Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[deliverable/linux.git] / drivers / net / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/in.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
35 #include <linux/ip.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
40 #include <asm/irq.h>
41
42 #include "skge.h"
43
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.9"
46 #define PFX DRV_NAME " "
47
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
59 #define BLINK_MS 250
60 #define LINK_HZ (HZ/2)
61
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
66
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
70
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
74
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
87 { 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
108 static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
109
110 static int skge_get_regs_len(struct net_device *dev)
111 {
112 return 0x4000;
113 }
114
115 /*
116 * Returns copy of whole control register region
117 * Note: skip RAM address register because accessing it will
118 * cause bus hangs!
119 */
120 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
121 void *p)
122 {
123 const struct skge_port *skge = netdev_priv(dev);
124 const void __iomem *io = skge->hw->regs;
125
126 regs->version = 1;
127 memset(p, 0, regs->len);
128 memcpy_fromio(p, io, B3_RAM_ADDR);
129
130 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
131 regs->len - B3_RI_WTO_R1);
132 }
133
134 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
135 static int wol_supported(const struct skge_hw *hw)
136 {
137 return !((hw->chip_id == CHIP_ID_GENESIS ||
138 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
139 }
140
141 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
142 {
143 struct skge_port *skge = netdev_priv(dev);
144
145 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
146 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
147 }
148
149 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
150 {
151 struct skge_port *skge = netdev_priv(dev);
152 struct skge_hw *hw = skge->hw;
153
154 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
155 return -EOPNOTSUPP;
156
157 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
158 return -EOPNOTSUPP;
159
160 skge->wol = wol->wolopts == WAKE_MAGIC;
161
162 if (skge->wol) {
163 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
164
165 skge_write16(hw, WOL_CTRL_STAT,
166 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
167 WOL_CTL_ENA_MAGIC_PKT_UNIT);
168 } else
169 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
170
171 return 0;
172 }
173
174 /* Determine supported/advertised modes based on hardware.
175 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
176 */
177 static u32 skge_supported_modes(const struct skge_hw *hw)
178 {
179 u32 supported;
180
181 if (hw->copper) {
182 supported = SUPPORTED_10baseT_Half
183 | SUPPORTED_10baseT_Full
184 | SUPPORTED_100baseT_Half
185 | SUPPORTED_100baseT_Full
186 | SUPPORTED_1000baseT_Half
187 | SUPPORTED_1000baseT_Full
188 | SUPPORTED_Autoneg| SUPPORTED_TP;
189
190 if (hw->chip_id == CHIP_ID_GENESIS)
191 supported &= ~(SUPPORTED_10baseT_Half
192 | SUPPORTED_10baseT_Full
193 | SUPPORTED_100baseT_Half
194 | SUPPORTED_100baseT_Full);
195
196 else if (hw->chip_id == CHIP_ID_YUKON)
197 supported &= ~SUPPORTED_1000baseT_Half;
198 } else
199 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
200 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
201
202 return supported;
203 }
204
205 static int skge_get_settings(struct net_device *dev,
206 struct ethtool_cmd *ecmd)
207 {
208 struct skge_port *skge = netdev_priv(dev);
209 struct skge_hw *hw = skge->hw;
210
211 ecmd->transceiver = XCVR_INTERNAL;
212 ecmd->supported = skge_supported_modes(hw);
213
214 if (hw->copper) {
215 ecmd->port = PORT_TP;
216 ecmd->phy_address = hw->phy_addr;
217 } else
218 ecmd->port = PORT_FIBRE;
219
220 ecmd->advertising = skge->advertising;
221 ecmd->autoneg = skge->autoneg;
222 ecmd->speed = skge->speed;
223 ecmd->duplex = skge->duplex;
224 return 0;
225 }
226
227 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
228 {
229 struct skge_port *skge = netdev_priv(dev);
230 const struct skge_hw *hw = skge->hw;
231 u32 supported = skge_supported_modes(hw);
232
233 if (ecmd->autoneg == AUTONEG_ENABLE) {
234 ecmd->advertising = supported;
235 skge->duplex = -1;
236 skge->speed = -1;
237 } else {
238 u32 setting;
239
240 switch (ecmd->speed) {
241 case SPEED_1000:
242 if (ecmd->duplex == DUPLEX_FULL)
243 setting = SUPPORTED_1000baseT_Full;
244 else if (ecmd->duplex == DUPLEX_HALF)
245 setting = SUPPORTED_1000baseT_Half;
246 else
247 return -EINVAL;
248 break;
249 case SPEED_100:
250 if (ecmd->duplex == DUPLEX_FULL)
251 setting = SUPPORTED_100baseT_Full;
252 else if (ecmd->duplex == DUPLEX_HALF)
253 setting = SUPPORTED_100baseT_Half;
254 else
255 return -EINVAL;
256 break;
257
258 case SPEED_10:
259 if (ecmd->duplex == DUPLEX_FULL)
260 setting = SUPPORTED_10baseT_Full;
261 else if (ecmd->duplex == DUPLEX_HALF)
262 setting = SUPPORTED_10baseT_Half;
263 else
264 return -EINVAL;
265 break;
266 default:
267 return -EINVAL;
268 }
269
270 if ((setting & supported) == 0)
271 return -EINVAL;
272
273 skge->speed = ecmd->speed;
274 skge->duplex = ecmd->duplex;
275 }
276
277 skge->autoneg = ecmd->autoneg;
278 skge->advertising = ecmd->advertising;
279
280 if (netif_running(dev))
281 skge_phy_reset(skge);
282
283 return (0);
284 }
285
286 static void skge_get_drvinfo(struct net_device *dev,
287 struct ethtool_drvinfo *info)
288 {
289 struct skge_port *skge = netdev_priv(dev);
290
291 strcpy(info->driver, DRV_NAME);
292 strcpy(info->version, DRV_VERSION);
293 strcpy(info->fw_version, "N/A");
294 strcpy(info->bus_info, pci_name(skge->hw->pdev));
295 }
296
297 static const struct skge_stat {
298 char name[ETH_GSTRING_LEN];
299 u16 xmac_offset;
300 u16 gma_offset;
301 } skge_stats[] = {
302 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
303 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
304
305 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
306 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
307 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
308 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
309 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
310 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
311 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
312 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
313
314 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
315 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
316 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
317 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
318 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
319 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
320
321 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
322 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
323 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
324 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
325 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
326 };
327
328 static int skge_get_stats_count(struct net_device *dev)
329 {
330 return ARRAY_SIZE(skge_stats);
331 }
332
333 static void skge_get_ethtool_stats(struct net_device *dev,
334 struct ethtool_stats *stats, u64 *data)
335 {
336 struct skge_port *skge = netdev_priv(dev);
337
338 if (skge->hw->chip_id == CHIP_ID_GENESIS)
339 genesis_get_stats(skge, data);
340 else
341 yukon_get_stats(skge, data);
342 }
343
344 /* Use hardware MIB variables for critical path statistics and
345 * transmit feedback not reported at interrupt.
346 * Other errors are accounted for in interrupt handler.
347 */
348 static struct net_device_stats *skge_get_stats(struct net_device *dev)
349 {
350 struct skge_port *skge = netdev_priv(dev);
351 u64 data[ARRAY_SIZE(skge_stats)];
352
353 if (skge->hw->chip_id == CHIP_ID_GENESIS)
354 genesis_get_stats(skge, data);
355 else
356 yukon_get_stats(skge, data);
357
358 skge->net_stats.tx_bytes = data[0];
359 skge->net_stats.rx_bytes = data[1];
360 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
361 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
362 skge->net_stats.multicast = data[3] + data[5];
363 skge->net_stats.collisions = data[10];
364 skge->net_stats.tx_aborted_errors = data[12];
365
366 return &skge->net_stats;
367 }
368
369 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
370 {
371 int i;
372
373 switch (stringset) {
374 case ETH_SS_STATS:
375 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
376 memcpy(data + i * ETH_GSTRING_LEN,
377 skge_stats[i].name, ETH_GSTRING_LEN);
378 break;
379 }
380 }
381
382 static void skge_get_ring_param(struct net_device *dev,
383 struct ethtool_ringparam *p)
384 {
385 struct skge_port *skge = netdev_priv(dev);
386
387 p->rx_max_pending = MAX_RX_RING_SIZE;
388 p->tx_max_pending = MAX_TX_RING_SIZE;
389 p->rx_mini_max_pending = 0;
390 p->rx_jumbo_max_pending = 0;
391
392 p->rx_pending = skge->rx_ring.count;
393 p->tx_pending = skge->tx_ring.count;
394 p->rx_mini_pending = 0;
395 p->rx_jumbo_pending = 0;
396 }
397
398 static int skge_set_ring_param(struct net_device *dev,
399 struct ethtool_ringparam *p)
400 {
401 struct skge_port *skge = netdev_priv(dev);
402 int err;
403
404 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
405 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
406 return -EINVAL;
407
408 skge->rx_ring.count = p->rx_pending;
409 skge->tx_ring.count = p->tx_pending;
410
411 if (netif_running(dev)) {
412 skge_down(dev);
413 err = skge_up(dev);
414 if (err)
415 dev_close(dev);
416 }
417
418 return 0;
419 }
420
421 static u32 skge_get_msglevel(struct net_device *netdev)
422 {
423 struct skge_port *skge = netdev_priv(netdev);
424 return skge->msg_enable;
425 }
426
427 static void skge_set_msglevel(struct net_device *netdev, u32 value)
428 {
429 struct skge_port *skge = netdev_priv(netdev);
430 skge->msg_enable = value;
431 }
432
433 static int skge_nway_reset(struct net_device *dev)
434 {
435 struct skge_port *skge = netdev_priv(dev);
436
437 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
438 return -EINVAL;
439
440 skge_phy_reset(skge);
441 return 0;
442 }
443
444 static int skge_set_sg(struct net_device *dev, u32 data)
445 {
446 struct skge_port *skge = netdev_priv(dev);
447 struct skge_hw *hw = skge->hw;
448
449 if (hw->chip_id == CHIP_ID_GENESIS && data)
450 return -EOPNOTSUPP;
451 return ethtool_op_set_sg(dev, data);
452 }
453
454 static int skge_set_tx_csum(struct net_device *dev, u32 data)
455 {
456 struct skge_port *skge = netdev_priv(dev);
457 struct skge_hw *hw = skge->hw;
458
