Merge branch 'master' of git://git.infradead.org/users/dwmw2/solos-2.6
[deliverable/linux.git] / drivers / net / sis900.c
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
4
5 Modified from the driver which is originally written by Donald Becker.
6
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
11
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
19
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/string.h>
56 #include <linux/timer.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/pci.h>
62 #include <linux/netdevice.h>
63 #include <linux/init.h>
64 #include <linux/mii.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/delay.h>
68 #include <linux/ethtool.h>
69 #include <linux/crc32.h>
70 #include <linux/bitops.h>
71 #include <linux/dma-mapping.h>
72
73 #include <asm/processor.h> /* Processor type for cache alignment. */
74 #include <asm/io.h>
75 #include <asm/irq.h>
76 #include <asm/uaccess.h> /* User space memory access functions */
77
78 #include "sis900.h"
79
80 #define SIS900_MODULE_NAME "sis900"
81 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
82
83 static const char version[] __devinitconst =
84 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
85
86 static int max_interrupt_work = 40;
87 static int multicast_filter_limit = 128;
88
89 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
90
91 #define SIS900_DEF_MSG \
92 (NETIF_MSG_DRV | \
93 NETIF_MSG_LINK | \
94 NETIF_MSG_RX_ERR | \
95 NETIF_MSG_TX_ERR)
96
97 /* Time in jiffies before concluding the transmitter is hung. */
98 #define TX_TIMEOUT (4*HZ)
99
100 enum {
101 SIS_900 = 0,
102 SIS_7016
103 };
104 static const char * card_names[] = {
105 "SiS 900 PCI Fast Ethernet",
106 "SiS 7016 PCI Fast Ethernet"
107 };
108 static struct pci_device_id sis900_pci_tbl [] = {
109 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
111 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
113 {0,}
114 };
115 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
116
117 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
118
119 static const struct mii_chip_info {
120 const char * name;
121 u16 phy_id0;
122 u16 phy_id1;
123 u8 phy_types;
124 #define HOME 0x0001
125 #define LAN 0x0002
126 #define MIX 0x0003
127 #define UNKNOWN 0x0
128 } mii_chip_table[] = {
129 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
130 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
131 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
132 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
133 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
134 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
135 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
136 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
137 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
138 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
139 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
140 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
141 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
142 {NULL,},
143 };
144
145 struct mii_phy {
146 struct mii_phy * next;
147 int phy_addr;
148 u16 phy_id0;
149 u16 phy_id1;
150 u16 status;
151 u8 phy_types;
152 };
153
154 typedef struct _BufferDesc {
155 u32 link;
156 u32 cmdsts;
157 u32 bufptr;
158 } BufferDesc;
159
160 struct sis900_private {
161 struct pci_dev * pci_dev;
162
163 spinlock_t lock;
164
165 struct mii_phy * mii;
166 struct mii_phy * first_mii; /* record the first mii structure */
167 unsigned int cur_phy;
168 struct mii_if_info mii_info;
169
170 struct timer_list timer; /* Link status detection timer. */
171 u8 autong_complete; /* 1: auto-negotiate complete */
172
173 u32 msg_enable;
174
175 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
176 unsigned int cur_tx, dirty_tx;
177
178 /* The saved address of a sent/receive-in-place packet buffer */
179 struct sk_buff *tx_skbuff[NUM_TX_DESC];
180 struct sk_buff *rx_skbuff[NUM_RX_DESC];
181 BufferDesc *tx_ring;
182 BufferDesc *rx_ring;
183
184 dma_addr_t tx_ring_dma;
185 dma_addr_t rx_ring_dma;
186
187 unsigned int tx_full; /* The Tx queue is full. */
188 u8 host_bridge_rev;
189 u8 chipset_rev;
190 };
191
192 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
193 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
194 MODULE_LICENSE("GPL");
195
196 module_param(multicast_filter_limit, int, 0444);
197 module_param(max_interrupt_work, int, 0444);
198 module_param(sis900_debug, int, 0444);
199 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
200 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
201 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
202
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 static void sis900_poll(struct net_device *dev);
205 #endif
206 static int sis900_open(struct net_device *net_dev);
207 static int sis900_mii_probe (struct net_device * net_dev);
208 static void sis900_init_rxfilter (struct net_device * net_dev);
209 static u16 read_eeprom(long ioaddr, int location);
210 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
211 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
212 static void sis900_timer(unsigned long data);
213 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
214 static void sis900_tx_timeout(struct net_device *net_dev);
215 static void sis900_init_tx_ring(struct net_device *net_dev);
216 static void sis900_init_rx_ring(struct net_device *net_dev);
217 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
218 struct net_device *net_dev);
219 static int sis900_rx(struct net_device *net_dev);
220 static void sis900_finish_xmit (struct net_device *net_dev);
221 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
222 static int sis900_close(struct net_device *net_dev);
223 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
224 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
225 static void set_rx_mode(struct net_device *net_dev);
226 static void sis900_reset(struct net_device *net_dev);
227 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
228 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
229 static u16 sis900_default_phy(struct net_device * net_dev);
230 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
231 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
232 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
233 static void sis900_set_mode (long ioaddr, int speed, int duplex);
234 static const struct ethtool_ops sis900_ethtool_ops;
235
236 /**
237 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
238 * @pci_dev: the sis900 pci device
239 * @net_dev: the net device to get address for
240 *
241 * Older SiS900 and friends, use EEPROM to store MAC address.
242 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
243 */
244
245 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
246 {
247 long ioaddr = pci_resource_start(pci_dev, 0);
248 u16 signature;
249 int i;
250
251 /* check to see if we have sane EEPROM */
252 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
253 if (signature == 0xffff || signature == 0x0000) {
254 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
255 pci_name(pci_dev), signature);
256 return 0;
257 }
258
259 /* get MAC address from EEPROM */
260 for (i = 0; i < 3; i++)
261 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
262
263 return 1;
264 }
265
266 /**
267 * sis630e_get_mac_addr - Get MAC address for SiS630E model
268 * @pci_dev: the sis900 pci device
269 * @net_dev: the net device to get address for
270 *
271 * SiS630E model, use APC CMOS RAM to store MAC address.
272 * APC CMOS RAM is accessed through ISA bridge.
273 * MAC address is read into @net_dev->dev_addr.
274 */
275
276 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
277 struct net_device *net_dev)
278 {
279 struct pci_dev *isa_bridge = NULL;
280 u8 reg;
281 int i;
282
283 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
284 if (!isa_bridge)
285 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
286 if (!isa_bridge) {
287 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
288 pci_name(pci_dev));
289 return 0;
290 }
291 pci_read_config_byte(isa_bridge, 0x48, &reg);
292 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
293
294 for (i = 0; i < 6; i++) {
295 outb(0x09 + i, 0x70);
296 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
297 }
298 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
299 pci_dev_put(isa_bridge);
300
301 return 1;
302 }
303
304
305 /**
306 * sis635_get_mac_addr - Get MAC address for SIS635 model
307 * @pci_dev: the sis900 pci device
308 * @net_dev: the net device to get address for
309 *
310 * SiS635 model, set MAC Reload Bit to load Mac address from APC
311 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
312 * @net_dev->dev_addr.
313 */
314
315 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
316 struct net_device *net_dev)
317 {
318 long ioaddr = net_dev->base_addr;
319 u32 rfcrSave;
320 u32 i;
321
322 rfcrSave = inl(rfcr + ioaddr);
323
324 outl(rfcrSave | RELOAD, ioaddr + cr);
325 outl(0, ioaddr + cr);
326
327 /* disable packet filtering before setting filter */
328 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
329
330 /* load MAC addr to filter data register */
331 for (i = 0 ; i < 3 ; i++) {
332 outl((i << RFADDR_shift), ioaddr + rfcr);
333 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
334 }
335
336 /* enable packet filtering */
337 outl(rfcrSave | RFEN, rfcr + ioaddr);
338
339 return 1;
340 }
341
342 /**
343 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
344 * @pci_dev: the sis900 pci device
345 * @net_dev: the net device to get address for
346 *
347 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
348 * is shared by
349 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
350 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
351 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
352 * EEDONE signal to refuse EEPROM access by LAN.
353 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
354 * The signature field in SiS962 or SiS963 spec is meaningless.
355 * MAC address is read into @net_dev->dev_addr.
356 */
357
358 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
359 struct net_device *net_dev)
360 {
361 long ioaddr = net_dev->base_addr;
362 long ee_addr = ioaddr + mear;
363 u32 waittime = 0;
364 int i;
365
366 outl(EEREQ, ee_addr);
367 while(waittime < 2000) {
368 if(inl(ee_addr) & EEGNT) {
369
370 /* get MAC address from EEPROM */
371 for (i = 0; i < 3; i++)
372 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
373
374 outl(EEDONE, ee_addr);
375 return 1;
376 } else {
377 udelay(1);
378 waittime ++;
379 }
380 }
381 outl(EEDONE, ee_addr);
382 return 0;
383 }
384
385 static const struct net_device_ops sis900_netdev_ops = {
386 .ndo_open = sis900_open,
387 .ndo_stop = sis900_close,
388 .ndo_start_xmit = sis900_start_xmit,
389 .ndo_set_config = sis900_set_config,
390 .ndo_set_multicast_list = set_rx_mode,
391 .ndo_change_mtu = eth_change_mtu,
392 .ndo_validate_addr = eth_validate_addr,
393 .ndo_set_mac_address = eth_mac_addr,
394 .ndo_do_ioctl = mii_ioctl,
395 .ndo_tx_timeout = sis900_tx_timeout,
396 #ifdef CONFIG_NET_POLL_CONTROLLER
397 .ndo_poll_controller = sis900_poll,
398 #endif
399 };
400
401 /**
402 * sis900_probe - Probe for sis900 device
403 * @pci_dev: the sis900 pci device
404 * @pci_id: the pci device ID
405 *
406 * Check and probe sis900 net device for @pci_dev.
