sfc: Decouple NIC revision number from Falcon PCI revision number
[deliverable/linux.git] / drivers / net / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "mdio_10g.h"
26 #include "falcon.h"
27
28 /**************************************************************************
29 *
30 * Type name strings
31 *
32 **************************************************************************
33 */
34
35 /* Loopback mode names (see LOOPBACK_MODE()) */
36 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
37 const char *efx_loopback_mode_names[] = {
38 [LOOPBACK_NONE] = "NONE",
39 [LOOPBACK_GMAC] = "GMAC",
40 [LOOPBACK_XGMII] = "XGMII",
41 [LOOPBACK_XGXS] = "XGXS",
42 [LOOPBACK_XAUI] = "XAUI",
43 [LOOPBACK_GPHY] = "GPHY",
44 [LOOPBACK_PHYXS] = "PHYXS",
45 [LOOPBACK_PCS] = "PCS",
46 [LOOPBACK_PMAPMD] = "PMA/PMD",
47 [LOOPBACK_NETWORK] = "NETWORK",
48 };
49
50 /* Interrupt mode names (see INT_MODE())) */
51 const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
52 const char *efx_interrupt_mode_names[] = {
53 [EFX_INT_MODE_MSIX] = "MSI-X",
54 [EFX_INT_MODE_MSI] = "MSI",
55 [EFX_INT_MODE_LEGACY] = "legacy",
56 };
57
58 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
59 const char *efx_reset_type_names[] = {
60 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
61 [RESET_TYPE_ALL] = "ALL",
62 [RESET_TYPE_WORLD] = "WORLD",
63 [RESET_TYPE_DISABLE] = "DISABLE",
64 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
65 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
66 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
67 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
68 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
69 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
70 };
71
72 #define EFX_MAX_MTU (9 * 1024)
73
74 /* RX slow fill workqueue. If memory allocation fails in the fast path,
75 * a work item is pushed onto this work queue to retry the allocation later,
76 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
77 * workqueue, there is nothing to be gained in making it per NIC
78 */
79 static struct workqueue_struct *refill_workqueue;
80
81 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
82 * queued onto this work queue. This is not a per-nic work queue, because
83 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
84 */
85 static struct workqueue_struct *reset_workqueue;
86
87 /**************************************************************************
88 *
89 * Configurable values
90 *
91 *************************************************************************/
92
93 /*
94 * Use separate channels for TX and RX events
95 *
96 * Set this to 1 to use separate channels for TX and RX. It allows us
97 * to control interrupt affinity separately for TX and RX.
98 *
99 * This is only used in MSI-X interrupt mode
100 */
101 static unsigned int separate_tx_channels;
102 module_param(separate_tx_channels, uint, 0644);
103 MODULE_PARM_DESC(separate_tx_channels,
104 "Use separate channels for TX and RX");
105
106 /* This is the weight assigned to each of the (per-channel) virtual
107 * NAPI devices.
108 */
109 static int napi_weight = 64;
110
111 /* This is the time (in jiffies) between invocations of the hardware
112 * monitor, which checks for known hardware bugs and resets the
113 * hardware and driver as necessary.
114 */
115 unsigned int efx_monitor_interval = 1 * HZ;
116
117 /* This controls whether or not the driver will initialise devices
118 * with invalid MAC addresses stored in the EEPROM or flash. If true,
119 * such devices will be initialised with a random locally-generated
120 * MAC address. This allows for loading the sfc_mtd driver to
121 * reprogram the flash, even if the flash contents (including the MAC
122 * address) have previously been erased.
123 */
124 static unsigned int allow_bad_hwaddr;
125
126 /* Initial interrupt moderation settings. They can be modified after
127 * module load with ethtool.
128 *
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
131 */
132 static unsigned int rx_irq_mod_usec = 60;
133
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full. A queue is
139 * restarted when it drops below half full. The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 * 512 / 3 * 1.2 = 205 usec.
142 */
143 static unsigned int tx_irq_mod_usec = 150;
144
145 /* This is the first interrupt mode to try out of:
146 * 0 => MSI-X
147 * 1 => MSI
148 * 2 => legacy
149 */
150 static unsigned int interrupt_mode;
151
152 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
155 *
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157 * The default (0) means to assign an interrupt to each package (level II cache)
158 */
159 static unsigned int rss_cpus;
160 module_param(rss_cpus, uint, 0444);
161 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162
163 static int phy_flash_cfg;
164 module_param(phy_flash_cfg, int, 0644);
165 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166
167 static unsigned irq_adapt_low_thresh = 10000;
168 module_param(irq_adapt_low_thresh, uint, 0644);
169 MODULE_PARM_DESC(irq_adapt_low_thresh,
170 "Threshold score for reducing IRQ moderation");
171
172 static unsigned irq_adapt_high_thresh = 20000;
173 module_param(irq_adapt_high_thresh, uint, 0644);
174 MODULE_PARM_DESC(irq_adapt_high_thresh,
175 "Threshold score for increasing IRQ moderation");
176
177 /**************************************************************************
178 *
179 * Utility functions and prototypes
180 *
181 *************************************************************************/
182 static void efx_remove_channel(struct efx_channel *channel);
183 static void efx_remove_port(struct efx_nic *efx);
184 static void efx_fini_napi(struct efx_nic *efx);
185 static void efx_fini_channels(struct efx_nic *efx);
186
187 #define EFX_ASSERT_RESET_SERIALISED(efx) \
188 do { \
189 if ((efx->state == STATE_RUNNING) || \
190 (efx->state == STATE_DISABLED)) \
191 ASSERT_RTNL(); \
192 } while (0)
193
194 /**************************************************************************
195 *
196 * Event queue processing
197 *
198 *************************************************************************/
199
200 /* Process channel's event queue
201 *
202 * This function is responsible for processing the event queue of a
203 * single channel. The caller must guarantee that this function will
204 * never be concurrently called more than once on the same channel,
205 * though different channels may be being processed concurrently.
206 */
207 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
208 {
209 struct efx_nic *efx = channel->efx;
210 int rx_packets;
211
212 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
213 !channel->enabled))
214 return 0;
215
216 rx_packets = falcon_process_eventq(channel, rx_quota);
217 if (rx_packets == 0)
218 return 0;
219
220 /* Deliver last RX packet. */
221 if (channel->rx_pkt) {
222 __efx_rx_packet(channel, channel->rx_pkt,
223 channel->rx_pkt_csummed);
224 channel->rx_pkt = NULL;
225 }
226
227 efx_rx_strategy(channel);
228
229 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
230
231 return rx_packets;
232 }
233
234 /* Mark channel as finished processing
235 *
236 * Note that since we will not receive further interrupts for this
237 * channel before we finish processing and call the eventq_read_ack()
238 * method, there is no need to use the interrupt hold-off timers.
239 */
240 static inline void efx_channel_processed(struct efx_channel *channel)
241 {
242 /* The interrupt handler for this channel may set work_pending
243 * as soon as we acknowledge the events we've seen. Make sure
244 * it's cleared before then. */
245 channel->work_pending = false;
246 smp_wmb();
247
248 falcon_eventq_read_ack(channel);
249 }
250
251 /* NAPI poll handler
252 *
253 * NAPI guarantees serialisation of polls of the same device, which
254 * provides the guarantee required by efx_process_channel().
255 */
256 static int efx_poll(struct napi_struct *napi, int budget)
257 {
258 struct efx_channel *channel =
259 container_of(napi, struct efx_channel, napi_str);
260 int rx_packets;
261
262 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
263 channel->channel, raw_smp_processor_id());
264
265 rx_packets = efx_process_channel(channel, budget);
266
267 if (rx_packets < budget) {
268 struct efx_nic *efx = channel->efx;
269
270 if (channel->used_flags & EFX_USED_BY_RX &&
271 efx->irq_rx_adaptive &&
272 unlikely(++channel->irq_count == 1000)) {
273 if (unlikely(channel->irq_mod_score <
274 irq_adapt_low_thresh)) {
275 if (channel->irq_moderation > 1) {
276 channel->irq_moderation -= 1;
277 falcon_set_int_moderation(channel);
278 }
279 } else if (unlikely(channel->irq_mod_score >
280 irq_adapt_high_thresh)) {
281 if (channel->irq_moderation <
282 efx->irq_rx_moderation) {
283 channel->irq_moderation += 1;
284 falcon_set_int_moderation(channel);
285 }
286 }
287 channel->irq_count = 0;
288 channel->irq_mod_score = 0;
289 }
290
291 /* There is no race here; although napi_disable() will
292 * only wait for napi_complete(), this isn't a problem
293 * since efx_channel_processed() will have no effect if
294 * interrupts have already been disabled.