459 if (hw->chip_id == CHIP_ID_GENESIS && data)
460 return -EOPNOTSUPP;
461
462 return ethtool_op_set_tx_csum(dev, data);
463 }
464
465 static u32 skge_get_rx_csum(struct net_device *dev)
466 {
467 struct skge_port *skge = netdev_priv(dev);
468
469 return skge->rx_csum;
470 }
471
472 /* Only Yukon supports checksum offload. */
473 static int skge_set_rx_csum(struct net_device *dev, u32 data)
474 {
475 struct skge_port *skge = netdev_priv(dev);
476
477 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
478 return -EOPNOTSUPP;
479
480 skge->rx_csum = data;
481 return 0;
482 }
483
484 static void skge_get_pauseparam(struct net_device *dev,
485 struct ethtool_pauseparam *ecmd)
486 {
487 struct skge_port *skge = netdev_priv(dev);
488
489 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
490 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
491 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
492
493 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
494 }
495
496 static int skge_set_pauseparam(struct net_device *dev,
497 struct ethtool_pauseparam *ecmd)
498 {
499 struct skge_port *skge = netdev_priv(dev);
500 struct ethtool_pauseparam old;
501
502 skge_get_pauseparam(dev, &old);
503
504 if (ecmd->autoneg != old.autoneg)
505 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
506 else {
507 if (ecmd->rx_pause && ecmd->tx_pause)
508 skge->flow_control = FLOW_MODE_SYMMETRIC;
509 else if (ecmd->rx_pause && !ecmd->tx_pause)
510 skge->flow_control = FLOW_MODE_SYM_OR_REM;
511 else if (!ecmd->rx_pause && ecmd->tx_pause)
512 skge->flow_control = FLOW_MODE_LOC_SEND;
513 else
514 skge->flow_control = FLOW_MODE_NONE;
515 }
516
517 if (netif_running(dev))
518 skge_phy_reset(skge);
519
520 return 0;
521 }
522
523 /* Chip internal frequency for clock calculations */
524 static inline u32 hwkhz(const struct skge_hw *hw)
525 {
526 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
527 }
528
529 /* Chip HZ to microseconds */
530 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
531 {
532 return (ticks * 1000) / hwkhz(hw);
533 }
534
535 /* Microseconds to chip HZ */
536 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
537 {
538 return hwkhz(hw) * usec / 1000;
539 }
540
541 static int skge_get_coalesce(struct net_device *dev,
542 struct ethtool_coalesce *ecmd)
543 {
544 struct skge_port *skge = netdev_priv(dev);
545 struct skge_hw *hw = skge->hw;
546 int port = skge->port;
547
548 ecmd->rx_coalesce_usecs = 0;
549 ecmd->tx_coalesce_usecs = 0;
550
551 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
552 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
553 u32 msk = skge_read32(hw, B2_IRQM_MSK);
554
555 if (msk & rxirqmask[port])
556 ecmd->rx_coalesce_usecs = delay;
557 if (msk & txirqmask[port])
558 ecmd->tx_coalesce_usecs = delay;
559 }
560
561 return 0;
562 }
563
564 /* Note: interrupt timer is per board, but can turn on/off per port */
565 static int skge_set_coalesce(struct net_device *dev,
566 struct ethtool_coalesce *ecmd)
567 {
568 struct skge_port *skge = netdev_priv(dev);
569 struct skge_hw *hw = skge->hw;
570 int port = skge->port;
571 u32 msk = skge_read32(hw, B2_IRQM_MSK);
572 u32 delay = 25;
573
574 if (ecmd->rx_coalesce_usecs == 0)
575 msk &= ~rxirqmask[port];
576 else if (ecmd->rx_coalesce_usecs < 25 ||
577 ecmd->rx_coalesce_usecs > 33333)
578 return -EINVAL;
579 else {
580 msk |= rxirqmask[port];
581 delay = ecmd->rx_coalesce_usecs;
582 }
583
584 if (ecmd->tx_coalesce_usecs == 0)
585 msk &= ~txirqmask[port];
586 else if (ecmd->tx_coalesce_usecs < 25 ||
587 ecmd->tx_coalesce_usecs > 33333)
588 return -EINVAL;
589 else {
590 msk |= txirqmask[port];
591 delay = min(delay, ecmd->rx_coalesce_usecs);
592 }
593
594 skge_write32(hw, B2_IRQM_MSK, msk);
595 if (msk == 0)
596 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
597 else {
598 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
599 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
600 }
601 return 0;
602 }
603
604 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
605 static void skge_led(struct skge_port *skge, enum led_mode mode)
606 {
607 struct skge_hw *hw = skge->hw;
608 int port = skge->port;
609
610 mutex_lock(&hw->phy_mutex);
611 if (hw->chip_id == CHIP_ID_GENESIS) {
612 switch (mode) {
613 case LED_MODE_OFF:
614 if (hw->phy_type == SK_PHY_BCOM)
615 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
616 else {
617 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
618 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
619 }
620 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
621 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
622 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
623 break;
624
625 case LED_MODE_ON:
626 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
627 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
628
629 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
630 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
631
632 break;
633
634 case LED_MODE_TST:
635 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
636 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
637 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
638
639 if (hw->phy_type == SK_PHY_BCOM)
640 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
641 else {
642 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
643 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
644 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
645 }
646
647 }
648 } else {
649 switch (mode) {
650 case LED_MODE_OFF:
651 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
652 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
653 PHY_M_LED_MO_DUP(MO_LED_OFF) |
654 PHY_M_LED_MO_10(MO_LED_OFF) |
655 PHY_M_LED_MO_100(MO_LED_OFF) |
656 PHY_M_LED_MO_1000(MO_LED_OFF) |
657 PHY_M_LED_MO_RX(MO_LED_OFF));
658 break;
659 case LED_MODE_ON:
660 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
661 PHY_M_LED_PULS_DUR(PULS_170MS) |
662 PHY_M_LED_BLINK_RT(BLINK_84MS) |
663 PHY_M_LEDC_TX_CTRL |
664 PHY_M_LEDC_DP_CTRL);
665
666 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
667 PHY_M_LED_MO_RX(MO_LED_OFF) |
668 (skge->speed == SPEED_100 ?
669 PHY_M_LED_MO_100(MO_LED_ON) : 0));
670 break;
671 case LED_MODE_TST:
672 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
673 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
674 PHY_M_LED_MO_DUP(MO_LED_ON) |
675 PHY_M_LED_MO_10(MO_LED_ON) |
676 PHY_M_LED_MO_100(MO_LED_ON) |
677 PHY_M_LED_MO_1000(MO_LED_ON) |
678 PHY_M_LED_MO_RX(MO_LED_ON));
679 }
680 }
681 mutex_unlock(&hw->phy_mutex);
682 }
683
684 /* blink LED's for finding board */
685 static int skge_phys_id(struct net_device *dev, u32 data)
686 {
687 struct skge_port *skge = netdev_priv(dev);
688 unsigned long ms;
689 enum led_mode mode = LED_MODE_TST;
690
691 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
692 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
693 else
694 ms = data * 1000;
695
696 while (ms > 0) {
697 skge_led(skge, mode);
698 mode ^= LED_MODE_TST;
699
700 if (msleep_interruptible(BLINK_MS))
701 break;
702 ms -= BLINK_MS;
703 }
704
705 /* back to regular LED state */
706 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
707
708 return 0;
709 }
710
711 static const struct ethtool_ops skge_ethtool_ops = {
712 .get_settings = skge_get_settings,
713 .set_settings = skge_set_settings,
714 .get_drvinfo = skge_get_drvinfo,
715 .get_regs_len = skge_get_regs_len,
716 .get_regs = skge_get_regs,
717 .get_wol = skge_get_wol,
718 .set_wol = skge_set_wol,
719 .get_msglevel = skge_get_msglevel,
720 .set_msglevel = skge_set_msglevel,
721 .nway_reset = skge_nway_reset,
722 .get_link = ethtool_op_get_link,
723 .get_ringparam = skge_get_ring_param,
724 .set_ringparam = skge_set_ring_param,
725 .get_pauseparam = skge_get_pauseparam,
726 .set_pauseparam = skge_set_pauseparam,
727 .get_coalesce = skge_get_coalesce,
728 .set_coalesce = skge_set_coalesce,
729 .get_sg = ethtool_op_get_sg,
730 .set_sg = skge_set_sg,
731 .get_tx_csum = ethtool_op_get_tx_csum,
732 .set_tx_csum = skge_set_tx_csum,
733 .get_rx_csum = skge_get_rx_csum,
734 .set_rx_csum = skge_set_rx_csum,
735 .get_strings = skge_get_strings,
736 .phys_id = skge_phys_id,
737 .get_stats_count = skge_get_stats_count,
738 .get_ethtool_stats = skge_get_ethtool_stats,
739 .get_perm_addr = ethtool_op_get_perm_addr,
740 };
741
742 /*
743 * Allocate ring elements and chain them together
744 * One-to-one association of board descriptors with ring elements
745 */
746 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
747 {
748 struct skge_tx_desc *d;
749 struct skge_element *e;
750 int i;
751
752 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
753 if (!ring->start)
754 return -ENOMEM;
755
756 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
757 e->desc = d;
758 if (i == ring->count - 1) {
759 e->next = ring->start;
760 d->next_offset = base;
761 } else {
762 e->next = e + 1;
763 d->next_offset = base + (i+1) * sizeof(*d);
764 }
765 }
766 ring->to_use = ring->to_clean = ring->start;
767
768 return 0;
769 }
770
771 /* Allocate and setup a new buffer for receiving */
772 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
773 struct sk_buff *skb, unsigned int bufsize)
774 {
775 struct skge_rx_desc *rd = e->desc;
776 u64 map;
777
778 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
779 PCI_DMA_FROMDEVICE);
780
781 rd->dma_lo = map;
782 rd->dma_hi = map >> 32;
783 e->skb = skb;
784 rd->csum1_start = ETH_HLEN;
785 rd->csum2_start = ETH_HLEN;
786 rd->csum1 = 0;
787 rd->csum2 = 0;
788
789 wmb();
790
791 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
792 pci_unmap_addr_set(e, mapaddr, map);
793 pci_unmap_len_set(e, maplen, bufsize);
794 }
795
796 /* Resume receiving using existing skb,
797 * Note: DMA address is not changed by chip.
798 * MTU not changed while receiver active.
799 */
800 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
801 {
802 struct skge_rx_desc *rd = e->desc;
803
804 rd->csum2 = 0;
805 rd->csum2_start = ETH_HLEN;
806
807 wmb();
808
809 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
810 }
811
812
813 /* Free all buffers in receive ring, assumes receiver stopped */
814 static void skge_rx_clean(struct skge_port *skge)
815 {
816 struct skge_hw *hw = skge->hw;
817 struct skge_ring *ring = &skge->rx_ring;
818 struct skge_element *e;
819
820 e = ring->start;
821 do {
822 struct skge_rx_desc *rd = e->desc;
823 rd->control = 0;
824 if (e->skb) {
825 pci_unmap_single(hw->pdev,
826 pci_unmap_addr(e, mapaddr),
827 pci_unmap_len(e, maplen),
828 PCI_DMA_FROMDEVICE);
829 dev_kfree_skb(e->skb);
830 e->skb = NULL;
831 }
832 } while ((e = e->next) != ring->start);
833 }
834
835
836 /* Allocate buffers for receive ring
837 * For receive: to_clean is next received frame.