407 * Get mac address according to the chip revision,
408 * and assign SiS900-specific entries in the device structure.
409 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
410 */
411
412 static int __devinit sis900_probe(struct pci_dev *pci_dev,
413 const struct pci_device_id *pci_id)
414 {
415 struct sis900_private *sis_priv;
416 struct net_device *net_dev;
417 struct pci_dev *dev;
418 dma_addr_t ring_dma;
419 void *ring_space;
420 long ioaddr;
421 int i, ret;
422 const char *card_name = card_names[pci_id->driver_data];
423 const char *dev_name = pci_name(pci_dev);
424
425 /* when built into the kernel, we only print version if device is found */
426 #ifndef MODULE
427 static int printed_version;
428 if (!printed_version++)
429 printk(version);
430 #endif
431
432 /* setup various bits in PCI command register */
433 ret = pci_enable_device(pci_dev);
434 if(ret) return ret;
435
436 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
437 if(i){
438 printk(KERN_ERR "sis900.c: architecture does not support "
439 "32bit PCI busmaster DMA\n");
440 return i;
441 }
442
443 pci_set_master(pci_dev);
444
445 net_dev = alloc_etherdev(sizeof(struct sis900_private));
446 if (!net_dev)
447 return -ENOMEM;
448 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
449
450 /* We do a request_region() to register /proc/ioports info. */
451 ioaddr = pci_resource_start(pci_dev, 0);
452 ret = pci_request_regions(pci_dev, "sis900");
453 if (ret)
454 goto err_out;
455
456 sis_priv = netdev_priv(net_dev);
457 net_dev->base_addr = ioaddr;
458 net_dev->irq = pci_dev->irq;
459 sis_priv->pci_dev = pci_dev;
460 spin_lock_init(&sis_priv->lock);
461
462 pci_set_drvdata(pci_dev, net_dev);
463
464 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
465 if (!ring_space) {
466 ret = -ENOMEM;
467 goto err_out_cleardev;
468 }
469 sis_priv->tx_ring = (BufferDesc *)ring_space;
470 sis_priv->tx_ring_dma = ring_dma;
471
472 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
473 if (!ring_space) {
474 ret = -ENOMEM;
475 goto err_unmap_tx;
476 }
477 sis_priv->rx_ring = (BufferDesc *)ring_space;
478 sis_priv->rx_ring_dma = ring_dma;
479
480 /* The SiS900-specific entries in the device structure. */
481 net_dev->netdev_ops = &sis900_netdev_ops;
482 net_dev->watchdog_timeo = TX_TIMEOUT;
483 net_dev->ethtool_ops = &sis900_ethtool_ops;
484
485 if (sis900_debug > 0)
486 sis_priv->msg_enable = sis900_debug;
487 else
488 sis_priv->msg_enable = SIS900_DEF_MSG;
489
490 sis_priv->mii_info.dev = net_dev;
491 sis_priv->mii_info.mdio_read = mdio_read;
492 sis_priv->mii_info.mdio_write = mdio_write;
493 sis_priv->mii_info.phy_id_mask = 0x1f;
494 sis_priv->mii_info.reg_num_mask = 0x1f;
495
496 /* Get Mac address according to the chip revision */
497 pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
498 if(netif_msg_probe(sis_priv))
499 printk(KERN_DEBUG "%s: detected revision %2.2x, "
500 "trying to get MAC address...\n",
501 dev_name, sis_priv->chipset_rev);
502
503 ret = 0;
504 if (sis_priv->chipset_rev == SIS630E_900_REV)
505 ret = sis630e_get_mac_addr(pci_dev, net_dev);
506 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
507 ret = sis635_get_mac_addr(pci_dev, net_dev);
508 else if (sis_priv->chipset_rev == SIS96x_900_REV)
509 ret = sis96x_get_mac_addr(pci_dev, net_dev);
510 else
511 ret = sis900_get_mac_addr(pci_dev, net_dev);
512
513 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
514 random_ether_addr(net_dev->dev_addr);
515 printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
516 "using random generated one\n", dev_name);
517 }
518
519 /* 630ET : set the mii access mode as software-mode */
520 if (sis_priv->chipset_rev == SIS630ET_900_REV)
521 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
522
523 /* probe for mii transceiver */
524 if (sis900_mii_probe(net_dev) == 0) {
525 printk(KERN_WARNING "%s: Error probing MII device.\n",
526 dev_name);
527 ret = -ENODEV;
528 goto err_unmap_rx;
529 }
530
531 /* save our host bridge revision */
532 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
533 if (dev) {
534 pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
535 pci_dev_put(dev);
536 }
537
538 ret = register_netdev(net_dev);
539 if (ret)
540 goto err_unmap_rx;
541
542 /* print some information about our NIC */
543 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
544 net_dev->name, card_name, ioaddr, net_dev->irq,
545 net_dev->dev_addr);
546
547 /* Detect Wake on Lan support */
548 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
549 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
550 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
551
552 return 0;
553
554 err_unmap_rx:
555 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
556 sis_priv->rx_ring_dma);
557 err_unmap_tx:
558 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
559 sis_priv->tx_ring_dma);
560 err_out_cleardev:
561 pci_set_drvdata(pci_dev, NULL);
562 pci_release_regions(pci_dev);
563 err_out:
564 free_netdev(net_dev);
565 return ret;
566 }
567
568 /**
569 * sis900_mii_probe - Probe MII PHY for sis900
570 * @net_dev: the net device to probe for
571 *
572 * Search for total of 32 possible mii phy addresses.
573 * Identify and set current phy if found one,
574 * return error if it failed to found.
575 */
576
577 static int __devinit sis900_mii_probe(struct net_device * net_dev)
578 {
579 struct sis900_private *sis_priv = netdev_priv(net_dev);
580 const char *dev_name = pci_name(sis_priv->pci_dev);
581 u16 poll_bit = MII_STAT_LINK, status = 0;
582 unsigned long timeout = jiffies + 5 * HZ;
583 int phy_addr;
584
585 sis_priv->mii = NULL;
586
587 /* search for total of 32 possible mii phy addresses */
588 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
589 struct mii_phy * mii_phy = NULL;
590 u16 mii_status;
591 int i;
592
593 mii_phy = NULL;
594 for(i = 0; i < 2; i++)
595 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
596
597 if (mii_status == 0xffff || mii_status == 0x0000) {
598 if (netif_msg_probe(sis_priv))
599 printk(KERN_DEBUG "%s: MII at address %d"
600 " not accessible\n",
601 dev_name, phy_addr);
602 continue;
603 }
604
605 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
606 printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
607 mii_phy = sis_priv->first_mii;
608 while (mii_phy) {
609 struct mii_phy *phy;
610 phy = mii_phy;
611 mii_phy = mii_phy->next;
612 kfree(phy);
613 }
614 return 0;
615 }
616
617 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
618 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
619 mii_phy->phy_addr = phy_addr;
620 mii_phy->status = mii_status;
621 mii_phy->next = sis_priv->mii;
622 sis_priv->mii = mii_phy;
623 sis_priv->first_mii = mii_phy;
624
625 for (i = 0; mii_chip_table[i].phy_id1; i++)
626 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
627 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
628 mii_phy->phy_types = mii_chip_table[i].phy_types;
629 if (mii_chip_table[i].phy_types == MIX)
630 mii_phy->phy_types =
631 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
632 printk(KERN_INFO "%s: %s transceiver found "
633 "at address %d.\n",
634 dev_name,
635 mii_chip_table[i].name,
636 phy_addr);
637 break;
638 }
639
640 if( !mii_chip_table[i].phy_id1 ) {
641 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
642 dev_name, phy_addr);
643 mii_phy->phy_types = UNKNOWN;
644 }
645 }
646
647 if (sis_priv->mii == NULL) {
648 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
649 return 0;
650 }
651
652 /* select default PHY for mac */
653 sis_priv->mii = NULL;
654 sis900_default_phy( net_dev );
655
656 /* Reset phy if default phy is internal sis900 */
657 if ((sis_priv->mii->phy_id0 == 0x001D) &&
658 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
659 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
660
661 /* workaround for ICS1893 PHY */
662 if ((sis_priv->mii->phy_id0 == 0x0015) &&
663 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
664 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
665
666 if(status & MII_STAT_LINK){
667 while (poll_bit) {
668 yield();
669
670 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
671 if (time_after_eq(jiffies, timeout)) {
672 printk(KERN_WARNING "%s: reset phy and link down now\n",
673 dev_name);
674 return -ETIME;
675 }
676 }
677 }
678
679 if (sis_priv->chipset_rev == SIS630E_900_REV) {
680 /* SiS 630E has some bugs on default value of PHY registers */
681 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
682 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
683 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
684 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
685 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
686 }
687
688 if (sis_priv->mii->status & MII_STAT_LINK)
689 netif_carrier_on(net_dev);
690 else
691 netif_carrier_off(net_dev);
692
693 return 1;
694 }
695
696 /**
697 * sis900_default_phy - Select default PHY for sis900 mac.
698 * @net_dev: the net device to probe for
699 *
700 * Select first detected PHY with link as default.