295 */
296 napi_complete(napi);
297 efx_channel_processed(channel);
298 }
299
300 return rx_packets;
301 }
302
303 /* Process the eventq of the specified channel immediately on this CPU
304 *
305 * Disable hardware generated interrupts, wait for any existing
306 * processing to finish, then directly poll (and ack ) the eventq.
307 * Finally reenable NAPI and interrupts.
308 *
309 * Since we are touching interrupts the caller should hold the suspend lock
310 */
311 void efx_process_channel_now(struct efx_channel *channel)
312 {
313 struct efx_nic *efx = channel->efx;
314
315 BUG_ON(!channel->used_flags);
316 BUG_ON(!channel->enabled);
317
318 /* Disable interrupts and wait for ISRs to complete */
319 falcon_disable_interrupts(efx);
320 if (efx->legacy_irq)
321 synchronize_irq(efx->legacy_irq);
322 if (channel->irq)
323 synchronize_irq(channel->irq);
324
325 /* Wait for any NAPI processing to complete */
326 napi_disable(&channel->napi_str);
327
328 /* Poll the channel */
329 efx_process_channel(channel, EFX_EVQ_SIZE);
330
331 /* Ack the eventq. This may cause an interrupt to be generated
332 * when they are reenabled */
333 efx_channel_processed(channel);
334
335 napi_enable(&channel->napi_str);
336 falcon_enable_interrupts(efx);
337 }
338
339 /* Create event queue
340 * Event queue memory allocations are done only once. If the channel
341 * is reset, the memory buffer will be reused; this guards against
342 * errors during channel reset and also simplifies interrupt handling.
343 */
344 static int efx_probe_eventq(struct efx_channel *channel)
345 {
346 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
347
348 return falcon_probe_eventq(channel);
349 }
350
351 /* Prepare channel's event queue */
352 static void efx_init_eventq(struct efx_channel *channel)
353 {
354 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
355
356 channel->eventq_read_ptr = 0;
357
358 falcon_init_eventq(channel);
359 }
360
361 static void efx_fini_eventq(struct efx_channel *channel)
362 {
363 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
364
365 falcon_fini_eventq(channel);
366 }
367
368 static void efx_remove_eventq(struct efx_channel *channel)
369 {
370 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
371
372 falcon_remove_eventq(channel);
373 }
374
375 /**************************************************************************
376 *
377 * Channel handling
378 *
379 *************************************************************************/
380
381 static int efx_probe_channel(struct efx_channel *channel)
382 {
383 struct efx_tx_queue *tx_queue;
384 struct efx_rx_queue *rx_queue;
385 int rc;
386
387 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
388
389 rc = efx_probe_eventq(channel);
390 if (rc)
391 goto fail1;
392
393 efx_for_each_channel_tx_queue(tx_queue, channel) {
394 rc = efx_probe_tx_queue(tx_queue);
395 if (rc)
396 goto fail2;
397 }
398
399 efx_for_each_channel_rx_queue(rx_queue, channel) {
400 rc = efx_probe_rx_queue(rx_queue);
401 if (rc)
402 goto fail3;
403 }
404
405 channel->n_rx_frm_trunc = 0;
406
407 return 0;
408
409 fail3:
410 efx_for_each_channel_rx_queue(rx_queue, channel)
411 efx_remove_rx_queue(rx_queue);
412 fail2:
413 efx_for_each_channel_tx_queue(tx_queue, channel)
414 efx_remove_tx_queue(tx_queue);
415 fail1:
416 return rc;
417 }
418
419
420 static void efx_set_channel_names(struct efx_nic *efx)
421 {
422 struct efx_channel *channel;
423 const char *type = "";
424 int number;
425
426 efx_for_each_channel(channel, efx) {
427 number = channel->channel;
428 if (efx->n_channels > efx->n_rx_queues) {
429 if (channel->channel < efx->n_rx_queues) {
430 type = "-rx";
431 } else {
432 type = "-tx";
433 number -= efx->n_rx_queues;
434 }
435 }
436 snprintf(channel->name, sizeof(channel->name),
437 "%s%s-%d", efx->name, type, number);
438 }
439 }
440
441 /* Channels are shutdown and reinitialised whilst the NIC is running
442 * to propagate configuration changes (mtu, checksum offload), or
443 * to clear hardware error conditions
444 */
445 static void efx_init_channels(struct efx_nic *efx)
446 {
447 struct efx_tx_queue *tx_queue;
448 struct efx_rx_queue *rx_queue;
449 struct efx_channel *channel;
450
451 /* Calculate the rx buffer allocation parameters required to
452 * support the current MTU, including padding for header
453 * alignment and overruns.
454 */
455 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
456 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
457 efx->type->rx_buffer_padding);
458 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
459
460 /* Initialise the channels */
461 efx_for_each_channel(channel, efx) {
462 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
463
464 efx_init_eventq(channel);
465
466 efx_for_each_channel_tx_queue(tx_queue, channel)
467 efx_init_tx_queue(tx_queue);
468
469 /* The rx buffer allocation strategy is MTU dependent */
470 efx_rx_strategy(channel);
471
472 efx_for_each_channel_rx_queue(rx_queue, channel)
473 efx_init_rx_queue(rx_queue);
474
475 WARN_ON(channel->rx_pkt != NULL);
476 efx_rx_strategy(channel);
477 }
478 }
479
480 /* This enables event queue processing and packet transmission.
481 *
482 * Note that this function is not allowed to fail, since that would
483 * introduce too much complexity into the suspend/resume path.
484 */
485 static void efx_start_channel(struct efx_channel *channel)
486 {
487 struct efx_rx_queue *rx_queue;
488
489 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
490
491 /* The interrupt handler for this channel may set work_pending
492 * as soon as we enable it. Make sure it's cleared before
493 * then. Similarly, make sure it sees the enabled flag set. */
494 channel->work_pending = false;
495 channel->enabled = true;
496 smp_wmb();
497
498 napi_enable(&channel->napi_str);
499
500 /* Load up RX descriptors */
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_fast_push_rx_descriptors(rx_queue);
503 }
504
505 /* This disables event queue processing and packet transmission.
506 * This function does not guarantee that all queue processing
507 * (e.g. RX refill) is complete.
508 */
509 static void efx_stop_channel(struct efx_channel *channel)
510 {
511 struct efx_rx_queue *rx_queue;
512
513 if (!channel->enabled)
514 return;
515
516 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
517
518 channel->enabled = false;
519 napi_disable(&channel->napi_str);
520
521 /* Ensure that any worker threads have exited or will be no-ops */
522 efx_for_each_channel_rx_queue(rx_queue, channel) {
523 spin_lock_bh(&rx_queue->add_lock);
524 spin_unlock_bh(&rx_queue->add_lock);
525 }
526 }
527
528 static void efx_fini_channels(struct efx_nic *efx)
529 {
530 struct efx_channel *channel;
531 struct efx_tx_queue *tx_queue;
532 struct efx_rx_queue *rx_queue;
533 int rc;
534
535 EFX_ASSERT_RESET_SERIALISED(efx);
536 BUG_ON(efx->port_enabled);
537
538 rc = falcon_flush_queues(efx);
539 if (rc)
540 EFX_ERR(efx, "failed to flush queues\n");
541 else
542 EFX_LOG(efx, "successfully flushed all queues\n");
543
544 efx_for_each_channel(channel, efx) {
545 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
546
547 efx_for_each_channel_rx_queue(rx_queue, channel)
548 efx_fini_rx_queue(rx_queue);
549 efx_for_each_channel_tx_queue(tx_queue, channel)
550 efx_fini_tx_queue(tx_queue);
551 efx_fini_eventq(channel);
552 }
553 }
554
555 static void efx_remove_channel(struct efx_channel *channel)
556 {
557 struct efx_tx_queue *tx_queue;
558 struct efx_rx_queue *rx_queue;
559
560 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
561
562 efx_for_each_channel_rx_queue(rx_queue, channel)
563 efx_remove_rx_queue(rx_queue);
564 efx_for_each_channel_tx_queue(tx_queue, channel)
565 efx_remove_tx_queue(tx_queue);
566 efx_remove_eventq(channel);
567
568 channel->used_flags = 0;
569 }
570
571 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
572 {
573 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
574 }
575
576 /**************************************************************************
577 *
578 * Port handling
579 *
580 **************************************************************************/
581
582 /* This ensures that the kernel is kept informed (via
583 * netif_carrier_on/off) of the link status, and also maintains the
584 * link status's stop on the port's TX queue.