838 */
839 static int skge_rx_fill(struct net_device *dev)
840 {
841 struct skge_port *skge = netdev_priv(dev);
842 struct skge_ring *ring = &skge->rx_ring;
843 struct skge_element *e;
844
845 e = ring->start;
846 do {
847 struct sk_buff *skb;
848
849 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
850 GFP_KERNEL);
851 if (!skb)
852 return -ENOMEM;
853
854 skb_reserve(skb, NET_IP_ALIGN);
855 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
856 } while ( (e = e->next) != ring->start);
857
858 ring->to_clean = ring->start;
859 return 0;
860 }
861
862 static const char *skge_pause(enum pause_status status)
863 {
864 switch(status) {
865 case FLOW_STAT_NONE:
866 return "none";
867 case FLOW_STAT_REM_SEND:
868 return "rx only";
869 case FLOW_STAT_LOC_SEND:
870 return "tx_only";
871 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
872 return "both";
873 default:
874 return "indeterminated";
875 }
876 }
877
878
879 static void skge_link_up(struct skge_port *skge)
880 {
881 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
882 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
883
884 netif_carrier_on(skge->netdev);
885 netif_wake_queue(skge->netdev);
886
887 if (netif_msg_link(skge)) {
888 printk(KERN_INFO PFX
889 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
890 skge->netdev->name, skge->speed,
891 skge->duplex == DUPLEX_FULL ? "full" : "half",
892 skge_pause(skge->flow_status));
893 }
894 }
895
896 static void skge_link_down(struct skge_port *skge)
897 {
898 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
899 netif_carrier_off(skge->netdev);
900 netif_stop_queue(skge->netdev);
901
902 if (netif_msg_link(skge))
903 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
904 }
905
906
907 static void xm_link_down(struct skge_hw *hw, int port)
908 {
909 struct net_device *dev = hw->dev[port];
910 struct skge_port *skge = netdev_priv(dev);
911 u16 cmd, msk;
912
913 if (hw->phy_type == SK_PHY_XMAC) {
914 msk = xm_read16(hw, port, XM_IMSK);
915 msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
916 xm_write16(hw, port, XM_IMSK, msk);
917 }
918
919 cmd = xm_read16(hw, port, XM_MMU_CMD);
920 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
921 xm_write16(hw, port, XM_MMU_CMD, cmd);
922 /* dummy read to ensure writing */
923 (void) xm_read16(hw, port, XM_MMU_CMD);
924
925 if (netif_carrier_ok(dev))
926 skge_link_down(skge);
927 }
928
929 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
930 {
931 int i;
932
933 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
934 *val = xm_read16(hw, port, XM_PHY_DATA);
935
936 if (hw->phy_type == SK_PHY_XMAC)
937 goto ready;
938
939 for (i = 0; i < PHY_RETRIES; i++) {
940 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
941 goto ready;
942 udelay(1);
943 }
944
945 return -ETIMEDOUT;
946 ready:
947 *val = xm_read16(hw, port, XM_PHY_DATA);
948
949 return 0;
950 }
951
952 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
953 {
954 u16 v = 0;
955 if (__xm_phy_read(hw, port, reg, &v))
956 printk(KERN_WARNING PFX "%s: phy read timed out\n",
957 hw->dev[port]->name);
958 return v;
959 }
960
961 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
962 {
963 int i;
964
965 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
966 for (i = 0; i < PHY_RETRIES; i++) {
967 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
968 goto ready;
969 udelay(1);
970 }
971 return -EIO;
972
973 ready:
974 xm_write16(hw, port, XM_PHY_DATA, val);
975 for (i = 0; i < PHY_RETRIES; i++) {
976 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
977 return 0;
978 udelay(1);
979 }
980 return -ETIMEDOUT;
981 }
982
983 static void genesis_init(struct skge_hw *hw)
984 {
985 /* set blink source counter */
986 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
987 skge_write8(hw, B2_BSC_CTRL, BSC_START);
988
989 /* configure mac arbiter */
990 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
991
992 /* configure mac arbiter timeout values */
993 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
994 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
995 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
996 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
997
998 skge_write8(hw, B3_MA_RCINI_RX1, 0);
999 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1000 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1001 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1002
1003 /* configure packet arbiter timeout */
1004 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1005 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1006 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1007 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1008 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1009 }
1010
1011 static void genesis_reset(struct skge_hw *hw, int port)
1012 {
1013 const u8 zero[8] = { 0 };
1014
1015 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1016
1017 /* reset the statistics module */
1018 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1019 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
1020 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1021 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1022 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1023
1024 /* disable Broadcom PHY IRQ */
1025 if (hw->phy_type == SK_PHY_BCOM)
1026 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1027
1028 xm_outhash(hw, port, XM_HSM, zero);
1029 }
1030
1031
1032 /* Convert mode to MII values */
1033 static const u16 phy_pause_map[] = {
1034 [FLOW_MODE_NONE] = 0,
1035 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1036 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1037 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1038 };
1039
1040 /* special defines for FIBER (88E1011S only) */
1041 static const u16 fiber_pause_map[] = {
1042 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1043 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1044 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1045 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1046 };
1047
1048
1049 /* Check status of Broadcom phy link */
1050 static void bcom_check_link(struct skge_hw *hw, int port)
1051 {
1052 struct net_device *dev = hw->dev[port];
1053 struct skge_port *skge = netdev_priv(dev);
1054 u16 status;
1055
1056 /* read twice because of latch */
1057 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
1058 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1059
1060 if ((status & PHY_ST_LSYNC) == 0) {
1061 xm_link_down(hw, port);
1062 return;
1063 }
1064
1065 if (skge->autoneg == AUTONEG_ENABLE) {
1066 u16 lpa, aux;
1067
1068 if (!(status & PHY_ST_AN_OVER))
1069 return;
1070
1071 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1072 if (lpa & PHY_B_AN_RF) {
1073 printk(KERN_NOTICE PFX "%s: remote fault\n",
1074 dev->name);
1075 return;
1076 }
1077
1078 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1079
1080 /* Check Duplex mismatch */
1081 switch (aux & PHY_B_AS_AN_RES_MSK) {
1082 case PHY_B_RES_1000FD:
1083 skge->duplex = DUPLEX_FULL;
1084 break;
1085 case PHY_B_RES_1000HD:
1086 skge->duplex = DUPLEX_HALF;
1087 break;
1088 default:
1089 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1090 dev->name);
1091 return;
1092 }
1093
1094 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1095 switch (aux & PHY_B_AS_PAUSE_MSK) {
1096 case PHY_B_AS_PAUSE_MSK:
1097 skge->flow_status = FLOW_STAT_SYMMETRIC;
1098 break;
1099 case PHY_B_AS_PRR:
1100 skge->flow_status = FLOW_STAT_REM_SEND;
1101 break;
1102 case PHY_B_AS_PRT:
1103 skge->flow_status = FLOW_STAT_LOC_SEND;
1104 break;
1105 default:
1106 skge->flow_status = FLOW_STAT_NONE;
1107 }
1108 skge->speed = SPEED_1000;
1109 }
1110
1111 if (!netif_carrier_ok(dev))
1112 genesis_link_up(skge);
1113 }
1114
1115 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1116 * Phy on for 100 or 10Mbit operation
1117 */
1118 static void bcom_phy_init(struct skge_port *skge)
1119 {
1120 struct skge_hw *hw = skge->hw;
1121 int port = skge->port;
1122 int i;
1123 u16 id1, r, ext, ctl;
1124
1125 /* magic workaround patterns for Broadcom */
1126 static const struct {
1127 u16 reg;
1128 u16 val;
1129 } A1hack[] = {
1130 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1131 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1132 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1133 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1134 }, C0hack[] = {
1135 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1136 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1137 };
1138
1139 /* read Id from external PHY (all have the same address) */
1140 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1141
1142 /* Optimize MDIO transfer by suppressing preamble. */
1143 r = xm_read16(hw, port, XM_MMU_CMD);
1144 r |= XM_MMU_NO_PRE;
1145 xm_write16(hw, port, XM_MMU_CMD,r);
1146
1147 switch (id1) {
1148 case PHY_BCOM_ID1_C0:
1149 /*
1150 * Workaround BCOM Errata for the C0 type.
1151 * Write magic patterns to reserved registers.
1152 */
1153 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1154 xm_phy_write(hw, port,
1155 C0hack[i].reg, C0hack[i].val);
1156
1157 break;
1158 case PHY_BCOM_ID1_A1:
1159 /*
1160 * Workaround BCOM Errata for the A1 type.
1161 * Write magic patterns to reserved registers.
1162 */
1163 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1164 xm_phy_write(hw, port,
1165 A1hack[i].reg, A1hack[i].val);
1166 break;
1167 }
1168
1169 /*
1170 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1171 * Disable Power Management after reset.
1172 */
1173 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1174 r |= PHY_B_AC_DIS_PM;
1175 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1176
1177 /* Dummy read */
1178 xm_read16(hw, port, XM_ISRC);
1179
1180 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1181 ctl = PHY_CT_SP1000; /* always 1000mbit */
1182
1183 if (skge->autoneg == AUTONEG_ENABLE) {
1184 /*
1185 * Workaround BCOM Errata #1 for the C5 type.
1186 * 1000Base-T Link Acquisition Failure in Slave Mode
1187 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1188 */
1189 u16 adv = PHY_B_1000C_RD;
1190 if (skge->advertising & ADVERTISED_1000baseT_Half)
1191 adv |= PHY_B_1000C_AHD;
1192 if (skge->advertising & ADVERTISED_1000baseT_Full)
1193 adv |= PHY_B_1000C_AFD;
1194 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1195
1196 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1197 } else {
1198 if (skge->duplex == DUPLEX_FULL)
1199 ctl |= PHY_CT_DUP_MD;
1200 /* Force to slave */
1201 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1202 }
1203
1204 /* Set autonegotiation pause parameters */
1205 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1206 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1207
1208 /* Handle Jumbo frames */
1209 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1210 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1211 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1212
1213 ext |= PHY_B_PEC_HIGH_LA;
1214
1215 }
1216
1217 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1218 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1219
1220 /* Use link status change interrupt */
1221 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1222 }
1223
1224 static void xm_phy_init(struct skge_port *skge)
1225 {
1226 struct skge_hw *hw = skge->hw;
1227 int port = skge->port;
1228 u16 ctrl = 0;
1229
1230 if (skge->autoneg == AUTONEG_ENABLE) {
1231 if (skge->advertising & ADVERTISED_1000baseT_Half)
1232 ctrl |= PHY_X_AN_HD;
1233 if (skge->advertising & ADVERTISED_1000baseT_Full)
1234 ctrl |= PHY_X_AN_FD;
1235
1236 ctrl |= fiber_pause_map[skge->flow_control];
1237
1238 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1239
1240 /* Restart Auto-negotiation */
1241 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1242 } else {
1243 /* Set DuplexMode in Config register */
1244 if (skge->duplex == DUPLEX_FULL)
1245 ctrl |= PHY_CT_DUP_MD;
1246 /*
1247 * Do NOT enable Auto-negotiation here. This would hold
1248 * the link down because no IDLEs are transmitted
1249 */
1250 }
1251
1252 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1253
1254 /* Poll PHY for status changes */
1255 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1256 }
1257
1258 static void xm_check_link(struct net_device *dev)
1259 {
1260 struct skge_port *skge = netdev_priv(dev);
1261 struct skge_hw *hw = skge->hw;
1262 int port = skge->port;
1263 u16 status;
1264
1265 /* read twice because of latch */
1266 (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
1267 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1268
1269 if ((status & PHY_ST_LSYNC) == 0) {
1270 xm_link_down(hw, port);
1271 return;
1272 }
1273
1274 if (skge->autoneg == AUTONEG_ENABLE) {
1275 u16 lpa, res;
1276
1277 if (!(status & PHY_ST_AN_OVER))
1278 return;
1279
1280 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1281 if (lpa & PHY_B_AN_RF) {
1282 printk(KERN_NOTICE PFX "%s: remote fault\n",
1283 dev->name);
1284 return;
1285 }
1286
1287 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1288
1289 /* Check Duplex mismatch */
1290 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1291 case PHY_X_RS_FD:
1292 skge->duplex = DUPLEX_FULL;
1293 break;
1294 case PHY_X_RS_HD:
1295 skge->duplex = DUPLEX_HALF;
1296 break;
1297 default:
1298 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1299 dev->name);
1300 return;
1301 }
1302
1303 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1304 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1305 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1306 (lpa & PHY_X_P_SYM_MD))
1307 skge->flow_status = FLOW_STAT_SYMMETRIC;
1308 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1309 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1310 /* Enable PAUSE receive, disable PAUSE transmit */
1311 skge->flow_status = FLOW_STAT_REM_SEND;
1312 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1313 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1314 /* Disable PAUSE receive, enable PAUSE transmit */
1315 skge->flow_status = FLOW_STAT_LOC_SEND;
1316 else
1317 skge->flow_status = FLOW_STAT_NONE;
1318
1319 skge->speed = SPEED_1000;
1320 }
1321
1322 if (!netif_carrier_ok(dev))
1323 genesis_link_up(skge);
1324 }
1325
1326 /* Poll to check for link coming up.
