp_stats[i++] =
6362 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6363 le32_to_cpu(stats->tmac_mcst_frms);
6364 tmp_stats[i++] =
6365 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6366 le32_to_cpu(stats->tmac_bcst_frms);
6367 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6368 tmp_stats[i++] =
6369 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6370 le32_to_cpu(stats->tmac_ttl_octets);
6371 tmp_stats[i++] =
6372 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6373 le32_to_cpu(stats->tmac_ucst_frms);
6374 tmp_stats[i++] =
6375 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6376 le32_to_cpu(stats->tmac_nucst_frms);
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6379 le32_to_cpu(stats->tmac_any_err_frms);
6380 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6381 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6382 tmp_stats[i++] =
6383 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6384 le32_to_cpu(stats->tmac_vld_ip);
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6387 le32_to_cpu(stats->tmac_drop_ip);
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6390 le32_to_cpu(stats->tmac_icmp);
6391 tmp_stats[i++] =
6392 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6393 le32_to_cpu(stats->tmac_rst_tcp);
6394 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6395 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6396 le32_to_cpu(stats->tmac_udp);
6397 tmp_stats[i++] =
6398 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6399 le32_to_cpu(stats->rmac_vld_frms);
6400 tmp_stats[i++] =
6401 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6402 le32_to_cpu(stats->rmac_data_octets);
6403 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6404 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6405 tmp_stats[i++] =
6406 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6407 le32_to_cpu(stats->rmac_vld_mcst_frms);
6408 tmp_stats[i++] =
6409 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6410 le32_to_cpu(stats->rmac_vld_bcst_frms);
6411 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6412 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6416 tmp_stats[i++] =
6417 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6418 le32_to_cpu(stats->rmac_ttl_octets);
6419 tmp_stats[i++] =
6420 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6421 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6422 tmp_stats[i++] =
6423 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6424 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6425 tmp_stats[i++] =
6426 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6427 le32_to_cpu(stats->rmac_discarded_frms);
6428 tmp_stats[i++] =
6429 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6430 << 32 | le32_to_cpu(stats->rmac_drop_events);
6431 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6432 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6433 tmp_stats[i++] =
6434 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6435 le32_to_cpu(stats->rmac_usized_frms);
6436 tmp_stats[i++] =
6437 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6438 le32_to_cpu(stats->rmac_osized_frms);
6439 tmp_stats[i++] =
6440 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6441 le32_to_cpu(stats->rmac_frag_frms);
6442 tmp_stats[i++] =
6443 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6444 le32_to_cpu(stats->rmac_jabber_frms);
6445 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6446 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6447 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6448 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6449 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6450 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6451 tmp_stats[i++] =
6452 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6453 le32_to_cpu(stats->rmac_ip);
6454 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6455 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6456 tmp_stats[i++] =
6457 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6458 le32_to_cpu(stats->rmac_drop_ip);
6459 tmp_stats[i++] =
6460 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6461 le32_to_cpu(stats->rmac_icmp);
6462 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6463 tmp_stats[i++] =
6464 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6465 le32_to_cpu(stats->rmac_udp);
6466 tmp_stats[i++] =
6467 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6468 le32_to_cpu(stats->rmac_err_drp_udp);
6469 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6470 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6471 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6472 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6473 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6474 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6475 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6476 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6477 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6478 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6479 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6480 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6481 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6482 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6483 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6484 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6485 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6486 tmp_stats[i++] =
6487 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6488 le32_to_cpu(stats->rmac_pause_cnt);
6489 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6490 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6491 tmp_stats[i++] =
6492 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6493 le32_to_cpu(stats->rmac_accepted_ip);
6494 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6495 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6496 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6497 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6498 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6499 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6500 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6501 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6502 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6503 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6504 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6505 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6506 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6507 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6508 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6509 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6510 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6511 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6512 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6513
6514 /* Enhanced statistics exist only for Hercules */
6515 if (sp->device_type == XFRAME_II_DEVICE) {
6516 tmp_stats[i++] =
6517 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6518 tmp_stats[i++] =
6519 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6520 tmp_stats[i++] =
6521 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6522 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6523 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6524 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6525 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6526 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6527 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6528 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6529 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6530 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6531 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6532 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6533 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6534 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6535 }
6536
6537 tmp_stats[i++] = 0;
6538 tmp_stats[i++] = swstats->single_ecc_errs;
6539 tmp_stats[i++] = swstats->double_ecc_errs;
6540 tmp_stats[i++] = swstats->parity_err_cnt;
6541 tmp_stats[i++] = swstats->serious_err_cnt;
6542 tmp_stats[i++] = swstats->soft_reset_cnt;
6543 tmp_stats[i++] = swstats->fifo_full_cnt;
6544 for (k = 0; k < MAX_RX_RINGS; k++)
6545 tmp_stats[i++] = swstats->ring_full_cnt[k];
6546 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6547 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6548 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6549 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6550 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6551 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6552 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6553 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6554 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6555 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6556 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6557 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6558 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6559 tmp_stats[i++] = swstats->sending_both;
6560 tmp_stats[i++] = swstats->outof_sequence_pkts;
6561 tmp_stats[i++] = swstats->flush_max_pkts;
6562 if (swstats->num_aggregations) {
6563 u64 tmp = swstats->sum_avg_pkts_aggregated;
6564 int count = 0;
6565 /*
6566 * Since 64-bit divide does not work on all platforms,
6567 * do repeated subtraction.
6568 */
6569 while (tmp >= swstats->num_aggregations) {
6570 tmp -= swstats->num_aggregations;
6571 count++;
6572 }
6573 tmp_stats[i++] = count;
6574 } else
6575 tmp_stats[i++] = 0;
6576 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6577 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6578 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6579 tmp_stats[i++] = swstats->mem_allocated;
6580 tmp_stats[i++] = swstats->mem_freed;
6581 tmp_stats[i++] = swstats->link_up_cnt;
6582 tmp_stats[i++] = swstats->link_down_cnt;
6583 tmp_stats[i++] = swstats->link_up_time;
6584 tmp_stats[i++] = swstats->link_down_time;
6585
6586 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6587 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6588 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6589 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6590 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6591
6592 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6593 tmp_stats[i++] = swstats->rx_abort_cnt;
6594 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6595 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6596 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6597 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6598 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6599 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6600 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6601 tmp_stats[i++] = swstats->tda_err_cnt;
6602 tmp_stats[i++] = swstats->pfc_err_cnt;
6603 tmp_stats[i++] = swstats->pcc_err_cnt;
6604 tmp_stats[i++] = swstats->tti_err_cnt;
6605 tmp_stats[i++] = swstats->tpa_err_cnt;
6606 tmp_stats[i++] = swstats->sm_err_cnt;
6607 tmp_stats[i++] = swstats->lso_err_cnt;
6608 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6609 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6610 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6611 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6612 tmp_stats[i++] = swstats->rc_err_cnt;
6613 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6614 tmp_stats[i++] = swstats->rpa_err_cnt;
6615 tmp_stats[i++] = swstats->rda_err_cnt;
6616 tmp_stats[i++] = swstats->rti_err_cnt;
6617 tmp_stats[i++] = swstats->mc_err_cnt;
6618 }
6619
6620 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6621 {
6622 return XENA_REG_SPACE;
6623 }
6624
6625
6626 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6627 {
6628 struct s2io_nic *sp = netdev_priv(dev);
6629
6630 return sp->rx_csum;
6631 }
6632
6633 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6634 {
6635 struct s2io_nic *sp = netdev_priv(dev);
6636
6637 if (data)
6638 sp->rx_csum = 1;
6639 else
6640 sp->rx_csum = 0;
6641
6642 return 0;
6643 }
6644
6645 static int s2io_get_eeprom_len(struct net_device *dev)
6646 {
6647 return XENA_EEPROM_SPACE;
6648 }
6649
6650 static int s2io_get_sset_count(struct net_device *dev, int sset)
6651 {
6652 struct s2io_nic *sp = netdev_priv(dev);
6653
6654 switch (sset) {
6655 case ETH_SS_TEST:
6656 return S2IO_TEST_LEN;
6657 case ETH_SS_STATS:
6658 switch (sp->device_type) {
6659 case XFRAME_I_DEVICE:
6660 return XFRAME_I_STAT_LEN;
6661 case XFRAME_II_DEVICE:
6662 return XFRAME_II_STAT_LEN;
6663 default:
6664 return 0;
6665 }
6666 default:
6667 return -EOPNOTSUPP;
6668 }
6669 }
6670
6671 static void s2io_ethtool_get_strings(struct net_device *dev,
6672 u32 stringset, u8 *data)
6673 {
6674 int stat_size = 0;
6675 struct s2io_nic *sp = netdev_priv(dev);
6676
6677 switch (stringset) {
6678 case ETH_SS_TEST:
6679 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6680 break;
6681 case ETH_SS_STATS:
6682 stat_size = sizeof(ethtool_xena_stats_keys);
6683 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6684 if (sp->device_type == XFRAME_II_DEVICE) {
6685 memcpy(data + stat_size,
6686 &ethtool_enhanced_stats_keys,
6687 sizeof(ethtool_enhanced_stats_keys));
6688 stat_size += sizeof(ethtool_enhanced_stats_keys);
6689 }
6690
6691 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6692 sizeof(ethtool_driver_stats_keys));
6693 }
6694 }
6695
6696 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6697 {
6698 if (data)
6699 dev->features |= NETIF_F_IP_CSUM;
6700 else
6701 dev->features &= ~NETIF_F_IP_CSUM;
6702
6703 return 0;
6704 }
6705
6706 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6707 {
6708 return (dev->features & NETIF_F_TSO) != 0;
6709 }
6710 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6711 {
6712 if (data)
6713 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6714 else
6715 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6716
6717 return 0;
6718 }
6719
6720 static const struct ethtool_ops netdev_ethtool_ops = {
6721 .get_settings = s2io_ethtool_gset,
6722 .set_settings = s2io_ethtool_sset,
6723 .get_drvinfo = s2io_ethtool_gdrvinfo,
6724 .get_regs_len = s2io_ethtool_get_regs_len,
6725 .get_regs = s2io_ethtool_gregs,
6726 .get_link = ethtool_op_get_link,
6727 .get_eeprom_len = s2io_get_eeprom_len,
6728 .get_eeprom = s2io_ethtool_geeprom,
6729 .set_eeprom = s2io_ethtool_seeprom,
6730 .get_ringparam = s2io_ethtool_gringparam,
6731 .get_pauseparam = s2io_ethtool_getpause_data,
6732 .set_pauseparam = s2io_ethtool_setpause_data,
6733 .get_rx_csum = s2io_ethtool_get_rx_csum,
6734 .set_rx_csum = s2io_ethtool_set_rx_csum,
6735 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6736 .set_sg = ethtool_op_set_sg,
6737 .get_tso = s2io_ethtool_op_get_tso,
6738 .set_tso = s2io_ethtool_op_set_tso,
6739 .set_ufo = ethtool_op_set_ufo,
6740 .self_test = s2io_ethtool_test,
6741 .get_strings = s2io_ethtool_get_strings,
6742 .phys_id = s2io_ethtool_idnic,
6743 .get_ethtool_stats = s2io_get_ethtool_stats,
6744 .get_sset_count = s2io_get_sset_count,
6745 };
6746
6747 /**
6748 * s2io_ioctl - Entry point for the Ioctl
6749 * @dev : Device pointer.