701 * If no one is link on, select PHY whose types is HOME as default.
702 * If HOME doesn't exist, select LAN.
703 */
704
705 static u16 sis900_default_phy(struct net_device * net_dev)
706 {
707 struct sis900_private *sis_priv = netdev_priv(net_dev);
708 struct mii_phy *phy = NULL, *phy_home = NULL,
709 *default_phy = NULL, *phy_lan = NULL;
710 u16 status;
711
712 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
713 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
714 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
715
716 /* Link ON & Not select default PHY & not ghost PHY */
717 if ((status & MII_STAT_LINK) && !default_phy &&
718 (phy->phy_types != UNKNOWN))
719 default_phy = phy;
720 else {
721 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
722 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
723 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
724 if (phy->phy_types == HOME)
725 phy_home = phy;
726 else if(phy->phy_types == LAN)
727 phy_lan = phy;
728 }
729 }
730
731 if (!default_phy && phy_home)
732 default_phy = phy_home;
733 else if (!default_phy && phy_lan)
734 default_phy = phy_lan;
735 else if (!default_phy)
736 default_phy = sis_priv->first_mii;
737
738 if (sis_priv->mii != default_phy) {
739 sis_priv->mii = default_phy;
740 sis_priv->cur_phy = default_phy->phy_addr;
741 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
742 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
743 }
744
745 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
746
747 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
748 status &= (~MII_CNTL_ISOLATE);
749
750 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
751 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
752 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
753
754 return status;
755 }
756
757
758 /**
759 * sis900_set_capability - set the media capability of network adapter.
760 * @net_dev : the net device to probe for
761 * @phy : default PHY
762 *
763 * Set the media capability of network adapter according to
764 * mii status register. It's necessary before auto-negotiate.
765 */
766
767 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
768 {
769 u16 cap;
770 u16 status;
771
772 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
773 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
774
775 cap = MII_NWAY_CSMA_CD |
776 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
777 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
778 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
779 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
780
781 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
782 }
783
784
785 /* Delay between EEPROM clock transitions. */
786 #define eeprom_delay() inl(ee_addr)
787
788 /**
789 * read_eeprom - Read Serial EEPROM
790 * @ioaddr: base i/o address
791 * @location: the EEPROM location to read
792 *
793 * Read Serial EEPROM through EEPROM Access Register.
794 * Note that location is in word (16 bits) unit
795 */
796
797 static u16 __devinit read_eeprom(long ioaddr, int location)
798 {
799 int i;
800 u16 retval = 0;
801 long ee_addr = ioaddr + mear;
802 u32 read_cmd = location | EEread;
803
804 outl(0, ee_addr);
805 eeprom_delay();
806 outl(EECS, ee_addr);
807 eeprom_delay();
808
809 /* Shift the read command (9) bits out. */
810 for (i = 8; i >= 0; i--) {
811 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
812 outl(dataval, ee_addr);
813 eeprom_delay();
814 outl(dataval | EECLK, ee_addr);
815 eeprom_delay();
816 }
817 outl(EECS, ee_addr);
818 eeprom_delay();
819
820 /* read the 16-bits data in */
821 for (i = 16; i > 0; i--) {
822 outl(EECS, ee_addr);
823 eeprom_delay();
824 outl(EECS | EECLK, ee_addr);
825 eeprom_delay();
826 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
827 eeprom_delay();
828 }
829
830 /* Terminate the EEPROM access. */
831 outl(0, ee_addr);
832 eeprom_delay();
833
834 return (retval);
835 }
836
837 /* Read and write the MII management registers using software-generated
838 serial MDIO protocol. Note that the command bits and data bits are
839 send out separately */
840 #define mdio_delay() inl(mdio_addr)
841
842 static void mdio_idle(long mdio_addr)
843 {
844 outl(MDIO | MDDIR, mdio_addr);
845 mdio_delay();
846 outl(MDIO | MDDIR | MDC, mdio_addr);
847 }
848
849 /* Syncronize the MII management interface by shifting 32 one bits out. */
850 static void mdio_reset(long mdio_addr)
851 {
852 int i;
853
854 for (i = 31; i >= 0; i--) {
855 outl(MDDIR | MDIO, mdio_addr);
856 mdio_delay();
857 outl(MDDIR | MDIO | MDC, mdio_addr);
858 mdio_delay();
859 }
860 return;
861 }
862
863 /**
864 * mdio_read - read MII PHY register
865 * @net_dev: the net device to read
866 * @phy_id: the phy address to read
867 * @location: the phy regiester id to read
868 *
869 * Read MII registers through MDIO and MDC
870 * using MDIO management frame structure and protocol(defined by ISO/IEC).
871 * Please see SiS7014 or ICS spec
872 */
873
874 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
875 {
876 long mdio_addr = net_dev->base_addr + mear;
877 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
878 u16 retval = 0;
879 int i;
880
881 mdio_reset(mdio_addr);
882 mdio_idle(mdio_addr);
883
884 for (i = 15; i >= 0; i--) {
885 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
886 outl(dataval, mdio_addr);
887 mdio_delay();
888 outl(dataval | MDC, mdio_addr);
889 mdio_delay();
890 }
891
892 /* Read the 16 data bits. */
893 for (i = 16; i > 0; i--) {
894 outl(0, mdio_addr);
895 mdio_delay();
896 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
897 outl(MDC, mdio_addr);
898 mdio_delay();
899 }
900 outl(0x00, mdio_addr);
901
902 return retval;
903 }
904
905 /**
906 * mdio_write - write MII PHY register
907 * @net_dev: the net device to write
908 * @phy_id: the phy address to write
909 * @location: the phy regiester id to write
910 * @value: the register value to write with
911 *
912 * Write MII registers with @value through MDIO and MDC
913 * using MDIO management frame structure and protocol(defined by ISO/IEC)
914 * please see SiS7014 or ICS spec
915 */
916
917 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
918 int value)
919 {
920 long mdio_addr = net_dev->base_addr + mear;
921 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
922 int i;
923
924 mdio_reset(mdio_addr);
925 mdio_idle(mdio_addr);
926
927 /* Shift the command bits out. */
928 for (i = 15; i >= 0; i--) {
929 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
930 outb(dataval, mdio_addr);
931 mdio_delay();
932 outb(dataval | MDC, mdio_addr);
933 mdio_delay();
934 }
935 mdio_delay();
936
937 /* Shift the value bits out. */
938 for (i = 15; i >= 0; i--) {
939 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
940 outl(dataval, mdio_addr);
941 mdio_delay();
942 outl(dataval | MDC, mdio_addr);
943 mdio_delay();
944 }
945 mdio_delay();
946
947 /* Clear out extra bits. */
948 for (i = 2; i > 0; i--) {
949 outb(0, mdio_addr);
950 mdio_delay();
951 outb(MDC, mdio_addr);
952 mdio_delay();
953 }
954 outl(0x00, mdio_addr);
955
956 return;
957 }
958
959
960 /**
961 * sis900_reset_phy - reset sis900 mii phy.
962 * @net_dev: the net device to write
963 * @phy_addr: default phy address
964 *
965 * Some specific phy can't work properly without reset.
966 * This function will be called during initialization and
967 * link status change from ON to DOWN.
968 */
969
970 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
971 {
972 int i;
973 u16 status;
974
975 for (i = 0; i < 2; i++)
976 status = mdio_read(net_dev, phy_addr, MII_STATUS);
977
978 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
979
980 return status;
981 }
982
983 #ifdef CONFIG_NET_POLL_CONTROLLER
984 /*
985 * Polling 'interrupt' - used by things like netconsole to send skbs
986 * without having to re-enable interrupts. It's not called while
987 * the interrupt routine is executing.
988 */
989 static void sis900_poll(struct net_device *dev)
990 {
991 disable_irq(dev->irq);
992 sis900_interrupt(dev->irq, dev);
993 enable_irq(dev->irq);
994 }
995 #endif
996
997 /**
998 * sis900_open - open sis900 device
999 * @net_dev: the net device to open
1000 *
1001 * Do some initialization and start net interface.
1002 * enable interrupts and set sis900 timer.
1003 */
1004
1005 static int
1006 sis900_open(struct net_device *net_dev)
1007 {
1008 struct sis900_private *sis_priv = netdev_priv(net_dev);
1009 long ioaddr = net_dev->base_addr;
1010 int ret;
1011
1012 /* Soft reset the chip. */
1013 sis900_reset(net_dev);
1014
1015 /* Equalizer workaround Rule */
1016 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1017
1018 ret = request_irq(net_dev->irq, &sis900_interrupt, IRQF_SHARED,
1019 net_dev->name, net_dev);
1020 if (ret)
1021 return ret;
1022
1023 sis900_init_rxfilter(net_dev);
1024
1025 sis900_init_tx_ring(net_dev);
1026 sis900_init_rx_ring(net_dev);
1027
1028 set_rx_mode(net_dev);
1029
1030 netif_start_queue(net_dev);
1031
1032 /* Workaround for EDB */
1033 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1034
1035 /* Enable all known interrupts by setting the interrupt mask. */
1036 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1037 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1038 outl(IE, ioaddr + ier);
1039
1040 sis900_check_mode(net_dev, sis_priv->mii);
1041
1042 /* Set the timer to switch to check for link beat and perhaps switch
1043 to an alternate media type. */
1044 init_timer(&sis_priv->timer);
1045 sis_priv->timer.expires = jiffies + HZ;
1046 sis_priv->timer.data = (unsigned long)net_dev;
1047 sis_priv->timer.function = &sis900_timer;
1048 add_timer(&sis_priv->timer);
1049
1050 return 0;
1051 }
1052
1053 /**
1054 * sis900_init_rxfilter - Initialize the Rx filter
1055 * @net_dev: the net device to initialize for
1056 *
1057 * Set receive filter address to our MAC address
1058 * and enable packet filtering.