585 */
586 void efx_link_status_changed(struct efx_nic *efx)
587 {
588 struct efx_link_state *link_state = &efx->link_state;
589
590 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
591 * that no events are triggered between unregister_netdev() and the
592 * driver unloading. A more general condition is that NETDEV_CHANGE
593 * can only be generated between NETDEV_UP and NETDEV_DOWN */
594 if (!netif_running(efx->net_dev))
595 return;
596
597 if (efx->port_inhibited) {
598 netif_carrier_off(efx->net_dev);
599 return;
600 }
601
602 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
603 efx->n_link_state_changes++;
604
605 if (link_state->up)
606 netif_carrier_on(efx->net_dev);
607 else
608 netif_carrier_off(efx->net_dev);
609 }
610
611 /* Status message for kernel log */
612 if (link_state->up) {
613 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
614 link_state->speed, link_state->fd ? "full" : "half",
615 efx->net_dev->mtu,
616 (efx->promiscuous ? " [PROMISC]" : ""));
617 } else {
618 EFX_INFO(efx, "link down\n");
619 }
620
621 }
622
623 static void efx_fini_port(struct efx_nic *efx);
624
625 /* This call reinitialises the MAC to pick up new PHY settings. The
626 * caller must hold the mac_lock */
627 void __efx_reconfigure_port(struct efx_nic *efx)
628 {
629 WARN_ON(!mutex_is_locked(&efx->mac_lock));
630
631 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
632 raw_smp_processor_id());
633
634 /* Serialise the promiscuous flag with efx_set_multicast_list. */
635 if (efx_dev_registered(efx)) {
636 netif_addr_lock_bh(efx->net_dev);
637 netif_addr_unlock_bh(efx->net_dev);
638 }
639
640 falcon_stop_nic_stats(efx);
641 falcon_deconfigure_mac_wrapper(efx);
642
643 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
644 if (LOOPBACK_INTERNAL(efx))
645 efx->phy_mode |= PHY_MODE_TX_DISABLED;
646 else
647 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
648 efx->phy_op->reconfigure(efx);
649
650 if (falcon_switch_mac(efx))
651 goto fail;
652
653 efx->mac_op->reconfigure(efx);
654
655 falcon_start_nic_stats(efx);
656
657 /* Inform kernel of loss/gain of carrier */
658 efx_link_status_changed(efx);
659 return;
660
661 fail:
662 EFX_ERR(efx, "failed to reconfigure MAC\n");
663 efx->port_enabled = false;
664 efx_fini_port(efx);
665 }
666
667 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
668 * disabled. */
669 void efx_reconfigure_port(struct efx_nic *efx)
670 {
671 EFX_ASSERT_RESET_SERIALISED(efx);
672
673 mutex_lock(&efx->mac_lock);
674 __efx_reconfigure_port(efx);
675 mutex_unlock(&efx->mac_lock);
676 }
677
678 /* Asynchronous work item for changing MAC promiscuity and multicast
679 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
680 * MAC directly. */
681 static void efx_mac_work(struct work_struct *data)
682 {
683 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
684
685 mutex_lock(&efx->mac_lock);
686 if (efx->port_enabled) {
687 falcon_push_multicast_hash(efx);
688 efx->mac_op->reconfigure(efx);
689 }
690 mutex_unlock(&efx->mac_lock);
691 }
692
693 static int efx_probe_port(struct efx_nic *efx)
694 {
695 int rc;
696
697 EFX_LOG(efx, "create port\n");
698
699 /* Connect up MAC/PHY operations table and read MAC address */
700 rc = falcon_probe_port(efx);
701 if (rc)
702 goto err;
703
704 if (phy_flash_cfg)
705 efx->phy_mode = PHY_MODE_SPECIAL;
706
707 /* Sanity check MAC address */
708 if (is_valid_ether_addr(efx->mac_address)) {
709 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
710 } else {
711 EFX_ERR(efx, "invalid MAC address %pM\n",
712 efx->mac_address);
713 if (!allow_bad_hwaddr) {
714 rc = -EINVAL;
715 goto err;
716 }
717 random_ether_addr(efx->net_dev->dev_addr);
718 EFX_INFO(efx, "using locally-generated MAC %pM\n",
719 efx->net_dev->dev_addr);
720 }
721
722 return 0;
723
724 err:
725 efx_remove_port(efx);
726 return rc;
727 }
728
729 static int efx_init_port(struct efx_nic *efx)
730 {
731 int rc;
732
733 EFX_LOG(efx, "init port\n");
734
735 mutex_lock(&efx->mac_lock);
736
737 rc = efx->phy_op->init(efx);
738 if (rc)
739 goto fail1;
740 efx->phy_op->reconfigure(efx);
741 rc = falcon_switch_mac(efx);
742 if (rc)
743 goto fail2;
744 efx->mac_op->reconfigure(efx);
745
746 efx->port_initialized = true;
747
748 mutex_unlock(&efx->mac_lock);
749 return 0;
750
751 fail2:
752 efx->phy_op->fini(efx);
753 fail1:
754 mutex_unlock(&efx->mac_lock);
755 return rc;
756 }
757
758 static void efx_start_port(struct efx_nic *efx)
759 {
760 EFX_LOG(efx, "start port\n");
761 BUG_ON(efx->port_enabled);
762
763 mutex_lock(&efx->mac_lock);
764 efx->port_enabled = true;
765
766 /* efx_mac_work() might have been scheduled after efx_stop_port(),
767 * and then cancelled by efx_flush_all() */
768 falcon_push_multicast_hash(efx);
769 efx->mac_op->reconfigure(efx);
770
771 mutex_unlock(&efx->mac_lock);
772 }
773
774 /* Prevent efx_mac_work() and efx_monitor() from working */
775 static void efx_stop_port(struct efx_nic *efx)
776 {
777 EFX_LOG(efx, "stop port\n");
778
779 mutex_lock(&efx->mac_lock);
780 efx->port_enabled = false;
781 mutex_unlock(&efx->mac_lock);
782
783 /* Serialise against efx_set_multicast_list() */
784 if (efx_dev_registered(efx)) {
785 netif_addr_lock_bh(efx->net_dev);
786 netif_addr_unlock_bh(efx->net_dev);
787 }
788 }
789
790 static void efx_fini_port(struct efx_nic *efx)
791 {
792 EFX_LOG(efx, "shut down port\n");
793
794 if (!efx->port_initialized)
795 return;
796
797 efx->phy_op->fini(efx);
798 efx->port_initialized = false;
799
800 efx->link_state.up = false;
801 efx_link_status_changed(efx);
802 }
803
804 static void efx_remove_port(struct efx_nic *efx)
805 {
806 EFX_LOG(efx, "destroying port\n");
807
808 falcon_remove_port(efx);
809 }
810
811 /**************************************************************************
812 *
813 * NIC handling
814 *
815 **************************************************************************/
816
817 /* This configures the PCI device to enable I/O and DMA. */
818 static int efx_init_io(struct efx_nic *efx)
819 {
820 struct pci_dev *pci_dev = efx->pci_dev;
821 dma_addr_t dma_mask = efx->type->max_dma_mask;
822 int rc;
823
824 EFX_LOG(efx, "initialising I/O\n");
825
826 rc = pci_enable_device(pci_dev);
827 if (rc) {
828 EFX_ERR(efx, "failed to enable PCI device\n");
829 goto fail1;
830 }
831
832 pci_set_master(pci_dev);
833
834 /* Set the PCI DMA mask. Try all possibilities from our
835 * genuine mask down to 32 bits, because some architectures
836 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
837 * masks event though they reject 46 bit masks.
838 */
839 while (dma_mask > 0x7fffffffUL) {
840 if (pci_dma_supported(pci_dev, dma_mask) &&
841 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
842 break;
843 dma_mask >>= 1;
844 }
845 if (rc) {
846 EFX_ERR(efx, "could not find a suitable DMA mask\n");
847 goto fail2;
848 }
849 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
850 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
851 if (rc) {
852 /* pci_set_consistent_dma_mask() is not *allowed* to
853 * fail with a mask that pci_set_dma_mask() accepted,
854 * but just in case...