6750 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6751 * a proprietary structure used to pass information to the driver.
6752 * @cmd : This is used to distinguish between the different commands that
6753 * can be passed to the IOCTL functions.
6754 * Description:
6755 * Currently there are no special functionality supported in IOCTL, hence
6756 * function always return EOPNOTSUPPORTED
6757 */
6758
6759 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6760 {
6761 return -EOPNOTSUPP;
6762 }
6763
6764 /**
6765 * s2io_change_mtu - entry point to change MTU size for the device.
6766 * @dev : device pointer.
6767 * @new_mtu : the new MTU size for the device.
6768 * Description: A driver entry point to change MTU size for the device.
6769 * Before changing the MTU the device must be stopped.
6770 * Return value:
6771 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6772 * file on failure.
6773 */
6774
6775 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6776 {
6777 struct s2io_nic *sp = netdev_priv(dev);
6778 int ret = 0;
6779
6780 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6781 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6782 return -EPERM;
6783 }
6784
6785 dev->mtu = new_mtu;
6786 if (netif_running(dev)) {
6787 s2io_stop_all_tx_queue(sp);
6788 s2io_card_down(sp);
6789 ret = s2io_card_up(sp);
6790 if (ret) {
6791 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6792 __func__);
6793 return ret;
6794 }
6795 s2io_wake_all_tx_queue(sp);
6796 } else { /* Device is down */
6797 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6798 u64 val64 = new_mtu;
6799
6800 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6801 }
6802
6803 return ret;
6804 }
6805
6806 /**
6807 * s2io_set_link - Set the LInk status
6808 * @data: long pointer to device private structue
6809 * Description: Sets the link status for the adapter
6810 */
6811
6812 static void s2io_set_link(struct work_struct *work)
6813 {
6814 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6815 set_link_task);
6816 struct net_device *dev = nic->dev;
6817 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6818 register u64 val64;
6819 u16 subid;
6820
6821 rtnl_lock();
6822
6823 if (!netif_running(dev))
6824 goto out_unlock;
6825
6826 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6827 /* The card is being reset, no point doing anything */
6828 goto out_unlock;
6829 }
6830
6831 subid = nic->pdev->subsystem_device;
6832 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6833 /*
6834 * Allow a small delay for the NICs self initiated
6835 * cleanup to complete.
6836 */
6837 msleep(100);
6838 }
6839
6840 val64 = readq(&bar0->adapter_status);
6841 if (LINK_IS_UP(val64)) {
6842 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6843 if (verify_xena_quiescence(nic)) {
6844 val64 = readq(&bar0->adapter_control);
6845 val64 |= ADAPTER_CNTL_EN;
6846 writeq(val64, &bar0->adapter_control);
6847 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6848 nic->device_type, subid)) {
6849 val64 = readq(&bar0->gpio_control);
6850 val64 |= GPIO_CTRL_GPIO_0;
6851 writeq(val64, &bar0->gpio_control);
6852 val64 = readq(&bar0->gpio_control);
6853 } else {
6854 val64 |= ADAPTER_LED_ON;
6855 writeq(val64, &bar0->adapter_control);
6856 }
6857 nic->device_enabled_once = true;
6858 } else {
6859 DBG_PRINT(ERR_DBG,
6860 "%s: Error: device is not Quiescent\n",
6861 dev->name);
6862 s2io_stop_all_tx_queue(nic);
6863 }
6864 }
6865 val64 = readq(&bar0->adapter_control);
6866 val64 |= ADAPTER_LED_ON;
6867 writeq(val64, &bar0->adapter_control);
6868 s2io_link(nic, LINK_UP);
6869 } else {
6870 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6871 subid)) {
6872 val64 = readq(&bar0->gpio_control);
6873 val64 &= ~GPIO_CTRL_GPIO_0;
6874 writeq(val64, &bar0->gpio_control);
6875 val64 = readq(&bar0->gpio_control);
6876 }
6877 /* turn off LED */
6878 val64 = readq(&bar0->adapter_control);
6879 val64 = val64 & (~ADAPTER_LED_ON);
6880 writeq(val64, &bar0->adapter_control);
6881 s2io_link(nic, LINK_DOWN);
6882 }
6883 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6884
6885 out_unlock:
6886 rtnl_unlock();
6887 }
6888
6889 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6890 struct buffAdd *ba,
6891 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6892 u64 *temp2, int size)
6893 {
6894 struct net_device *dev = sp->dev;
6895 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6896
6897 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6898 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6899 /* allocate skb */
6900 if (*skb) {
6901 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6902 /*
6903 * As Rx frame are not going to be processed,
6904 * using same mapped address for the Rxd
6905 * buffer pointer
6906 */
6907 rxdp1->Buffer0_ptr = *temp0;
6908 } else {
6909 *skb = dev_alloc_skb(size);
6910 if (!(*skb)) {
6911 DBG_PRINT(INFO_DBG,
6912 "%s: Out of memory to allocate %s\n",
6913 dev->name, "1 buf mode SKBs");
6914 stats->mem_alloc_fail_cnt++;
6915 return -ENOMEM ;
6916 }
6917 stats->mem_allocated += (*skb)->truesize;
6918 /* storing the mapped addr in a temp variable
6919 * such it will be used for next rxd whose
6920 * Host Control is NULL
6921 */
6922 rxdp1->Buffer0_ptr = *temp0 =
6923 pci_map_single(sp->pdev, (*skb)->data,
6924 size - NET_IP_ALIGN,
6925 PCI_DMA_FROMDEVICE);
6926 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6927 goto memalloc_failed;
6928 rxdp->Host_Control = (unsigned long) (*skb);
6929 }
6930 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6931 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6932 /* Two buffer Mode */
6933 if (*skb) {
6934 rxdp3->Buffer2_ptr = *temp2;
6935 rxdp3->Buffer0_ptr = *temp0;
6936 rxdp3->Buffer1_ptr = *temp1;
6937 } else {
6938 *skb = dev_alloc_skb(size);
6939 if (!(*skb)) {
6940 DBG_PRINT(INFO_DBG,
6941 "%s: Out of memory to allocate %s\n",
6942 dev->name,
6943 "2 buf mode SKBs");
6944 stats->mem_alloc_fail_cnt++;
6945 return -ENOMEM;
6946 }
6947 stats->mem_allocated += (*skb)->truesize;
6948 rxdp3->Buffer2_ptr = *temp2 =
6949 pci_map_single(sp->pdev, (*skb)->data,
6950 dev->mtu + 4,
6951 PCI_DMA_FROMDEVICE);
6952 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6953 goto memalloc_failed;
6954 rxdp3->Buffer0_ptr = *temp0 =
6955 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6956 PCI_DMA_FROMDEVICE);
6957 if (pci_dma_mapping_error(sp->pdev,
6958 rxdp3->Buffer0_ptr)) {
6959 pci_unmap_single(sp->pdev,
6960 (dma_addr_t)rxdp3->Buffer2_ptr,
6961 dev->mtu + 4,
6962 PCI_DMA_FROMDEVICE);
6963 goto memalloc_failed;
6964 }
6965 rxdp->Host_Control = (unsigned long) (*skb);
6966
6967 /* Buffer-1 will be dummy buffer not used */
6968 rxdp3->Buffer1_ptr = *temp1 =
6969 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6970 PCI_DMA_FROMDEVICE);
6971 if (pci_dma_mapping_error(sp->pdev,
6972 rxdp3->Buffer1_ptr)) {
6973 pci_unmap_single(sp->pdev,
6974 (dma_addr_t)rxdp3->Buffer0_ptr,
6975 BUF0_LEN, PCI_DMA_FROMDEVICE);
6976 pci_unmap_single(sp->pdev,
6977 (dma_addr_t)rxdp3->Buffer2_ptr,
6978 dev->mtu + 4,
6979 PCI_DMA_FROMDEVICE);
6980 goto memalloc_failed;
6981 }
6982 }
6983 }
6984 return 0;
6985
6986 memalloc_failed:
6987 stats->pci_map_fail_cnt++;
6988 stats->mem_freed += (*skb)->truesize;
6989 dev_kfree_skb(*skb);
6990 return -ENOMEM;
6991 }
6992
6993 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6994 int size)
6995 {
6996 struct net_device *dev = sp->dev;
6997 if (sp->rxd_mode == RXD_MODE_1) {
6998 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6999 } else if (sp->rxd_mode == RXD_MODE_3B) {
7000 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7001 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7002 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7003 }
7004 }
7005
7006 static int rxd_owner_bit_reset(struct s2io_nic *sp)
7007 {
7008 int i, j, k, blk_cnt = 0, size;
7009 struct config_param *config = &sp->config;
7010 struct mac_info *mac_control = &sp->mac_control;
7011 struct net_device *dev = sp->dev;
7012 struct RxD_t *rxdp = NULL;
7013 struct sk_buff *skb = NULL;
7014 struct buffAdd *ba = NULL;
7015 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7016
7017 /* Calculate the size based on ring mode */
7018 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7019 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7020 if (sp->rxd_mode == RXD_MODE_1)
7021 size += NET_IP_ALIGN;
7022 else if (sp->rxd_mode == RXD_MODE_3B)
7023 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7024
7025 for (i = 0; i < config->rx_ring_num; i++) {