1327 * Since internal PHY is wired to a level triggered pin, can't
1328 * get an interrupt when carrier is detected.
1329 */
1330 static void xm_link_timer(void *arg)
1331 {
1332 struct net_device *dev = arg;
1333 struct skge_port *skge = netdev_priv(arg);
1334 struct skge_hw *hw = skge->hw;
1335 int port = skge->port;
1336
1337 if (!netif_running(dev))
1338 return;
1339
1340 if (netif_carrier_ok(dev)) {
1341 xm_read16(hw, port, XM_ISRC);
1342 if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
1343 goto nochange;
1344 } else {
1345 if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1346 goto nochange;
1347 xm_read16(hw, port, XM_ISRC);
1348 if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1349 goto nochange;
1350 }
1351
1352 mutex_lock(&hw->phy_mutex);
1353 xm_check_link(dev);
1354 mutex_unlock(&hw->phy_mutex);
1355
1356 nochange:
1357 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1358 }
1359
1360 static void genesis_mac_init(struct skge_hw *hw, int port)
1361 {
1362 struct net_device *dev = hw->dev[port];
1363 struct skge_port *skge = netdev_priv(dev);
1364 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1365 int i;
1366 u32 r;
1367 const u8 zero[6] = { 0 };
1368
1369 for (i = 0; i < 10; i++) {
1370 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1371 MFF_SET_MAC_RST);
1372 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1373 goto reset_ok;
1374 udelay(1);
1375 }
1376
1377 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1378
1379 reset_ok:
1380 /* Unreset the XMAC. */
1381 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1382
1383 /*
1384 * Perform additional initialization for external PHYs,
1385 * namely for the 1000baseTX cards that use the XMAC's
1386 * GMII mode.
1387 */
1388 if (hw->phy_type != SK_PHY_XMAC) {
1389 /* Take external Phy out of reset */
1390 r = skge_read32(hw, B2_GP_IO);
1391 if (port == 0)
1392 r |= GP_DIR_0|GP_IO_0;
1393 else
1394 r |= GP_DIR_2|GP_IO_2;
1395
1396 skge_write32(hw, B2_GP_IO, r);
1397
1398 /* Enable GMII interface */
1399 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1400 }
1401
1402
1403 switch(hw->phy_type) {
1404 case SK_PHY_XMAC:
1405 xm_phy_init(skge);
1406 break;
1407 case SK_PHY_BCOM:
1408 bcom_phy_init(skge);
1409 bcom_check_link(hw, port);
1410 }
1411
1412 /* Set Station Address */
1413 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1414
1415 /* We don't use match addresses so clear */
1416 for (i = 1; i < 16; i++)
1417 xm_outaddr(hw, port, XM_EXM(i), zero);
1418
1419 /* Clear MIB counters */
1420 xm_write16(hw, port, XM_STAT_CMD,
1421 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1422 /* Clear two times according to Errata #3 */
1423 xm_write16(hw, port, XM_STAT_CMD,
1424 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1425
1426 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1427 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1428
1429 /* We don't need the FCS appended to the packet. */
1430 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1431 if (jumbo)
1432 r |= XM_RX_BIG_PK_OK;
1433
1434 if (skge->duplex == DUPLEX_HALF) {
1435 /*
1436 * If in manual half duplex mode the other side might be in
1437 * full duplex mode, so ignore if a carrier extension is not seen
1438 * on frames received
1439 */
1440 r |= XM_RX_DIS_CEXT;
1441 }
1442 xm_write16(hw, port, XM_RX_CMD, r);
1443
1444
1445 /* We want short frames padded to 60 bytes. */
1446 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1447
1448 /*
1449 * Bump up the transmit threshold. This helps hold off transmit
1450 * underruns when we're blasting traffic from both ports at once.
1451 */
1452 xm_write16(hw, port, XM_TX_THR, 512);
1453
1454 /*
1455 * Enable the reception of all error frames. This is is
1456 * a necessary evil due to the design of the XMAC. The
1457 * XMAC's receive FIFO is only 8K in size, however jumbo
1458 * frames can be up to 9000 bytes in length. When bad
1459 * frame filtering is enabled, the XMAC's RX FIFO operates
1460 * in 'store and forward' mode. For this to work, the
1461 * entire frame has to fit into the FIFO, but that means
1462 * that jumbo frames larger than 8192 bytes will be
1463 * truncated. Disabling all bad frame filtering causes
1464 * the RX FIFO to operate in streaming mode, in which
1465 * case the XMAC will start transferring frames out of the
1466 * RX FIFO as soon as the FIFO threshold is reached.
1467 */
1468 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1469
1470
1471 /*
1472 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1473 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1474 * and 'Octets Rx OK Hi Cnt Ov'.
1475 */
1476 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1477
1478 /*
1479 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1480 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1481 * and 'Octets Tx OK Hi Cnt Ov'.
1482 */
1483 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1484
1485 /* Configure MAC arbiter */
1486 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1487
1488 /* configure timeout values */
1489 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1490 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1491 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1492 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1493
1494 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1495 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1496 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1497 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1498
1499 /* Configure Rx MAC FIFO */
1500 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1501 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1502 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1503
1504 /* Configure Tx MAC FIFO */
1505 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1506 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1507 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1508
1509 if (jumbo) {
1510 /* Enable frame flushing if jumbo frames used */
1511 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1512 } else {
1513 /* enable timeout timers if normal frames */
1514 skge_write16(hw, B3_PA_CTRL,
1515 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1516 }
1517 }
1518
1519 static void genesis_stop(struct skge_port *skge)
1520 {
1521 struct skge_hw *hw = skge->hw;
1522 int port = skge->port;
1523 u32 reg;
1524
1525 genesis_reset(hw, port);
1526
1527 /* Clear Tx packet arbiter timeout IRQ */
1528 skge_write16(hw, B3_PA_CTRL,
1529 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1530
1531 /*
1532 * If the transfer sticks at the MAC the STOP command will not
1533 * terminate if we don't flush the XMAC's transmit FIFO !
1534 */
1535 xm_write32(hw, port, XM_MODE,
1536 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1537
1538
1539 /* Reset the MAC */
1540 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1541
1542 /* For external PHYs there must be special handling */
1543 if (hw->phy_type != SK_PHY_XMAC) {
1544 reg = skge_read32(hw, B2_GP_IO);
1545 if (port == 0) {
1546 reg |= GP_DIR_0;
1547 reg &= ~GP_IO_0;
1548 } else {
1549 reg |= GP_DIR_2;
1550 reg &= ~GP_IO_2;
1551 }
1552 skge_write32(hw, B2_GP_IO, reg);
1553 skge_read32(hw, B2_GP_IO);
1554 }
1555
1556 xm_write16(hw, port, XM_MMU_CMD,
1557 xm_read16(hw, port, XM_MMU_CMD)
1558 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1559
1560 xm_read16(hw, port, XM_MMU_CMD);
1561 }
1562
1563
1564 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1565 {
1566 struct skge_hw *hw = skge->hw;
1567 int port = skge->port;
1568 int i;
1569 unsigned long timeout = jiffies + HZ;
1570
1571 xm_write16(hw, port,
1572 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1573
1574 /* wait for update to complete */
1575 while (xm_read16(hw, port, XM_STAT_CMD)
1576 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1577 if (time_after(jiffies, timeout))
1578 break;
1579 udelay(10);
1580 }
1581
1582 /* special case for 64 bit octet counter */
1583 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1584 | xm_read32(hw, port, XM_TXO_OK_LO);
1585 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1586 | xm_read32(hw, port, XM_RXO_OK_LO);
1587
1588 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1589 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1590 }
1591
1592 static void genesis_mac_intr(struct skge_hw *hw, int port)
1593 {
1594 struct skge_port *skge = netdev_priv(hw->dev[port]);
1595 u16 status = xm_read16(hw, port, XM_ISRC);
1596
1597 if (netif_msg_intr(skge))
1598 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1599 skge->netdev->name, status);
1600
1601 if (hw->phy_type == SK_PHY_XMAC &&
1602 (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
1603 xm_link_down(hw, port);
1604
1605 if (status & XM_IS_TXF_UR) {
1606 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1607 ++skge->net_stats.tx_fifo_errors;
1608 }
1609 if (status & XM_IS_RXF_OV) {
1610 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1611 ++skge->net_stats.rx_fifo_errors;
1612 }
1613 }
1614
1615 static void genesis_link_up(struct skge_port *skge)
1616 {
1617 struct skge_hw *hw = skge->hw;
1618 int port = skge->port;
1619 u16 cmd, msk;
1620 u32 mode;
1621
1622 cmd = xm_read16(hw, port, XM_MMU_CMD);
1623
1624 /*
1625 * enabling pause frame reception is required for 1000BT
1626 * because the XMAC is not reset if the link is going down
1627 */
1628 if (skge->flow_status == FLOW_STAT_NONE ||
1629 skge->flow_status == FLOW_STAT_LOC_SEND)
1630 /* Disable Pause Frame Reception */
1631 cmd |= XM_MMU_IGN_PF;
1632 else
1633 /* Enable Pause Frame Reception */
1634 cmd &= ~XM_MMU_IGN_PF;
1635
1636 xm_write16(hw, port, XM_MMU_CMD, cmd);
1637
1638 mode = xm_read32(hw, port, XM_MODE);
1639 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1640 skge->flow_status == FLOW_STAT_LOC_SEND) {
1641 /*
1642 * Configure Pause Frame Generation
1643 * Use internal and external Pause Frame Generation.