1059 */
1060
1061 static void
1062 sis900_init_rxfilter (struct net_device * net_dev)
1063 {
1064 struct sis900_private *sis_priv = netdev_priv(net_dev);
1065 long ioaddr = net_dev->base_addr;
1066 u32 rfcrSave;
1067 u32 i;
1068
1069 rfcrSave = inl(rfcr + ioaddr);
1070
1071 /* disable packet filtering before setting filter */
1072 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1073
1074 /* load MAC addr to filter data register */
1075 for (i = 0 ; i < 3 ; i++) {
1076 u32 w;
1077
1078 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1079 outl((i << RFADDR_shift), ioaddr + rfcr);
1080 outl(w, ioaddr + rfdr);
1081
1082 if (netif_msg_hw(sis_priv)) {
1083 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1084 net_dev->name, i, inl(ioaddr + rfdr));
1085 }
1086 }
1087
1088 /* enable packet filtering */
1089 outl(rfcrSave | RFEN, rfcr + ioaddr);
1090 }
1091
1092 /**
1093 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1094 * @net_dev: the net device to initialize for
1095 *
1096 * Initialize the Tx descriptor ring,
1097 */
1098
1099 static void
1100 sis900_init_tx_ring(struct net_device *net_dev)
1101 {
1102 struct sis900_private *sis_priv = netdev_priv(net_dev);
1103 long ioaddr = net_dev->base_addr;
1104 int i;
1105
1106 sis_priv->tx_full = 0;
1107 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1108
1109 for (i = 0; i < NUM_TX_DESC; i++) {
1110 sis_priv->tx_skbuff[i] = NULL;
1111
1112 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1113 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1114 sis_priv->tx_ring[i].cmdsts = 0;
1115 sis_priv->tx_ring[i].bufptr = 0;
1116 }
1117
1118 /* load Transmit Descriptor Register */
1119 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1120 if (netif_msg_hw(sis_priv))
1121 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1122 net_dev->name, inl(ioaddr + txdp));
1123 }
1124
1125 /**
1126 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1127 * @net_dev: the net device to initialize for
1128 *
1129 * Initialize the Rx descriptor ring,
1130 * and pre-allocate recevie buffers (socket buffer)
1131 */
1132
1133 static void
1134 sis900_init_rx_ring(struct net_device *net_dev)
1135 {
1136 struct sis900_private *sis_priv = netdev_priv(net_dev);
1137 long ioaddr = net_dev->base_addr;
1138 int i;
1139
1140 sis_priv->cur_rx = 0;
1141 sis_priv->dirty_rx = 0;
1142
1143 /* init RX descriptor */
1144 for (i = 0; i < NUM_RX_DESC; i++) {
1145 sis_priv->rx_skbuff[i] = NULL;
1146
1147 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1148 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1149 sis_priv->rx_ring[i].cmdsts = 0;
1150 sis_priv->rx_ring[i].bufptr = 0;
1151 }
1152
1153 /* allocate sock buffers */
1154 for (i = 0; i < NUM_RX_DESC; i++) {
1155 struct sk_buff *skb;
1156
1157 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1158 /* not enough memory for skbuff, this makes a "hole"
1159 on the buffer ring, it is not clear how the
1160 hardware will react to this kind of degenerated
1161 buffer */
1162 break;
1163 }
1164 sis_priv->rx_skbuff[i] = skb;
1165 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1166 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1167 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1168 }
1169 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1170
1171 /* load Receive Descriptor Register */
1172 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1173 if (netif_msg_hw(sis_priv))
1174 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1175 net_dev->name, inl(ioaddr + rxdp));
1176 }
1177
1178 /**
1179 * sis630_set_eq - set phy equalizer value for 630 LAN
1180 * @net_dev: the net device to set equalizer value
1181 * @revision: 630 LAN revision number
1182 *
1183 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1184 * PHY register 14h(Test)
1185 * Bit 14: 0 -- Automatically dectect (default)
1186 * 1 -- Manually set Equalizer filter
1187 * Bit 13: 0 -- (Default)
1188 * 1 -- Speed up convergence of equalizer setting
1189 * Bit 9 : 0 -- (Default)
1190 * 1 -- Disable Baseline Wander
1191 * Bit 3~7 -- Equalizer filter setting
1192 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1193 * Then calculate equalizer value
1194 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1195 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1196 * Calculate Equalizer value:
1197 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1198 * When the equalizer is stable, this value is not a fixed value. It will be within
1199 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1200 * 0 <= max <= 4 --> set equalizer to max
1201 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1202 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1203 */
1204
1205 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1206 {
1207 struct sis900_private *sis_priv = netdev_priv(net_dev);
1208 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1209 int i, maxcount=10;
1210
1211 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1212 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1213 return;
1214
1215 if (netif_carrier_ok(net_dev)) {
1216 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1217 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1218 (0x2200 | reg14h) & 0xBFFF);
1219 for (i=0; i < maxcount; i++) {
1220 eq_value = (0x00F8 & mdio_read(net_dev,
1221 sis_priv->cur_phy, MII_RESV)) >> 3;
1222 if (i == 0)
1223 max_value=min_value=eq_value;
1224 max_value = (eq_value > max_value) ?
1225 eq_value : max_value;
1226 min_value = (eq_value < min_value) ?
1227 eq_value : min_value;
1228 }
1229 /* 630E rule to determine the equalizer value */
1230 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1231 revision == SIS630ET_900_REV) {
1232 if (max_value < 5)
1233 eq_value = max_value;
1234 else if (max_value >= 5 && max_value < 15)
1235 eq_value = (max_value == min_value) ?
1236 max_value+2 : max_value+1;
1237 else if (max_value >= 15)
1238 eq_value=(max_value == min_value) ?
1239 max_value+6 : max_value+5;
1240 }
1241 /* 630B0&B1 rule to determine the equalizer value */
1242 if (revision == SIS630A_900_REV &&
1243 (sis_priv->host_bridge_rev == SIS630B0 ||
1244 sis_priv->host_bridge_rev == SIS630B1)) {
1245 if (max_value == 0)
1246 eq_value = 3;
1247 else
1248 eq_value = (max_value + min_value + 1)/2;
1249 }
1250 /* write equalizer value and setting */
1251 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1252 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1253 reg14h = (reg14h | 0x6000) & 0xFDFF;
1254 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1255 } else {
1256 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1257 if (revision == SIS630A_900_REV &&
1258 (sis_priv->host_bridge_rev == SIS630B0 ||
1259 sis_priv->host_bridge_rev == SIS630B1))
1260 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1261 (reg14h | 0x2200) & 0xBFFF);
1262 else
1263 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1264 (reg14h | 0x2000) & 0xBFFF);
1265 }
1266 return;
1267 }
1268
1269 /**
1270 * sis900_timer - sis900 timer routine
1271 * @data: pointer to sis900 net device
1272 *
1273 * On each timer ticks we check two things,
1274 * link status (ON/OFF) and link mode (10/100/Full/Half)
1275 */
1276
1277 static void sis900_timer(unsigned long data)
1278 {
1279 struct net_device *net_dev = (struct net_device *)data;
1280 struct sis900_private *sis_priv = netdev_priv(net_dev);
1281 struct mii_phy *mii_phy = sis_priv->mii;
1282 static const int next_tick = 5*HZ;
1283 u16 status;
1284
1285 if (!sis_priv->autong_complete){
1286 int uninitialized_var(speed), duplex = 0;
1287
1288 sis900_read_mode(net_dev, &speed, &duplex);
1289 if (duplex){
1290 sis900_set_mode(net_dev->base_addr, speed, duplex);
1291 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1292 netif_start_queue(net_dev);
1293 }
1294
1295 sis_priv->timer.expires = jiffies + HZ;
1296 add_timer(&sis_priv->timer);
1297 return;
1298 }
1299
1300 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1301 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1302
1303 /* Link OFF -> ON */
1304 if (!netif_carrier_ok(net_dev)) {
1305 LookForLink:
1306 /* Search for new PHY */
1307 status = sis900_default_phy(net_dev);
1308 mii_phy = sis_priv->mii;
1309
1310 if (status & MII_STAT_LINK){
1311 sis900_check_mode(net_dev, mii_phy);
1312 netif_carrier_on(net_dev);
1313 }
1314 } else {
1315 /* Link ON -> OFF */
1316 if (!(status & MII_STAT_LINK)){
1317 netif_carrier_off(net_dev);
1318 if(netif_msg_link(sis_priv))
1319 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1320
1321 /* Change mode issue */
1322 if ((mii_phy->phy_id0 == 0x001D) &&
1323 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1324 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1325
1326 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1327
1328 goto LookForLink;
1329 }
1330 }
1331
1332 sis_priv->timer.expires = jiffies + next_tick;
1333 add_timer(&sis_priv->timer);
1334 }
1335
1336 /**
1337 * sis900_check_mode - check the media mode for sis900
1338 * @net_dev: the net device to be checked
1339 * @mii_phy: the mii phy
1340 *
1341 * Older driver gets the media mode from mii status output
1342 * register. Now we set our media capability and auto-negotiate
1343 * to get the upper bound of speed and duplex between two ends.