7026 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7027 struct ring_info *ring = &mac_control->rings[i];
7028
7029 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7030
7031 for (j = 0; j < blk_cnt; j++) {
7032 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7033 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7034 if (sp->rxd_mode == RXD_MODE_3B)
7035 ba = &ring->ba[j][k];
7036 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7037 (u64 *)&temp0_64,
7038 (u64 *)&temp1_64,
7039 (u64 *)&temp2_64,
7040 size) == -ENOMEM) {
7041 return 0;
7042 }
7043
7044 set_rxd_buffer_size(sp, rxdp, size);
7045 wmb();
7046 /* flip the Ownership bit to Hardware */
7047 rxdp->Control_1 |= RXD_OWN_XENA;
7048 }
7049 }
7050 }
7051 return 0;
7052
7053 }
7054
7055 static int s2io_add_isr(struct s2io_nic *sp)
7056 {
7057 int ret = 0;
7058 struct net_device *dev = sp->dev;
7059 int err = 0;
7060
7061 if (sp->config.intr_type == MSI_X)
7062 ret = s2io_enable_msi_x(sp);
7063 if (ret) {
7064 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7065 sp->config.intr_type = INTA;
7066 }
7067
7068 /*
7069 * Store the values of the MSIX table in
7070 * the struct s2io_nic structure
7071 */
7072 store_xmsi_data(sp);
7073
7074 /* After proper initialization of H/W, register ISR */
7075 if (sp->config.intr_type == MSI_X) {
7076 int i, msix_rx_cnt = 0;
7077
7078 for (i = 0; i < sp->num_entries; i++) {
7079 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7080 if (sp->s2io_entries[i].type ==
7081 MSIX_RING_TYPE) {
7082 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7083 dev->name, i);
7084 err = request_irq(sp->entries[i].vector,
7085 s2io_msix_ring_handle,
7086 0,
7087 sp->desc[i],
7088 sp->s2io_entries[i].arg);
7089 } else if (sp->s2io_entries[i].type ==
7090 MSIX_ALARM_TYPE) {
7091 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7092 dev->name, i);
7093 err = request_irq(sp->entries[i].vector,
7094 s2io_msix_fifo_handle,
7095 0,
7096 sp->desc[i],
7097 sp->s2io_entries[i].arg);
7098
7099 }
7100 /* if either data or addr is zero print it. */
7101 if (!(sp->msix_info[i].addr &&
7102 sp->msix_info[i].data)) {
7103 DBG_PRINT(ERR_DBG,
7104 "%s @Addr:0x%llx Data:0x%llx\n",
7105 sp->desc[i],
7106 (unsigned long long)
7107 sp->msix_info[i].addr,
7108 (unsigned long long)
7109 ntohl(sp->msix_info[i].data));
7110 } else
7111 msix_rx_cnt++;
7112 if (err) {
7113 remove_msix_isr(sp);
7114
7115 DBG_PRINT(ERR_DBG,
7116 "%s:MSI-X-%d registration "
7117 "failed\n", dev->name, i);
7118
7119 DBG_PRINT(ERR_DBG,
7120 "%s: Defaulting to INTA\n",
7121 dev->name);
7122 sp->config.intr_type = INTA;
7123 break;
7124 }
7125 sp->s2io_entries[i].in_use =
7126 MSIX_REGISTERED_SUCCESS;
7127 }
7128 }
7129 if (!err) {
7130 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7131 DBG_PRINT(INFO_DBG,
7132 "MSI-X-TX entries enabled through alarm vector\n");
7133 }
7134 }
7135 if (sp->config.intr_type == INTA) {
7136 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7137 sp->name, dev);
7138 if (err) {
7139 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7140 dev->name);
7141 return -1;
7142 }
7143 }
7144 return 0;
7145 }
7146
7147 static void s2io_rem_isr(struct s2io_nic *sp)
7148 {
7149 if (sp->config.intr_type == MSI_X)
7150 remove_msix_isr(sp);
7151 else
7152 remove_inta_isr(sp);
7153 }
7154
7155 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7156 {
7157 int cnt = 0;
7158 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7159 register u64 val64 = 0;
7160 struct config_param *config;
7161 config = &sp->config;
7162
7163 if (!is_s2io_card_up(sp))
7164 return;
7165
7166 del_timer_sync(&sp->alarm_timer);
7167 /* If s2io_set_link task is executing, wait till it completes. */
7168 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7169 msleep(50);
7170 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7171
7172 /* Disable napi */
7173 if (sp->config.napi) {
7174 int off = 0;
7175 if (config->intr_type == MSI_X) {
7176 for (; off < sp->config.rx_ring_num; off++)
7177 napi_disable(&sp->mac_control.rings[off].napi);
7178 }
7179 else
7180 napi_disable(&sp->napi);
7181 }
7182
7183 /* disable Tx and Rx traffic on the NIC */
7184 if (do_io)
7185 stop_nic(sp);
7186
7187 s2io_rem_isr(sp);
7188
7189 /* stop the tx queue, indicate link down */
7190 s2io_link(sp, LINK_DOWN);
7191
7192 /* Check if the device is Quiescent and then Reset the NIC */
7193 while (do_io) {
7194 /* As per the HW requirement we need to replenish the
7195 * receive buffer to avoid the ring bump. Since there is
7196 * no intention of processing the Rx frame at this pointwe are
7197 * just settting the ownership bit of rxd in Each Rx
7198 * ring to HW and set the appropriate buffer size
7199 * based on the ring mode
7200 */
7201 rxd_owner_bit_reset(sp);
7202
7203 val64 = readq(&bar0->adapter_status);
7204 if (verify_xena_quiescence(sp)) {
7205 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7206 break;
7207 }
7208
7209 msleep(50);
7210 cnt++;
7211 if (cnt == 10) {
7212 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7213 "adapter status reads 0x%llx\n",
7214 (unsigned long long)val64);
7215 break;
7216 }
7217 }
7218 if (do_io)
7219 s2io_reset(sp);
7220
7221 /* Free all Tx buffers */
7222 free_tx_buffers(sp);
7223
7224 /* Free all Rx buffers */
7225 free_rx_buffers(sp);
7226
7227 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7228 }
7229
7230 static void s2io_card_down(struct s2io_nic *sp)
7231 {
7232 do_s2io_card_down(sp, 1);
7233 }
7234
7235 static int s2io_card_up(struct s2io_nic *sp)
7236 {
7237 int i, ret = 0;
7238 struct config_param *config;
7239 struct mac_info *mac_control;
7240 struct net_device *dev = (struct net_device *)sp->dev;
7241 u16 interruptible;
7242
7243 /* Initialize the H/W I/O registers */
7244 ret = init_nic(sp);
7245 if (ret != 0) {
7246 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7247 dev->name);
7248 if (ret != -EIO)
7249 s2io_reset(sp);
7250 return ret;
7251 }
7252
7253 /*
7254 * Initializing the Rx buffers. For now we are considering only 1
7255 * Rx ring and initializing buffers into 30 Rx blocks
7256 */
7257 config = &sp->config;
7258 mac_control = &sp->mac_control;
7259
7260 for (i = 0; i < config->rx_ring_num; i++) {
7261 struct ring_info *ring = &mac_control->rings[i];
7262
7263 ring->mtu = dev->mtu;
7264 ret = fill_rx_buffers(sp, ring, 1);
7265 if (ret) {
7266 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7267 dev->name);
7268 s2io_reset(sp);
7269 free_rx_buffers(sp);
7270 return -ENOMEM;
7271 }
7272 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7273 ring->rx_bufs_left);
7274 }
7275
7276 /* Initialise napi */
7277 if (config->napi) {
7278 if (config->intr_type == MSI_X) {
7279 for (i = 0; i < sp->config.rx_ring_num; i++)
7280 napi_enable(&sp->mac_control.rings[i].napi);
7281 } else {
7282 napi_enable(&sp->napi);
7283 }
7284 }
7285
7286 /* Maintain the state prior to the open */
7287 if (sp->promisc_flg)
7288 sp->promisc_flg = 0;
7289 if (sp->m_cast_flg) {
7290 sp->m_cast_flg = 0;
7291 sp->all_multi_pos = 0;
7292 }
7293
7294 /* Setting its receive mode */
7295 s2io_set_multicast(dev);
7296
7297 if (sp->lro) {
7298 /* Initialize max aggregatable pkts per session based on MTU */
7299 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7300 /* Check if we can use (if specified) user provided value */
7301 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7302 sp->lro_max_aggr_per_sess = lro_max_pkts;
7303 }
7304
7305 /* Enable Rx Traffic and interrupts on the NIC */
7306 if (start_nic(sp)) {
7307 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7308 s2io_reset(sp);
7309 free_rx_buffers(sp);
7310 return -ENODEV;
7311 }
7312
7313 /* Add interrupt service routine */
7314 if (s2io_add_isr(sp) != 0) {
7315 if (sp->config.intr_type == MSI_X)
7316 s2io_rem_isr(sp);
7317 s2io_reset(sp);
7318 free_rx_buffers(sp);
7319 return -ENODEV;
7320 }
7321
7322 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7323
7324 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7325
7326 /* Enable select interrupts */
7327 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7328 if (sp->config.intr_type != INTA) {
7329 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7330 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7331 } else {
7332 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7333 interruptible |= TX_PIC_INTR;
7334 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7335 }
7336
7337 return 0;
7338 }
7339
7340 /**
7341 * s2io_restart_nic - Resets the NIC.