1644 * Sending pause frames is edge triggered.
1645 * Send a Pause frame with the maximum pause time if
1646 * internal oder external FIFO full condition occurs.
1647 * Send a zero pause time frame to re-start transmission.
1648 */
1649 /* XM_PAUSE_DA = '010000C28001' (default) */
1650 /* XM_MAC_PTIME = 0xffff (maximum) */
1651 /* remember this value is defined in big endian (!) */
1652 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1653
1654 mode |= XM_PAUSE_MODE;
1655 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1656 } else {
1657 /*
1658 * disable pause frame generation is required for 1000BT
1659 * because the XMAC is not reset if the link is going down
1660 */
1661 /* Disable Pause Mode in Mode Register */
1662 mode &= ~XM_PAUSE_MODE;
1663
1664 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1665 }
1666
1667 xm_write32(hw, port, XM_MODE, mode);
1668 msk = XM_DEF_MSK;
1669 if (hw->phy_type != SK_PHY_XMAC)
1670 msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
1671
1672 xm_write16(hw, port, XM_IMSK, msk);
1673 xm_read16(hw, port, XM_ISRC);
1674
1675 /* get MMU Command Reg. */
1676 cmd = xm_read16(hw, port, XM_MMU_CMD);
1677 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1678 cmd |= XM_MMU_GMII_FD;
1679
1680 /*
1681 * Workaround BCOM Errata (#10523) for all BCom Phys
1682 * Enable Power Management after link up
1683 */
1684 if (hw->phy_type == SK_PHY_BCOM) {
1685 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1686 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1687 & ~PHY_B_AC_DIS_PM);
1688 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1689 }
1690
1691 /* enable Rx/Tx */
1692 xm_write16(hw, port, XM_MMU_CMD,
1693 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1694 skge_link_up(skge);
1695 }
1696
1697
1698 static inline void bcom_phy_intr(struct skge_port *skge)
1699 {
1700 struct skge_hw *hw = skge->hw;
1701 int port = skge->port;
1702 u16 isrc;
1703
1704 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1705 if (netif_msg_intr(skge))
1706 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1707 skge->netdev->name, isrc);
1708
1709 if (isrc & PHY_B_IS_PSE)
1710 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1711 hw->dev[port]->name);
1712
1713 /* Workaround BCom Errata:
1714 * enable and disable loopback mode if "NO HCD" occurs.
1715 */
1716 if (isrc & PHY_B_IS_NO_HDCL) {
1717 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1718 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1719 ctrl | PHY_CT_LOOP);
1720 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1721 ctrl & ~PHY_CT_LOOP);
1722 }
1723
1724 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1725 bcom_check_link(hw, port);
1726
1727 }
1728
1729 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1730 {
1731 int i;
1732
1733 gma_write16(hw, port, GM_SMI_DATA, val);
1734 gma_write16(hw, port, GM_SMI_CTRL,
1735 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1736 for (i = 0; i < PHY_RETRIES; i++) {
1737 udelay(1);
1738
1739 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1740 return 0;
1741 }
1742
1743 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1744 hw->dev[port]->name);
1745 return -EIO;
1746 }
1747
1748 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1749 {
1750 int i;
1751
1752 gma_write16(hw, port, GM_SMI_CTRL,
1753 GM_SMI_CT_PHY_AD(hw->phy_addr)
1754 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1755
1756 for (i = 0; i < PHY_RETRIES; i++) {
1757 udelay(1);
1758 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1759 goto ready;
1760 }
1761
1762 return -ETIMEDOUT;
1763 ready:
1764 *val = gma_read16(hw, port, GM_SMI_DATA);
1765 return 0;
1766 }
1767
1768 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1769 {
1770 u16 v = 0;
1771 if (__gm_phy_read(hw, port, reg, &v))
1772 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1773 hw->dev[port]->name);
1774 return v;
1775 }
1776
1777 /* Marvell Phy Initialization */
1778 static void yukon_init(struct skge_hw *hw, int port)
1779 {
1780 struct skge_port *skge = netdev_priv(hw->dev[port]);
1781 u16 ctrl, ct1000, adv;
1782
1783 if (skge->autoneg == AUTONEG_ENABLE) {
1784 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1785
1786 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1787 PHY_M_EC_MAC_S_MSK);
1788 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1789
1790 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1791
1792 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1793 }
1794
1795 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1796 if (skge->autoneg == AUTONEG_DISABLE)
1797 ctrl &= ~PHY_CT_ANE;
1798
1799 ctrl |= PHY_CT_RESET;
1800 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1801
1802 ctrl = 0;
1803 ct1000 = 0;
1804 adv = PHY_AN_CSMA;
1805
1806 if (skge->autoneg == AUTONEG_ENABLE) {
1807 if (hw->copper) {
1808 if (skge->advertising & ADVERTISED_1000baseT_Full)
1809 ct1000 |= PHY_M_1000C_AFD;
1810 if (skge->advertising & ADVERTISED_1000baseT_Half)
1811 ct1000 |= PHY_M_1000C_AHD;
1812 if (skge->advertising & ADVERTISED_100baseT_Full)
1813 adv |= PHY_M_AN_100_FD;
1814 if (skge->advertising & ADVERTISED_100baseT_Half)
1815 adv |= PHY_M_AN_100_HD;
1816 if (skge->advertising & ADVERTISED_10baseT_Full)
1817 adv |= PHY_M_AN_10_FD;
1818 if (skge->advertising & ADVERTISED_10baseT_Half)
1819 adv |= PHY_M_AN_10_HD;
1820
1821 /* Set Flow-control capabilities */
1822 adv |= phy_pause_map[skge->flow_control];
1823 } else {
1824 if (skge->advertising & ADVERTISED_1000baseT_Full)
1825 adv |= PHY_M_AN_1000X_AFD;
1826 if (skge->advertising & ADVERTISED_1000baseT_Half)
1827 adv |= PHY_M_AN_1000X_AHD;
1828
1829 adv |= fiber_pause_map[skge->flow_control];
1830 }
1831
1832 /* Restart Auto-negotiation */
1833 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1834 } else {
1835 /* forced speed/duplex settings */
1836 ct1000 = PHY_M_1000C_MSE;
1837
1838 if (skge->duplex == DUPLEX_FULL)
1839 ctrl |= PHY_CT_DUP_MD;
1840
1841 switch (skge->speed) {
1842 case SPEED_1000:
1843 ctrl |= PHY_CT_SP1000;
1844 break;
1845 case SPEED_100:
1846 ctrl |= PHY_CT_SP100;
1847 break;
1848 }
1849
1850 ctrl |= PHY_CT_RESET;
1851 }
1852
1853 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1854
1855 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1856 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1857
1858 /* Enable phy interrupt on autonegotiation complete (or link up) */
1859 if (skge->autoneg == AUTONEG_ENABLE)
1860 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1861 else
1862 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1863 }
1864
1865 static void yukon_reset(struct skge_hw *hw, int port)
1866 {
1867 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1868 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1869 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1870 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1871 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1872
1873 gma_write16(hw, port, GM_RX_CTRL,
1874 gma_read16(hw, port, GM_RX_CTRL)
1875 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1876 }
1877
1878 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1879 static int is_yukon_lite_a0(struct skge_hw *hw)
1880 {
1881 u32 reg;
1882 int ret;
1883
1884 if (hw->chip_id != CHIP_ID_YUKON)
1885 return 0;
1886
1887 reg = skge_read32(hw, B2_FAR);
1888 skge_write8(hw, B2_FAR + 3, 0xff);
1889 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1890 skge_write32(hw, B2_FAR, reg);
1891 return ret;
1892 }
1893
1894 static void yukon_mac_init(struct skge_hw *hw, int port)
1895 {
1896 struct skge_port *skge = netdev_priv(hw->dev[port]);
1897 int i;
1898 u32 reg;
1899 const u8 *addr = hw->dev[port]->dev_addr;
1900
1901 /* WA code for COMA mode -- set PHY reset */
1902 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1903 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1904 reg = skge_read32(hw, B2_GP_IO);
1905 reg |= GP_DIR_9 | GP_IO_9;
1906 skge_write32(hw, B2_GP_IO, reg);
1907 }
1908
1909 /* hard reset */
1910 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1911 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1912
1913 /* WA code for COMA mode -- clear PHY reset */
1914 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1915 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1916 reg = skge_read32(hw, B2_GP_IO);
1917 reg |= GP_DIR_9;
1918 reg &= ~GP_IO_9;
1919 skge_write32(hw, B2_GP_IO, reg);
1920 }
1921
1922 /* Set hardware config mode */
1923 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1924 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1925 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1926
1927 /* Clear GMC reset */
1928 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1929 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1930 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1931
1932 if (skge->autoneg == AUTONEG_DISABLE) {
1933 reg = GM_GPCR_AU_ALL_DIS;
1934 gma_write16(hw, port, GM_GP_CTRL,
1935 gma_read16(hw, port, GM_GP_CTRL) | reg);
1936
1937 switch (skge->speed) {
1938 case SPEED_1000:
1939 reg &= ~GM_GPCR_SPEED_100;
1940 reg |= GM_GPCR_SPEED_1000;
1941 break;
1942 case SPEED_100:
1943 reg &= ~GM_GPCR_SPEED_1000;
1944 reg |= GM_GPCR_SPEED_100;
1945 break;
1946 case SPEED_10:
1947 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1948 break;
1949 }
1950
1951 if (skge->duplex == DUPLEX_FULL)
1952 reg |= GM_GPCR_DUP_FULL;
1953 } else
1954 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1955
1956 switch (skge->flow_control) {
1957 case FLOW_MODE_NONE:
1958 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1959 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1960 break;
1961 case FLOW_MODE_LOC_SEND:
1962 /* disable Rx flow-control */
1963 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1964 break;
1965 case FLOW_MODE_SYMMETRIC:
1966 case FLOW_MODE_SYM_OR_REM:
1967 /* enable Tx & Rx flow-control */
1968 break;
1969 }
1970
1971 gma_write16(hw, port, GM_GP_CTRL, reg);
1972 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1973
1974 yukon_init(hw, port);
1975
1976 /* MIB clear */
1977 reg = gma_read16(hw, port, GM_PHY_ADDR);
1978 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1979
1980 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1981 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1982 gma_write16(hw, port, GM_PHY_ADDR, reg);
1983
1984 /* transmit control */
1985 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1986
1987 /* receive control reg: unicast + multicast + no FCS */
1988 gma_write16(hw, port, GM_RX_CTRL,
1989 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1990
1991 /* transmit flow control */
1992 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1993
1994 /* transmit parameter */
1995 gma_write16(hw, port, GM_TX_PARAM,
1996 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1997 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1998 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1999
2000 /* serial mode register */
2001 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2002 if (hw->dev[port]->mtu > 1500)
2003 reg |= GM_SMOD_JUMBO_ENA;
2004
2005 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2006
2007 /* physical address: used for pause frames */
2008 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2009 /* virtual address for data */
2010 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2011
