d5378e60fcddfcb44cb5223abb11b6a1f75a34e6
[deliverable/linux.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33 * Falcon is the internal codename for the SFC4000 controller that is
34 * present in SFE400X evaluation boards
35 */
36
37 /**
38 * struct falcon_nic_data - Falcon NIC state
39 * @next_buffer_table: First available buffer table id
40 * @pci_dev2: The secondary PCI device if present
41 * @i2c_data: Operations and state for I2C bit-bashing algorithm
42 */
43 struct falcon_nic_data {
44 unsigned next_buffer_table;
45 struct pci_dev *pci_dev2;
46 struct i2c_algo_bit_data i2c_data;
47 };
48
49 /**************************************************************************
50 *
51 * Configurable values
52 *
53 **************************************************************************
54 */
55
56 static int disable_dma_stats;
57
58 /* This is set to 16 for a good reason. In summary, if larger than
59 * 16, the descriptor cache holds more than a default socket
60 * buffer's worth of packets (for UDP we can only have at most one
61 * socket buffer's worth outstanding). This combined with the fact
62 * that we only get 1 TX event per descriptor cache means the NIC
63 * goes idle.
64 */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72
73 static const unsigned int
74 /* "Large" EEPROM device: Atmel AT25640 or similar
75 * 8 KB, 16-bit address, 32 B write block */
76 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
77 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
78 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
79 /* Default flash device: Atmel AT25F1024
80 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
81 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
82 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
83 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
84 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
85 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
86
87 /* RX FIFO XOFF watermark
88 *
89 * When the amount of the RX FIFO increases used increases past this
90 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
91 * This also has an effect on RX/TX arbitration
92 */
93 static int rx_xoff_thresh_bytes = -1;
94 module_param(rx_xoff_thresh_bytes, int, 0644);
95 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
96
97 /* RX FIFO XON watermark
98 *
99 * When the amount of the RX FIFO used decreases below this
100 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
101 * This also has an effect on RX/TX arbitration
102 */
103 static int rx_xon_thresh_bytes = -1;
104 module_param(rx_xon_thresh_bytes, int, 0644);
105 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
106
107 /* TX descriptor ring size - min 512 max 4k */
108 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
109 #define FALCON_TXD_RING_SIZE 1024
110 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
111
112 /* RX descriptor ring size - min 512 max 4k */
113 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
114 #define FALCON_RXD_RING_SIZE 1024
115 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
116
117 /* Event queue size - max 32k */
118 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
119 #define FALCON_EVQ_SIZE 4096
120 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
121
122 /* Max number of internal errors. After this resets will not be performed */
123 #define FALCON_MAX_INT_ERRORS 4
124
125 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
126 */
127 #define FALCON_FLUSH_INTERVAL 10
128 #define FALCON_FLUSH_POLL_COUNT 100
129
130 /**************************************************************************
131 *
132 * Falcon constants
133 *
134 **************************************************************************
135 */
136
137 /* DMA address mask */
138 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
139
140 /* TX DMA length mask (13-bit) */
141 #define FALCON_TX_DMA_MASK (4096 - 1)
142
143 /* Size and alignment of special buffers (4KB) */
144 #define FALCON_BUF_SIZE 4096
145
146 /* Dummy SRAM size code */
147 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
148
149 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
150 #define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
151 #define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
152 #define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
153 #define PCI_EXP_LNKSTA_LNK_WID 0x3f0
154 #define PCI_EXP_LNKSTA_LNK_WID_LBN 4
155
156 #define FALCON_IS_DUAL_FUNC(efx) \
157 (falcon_rev(efx) < FALCON_REV_B0)
158
159 /**************************************************************************
160 *
161 * Falcon hardware access
162 *
163 **************************************************************************/
164
165 /* Read the current event from the event queue */
166 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
167 unsigned int index)
168 {
169 return (((efx_qword_t *) (channel->eventq.addr)) + index);
170 }
171
172 /* See if an event is present
173 *
174 * We check both the high and low dword of the event for all ones. We
175 * wrote all ones when we cleared the event, and no valid event can
176 * have all ones in either its high or low dwords. This approach is
177 * robust against reordering.
178 *
179 * Note that using a single 64-bit comparison is incorrect; even
180 * though the CPU read will be atomic, the DMA write may not be.
181 */
182 static inline int falcon_event_present(efx_qword_t *event)
183 {
184 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
185 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
186 }
187
188 /**************************************************************************
189 *
190 * I2C bus - this is a bit-bashing interface using GPIO pins
191 * Note that it uses the output enables to tristate the outputs
192 * SDA is the data pin and SCL is the clock
193 *
194 **************************************************************************
195 */
196 static void falcon_setsda(void *data, int state)
197 {
198 struct efx_nic *efx = (struct efx_nic *)data;
199 efx_oword_t reg;
200
201 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
202 EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
203 falcon_write(efx, &reg, GPIO_CTL_REG_KER);
204 }
205
206 static void falcon_setscl(void *data, int state)
207 {
208 struct efx_nic *efx = (struct efx_nic *)data;
209 efx_oword_t reg;
210
211 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
212 EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
213 falcon_write(efx, &reg, GPIO_CTL_REG_KER);
214 }
215
216 static int falcon_getsda(void *data)
217 {
218 struct efx_nic *efx = (struct efx_nic *)data;
219 efx_oword_t reg;
220
221 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
222 return EFX_OWORD_FIELD(reg, GPIO3_IN);
223 }
224
225 static int falcon_getscl(void *data)
226 {
227 struct efx_nic *efx = (struct efx_nic *)data;
228 efx_oword_t reg;
229
230 falcon_read(efx, &reg, GPIO_CTL_REG_KER);
231 return EFX_OWORD_FIELD(reg, GPIO0_IN);
232 }
233
234 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
235 .setsda = falcon_setsda,
236 .setscl = falcon_setscl,
237 .getsda = falcon_getsda,
238 .getscl = falcon_getscl,
239 .udelay = 5,
240 /* Wait up to 50 ms for slave to let us pull SCL high */
241 .timeout = DIV_ROUND_UP(HZ, 20),
242 };
243
244 /**************************************************************************
245 *
246 * Falcon special buffer handling
247 * Special buffers are used for event queues and the TX and RX
248 * descriptor rings.
249 *
250 *************************************************************************/
251
252 /*
253 * Initialise a Falcon special buffer
254 *
255 * This will define a buffer (previously allocated via
256 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
257 * it to be used for event queues, descriptor rings etc.
258 */
259 static void
260 falcon_init_special_buffer(struct efx_nic *efx,
261 struct efx_special_buffer *buffer)
262 {
263 efx_qword_t buf_desc;
264 int index;
265 dma_addr_t dma_addr;
266 int i;
267
268 EFX_BUG_ON_PARANOID(!buffer->addr);
269
270 /* Write buffer descriptors to NIC */
271 for (i = 0; i < buffer->entries; i++) {
272 index = buffer->index + i;
273 dma_addr = buffer->dma_addr + (i * 4096);
274 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
275 index, (unsigned long long)dma_addr);
276 EFX_POPULATE_QWORD_4(buf_desc,
277 IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
278 BUF_ADR_REGION, 0,
279 BUF_ADR_FBUF, (dma_addr >> 12),
280 BUF_OWNER_ID_FBUF, 0);
281 falcon_write_sram(efx, &buf_desc, index);
282 }
283 }
284
285 /* Unmaps a buffer from Falcon and clears the buffer table entries */
286 static void
287 falcon_fini_special_buffer(struct efx_nic *efx,
288 struct efx_special_buffer *buffer)
289 {
290 efx_oword_t buf_tbl_upd;
291 unsigned int start = buffer->index;
292 unsigned int end = (buffer->index + buffer->entries - 1);
293
294 if (!buffer->entries)
295 return;
296
297 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
298 buffer->index, buffer->index + buffer->entries - 1);
299
300 EFX_POPULATE_OWORD_4(buf_tbl_upd,
301 BUF_UPD_CMD, 0,
302 BUF_CLR_CMD, 1,
303 BUF_CLR_END_ID, end,
304 BUF_CLR_START_ID, start);
305 falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
306 }
307
308 /*
309 * Allocate a new Falcon special buffer
310 *
311 * This allocates memory for a new buffer, clears it and allocates a
312 * new buffer ID range. It does not write into Falcon's buffer table.
313 *
314 * This call will allocate 4KB buffers, since Falcon can't use 8KB
315 * buffers for event queues and descriptor rings.
316 */
317 static int falcon_alloc_special_buffer(struct efx_nic *efx,
318 struct efx_special_buffer *buffer,
319 unsigned int len)
320 {
321 struct falcon_nic_data *nic_data = efx->nic_data;
322
323 len = ALIGN(len, FALCON_BUF_SIZE);
324
325 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
326 &buffer->dma_addr);
327 if (!buffer->addr)
328 return -ENOMEM;
329 buffer->len = len;
330 buffer->entries = len / FALCON_BUF_SIZE;
331 BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
332
333 /* All zeros is a potentially valid event so memset to 0xff */
334 memset(buffer->addr, 0xff, len);
335
336 /* Select new buffer ID */
337 buffer->index = nic_data->next_buffer_table;
338 nic_data->next_buffer_table += buffer->entries;
339
340 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
341 "(virt %p phys %lx)\n", buffer->index,
342 buffer->index + buffer->entries - 1,
343 (unsigned long long)buffer->dma_addr, len,
344 buffer->addr, virt_to_phys(buffer->addr));
345
346 return 0;
347 }
348
349 static void falcon_free_special_buffer(struct efx_nic *efx,
350 struct efx_special_buffer *buffer)
351 {
352 if (!buffer->addr)
353 return;
354
355 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
356 "(virt %p phys %lx)\n", buffer->index,
357 buffer->index + buffer->entries - 1,
358 (unsigned long long)buffer->dma_addr, buffer->len,
359 buffer->addr, virt_to_phys(buffer->addr));
360
361 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
362 buffer->dma_addr);
363 buffer->addr = NULL;
364 buffer->entries = 0;
365 }
366
367 /**************************************************************************
368 *
369 * Falcon generic buffer handling
370 * These buffers are used for interrupt status and MAC stats
371 *
372 **************************************************************************/
373
374 static int falcon_alloc_buffer(struct efx_nic *efx,
375 struct efx_buffer *buffer, unsigned int len)
376 {
377 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
378 &buffer->dma_addr);
379 if (!buffer->addr)
380 return -ENOMEM;
381 buffer->len = len;
382 memset(buffer->addr, 0, len);
383 return 0;
384 }
385
386 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
387 {
388 if (buffer->addr) {
389 pci_free_consistent(efx->pci_dev, buffer->len,
390 buffer->addr, buffer->dma_addr);
391 buffer->addr = NULL;
392 }
393 }
394
395 /**************************************************************************
396 *
397 * Falcon TX path
398 *
399 **************************************************************************/
400
401 /* Returns a pointer to the specified transmit descriptor in the TX
402 * descriptor queue belonging to the specified channel.
403 */
404 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
405 unsigned int index)
406 {
407 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
408 }
409
410 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
411 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
412 {
413 unsigned write_ptr;
414 efx_dword_t reg;
415
416 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
417 EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
418 falcon_writel_page(tx_queue->efx, &reg,
419 TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
420 }
421
422
423 /* For each entry inserted into the software descriptor ring, create a
424 * descriptor in the hardware TX descriptor ring (in host memory), and
425 * write a doorbell.