7342 * @data : long pointer to the device private structure
7343 * Description:
7344 * This function is scheduled to be run by the s2io_tx_watchdog
7345 * function after 0.5 secs to reset the NIC. The idea is to reduce
7346 * the run time of the watch dog routine which is run holding a
7347 * spin lock.
7348 */
7349
7350 static void s2io_restart_nic(struct work_struct *work)
7351 {
7352 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7353 struct net_device *dev = sp->dev;
7354
7355 rtnl_lock();
7356
7357 if (!netif_running(dev))
7358 goto out_unlock;
7359
7360 s2io_card_down(sp);
7361 if (s2io_card_up(sp)) {
7362 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7363 }
7364 s2io_wake_all_tx_queue(sp);
7365 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7366 out_unlock:
7367 rtnl_unlock();
7368 }
7369
7370 /**
7371 * s2io_tx_watchdog - Watchdog for transmit side.
7372 * @dev : Pointer to net device structure
7373 * Description:
7374 * This function is triggered if the Tx Queue is stopped
7375 * for a pre-defined amount of time when the Interface is still up.
7376 * If the Interface is jammed in such a situation, the hardware is
7377 * reset (by s2io_close) and restarted again (by s2io_open) to
7378 * overcome any problem that might have been caused in the hardware.
7379 * Return value:
7380 * void
7381 */
7382
7383 static void s2io_tx_watchdog(struct net_device *dev)
7384 {
7385 struct s2io_nic *sp = netdev_priv(dev);
7386 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7387
7388 if (netif_carrier_ok(dev)) {
7389 swstats->watchdog_timer_cnt++;
7390 schedule_work(&sp->rst_timer_task);
7391 swstats->soft_reset_cnt++;
7392 }
7393 }
7394
7395 /**
7396 * rx_osm_handler - To perform some OS related operations on SKB.
7397 * @sp: private member of the device structure,pointer to s2io_nic structure.
7398 * @skb : the socket buffer pointer.
7399 * @len : length of the packet
7400 * @cksum : FCS checksum of the frame.
7401 * @ring_no : the ring from which this RxD was extracted.
7402 * Description:
7403 * This function is called by the Rx interrupt serivce routine to perform
7404 * some OS related operations on the SKB before passing it to the upper
7405 * layers. It mainly checks if the checksum is OK, if so adds it to the
7406 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7407 * to the upper layer. If the checksum is wrong, it increments the Rx
7408 * packet error count, frees the SKB and returns error.
7409 * Return value:
7410 * SUCCESS on success and -1 on failure.
7411 */
7412 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7413 {
7414 struct s2io_nic *sp = ring_data->nic;
7415 struct net_device *dev = (struct net_device *)ring_data->dev;
7416 struct sk_buff *skb = (struct sk_buff *)
7417 ((unsigned long)rxdp->Host_Control);
7418 int ring_no = ring_data->ring_no;
7419 u16 l3_csum, l4_csum;
7420 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7421 struct lro *uninitialized_var(lro);
7422 u8 err_mask;
7423 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7424
7425 skb->dev = dev;
7426
7427 if (err) {
7428 /* Check for parity error */
7429 if (err & 0x1)
7430 swstats->parity_err_cnt++;
7431
7432 err_mask = err >> 48;
7433 switch (err_mask) {
7434 case 1:
7435 swstats->rx_parity_err_cnt++;
7436 break;
7437
7438 case 2:
7439 swstats->rx_abort_cnt++;
7440 break;
7441
7442 case 3:
7443 swstats->rx_parity_abort_cnt++;
7444 break;
7445
7446 case 4:
7447 swstats->rx_rda_fail_cnt++;
7448 break;
7449
7450 case 5:
7451 swstats->rx_unkn_prot_cnt++;
7452 break;
7453
7454 case 6:
7455 swstats->rx_fcs_err_cnt++;
7456 break;
7457
7458 case 7:
7459 swstats->rx_buf_size_err_cnt++;
7460 break;
7461
7462 case 8:
7463 swstats->rx_rxd_corrupt_cnt++;
7464 break;
7465
7466 case 15:
7467 swstats->rx_unkn_err_cnt++;
7468 break;
7469 }
7470 /*
7471 * Drop the packet if bad transfer code. Exception being
7472 * 0x5, which could be due to unsupported IPv6 extension header.
7473 * In this case, we let stack handle the packet.
7474 * Note that in this case, since checksum will be incorrect,
7475 * stack will validate the same.
7476 */
7477 if (err_mask != 0x5) {
7478 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7479 dev->name, err_mask);
7480 dev->stats.rx_crc_errors++;
7481 swstats->mem_freed
7482 += skb->truesize;
7483 dev_kfree_skb(skb);
7484 ring_data->rx_bufs_left -= 1;
7485 rxdp->Host_Control = 0;
7486 return 0;
7487 }
7488 }
7489
7490 rxdp->Host_Control = 0;
7491 if (sp->rxd_mode == RXD_MODE_1) {
7492 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7493
7494 skb_put(skb, len);
7495 } else if (sp->rxd_mode == RXD_MODE_3B) {
7496 int get_block = ring_data->rx_curr_get_info.block_index;
7497 int get_off = ring_data->rx_curr_get_info.offset;
7498 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7499 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7500 unsigned char *buff = skb_push(skb, buf0_len);
7501
7502 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7503 memcpy(buff, ba->ba_0, buf0_len);
7504 skb_put(skb, buf2_len);
7505 }
7506
7507 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7508 ((!ring_data->lro) ||
7509 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7510 (sp->rx_csum)) {
7511 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7512 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7513 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7514 /*
7515 * NIC verifies if the Checksum of the received
7516 * frame is Ok or not and accordingly returns
7517 * a flag in the RxD.