1344 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1345 * and autong_complete should be set to 1.
1346 */
1347
1348 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1349 {
1350 struct sis900_private *sis_priv = netdev_priv(net_dev);
1351 long ioaddr = net_dev->base_addr;
1352 int speed, duplex;
1353
1354 if (mii_phy->phy_types == LAN) {
1355 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1356 sis900_set_capability(net_dev , mii_phy);
1357 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1358 } else {
1359 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1360 speed = HW_SPEED_HOME;
1361 duplex = FDX_CAPABLE_HALF_SELECTED;
1362 sis900_set_mode(ioaddr, speed, duplex);
1363 sis_priv->autong_complete = 1;
1364 }
1365 }
1366
1367 /**
1368 * sis900_set_mode - Set the media mode of mac register.
1369 * @ioaddr: the address of the device
1370 * @speed : the transmit speed to be determined
1371 * @duplex: the duplex mode to be determined
1372 *
1373 * Set the media mode of mac register txcfg/rxcfg according to
1374 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1375 * bus is used instead of PCI bus. When this bit is set 1, the
1376 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1377 * double words.
1378 */
1379
1380 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1381 {
1382 u32 tx_flags = 0, rx_flags = 0;
1383
1384 if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1385 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1386 (TX_FILL_THRESH << TxFILLT_shift);
1387 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1388 } else {
1389 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1390 (TX_FILL_THRESH << TxFILLT_shift);
1391 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1392 }
1393
1394 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1395 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1396 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1397 } else {
1398 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1399 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1400 }
1401
1402 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1403 tx_flags |= (TxCSI | TxHBI);
1404 rx_flags |= RxATX;
1405 }
1406
1407 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1408 /* Can accept Jumbo packet */
1409 rx_flags |= RxAJAB;
1410 #endif
1411
1412 outl (tx_flags, ioaddr + txcfg);
1413 outl (rx_flags, ioaddr + rxcfg);
1414 }
1415
1416 /**
1417 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1418 * @net_dev: the net device to read mode for
1419 * @phy_addr: mii phy address
1420 *
1421 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1422 * autong_complete should be set to 0 when starting auto-negotiation.
1423 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1424 * sis900_timer will wait for link on again if autong_complete = 0.
1425 */
1426
1427 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1428 {
1429 struct sis900_private *sis_priv = netdev_priv(net_dev);
1430 int i = 0;
1431 u32 status;
1432
1433 for (i = 0; i < 2; i++)
1434 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1435
1436 if (!(status & MII_STAT_LINK)){
1437 if(netif_msg_link(sis_priv))
1438 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1439 sis_priv->autong_complete = 1;
1440 netif_carrier_off(net_dev);
1441 return;
1442 }
1443
1444 /* (Re)start AutoNegotiate */
1445 mdio_write(net_dev, phy_addr, MII_CONTROL,
1446 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1447 sis_priv->autong_complete = 0;
1448 }
1449
1450
1451 /**
1452 * sis900_read_mode - read media mode for sis900 internal phy
1453 * @net_dev: the net device to read mode for
1454 * @speed : the transmit speed to be determined
1455 * @duplex : the duplex mode to be determined
1456 *
1457 * The capability of remote end will be put in mii register autorec
1458 * after auto-negotiation. Use AND operation to get the upper bound
1459 * of speed and duplex between two ends.
1460 */
1461
1462 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1463 {
1464 struct sis900_private *sis_priv = netdev_priv(net_dev);
1465 struct mii_phy *phy = sis_priv->mii;
1466 int phy_addr = sis_priv->cur_phy;
1467 u32 status;
1468 u16 autoadv, autorec;
1469 int i;
1470
1471 for (i = 0; i < 2; i++)
1472 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1473
1474 if (!(status & MII_STAT_LINK))
1475 return;
1476
1477 /* AutoNegotiate completed */
1478 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1479 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1480 status = autoadv & autorec;
1481
1482 *speed = HW_SPEED_10_MBPS;
1483 *duplex = FDX_CAPABLE_HALF_SELECTED;
1484
1485 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1486 *speed = HW_SPEED_100_MBPS;
1487 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1488 *duplex = FDX_CAPABLE_FULL_SELECTED;
1489
1490 sis_priv->autong_complete = 1;
1491
1492 /* Workaround for Realtek RTL8201 PHY issue */
1493 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1494 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1495 *duplex = FDX_CAPABLE_FULL_SELECTED;
1496 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1497 *speed = HW_SPEED_100_MBPS;
1498 }
1499
1500 if(netif_msg_link(sis_priv))
1501 printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1502 net_dev->name,
1503 *speed == HW_SPEED_100_MBPS ?
1504 "100mbps" : "10mbps",
1505 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1506 "full" : "half");
1507 }
1508
1509 /**
1510 * sis900_tx_timeout - sis900 transmit timeout routine
1511 * @net_dev: the net device to transmit
1512 *
1513 * print transmit timeout status
1514 * disable interrupts and do some tasks
1515 */
1516
1517 static void sis900_tx_timeout(struct net_device *net_dev)
1518 {
1519 struct sis900_private *sis_priv = netdev_priv(net_dev);
1520 long ioaddr = net_dev->base_addr;
1521 unsigned long flags;
1522 int i;
1523
1524 if(netif_msg_tx_err(sis_priv))
1525 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1526 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1527
1528 /* Disable interrupts by clearing the interrupt mask. */
1529 outl(0x0000, ioaddr + imr);
1530
1531 /* use spinlock to prevent interrupt handler accessing buffer ring */
1532 spin_lock_irqsave(&sis_priv->lock, flags);
1533
1534 /* discard unsent packets */
1535 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1536 for (i = 0; i < NUM_TX_DESC; i++) {
1537 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1538
1539 if (skb) {
1540 pci_unmap_single(sis_priv->pci_dev,
1541 sis_priv->tx_ring[i].bufptr, skb->len,
1542 PCI_DMA_TODEVICE);
1543 dev_kfree_skb_irq(skb);
1544 sis_priv->tx_skbuff[i] = NULL;
1545 sis_priv->tx_ring[i].cmdsts = 0;
1546 sis_priv->tx_ring[i].bufptr = 0;
1547 net_dev->stats.tx_dropped++;
1548 }
1549 }
1550 sis_priv->tx_full = 0;
1551 netif_wake_queue(net_dev);
1552
1553 spin_unlock_irqrestore(&sis_priv->lock, flags);
1554
1555 net_dev->trans_start = jiffies;
1556
1557 /* load Transmit Descriptor Register */
1558 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1559
1560 /* Enable all known interrupts by setting the interrupt mask. */
1561 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1562 return;
1563 }
1564
1565 /**
1566 * sis900_start_xmit - sis900 start transmit routine
1567 * @skb: socket buffer pointer to put the data being transmitted
1568 * @net_dev: the net device to transmit with
1569 *
1570 * Set the transmit buffer descriptor,
1571 * and write TxENA to enable transmit state machine.