426 */
427 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
428 {
429
430 struct efx_tx_buffer *buffer;
431 efx_qword_t *txd;
432 unsigned write_ptr;
433
434 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
435
436 do {
437 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
438 buffer = &tx_queue->buffer[write_ptr];
439 txd = falcon_tx_desc(tx_queue, write_ptr);
440 ++tx_queue->write_count;
441
442 /* Create TX descriptor ring entry */
443 EFX_POPULATE_QWORD_5(*txd,
444 TX_KER_PORT, 0,
445 TX_KER_CONT, buffer->continuation,
446 TX_KER_BYTE_CNT, buffer->len,
447 TX_KER_BUF_REGION, 0,
448 TX_KER_BUF_ADR, buffer->dma_addr);
449 } while (tx_queue->write_count != tx_queue->insert_count);
450
451 wmb(); /* Ensure descriptors are written before they are fetched */
452 falcon_notify_tx_desc(tx_queue);
453 }
454
455 /* Allocate hardware resources for a TX queue */
456 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
457 {
458 struct efx_nic *efx = tx_queue->efx;
459 return falcon_alloc_special_buffer(efx, &tx_queue->txd,
460 FALCON_TXD_RING_SIZE *
461 sizeof(efx_qword_t));
462 }
463
464 void falcon_init_tx(struct efx_tx_queue *tx_queue)
465 {
466 efx_oword_t tx_desc_ptr;
467 struct efx_nic *efx = tx_queue->efx;
468
469 tx_queue->flushed = false;
470
471 /* Pin TX descriptor ring */
472 falcon_init_special_buffer(efx, &tx_queue->txd);
473
474 /* Push TX descriptor ring to card */
475 EFX_POPULATE_OWORD_10(tx_desc_ptr,
476 TX_DESCQ_EN, 1,
477 TX_ISCSI_DDIG_EN, 0,
478 TX_ISCSI_HDIG_EN, 0,
479 TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
480 TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
481 TX_DESCQ_OWNER_ID, 0,
482 TX_DESCQ_LABEL, tx_queue->queue,
483 TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
484 TX_DESCQ_TYPE, 0,
485 TX_NON_IP_DROP_DIS_B0, 1);
486
487 if (falcon_rev(efx) >= FALCON_REV_B0) {
488 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
489 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
490 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
491 }
492
493 falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
494 tx_queue->queue);
495
496 if (falcon_rev(efx) < FALCON_REV_B0) {
497 efx_oword_t reg;
498
499 /* Only 128 bits in this register */
500 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
501
502 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
503 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
504 clear_bit_le(tx_queue->queue, (void *)&reg);
505 else
506 set_bit_le(tx_queue->queue, (void *)&reg);
507 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
508 }
509 }
510
511 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
512 {
513 struct efx_nic *efx = tx_queue->efx;
514 efx_oword_t tx_flush_descq;
515
516 /* Post a flush command */
517 EFX_POPULATE_OWORD_2(tx_flush_descq,
518 TX_FLUSH_DESCQ_CMD, 1,
519 TX_FLUSH_DESCQ, tx_queue->queue);
520 falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
521 }
522
523 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
524 {
525 struct efx_nic *efx = tx_queue->efx;
526 efx_oword_t tx_desc_ptr;
527
528 /* The queue should have been flushed */
529 WARN_ON(!tx_queue->flushed);
530
531 /* Remove TX descriptor ring from card */
532 EFX_ZERO_OWORD(tx_desc_ptr);
533 falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
534 tx_queue->queue);
535
536 /* Unpin TX descriptor ring */
537 falcon_fini_special_buffer(efx, &tx_queue->txd);
538 }
539
540 /* Free buffers backing TX queue */
541 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
542 {
543 falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
544 }
545
546 /**************************************************************************
547 *
548 * Falcon RX path
549 *
550 **************************************************************************/
551
552 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
553 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
554 unsigned int index)
555 {
556 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
557 }
558
559 /* This creates an entry in the RX descriptor queue */
560 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
561 unsigned index)
562 {
563 struct efx_rx_buffer *rx_buf;
564 efx_qword_t *rxd;
565
566 rxd = falcon_rx_desc(rx_queue, index);
567 rx_buf = efx_rx_buffer(rx_queue, index);
568 EFX_POPULATE_QWORD_3(*rxd,
569 RX_KER_BUF_SIZE,
570 rx_buf->len -
571 rx_queue->efx->type->rx_buffer_padding,
572 RX_KER_BUF_REGION, 0,
573 RX_KER_BUF_ADR, rx_buf->dma_addr);
574 }
575
576 /* This writes to the RX_DESC_WPTR register for the specified receive
577 * descriptor ring.
578 */
579 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
580 {
581 efx_dword_t reg;
582 unsigned write_ptr;
583
584 while (rx_queue->notified_count != rx_queue->added_count) {
585 falcon_build_rx_desc(rx_queue,
586 rx_queue->notified_count &
587 FALCON_RXD_RING_MASK);
588 ++rx_queue->notified_count;
589 }
590
591 wmb();
592 write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
593 EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
594 falcon_writel_page(rx_queue->efx, &reg,
595 RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
596 }
597
598 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
599 {
600 struct efx_nic *efx = rx_queue->efx;
601 return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
602 FALCON_RXD_RING_SIZE *
603 sizeof(efx_qword_t));
604 }
605
606 void falcon_init_rx(struct efx_rx_queue *rx_queue)
607 {
608 efx_oword_t rx_desc_ptr;
609 struct efx_nic *efx = rx_queue->efx;
610 bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
611 bool iscsi_digest_en = is_b0;
612
613 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
614 rx_queue->queue, rx_queue->rxd.index,
615 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
616
617 rx_queue->flushed = false;
618
619 /* Pin RX descriptor ring */
620 falcon_init_special_buffer(efx, &rx_queue->rxd);
621
622 /* Push RX descriptor ring to card */
623 EFX_POPULATE_OWORD_10(rx_desc_ptr,
624 RX_ISCSI_DDIG_EN, iscsi_digest_en,
625 RX_ISCSI_HDIG_EN, iscsi_digest_en,
626 RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
627 RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
628 RX_DESCQ_OWNER_ID, 0,
629 RX_DESCQ_LABEL, rx_queue->queue,
630 RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
631 RX_DESCQ_TYPE, 0 /* kernel queue */ ,
632 /* For >=B0 this is scatter so disable */
633 RX_DESCQ_JUMBO, !is_b0,
634 RX_DESCQ_EN, 1);
635 falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
636 rx_queue->queue);
637 }
638
639 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
640 {
641 struct efx_nic *efx = rx_queue->efx;
642 efx_oword_t rx_flush_descq;
643
644 /* Post a flush command */
645 EFX_POPULATE_OWORD_2(rx_flush_descq,
646 RX_FLUSH_DESCQ_CMD, 1,
647 RX_FLUSH_DESCQ, rx_queue->queue);
648 falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
649 }
650
651 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
652 {
653 efx_oword_t rx_desc_ptr;
654 struct efx_nic *efx = rx_queue->efx;
655
656 /* The queue should already have been flushed */
657 WARN_ON(!rx_queue->flushed);
658
659 /* Remove RX descriptor ring from card */
660 EFX_ZERO_OWORD(rx_desc_ptr);
661 falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
662 rx_queue->queue);
663
664 /* Unpin RX descriptor ring */
665 falcon_fini_special_buffer(efx, &rx_queue->rxd);
666 }
667
668 /* Free buffers backing RX queue */
669 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
670 {
671 falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
672 }
673
674 /**************************************************************************
675 *
676 * Falcon event queue processing
677 * Event queues are processed by per-channel tasklets.
678 *
679 **************************************************************************/
680
681 /* Update a channel's event queue's read pointer (RPTR) register
682 *
683 * This writes the EVQ_RPTR_REG register for the specified channel's
684 * event queue.
685 *
686 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
687 * whereas channel->eventq_read_ptr contains the index of the "next to
688 * read" event.
689 */
690 void falcon_eventq_read_ack(struct efx_channel *channel)
691 {
692 efx_dword_t reg;
693 struct efx_nic *efx = channel->efx;
694
695 EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
696 falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
697 channel->channel);
698 }
699
700 /* Use HW to insert a SW defined event */
701 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
702 {
703 efx_oword_t drv_ev_reg;
704
705 EFX_POPULATE_OWORD_2(drv_ev_reg,
706 DRV_EV_QID, channel->channel,
707 DRV_EV_DATA,
708 EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
709 falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
710 }
711
712 /* Handle a transmit completion event
713 *
714 * Falcon batches TX completion events; the message we receive is of
715 * the form "complete all TX events up to this index".
716 */
717 static void falcon_handle_tx_event(struct efx_channel *channel,
718 efx_qword_t *event)
719 {
720 unsigned int tx_ev_desc_ptr;
721 unsigned int tx_ev_q_label;
722 struct efx_tx_queue *tx_queue;
723 struct efx_nic *efx = channel->efx;
724
725 if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
726 /* Transmit completion */
727 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
728 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
729 tx_queue = &efx->tx_queue[tx_ev_q_label];
730 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
731 } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
732 /* Rewrite the FIFO write pointer */
733 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
734 tx_queue = &efx->tx_queue[tx_ev_q_label];
735
736 if (efx_dev_registered(efx))
737 netif_tx_lock(efx->net_dev);
738 falcon_notify_tx_desc(tx_queue);
739 if (efx_dev_registered(efx))
740 netif_tx_unlock(efx->net_dev);
741 } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
742 EFX_WORKAROUND_10727(efx)) {
743 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
744 } else {
745 EFX_ERR(efx, "channel %d unexpected TX event "
746 EFX_QWORD_FMT"\n", channel->channel,
747 EFX_QWORD_VAL(*event));
748 }
749 }
750
751 /* Detect errors included in the rx_evt_pkt_ok bit. */
752 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
753 const efx_qword_t *event,
754 bool *rx_ev_pkt_ok,
755 bool *discard)
756 {
757 struct efx_nic *efx = rx_queue->efx;
758 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
759 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
760 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
761 bool rx_ev_other_err, rx_ev_pause_frm;
762 bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
763 unsigned rx_ev_pkt_type;
764
765 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
766 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
767 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
768 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
769 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
770 RX_EV_BUF_OWNER_ID_ERR);
771 rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
772 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
773 RX_EV_IP_HDR_CHKSUM_ERR);
774 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
775 RX_EV_TCP_UDP_CHKSUM_ERR);
776 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
777 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
778 rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
779 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
780 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
781
782 /* Every error apart from tobe_disc and pause_frm */
783 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
784 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
785 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
786
787 /* Count errors that are not in MAC stats. Ignore expected
788 * checksum errors during self-test. */
789 if (rx_ev_frm_trunc)
790 ++rx_queue->channel->n_rx_frm_trunc;
791 else if (rx_ev_tobe_disc)
792 ++rx_queue->channel->n_rx_tobe_disc;
793 else if (!efx->loopback_selftest) {
794 if (rx_ev_ip_hdr_chksum_err)
795 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
796 else if (rx_ev_tcp_udp_chksum_err)
797 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
798 }
799 if (rx_ev_ip_frag_err)
800 ++rx_queue->channel->n_rx_ip_frag_err;
801
802 /* The frame must be discarded if any of these are true. */
803 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
804 rx_ev_tobe_disc | rx_ev_pause_frm);
805
806 /* TOBE_DISC is expected on unicast mismatches; don't print out an
807 * error message. FRM_TRUNC indicates RXDP dropped the packet due
808 * to a FIFO overflow.
809 */
810 #ifdef EFX_ENABLE_DEBUG
811 if (rx_ev_other_err) {
812 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
813 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
814 rx_queue->queue, EFX_QWORD_VAL(*event),
815 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
816 rx_ev_ip_hdr_chksum_err ?
817 " [IP_HDR_CHKSUM_ERR]" : "",
818 rx_ev_tcp_udp_chksum_err ?