7518 */
7519 skb->ip_summed = CHECKSUM_UNNECESSARY;
7520 if (ring_data->lro) {
7521 u32 tcp_len;
7522 u8 *tcp;
7523 int ret = 0;
7524
7525 ret = s2io_club_tcp_session(ring_data,
7526 skb->data, &tcp,
7527 &tcp_len, &lro,
7528 rxdp, sp);
7529 switch (ret) {
7530 case 3: /* Begin anew */
7531 lro->parent = skb;
7532 goto aggregate;
7533 case 1: /* Aggregate */
7534 lro_append_pkt(sp, lro, skb, tcp_len);
7535 goto aggregate;
7536 case 4: /* Flush session */
7537 lro_append_pkt(sp, lro, skb, tcp_len);
7538 queue_rx_frame(lro->parent,
7539 lro->vlan_tag);
7540 clear_lro_session(lro);
7541 swstats->flush_max_pkts++;
7542 goto aggregate;
7543 case 2: /* Flush both */
7544 lro->parent->data_len = lro->frags_len;
7545 swstats->sending_both++;
7546 queue_rx_frame(lro->parent,
7547 lro->vlan_tag);
7548 clear_lro_session(lro);
7549 goto send_up;
7550 case 0: /* sessions exceeded */
7551 case -1: /* non-TCP or not L2 aggregatable */
7552 case 5: /*
7553 * First pkt in session not
7554 * L3/L4 aggregatable
7555 */
7556 break;
7557 default:
7558 DBG_PRINT(ERR_DBG,
7559 "%s: Samadhana!!\n",
7560 __func__);
7561 BUG();
7562 }
7563 }
7564 } else {
7565 /*
7566 * Packet with erroneous checksum, let the
7567 * upper layers deal with it.
7568 */
7569 skb->ip_summed = CHECKSUM_NONE;
7570 }
7571 } else
7572 skb->ip_summed = CHECKSUM_NONE;
7573
7574 swstats->mem_freed += skb->truesize;
7575 send_up:
7576 skb_record_rx_queue(skb, ring_no);
7577 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7578 aggregate:
7579 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7580 return SUCCESS;
7581 }
7582
7583 /**
7584 * s2io_link - stops/starts the Tx queue.
7585 * @sp : private member of the device structure, which is a pointer to the
7586 * s2io_nic structure.
7587 * @link : inidicates whether link is UP/DOWN.
7588 * Description:
7589 * This function stops/starts the Tx queue depending on whether the link
7590 * status of the NIC is is down or up. This is called by the Alarm
7591 * interrupt handler whenever a link change interrupt comes up.
7592 * Return value:
7593 * void.
7594 */
7595
7596 static void s2io_link(struct s2io_nic *sp, int link)
7597 {
7598 struct net_device *dev = (struct net_device *)sp->dev;
7599 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7600
7601 if (link != sp->last_link_state) {
7602 init_tti(sp, link);
7603 if (link == LINK_DOWN) {
7604 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7605 s2io_stop_all_tx_queue(sp);
7606 netif_carrier_off(dev);
7607 if (swstats->link_up_cnt)
7608 swstats->link_up_time =
7609 jiffies - sp->start_time;
7610 swstats->link_down_cnt++;
7611 } else {
7612 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7613 if (swstats->link_down_cnt)
7614 swstats->link_down_time =
7615 jiffies - sp->start_time;
7616 swstats->link_up_cnt++;
7617 netif_carrier_on(dev);
7618 s2io_wake_all_tx_queue(sp);
7619 }
7620 }
7621 sp->last_link_state = link;
7622 sp->start_time = jiffies;
7623 }
7624
7625 /**
7626 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7627 * @sp : private member of the device structure, which is a pointer to the
7628 * s2io_nic structure.
7629 * Description:
7630 * This function initializes a few of the PCI and PCI-X configuration registers
7631 * with recommended values.
7632 * Return value:
7633 * void
7634 */
7635
7636 static void s2io_init_pci(struct s2io_nic *sp)
7637 {
7638 u16 pci_cmd = 0, pcix_cmd = 0;
7639
7640 /* Enable Data Parity Error Recovery in PCI-X command register. */
7641 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7642 &(pcix_cmd));
7643 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7644 (pcix_cmd | 1));
7645 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7646 &(pcix_cmd));
7647
7648 /* Set the PErr Response bit in PCI command register. */
7649 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7650 pci_write_config_word(sp->pdev, PCI_COMMAND,
7651 (pci_cmd | PCI_COMMAND_PARITY));
7652 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7653 }
7654
7655 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7656 u8 *dev_multiq)
7657 {
7658 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7659 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7660 "(%d) not supported\n", tx_fifo_num);
7661
7662 if (tx_fifo_num < 1)
7663 tx_fifo_num = 1;
7664 else
7665 tx_fifo_num = MAX_TX_FIFOS;
7666
7667 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7668 }
7669
7670 if (multiq)
7671 *dev_multiq = multiq;
7672
7673 if (tx_steering_type && (1 == tx_fifo_num)) {
7674 if (tx_steering_type != TX_DEFAULT_STEERING)
7675 DBG_PRINT(ERR_DBG,
7676 "Tx steering is not supported with "
7677 "one fifo. Disabling Tx steering.\n");
7678 tx_steering_type = NO_STEERING;
7679 }
7680
7681 if ((tx_steering_type < NO_STEERING) ||
7682 (tx_steering_type > TX_DEFAULT_STEERING)) {
7683 DBG_PRINT(ERR_DBG,
7684 "Requested transmit steering not supported\n");
7685 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7686 tx_steering_type = NO_STEERING;
7687 }
7688
7689 if (rx_ring_num > MAX_RX_RINGS) {
7690 DBG_PRINT(ERR_DBG,
7691 "Requested number of rx rings not supported\n");
7692 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7693 MAX_RX_RINGS);
7694 rx_ring_num = MAX_RX_RINGS;
7695 }
7696
7697 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7698 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7699 "Defaulting to INTA\n");
7700 *dev_intr_type = INTA;
7701 }
7702
7703 if ((*dev_intr_type == MSI_X) &&
7704 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7705 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7706 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7707 "Defaulting to INTA\n");
7708 *dev_intr_type = INTA;
7709 }
7710
7711 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7712 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7713 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7714 rx_ring_mode = 1;
7715 }
7716 return SUCCESS;
7717 }
7718
7719 /**
7720 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7721 * or Traffic class respectively.
7722 * @nic: device private variable
7723 * Description: The function configures the receive steering to
7724 * desired receive ring.
7725 * Return Value: SUCCESS on success and
7726 * '-1' on failure (endian settings incorrect).
7727 */
7728 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7729 {
7730 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7731 register u64 val64 = 0;
7732
7733 if (ds_codepoint > 63)
7734 return FAILURE;
7735
7736 val64 = RTS_DS_MEM_DATA(ring);
7737 writeq(val64, &bar0->rts_ds_mem_data);
7738
7739 val64 = RTS_DS_MEM_CTRL_WE |
7740 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7741 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7742
7743 writeq(val64, &bar0->rts_ds_mem_ctrl);
7744
7745 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7746 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7747 S2IO_BIT_RESET);
7748 }
7749
7750 static const struct net_device_ops s2io_netdev_ops = {
7751 .ndo_open = s2io_open,
7752 .ndo_stop = s2io_close,
7753 .ndo_get_stats = s2io_get_stats,
7754 .ndo_start_xmit = s2io_xmit,
7755 .ndo_validate_addr = eth_validate_addr,
7756 .ndo_set_multicast_list = s2io_set_multicast,
7757 .ndo_do_ioctl = s2io_ioctl,
7758 .ndo_set_mac_address = s2io_set_mac_addr,
7759 .ndo_change_mtu = s2io_change_mtu,
7760 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7761 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7762 .ndo_tx_timeout = s2io_tx_watchdog,
7763 #ifdef CONFIG_NET_POLL_CONTROLLER
7764 .ndo_poll_controller = s2io_netpoll,
7765 #endif
7766 };
7767
7768 /**
7769 * s2io_init_nic - Initialization of the adapter .
7770 * @pdev : structure containing the PCI related information of the device.
7771 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7772 * Description:
7773 * The function initializes an adapter identified by the pci_dec structure.
7774 * All OS related initialization including memory and device structure and
7775 * initlaization of the device private variable is done. Also the swapper
7776 * control register is initialized to enable read and write into the I/O
7777 * registers of the device.
7778 * Return value:
7779 * returns 0 on success and negative on failure.
7780 */
7781
7782 static int __devinit
7783 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7784 {
7785 struct s2io_nic *sp;
7786 struct net_device *dev;
7787 int i, j, ret;
7788 int dma_flag = false;
7789 u32 mac_up, mac_down;
7790 u64 val64 = 0, tmp64 = 0;
7791 struct XENA_dev_config __iomem *bar0 = NULL;
7792 u16 subid;
7793 struct config_param *config;
7794 struct mac_info *mac_control;
7795 int mode;
7796 u8 dev_intr_type = intr_type;
7797 u8 dev_multiq = 0;
7798
7799 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7800 if (ret)
7801 return ret;
7802
7803 ret = pci_enable_device(pdev);
7804 if (ret) {
7805 DBG_PRINT(ERR_DBG,
7806 "%s: pci_enable_device failed\n", __func__);
7807 return ret;
7808 }
7809
7810 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7811 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7812 dma_flag = true;
7813 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7814 DBG_PRINT(ERR_DBG,
7815 "Unable to obtain 64bit DMA "
7816 "for consistent allocations\n");
7817 pci_disable_device(pdev);
7818 return -ENOMEM;
7819 }
7820 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7821 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7822 } else {
7823 pci_disable_device(pdev);
7824 return -ENOMEM;
7825 }
7826 ret = pci_request_regions(pdev, s2io_driver_name);
7827 if (ret) {
7828 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7829 __func__, ret);
7830 pci_disable_device(pdev);
7831 return -ENODEV;
7832 }
7833 if (dev_multiq)
7834 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7835 else
7836 dev = alloc_etherdev(sizeof(struct s2io_nic));
7837 if (dev == NULL) {
7838 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7839 pci_disable_device(pdev);
7840 pci_release_regions(pdev);
7841 return -ENODEV;
7842 }
7843
7844 pci_set_master(pdev);
7845 pci_set_drvdata(pdev, dev);
7846 SET_NETDEV_DEV(dev, &pdev->dev);
7847
7848 /* Private member variable initialized to s2io NIC structure */
7849 sp = netdev_priv(dev);
7850 memset(sp, 0, sizeof(struct s2io_nic));
7851 sp->dev = dev;
7852 sp->pdev = pdev;
7853 sp->high_dma_flag = dma_flag;
7854 sp->device_enabled_once = false;
7855 if (rx_ring_mode == 1)
7856 sp->rxd_mode = RXD_MODE_1;
7857 if (rx_ring_mode == 2)
7858 sp->rxd_mode = RXD_MODE_3B;
7859
7860 sp->config.intr_type = dev_intr_type;
7861
7862 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7863 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7864 sp->device_type = XFRAME_II_DEVICE;
7865 else
7866 sp->device_type = XFRAME_I_DEVICE;
7867
7868 sp->lro = lro_enable;
7869
7870 /* Initialize some PCI/PCI-X fields of the NIC. */
7871 s2io_init_pci(sp);
7872
7873 /*
7874 * Setting the device configuration parameters.