1572 * tell upper layer if the buffer is full
1573 */
1574
1575 static netdev_tx_t
1576 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1577 {
1578 struct sis900_private *sis_priv = netdev_priv(net_dev);
1579 long ioaddr = net_dev->base_addr;
1580 unsigned int entry;
1581 unsigned long flags;
1582 unsigned int index_cur_tx, index_dirty_tx;
1583 unsigned int count_dirty_tx;
1584
1585 /* Don't transmit data before the complete of auto-negotiation */
1586 if(!sis_priv->autong_complete){
1587 netif_stop_queue(net_dev);
1588 return NETDEV_TX_BUSY;
1589 }
1590
1591 spin_lock_irqsave(&sis_priv->lock, flags);
1592
1593 /* Calculate the next Tx descriptor entry. */
1594 entry = sis_priv->cur_tx % NUM_TX_DESC;
1595 sis_priv->tx_skbuff[entry] = skb;
1596
1597 /* set the transmit buffer descriptor and enable Transmit State Machine */
1598 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1599 skb->data, skb->len, PCI_DMA_TODEVICE);
1600 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1601 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1602
1603 sis_priv->cur_tx ++;
1604 index_cur_tx = sis_priv->cur_tx;
1605 index_dirty_tx = sis_priv->dirty_tx;
1606
1607 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1608 count_dirty_tx ++;
1609
1610 if (index_cur_tx == index_dirty_tx) {
1611 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1612 sis_priv->tx_full = 1;
1613 netif_stop_queue(net_dev);
1614 } else if (count_dirty_tx < NUM_TX_DESC) {
1615 /* Typical path, tell upper layer that more transmission is possible */
1616 netif_start_queue(net_dev);
1617 } else {
1618 /* buffer full, tell upper layer no more transmission */
1619 sis_priv->tx_full = 1;
1620 netif_stop_queue(net_dev);
1621 }
1622
1623 spin_unlock_irqrestore(&sis_priv->lock, flags);
1624
1625 net_dev->trans_start = jiffies;
1626
1627 if (netif_msg_tx_queued(sis_priv))
1628 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1629 "to slot %d.\n",
1630 net_dev->name, skb->data, (int)skb->len, entry);
1631
1632 return NETDEV_TX_OK;
1633 }
1634
1635 /**
1636 * sis900_interrupt - sis900 interrupt handler
1637 * @irq: the irq number
1638 * @dev_instance: the client data object
1639 *
1640 * The interrupt handler does all of the Rx thread work,
1641 * and cleans up after the Tx thread
1642 */
1643
1644 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1645 {
1646 struct net_device *net_dev = dev_instance;
1647 struct sis900_private *sis_priv = netdev_priv(net_dev);
1648 int boguscnt = max_interrupt_work;
1649 long ioaddr = net_dev->base_addr;
1650 u32 status;
1651 unsigned int handled = 0;
1652
1653 spin_lock (&sis_priv->lock);
1654
1655 do {
1656 status = inl(ioaddr + isr);
1657
1658 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1659 /* nothing intresting happened */
1660 break;
1661 handled = 1;
1662
1663 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1664 if (status & (RxORN | RxERR | RxOK))
1665 /* Rx interrupt */
1666 sis900_rx(net_dev);
1667
1668 if (status & (TxURN | TxERR | TxIDLE))
1669 /* Tx interrupt */
1670 sis900_finish_xmit(net_dev);
1671
1672 /* something strange happened !!! */
1673 if (status & HIBERR) {
1674 if(netif_msg_intr(sis_priv))
1675 printk(KERN_INFO "%s: Abnormal interrupt, "
1676 "status %#8.8x.\n", net_dev->name, status);
1677 break;
1678 }
1679 if (--boguscnt < 0) {
1680 if(netif_msg_intr(sis_priv))
1681 printk(KERN_INFO "%s: Too much work at interrupt, "
1682 "interrupt status = %#8.8x.\n",
1683 net_dev->name, status);
1684 break;
1685 }
1686 } while (1);
1687
1688 if(netif_msg_intr(sis_priv))
1689 printk(KERN_DEBUG "%s: exiting interrupt, "
1690 "interrupt status = 0x%#8.8x.\n",
1691 net_dev->name, inl(ioaddr + isr));
1692
1693 spin_unlock (&sis_priv->lock);
1694 return IRQ_RETVAL(handled);
1695 }
1696
1697 /**
1698 * sis900_rx - sis900 receive routine
1699 * @net_dev: the net device which receives data
1700 *
1701 * Process receive interrupt events,
1702 * put buffer to higher layer and refill buffer pool
1703 * Note: This function is called by interrupt handler,
1704 * don't do "too much" work here
1705 */
1706
1707 static int sis900_rx(struct net_device *net_dev)
1708 {
1709 struct sis900_private *sis_priv = netdev_priv(net_dev);
1710 long ioaddr = net_dev->base_addr;
1711 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1712 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1713 int rx_work_limit;
1714
1715 if (netif_msg_rx_status(sis_priv))
1716 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1717 "status:0x%8.8x\n",
1718 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1719 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1720
1721 while (rx_status & OWN) {
1722 unsigned int rx_size;
1723 unsigned int data_size;
1724
1725 if (--rx_work_limit < 0)
1726 break;
1727
1728 data_size = rx_status & DSIZE;
1729 rx_size = data_size - CRC_SIZE;
1730
1731 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1732 /* ``TOOLONG'' flag means jumbo packet recived. */
1733 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1734 rx_status &= (~ ((unsigned int)TOOLONG));
1735 #endif
1736
1737 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1738 /* corrupted packet received */
1739 if (netif_msg_rx_err(sis_priv))
1740 printk(KERN_DEBUG "%s: Corrupted packet "
1741 "received, buffer status = 0x%8.8x/%d.\n",
1742 net_dev->name, rx_status, data_size);
1743 net_dev->stats.rx_errors++;
1744 if (rx_status & OVERRUN)
1745 net_dev->stats.rx_over_errors++;
1746 if (rx_status & (TOOLONG|RUNT))
1747 net_dev->stats.rx_length_errors++;
1748 if (rx_status & (RXISERR | FAERR))
1749 net_dev->stats.rx_frame_errors++;
1750 if (rx_status & CRCERR)
1751 net_dev->stats.rx_crc_errors++;
1752 /* reset buffer descriptor state */
1753 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1754 } else {
1755 struct sk_buff * skb;
1756 struct sk_buff * rx_skb;
1757
1758 pci_unmap_single(sis_priv->pci_dev,
1759 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1760 PCI_DMA_FROMDEVICE);
1761
1762 /* refill the Rx buffer, what if there is not enought
1763 * memory for new socket buffer ?? */
1764 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1765 /*
1766 * Not enough memory to refill the buffer
1767 * so we need to recycle the old one so
1768 * as to avoid creating a memory hole
1769 * in the rx ring
1770 */
1771 skb = sis_priv->rx_skbuff[entry];
1772 net_dev->stats.rx_dropped++;
1773 goto refill_rx_ring;
1774 }
1775
1776 /* This situation should never happen, but due to
1777 some unknow bugs, it is possible that
1778 we are working on NULL sk_buff :-( */
1779 if (sis_priv->rx_skbuff[entry] == NULL) {
1780 if (netif_msg_rx_err(sis_priv))
1781 printk(KERN_WARNING "%s: NULL pointer "
1782 "encountered in Rx ring\n"
1783 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1784 net_dev->name, sis_priv->cur_rx,
1785 sis_priv->dirty_rx);
1786 break;
1787 }
1788
1789 /* give the socket buffer to upper layers */
1790 rx_skb = sis_priv->rx_skbuff[entry];
1791 skb_put(rx_skb, rx_size);
1792 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1793 netif_rx(rx_skb);
1794
1795 /* some network statistics */
1796 if ((rx_status & BCAST) == MCAST)
1797 net_dev->stats.multicast++;
1798 net_dev->stats.rx_bytes += rx_size;
1799 net_dev->stats.rx_packets++;
1800 sis_priv->dirty_rx++;
1801 refill_rx_ring:
1802 sis_priv->rx_skbuff[entry] = skb;
1803 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1804 sis_priv->rx_ring[entry].bufptr =
1805 pci_map_single(sis_priv->pci_dev, skb->data,
1806 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1807 }
1808 sis_priv->cur_rx++;
1809 entry = sis_priv->cur_rx % NUM_RX_DESC;
1810 rx_status = sis_priv->rx_ring[entry].cmdsts;
1811 } // while
1812
1813 /* refill the Rx buffer, what if the rate of refilling is slower
1814 * than consuming ?? */
1815 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1816 struct sk_buff *skb;
1817
1818 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1819
1820 if (sis_priv->rx_skbuff[entry] == NULL) {
1821 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1822 /* not enough memory for skbuff, this makes a
1823 * "hole" on the buffer ring, it is not clear
1824 * how the hardware will react to this kind
1825 * of degenerated buffer */
1826 if (netif_msg_rx_err(sis_priv))
1827 printk(KERN_INFO "%s: Memory squeeze, "
1828 "deferring packet.\n",
1829 net_dev->name);
1830 net_dev->stats.rx_dropped++;
1831 break;
1832 }
1833 sis_priv->rx_skbuff[entry] = skb;
1834 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1835 sis_priv->rx_ring[entry].bufptr =
1836 pci_map_single(sis_priv->pci_dev, skb->data,
1837 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1838 }
1839 }
1840 /* re-enable the potentially idle receive state matchine */
1841 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1842
1843 return 0;
1844 }
1845
1846 /**
1847 * sis900_finish_xmit - finish up transmission of packets
1848 * @net_dev: the net device to be transmitted on
1849 *
1850 * Check for error condition and free socket buffer etc
1851 * schedule for more transmission as needed
1852 * Note: This function is called by interrupt handler,
1853 * don't do "too much" work here
1854 */
1855
1856 static void sis900_finish_xmit (struct net_device *net_dev)
1857 {
1858 struct sis900_private *sis_priv = netdev_priv(net_dev);
1859
1860 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1861 struct sk_buff *skb;
1862 unsigned int entry;
1863 u32 tx_status;
1864
1865 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1866 tx_status = sis_priv->tx_ring[entry].cmdsts;
1867
1868 if (tx_status & OWN) {
1869 /* The packet is not transmitted yet (owned by hardware) !