855 */
856 EFX_ERR(efx, "failed to set consistent DMA mask\n");
857 goto fail2;
858 }
859
860 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
861 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
862 if (rc) {
863 EFX_ERR(efx, "request for memory BAR failed\n");
864 rc = -EIO;
865 goto fail3;
866 }
867 efx->membase = ioremap_nocache(efx->membase_phys,
868 efx->type->mem_map_size);
869 if (!efx->membase) {
870 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
871 (unsigned long long)efx->membase_phys,
872 efx->type->mem_map_size);
873 rc = -ENOMEM;
874 goto fail4;
875 }
876 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
877 (unsigned long long)efx->membase_phys,
878 efx->type->mem_map_size, efx->membase);
879
880 return 0;
881
882 fail4:
883 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
884 fail3:
885 efx->membase_phys = 0;
886 fail2:
887 pci_disable_device(efx->pci_dev);
888 fail1:
889 return rc;
890 }
891
892 static void efx_fini_io(struct efx_nic *efx)
893 {
894 EFX_LOG(efx, "shutting down I/O\n");
895
896 if (efx->membase) {
897 iounmap(efx->membase);
898 efx->membase = NULL;
899 }
900
901 if (efx->membase_phys) {
902 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
903 efx->membase_phys = 0;
904 }
905
906 pci_disable_device(efx->pci_dev);
907 }
908
909 /* Get number of RX queues wanted. Return number of online CPU
910 * packages in the expectation that an IRQ balancer will spread
911 * interrupts across them. */
912 static int efx_wanted_rx_queues(void)
913 {
914 cpumask_var_t core_mask;
915 int count;
916 int cpu;
917
918 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
919 printk(KERN_WARNING
920 "sfc: RSS disabled due to allocation failure\n");
921 return 1;
922 }
923
924 count = 0;
925 for_each_online_cpu(cpu) {
926 if (!cpumask_test_cpu(cpu, core_mask)) {
927 ++count;
928 cpumask_or(core_mask, core_mask,
929 topology_core_cpumask(cpu));
930 }
931 }
932
933 free_cpumask_var(core_mask);
934 return count;
935 }
936
937 /* Probe the number and type of interrupts we are able to obtain, and
938 * the resulting numbers of channels and RX queues.
939 */
940 static void efx_probe_interrupts(struct efx_nic *efx)
941 {
942 int max_channels =
943 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
944 int rc, i;
945
946 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
947 struct msix_entry xentries[EFX_MAX_CHANNELS];
948 int wanted_ints;
949 int rx_queues;
950
951 /* We want one RX queue and interrupt per CPU package
952 * (or as specified by the rss_cpus module parameter).
953 * We will need one channel per interrupt.
954 */
955 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
956 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
957 wanted_ints = min(wanted_ints, max_channels);
958
959 for (i = 0; i < wanted_ints; i++)
960 xentries[i].entry = i;
961 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
962 if (rc > 0) {
963 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
964 " available (%d < %d).\n", rc, wanted_ints);
965 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
966 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
967 wanted_ints = rc;
968 rc = pci_enable_msix(efx->pci_dev, xentries,
969 wanted_ints);
970 }
971
972 if (rc == 0) {
973 efx->n_rx_queues = min(rx_queues, wanted_ints);
974 efx->n_channels = wanted_ints;
975 for (i = 0; i < wanted_ints; i++)
976 efx->channel[i].irq = xentries[i].vector;
977 } else {
978 /* Fall back to single channel MSI */
979 efx->interrupt_mode = EFX_INT_MODE_MSI;
980 EFX_ERR(efx, "could not enable MSI-X\n");
981 }
982 }
983
984 /* Try single interrupt MSI */
985 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
986 efx->n_rx_queues = 1;
987 efx->n_channels = 1;
988 rc = pci_enable_msi(efx->pci_dev);
989 if (rc == 0) {
990 efx->channel[0].irq = efx->pci_dev->irq;
991 } else {
992 EFX_ERR(efx, "could not enable MSI\n");
993 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
994 }
995 }
996
997 /* Assume legacy interrupts */
998 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
999 efx->n_rx_queues = 1;
1000 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1001 efx->legacy_irq = efx->pci_dev->irq;
1002 }
1003 }
1004
1005 static void efx_remove_interrupts(struct efx_nic *efx)
1006 {
1007 struct efx_channel *channel;
1008
1009 /* Remove MSI/MSI-X interrupts */
1010 efx_for_each_channel(channel, efx)
1011 channel->irq = 0;
1012 pci_disable_msi(efx->pci_dev);
1013 pci_disable_msix(efx->pci_dev);
1014
1015 /* Remove legacy interrupt */
1016 efx->legacy_irq = 0;
1017 }
1018
1019 static void efx_set_channels(struct efx_nic *efx)
1020 {
1021 struct efx_tx_queue *tx_queue;
1022 struct efx_rx_queue *rx_queue;
1023
1024 efx_for_each_tx_queue(tx_queue, efx) {
1025 if (separate_tx_channels)
1026 tx_queue->channel = &efx->channel[efx->n_channels-1];
1027 else
1028 tx_queue->channel = &efx->channel[0];
1029 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1030 }
1031
1032 efx_for_each_rx_queue(rx_queue, efx) {
1033 rx_queue->channel = &efx->channel[rx_queue->queue];
1034 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1035 }
1036 }
1037
1038 static int efx_probe_nic(struct efx_nic *efx)
1039 {
1040 int rc;
1041
1042 EFX_LOG(efx, "creating NIC\n");
1043
1044 /* Carry out hardware-type specific initialisation */
1045 rc = falcon_probe_nic(efx);
1046 if (rc)
1047 return rc;
1048
1049 /* Determine the number of channels and RX queues by trying to hook
1050 * in MSI-X interrupts. */
1051 efx_probe_interrupts(efx);
1052
1053 efx_set_channels(efx);
1054
1055 /* Initialise the interrupt moderation settings */
1056 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1057
1058 return 0;
1059 }
1060
1061 static void efx_remove_nic(struct efx_nic *efx)
1062 {
1063 EFX_LOG(efx, "destroying NIC\n");
1064
1065 efx_remove_interrupts(efx);
1066 falcon_remove_nic(efx);
1067 }
1068
1069 /**************************************************************************
1070 *
1071 * NIC startup/shutdown
1072 *
1073 *************************************************************************/
1074
1075 static int efx_probe_all(struct efx_nic *efx)
1076 {
1077 struct efx_channel *channel;
1078 int rc;
1079
1080 /* Create NIC */
1081 rc = efx_probe_nic(efx);
1082 if (rc) {
1083 EFX_ERR(efx, "failed to create NIC\n");
1084 goto fail1;
1085 }
1086
1087 /* Create port */
1088 rc = efx_probe_port(efx);
1089 if (rc) {
1090 EFX_ERR(efx, "failed to create port\n");
1091 goto fail2;
1092 }
1093
1094 /* Create channels */
1095 efx_for_each_channel(channel, efx) {
1096 rc = efx_probe_channel(channel);
1097 if (rc) {
1098 EFX_ERR(efx, "failed to create channel %d\n",
1099 channel->channel);
1100 goto fail3;
1101 }
1102 }
1103 efx_set_channel_names(efx);
1104
1105 return 0;
1106
1107 fail3:
1108 efx_for_each_channel(channel, efx)
1109 efx_remove_channel(channel);
1110 efx_remove_port(efx);
1111 fail2:
1112 efx_remove_nic(efx);
1113 fail1:
1114 return rc;
1115 }
1116
1117 /* Called after previous invocation(s) of efx_stop_all, restarts the
1118 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1119 * and ensures that the port is scheduled to be reconfigured.
1120 * This function is safe to call multiple times when the NIC is in any
1121 * state. */
1122 static void efx_start_all(struct efx_nic *efx)
1123 {
1124 struct efx_channel *channel;
1125
1126 EFX_ASSERT_RESET_SERIALISED(efx);
1127
1128 /* Check that it is appropriate to restart the interface. All
1129 * of these flags are safe to read under just the rtnl lock */
1130 if (efx->port_enabled)
1131 return;
1132 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1133 return;
1134 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1135 return;
1136
1137 /* Mark the port as enabled so port reconfigurations can start, then
1138 * restart the transmit interface early so the watchdog timer stops */
1139 efx_start_port(efx);
1140 if (efx_dev_registered(efx))
1141 efx_wake_queue(efx);
1142
1143 efx_for_each_channel(channel, efx)
1144 efx_start_channel(channel);
1145
1146 falcon_enable_interrupts(efx);
1147
1148 /* Start hardware monitor if we're in RUNNING */
1149 if (efx->state == STATE_RUNNING)
1150 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1151 efx_monitor_interval);
1152
1153 falcon_start_nic_stats(efx);
1154 }
1155
1156 /* Flush all delayed work. Should only be called when no more delayed work
1157 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1158 * since we're holding the rtnl_lock at this point. */
1159 static void efx_flush_all(struct efx_nic *efx)
1160 {
1161 struct efx_rx_queue *rx_queue;
1162
1163 /* Make sure the hardware monitor is stopped */
1164 cancel_delayed_work_sync(&efx->monitor_work);
1165
1166 /* Ensure that all RX slow refills are complete. */
1167 efx_for_each_rx_queue(rx_queue, efx)
1168 cancel_delayed_work_sync(&rx_queue->work);
1169
1170 /* Stop scheduled port reconfigurations */
1171 cancel_work_sync(&efx->mac_work);
1172 }
1173
1174 /* Quiesce hardware and software without bringing the link down.