2012 /* enable interrupt mask for counter overflows */
2013 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2014 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2015 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2016
2017 /* Initialize Mac Fifo */
2018
2019 /* Configure Rx MAC FIFO */
2020 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2021 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2022
2023 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2024 if (is_yukon_lite_a0(hw))
2025 reg &= ~GMF_RX_F_FL_ON;
2026
2027 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2028 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2029 /*
2030 * because Pause Packet Truncation in GMAC is not working
2031 * we have to increase the Flush Threshold to 64 bytes
2032 * in order to flush pause packets in Rx FIFO on Yukon-1
2033 */
2034 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2035
2036 /* Configure Tx MAC FIFO */
2037 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2038 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2039 }
2040
2041 /* Go into power down mode */
2042 static void yukon_suspend(struct skge_hw *hw, int port)
2043 {
2044 u16 ctrl;
2045
2046 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2047 ctrl |= PHY_M_PC_POL_R_DIS;
2048 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2049
2050 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2051 ctrl |= PHY_CT_RESET;
2052 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2053
2054 /* switch IEEE compatible power down mode on */
2055 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2056 ctrl |= PHY_CT_PDOWN;
2057 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2058 }
2059
2060 static void yukon_stop(struct skge_port *skge)
2061 {
2062 struct skge_hw *hw = skge->hw;
2063 int port = skge->port;
2064
2065 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2066 yukon_reset(hw, port);
2067
2068 gma_write16(hw, port, GM_GP_CTRL,
2069 gma_read16(hw, port, GM_GP_CTRL)
2070 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2071 gma_read16(hw, port, GM_GP_CTRL);
2072
2073 yukon_suspend(hw, port);
2074
2075 /* set GPHY Control reset */
2076 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2077 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2078 }
2079
2080 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2081 {
2082 struct skge_hw *hw = skge->hw;
2083 int port = skge->port;
2084 int i;
2085
2086 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2087 | gma_read32(hw, port, GM_TXO_OK_LO);
2088 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2089 | gma_read32(hw, port, GM_RXO_OK_LO);
2090
2091 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2092 data[i] = gma_read32(hw, port,
2093 skge_stats[i].gma_offset);
2094 }
2095
2096 static void yukon_mac_intr(struct skge_hw *hw, int port)
2097 {
2098 struct net_device *dev = hw->dev[port];
2099 struct skge_port *skge = netdev_priv(dev);
2100 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2101
2102 if (netif_msg_intr(skge))
2103 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2104 dev->name, status);
2105
2106 if (status & GM_IS_RX_FF_OR) {
2107 ++skge->net_stats.rx_fifo_errors;
2108 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2109 }
2110
2111 if (status & GM_IS_TX_FF_UR) {
2112 ++skge->net_stats.tx_fifo_errors;
2113 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2114 }
2115
2116 }
2117
2118 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2119 {
2120 switch (aux & PHY_M_PS_SPEED_MSK) {
2121 case PHY_M_PS_SPEED_1000:
2122 return SPEED_1000;
2123 case PHY_M_PS_SPEED_100:
2124 return SPEED_100;
2125 default:
2126 return SPEED_10;
2127 }
2128 }
2129
2130 static void yukon_link_up(struct skge_port *skge)
2131 {
2132 struct skge_hw *hw = skge->hw;
2133 int port = skge->port;
2134 u16 reg;
2135
2136 /* Enable Transmit FIFO Underrun */
2137 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2138
2139 reg = gma_read16(hw, port, GM_GP_CTRL);
2140 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2141 reg |= GM_GPCR_DUP_FULL;
2142
2143 /* enable Rx/Tx */
2144 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2145 gma_write16(hw, port, GM_GP_CTRL, reg);
2146
2147 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2148 skge_link_up(skge);
2149 }
2150
2151 static void yukon_link_down(struct skge_port *skge)
2152 {
2153 struct skge_hw *hw = skge->hw;
2154 int port = skge->port;
2155 u16 ctrl;
2156
2157 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
2158
2159 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2160 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2161 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2162
2163 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2164 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2165 ctrl |= PHY_M_AN_ASP;
2166 /* restore Asymmetric Pause bit */
2167 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2168 }
2169
2170 yukon_reset(hw, port);
2171 skge_link_down(skge);
2172
2173 yukon_init(hw, port);
2174 }
2175
2176 static void yukon_phy_intr(struct skge_port *skge)
2177 {
2178 struct skge_hw *hw = skge->hw;
2179 int port = skge->port;
2180 const char *reason = NULL;
2181 u16 istatus, phystat;
2182
2183 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2184 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2185
2186 if (netif_msg_intr(skge))
2187 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2188 skge->netdev->name, istatus, phystat);
2189
2190 if (istatus & PHY_M_IS_AN_COMPL) {
2191 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2192 & PHY_M_AN_RF) {
2193 reason = "remote fault";
2194 goto failed;
2195 }
2196
2197 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2198 reason = "master/slave fault";
2199 goto failed;
2200 }
2201
2202 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2203 reason = "speed/duplex";
2204 goto failed;
2205 }
2206
2207 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2208 ? DUPLEX_FULL : DUPLEX_HALF;
2209 skge->speed = yukon_speed(hw, phystat);
2210
2211 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2212 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2213 case PHY_M_PS_PAUSE_MSK:
2214 skge->flow_status = FLOW_STAT_SYMMETRIC;
2215 break;
2216 case PHY_M_PS_RX_P_EN:
2217 skge->flow_status = FLOW_STAT_REM_SEND;
2218 break;
2219 case PHY_M_PS_TX_P_EN:
2220 skge->flow_status = FLOW_STAT_LOC_SEND;
2221 break;
2222 default:
2223 skge->flow_status = FLOW_STAT_NONE;
2224 }
2225
2226 if (skge->flow_status == FLOW_STAT_NONE ||
2227 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2228 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2229 else
2230 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2231 yukon_link_up(skge);
2232 return;
2233 }
2234
2235 if (istatus & PHY_M_IS_LSP_CHANGE)
2236 skge->speed = yukon_speed(hw, phystat);
2237
2238 if (istatus & PHY_M_IS_DUP_CHANGE)
2239 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2240 if (istatus & PHY_M_IS_LST_CHANGE) {
2241 if (phystat & PHY_M_PS_LINK_UP)
2242 yukon_link_up(skge);
2243 else
2244 yukon_link_down(skge);
2245 }
2246 return;
2247 failed:
2248 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2249 skge->netdev->name, reason);
2250
2251 /* XXX restart autonegotiation? */
2252 }
2253
2254 static void skge_phy_reset(struct skge_port *skge)
2255 {
2256 struct skge_hw *hw = skge->hw;
2257 int port = skge->port;
2258
2259 netif_stop_queue(skge->netdev);
2260 netif_carrier_off(skge->netdev);
2261
2262 mutex_lock(&hw->phy_mutex);
2263 if (hw->chip_id == CHIP_ID_GENESIS) {
2264 genesis_reset(hw, port);
2265 genesis_mac_init(hw, port);
2266 } else {
2267 yukon_reset(hw, port);
2268 yukon_init(hw, port);
2269 }
2270 mutex_unlock(&hw->phy_mutex);
2271 }
2272
2273 /* Basic MII support */
2274 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2275 {
2276 struct mii_ioctl_data *data = if_mii(ifr);
2277 struct skge_port *skge = netdev_priv(dev);
2278 struct skge_hw *hw = skge->hw;
2279 int err = -EOPNOTSUPP;
2280
2281 if (!netif_running(dev))
2282 return -ENODEV; /* Phy still in reset */
2283
2284 switch(cmd) {
2285 case SIOCGMIIPHY:
2286 data->phy_id = hw->phy_addr;
2287
2288 /* fallthru */
2289 case SIOCGMIIREG: {
2290 u16 val = 0;
2291 mutex_lock(&hw->phy_mutex);
2292 if (hw->chip_id == CHIP_ID_GENESIS)
2293 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2294 else
2295 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2296 mutex_unlock(&hw->phy_mutex);
2297 data->val_out = val;
2298 break;
2299 }
2300
2301 case SIOCSMIIREG:
2302 if (!capable(CAP_NET_ADMIN))
2303 return -EPERM;
2304
2305 mutex_lock(&hw->phy_mutex);
2306 if (hw->chip_id == CHIP_ID_GENESIS)
2307 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2308 data->val_in);
2309 else
2310 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2311 data->val_in);
2312 mutex_unlock(&hw->phy_mutex);
2313 break;
2314 }
2315 return err;
2316 }
2317
2318 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2319 {
2320 u32 end;
2321
2322 start /= 8;
2323 len /= 8;
2324 end = start + len - 1;
2325
2326 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2327 skge_write32(hw, RB_ADDR(q, RB_START), start);
2328 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2329 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2330 skge_write32(hw, RB_ADDR(q, RB_END), end);
2331
2332 if (q == Q_R1 || q == Q_R2) {
2333 /* Set thresholds on receive queue's */
2334 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2335 start + (2*len)/3);
2336 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2337 start + (len/3));
2338 } else {
2339 /* Enable store & forward on Tx queue's because
2340 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2341 */
2342 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2343 }
2344
2345 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2346 }
2347
2348 /* Setup Bus Memory Interface */
2349 static void skge_qset(struct skge_port *skge, u16 q,
2350 const struct skge_element *e)
2351 {
2352 struct skge_hw *hw = skge->hw;
2353 u32 watermark = 0x600;
2354 u64 base = skge->dma + (e->desc - skge->mem);
2355
2356 /* optimization to reduce window on 32bit/33mhz */
2357 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2358 watermark /= 2;
2359
2360 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2361 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2362 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2363 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2364 }
2365
2366 static int skge_up(struct net_device *dev)
2367 {
2368 struct skge_port *skge = netdev_priv(dev);
2369 struct skge_hw *hw = skge->hw;
2370 int port = skge->port;
2371 u32 chunk, ram_addr;
2372 size_t rx_size, tx_size;
2373 int err;
2374
2375 if (netif_msg_ifup(skge))
2376 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2377
2378 if (dev->mtu > RX_BUF_SIZE)
2379 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2380 else
2381 skge->rx_buf_size = RX_BUF_SIZE;
2382
2383
2384 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2385 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2386 skge->mem_size = tx_size + rx_size;
2387 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2388 if (!skge->mem)
2389 return -ENOMEM;
2390
2391 BUG_ON(skge->dma & 7);
2392