7875 * Most of these parameters can be specified by the user during
7876 * module insertion as they are module loadable parameters. If
7877 * these parameters are not not specified during load time, they
7878 * are initialized with default values.
7879 */
7880 config = &sp->config;
7881 mac_control = &sp->mac_control;
7882
7883 config->napi = napi;
7884 config->tx_steering_type = tx_steering_type;
7885
7886 /* Tx side parameters. */
7887 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7888 config->tx_fifo_num = MAX_TX_FIFOS;
7889 else
7890 config->tx_fifo_num = tx_fifo_num;
7891
7892 /* Initialize the fifos used for tx steering */
7893 if (config->tx_fifo_num < 5) {
7894 if (config->tx_fifo_num == 1)
7895 sp->total_tcp_fifos = 1;
7896 else
7897 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7898 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7899 sp->total_udp_fifos = 1;
7900 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7901 } else {
7902 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7903 FIFO_OTHER_MAX_NUM);
7904 sp->udp_fifo_idx = sp->total_tcp_fifos;
7905 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7906 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7907 }
7908
7909 config->multiq = dev_multiq;
7910 for (i = 0; i < config->tx_fifo_num; i++) {
7911 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7912
7913 tx_cfg->fifo_len = tx_fifo_len[i];
7914 tx_cfg->fifo_priority = i;
7915 }
7916
7917 /* mapping the QoS priority to the configured fifos */
7918 for (i = 0; i < MAX_TX_FIFOS; i++)
7919 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7920
7921 /* map the hashing selector table to the configured fifos */
7922 for (i = 0; i < config->tx_fifo_num; i++)
7923 sp->fifo_selector[i] = fifo_selector[i];
7924
7925
7926 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7927 for (i = 0; i < config->tx_fifo_num; i++) {
7928 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7929
7930 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7931 if (tx_cfg->fifo_len < 65) {
7932 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7933 break;
7934 }
7935 }
7936 /* + 2 because one Txd for skb->data and one Txd for UFO */
7937 config->max_txds = MAX_SKB_FRAGS + 2;
7938
7939 /* Rx side parameters. */
7940 config->rx_ring_num = rx_ring_num;
7941 for (i = 0; i < config->rx_ring_num; i++) {
7942 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7943 struct ring_info *ring = &mac_control->rings[i];
7944
7945 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7946 rx_cfg->ring_priority = i;
7947 ring->rx_bufs_left = 0;
7948 ring->rxd_mode = sp->rxd_mode;
7949 ring->rxd_count = rxd_count[sp->rxd_mode];
7950 ring->pdev = sp->pdev;
7951 ring->dev = sp->dev;
7952 }
7953
7954 for (i = 0; i < rx_ring_num; i++) {
7955 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7956
7957 rx_cfg->ring_org = RING_ORG_BUFF1;
7958 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7959 }
7960
7961 /* Setting Mac Control parameters */
7962 mac_control->rmac_pause_time = rmac_pause_time;
7963 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7964 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7965
7966
7967 /* initialize the shared memory used by the NIC and the host */
7968 if (init_shared_mem(sp)) {
7969 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7970 ret = -ENOMEM;
7971 goto mem_alloc_failed;
7972 }
7973
7974 sp->bar0 = pci_ioremap_bar(pdev, 0);
7975 if (!sp->bar0) {
7976 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7977 dev->name);
7978 ret = -ENOMEM;
7979 goto bar0_remap_failed;
7980 }
7981
7982 sp->bar1 = pci_ioremap_bar(pdev, 2);
7983 if (!sp->bar1) {
7984 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7985 dev->name);
7986 ret = -ENOMEM;
7987 goto bar1_remap_failed;
7988 }
7989
7990 dev->irq = pdev->irq;
7991 dev->base_addr = (unsigned long)sp->bar0;
7992
7993 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7994 for (j = 0; j < MAX_TX_FIFOS; j++) {
7995 mac_control->tx_FIFO_start[j] =
7996 (struct TxFIFO_element __iomem *)
7997 (sp->bar1 + (j * 0x00020000));
7998 }
7999
8000 /* Driver entry points */
8001 dev->netdev_ops = &s2io_netdev_ops;
8002 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8003 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8004
8005 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8006 if (sp->high_dma_flag == true)
8007 dev->features |= NETIF_F_HIGHDMA;
8008 dev->features |= NETIF_F_TSO;
8009 dev->features |= NETIF_F_TSO6;
8010 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
8011 dev->features |= NETIF_F_UFO;
8012 dev->features |= NETIF_F_HW_CSUM;
8013 }
8014 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8015 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8016 INIT_WORK(&sp->set_link_task, s2io_set_link);
8017
8018 pci_save_state(sp->pdev);
8019
8020 /* Setting swapper control on the NIC, for proper reset operation */
8021 if (s2io_set_swapper(sp)) {
8022 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8023 dev->name);
8024 ret = -EAGAIN;
8025 goto set_swap_failed;
8026 }
8027
8028 /* Verify if the Herc works on the slot its placed into */
8029 if (sp->device_type & XFRAME_II_DEVICE) {
8030 mode = s2io_verify_pci_mode(sp);
8031 if (mode < 0) {
8032 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8033 __func__);
8034 ret = -EBADSLT;
8035 goto set_swap_failed;
8036 }
8037 }
8038
8039 if (sp->config.intr_type == MSI_X) {
8040 sp->num_entries = config->rx_ring_num + 1;
8041 ret = s2io_enable_msi_x(sp);
8042
8043 if (!ret) {
8044 ret = s2io_test_msi(sp);
8045 /* rollback MSI-X, will re-enable during add_isr() */
8046 remove_msix_isr(sp);
8047 }
8048 if (ret) {
8049
8050 DBG_PRINT(ERR_DBG,
8051 "MSI-X requested but failed to enable\n");
8052 sp->config.intr_type = INTA;
8053 }
8054 }
8055
8056 if (config->intr_type == MSI_X) {
8057 for (i = 0; i < config->rx_ring_num ; i++) {
8058 struct ring_info *ring = &mac_control->rings[i];
8059
8060 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8061 }
8062 } else {
8063 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8064 }
8065
8066 /* Not needed for Herc */
8067 if (sp->device_type & XFRAME_I_DEVICE) {
8068 /*
8069 * Fix for all "FFs" MAC address problems observed on
8070 * Alpha platforms
8071 */
8072 fix_mac_address(sp);
8073 s2io_reset(sp);
8074 }
8075
8076 /*
8077 * MAC address initialization.
8078 * For now only one mac address will be read and used.
8079 */
8080 bar0 = sp->bar0;
8081 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8082 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8083 writeq(val64, &bar0->rmac_addr_cmd_mem);
8084 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8085 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8086 S2IO_BIT_RESET);
8087 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8088 mac_down = (u32)tmp64;
8089 mac_up = (u32) (tmp64 >> 32);
8090
8091 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8092 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8093 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8094 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8095 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8096 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8097
8098 /* Set the factory defined MAC address initially */
8099 dev->addr_len = ETH_ALEN;
8100 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8101 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8102
8103 /* initialize number of multicast & unicast MAC entries variables */
8104 if (sp->device_type == XFRAME_I_DEVICE) {
8105 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8106 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8107 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8108 } else if (sp->device_type == XFRAME_II_DEVICE) {
8109 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8110 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8111 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8112 }
8113
8114 /* store mac addresses from CAM to s2io_nic structure */
8115 do_s2io_store_unicast_mc(sp);
8116
8117 /* Configure MSIX vector for number of rings configured plus one */
8118 if ((sp->device_type == XFRAME_II_DEVICE) &&
8119 (config->intr_type == MSI_X))
8120 sp->num_entries = config->rx_ring_num + 1;
8121
8122 /* Store the values of the MSIX table in the s2io_nic structure */
8123 store_xmsi_data(sp);
8124 /* reset Nic and bring it to known state */
8125 s2io_reset(sp);
8126
8127 /*
8128 * Initialize link state flags
8129 * and the card state parameter
8130 */
8131 sp->state = 0;
8132
8133 /* Initialize spinlocks */
8134 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8135 struct fifo_info *fifo = &mac_control->fifos[i];
8136
8137 spin_lock_init(&fifo->tx_lock);
8138 }
8139
8140 /*
8141 * SXE-002: Configure link and activity LED to init state
8142 * on driver load.