1175 * Safe to call multiple times, when the nic and interface is in any
1176 * state. The caller is guaranteed to subsequently be in a position
1177 * to modify any hardware and software state they see fit without
1178 * taking locks. */
1179 static void efx_stop_all(struct efx_nic *efx)
1180 {
1181 struct efx_channel *channel;
1182
1183 EFX_ASSERT_RESET_SERIALISED(efx);
1184
1185 /* port_enabled can be read safely under the rtnl lock */
1186 if (!efx->port_enabled)
1187 return;
1188
1189 falcon_stop_nic_stats(efx);
1190
1191 /* Disable interrupts and wait for ISR to complete */
1192 falcon_disable_interrupts(efx);
1193 if (efx->legacy_irq)
1194 synchronize_irq(efx->legacy_irq);
1195 efx_for_each_channel(channel, efx) {
1196 if (channel->irq)
1197 synchronize_irq(channel->irq);
1198 }
1199
1200 /* Stop all NAPI processing and synchronous rx refills */
1201 efx_for_each_channel(channel, efx)
1202 efx_stop_channel(channel);
1203
1204 /* Stop all asynchronous port reconfigurations. Since all
1205 * event processing has already been stopped, there is no
1206 * window to loose phy events */
1207 efx_stop_port(efx);
1208
1209 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1210 efx_flush_all(efx);
1211
1212 /* Isolate the MAC from the TX and RX engines, so that queue
1213 * flushes will complete in a timely fashion. */
1214 falcon_deconfigure_mac_wrapper(efx);
1215 msleep(10); /* Let the Rx FIFO drain */
1216 falcon_drain_tx_fifo(efx);
1217
1218 /* Stop the kernel transmit interface late, so the watchdog
1219 * timer isn't ticking over the flush */
1220 if (efx_dev_registered(efx)) {
1221 efx_stop_queue(efx);
1222 netif_tx_lock_bh(efx->net_dev);
1223 netif_tx_unlock_bh(efx->net_dev);
1224 }
1225 }
1226
1227 static void efx_remove_all(struct efx_nic *efx)
1228 {
1229 struct efx_channel *channel;
1230
1231 efx_for_each_channel(channel, efx)
1232 efx_remove_channel(channel);
1233 efx_remove_port(efx);
1234 efx_remove_nic(efx);
1235 }
1236
1237 /**************************************************************************
1238 *
1239 * Interrupt moderation
1240 *
1241 **************************************************************************/
1242
1243 static unsigned irq_mod_ticks(int usecs, int resolution)
1244 {
1245 if (usecs <= 0)
1246 return 0; /* cannot receive interrupts ahead of time :-) */
1247 if (usecs < resolution)
1248 return 1; /* never round down to 0 */
1249 return usecs / resolution;
1250 }
1251
1252 /* Set interrupt moderation parameters */
1253 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1254 bool rx_adaptive)
1255 {
1256 struct efx_tx_queue *tx_queue;
1257 struct efx_rx_queue *rx_queue;
1258 unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1259 unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1260
1261 EFX_ASSERT_RESET_SERIALISED(efx);
1262
1263 efx_for_each_tx_queue(tx_queue, efx)
1264 tx_queue->channel->irq_moderation = tx_ticks;
1265
1266 efx->irq_rx_adaptive = rx_adaptive;
1267 efx->irq_rx_moderation = rx_ticks;
1268 efx_for_each_rx_queue(rx_queue, efx)
1269 rx_queue->channel->irq_moderation = rx_ticks;
1270 }
1271
1272 /**************************************************************************
1273 *
1274 * Hardware monitor
1275 *
1276 **************************************************************************/
1277
1278 /* Run periodically off the general workqueue. Serialised against
1279 * efx_reconfigure_port via the mac_lock */
1280 static void efx_monitor(struct work_struct *data)
1281 {
1282 struct efx_nic *efx = container_of(data, struct efx_nic,
1283 monitor_work.work);
1284
1285 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1286 raw_smp_processor_id());
1287
1288 /* If the mac_lock is already held then it is likely a port
1289 * reconfiguration is already in place, which will likely do
1290 * most of the work of check_hw() anyway. */
1291 if (!mutex_trylock(&efx->mac_lock))
1292 goto out_requeue;
1293 if (!efx->port_enabled)
1294 goto out_unlock;
1295 falcon_monitor(efx);
1296
1297 out_unlock:
1298 mutex_unlock(&efx->mac_lock);
1299 out_requeue:
1300 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1301 efx_monitor_interval);
1302 }
1303
1304 /**************************************************************************
1305 *
1306 * ioctls
1307 *
1308 *************************************************************************/
1309
1310 /* Net device ioctl
1311 * Context: process, rtnl_lock() held.
1312 */
1313 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1314 {
1315 struct efx_nic *efx = netdev_priv(net_dev);
1316 struct mii_ioctl_data *data = if_mii(ifr);
1317
1318 EFX_ASSERT_RESET_SERIALISED(efx);
1319
1320 /* Convert phy_id from older PRTAD/DEVAD format */
1321 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1322 (data->phy_id & 0xfc00) == 0x0400)
1323 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1324
1325 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1326 }
1327
1328 /**************************************************************************
1329 *
1330 * NAPI interface
1331 *
1332 **************************************************************************/
1333
1334 static int efx_init_napi(struct efx_nic *efx)
1335 {
1336 struct efx_channel *channel;
1337
1338 efx_for_each_channel(channel, efx) {
1339 channel->napi_dev = efx->net_dev;
1340 netif_napi_add(channel->napi_dev, &channel->napi_str,
1341 efx_poll, napi_weight);
1342 }
1343 return 0;
1344 }
1345
1346 static void efx_fini_napi(struct efx_nic *efx)
1347 {
1348 struct efx_channel *channel;
1349
1350 efx_for_each_channel(channel, efx) {
1351 if (channel->napi_dev)
1352 netif_napi_del(&channel->napi_str);
1353 channel->napi_dev = NULL;
1354 }
1355 }
1356
1357 /**************************************************************************
1358 *
1359 * Kernel netpoll interface
1360 *
1361 *************************************************************************/
1362
1363 #ifdef CONFIG_NET_POLL_CONTROLLER
1364
1365 /* Although in the common case interrupts will be disabled, this is not
1366 * guaranteed. However, all our work happens inside the NAPI callback,
1367 * so no locking is required.
1368 */
1369 static void efx_netpoll(struct net_device *net_dev)
1370 {
1371 struct efx_nic *efx = netdev_priv(net_dev);
1372 struct efx_channel *channel;
1373
1374 efx_for_each_channel(channel, efx)
1375 efx_schedule_channel(channel);
1376 }
1377
1378 #endif
1379
1380 /**************************************************************************
1381 *
1382 * Kernel net device interface
1383 *
1384 *************************************************************************/
1385
1386 /* Context: process, rtnl_lock() held. */
1387 static int efx_net_open(struct net_device *net_dev)
1388 {
1389 struct efx_nic *efx = netdev_priv(net_dev);
1390 EFX_ASSERT_RESET_SERIALISED(efx);
1391
1392 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1393 raw_smp_processor_id());
1394
1395 if (efx->state == STATE_DISABLED)
1396 return -EIO;
1397 if (efx->phy_mode & PHY_MODE_SPECIAL)
1398 return -EBUSY;
1399
1400 efx_start_all(efx);
1401 return 0;
1402 }
1403
1404 /* Context: process, rtnl_lock() held.
1405 * Note that the kernel will ignore our return code; this method
1406 * should really be a void.