1870 * Note: the interrupt is generated only when Tx Machine
1871 * is idle, so this is an almost impossible case */
1872 break;
1873 }
1874
1875 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1876 /* packet unsuccessfully transmitted */
1877 if (netif_msg_tx_err(sis_priv))
1878 printk(KERN_DEBUG "%s: Transmit "
1879 "error, Tx status %8.8x.\n",
1880 net_dev->name, tx_status);
1881 net_dev->stats.tx_errors++;
1882 if (tx_status & UNDERRUN)
1883 net_dev->stats.tx_fifo_errors++;
1884 if (tx_status & ABORT)
1885 net_dev->stats.tx_aborted_errors++;
1886 if (tx_status & NOCARRIER)
1887 net_dev->stats.tx_carrier_errors++;
1888 if (tx_status & OWCOLL)
1889 net_dev->stats.tx_window_errors++;
1890 } else {
1891 /* packet successfully transmitted */
1892 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1893 net_dev->stats.tx_bytes += tx_status & DSIZE;
1894 net_dev->stats.tx_packets++;
1895 }
1896 /* Free the original skb. */
1897 skb = sis_priv->tx_skbuff[entry];
1898 pci_unmap_single(sis_priv->pci_dev,
1899 sis_priv->tx_ring[entry].bufptr, skb->len,
1900 PCI_DMA_TODEVICE);
1901 dev_kfree_skb_irq(skb);
1902 sis_priv->tx_skbuff[entry] = NULL;
1903 sis_priv->tx_ring[entry].bufptr = 0;
1904 sis_priv->tx_ring[entry].cmdsts = 0;
1905 }
1906
1907 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1908 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1909 /* The ring is no longer full, clear tx_full and schedule
1910 * more transmission by netif_wake_queue(net_dev) */
1911 sis_priv->tx_full = 0;
1912 netif_wake_queue (net_dev);
1913 }
1914 }
1915
1916 /**
1917 * sis900_close - close sis900 device
1918 * @net_dev: the net device to be closed
1919 *
1920 * Disable interrupts, stop the Tx and Rx Status Machine
1921 * free Tx and RX socket buffer
1922 */
1923
1924 static int sis900_close(struct net_device *net_dev)
1925 {
1926 long ioaddr = net_dev->base_addr;
1927 struct sis900_private *sis_priv = netdev_priv(net_dev);
1928 struct sk_buff *skb;
1929 int i;
1930
1931 netif_stop_queue(net_dev);
1932
1933 /* Disable interrupts by clearing the interrupt mask. */
1934 outl(0x0000, ioaddr + imr);
1935 outl(0x0000, ioaddr + ier);
1936
1937 /* Stop the chip's Tx and Rx Status Machine */
1938 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1939
1940 del_timer(&sis_priv->timer);
1941
1942 free_irq(net_dev->irq, net_dev);
1943
1944 /* Free Tx and RX skbuff */
1945 for (i = 0; i < NUM_RX_DESC; i++) {
1946 skb = sis_priv->rx_skbuff[i];
1947 if (skb) {
1948 pci_unmap_single(sis_priv->pci_dev,
1949 sis_priv->rx_ring[i].bufptr,
1950 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1951 dev_kfree_skb(skb);
1952 sis_priv->rx_skbuff[i] = NULL;
1953 }
1954 }
1955 for (i = 0; i < NUM_TX_DESC; i++) {
1956 skb = sis_priv->tx_skbuff[i];
1957 if (skb) {
1958 pci_unmap_single(sis_priv->pci_dev,
1959 sis_priv->tx_ring[i].bufptr, skb->len,
1960 PCI_DMA_TODEVICE);
1961 dev_kfree_skb(skb);
1962 sis_priv->tx_skbuff[i] = NULL;
1963 }
1964 }
1965
1966 /* Green! Put the chip in low-power mode. */
1967
1968 return 0;
1969 }
1970
1971 /**
1972 * sis900_get_drvinfo - Return information about driver
1973 * @net_dev: the net device to probe
1974 * @info: container for info returned
1975 *
1976 * Process ethtool command such as "ehtool -i" to show information
1977 */
1978
1979 static void sis900_get_drvinfo(struct net_device *net_dev,
1980 struct ethtool_drvinfo *info)
1981 {
1982 struct sis900_private *sis_priv = netdev_priv(net_dev);
1983
1984 strcpy (info->driver, SIS900_MODULE_NAME);
1985 strcpy (info->version, SIS900_DRV_VERSION);
1986 strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1987 }
1988
1989 static u32 sis900_get_msglevel(struct net_device *net_dev)
1990 {
1991 struct sis900_private *sis_priv = netdev_priv(net_dev);
1992 return sis_priv->msg_enable;
1993 }
1994
1995 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1996 {
1997 struct sis900_private *sis_priv = netdev_priv(net_dev);
1998 sis_priv->msg_enable = value;
1999 }
2000
2001 static u32 sis900_get_link(struct net_device *net_dev)
2002 {
2003 struct sis900_private *sis_priv = netdev_priv(net_dev);
2004 return mii_link_ok(&sis_priv->mii_info);
2005 }
2006
2007 static int sis900_get_settings(struct net_device *net_dev,
2008 struct ethtool_cmd *cmd)
2009 {
2010 struct sis900_private *sis_priv = netdev_priv(net_dev);
2011 spin_lock_irq(&sis_priv->lock);
2012 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2013 spin_unlock_irq(&sis_priv->lock);
2014 return 0;
2015 }
2016
2017 static int sis900_set_settings(struct net_device *net_dev,
2018 struct ethtool_cmd *cmd)
2019 {
2020 struct sis900_private *sis_priv = netdev_priv(net_dev);
2021 int rt;
2022 spin_lock_irq(&sis_priv->lock);
2023 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2024 spin_unlock_irq(&sis_priv->lock);
2025 return rt;
2026 }
2027
2028 static int sis900_nway_reset(struct net_device *net_dev)
2029 {
2030 struct sis900_private *sis_priv = netdev_priv(net_dev);
2031 return mii_nway_restart(&sis_priv->mii_info);
2032 }
2033
2034 /**
2035 * sis900_set_wol - Set up Wake on Lan registers
2036 * @net_dev: the net device to probe
2037 * @wol: container for info passed to the driver
2038 *
2039 * Process ethtool command "wol" to setup wake on lan features.
2040 * SiS900 supports sending WoL events if a correct packet is received,
2041 * but there is no simple way to filter them to only a subset (broadcast,
2042 * multicast, unicast or arp).
2043 */
2044
2045 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2046 {
2047 struct sis900_private *sis_priv = netdev_priv(net_dev);
2048 long pmctrl_addr = net_dev->base_addr + pmctrl;
2049 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2050
2051 if (wol->wolopts == 0) {
2052 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2053 cfgpmcsr &= ~PME_EN;
2054 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2055 outl(pmctrl_bits, pmctrl_addr);
2056 if (netif_msg_wol(sis_priv))
2057 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2058 return 0;
2059 }
2060
2061 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2062 | WAKE_BCAST | WAKE_ARP))
2063 return -EINVAL;
2064
2065 if (wol->wolopts & WAKE_MAGIC)
2066 pmctrl_bits |= MAGICPKT;
2067 if (wol->wolopts & WAKE_PHY)
2068 pmctrl_bits |= LINKON;
2069
2070 outl(pmctrl_bits, pmctrl_addr);
2071
2072 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2073 cfgpmcsr |= PME_EN;
2074 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2075 if (netif_msg_wol(sis_priv))
2076 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2077
2078 return 0;
2079 }
2080
2081 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2082 {
2083 long pmctrl_addr = net_dev->base_addr + pmctrl;
2084 u32 pmctrl_bits;
2085
2086 pmctrl_bits = inl(pmctrl_addr);
2087 if (pmctrl_bits & MAGICPKT)
2088 wol->wolopts |= WAKE_MAGIC;
2089 if (pmctrl_bits & LINKON)
2090 wol->wolopts |= WAKE_PHY;
2091
2092 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2093 }
2094
2095 static const struct ethtool_ops sis900_ethtool_ops = {
2096 .get_drvinfo = sis900_get_drvinfo,
2097 .get_msglevel = sis900_get_msglevel,
2098 .set_msglevel = sis900_set_msglevel,
2099 .get_link = sis900_get_link,
2100 .get_settings = sis900_get_settings,
2101 .set_settings = sis900_set_settings,
2102 .nway_reset = sis900_nway_reset,
2103 .get_wol = sis900_get_wol,
2104 .set_wol = sis900_set_wol
2105 };
2106
2107 /**
2108 * mii_ioctl - process MII i/o control command
2109 * @net_dev: the net device to command for
2110 * @rq: parameter for command
2111 * @cmd: the i/o command
2112 *
2113 * Process MII command like read/write MII register
2114 */
2115
2116 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2117 {
2118 struct sis900_private *sis_priv = netdev_priv(net_dev);
2119 struct mii_ioctl_data *data = if_mii(rq);
2120
2121 switch(cmd) {
2122 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2123 data->phy_id = sis_priv->mii->phy_addr;
2124 /* Fall Through */
2125
2126 case SIOCGMIIREG: /* Read MII PHY register. */
2127 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2128 return 0;
2129
2130 case SIOCSMIIREG: /* Write MII PHY register. */
2131 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2132 return 0;
2133 default:
2134 return -EOPNOTSUPP;
2135 }
2136 }
2137
2138 /**
2139 * sis900_set_config - Set media type by net_device.set_config
2140 * @dev: the net device for media type change
2141 * @map: ifmap passed by ifconfig
2142 *
2143 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2144 * we support only port changes. All other runtime configuration
2145 * changes will be ignored
2146 */
2147
2148 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2149 {
2150 struct sis900_private *sis_priv = netdev_priv(dev);
2151 struct mii_phy *mii_phy = sis_priv->mii;
2152
2153 u16 status;
2154
2155 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2156 /* we switch on the ifmap->port field. I couldn't find anything
2157 * like a definition or standard for the values of that field.