8143 */
8144 subid = sp->pdev->subsystem_device;
8145 if ((subid & 0xFF) >= 0x07) {
8146 val64 = readq(&bar0->gpio_control);
8147 val64 |= 0x0000800000000000ULL;
8148 writeq(val64, &bar0->gpio_control);
8149 val64 = 0x0411040400000000ULL;
8150 writeq(val64, (void __iomem *)bar0 + 0x2700);
8151 val64 = readq(&bar0->gpio_control);
8152 }
8153
8154 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8155
8156 if (register_netdev(dev)) {
8157 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8158 ret = -ENODEV;
8159 goto register_failed;
8160 }
8161 s2io_vpd_read(sp);
8162 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8163 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8164 sp->product_name, pdev->revision);
8165 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8166 s2io_driver_version);
8167 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8168 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8169 if (sp->device_type & XFRAME_II_DEVICE) {
8170 mode = s2io_print_pci_mode(sp);
8171 if (mode < 0) {
8172 ret = -EBADSLT;
8173 unregister_netdev(dev);
8174 goto set_swap_failed;
8175 }
8176 }
8177 switch (sp->rxd_mode) {
8178 case RXD_MODE_1:
8179 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8180 dev->name);
8181 break;
8182 case RXD_MODE_3B:
8183 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8184 dev->name);
8185 break;
8186 }
8187
8188 switch (sp->config.napi) {
8189 case 0:
8190 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8191 break;
8192 case 1:
8193 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8194 break;
8195 }
8196
8197 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8198 sp->config.tx_fifo_num);
8199
8200 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8201 sp->config.rx_ring_num);
8202
8203 switch (sp->config.intr_type) {
8204 case INTA:
8205 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8206 break;
8207 case MSI_X:
8208 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8209 break;
8210 }
8211 if (sp->config.multiq) {
8212 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8213 struct fifo_info *fifo = &mac_control->fifos[i];
8214
8215 fifo->multiq = config->multiq;
8216 }
8217 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8218 dev->name);
8219 } else
8220 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8221 dev->name);
8222
8223 switch (sp->config.tx_steering_type) {
8224 case NO_STEERING:
8225 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8226 dev->name);
8227 break;
8228 case TX_PRIORITY_STEERING:
8229 DBG_PRINT(ERR_DBG,
8230 "%s: Priority steering enabled for transmit\n",
8231 dev->name);
8232 break;
8233 case TX_DEFAULT_STEERING:
8234 DBG_PRINT(ERR_DBG,
8235 "%s: Default steering enabled for transmit\n",
8236 dev->name);
8237 }
8238
8239 if (sp->lro)
8240 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8241 dev->name);
8242 if (ufo)
8243 DBG_PRINT(ERR_DBG,
8244 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8245 dev->name);
8246 /* Initialize device name */
8247 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8248
8249 if (vlan_tag_strip)
8250 sp->vlan_strip_flag = 1;
8251 else
8252 sp->vlan_strip_flag = 0;
8253
8254 /*
8255 * Make Link state as off at this point, when the Link change
8256 * interrupt comes the state will be automatically changed to
8257 * the right state.
8258 */
8259 netif_carrier_off(dev);
8260
8261 return 0;
8262
8263 register_failed:
8264 set_swap_failed:
8265 iounmap(sp->bar1);
8266 bar1_remap_failed:
8267 iounmap(sp->bar0);
8268 bar0_remap_failed:
8269 mem_alloc_failed:
8270 free_shared_mem(sp);
8271 pci_disable_device(pdev);
8272 pci_release_regions(pdev);
8273 pci_set_drvdata(pdev, NULL);
8274 free_netdev(dev);
8275
8276 return ret;
8277 }
8278
8279 /**
8280 * s2io_rem_nic - Free the PCI device
8281 * @pdev: structure containing the PCI related information of the device.
8282 * Description: This function is called by the Pci subsystem to release a
8283 * PCI device and free up all resource held up by the device. This could
8284 * be in response to a Hot plug event or when the driver is to be removed
8285 * from memory.
8286 */
8287
8288 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8289 {
8290 struct net_device *dev =
8291 (struct net_device *)pci_get_drvdata(pdev);
8292 struct s2io_nic *sp;
8293
8294 if (dev == NULL) {
8295 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8296 return;
8297 }
8298
8299 flush_scheduled_work();
8300
8301 sp = netdev_priv(dev);
8302 unregister_netdev(dev);
8303
8304 free_shared_mem(sp);
8305 iounmap(sp->bar0);
8306 iounmap(sp->bar1);
8307 pci_release_regions(pdev);
8308 pci_set_drvdata(pdev, NULL);
8309 free_netdev(dev);
8310 pci_disable_device(pdev);
8311 }
8312
8313 /**
8314 * s2io_starter - Entry point for the driver
8315 * Description: This function is the entry point for the driver. It verifies
8316 * the module loadable parameters and initializes PCI configuration space.
8317 */
8318
8319 static int __init s2io_starter(void)
8320 {
8321 return pci_register_driver(&s2io_driver);
8322 }
8323
8324 /**
8325 * s2io_closer - Cleanup routine for the driver
8326 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8327 */
8328
8329 static __exit void s2io_closer(void)
8330 {
8331 pci_unregister_driver(&s2io_driver);
8332 DBG_PRINT(INIT_DBG, "cleanup done\n");
8333 }
8334
8335 module_init(s2io_starter);
8336 module_exit(s2io_closer);
8337
8338 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8339 struct tcphdr **tcp, struct RxD_t *rxdp,
8340 struct s2io_nic *sp)
8341 {
8342 int ip_off;
8343 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8344
8345 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8346 DBG_PRINT(INIT_DBG,
8347 "%s: Non-TCP frames not supported for LRO\n",
8348 __func__);
8349 return -1;
8350 }
8351
8352 /* Checking for DIX type or DIX type with VLAN */
8353 if ((l2_type == 0) || (l2_type == 4)) {
8354 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8355 /*
8356 * If vlan stripping is disabled and the frame is VLAN tagged,
8357 * shift the offset by the VLAN header size bytes.
8358 */
8359 if ((!sp->vlan_strip_flag) &&
8360 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8361 ip_off += HEADER_VLAN_SIZE;
8362 } else {
8363 /* LLC, SNAP etc are considered non-mergeable */
8364 return -1;
8365 }
8366
8367 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8368 ip_len = (u8)((*ip)->ihl);
8369 ip_len <<= 2;
8370 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8371
8372 return 0;
8373 }
8374
8375 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8376 struct tcphdr *tcp)
8377 {
8378 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8379 if ((lro->iph->saddr != ip->saddr) ||
8380 (lro->iph->daddr != ip->daddr) ||
8381 (lro->tcph->source != tcp->source) ||
8382 (lro->tcph->dest != tcp->dest))
8383 return -1;
8384 return 0;
8385 }
8386
8387 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8388 {
8389 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8390 }
8391
8392 static void initiate_new_session(struct lro *lro, u8 *l2h,
8393 struct iphdr *ip, struct tcphdr *tcp,
8394 u32 tcp_pyld_len, u16 vlan_tag)
8395 {
8396 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8397 lro->l2h = l2h;
8398 lro->iph = ip;
8399 lro->tcph = tcp;
8400 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8401 lro->tcp_ack = tcp->ack_seq;
8402 lro->sg_num = 1;
8403 lro->total_len = ntohs(ip->tot_len);
8404 lro->frags_len = 0;
8405 lro->vlan_tag = vlan_tag;
8406 /*
8407 * Check if we saw TCP timestamp.
8408 * Other consistency checks have already been done.
8409 */
8410 if (tcp->doff == 8) {
8411 __be32 *ptr;
8412 ptr = (__be32 *)(tcp+1);
8413 lro->saw_ts = 1;
8414 lro->cur_tsval = ntohl(*(ptr+1));
8415 lro->cur_tsecr = *(ptr+2);
8416 }
8417 lro->in_use = 1;
8418 }
8419
8420 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8421 {
8422 struct iphdr *ip = lro->iph;
8423 struct tcphdr *tcp = lro->tcph;
8424 __sum16 nchk;
8425 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8426
8427 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8428
8429 /* Update L3 header */
8430 ip->tot_len = htons(lro->total_len);
8431 ip->check = 0;
8432 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8433 ip->check = nchk;
8434
8435 /* Update L4 header */
8436 tcp->ack_seq = lro->tcp_ack;
8437 tcp->window = lro->window;
8438
8439 /* Update tsecr field if this session has timestamps enabled */
8440 if (lro->saw_ts) {
8441 __be32 *ptr = (__be32 *)(tcp + 1);
8442 *(ptr+2) = lro->cur_tsecr;
8443 }
8444
8445 /* Update counters required for calculation of
8446 * average no. of packets aggregated.