1407 */
1408 static int efx_net_stop(struct net_device *net_dev)
1409 {
1410 struct efx_nic *efx = netdev_priv(net_dev);
1411
1412 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1413 raw_smp_processor_id());
1414
1415 if (efx->state != STATE_DISABLED) {
1416 /* Stop the device and flush all the channels */
1417 efx_stop_all(efx);
1418 efx_fini_channels(efx);
1419 efx_init_channels(efx);
1420 }
1421
1422 return 0;
1423 }
1424
1425 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1426 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1427 {
1428 struct efx_nic *efx = netdev_priv(net_dev);
1429 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1430 struct net_device_stats *stats = &net_dev->stats;
1431
1432 spin_lock_bh(&efx->stats_lock);
1433 falcon_update_nic_stats(efx);
1434 spin_unlock_bh(&efx->stats_lock);
1435
1436 stats->rx_packets = mac_stats->rx_packets;
1437 stats->tx_packets = mac_stats->tx_packets;
1438 stats->rx_bytes = mac_stats->rx_bytes;
1439 stats->tx_bytes = mac_stats->tx_bytes;
1440 stats->multicast = mac_stats->rx_multicast;
1441 stats->collisions = mac_stats->tx_collision;
1442 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1443 mac_stats->rx_length_error);
1444 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1445 stats->rx_crc_errors = mac_stats->rx_bad;
1446 stats->rx_frame_errors = mac_stats->rx_align_error;
1447 stats->rx_fifo_errors = mac_stats->rx_overflow;
1448 stats->rx_missed_errors = mac_stats->rx_missed;
1449 stats->tx_window_errors = mac_stats->tx_late_collision;
1450
1451 stats->rx_errors = (stats->rx_length_errors +
1452 stats->rx_over_errors +
1453 stats->rx_crc_errors +
1454 stats->rx_frame_errors +
1455 stats->rx_fifo_errors +
1456 stats->rx_missed_errors +
1457 mac_stats->rx_symbol_error);
1458 stats->tx_errors = (stats->tx_window_errors +
1459 mac_stats->tx_bad);
1460
1461 return stats;
1462 }
1463
1464 /* Context: netif_tx_lock held, BHs disabled. */
1465 static void efx_watchdog(struct net_device *net_dev)
1466 {
1467 struct efx_nic *efx = netdev_priv(net_dev);
1468
1469 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1470 " resetting channels\n",
1471 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1472
1473 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1474 }
1475
1476
1477 /* Context: process, rtnl_lock() held. */
1478 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1479 {
1480 struct efx_nic *efx = netdev_priv(net_dev);
1481 int rc = 0;
1482
1483 EFX_ASSERT_RESET_SERIALISED(efx);
1484
1485 if (new_mtu > EFX_MAX_MTU)
1486 return -EINVAL;
1487
1488 efx_stop_all(efx);
1489
1490 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1491
1492 efx_fini_channels(efx);
1493 net_dev->mtu = new_mtu;
1494 efx_init_channels(efx);
1495
1496 efx_start_all(efx);
1497 return rc;
1498 }
1499
1500 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1501 {
1502 struct efx_nic *efx = netdev_priv(net_dev);
1503 struct sockaddr *addr = data;
1504 char *new_addr = addr->sa_data;
1505
1506 EFX_ASSERT_RESET_SERIALISED(efx);
1507
1508 if (!is_valid_ether_addr(new_addr)) {
1509 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1510 new_addr);
1511 return -EINVAL;
1512 }
1513
1514 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1515
1516 /* Reconfigure the MAC */
1517 efx_reconfigure_port(efx);
1518
1519 return 0;
1520 }
1521
1522 /* Context: netif_addr_lock held, BHs disabled. */
1523 static void efx_set_multicast_list(struct net_device *net_dev)
1524 {
1525 struct efx_nic *efx = netdev_priv(net_dev);
1526 struct dev_mc_list *mc_list = net_dev->mc_list;
1527 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1528 u32 crc;
1529 int bit;
1530 int i;
1531
1532 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1533
1534 /* Build multicast hash table */
1535 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1536 memset(mc_hash, 0xff, sizeof(*mc_hash));
1537 } else {
1538 memset(mc_hash, 0x00, sizeof(*mc_hash));
1539 for (i = 0; i < net_dev->mc_count; i++) {
1540 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1541 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1542 set_bit_le(bit, mc_hash->byte);
1543 mc_list = mc_list->next;
1544 }
1545
1546 /* Broadcast packets go through the multicast hash filter.
1547 * ether_crc_le() of the broadcast address is 0xbe2612ff
1548 * so we always add bit 0xff to the mask.
1549 */
1550 set_bit_le(0xff, mc_hash->byte);
1551 }
1552
1553 if (efx->port_enabled)
1554 queue_work(efx->workqueue, &efx->mac_work);
1555 /* Otherwise efx_start_port() will do this */
1556 }
1557
1558 static const struct net_device_ops efx_netdev_ops = {
1559 .ndo_open = efx_net_open,
1560 .ndo_stop = efx_net_stop,
1561 .ndo_get_stats = efx_net_stats,
1562 .ndo_tx_timeout = efx_watchdog,
1563 .ndo_start_xmit = efx_hard_start_xmit,
1564 .ndo_validate_addr = eth_validate_addr,
1565 .ndo_do_ioctl = efx_ioctl,
1566 .ndo_change_mtu = efx_change_mtu,
1567 .ndo_set_mac_address = efx_set_mac_address,
1568 .ndo_set_multicast_list = efx_set_multicast_list,
1569 #ifdef CONFIG_NET_POLL_CONTROLLER
1570 .ndo_poll_controller = efx_netpoll,
1571 #endif
1572 };
1573
1574 static void efx_update_name(struct efx_nic *efx)
1575 {
1576 strcpy(efx->name, efx->net_dev->name);
1577 efx_mtd_rename(efx);
1578 efx_set_channel_names(efx);
1579 }
1580
1581 static int efx_netdev_event(struct notifier_block *this,
1582 unsigned long event, void *ptr)
1583 {
1584 struct net_device *net_dev = ptr;
1585
1586 if (net_dev->netdev_ops == &efx_netdev_ops &&
1587 event == NETDEV_CHANGENAME)
1588 efx_update_name(netdev_priv(net_dev));
1589
1590 return NOTIFY_DONE;
1591 }
1592
1593 static struct notifier_block efx_netdev_notifier = {
1594 .notifier_call = efx_netdev_event,
1595 };
1596
1597 static ssize_t
1598 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1599 {
1600 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1601 return sprintf(buf, "%d\n", efx->phy_type);
1602 }
1603 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1604
1605 static int efx_register_netdev(struct efx_nic *efx)
1606 {
1607 struct net_device *net_dev = efx->net_dev;
1608 int rc;
1609
1610 net_dev->watchdog_timeo = 5 * HZ;
1611 net_dev->irq = efx->pci_dev->irq;
1612 net_dev->netdev_ops = &efx_netdev_ops;
1613 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1614 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1615
1616 /* Clear MAC statistics */
1617 efx->mac_op->update_stats(efx);
1618 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1619
1620 rtnl_lock();
1621
1622 rc = dev_alloc_name(net_dev, net_dev->name);
1623 if (rc < 0)
1624 goto fail_locked;
1625 efx_update_name(efx);
1626
1627 rc = register_netdevice(net_dev);
1628 if (rc)
1629 goto fail_locked;
1630
1631 /* Always start with carrier off; PHY events will detect the link */
1632 netif_carrier_off(efx->net_dev);
1633
1634 rtnl_unlock();
1635
1636 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1637 if (rc) {
1638 EFX_ERR(efx, "failed to init net dev attributes\n");
1639 goto fail_registered;
1640 }
1641
1642 return 0;
1643
1644 fail_locked:
1645 rtnl_unlock();
1646 EFX_ERR(efx, "could not register net dev\n");
1647 return rc;
1648
1649 fail_registered:
1650 unregister_netdev(net_dev);
1651 return rc;
1652 }
1653
1654 static void efx_unregister_netdev(struct efx_nic *efx)
1655 {
1656 struct efx_tx_queue *tx_queue;
1657
1658 if (!efx->net_dev)
1659 return;
1660
1661 BUG_ON(netdev_priv(efx->net_dev) != efx);
1662
1663 /* Free up any skbs still remaining. This has to happen before
1664 * we try to unregister the netdev as running their destructors
1665 * may be needed to get the device ref. count to 0. */
1666 efx_for_each_tx_queue(tx_queue, efx)
1667 efx_release_tx_buffers(tx_queue);
1668
1669 if (efx_dev_registered(efx)) {
1670 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1671 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1672 unregister_netdev(efx->net_dev);
1673 }
1674 }
1675
1676 /**************************************************************************
1677 *
1678 * Device reset and suspend
1679 *
1680 **************************************************************************/
1681
1682 /* Tears down the entire software state and most of the hardware state
1683 * before reset. */
1684 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1685 struct ethtool_cmd *ecmd)
1686 {
1687 EFX_ASSERT_RESET_SERIALISED(efx);
1688
1689 efx_stop_all(efx);
1690 mutex_lock(&efx->mac_lock);
1691 mutex_lock(&efx->spi_lock);
1692
1693 efx->phy_op->get_settings(efx, ecmd);
1694
1695 efx_fini_channels(efx);
1696 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1697 efx->phy_op->fini(efx);
1698 }
1699
1700 /* This function will always ensure that the locks acquired in
1701 * efx_reset_down() are released. A failure return code indicates
1702 * that we were unable to reinitialise the hardware, and the
1703 * driver should be disabled. If ok is false, then the rx and tx
1704 * engines are not restarted, pending a RESET_DISABLE. */
1705 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1706 struct ethtool_cmd *ecmd, bool ok)
1707 {
1708 int rc;
1709
1710 EFX_ASSERT_RESET_SERIALISED(efx);
1711
1712 rc = falcon_init_nic(efx);
1713 if (rc) {
1714 EFX_ERR(efx, "failed to initialise NIC\n");
1715 ok = false;
1716 }
1717
1718 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1719 if (ok) {
1720 rc = efx->phy_op->init(efx);
1721 if (rc)
1722 ok = false;
1723 }
1724 if (!ok)
1725 efx->port_initialized = false;
1726 }
1727
1728 if (ok) {
1729 efx_init_channels(efx);
1730
1731 if (efx->phy_op->set_settings(efx, ecmd))
1732 EFX_ERR(efx, "could not restore PHY settings\n");
1733 }
1734
1735 mutex_unlock(&efx->spi_lock);
1736 mutex_unlock(&efx->mac_lock);
1737
1738 if (ok)
1739 efx_start_all(efx);
1740 return rc;
1741 }
1742
1743 /* Reset the NIC as transparently as possible. Do not reset the PHY
1744 * Note that the reset may fail, in which case the card will be left
1745 * in a most-probably-unusable state.