819 " [TCP_UDP_CHKSUM_ERR]" : "",
820 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
821 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
822 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
823 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
824 rx_ev_pause_frm ? " [PAUSE]" : "");
825 }
826 #endif
827 }
828
829 /* Handle receive events that are not in-order. */
830 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
831 unsigned index)
832 {
833 struct efx_nic *efx = rx_queue->efx;
834 unsigned expected, dropped;
835
836 expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
837 dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
838 FALCON_RXD_RING_MASK);
839 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
840 dropped, index, expected);
841
842 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
843 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
844 }
845
846 /* Handle a packet received event
847 *
848 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
849 * wrong destination address
850 * Also "is multicast" and "matches multicast filter" flags can be used to
851 * discard non-matching multicast packets.
852 */
853 static void falcon_handle_rx_event(struct efx_channel *channel,
854 const efx_qword_t *event)
855 {
856 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
857 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
858 unsigned expected_ptr;
859 bool rx_ev_pkt_ok, discard = false, checksummed;
860 struct efx_rx_queue *rx_queue;
861 struct efx_nic *efx = channel->efx;
862
863 /* Basic packet information */
864 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
865 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
866 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
867 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
868 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
869 WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
870
871 rx_queue = &efx->rx_queue[channel->channel];
872
873 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
874 expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
875 if (unlikely(rx_ev_desc_ptr != expected_ptr))
876 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
877
878 if (likely(rx_ev_pkt_ok)) {
879 /* If packet is marked as OK and packet type is TCP/IPv4 or
880 * UDP/IPv4, then we can rely on the hardware checksum.
881 */
882 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
883 } else {
884 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
885 &discard);
886 checksummed = false;
887 }
888
889 /* Detect multicast packets that didn't match the filter */
890 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
891 if (rx_ev_mcast_pkt) {
892 unsigned int rx_ev_mcast_hash_match =
893 EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
894
895 if (unlikely(!rx_ev_mcast_hash_match))
896 discard = true;
897 }
898
899 /* Handle received packet */
900 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
901 checksummed, discard);
902 }
903
904 /* Global events are basically PHY events */
905 static void falcon_handle_global_event(struct efx_channel *channel,
906 efx_qword_t *event)
907 {
908 struct efx_nic *efx = channel->efx;
909 bool handled = false;
910
911 if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
912 EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
913 EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
914 EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
915 efx->phy_op->clear_interrupt(efx);
916 queue_work(efx->workqueue, &efx->phy_work);
917 handled = true;
918 }
919
920 if ((falcon_rev(efx) >= FALCON_REV_B0) &&
921 EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
922 queue_work(efx->workqueue, &efx->mac_work);
923 handled = true;
924 }
925
926 if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
927 EFX_ERR(efx, "channel %d seen global RX_RESET "
928 "event. Resetting.\n", channel->channel);
929
930 atomic_inc(&efx->rx_reset);
931 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
932 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
933 handled = true;
934 }
935
936 if (!handled)
937 EFX_ERR(efx, "channel %d unknown global event "
938 EFX_QWORD_FMT "\n", channel->channel,
939 EFX_QWORD_VAL(*event));
940 }
941
942 static void falcon_handle_driver_event(struct efx_channel *channel,
943 efx_qword_t *event)
944 {
945 struct efx_nic *efx = channel->efx;
946 unsigned int ev_sub_code;
947 unsigned int ev_sub_data;
948
949 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
950 ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
951
952 switch (ev_sub_code) {
953 case TX_DESCQ_FLS_DONE_EV_DECODE:
954 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
955 channel->channel, ev_sub_data);
956 break;
957 case RX_DESCQ_FLS_DONE_EV_DECODE:
958 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
959 channel->channel, ev_sub_data);
960 break;
961 case EVQ_INIT_DONE_EV_DECODE:
962 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
963 channel->channel, ev_sub_data);
964 break;
965 case SRM_UPD_DONE_EV_DECODE:
966 EFX_TRACE(efx, "channel %d SRAM update done\n",
967 channel->channel);
968 break;
969 case WAKE_UP_EV_DECODE:
970 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
971 channel->channel, ev_sub_data);
972 break;
973 case TIMER_EV_DECODE:
974 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
975 channel->channel, ev_sub_data);
976 break;
977 case RX_RECOVERY_EV_DECODE:
978 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
979 "Resetting.\n", channel->channel);
980 atomic_inc(&efx->rx_reset);
981 efx_schedule_reset(efx,
982 EFX_WORKAROUND_6555(efx) ?
983 RESET_TYPE_RX_RECOVERY :
984 RESET_TYPE_DISABLE);
985 break;
986 case RX_DSC_ERROR_EV_DECODE:
987 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
988 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
989 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
990 break;
991 case TX_DSC_ERROR_EV_DECODE:
992 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
993 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
994 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
995 break;
996 default:
997 EFX_TRACE(efx, "channel %d unknown driver event code %d "
998 "data %04x\n", channel->channel, ev_sub_code,
999 ev_sub_data);
1000 break;
1001 }
1002 }
1003
1004 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1005 {
1006 unsigned int read_ptr;
1007 efx_qword_t event, *p_event;
1008 int ev_code;
1009 int rx_packets = 0;
1010
1011 read_ptr = channel->eventq_read_ptr;
1012
1013 do {
1014 p_event = falcon_event(channel, read_ptr);
1015 event = *p_event;
1016
1017 if (!falcon_event_present(&event))
1018 /* End of events */
1019 break;
1020
1021 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1022 channel->channel, EFX_QWORD_VAL(event));
1023
1024 /* Clear this event by marking it all ones */
1025 EFX_SET_QWORD(*p_event);
1026
1027 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1028
1029 switch (ev_code) {
1030 case RX_IP_EV_DECODE:
1031 falcon_handle_rx_event(channel, &event);
1032 ++rx_packets;
1033 break;
1034 case TX_IP_EV_DECODE:
1035 falcon_handle_tx_event(channel, &event);
1036 break;
1037 case DRV_GEN_EV_DECODE:
1038 channel->eventq_magic
1039 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1040 EFX_LOG(channel->efx, "channel %d received generated "
1041 "event "EFX_QWORD_FMT"\n", channel->channel,
1042 EFX_QWORD_VAL(event));
1043 break;
1044 case GLOBAL_EV_DECODE:
1045 falcon_handle_global_event(channel, &event);
1046 break;
1047 case DRIVER_EV_DECODE:
1048 falcon_handle_driver_event(channel, &event);
1049 break;
1050 default:
1051 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1052 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1053 ev_code, EFX_QWORD_VAL(event));
1054 }
1055
1056 /* Increment read pointer */
1057 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1058
1059 } while (rx_packets < rx_quota);
1060
1061 channel->eventq_read_ptr = read_ptr;
1062 return rx_packets;
1063 }
1064
1065 void falcon_set_int_moderation(struct efx_channel *channel)
1066 {
1067 efx_dword_t timer_cmd;
1068 struct efx_nic *efx = channel->efx;
1069
1070 /* Set timer register */
1071 if (channel->irq_moderation) {
1072 /* Round to resolution supported by hardware. The value we
1073 * program is based at 0. So actual interrupt moderation
1074 * achieved is ((x + 1) * res).
1075 */
1076 unsigned int res = 5;
1077 channel->irq_moderation -= (channel->irq_moderation % res);
1078 if (channel->irq_moderation < res)
1079 channel->irq_moderation = res;
1080 EFX_POPULATE_DWORD_2(timer_cmd,
1081 TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1082 TIMER_VAL,
1083 (channel->irq_moderation / res) - 1);
1084 } else {
1085 EFX_POPULATE_DWORD_2(timer_cmd,
1086 TIMER_MODE, TIMER_MODE_DIS,
1087 TIMER_VAL, 0);
1088 }
1089 falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1090 channel->channel);
1091
1092 }
1093
1094 /* Allocate buffer table entries for event queue */
1095 int falcon_probe_eventq(struct efx_channel *channel)
1096 {
1097 struct efx_nic *efx = channel->efx;
1098 unsigned int evq_size;
1099
1100 evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1101 return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1102 }
1103
1104 void falcon_init_eventq(struct efx_channel *channel)
1105 {
1106 efx_oword_t evq_ptr;
1107 struct efx_nic *efx = channel->efx;
1108
1109 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1110 channel->channel, channel->eventq.index,
1111 channel->eventq.index + channel->eventq.entries - 1);
1112
1113 /* Pin event queue buffer */
1114 falcon_init_special_buffer(efx, &channel->eventq);
1115
1116 /* Fill event queue with all ones (i.e. empty events) */
1117 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1118
1119 /* Push event queue to card */
1120 EFX_POPULATE_OWORD_3(evq_ptr,
1121 EVQ_EN, 1,
1122 EVQ_SIZE, FALCON_EVQ_ORDER,
1123 EVQ_BUF_BASE_ID, channel->eventq.index);
1124 falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1125 channel->channel);
1126
1127 falcon_set_int_moderation(channel);
1128 }
1129
1130 void falcon_fini_eventq(struct efx_channel *channel)
1131 {
1132 efx_oword_t eventq_ptr;
1133 struct efx_nic *efx = channel->efx;
1134
1135 /* Remove event queue from card */
1136 EFX_ZERO_OWORD(eventq_ptr);
1137 falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1138 channel->channel);
1139
1140 /* Unpin event queue */
1141 falcon_fini_special_buffer(efx, &channel->eventq);
1142 }
1143
1144 /* Free buffers backing event queue */
1145 void falcon_remove_eventq(struct efx_channel *channel)
1146 {
1147 falcon_free_special_buffer(channel->efx, &channel->eventq);
1148 }
1149
1150
1151 /* Generates a test event on the event queue. A subsequent call to
1152 * process_eventq() should pick up the event and place the value of
1153 * "magic" into channel->eventq_magic;
1154 */
1155 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1156 {
1157 efx_qword_t test_event;
1158
1159 EFX_POPULATE_QWORD_2(test_event,
1160 EV_CODE, DRV_GEN_EV_DECODE,
1161 EVQ_MAGIC, magic);
1162 falcon_generate_event(channel, &test_event);
1163 }
1164
1165 void falcon_sim_phy_event(struct efx_nic *efx)
1166 {
1167 efx_qword_t phy_event;
1168
1169 EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
1170 if (EFX_IS10G(efx))
1171 EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1);
1172 else
1173 EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1);
1174
1175 falcon_generate_event(&efx->channel[0], &phy_event);
1176 }
1177
1178 /**************************************************************************
1179 *
1180 * Flush handling
1181 *
1182 **************************************************************************/
1183
1184
1185 static void falcon_poll_flush_events(struct efx_nic *efx)
1186 {
1187 struct efx_channel *channel = &efx->channel[0];
1188 struct efx_tx_queue *tx_queue;
1189 struct efx_rx_queue *rx_queue;
1190 unsigned int read_ptr, i;
1191
1192 read_ptr = channel->eventq_read_ptr;
1193 for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
1194 efx_qword_t *event = falcon_event(channel, read_ptr);
1195 int ev_code, ev_sub_code, ev_queue;
1196 bool ev_failed;
1197 if (!falcon_event_present(event))
1198 break;
1199
1200 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1201 if (ev_code != DRIVER_EV_DECODE)
1202 continue;
1203
1204 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1205 switch (ev_sub_code) {
1206 case TX_DESCQ_FLS_DONE_EV_DECODE:
1207 ev_queue = EFX_QWORD_FIELD(*event,
1208 DRIVER_EV_TX_DESCQ_ID);
1209 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1210 tx_queue = efx->tx_queue + ev_queue;
1211 tx_queue->flushed = true;
1212 }
1213 break;
1214 case RX_DESCQ_FLS_DONE_EV_DECODE:
1215 ev_queue = EFX_QWORD_FIELD(*event,
1216 DRIVER_EV_RX_DESCQ_ID);
1217 ev_failed = EFX_QWORD_FIELD(*event,
1218 DRIVER_EV_RX_FLUSH_FAIL);
1219 if (ev_queue < efx->n_rx_queues) {
1220 rx_queue = efx->rx_queue + ev_queue;
1221
1222 /* retry the rx flush */
1223 if (ev_failed)
1224 falcon_flush_rx_queue(rx_queue);
1225 else
1226 rx_queue->flushed = true;
1227 }
1228 break;
1229 }
1230
1231 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1232 }
1233 }
1234
1235 /* Handle tx and rx flushes at the same time, since they run in
1236 * parallel in the hardware and there's no reason for us to
1237 * serialise them */
1238 int falcon_flush_queues(struct efx_nic *efx)
1239 {
1240 struct efx_rx_queue *rx_queue;
1241 struct efx_tx_queue *tx_queue;
1242 int i;
1243 bool outstanding;
1244
1245 /* Issue flush requests */
1246 efx_for_each_tx_queue(tx_queue, efx) {
1247 tx_queue->flushed = false;
1248 falcon_flush_tx_queue(tx_queue);
1249 }
1250 efx_for_each_rx_queue(rx_queue, efx) {
1251 rx_queue->flushed = false;
1252 falcon_flush_rx_queue(rx_queue);
1253 }
1254
1255 /* Poll the evq looking for flush completions. Since we're not pushing
1256 * any more rx or tx descriptors at this point, we're in no danger of
1257 * overflowing the evq whilst we wait */
1258 for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1259 msleep(FALCON_FLUSH_INTERVAL);
1260 falcon_poll_flush_events(efx);
1261
1262 /* Check if every queue has been succesfully flushed */
1263 outstanding = false;
1264 efx_for_each_tx_queue(tx_queue, efx)
1265 outstanding |= !tx_queue->flushed;
1266 efx_for_each_rx_queue(rx_queue, efx)
1267 outstanding |= !rx_queue->flushed;
1268 if (!outstanding)
1269 return 0;
1270 }
1271
1272 /* Mark the queues as all flushed. We're going to return failure
1273 * leading to a reset, or fake up success anyway. "flushed" now
1274 * indicates that we tried to flush. */
1275 efx_for_each_tx_queue(tx_queue, efx) {
1276 if (!tx_queue->flushed)
1277 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1278 tx_queue->queue);
1279 tx_queue->flushed = true;
1280 }
1281 efx_for_each_rx_queue(rx_queue, efx) {
1282 if (!rx_queue->flushed)
1283 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1284 rx_queue->queue);
1285 rx_queue->flushed = true;
1286 }
1287
1288 if (EFX_WORKAROUND_7803(efx))
1289 return 0;
1290
1291 return -ETIMEDOUT;
1292 }
1293
1294 /**************************************************************************
1295 *
1296 * Falcon hardware interrupts
1297 * The hardware interrupt handler does very little work; all the event
1298 * queue processing is carried out by per-channel tasklets.