2393 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2394 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2395 err = -EINVAL;
2396 goto free_pci_mem;
2397 }
2398
2399 memset(skge->mem, 0, skge->mem_size);
2400
2401 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2402 if (err)
2403 goto free_pci_mem;
2404
2405 err = skge_rx_fill(dev);
2406 if (err)
2407 goto free_rx_ring;
2408
2409 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2410 skge->dma + rx_size);
2411 if (err)
2412 goto free_rx_ring;
2413
2414 /* Initialize MAC */
2415 mutex_lock(&hw->phy_mutex);
2416 if (hw->chip_id == CHIP_ID_GENESIS)
2417 genesis_mac_init(hw, port);
2418 else
2419 yukon_mac_init(hw, port);
2420 mutex_unlock(&hw->phy_mutex);
2421
2422 /* Configure RAMbuffers */
2423 chunk = hw->ram_size / ((hw->ports + 1)*2);
2424 ram_addr = hw->ram_offset + 2 * chunk * port;
2425
2426 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2427 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2428
2429 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2430 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2431 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2432
2433 /* Start receiver BMU */
2434 wmb();
2435 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2436 skge_led(skge, LED_MODE_ON);
2437
2438 netif_poll_enable(dev);
2439 return 0;
2440
2441 free_rx_ring:
2442 skge_rx_clean(skge);
2443 kfree(skge->rx_ring.start);
2444 free_pci_mem:
2445 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2446 skge->mem = NULL;
2447
2448 return err;
2449 }
2450
2451 static int skge_down(struct net_device *dev)
2452 {
2453 struct skge_port *skge = netdev_priv(dev);
2454 struct skge_hw *hw = skge->hw;
2455 int port = skge->port;
2456
2457 if (skge->mem == NULL)
2458 return 0;
2459
2460 if (netif_msg_ifdown(skge))
2461 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2462
2463 netif_stop_queue(dev);
2464 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2465 cancel_rearming_delayed_work(&skge->link_thread);
2466
2467 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2468 if (hw->chip_id == CHIP_ID_GENESIS)
2469 genesis_stop(skge);
2470 else
2471 yukon_stop(skge);
2472
2473 /* Stop transmitter */
2474 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2475 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2476 RB_RST_SET|RB_DIS_OP_MD);
2477
2478
2479 /* Disable Force Sync bit and Enable Alloc bit */
2480 skge_write8(hw, SK_REG(port, TXA_CTRL),
2481 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2482
2483 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2484 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2485 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2486
2487 /* Reset PCI FIFO */
2488 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2489 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2490
2491 /* Reset the RAM Buffer async Tx queue */
2492 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2493 /* stop receiver */
2494 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2495 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2496 RB_RST_SET|RB_DIS_OP_MD);
2497 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2498
2499 if (hw->chip_id == CHIP_ID_GENESIS) {
2500 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2501 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2502 } else {
2503 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2504 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2505 }
2506
2507 skge_led(skge, LED_MODE_OFF);
2508
2509 netif_poll_disable(dev);
2510 skge_tx_clean(dev);
2511 skge_rx_clean(skge);
2512
2513 kfree(skge->rx_ring.start);
2514 kfree(skge->tx_ring.start);
2515 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2516 skge->mem = NULL;
2517 return 0;
2518 }
2519
2520 static inline int skge_avail(const struct skge_ring *ring)
2521 {
2522 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2523 + (ring->to_clean - ring->to_use) - 1;
2524 }
2525
2526 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2527 {
2528 struct skge_port *skge = netdev_priv(dev);
2529 struct skge_hw *hw = skge->hw;
2530 struct skge_element *e;
2531 struct skge_tx_desc *td;
2532 int i;
2533 u32 control, len;
2534 u64 map;
2535
2536 if (skb_padto(skb, ETH_ZLEN))
2537 return NETDEV_TX_OK;
2538
2539 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2540 return NETDEV_TX_BUSY;
2541
2542 e = skge->tx_ring.to_use;
2543 td = e->desc;
2544 BUG_ON(td->control & BMU_OWN);
2545 e->skb = skb;
2546 len = skb_headlen(skb);
2547 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2548 pci_unmap_addr_set(e, mapaddr, map);
2549 pci_unmap_len_set(e, maplen, len);
2550
2551 td->dma_lo = map;
2552 td->dma_hi = map >> 32;
2553
2554 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2555 int offset = skb->h.raw - skb->data;
2556
2557 /* This seems backwards, but it is what the sk98lin
2558 * does. Looks like hardware is wrong?
2559 */
2560 if (skb->h.ipiph->protocol == IPPROTO_UDP
2561 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2562 control = BMU_TCP_CHECK;
2563 else
2564 control = BMU_UDP_CHECK;
2565
2566 td->csum_offs = 0;
2567 td->csum_start = offset;
2568 td->csum_write = offset + skb->csum;
2569 } else
2570 control = BMU_CHECK;
2571
2572 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2573 control |= BMU_EOF| BMU_IRQ_EOF;
2574 else {
2575 struct skge_tx_desc *tf = td;
2576
2577 control |= BMU_STFWD;
2578 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2579 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2580
2581 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2582 frag->size, PCI_DMA_TODEVICE);
2583
2584 e = e->next;
2585 e->skb = skb;
2586 tf = e->desc;
2587 BUG_ON(tf->control & BMU_OWN);
2588
2589 tf->dma_lo = map;
2590 tf->dma_hi = (u64) map >> 32;
2591 pci_unmap_addr_set(e, mapaddr, map);
2592 pci_unmap_len_set(e, maplen, frag->size);
2593
2594 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2595 }
2596 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2597 }
2598 /* Make sure all the descriptors written */
2599 wmb();
2600 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2601 wmb();
2602
2603 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2604
2605 if (unlikely(netif_msg_tx_queued(skge)))
2606 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2607 dev->name, e - skge->tx_ring.start, skb->len);
2608
2609 skge->tx_ring.to_use = e->next;
2610 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2611 pr_debug("%s: transmit queue full\n", dev->name);
2612 netif_stop_queue(dev);
2613 }
2614
2615 dev->trans_start = jiffies;
2616
2617 return NETDEV_TX_OK;
2618 }
2619
2620
2621 /* Free resources associated with this reing element */
2622 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2623 u32 control)
2624 {
2625 struct pci_dev *pdev = skge->hw->pdev;
2626
2627 BUG_ON(!e->skb);
2628
2629 /* skb header vs. fragment */
2630 if (control & BMU_STF)
2631 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2632 pci_unmap_len(e, maplen),
2633 PCI_DMA_TODEVICE);
2634 else
2635 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2636 pci_unmap_len(e, maplen),
2637 PCI_DMA_TODEVICE);
2638
2639 if (control & BMU_EOF) {
2640 if (unlikely(netif_msg_tx_done(skge)))
2641 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2642 skge->netdev->name, e - skge->tx_ring.start);
2643
2644 dev_kfree_skb(e->skb);
2645 }
2646 e->skb = NULL;
2647 }
2648
2649 /* Free all buffers in transmit ring */
2650 static void skge_tx_clean(struct net_device *dev)
2651 {
2652 struct skge_port *skge = netdev_priv(dev);
2653 struct skge_element *e;
2654
2655 netif_tx_lock_bh(dev);
2656 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2657 struct skge_tx_desc *td = e->desc;
2658 skge_tx_free(skge, e, td->control);
2659 td->control = 0;
2660 }
2661
2662 skge->tx_ring.to_clean = e;
2663 netif_wake_queue(dev);
2664 netif_tx_unlock_bh(dev);
2665 }
2666
2667 static void skge_tx_timeout(struct net_device *dev)
2668 {
2669 struct skge_port *skge = netdev_priv(dev);
2670
2671 if (netif_msg_timer(skge))
2672 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2673
2674 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2675 skge_tx_clean(dev);
2676 }
2677
2678 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2679 {
2680 int err;
2681
2682 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2683 return -EINVAL;
2684
2685 if (!netif_running(dev)) {
2686 dev->mtu = new_mtu;
2687 return 0;
2688 }
2689
2690 skge_down(dev);
2691
2692 dev->mtu = new_mtu;
2693
2694 err = skge_up(dev);
2695 if (err)
2696 dev_close(dev);
2697
2698 return err;
2699 }
2700
2701 static void genesis_set_multicast(struct net_device *dev)
2702 {
2703 struct skge_port *skge = netdev_priv(dev);
2704 struct skge_hw *hw = skge->hw;
2705 int port = skge->port;
2706 int i, count = dev->mc_count;
2707 struct dev_mc_list *list = dev->mc_list;
2708 u32 mode;
2709 u8 filter[8];
2710
2711 mode = xm_read32(hw, port, XM_MODE);
2712 mode |= XM_MD_ENA_HASH;
2713 if (dev->flags & IFF_PROMISC)
2714 mode |= XM_MD_ENA_PROM;
2715 else
2716 mode &= ~XM_MD_ENA_PROM;
2717
2718 if (dev->flags & IFF_ALLMULTI)
2719 memset(filter, 0xff, sizeof(filter));
2720 else {
2721 memset(filter, 0, sizeof(filter));
2722 for (i = 0; list && i < count; i++, list = list->next) {
2723 u32 crc, bit;
2724 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2725 bit = ~crc & 0x3f;
2726 filter[bit/8] |= 1 << (bit%8);
2727 }
2728 }
2729
2730 xm_write32(hw, port, XM_MODE, mode);
2731 xm_outhash(hw, port, XM_HSM, filter);
2732 }
2733
2734 static void yukon_set_multicast(struct net_device *dev)
2735 {
2736 struct skge_port *skge = netdev_priv(dev);
2737 struct skge_hw *hw = skge->hw;
2738 int port = skge->port;
2739 struct dev_mc_list *list = dev->mc_list;
2740 u16 reg;
2741 u8 filter[8];
2742
2743 memset(filter, 0, sizeof(filter));
2744
2745 reg = gma_read16(hw, port, GM_RX_CTRL);
2746 reg |= GM_RXCR_UCF_ENA;
2747
2748 if (dev->flags & IFF_PROMISC) /* promiscuous */
2749 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2750 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2751 memset(filter, 0xff, sizeof(filter));
2752 else if (dev->mc_count == 0) /* no multicast */
2753 reg &= ~GM_RXCR_MCF_ENA;
2754 else {
2755 int i;
2756 reg |= GM_RXCR_MCF_ENA;
2757
2758 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2759 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2760 filter[bit/8] |= 1 << (bit%8);
2761 }
2762 }
2763
2764
2765 gma_write16(hw, port, GM_MC_ADDR_H1,
2766 (u16)filter[0] | ((u16)filter[1] << 8));
2767 gma_write16(hw, port, GM_MC_ADDR_H2,
2768 (u16)filter[2] | ((u16)filter[3] << 8));
2769 gma_write16(hw, port, GM_MC_ADDR_H3,
2770 (u16)filter[4] | ((u16)filter[5] << 8));
2771 gma_write16(hw, port, GM_MC_ADDR_H4,
2772 (u16)filter[6] | ((u16)filter[7] << 8));
2773
2774 gma_write16(hw, port, GM_RX_CTRL, reg);
2775 }
2776
2777 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2778 {
2779 if (hw->chip_id == CHIP_ID_GENESIS)
2780 return status >> XMR_FS_LEN_SHIFT;
2781 else
2782 return status >> GMR_FS_LEN_SHIFT;
2783 }
2784
2785 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2786 {
2787 if (hw->chip_id == CHIP_ID_GENESIS)
2788 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2789 else
2790 return (status & GMR_FS_ANY_ERR) ||
2791 (status & GMR_FS_RX_OK) == 0;
2792 }
2793
2794
2795 /* Get receive buffer from descriptor.