1746 *
1747 * This function will sleep. You cannot reset from within an atomic
1748 * state; use efx_schedule_reset() instead.
1749 *
1750 * Grabs the rtnl_lock.
1751 */
1752 static int efx_reset(struct efx_nic *efx)
1753 {
1754 struct ethtool_cmd ecmd;
1755 enum reset_type method = efx->reset_pending;
1756 int rc = 0;
1757
1758 /* Serialise with kernel interfaces */
1759 rtnl_lock();
1760
1761 /* If we're not RUNNING then don't reset. Leave the reset_pending
1762 * flag set so that efx_pci_probe_main will be retried */
1763 if (efx->state != STATE_RUNNING) {
1764 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1765 goto out_unlock;
1766 }
1767
1768 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1769
1770 efx_reset_down(efx, method, &ecmd);
1771
1772 rc = falcon_reset_hw(efx, method);
1773 if (rc) {
1774 EFX_ERR(efx, "failed to reset hardware\n");
1775 goto out_disable;
1776 }
1777
1778 /* Allow resets to be rescheduled. */
1779 efx->reset_pending = RESET_TYPE_NONE;
1780
1781 /* Reinitialise bus-mastering, which may have been turned off before
1782 * the reset was scheduled. This is still appropriate, even in the
1783 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1784 * can respond to requests. */
1785 pci_set_master(efx->pci_dev);
1786
1787 /* Leave device stopped if necessary */
1788 if (method == RESET_TYPE_DISABLE) {
1789 efx_reset_up(efx, method, &ecmd, false);
1790 rc = -EIO;
1791 } else {
1792 rc = efx_reset_up(efx, method, &ecmd, true);
1793 }
1794
1795 out_disable:
1796 if (rc) {
1797 EFX_ERR(efx, "has been disabled\n");
1798 efx->state = STATE_DISABLED;
1799 dev_close(efx->net_dev);
1800 } else {
1801 EFX_LOG(efx, "reset complete\n");
1802 }
1803
1804 out_unlock:
1805 rtnl_unlock();
1806 return rc;
1807 }
1808
1809 /* The worker thread exists so that code that cannot sleep can
1810 * schedule a reset for later.
1811 */
1812 static void efx_reset_work(struct work_struct *data)
1813 {
1814 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1815
1816 efx_reset(nic);
1817 }
1818
1819 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1820 {
1821 enum reset_type method;
1822
1823 if (efx->reset_pending != RESET_TYPE_NONE) {
1824 EFX_INFO(efx, "quenching already scheduled reset\n");
1825 return;
1826 }
1827
1828 switch (type) {
1829 case RESET_TYPE_INVISIBLE:
1830 case RESET_TYPE_ALL:
1831 case RESET_TYPE_WORLD:
1832 case RESET_TYPE_DISABLE:
1833 method = type;
1834 break;
1835 case RESET_TYPE_RX_RECOVERY:
1836 case RESET_TYPE_RX_DESC_FETCH:
1837 case RESET_TYPE_TX_DESC_FETCH:
1838 case RESET_TYPE_TX_SKIP:
1839 method = RESET_TYPE_INVISIBLE;
1840 break;
1841 default:
1842 method = RESET_TYPE_ALL;
1843 break;
1844 }
1845
1846 if (method != type)
1847 EFX_LOG(efx, "scheduling %s reset for %s\n",
1848 RESET_TYPE(method), RESET_TYPE(type));
1849 else
1850 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1851
1852 efx->reset_pending = method;
1853
1854 queue_work(reset_workqueue, &efx->reset_work);
1855 }
1856
1857 /**************************************************************************
1858 *
1859 * List of NICs we support
1860 *
1861 **************************************************************************/
1862
1863 /* PCI device ID table */
1864 static struct pci_device_id efx_pci_table[] __devinitdata = {
1865 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1866 .driver_data = (unsigned long) &falcon_a1_nic_type},
1867 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1868 .driver_data = (unsigned long) &falcon_b0_nic_type},
1869 {0} /* end of list */
1870 };
1871
1872 /**************************************************************************
1873 *
1874 * Dummy PHY/MAC operations
1875 *
1876 * Can be used for some unimplemented operations
1877 * Needed so all function pointers are valid and do not have to be tested
1878 * before use
1879 *
1880 **************************************************************************/
1881 int efx_port_dummy_op_int(struct efx_nic *efx)
1882 {
1883 return 0;
1884 }
1885 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1886 void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1887 {
1888 }
1889 bool efx_port_dummy_op_poll(struct efx_nic *efx)
1890 {
1891 return false;
1892 }
1893
1894 static struct efx_phy_operations efx_dummy_phy_operations = {
1895 .init = efx_port_dummy_op_int,
1896 .reconfigure = efx_port_dummy_op_void,
1897 .poll = efx_port_dummy_op_poll,
1898 .fini = efx_port_dummy_op_void,
1899 };
1900
1901 /**************************************************************************
1902 *
1903 * Data housekeeping
1904 *
1905 **************************************************************************/
1906
1907 /* This zeroes out and then fills in the invariants in a struct
1908 * efx_nic (including all sub-structures).
1909 */
1910 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1911 struct pci_dev *pci_dev, struct net_device *net_dev)
1912 {
1913 struct efx_channel *channel;
1914 struct efx_tx_queue *tx_queue;
1915 struct efx_rx_queue *rx_queue;
1916 int i;
1917
1918 /* Initialise common structures */
1919 memset(efx, 0, sizeof(*efx));
1920 spin_lock_init(&efx->biu_lock);
1921 mutex_init(&efx->mdio_lock);
1922 mutex_init(&efx->spi_lock);
1923 INIT_WORK(&efx->reset_work, efx_reset_work);
1924 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1925 efx->pci_dev = pci_dev;
1926 efx->state = STATE_INIT;
1927 efx->reset_pending = RESET_TYPE_NONE;
1928 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1929
1930 efx->net_dev = net_dev;
1931 efx->rx_checksum_enabled = true;
1932 spin_lock_init(&efx->netif_stop_lock);
1933 spin_lock_init(&efx->stats_lock);
1934 mutex_init(&efx->mac_lock);
1935 efx->mac_op = type->default_mac_ops;
1936 efx->phy_op = &efx_dummy_phy_operations;
1937 efx->mdio.dev = net_dev;
1938 INIT_WORK(&efx->mac_work, efx_mac_work);
1939 atomic_set(&efx->netif_stop_count, 1);
1940
1941 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1942 channel = &efx->channel[i];
1943 channel->efx = efx;
1944 channel->channel = i;
1945 channel->work_pending = false;
1946 }
1947 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1948 tx_queue = &efx->tx_queue[i];
1949 tx_queue->efx = efx;
1950 tx_queue->queue = i;
1951 tx_queue->buffer = NULL;
1952 tx_queue->channel = &efx->channel[0]; /* for safety */
1953 tx_queue->tso_headers_free = NULL;
1954 }
1955 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1956 rx_queue = &efx->rx_queue[i];
1957 rx_queue->efx = efx;
1958 rx_queue->queue = i;
1959 rx_queue->channel = &efx->channel[0]; /* for safety */
1960 rx_queue->buffer = NULL;
1961 spin_lock_init(&rx_queue->add_lock);
1962 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1963 }
1964
1965 efx->type = type;
1966
1967 /* As close as we can get to guaranteeing that we don't overflow */
1968 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
1969
1970 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1971
1972 /* Higher numbered interrupt modes are less capable! */
1973 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1974 interrupt_mode);
1975
1976 /* Would be good to use the net_dev name, but we're too early */
1977 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1978 pci_name(pci_dev));
1979 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1980 if (!efx->workqueue)
1981 return -ENOMEM;
1982
1983 return 0;
1984 }
1985
1986 static void efx_fini_struct(struct efx_nic *efx)
1987 {
1988 if (efx->workqueue) {
1989 destroy_workqueue(efx->workqueue);
1990 efx->workqueue = NULL;
1991 }
1992 }
1993
1994 /**************************************************************************
1995 *
1996 * PCI interface
1997 *
1998 **************************************************************************/
1999
2000 /* Main body of final NIC shutdown code
2001 * This is called only at module unload (or hotplug removal).