8447 */
8448 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8449 swstats->num_aggregations++;
8450 }
8451
8452 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8453 struct tcphdr *tcp, u32 l4_pyld)
8454 {
8455 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8456 lro->total_len += l4_pyld;
8457 lro->frags_len += l4_pyld;
8458 lro->tcp_next_seq += l4_pyld;
8459 lro->sg_num++;
8460
8461 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8462 lro->tcp_ack = tcp->ack_seq;
8463 lro->window = tcp->window;
8464
8465 if (lro->saw_ts) {
8466 __be32 *ptr;
8467 /* Update tsecr and tsval from this packet */
8468 ptr = (__be32 *)(tcp+1);
8469 lro->cur_tsval = ntohl(*(ptr+1));
8470 lro->cur_tsecr = *(ptr + 2);
8471 }
8472 }
8473
8474 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8475 struct tcphdr *tcp, u32 tcp_pyld_len)
8476 {
8477 u8 *ptr;
8478
8479 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8480
8481 if (!tcp_pyld_len) {
8482 /* Runt frame or a pure ack */
8483 return -1;
8484 }
8485
8486 if (ip->ihl != 5) /* IP has options */
8487 return -1;
8488
8489 /* If we see CE codepoint in IP header, packet is not mergeable */
8490 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8491 return -1;
8492
8493 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8494 if (tcp->urg || tcp->psh || tcp->rst ||
8495 tcp->syn || tcp->fin ||
8496 tcp->ece || tcp->cwr || !tcp->ack) {
8497 /*
8498 * Currently recognize only the ack control word and
8499 * any other control field being set would result in
8500 * flushing the LRO session
8501 */
8502 return -1;
8503 }
8504
8505 /*
8506 * Allow only one TCP timestamp option. Don't aggregate if
8507 * any other options are detected.
8508 */
8509 if (tcp->doff != 5 && tcp->doff != 8)
8510 return -1;
8511
8512 if (tcp->doff == 8) {
8513 ptr = (u8 *)(tcp + 1);
8514 while (*ptr == TCPOPT_NOP)
8515 ptr++;
8516 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8517 return -1;
8518
8519 /* Ensure timestamp value increases monotonically */
8520 if (l_lro)
8521 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8522 return -1;
8523
8524 /* timestamp echo reply should be non-zero */
8525 if (*((__be32 *)(ptr+6)) == 0)
8526 return -1;
8527 }
8528
8529 return 0;
8530 }
8531
8532 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8533 u8 **tcp, u32 *tcp_len, struct lro **lro,
8534 struct RxD_t *rxdp, struct s2io_nic *sp)
8535 {
8536 struct iphdr *ip;
8537 struct tcphdr *tcph;
8538 int ret = 0, i;
8539 u16 vlan_tag = 0;
8540 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8541
8542 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8543 rxdp, sp);
8544 if (ret)
8545 return ret;
8546
8547 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8548
8549 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8550 tcph = (struct tcphdr *)*tcp;
8551 *tcp_len = get_l4_pyld_length(ip, tcph);
8552 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8553 struct lro *l_lro = &ring_data->lro0_n[i];
8554 if (l_lro->in_use) {
8555 if (check_for_socket_match(l_lro, ip, tcph))
8556 continue;
8557 /* Sock pair matched */
8558 *lro = l_lro;
8559
8560 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8561 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8562 "expected 0x%x, actual 0x%x\n",
8563 __func__,
8564 (*lro)->tcp_next_seq,
8565 ntohl(tcph->seq));
8566
8567 swstats->outof_sequence_pkts++;
8568 ret = 2;
8569 break;
8570 }
8571
8572 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8573 *tcp_len))
8574 ret = 1; /* Aggregate */
8575 else
8576 ret = 2; /* Flush both */
8577 break;
8578 }
8579 }
8580
8581 if (ret == 0) {
8582 /* Before searching for available LRO objects,
8583 * check if the pkt is L3/L4 aggregatable. If not
8584 * don't create new LRO session. Just send this
8585 * packet up.
8586 */
8587 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8588 return 5;
8589
8590 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8591 struct lro *l_lro = &ring_data->lro0_n[i];
8592 if (!(l_lro->in_use)) {
8593 *lro = l_lro;
8594 ret = 3; /* Begin anew */
8595 break;
8596 }
8597 }
8598 }
8599
8600 if (ret == 0) { /* sessions exceeded */
8601 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8602 __func__);
8603 *lro = NULL;
8604 return ret;
8605 }
8606
8607 switch (ret) {
8608 case 3:
8609 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8610 vlan_tag);
8611 break;
8612 case 2:
8613 update_L3L4_header(sp, *lro);
8614 break;
8615 case 1:
8616 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8617 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8618 update_L3L4_header(sp, *lro);
8619 ret = 4; /* Flush the LRO */
8620 }
8621 break;
8622 default:
8623 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8624 break;
8625 }
8626
8627 return ret;
8628 }
8629
8630 static void clear_lro_session(struct lro *lro)
8631 {
8632 static u16 lro_struct_size = sizeof(struct lro);
8633
8634 memset(lro, 0, lro_struct_size);
8635 }
8636
8637 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8638 {
8639 struct net_device *dev = skb->dev;
8640 struct s2io_nic *sp = netdev_priv(dev);
8641
8642 skb->protocol = eth_type_trans(skb, dev);
8643 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8644 /* Queueing the vlan frame to the upper layer */
8645 if (sp->config.napi)
8646 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8647 else
8648 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8649 } else {
8650 if (sp->config.napi)
8651 netif_receive_skb(skb);
8652 else
8653 netif_rx(skb);
8654 }
8655 }
8656
8657 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8658 struct sk_buff *skb, u32 tcp_len)
8659 {
8660 struct sk_buff *first = lro->parent;
8661 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8662
8663 first->len += tcp_len;
8664 first->data_len = lro->frags_len;
8665 skb_pull(skb, (skb->len - tcp_len));
8666 if (skb_shinfo(first)->frag_list)
8667 lro->last_frag->next = skb;
8668 else
8669 skb_shinfo(first)->frag_list = skb;
8670 first->truesize += skb->truesize;
8671 lro->last_frag = skb;
8672 swstats->clubbed_frms_cnt++;
8673 }
8674
8675 /**
8676 * s2io_io_error_detected - called when PCI error is detected
8677 * @pdev: Pointer to PCI device
8678 * @state: The current pci connection state
8679 *
8680 * This function is called after a PCI bus error affecting
8681 * this device has been detected.
8682 */
8683 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8684 pci_channel_state_t state)
8685 {
8686 struct net_device *netdev = pci_get_drvdata(pdev);
8687 struct s2io_nic *sp = netdev_priv(netdev);
8688
8689 netif_device_detach(netdev);
8690
8691 if (state == pci_channel_io_perm_failure)
8692 return PCI_ERS_RESULT_DISCONNECT;
8693
8694 if (netif_running(netdev)) {
8695 /* Bring down the card, while avoiding PCI I/O */
8696 do_s2io_card_down(sp, 0);
8697 }
8698 pci_disable_device(pdev);
8699
8700 return PCI_ERS_RESULT_NEED_RESET;
8701 }
8702
8703 /**
8704 * s2io_io_slot_reset - called after the pci bus has been reset.
8705 * @pdev: Pointer to PCI device
8706 *
8707 * Restart the card from scratch, as if from a cold-boot.
8708 * At this point, the card has exprienced a hard reset,
8709 * followed by fixups by BIOS, and has its config space
8710 * set up identically to what it was at cold boot.
8711 */
8712 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8713 {
8714 struct net_device *netdev = pci_get_drvdata(pdev);
8715 struct s2io_nic *sp = netdev_priv(netdev);
8716
8717 if (pci_enable_device(pdev)) {
8718 pr_err("Cannot re-enable PCI device after reset.\n");
8719 return PCI_ERS_RESULT_DISCONNECT;
8720 }
8721
8722 pci_set_master(pdev);
8723 s2io_reset(sp);
8724
8725 return PCI_ERS_RESULT_RECOVERED;
8726 }
8727
8728 /**
8729 * s2io_io_resume - called when traffic can start flowing again.
8730 * @pdev: Pointer to PCI device
8731 *
8732 * This callback is called when the error recovery driver tells
8733 * us that its OK to resume normal operation.
8734 */
8735 static void s2io_io_resume(struct pci_dev *pdev)
8736 {
8737 struct net_device *netdev = pci_get_drvdata(pdev);
8738 struct s2io_nic *sp = netdev_priv(netdev);
8739
8740 if (netif_running(netdev)) {
8741 if (s2io_card_up(sp)) {
8742 pr_err("Can't bring device back up after reset.\n");
8743 return;
8744 }
8745
8746 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8747 s2io_card_down(sp);
8748 pr_err("Can't restore mac addr after reset.\n");
8749 return;
8750 }
8751 }
8752
8753 netif_device_attach(netdev);
8754 netif_tx_wake_all_queues(netdev);
8755 }
This page took 0.1977 seconds and 6 git commands to generate.