1299 *
1300 **************************************************************************/
1301
1302 /* Enable/disable/generate Falcon interrupts */
1303 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1304 int force)
1305 {
1306 efx_oword_t int_en_reg_ker;
1307
1308 EFX_POPULATE_OWORD_2(int_en_reg_ker,
1309 KER_INT_KER, force,
1310 DRV_INT_EN_KER, enabled);
1311 falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1312 }
1313
1314 void falcon_enable_interrupts(struct efx_nic *efx)
1315 {
1316 efx_oword_t int_adr_reg_ker;
1317 struct efx_channel *channel;
1318
1319 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1320 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1321
1322 /* Program address */
1323 EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1324 NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1325 INT_ADR_KER, efx->irq_status.dma_addr);
1326 falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1327
1328 /* Enable interrupts */
1329 falcon_interrupts(efx, 1, 0);
1330
1331 /* Force processing of all the channels to get the EVQ RPTRs up to
1332 date */
1333 efx_for_each_channel(channel, efx)
1334 efx_schedule_channel(channel);
1335 }
1336
1337 void falcon_disable_interrupts(struct efx_nic *efx)
1338 {
1339 /* Disable interrupts */
1340 falcon_interrupts(efx, 0, 0);
1341 }
1342
1343 /* Generate a Falcon test interrupt
1344 * Interrupt must already have been enabled, otherwise nasty things
1345 * may happen.
1346 */
1347 void falcon_generate_interrupt(struct efx_nic *efx)
1348 {
1349 falcon_interrupts(efx, 1, 1);
1350 }
1351
1352 /* Acknowledge a legacy interrupt from Falcon
1353 *
1354 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1355 *
1356 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1357 * BIU. Interrupt acknowledge is read sensitive so must write instead
1358 * (then read to ensure the BIU collector is flushed)
1359 *
1360 * NB most hardware supports MSI interrupts
1361 */
1362 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1363 {
1364 efx_dword_t reg;
1365
1366 EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1367 falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1368 falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1369 }
1370
1371 /* Process a fatal interrupt
1372 * Disable bus mastering ASAP and schedule a reset
1373 */
1374 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1375 {
1376 struct falcon_nic_data *nic_data = efx->nic_data;
1377 efx_oword_t *int_ker = efx->irq_status.addr;
1378 efx_oword_t fatal_intr;
1379 int error, mem_perr;
1380 static int n_int_errors;
1381
1382 falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1383 error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1384
1385 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1386 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1387 EFX_OWORD_VAL(fatal_intr),
1388 error ? "disabling bus mastering" : "no recognised error");
1389 if (error == 0)
1390 goto out;
1391
1392 /* If this is a memory parity error dump which blocks are offending */
1393 mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1394 if (mem_perr) {
1395 efx_oword_t reg;
1396 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1397 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1398 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1399 }
1400
1401 /* Disable both devices */
1402 pci_clear_master(efx->pci_dev);
1403 if (FALCON_IS_DUAL_FUNC(efx))
1404 pci_clear_master(nic_data->pci_dev2);
1405 falcon_disable_interrupts(efx);
1406
1407 if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1408 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1409 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1410 } else {
1411 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1412 "NIC will be disabled\n");
1413 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1414 }
1415 out:
1416 return IRQ_HANDLED;
1417 }
1418
1419 /* Handle a legacy interrupt from Falcon
1420 * Acknowledges the interrupt and schedule event queue processing.
1421 */
1422 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1423 {
1424 struct efx_nic *efx = dev_id;
1425 efx_oword_t *int_ker = efx->irq_status.addr;
1426 struct efx_channel *channel;
1427 efx_dword_t reg;
1428 u32 queues;
1429 int syserr;
1430
1431 /* Read the ISR which also ACKs the interrupts */
1432 falcon_readl(efx, &reg, INT_ISR0_B0);
1433 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1434
1435 /* Check to see if we have a serious error condition */
1436 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1437 if (unlikely(syserr))
1438 return falcon_fatal_interrupt(efx);
1439
1440 if (queues == 0)
1441 return IRQ_NONE;
1442
1443 efx->last_irq_cpu = raw_smp_processor_id();
1444 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1445 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1446
1447 /* Schedule processing of any interrupting queues */
1448 channel = &efx->channel[0];
1449 while (queues) {
1450 if (queues & 0x01)
1451 efx_schedule_channel(channel);
1452 channel++;
1453 queues >>= 1;
1454 }
1455
1456 return IRQ_HANDLED;
1457 }
1458
1459
1460 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1461 {
1462 struct efx_nic *efx = dev_id;
1463 efx_oword_t *int_ker = efx->irq_status.addr;
1464 struct efx_channel *channel;
1465 int syserr;
1466 int queues;
1467
1468 /* Check to see if this is our interrupt. If it isn't, we
1469 * exit without having touched the hardware.
1470 */
1471 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1472 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1473 raw_smp_processor_id());
1474 return IRQ_NONE;
1475 }
1476 efx->last_irq_cpu = raw_smp_processor_id();
1477 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1478 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1479
1480 /* Check to see if we have a serious error condition */
1481 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1482 if (unlikely(syserr))
1483 return falcon_fatal_interrupt(efx);
1484
1485 /* Determine interrupting queues, clear interrupt status
1486 * register and acknowledge the device interrupt.
1487 */
1488 BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1489 queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1490 EFX_ZERO_OWORD(*int_ker);
1491 wmb(); /* Ensure the vector is cleared before interrupt ack */
1492 falcon_irq_ack_a1(efx);
1493
1494 /* Schedule processing of any interrupting queues */
1495 channel = &efx->channel[0];
1496 while (queues) {
1497 if (queues & 0x01)
1498 efx_schedule_channel(channel);
1499 channel++;
1500 queues >>= 1;
1501 }
1502
1503 return IRQ_HANDLED;
1504 }
1505
1506 /* Handle an MSI interrupt from Falcon
1507 *
1508 * Handle an MSI hardware interrupt. This routine schedules event
1509 * queue processing. No interrupt acknowledgement cycle is necessary.
1510 * Also, we never need to check that the interrupt is for us, since
1511 * MSI interrupts cannot be shared.
1512 */
1513 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1514 {
1515 struct efx_channel *channel = dev_id;
1516 struct efx_nic *efx = channel->efx;
1517 efx_oword_t *int_ker = efx->irq_status.addr;
1518 int syserr;
1519
1520 efx->last_irq_cpu = raw_smp_processor_id();
1521 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1522 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1523
1524 /* Check to see if we have a serious error condition */
1525 syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1526 if (unlikely(syserr))
1527 return falcon_fatal_interrupt(efx);
1528
1529 /* Schedule processing of the channel */
1530 efx_schedule_channel(channel);
1531
1532 return IRQ_HANDLED;
1533 }
1534
1535
1536 /* Setup RSS indirection table.
1537 * This maps from the hash value of the packet to RXQ
1538 */
1539 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1540 {
1541 int i = 0;
1542 unsigned long offset;
1543 efx_dword_t dword;
1544
1545 if (falcon_rev(efx) < FALCON_REV_B0)
1546 return;
1547
1548 for (offset = RX_RSS_INDIR_TBL_B0;
1549 offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1550 offset += 0x10) {
1551 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1552 i % efx->n_rx_queues);
1553 falcon_writel(efx, &dword, offset);
1554 i++;
1555 }
1556 }
1557
1558 /* Hook interrupt handler(s)
1559 * Try MSI and then legacy interrupts.