2002 */
2003 static void efx_pci_remove_main(struct efx_nic *efx)
2004 {
2005 falcon_fini_interrupt(efx);
2006 efx_fini_channels(efx);
2007 efx_fini_port(efx);
2008 efx_fini_napi(efx);
2009 efx_remove_all(efx);
2010 }
2011
2012 /* Final NIC shutdown
2013 * This is called only at module unload (or hotplug removal).
2014 */
2015 static void efx_pci_remove(struct pci_dev *pci_dev)
2016 {
2017 struct efx_nic *efx;
2018
2019 efx = pci_get_drvdata(pci_dev);
2020 if (!efx)
2021 return;
2022
2023 /* Mark the NIC as fini, then stop the interface */
2024 rtnl_lock();
2025 efx->state = STATE_FINI;
2026 dev_close(efx->net_dev);
2027
2028 /* Allow any queued efx_resets() to complete */
2029 rtnl_unlock();
2030
2031 efx_unregister_netdev(efx);
2032
2033 efx_mtd_remove(efx);
2034
2035 /* Wait for any scheduled resets to complete. No more will be
2036 * scheduled from this point because efx_stop_all() has been
2037 * called, we are no longer registered with driverlink, and
2038 * the net_device's have been removed. */
2039 cancel_work_sync(&efx->reset_work);
2040
2041 efx_pci_remove_main(efx);
2042
2043 efx_fini_io(efx);
2044 EFX_LOG(efx, "shutdown successful\n");
2045
2046 pci_set_drvdata(pci_dev, NULL);
2047 efx_fini_struct(efx);
2048 free_netdev(efx->net_dev);
2049 };
2050
2051 /* Main body of NIC initialisation
2052 * This is called at module load (or hotplug insertion, theoretically).
2053 */
2054 static int efx_pci_probe_main(struct efx_nic *efx)
2055 {
2056 int rc;
2057
2058 /* Do start-of-day initialisation */
2059 rc = efx_probe_all(efx);
2060 if (rc)
2061 goto fail1;
2062
2063 rc = efx_init_napi(efx);
2064 if (rc)
2065 goto fail2;
2066
2067 rc = falcon_init_nic(efx);
2068 if (rc) {
2069 EFX_ERR(efx, "failed to initialise NIC\n");
2070 goto fail3;
2071 }
2072
2073 rc = efx_init_port(efx);
2074 if (rc) {
2075 EFX_ERR(efx, "failed to initialise port\n");
2076 goto fail4;
2077 }
2078
2079 efx_init_channels(efx);
2080
2081 rc = falcon_init_interrupt(efx);
2082 if (rc)
2083 goto fail5;
2084
2085 return 0;
2086
2087 fail5:
2088 efx_fini_channels(efx);
2089 efx_fini_port(efx);
2090 fail4:
2091 fail3:
2092 efx_fini_napi(efx);
2093 fail2:
2094 efx_remove_all(efx);
2095 fail1:
2096 return rc;
2097 }
2098
2099 /* NIC initialisation
2100 *
2101 * This is called at module load (or hotplug insertion,
2102 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2103 * sets up and registers the network devices with the kernel and hooks
2104 * the interrupt service routine. It does not prepare the device for
2105 * transmission; this is left to the first time one of the network
2106 * interfaces is brought up (i.e. efx_net_open).
2107 */
2108 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2109 const struct pci_device_id *entry)
2110 {
2111 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2112 struct net_device *net_dev;
2113 struct efx_nic *efx;
2114 int i, rc;
2115
2116 /* Allocate and initialise a struct net_device and struct efx_nic */
2117 net_dev = alloc_etherdev(sizeof(*efx));
2118 if (!net_dev)
2119 return -ENOMEM;
2120 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2121 NETIF_F_HIGHDMA | NETIF_F_TSO |
2122 NETIF_F_GRO);
2123 /* Mask for features that also apply to VLAN devices */
2124 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2125 NETIF_F_HIGHDMA | NETIF_F_TSO);
2126 efx = netdev_priv(net_dev);
2127 pci_set_drvdata(pci_dev, efx);
2128 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2129 if (rc)
2130 goto fail1;
2131
2132 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2133
2134 /* Set up basic I/O (BAR mappings etc) */
2135 rc = efx_init_io(efx);
2136 if (rc)
2137 goto fail2;
2138
2139 /* No serialisation is required with the reset path because
2140 * we're in STATE_INIT. */
2141 for (i = 0; i < 5; i++) {
2142 rc = efx_pci_probe_main(efx);
2143
2144 /* Serialise against efx_reset(). No more resets will be
2145 * scheduled since efx_stop_all() has been called, and we
2146 * have not and never have been registered with either
2147 * the rtnetlink or driverlink layers. */
2148 cancel_work_sync(&efx->reset_work);
2149
2150 if (rc == 0) {
2151 if (efx->reset_pending != RESET_TYPE_NONE) {
2152 /* If there was a scheduled reset during
2153 * probe, the NIC is probably hosed anyway */
2154 efx_pci_remove_main(efx);
2155 rc = -EIO;
2156 } else {
2157 break;
2158 }
2159 }
2160
2161 /* Retry if a recoverably reset event has been scheduled */
2162 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2163 (efx->reset_pending != RESET_TYPE_ALL))
2164 goto fail3;
2165
2166 efx->reset_pending = RESET_TYPE_NONE;
2167 }
2168
2169 if (rc) {
2170 EFX_ERR(efx, "Could not reset NIC\n");
2171 goto fail4;
2172 }
2173
2174 /* Switch to the running state before we expose the device to the OS,
2175 * so that dev_open()|efx_start_all() will actually start the device */
2176 efx->state = STATE_RUNNING;
2177
2178 rc = efx_register_netdev(efx);
2179 if (rc)
2180 goto fail5;
2181
2182 EFX_LOG(efx, "initialisation successful\n");
2183
2184 rtnl_lock();
2185 efx_mtd_probe(efx); /* allowed to fail */
2186 rtnl_unlock();
2187 return 0;
2188
2189 fail5:
2190 efx_pci_remove_main(efx);
2191 fail4:
2192 fail3:
2193 efx_fini_io(efx);
2194 fail2:
2195 efx_fini_struct(efx);
2196 fail1:
2197 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2198 free_netdev(net_dev);
2199 return rc;
2200 }
2201
2202 static struct pci_driver efx_pci_driver = {
2203 .name = EFX_DRIVER_NAME,
2204 .id_table = efx_pci_table,
2205 .probe = efx_pci_probe,
2206 .remove = efx_pci_remove,
2207 };
2208
2209 /**************************************************************************
2210 *
2211 * Kernel module interface
2212 *
2213 *************************************************************************/
2214
2215 module_param(interrupt_mode, uint, 0444);
2216 MODULE_PARM_DESC(interrupt_mode,
2217 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2218
2219 static int __init efx_init_module(void)
2220 {
2221 int rc;
2222
2223 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2224
2225 rc = register_netdevice_notifier(&efx_netdev_notifier);
2226 if (rc)
2227 goto err_notifier;
2228
2229 refill_workqueue = create_workqueue("sfc_refill");
2230 if (!refill_workqueue) {
2231 rc = -ENOMEM;
2232 goto err_refill;
2233 }
2234 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2235 if (!reset_workqueue) {
2236 rc = -ENOMEM;
2237 goto err_reset;
2238 }
2239
2240 rc = pci_register_driver(&efx_pci_driver);
2241 if (rc < 0)
2242 goto err_pci;
2243
2244 return 0;
2245
2246 err_pci:
2247 destroy_workqueue(reset_workqueue);
2248 err_reset:
2249 destroy_workqueue(refill_workqueue);
2250 err_refill:
2251 unregister_netdevice_notifier(&efx_netdev_notifier);
2252 err_notifier:
2253 return rc;
2254 }
2255
2256 static void __exit efx_exit_module(void)
2257 {
2258 printk(KERN_INFO "Solarflare NET driver unloading\n");
2259
2260 pci_unregister_driver(&efx_pci_driver);
2261 destroy_workqueue(reset_workqueue);
2262 destroy_workqueue(refill_workqueue);
2263 unregister_netdevice_notifier(&efx_netdev_notifier);
2264
2265 }
2266
2267 module_init(efx_init_module);
2268 module_exit(efx_exit_module);
2269
2270 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2271 "Solarflare Communications");
2272 MODULE_DESCRIPTION("Solarflare Communications network driver");
2273 MODULE_LICENSE("GPL");
2274 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.128713 seconds and 5 git commands to generate.