2158 * I think the meaning of those values is device specific. But
2159 * since I would like to change the media type via the ifconfig
2160 * command I use the definition from linux/netdevice.h
2161 * (which seems to be different from the ifport(pcmcia) definition) */
2162 switch(map->port){
2163 case IF_PORT_UNKNOWN: /* use auto here */
2164 dev->if_port = map->port;
2165 /* we are going to change the media type, so the Link
2166 * will be temporary down and we need to reflect that
2167 * here. When the Link comes up again, it will be
2168 * sensed by the sis_timer procedure, which also does
2169 * all the rest for us */
2170 netif_carrier_off(dev);
2171
2172 /* read current state */
2173 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2174
2175 /* enable auto negotiation and reset the negotioation
2176 * (I don't really know what the auto negatiotiation
2177 * reset really means, but it sounds for me right to
2178 * do one here) */
2179 mdio_write(dev, mii_phy->phy_addr,
2180 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2181
2182 break;
2183
2184 case IF_PORT_10BASET: /* 10BaseT */
2185 dev->if_port = map->port;
2186
2187 /* we are going to change the media type, so the Link
2188 * will be temporary down and we need to reflect that
2189 * here. When the Link comes up again, it will be
2190 * sensed by the sis_timer procedure, which also does
2191 * all the rest for us */
2192 netif_carrier_off(dev);
2193
2194 /* set Speed to 10Mbps */
2195 /* read current state */
2196 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2197
2198 /* disable auto negotiation and force 10MBit mode*/
2199 mdio_write(dev, mii_phy->phy_addr,
2200 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2201 MII_CNTL_AUTO));
2202 break;
2203
2204 case IF_PORT_100BASET: /* 100BaseT */
2205 case IF_PORT_100BASETX: /* 100BaseTx */
2206 dev->if_port = map->port;
2207
2208 /* we are going to change the media type, so the Link
2209 * will be temporary down and we need to reflect that
2210 * here. When the Link comes up again, it will be
2211 * sensed by the sis_timer procedure, which also does
2212 * all the rest for us */
2213 netif_carrier_off(dev);
2214
2215 /* set Speed to 100Mbps */
2216 /* disable auto negotiation and enable 100MBit Mode */
2217 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2218 mdio_write(dev, mii_phy->phy_addr,
2219 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2220 MII_CNTL_SPEED);
2221
2222 break;
2223
2224 case IF_PORT_10BASE2: /* 10Base2 */
2225 case IF_PORT_AUI: /* AUI */
2226 case IF_PORT_100BASEFX: /* 100BaseFx */
2227 /* These Modes are not supported (are they?)*/
2228 return -EOPNOTSUPP;
2229 break;
2230
2231 default:
2232 return -EINVAL;
2233 }
2234 }
2235 return 0;
2236 }
2237
2238 /**
2239 * sis900_mcast_bitnr - compute hashtable index
2240 * @addr: multicast address
2241 * @revision: revision id of chip
2242 *
2243 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2244 * hash table, which makes this function a little bit different from other drivers
2245 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2246 * multicast hash table.
2247 */
2248
2249 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2250 {
2251
2252 u32 crc = ether_crc(6, addr);
2253
2254 /* leave 8 or 7 most siginifant bits */
2255 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2256 return ((int)(crc >> 24));
2257 else
2258 return ((int)(crc >> 25));
2259 }
2260
2261 /**
2262 * set_rx_mode - Set SiS900 receive mode
2263 * @net_dev: the net device to be set
2264 *
2265 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2266 * And set the appropriate multicast filter.
2267 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2268 */
2269
2270 static void set_rx_mode(struct net_device *net_dev)
2271 {
2272 long ioaddr = net_dev->base_addr;
2273 struct sis900_private *sis_priv = netdev_priv(net_dev);
2274 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2275 int i, table_entries;
2276 u32 rx_mode;
2277
2278 /* 635 Hash Table entries = 256(2^16) */
2279 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2280 (sis_priv->chipset_rev == SIS900B_900_REV))
2281 table_entries = 16;
2282 else
2283 table_entries = 8;
2284
2285 if (net_dev->flags & IFF_PROMISC) {
2286 /* Accept any kinds of packets */
2287 rx_mode = RFPromiscuous;
2288 for (i = 0; i < table_entries; i++)
2289 mc_filter[i] = 0xffff;
2290 } else if ((net_dev->mc_count > multicast_filter_limit) ||
2291 (net_dev->flags & IFF_ALLMULTI)) {
2292 /* too many multicast addresses or accept all multicast packet */
2293 rx_mode = RFAAB | RFAAM;
2294 for (i = 0; i < table_entries; i++)
2295 mc_filter[i] = 0xffff;
2296 } else {
2297 /* Accept Broadcast packet, destination address matchs our
2298 * MAC address, use Receive Filter to reject unwanted MCAST
2299 * packets */
2300 struct dev_mc_list *mclist;
2301 rx_mode = RFAAB;
2302 for (i = 0, mclist = net_dev->mc_list;
2303 mclist && i < net_dev->mc_count;
2304 i++, mclist = mclist->next) {
2305 unsigned int bit_nr =
2306 sis900_mcast_bitnr(mclist->dmi_addr, sis_priv->chipset_rev);
2307 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2308 }
2309 }
2310
2311 /* update Multicast Hash Table in Receive Filter */
2312 for (i = 0; i < table_entries; i++) {
2313 /* why plus 0x04 ??, That makes the correct value for hash table. */
2314 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2315 outl(mc_filter[i], ioaddr + rfdr);
2316 }
2317
2318 outl(RFEN | rx_mode, ioaddr + rfcr);
2319
2320 /* sis900 is capable of looping back packets at MAC level for
2321 * debugging purpose */
2322 if (net_dev->flags & IFF_LOOPBACK) {
2323 u32 cr_saved;
2324 /* We must disable Tx/Rx before setting loopback mode */
2325 cr_saved = inl(ioaddr + cr);
2326 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2327 /* enable loopback */
2328 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2329 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2330 /* restore cr */
2331 outl(cr_saved, ioaddr + cr);
2332 }
2333
2334 return;
2335 }
2336
2337 /**
2338 * sis900_reset - Reset sis900 MAC
2339 * @net_dev: the net device to reset
2340 *
2341 * reset sis900 MAC and wait until finished
2342 * reset through command register
2343 * change backoff algorithm for 900B0 & 635 M/B
2344 */
2345
2346 static void sis900_reset(struct net_device *net_dev)
2347 {
2348 struct sis900_private *sis_priv = netdev_priv(net_dev);
2349 long ioaddr = net_dev->base_addr;
2350 int i = 0;
2351 u32 status = TxRCMP | RxRCMP;
2352
2353 outl(0, ioaddr + ier);
2354 outl(0, ioaddr + imr);
2355 outl(0, ioaddr + rfcr);
2356
2357 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2358
2359 /* Check that the chip has finished the reset. */
2360 while (status && (i++ < 1000)) {
2361 status ^= (inl(isr + ioaddr) & status);
2362 }
2363
2364 if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2365 (sis_priv->chipset_rev == SIS900B_900_REV) )
2366 outl(PESEL | RND_CNT, ioaddr + cfg);
2367 else
2368 outl(PESEL, ioaddr + cfg);
2369 }
2370
2371 /**
2372 * sis900_remove - Remove sis900 device
2373 * @pci_dev: the pci device to be removed
2374 *
2375 * remove and release SiS900 net device
2376 */
2377
2378 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2379 {
2380 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2381 struct sis900_private *sis_priv = netdev_priv(net_dev);
2382 struct mii_phy *phy = NULL;
2383
2384 while (sis_priv->first_mii) {
2385 phy = sis_priv->first_mii;
2386 sis_priv->first_mii = phy->next;
2387 kfree(phy);
2388 }
2389
2390 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2391 sis_priv->rx_ring_dma);
2392 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2393 sis_priv->tx_ring_dma);
2394 unregister_netdev(net_dev);
2395 free_netdev(net_dev);
2396 pci_release_regions(pci_dev);
2397 pci_set_drvdata(pci_dev, NULL);
2398 }
2399
2400 #ifdef CONFIG_PM
2401
2402 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2403 {
2404 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2405 long ioaddr = net_dev->base_addr;
2406
2407 if(!netif_running(net_dev))
2408 return 0;
2409
2410 netif_stop_queue(net_dev);
2411 netif_device_detach(net_dev);
2412
2413 /* Stop the chip's Tx and Rx Status Machine */
2414 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2415
2416 pci_set_power_state(pci_dev, PCI_D3hot);
2417 pci_save_state(pci_dev);
2418
2419 return 0;
2420 }
2421
2422 static int sis900_resume(struct pci_dev *pci_dev)
2423 {
2424 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2425 struct sis900_private *sis_priv = netdev_priv(net_dev);
2426 long ioaddr = net_dev->base_addr;
2427
2428 if(!netif_running(net_dev))
2429 return 0;
2430 pci_restore_state(pci_dev);
2431 pci_set_power_state(pci_dev, PCI_D0);
2432
2433 sis900_init_rxfilter(net_dev);
2434
2435 sis900_init_tx_ring(net_dev);
2436 sis900_init_rx_ring(net_dev);
2437
2438 set_rx_mode(net_dev);
2439
2440 netif_device_attach(net_dev);
2441 netif_start_queue(net_dev);
2442
2443 /* Workaround for EDB */
2444 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2445
2446 /* Enable all known interrupts by setting the interrupt mask. */
2447 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2448 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2449 outl(IE, ioaddr + ier);
2450
2451 sis900_check_mode(net_dev, sis_priv->mii);
2452
2453 return 0;
2454 }
2455 #endif /* CONFIG_PM */
2456
2457 static struct pci_driver sis900_pci_driver = {
2458 .name = SIS900_MODULE_NAME,
2459 .id_table = sis900_pci_tbl,
2460 .probe = sis900_probe,
2461 .remove = __devexit_p(sis900_remove),
2462 #ifdef CONFIG_PM
2463 .suspend = sis900_suspend,
2464 .resume = sis900_resume,
2465 #endif /* CONFIG_PM */
2466 };
2467
2468 static int __init sis900_init_module(void)
2469 {
2470 /* when a module, this is printed whether or not devices are found in probe */
2471 #ifdef MODULE
2472 printk(version);
2473 #endif
2474
2475 return pci_register_driver(&sis900_pci_driver);
2476 }
2477
2478 static void __exit sis900_cleanup_module(void)
2479 {
2480 pci_unregister_driver(&sis900_pci_driver);
2481 }
2482
2483 module_init(sis900_init_module);
2484 module_exit(sis900_cleanup_module);
2485
This page took 0.157367 seconds and 6 git commands to generate.