1560 */
1561 int falcon_init_interrupt(struct efx_nic *efx)
1562 {
1563 struct efx_channel *channel;
1564 int rc;
1565
1566 if (!EFX_INT_MODE_USE_MSI(efx)) {
1567 irq_handler_t handler;
1568 if (falcon_rev(efx) >= FALCON_REV_B0)
1569 handler = falcon_legacy_interrupt_b0;
1570 else
1571 handler = falcon_legacy_interrupt_a1;
1572
1573 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1574 efx->name, efx);
1575 if (rc) {
1576 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1577 efx->pci_dev->irq);
1578 goto fail1;
1579 }
1580 return 0;
1581 }
1582
1583 /* Hook MSI or MSI-X interrupt */
1584 efx_for_each_channel(channel, efx) {
1585 rc = request_irq(channel->irq, falcon_msi_interrupt,
1586 IRQF_PROBE_SHARED, /* Not shared */
1587 channel->name, channel);
1588 if (rc) {
1589 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1590 goto fail2;
1591 }
1592 }
1593
1594 return 0;
1595
1596 fail2:
1597 efx_for_each_channel(channel, efx)
1598 free_irq(channel->irq, channel);
1599 fail1:
1600 return rc;
1601 }
1602
1603 void falcon_fini_interrupt(struct efx_nic *efx)
1604 {
1605 struct efx_channel *channel;
1606 efx_oword_t reg;
1607
1608 /* Disable MSI/MSI-X interrupts */
1609 efx_for_each_channel(channel, efx) {
1610 if (channel->irq)
1611 free_irq(channel->irq, channel);
1612 }
1613
1614 /* ACK legacy interrupt */
1615 if (falcon_rev(efx) >= FALCON_REV_B0)
1616 falcon_read(efx, &reg, INT_ISR0_B0);
1617 else
1618 falcon_irq_ack_a1(efx);
1619
1620 /* Disable legacy interrupt */
1621 if (efx->legacy_irq)
1622 free_irq(efx->legacy_irq, efx);
1623 }
1624
1625 /**************************************************************************
1626 *
1627 * EEPROM/flash
1628 *
1629 **************************************************************************
1630 */
1631
1632 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1633
1634 static int falcon_spi_poll(struct efx_nic *efx)
1635 {
1636 efx_oword_t reg;
1637 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1638 return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1639 }
1640
1641 /* Wait for SPI command completion */
1642 static int falcon_spi_wait(struct efx_nic *efx)
1643 {
1644 /* Most commands will finish quickly, so we start polling at
1645 * very short intervals. Sometimes the command may have to
1646 * wait for VPD or expansion ROM access outside of our
1647 * control, so we allow up to 100 ms. */
1648 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1649 int i;
1650
1651 for (i = 0; i < 10; i++) {
1652 if (!falcon_spi_poll(efx))
1653 return 0;
1654 udelay(10);
1655 }
1656
1657 for (;;) {
1658 if (!falcon_spi_poll(efx))
1659 return 0;
1660 if (time_after_eq(jiffies, timeout)) {
1661 EFX_ERR(efx, "timed out waiting for SPI\n");
1662 return -ETIMEDOUT;
1663 }
1664 schedule_timeout_uninterruptible(1);
1665 }
1666 }
1667
1668 int falcon_spi_cmd(const struct efx_spi_device *spi,
1669 unsigned int command, int address,
1670 const void *in, void *out, size_t len)
1671 {
1672 struct efx_nic *efx = spi->efx;
1673 bool addressed = (address >= 0);
1674 bool reading = (out != NULL);
1675 efx_oword_t reg;
1676 int rc;
1677
1678 /* Input validation */
1679 if (len > FALCON_SPI_MAX_LEN)
1680 return -EINVAL;
1681 BUG_ON(!mutex_is_locked(&efx->spi_lock));
1682
1683 /* Check that previous command is not still running */
1684 rc = falcon_spi_poll(efx);
1685 if (rc)
1686 return rc;
1687
1688 /* Program address register, if we have an address */
1689 if (addressed) {
1690 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1691 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1692 }
1693
1694 /* Program data register, if we have data */
1695 if (in != NULL) {
1696 memcpy(&reg, in, len);
1697 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1698 }
1699
1700 /* Issue read/write command */
1701 EFX_POPULATE_OWORD_7(reg,
1702 EE_SPI_HCMD_CMD_EN, 1,
1703 EE_SPI_HCMD_SF_SEL, spi->device_id,
1704 EE_SPI_HCMD_DABCNT, len,
1705 EE_SPI_HCMD_READ, reading,
1706 EE_SPI_HCMD_DUBCNT, 0,
1707 EE_SPI_HCMD_ADBCNT,
1708 (addressed ? spi->addr_len : 0),
1709 EE_SPI_HCMD_ENC, command);
1710 falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1711
1712 /* Wait for read/write to complete */
1713 rc = falcon_spi_wait(efx);
1714 if (rc)
1715 return rc;
1716
1717 /* Read data */
1718 if (out != NULL) {
1719 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1720 memcpy(out, &reg, len);
1721 }
1722
1723 return 0;
1724 }
1725
1726 static size_t
1727 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1728 {
1729 return min(FALCON_SPI_MAX_LEN,
1730 (spi->block_size - (start & (spi->block_size - 1))));
1731 }
1732
1733 static inline u8
1734 efx_spi_munge_command(const struct efx_spi_device *spi,
1735 const u8 command, const unsigned int address)
1736 {
1737 return command | (((address >> 8) & spi->munge_address) << 3);
1738 }
1739
1740 /* Wait up to 10 ms for buffered write completion */
1741 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1742 {
1743 struct efx_nic *efx = spi->efx;
1744 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1745 u8 status;
1746 int rc;
1747
1748 for (;;) {
1749 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1750 &status, sizeof(status));
1751 if (rc)
1752 return rc;
1753 if (!(status & SPI_STATUS_NRDY))
1754 return 0;
1755 if (time_after_eq(jiffies, timeout)) {
1756 EFX_ERR(efx, "SPI write timeout on device %d"
1757 " last status=0x%02x\n",
1758 spi->device_id, status);
1759 return -ETIMEDOUT;
1760 }
1761 schedule_timeout_uninterruptible(1);
1762 }
1763 }
1764
1765 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1766 size_t len, size_t *retlen, u8 *buffer)
1767 {
1768 size_t block_len, pos = 0;
1769 unsigned int command;
1770 int rc = 0;
1771
1772 while (pos < len) {
1773 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1774
1775 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1776 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1777 buffer + pos, block_len);
1778 if (rc)
1779 break;
1780 pos += block_len;
1781
1782 /* Avoid locking up the system */
1783 cond_resched();
1784 if (signal_pending(current)) {
1785 rc = -EINTR;
1786 break;
1787 }
1788 }
1789
1790 if (retlen)
1791 *retlen = pos;
1792 return rc;
1793 }
1794
1795 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1796 size_t len, size_t *retlen, const u8 *buffer)
1797 {
1798 u8 verify_buffer[FALCON_SPI_MAX_LEN];
1799 size_t block_len, pos = 0;
1800 unsigned int command;
1801 int rc = 0;
1802
1803 while (pos < len) {
1804 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1805 if (rc)
1806 break;
1807
1808 block_len = min(len - pos,
1809 falcon_spi_write_limit(spi, start + pos));
1810 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1811 rc = falcon_spi_cmd(spi, command, start + pos,
1812 buffer + pos, NULL, block_len);
1813 if (rc)
1814 break;
1815
1816 rc = falcon_spi_wait_write(spi);
1817 if (rc)
1818 break;
1819
1820 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1821 rc = falcon_spi_cmd(spi, command, start + pos,
1822 NULL, verify_buffer, block_len);
1823 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1824 rc = -EIO;
1825 break;
1826 }
1827
1828 pos += block_len;
1829
1830 /* Avoid locking up the system */
1831 cond_resched();
1832 if (signal_pending(current)) {
1833 rc = -EINTR;
1834 break;
1835 }
1836 }
1837
1838 if (retlen)
1839 *retlen = pos;
1840 return rc;
1841 }
1842
1843 /**************************************************************************
1844 *
1845 * MAC wrapper
1846 *
1847 **************************************************************************
1848 */
1849
1850 static int falcon_reset_macs(struct efx_nic *efx)
1851 {
1852 efx_oword_t reg;
1853 int count;
1854
1855 if (falcon_rev(efx) < FALCON_REV_B0) {
1856 /* It's not safe to use GLB_CTL_REG to reset the
1857 * macs, so instead use the internal MAC resets
1858 */
1859 if (!EFX_IS10G(efx)) {
1860 EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
1861 falcon_write(efx, &reg, GM_CFG1_REG);
1862 udelay(1000);
1863
1864 EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
1865 falcon_write(efx, &reg, GM_CFG1_REG);
1866 udelay(1000);
1867 return 0;
1868 } else {
1869 EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
1870 falcon_write(efx, &reg, XM_GLB_CFG_REG);
1871
1872 for (count = 0; count < 10000; count++) {
1873 falcon_read(efx, &reg, XM_GLB_CFG_REG);
1874 if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
1875 return 0;
1876 udelay(10);
1877 }
1878
1879 EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1880 return -ETIMEDOUT;
1881 }
1882 }
1883
1884 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1885 * the drain sequence with the statistics fetch */
1886 efx_stats_disable(efx);
1887
1888 falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1889 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
1890 falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1891
1892 falcon_read(efx, &reg, GLB_CTL_REG_KER);
1893 EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
1894 EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
1895 EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
1896 falcon_write(efx, &reg, GLB_CTL_REG_KER);
1897
1898 count = 0;
1899 while (1) {
1900 falcon_read(efx, &reg, GLB_CTL_REG_KER);
1901 if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
1902 !EFX_OWORD_FIELD(reg, RST_XGRX) &&
1903 !EFX_OWORD_FIELD(reg, RST_EM)) {
1904 EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1905 count);
1906 break;
1907 }
1908 if (count > 20) {
1909 EFX_ERR(efx, "MAC reset failed\n");
1910 break;
1911 }
1912 count++;
1913 udelay(10);
1914 }
1915
1916 efx_stats_enable(efx);
1917
1918 /* If we've reset the EM block and the link is up, then
1919 * we'll have to kick the XAUI link so the PHY can recover */
1920 if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1921 falcon_reset_xaui(efx);
1922
1923 return 0;
1924 }
1925
1926 void falcon_drain_tx_fifo(struct efx_nic *efx)
1927 {
1928 efx_oword_t reg;
1929
1930 if ((falcon_rev(efx) < FALCON_REV_B0) ||
1931 (efx->loopback_mode != LOOPBACK_NONE))
1932 return;
1933
1934 falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1935 /* There is no point in draining more than once */
1936 if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
1937 return;
1938
1939 falcon_reset_macs(efx);
1940 }
1941
1942 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1943 {
1944 efx_oword_t reg;
1945
1946 if (falcon_rev(efx) < FALCON_REV_B0)
1947 return;
1948
1949 /* Isolate the MAC -> RX */
1950 falcon_read(efx, &reg, RX_CFG_REG_KER);
1951 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
1952 falcon_write(efx, &reg, RX_CFG_REG_KER);
1953
1954 if (!efx->link_up)
1955 falcon_drain_tx_fifo(efx);
1956 }
1957
1958 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1959 {
1960 efx_oword_t reg;
1961 int link_speed;
1962 bool tx_fc;
1963
1964 switch (efx->link_speed) {
1965 case 10000: link_speed = 3; break;
1966 case 1000: link_speed = 2; break;
1967 case 100: link_speed = 1; break;
1968 default: link_speed = 0; break;
1969 }
1970 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1971 * as advertised. Disable to ensure packets are not
1972 * indefinitely held and TX queue can be flushed at any point
1973 * while the link is down. */
1974 EFX_POPULATE_OWORD_5(reg,
1975 MAC_XOFF_VAL, 0xffff /* max pause time */,
1976 MAC_BCAD_ACPT, 1,
1977 MAC_UC_PROM, efx->promiscuous,
1978 MAC_LINK_STATUS, 1, /* always set */
1979 MAC_SPEED, link_speed);
1980 /* On B0, MAC backpressure can be disabled and packets get
1981 * discarded. */
1982 if (falcon_rev(efx) >= FALCON_REV_B0) {
1983 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1984 !efx->link_up);
1985 }
1986
1987 falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1988
1989 /* Restore the multicast hash registers. */
1990 falcon_set_multicast_hash(efx);
1991
1992 /* Transmission of pause frames when RX crosses the threshold is
1993 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1994 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1995 tx_fc = !!(efx->link_fc & EFX_FC_TX);
1996 falcon_read(efx, &reg, RX_CFG_REG_KER);
1997 EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1998
1999 /* Unisolate the MAC -> RX */
2000 if (falcon_rev(efx) >= FALCON_REV_B0)
2001 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
2002 falcon_write(efx, &reg, RX_CFG_REG_KER);
2003 }
2004
2005 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2006 {
2007 efx_oword_t reg;
2008 u32 *dma_done;
2009 int i;
2010
2011 if (disable_dma_stats)
2012 return 0;
2013
2014 /* Statistics fetch will fail if the MAC is in TX drain */
2015 if (falcon_rev(efx) >= FALCON_REV_B0) {
2016 efx_oword_t temp;
2017 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
2018 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
2019 return 0;
2020 }
2021
2022 dma_done = (efx->stats_buffer.addr + done_offset);
2023 *dma_done = FALCON_STATS_NOT_DONE;
2024 wmb(); /* ensure done flag is clear */
2025
2026 /* Initiate DMA transfer of stats */
2027 EFX_POPULATE_OWORD_2(reg,
2028 MAC_STAT_DMA_CMD, 1,
2029 MAC_STAT_DMA_ADR,
2030 efx->stats_buffer.dma_addr);
2031 falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
2032
2033 /* Wait for transfer to complete */
2034 for (i = 0; i < 400; i++) {
2035 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2036 rmb(); /* Ensure the stats are valid. */
2037 return 0;
2038 }
2039 udelay(10);
2040 }
2041
2042 EFX_ERR(efx, "timed out waiting for statistics\n");
2043 return -ETIMEDOUT;
2044 }
2045
2046 /**************************************************************************
2047 *
2048 * PHY access via GMII
2049 *
2050 **************************************************************************
2051 */
2052
2053 /* Use the top bit of the MII PHY id to indicate the PHY type
2054 * (1G/10G), with the remaining bits as the actual PHY id.
2055 *
2056 * This allows us to avoid leaking information from the mii_if_info
2057 * structure into other data structures.
2058 */
2059 #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
2060 #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2061 #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
2062 #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
2063 #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
2064
2065
2066 /* Packing the clause 45 port and device fields into a single value */
2067 #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2068 #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
2069 #define MD_DEV_ADR_COMP_LBN 0
2070 #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
2071
2072
2073 /* Wait for GMII access to complete */
2074 static int falcon_gmii_wait(struct efx_nic *efx)
2075 {
2076 efx_dword_t md_stat;
2077 int count;
2078
2079 /* wait upto 50ms - taken max from datasheet */
2080 for (count = 0; count < 5000; count++) {
2081 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2082 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2083 if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2084 EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2085 EFX_ERR(efx, "error from GMII access "
2086 EFX_DWORD_FMT"\n",
2087 EFX_DWORD_VAL(md_stat));
2088 return -EIO;
2089 }
2090 return 0;
2091 }
2092 udelay(10);
2093 }
2094 EFX_ERR(efx, "timed out waiting for GMII\n");
2095 return -ETIMEDOUT;
2096 }
2097
2098 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2099 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2100 int addr, int value)
2101 {
2102 struct efx_nic *efx = netdev_priv(net_dev);
2103 unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2104 efx_oword_t reg;
2105
2106 /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2107 * chosen so that the only current user, Falcon, can take the
2108 * packed value and use them directly.
2109 * Fail to build if this assumption is broken.
2110 */
2111 BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2112 BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2113 BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2114 BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2115
2116 if (phy_id2 == PHY_ADDR_INVALID)
2117 return;
2118
2119 /* See falcon_mdio_read for an explanation. */
2120 if (!(phy_id & FALCON_PHY_ID_10G)) {
2121 int mmd = ffs(efx->phy_op->mmds) - 1;
2122 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2123 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2124 & FALCON_PHY_ID_ID_MASK;
2125 }
2126
2127 EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2128 addr, value);
2129
2130 spin_lock_bh(&efx->phy_lock);
2131
2132 /* Check MII not currently being accessed */
2133 if (falcon_gmii_wait(efx) != 0)
2134 goto out;
2135
2136 /* Write the address/ID register */
2137 EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2138 falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2139
2140 EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2141 falcon_write(efx, &reg, MD_ID_REG_KER);
2142
2143 /* Write data */
2144 EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2145 falcon_write(efx, &reg, MD_TXD_REG_KER);
2146
2147 EFX_POPULATE_OWORD_2(reg,
2148 MD_WRC, 1,
2149 MD_GC, 0);
2150 falcon_write(efx, &reg, MD_CS_REG_KER);
2151
2152 /* Wait for data to be written */
2153 if (falcon_gmii_wait(efx) != 0) {
2154 /* Abort the write operation */
2155 EFX_POPULATE_OWORD_2(reg,
2156 MD_WRC, 0,
2157 MD_GC, 1);
2158 falcon_write(efx, &reg, MD_CS_REG_KER);
2159 udelay(10);
2160 }
2161
2162 out:
2163 spin_unlock_bh(&efx->phy_lock);
2164 }
2165
2166 /* Reads a GMII register from a PHY connected to Falcon. If no value
2167 * could be read, -1 will be returned. */
2168 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2169 {
2170 struct efx_nic *efx = netdev_priv(net_dev);
2171 unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2172 efx_oword_t reg;
2173 int value = -1;
2174
2175 if (phy_addr == PHY_ADDR_INVALID)
2176 return -1;
2177
2178 /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2179 * but the generic Linux code does not make any distinction or have
2180 * any state for this.
2181 * We spot the case where someone tried to talk 22 to a 45 PHY and
2182 * redirect the request to the lowest numbered MMD as a clause45
2183 * request. This is enough to allow simple queries like id and link
2184 * state to succeed. TODO: We may need to do more in future.
2185 */
2186 if (!(phy_id & FALCON_PHY_ID_10G)) {
2187 int mmd = ffs(efx->phy_op->mmds) - 1;
2188 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2189 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2190 & FALCON_PHY_ID_ID_MASK;
2191 }
2192
2193 spin_lock_bh(&efx->phy_lock);
2194
2195 /* Check MII not currently being accessed */
2196 if (falcon_gmii_wait(efx) != 0)
2197 goto out;
2198
2199 EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2200 falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2201
2202 EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2203 falcon_write(efx, &reg, MD_ID_REG_KER);
2204
2205 /* Request data to be read */
2206 EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2207 falcon_write(efx, &reg, MD_CS_REG_KER);
2208
2209 /* Wait for data to become available */
2210 value = falcon_gmii_wait(efx);
2211 if (value == 0) {
2212 falcon_read(efx, &reg, MD_RXD_REG_KER);
2213 value = EFX_OWORD_FIELD(reg, MD_RXD);
2214 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2215 phy_id, addr, value);
2216 } else {
2217 /* Abort the read operation */
2218 EFX_POPULATE_OWORD_2(reg,
2219 MD_RIC, 0,
2220 MD_GC, 1);
2221 falcon_write(efx, &reg, MD_CS_REG_KER);
2222
2223 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2224 "error %d\n", phy_id, addr, value);
2225 }
2226
2227 out:
2228 spin_unlock_bh(&efx->phy_lock);
2229
2230 return value;
2231 }
2232
2233 static void falcon_init_mdio(struct mii_if_info *gmii)
2234 {
2235 gmii->mdio_read = falcon_mdio_read;
2236 gmii->mdio_write = falcon_mdio_write;
2237 gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2238 gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2239 }
2240
2241 static int falcon_probe_phy(struct efx_nic *efx)
2242 {
2243 switch (efx->phy_type) {
2244 case PHY_TYPE_SFX7101:
2245 efx->phy_op = &falcon_sfx7101_phy_ops;
2246 break;
2247 case PHY_TYPE_SFT9001A:
2248 case PHY_TYPE_SFT9001B:
2249 efx->phy_op = &falcon_sft9001_phy_ops;
2250 break;
2251 case PHY_TYPE_QT2022C2:
2252 efx->phy_op = &falcon_xfp_phy_ops;
2253 break;
2254 default:
2255 EFX_ERR(efx, "Unknown PHY type %d\n",
2256 efx->phy_type);
2257 return -1;
2258 }
2259
2260 if (efx->phy_op->macs & EFX_XMAC)
2261 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2262 (1 << LOOPBACK_XGXS) |
2263 (1 << LOOPBACK_XAUI));
2264 if (efx->phy_op->macs & EFX_GMAC)
2265 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2266 efx->loopback_modes |= efx->phy_op->loopbacks;
2267
2268 return 0;
2269 }
2270
2271 int falcon_switch_mac(struct efx_nic *efx)
2272 {
2273 struct efx_mac_operations *old_mac_op = efx->mac_op;
2274 efx_oword_t nic_stat;
2275 unsigned strap_val;
2276 int rc = 0;
2277
2278 /* Don't try to fetch MAC stats while we're switching MACs */
2279 efx_stats_disable(efx);
2280
2281 /* Internal loopbacks override the phy speed setting */
2282 if (efx->loopback_mode == LOOPBACK_GMAC) {
2283 efx->link_speed = 1000;
2284 efx->link_fd = true;
2285 } else if (LOOPBACK_INTERNAL(efx)) {
2286 efx->link_speed = 10000;
2287 efx->link_fd = true;
2288 }
2289
2290 WARN_ON(!mutex_is_locked(&efx->mac_lock));
2291 efx->mac_op = (EFX_IS10G(efx) ?
2292 &falcon_xmac_operations : &falcon_gmac_operations);
2293
2294 /* Always push the NIC_STAT_REG setting even if the mac hasn't
2295 * changed, because this function is run post online reset */
2296 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2297 strap_val = EFX_IS10G(efx) ? 5 : 3;
2298 if (falcon_rev(efx) >= FALCON_REV_B0) {
2299 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
2300 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
2301 falcon_write(efx, &nic_stat, NIC_STAT_REG);
2302 } else {
2303 /* Falcon A1 does not support 1G/10G speed switching
2304 * and must not be used with a PHY that does. */
2305 BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
2306 }
2307
2308 if (old_mac_op == efx->mac_op)
2309 goto out;
2310
2311 EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2312 /* Not all macs support a mac-level link state */
2313 efx->mac_up = true;
2314
2315 rc = falcon_reset_macs(efx);
2316 out:
2317 efx_stats_enable(efx);
2318 return rc;
2319 }
2320
2321 /* This call is responsible for hooking in the MAC and PHY operations */
2322 int falcon_probe_port(struct efx_nic *efx)
2323 {
2324 int rc;
2325
2326 /* Hook in PHY operations table */
2327 rc = falcon_probe_phy(efx);
2328 if (rc)
2329 return rc;
2330
2331 /* Set up GMII structure for PHY */
2332 efx->mii.supports_gmii = true;
2333 falcon_init_mdio(&efx->mii);
2334
2335 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2336 if (falcon_rev(efx) >= FALCON_REV_B0)
2337 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2338 else
2339 efx->wanted_fc = EFX_FC_RX;
2340
2341 /* Allocate buffer for stats */
2342 rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2343 FALCON_MAC_STATS_SIZE);
2344 if (rc)
2345 return rc;
2346 EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2347 (unsigned long long)efx->stats_buffer.dma_addr,
2348 efx->stats_buffer.addr,
2349 virt_to_phys(efx->stats_buffer.addr));
2350
2351 return 0;
2352 }
2353
2354 void falcon_remove_port(struct efx_nic *efx)
2355 {
2356 falcon_free_buffer(efx, &efx->stats_buffer);
2357 }
2358
2359 /**************************************************************************
2360 *
2361 * Multicast filtering
2362 *
2363 **************************************************************************
2364 */
2365
2366 void falcon_set_multicast_hash(struct efx_nic *efx)
2367 {
2368 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2369
2370 /* Broadcast packets go through the multicast hash filter.
2371 * ether_crc_le() of the broadcast address is 0xbe2612ff
2372 * so we always add bit 0xff to the mask.
2373 */
2374 set_bit_le(0xff, mc_hash->byte);
2375
2376 falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2377 falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2378 }
2379
2380
2381 /**************************************************************************
2382 *
2383 * Falcon test code
2384 *
2385 **************************************************************************/
2386
2387 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2388 {
2389 struct falcon_nvconfig *nvconfig;
2390 struct efx_spi_device *spi;
2391 void *region;
2392 int rc, magic_num, struct_ver;
2393 __le16 *word, *limit;
2394 u32 csum;
2395
2396 spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2397 if (!spi)
2398 return -EINVAL;
2399
2400 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2401 if (!region)
2402 return -ENOMEM;
2403 nvconfig = region + NVCONFIG_OFFSET;
2404
2405 mutex_lock(&efx->spi_lock);
2406 rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2407 mutex_unlock(&efx->spi_lock);
2408 if (rc) {
2409 EFX_ERR(efx, "Failed to read %s\n",
2410 efx->spi_flash ? "flash" : "EEPROM");
2411 rc = -EIO;
2412 goto out;
2413 }
2414
2415 magic_num = le16_to_cpu(nvconfig->board_magic_num);
2416 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2417
2418 rc = -EINVAL;
2419 if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2420 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2421 goto out;
2422 }
2423 if (struct_ver < 2) {
2424 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2425 goto out;
2426 } else if (struct_ver < 4) {
2427 word = &nvconfig->board_magic_num;
2428 limit = (__le16 *) (nvconfig + 1);
2429 } else {
2430 word = region;
2431 limit = region + FALCON_NVCONFIG_END;
2432 }
2433 for (csum = 0; word < limit; ++word)
2434 csum += le16_to_cpu(*word);
2435
2436 if (~csum & 0xffff) {
2437 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2438 goto out;
2439 }
2440
2441 rc = 0;
2442 if (nvconfig_out)
2443 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2444
2445 out:
2446 kfree(region);
2447 return rc;
2448 }
2449
2450 /* Registers tested in the falcon register test */
2451 static struct {
2452 unsigned address;
2453 efx_oword_t mask;
2454 } efx_test_registers[] = {
2455 { ADR_REGION_REG_KER,
2456 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2457 { RX_CFG_REG_KER,
2458 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2459 { TX_CFG_REG_KER,
2460 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2461 { TX_CFG2_REG_KER,
2462 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2463 { MAC0_CTRL_REG_KER,
2464 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2465 { SRM_TX_DC_CFG_REG_KER,
2466 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2467 { RX_DC_CFG_REG_KER,
2468 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2469 { RX_DC_PF_WM_REG_KER,
2470 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2471 { DP_CTRL_REG,
2472 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2473 { GM_CFG2_REG,
2474 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2475 { GMF_CFG0_REG,
2476 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2477 { XM_GLB_CFG_REG,
2478 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2479 { XM_TX_CFG_REG,
2480 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2481 { XM_RX_CFG_REG,
2482 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2483 { XM_RX_PARAM_REG,
2484 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2485 { XM_FC_REG,
2486 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2487 { XM_ADR_LO_REG,
2488 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2489 { XX_SD_CTL_REG,
2490 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2491 };
2492
2493 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2494 const efx_oword_t *mask)
2495 {
2496 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2497 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2498 }
2499
2500 int falcon_test_registers(struct efx_nic *efx)
2501 {
2502 unsigned address = 0, i, j;
2503 efx_oword_t mask, imask, original, reg, buf;
2504
2505 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2506 WARN_ON(!LOOPBACK_INTERNAL(efx));
2507
2508 for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2509 address = efx_test_registers[i].address;
2510 mask = imask = efx_test_registers[i].mask;
2511 EFX_INVERT_OWORD(imask);
2512
2513 falcon_read(efx, &original, address);
2514
2515 /* bit sweep on and off */
2516 for (j = 0; j < 128; j++) {
2517 if (!EFX_EXTRACT_OWORD32(mask, j, j))
2518 continue;
2519
2520 /* Test this testable bit can be set in isolation */
2521 EFX_AND_OWORD(reg, original, mask);
2522 EFX_SET_OWORD32(reg, j, j, 1);
2523
2524 falcon_write(efx, &reg, address);
2525 falcon_read(efx, &buf, address);
2526
2527 if (efx_masked_compare_oword(&reg, &buf, &mask))
2528 goto fail;
2529
2530 /* Test this testable bit can be cleared in isolation */
2531 EFX_OR_OWORD(reg, original, mask);
2532 EFX_SET_OWORD32(reg, j, j, 0);
2533
2534 falcon_write(efx, &reg, address);
2535 falcon_read(efx, &buf, address);
2536
2537 if (efx_masked_compare_oword(&reg, &buf, &mask))
2538 goto fail;
2539 }
2540
2541 falcon_write(efx, &original, address);
2542 }
2543
2544 return 0;
2545
2546 fail:
2547 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2548 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2549 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2550 return -EIO;
2551 }
2552
2553 /**************************************************************************
2554 *
2555 * Device reset
2556 *
2557 **************************************************************************
2558 */
2559
2560 /* Resets NIC to known state. This routine must be called in process
2561 * context and is allowed to sleep. */
2562 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2563 {
2564 struct falcon_nic_data *nic_data = efx->nic_data;
2565 efx_oword_t glb_ctl_reg_ker;
2566 int rc;
2567
2568 EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2569
2570 /* Initiate device reset */
2571 if (method == RESET_TYPE_WORLD) {
2572 rc = pci_save_state(efx->pci_dev);
2573 if (rc) {
2574 EFX_ERR(efx, "failed to backup PCI state of primary "
2575 "function prior to hardware reset\n");
2576 goto fail1;
2577 }
2578 if (FALCON_IS_DUAL_FUNC(efx)) {
2579 rc = pci_save_state(nic_data->pci_dev2);
2580 if (rc) {
2581 EFX_ERR(efx, "failed to backup PCI state of "
2582 "secondary function prior to "
2583 "hardware reset\n");
2584 goto fail2;
2585 }
2586 }
2587
2588 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2589 EXT_PHY_RST_DUR, 0x7,
2590 SWRST, 1);
2591 } else {
2592 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2593 EXCLUDE_FROM_RESET : 0);
2594
2595 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2596 EXT_PHY_RST_CTL, reset_phy,
2597 PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2598 PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2599 PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2600 EE_RST_CTL, EXCLUDE_FROM_RESET,
2601 EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2602 SWRST, 1);
2603 }
2604 falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2605
2606 EFX_LOG(efx, "waiting for hardware reset\n");
2607 schedule_timeout_uninterruptible(HZ / 20);
2608
2609 /* Restore PCI configuration if needed */
2610 if (method == RESET_TYPE_WORLD) {
2611 if (FALCON_IS_DUAL_FUNC(efx)) {
2612 rc = pci_restore_state(nic_data->pci_dev2);
2613 if (rc) {
2614 EFX_ERR(efx, "failed to restore PCI config for "
2615 "the secondary function\n");
2616 goto fail3;
2617 }
2618 }
2619 rc = pci_restore_state(efx->pci_dev);
2620 if (rc) {
2621 EFX_ERR(efx, "failed to restore PCI config for the "
2622 "primary function\n");
2623 goto fail4;
2624 }
2625 EFX_LOG(efx, "successfully restored PCI config\n");
2626 }
2627
2628 /* Assert that reset complete */
2629 falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2630 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2631 rc = -ETIMEDOUT;
2632 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2633 goto fail5;
2634 }
2635 EFX_LOG(efx, "hardware reset complete\n");
2636
2637 return 0;
2638
2639 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2640 fail2:
2641 fail3:
2642 pci_restore_state(efx->pci_dev);
2643 fail1:
2644 fail4:
2645 fail5:
2646 return rc;
2647 }
2648
2649 /* Zeroes out the SRAM contents. This routine must be called in
2650 * process context and is allowed to sleep.
2651 */
2652 static int falcon_reset_sram(struct efx_nic *efx)
2653 {
2654 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2655 int count;
2656
2657 /* Set the SRAM wake/sleep GPIO appropriately. */
2658 falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2659 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2660 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2661 falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2662
2663 /* Initiate SRAM reset */
2664 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2665 SRAM_OOB_BT_INIT_EN, 1,
2666 SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2667 falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2668
2669 /* Wait for SRAM reset to complete */
2670 count = 0;
2671 do {
2672 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2673
2674 /* SRAM reset is slow; expect around 16ms */
2675 schedule_timeout_uninterruptible(HZ / 50);
2676
2677 /* Check for reset complete */
2678 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2679 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2680 EFX_LOG(efx, "SRAM reset complete\n");
2681
2682 return 0;
2683 }
2684 } while (++count < 20); /* wait upto 0.4 sec */
2685
2686 EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2687 return -ETIMEDOUT;
2688 }
2689
2690 static int falcon_spi_device_init(struct efx_nic *efx,
2691 struct efx_spi_device **spi_device_ret,
2692 unsigned int device_id, u32 device_type)
2693 {
2694 struct efx_spi_device *spi_device;
2695
2696 if (device_type != 0) {
2697 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2698 if (!spi_device)
2699 return -ENOMEM;
2700 spi_device->device_id = device_id;
2701 spi_device->size =
2702 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2703 spi_device->addr_len =
2704 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2705 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2706 spi_device->addr_len == 1);
2707 spi_device->erase_command =
2708 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2709 spi_device->erase_size =
2710 1 << SPI_DEV_TYPE_FIELD(device_type,
2711 SPI_DEV_TYPE_ERASE_SIZE);
2712 spi_device->block_size =
2713 1 << SPI_DEV_TYPE_FIELD(device_type,
2714 SPI_DEV_TYPE_BLOCK_SIZE);
2715
2716 spi_device->efx = efx;
2717 } else {
2718 spi_device = NULL;
2719 }
2720
2721 kfree(*spi_device_ret);
2722 *spi_device_ret = spi_device;
2723 return 0;
2724 }
2725
2726
2727 static void falcon_remove_spi_devices(struct efx_nic *efx)
2728 {
2729 kfree(efx->spi_eeprom);
2730 efx->spi_eeprom = NULL;
2731 kfree(efx->spi_flash);
2732 efx->spi_flash = NULL;
2733 }
2734
2735 /* Extract non-volatile configuration */
2736 static int falcon_probe_nvconfig(struct efx_nic *efx)
2737 {
2738 struct falcon_nvconfig *nvconfig;
2739 int board_rev;
2740 int rc;
2741
2742 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2743 if (!nvconfig)
2744 return -ENOMEM;
2745
2746 rc = falcon_read_nvram(efx, nvconfig);
2747 if (rc == -EINVAL) {
2748 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2749 efx->phy_type = PHY_TYPE_NONE;
2750 efx->mii.phy_id = PHY_ADDR_INVALID;
2751 board_rev = 0;
2752 rc = 0;
2753 } else if (rc) {
2754 goto fail1;
2755 } else {
2756 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2757 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2758
2759 efx->phy_type = v2->port0_phy_type;
2760 efx->mii.phy_id = v2->port0_phy_addr;
2761 board_rev = le16_to_cpu(v2->board_revision);
2762
2763 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2764 __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2765 __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2766 rc = falcon_spi_device_init(efx, &efx->spi_flash,
2767 EE_SPI_FLASH,
2768 le32_to_cpu(fl));
2769 if (rc)
2770 goto fail2;
2771 rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2772 EE_SPI_EEPROM,
2773 le32_to_cpu(ee));
2774 if (rc)
2775 goto fail2;
2776 }
2777 }
2778
2779 /* Read the MAC addresses */
2780 memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2781
2782 EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2783
2784 efx_set_board_info(efx, board_rev);
2785
2786 kfree(nvconfig);
2787 return 0;
2788
2789 fail2:
2790 falcon_remove_spi_devices(efx);
2791 fail1:
2792 kfree(nvconfig);
2793 return rc;
2794 }
2795
2796 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2797 * count, port speed). Set workaround and feature flags accordingly.
2798 */
2799 static int falcon_probe_nic_variant(struct efx_nic *efx)
2800 {
2801 efx_oword_t altera_build;
2802 efx_oword_t nic_stat;
2803
2804 falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2805 if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2806 EFX_ERR(efx, "Falcon FPGA not supported\n");
2807 return -ENODEV;
2808 }
2809
2810 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2811
2812 switch (falcon_rev(efx)) {
2813 case FALCON_REV_A0:
2814 case 0xff:
2815 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2816 return -ENODEV;
2817
2818 case FALCON_REV_A1:
2819 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2820 EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2821 return -ENODEV;
2822 }
2823 break;
2824
2825 case FALCON_REV_B0:
2826 break;
2827
2828 default:
2829 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2830 return -ENODEV;
2831 }
2832
2833 /* Initial assumed speed */
2834 efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
2835
2836 return 0;
2837 }
2838
2839 /* Probe all SPI devices on the NIC */
2840 static void falcon_probe_spi_devices(struct efx_nic *efx)
2841 {
2842 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2843 int boot_dev;
2844
2845 falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2846 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2847 falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2848
2849 if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
2850 boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
2851 EE_SPI_FLASH : EE_SPI_EEPROM);
2852 EFX_LOG(efx, "Booted from %s\n",
2853 boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
2854 } else {
2855 /* Disable VPD and set clock dividers to safe
2856 * values for initial programming. */
2857 boot_dev = -1;
2858 EFX_LOG(efx, "Booted from internal ASIC settings;"
2859 " setting SPI config\n");
2860 EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2861 /* 125 MHz / 7 ~= 20 MHz */
2862 EE_SF_CLOCK_DIV, 7,
2863 /* 125 MHz / 63 ~= 2 MHz */
2864 EE_EE_CLOCK_DIV, 63);
2865 falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2866 }
2867
2868 if (boot_dev == EE_SPI_FLASH)
2869 falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
2870 default_flash_type);
2871 if (boot_dev == EE_SPI_EEPROM)
2872 falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
2873 large_eeprom_type);
2874 }
2875
2876 int falcon_probe_nic(struct efx_nic *efx)
2877 {
2878 struct falcon_nic_data *nic_data;
2879 int rc;
2880
2881 /* Allocate storage for hardware specific data */
2882 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2883 if (!nic_data)
2884 return -ENOMEM;
2885 efx->nic_data = nic_data;
2886
2887 /* Determine number of ports etc. */
2888 rc = falcon_probe_nic_variant(efx);
2889 if (rc)
2890 goto fail1;
2891
2892 /* Probe secondary function if expected */
2893 if (FALCON_IS_DUAL_FUNC(efx)) {
2894 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2895
2896 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2897 dev))) {
2898 if (dev->bus == efx->pci_dev->bus &&
2899 dev->devfn == efx->pci_dev->devfn + 1) {
2900 nic_data->pci_dev2 = dev;
2901 break;
2902 }
2903 }
2904 if (!nic_data->pci_dev2) {
2905 EFX_ERR(efx, "failed to find secondary function\n");
2906 rc = -ENODEV;
2907 goto fail2;
2908 }
2909 }
2910
2911 /* Now we can reset the NIC */
2912 rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2913 if (rc) {
2914 EFX_ERR(efx, "failed to reset NIC\n");
2915 goto fail3;
2916 }
2917
2918 /* Allocate memory for INT_KER */
2919 rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2920 if (rc)
2921 goto fail4;
2922 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2923
2924 EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2925 (unsigned long long)efx->irq_status.dma_addr,
2926 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2927
2928 falcon_probe_spi_devices(efx);
2929
2930 /* Read in the non-volatile configuration */
2931 rc = falcon_probe_nvconfig(efx);
2932 if (rc)
2933 goto fail5;
2934
2935 /* Initialise I2C adapter */
2936 efx->i2c_adap.owner = THIS_MODULE;
2937 nic_data->i2c_data = falcon_i2c_bit_operations;
2938 nic_data->i2c_data.data = efx;
2939 efx->i2c_adap.algo_data = &nic_data->i2c_data;
2940 efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2941 strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2942 rc = i2c_bit_add_bus(&efx->i2c_adap);
2943 if (rc)
2944 goto fail5;
2945
2946 return 0;
2947
2948 fail5:
2949 falcon_remove_spi_devices(efx);
2950 falcon_free_buffer(efx, &efx->irq_status);
2951 fail4:
2952 fail3:
2953 if (nic_data->pci_dev2) {
2954 pci_dev_put(nic_data->pci_dev2);
2955 nic_data->pci_dev2 = NULL;
2956 }
2957 fail2:
2958 fail1:
2959 kfree(efx->nic_data);
2960 return rc;
2961 }
2962
2963 /* This call performs hardware-specific global initialisation, such as
2964 * defining the descriptor cache sizes and number of RSS channels.
2965 * It does not set up any buffers, descriptor rings or event queues.
2966 */
2967 int falcon_init_nic(struct efx_nic *efx)
2968 {
2969 efx_oword_t temp;
2970 unsigned thresh;
2971 int rc;
2972
2973 /* Use on-chip SRAM */
2974 falcon_read(efx, &temp, NIC_STAT_REG);
2975 EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2976 falcon_write(efx, &temp, NIC_STAT_REG);
2977
2978 /* Set the source of the GMAC clock */
2979 if (falcon_rev(efx) == FALCON_REV_B0) {
2980 falcon_read(efx, &temp, GPIO_CTL_REG_KER);
2981 EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
2982 falcon_write(efx, &temp, GPIO_CTL_REG_KER);
2983 }
2984
2985 /* Set buffer table mode */
2986 EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2987 falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2988
2989 rc = falcon_reset_sram(efx);
2990 if (rc)
2991 return rc;
2992
2993 /* Set positions of descriptor caches in SRAM. */
2994 EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2995 falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2996 EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2997 falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2998
2999 /* Set TX descriptor cache size. */
3000 BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
3001 EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3002 falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
3003
3004 /* Set RX descriptor cache size. Set low watermark to size-8, as
3005 * this allows most efficient prefetching.
3006 */
3007 BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3008 EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3009 falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
3010 EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3011 falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
3012
3013 /* Clear the parity enables on the TX data fifos as
3014 * they produce false parity errors because of timing issues
3015 */
3016 if (EFX_WORKAROUND_5129(efx)) {
3017 falcon_read(efx, &temp, SPARE_REG_KER);
3018 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
3019 falcon_write(efx, &temp, SPARE_REG_KER);
3020 }
3021
3022 /* Enable all the genuinely fatal interrupts. (They are still
3023 * masked by the overall interrupt mask, controlled by
3024 * falcon_interrupts()).
3025 *
3026 * Note: All other fatal interrupts are enabled
3027 */
3028 EFX_POPULATE_OWORD_3(temp,
3029 ILL_ADR_INT_KER_EN, 1,
3030 RBUF_OWN_INT_KER_EN, 1,
3031 TBUF_OWN_INT_KER_EN, 1);
3032 EFX_INVERT_OWORD(temp);
3033 falcon_write(efx, &temp, FATAL_INTR_REG_KER);
3034
3035 if (EFX_WORKAROUND_7244(efx)) {
3036 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
3037 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
3038 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
3039 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
3040 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
3041 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
3042 }
3043
3044 falcon_setup_rss_indir_table(efx);
3045
3046 /* Setup RX. Wait for descriptor is broken and must
3047 * be disabled. RXDP recovery shouldn't be needed, but is.
3048 */
3049 falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
3050 EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
3051 EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
3052 if (EFX_WORKAROUND_5583(efx))
3053 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
3054 falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
3055
3056 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3057 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3058 */
3059 falcon_read(efx, &temp, TX_CFG2_REG_KER);
3060 EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
3061 EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
3062 EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
3063 EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
3064 EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
3065 /* Enable SW_EV to inherit in char driver - assume harmless here */
3066 EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
3067 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3068 EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
3069 /* Squash TX of packets of 16 bytes or less */
3070 if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3071 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
3072 falcon_write(efx, &temp, TX_CFG2_REG_KER);
3073
3074 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3075 * descriptors (which is bad).
3076 */
3077 falcon_read(efx, &temp, TX_CFG_REG_KER);
3078 EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
3079 falcon_write(efx, &temp, TX_CFG_REG_KER);
3080
3081 /* RX config */
3082 falcon_read(efx, &temp, RX_CFG_REG_KER);
3083 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
3084 if (EFX_WORKAROUND_7575(efx))
3085 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
3086 (3 * 4096) / 32);
3087 if (falcon_rev(efx) >= FALCON_REV_B0)
3088 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
3089
3090 /* RX FIFO flow control thresholds */
3091 thresh = ((rx_xon_thresh_bytes >= 0) ?
3092 rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
3093 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
3094 thresh = ((rx_xoff_thresh_bytes >= 0) ?
3095 rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
3096 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
3097 /* RX control FIFO thresholds [32 entries] */
3098 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
3099 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
3100 falcon_write(efx, &temp, RX_CFG_REG_KER);
3101
3102 /* Set destination of both TX and RX Flush events */
3103 if (falcon_rev(efx) >= FALCON_REV_B0) {
3104 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
3105 falcon_write(efx, &temp, DP_CTRL_REG);
3106 }
3107
3108 return 0;
3109 }
3110
3111 void falcon_remove_nic(struct efx_nic *efx)
3112 {
3113 struct falcon_nic_data *nic_data = efx->nic_data;
3114 int rc;
3115
3116 rc = i2c_del_adapter(&efx->i2c_adap);
3117 BUG_ON(rc);
3118
3119 falcon_remove_spi_devices(efx);
3120 falcon_free_buffer(efx, &efx->irq_status);
3121
3122 falcon_reset_hw(efx, RESET_TYPE_ALL);
3123
3124 /* Release the second function after the reset */
3125 if (nic_data->pci_dev2) {
3126 pci_dev_put(nic_data->pci_dev2);
3127 nic_data->pci_dev2 = NULL;
3128 }
3129
3130 /* Tear down the private nic state */
3131 kfree(efx->nic_data);
3132 efx->nic_data = NULL;
3133 }
3134
3135 void falcon_update_nic_stats(struct efx_nic *efx)
3136 {
3137 efx_oword_t cnt;
3138
3139 falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3140 efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3141 }
3142
3143 /**************************************************************************
3144 *
3145 * Revision-dependent attributes used by efx.c
3146 *
3147 **************************************************************************
3148 */
3149
3150 struct efx_nic_type falcon_a_nic_type = {
3151 .mem_bar = 2,
3152 .mem_map_size = 0x20000,
3153 .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3154 .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3155 .buf_tbl_base = BUF_TBL_KER_A1,
3156 .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3157 .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3158 .txd_ring_mask = FALCON_TXD_RING_MASK,
3159 .rxd_ring_mask = FALCON_RXD_RING_MASK,
3160 .evq_size = FALCON_EVQ_SIZE,
3161 .max_dma_mask = FALCON_DMA_MASK,
3162 .tx_dma_mask = FALCON_TX_DMA_MASK,
3163 .bug5391_mask = 0xf,
3164 .rx_xoff_thresh = 2048,
3165 .rx_xon_thresh = 512,
3166 .rx_buffer_padding = 0x24,
3167 .max_interrupt_mode = EFX_INT_MODE_MSI,
3168 .phys_addr_channels = 4,
3169 };
3170
3171 struct efx_nic_type falcon_b_nic_type = {
3172 .mem_bar = 2,
3173 /* Map everything up to and including the RSS indirection
3174 * table. Don't map MSI-X table, MSI-X PBA since Linux
3175 * requires that they not be mapped. */
3176 .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3177 .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3178 .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3179 .buf_tbl_base = BUF_TBL_KER_B0,
3180 .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3181 .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3182 .txd_ring_mask = FALCON_TXD_RING_MASK,
3183 .rxd_ring_mask = FALCON_RXD_RING_MASK,
3184 .evq_size = FALCON_EVQ_SIZE,
3185 .max_dma_mask = FALCON_DMA_MASK,
3186 .tx_dma_mask = FALCON_TX_DMA_MASK,
3187 .bug5391_mask = 0,
3188 .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3189 .rx_xon_thresh = 27648, /* ~3*max MTU */
3190 .rx_buffer_padding = 0,
3191 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3192 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3193 * interrupt handler only supports 32
3194 * channels */
3195 };
3196
This page took 0.166613 seconds and 4 git commands to generate.