2796 * Handles copy of small buffers and reallocation failures
2797 */
2798 static struct sk_buff *skge_rx_get(struct net_device *dev,
2799 struct skge_element *e,
2800 u32 control, u32 status, u16 csum)
2801 {
2802 struct skge_port *skge = netdev_priv(dev);
2803 struct sk_buff *skb;
2804 u16 len = control & BMU_BBC;
2805
2806 if (unlikely(netif_msg_rx_status(skge)))
2807 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2808 dev->name, e - skge->rx_ring.start,
2809 status, len);
2810
2811 if (len > skge->rx_buf_size)
2812 goto error;
2813
2814 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2815 goto error;
2816
2817 if (bad_phy_status(skge->hw, status))
2818 goto error;
2819
2820 if (phy_length(skge->hw, status) != len)
2821 goto error;
2822
2823 if (len < RX_COPY_THRESHOLD) {
2824 skb = netdev_alloc_skb(dev, len + 2);
2825 if (!skb)
2826 goto resubmit;
2827
2828 skb_reserve(skb, 2);
2829 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2830 pci_unmap_addr(e, mapaddr),
2831 len, PCI_DMA_FROMDEVICE);
2832 memcpy(skb->data, e->skb->data, len);
2833 pci_dma_sync_single_for_device(skge->hw->pdev,
2834 pci_unmap_addr(e, mapaddr),
2835 len, PCI_DMA_FROMDEVICE);
2836 skge_rx_reuse(e, skge->rx_buf_size);
2837 } else {
2838 struct sk_buff *nskb;
2839 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
2840 if (!nskb)
2841 goto resubmit;
2842
2843 skb_reserve(nskb, NET_IP_ALIGN);
2844 pci_unmap_single(skge->hw->pdev,
2845 pci_unmap_addr(e, mapaddr),
2846 pci_unmap_len(e, maplen),
2847 PCI_DMA_FROMDEVICE);
2848 skb = e->skb;
2849 prefetch(skb->data);
2850 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2851 }
2852
2853 skb_put(skb, len);
2854 if (skge->rx_csum) {
2855 skb->csum = csum;
2856 skb->ip_summed = CHECKSUM_COMPLETE;
2857 }
2858
2859 skb->protocol = eth_type_trans(skb, dev);
2860
2861 return skb;
2862 error:
2863
2864 if (netif_msg_rx_err(skge))
2865 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2866 dev->name, e - skge->rx_ring.start,
2867 control, status);
2868
2869 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2870 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2871 skge->net_stats.rx_length_errors++;
2872 if (status & XMR_FS_FRA_ERR)
2873 skge->net_stats.rx_frame_errors++;
2874 if (status & XMR_FS_FCS_ERR)
2875 skge->net_stats.rx_crc_errors++;
2876 } else {
2877 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2878 skge->net_stats.rx_length_errors++;
2879 if (status & GMR_FS_FRAGMENT)
2880 skge->net_stats.rx_frame_errors++;
2881 if (status & GMR_FS_CRC_ERR)
2882 skge->net_stats.rx_crc_errors++;
2883 }
2884
2885 resubmit:
2886 skge_rx_reuse(e, skge->rx_buf_size);
2887 return NULL;
2888 }
2889
2890 /* Free all buffers in Tx ring which are no longer owned by device */
2891 static void skge_tx_done(struct net_device *dev)
2892 {
2893 struct skge_port *skge = netdev_priv(dev);
2894 struct skge_ring *ring = &skge->tx_ring;
2895 struct skge_element *e;
2896
2897 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2898
2899 netif_tx_lock(dev);
2900 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2901 struct skge_tx_desc *td = e->desc;
2902
2903 if (td->control & BMU_OWN)
2904 break;
2905
2906 skge_tx_free(skge, e, td->control);
2907 }
2908 skge->tx_ring.to_clean = e;
2909
2910 if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2911 netif_wake_queue(dev);
2912
2913 netif_tx_unlock(dev);
2914 }
2915
2916 static int skge_poll(struct net_device *dev, int *budget)
2917 {
2918 struct skge_port *skge = netdev_priv(dev);
2919 struct skge_hw *hw = skge->hw;
2920 struct skge_ring *ring = &skge->rx_ring;
2921 struct skge_element *e;
2922 int to_do = min(dev->quota, *budget);
2923 int work_done = 0;
2924
2925 skge_tx_done(dev);
2926
2927 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2928
2929 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2930 struct skge_rx_desc *rd = e->desc;
2931 struct sk_buff *skb;
2932 u32 control;
2933
2934 rmb();
2935 control = rd->control;
2936 if (control & BMU_OWN)
2937 break;
2938
2939 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
2940 if (likely(skb)) {
2941 dev->last_rx = jiffies;
2942 netif_receive_skb(skb);
2943
2944 ++work_done;
2945 }
2946 }
2947 ring->to_clean = e;
2948
2949 /* restart receiver */
2950 wmb();
2951 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2952
2953 *budget -= work_done;
2954 dev->quota -= work_done;
2955
2956 if (work_done >= to_do)
2957 return 1; /* not done */
2958
2959 spin_lock_irq(&hw->hw_lock);
2960 __netif_rx_complete(dev);
2961 hw->intr_mask |= irqmask[skge->port];
2962 skge_write32(hw, B0_IMSK, hw->intr_mask);
2963 skge_read32(hw, B0_IMSK);
2964 spin_unlock_irq(&hw->hw_lock);
2965
2966 return 0;
2967 }
2968
2969 /* Parity errors seem to happen when Genesis is connected to a switch
2970 * with no other ports present. Heartbeat error??
2971 */
2972 static void skge_mac_parity(struct skge_hw *hw, int port)
2973 {
2974 struct net_device *dev = hw->dev[port];
2975
2976 if (dev) {
2977 struct skge_port *skge = netdev_priv(dev);
2978 ++skge->net_stats.tx_heartbeat_errors;
2979 }
2980
2981 if (hw->chip_id == CHIP_ID_GENESIS)
2982 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2983 MFF_CLR_PERR);
2984 else
2985 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2986 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2987 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2988 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2989 }
2990
2991 static void skge_mac_intr(struct skge_hw *hw, int port)
2992 {
2993 if (hw->chip_id == CHIP_ID_GENESIS)
2994 genesis_mac_intr(hw, port);
2995 else
2996 yukon_mac_intr(hw, port);
2997 }
2998
2999 /* Handle device specific framing and timeout interrupts */
3000 static void skge_error_irq(struct skge_hw *hw)
3001 {
3002 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3003
3004 if (hw->chip_id == CHIP_ID_GENESIS) {
3005 /* clear xmac errors */
3006 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3007 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3008 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3009 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3010 } else {
3011 /* Timestamp (unused) overflow */
3012 if (hwstatus & IS_IRQ_TIST_OV)
3013 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3014 }
3015
3016 if (hwstatus & IS_RAM_RD_PAR) {
3017 printk(KERN_ERR PFX "Ram read data parity error\n");
3018 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3019 }
3020
3021 if (hwstatus & IS_RAM_WR_PAR) {
3022 printk(KERN_ERR PFX "Ram write data parity error\n");
3023 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3024 }
3025
3026 if (hwstatus & IS_M1_PAR_ERR)
3027 skge_mac_parity(hw, 0);
3028
3029 if (hwstatus & IS_M2_PAR_ERR)
3030 skge_mac_parity(hw, 1);
3031
3032 if (hwstatus & IS_R1_PAR_ERR) {
3033 printk(KERN_ERR PFX "%s: receive queue parity error\n",
3034 hw->dev[0]->name);
3035 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3036 }
3037
3038 if (hwstatus & IS_R2_PAR_ERR) {
3039 printk(KERN_ERR PFX "%s: receive queue parity error\n",
3040 hw->dev[1]->name);
3041 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3042 }
3043
3044 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3045 u16 pci_status, pci_cmd;
3046
3047 pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
3048 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3049
3050 printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
3051 pci_name(hw->pdev), pci_cmd, pci_status);
3052
3053 /* Write the error bits back to clear them. */
3054 pci_status &= PCI_STATUS_ERROR_BITS;
3055 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3056 pci_write_config_word(hw->pdev, PCI_COMMAND,
3057 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3058 pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
3059 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3060
3061 /* if error still set then just ignore it */
3062 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3063 if (hwstatus & IS_IRQ_STAT) {
3064 printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
3065 hw->intr_mask &= ~IS_HW_ERR;
3066 }
3067 }
3068 }
3069
3070 /*
3071 * Interrupt from PHY are handled in work queue
3072 * because accessing phy registers requires spin wait which might
3073 * cause excess interrupt latency.
3074 */
3075 static void skge_extirq(void *arg)
3076 {
3077 struct skge_hw *hw = arg;
3078 int port;
3079
3080 mutex_lock(&hw->phy_mutex);
3081 for (port = 0; port < hw->ports; port++) {
3082 struct net_device *dev = hw->dev[port];
3083 struct skge_port *skge = netdev_priv(dev);
3084
3085 if (netif_running(dev)) {
3086 if (hw->chip_id != CHIP_ID_GENESIS)
3087 yukon_phy_intr(skge);
3088 else if (hw->phy_type == SK_PHY_BCOM)
3089 bcom_phy_intr(skge);
3090 }
3091 }
3092 mutex_unlock(&hw->phy_mutex);
3093
3094 spin_lock_irq(&hw->hw_lock);
3095 hw->intr_mask |= IS_EXT_REG;
3096 skge_write32(hw, B0_IMSK, hw->intr_mask);
3097 skge_read32(hw, B0_IMSK);
3098 spin_unlock_irq(&hw->hw_lock);
3099 }
3100
3101 static irqreturn_t skge_intr(int irq, void *dev_id)
3102 {
3103 struct skge_hw *hw = dev_id;
3104 u32 status;
3105 int handled = 0;
3106
3107 spin_lock(&hw->hw_lock);
3108 /* Reading this register masks IRQ */
3109 status = skge_read32(hw, B0_SP_ISRC);
3110 if (status == 0 || status == ~0)
3111 goto out;
3112
3113 handled = 1;
3114 status &= hw->intr_mask;
3115 if (status & IS_EXT_REG) {
3116 hw->intr_mask &= ~IS_EXT_REG;
3117 schedule_work(&hw->phy_work);
3118 }
3119
3120 if (status & (IS_XA1_F|IS_R1_F)) {
3121 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3122 netif_rx_schedule(hw->dev[0]);
3123 }
3124
3125 if (status & IS_PA_TO_TX1)
3126 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3127
3128 if (status & IS_PA_TO_RX1) {
3129 struct skge_port *skge = netdev_priv(hw->dev[0]);
3130
3131 ++skge->net_stats.rx_over_errors;
3132 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3133 }
3134
3135
3136 if (status & IS_MAC1)
3137 skge_mac_intr(hw, 0);
3138
3139 if (hw->dev[1]) {
3140 if (status & (IS_XA2_F|IS_R2_F)) {
3141 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3142 netif_rx_schedule(hw->dev[1]);
3143 }
3144
3145 if (status & IS_PA_TO_RX2) {
3146 struct skge_port *skge = netdev_priv(hw->dev[1]);
3147 ++skge->net_stats.rx_over_errors;
3148 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3149 }
3150
3151 if (status & IS_PA_TO_TX2)
3152 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3153
3154 if (status & IS_MAC2)
3155 skge_mac_intr(hw, 1);
3156 }
3157
3158 if (status & IS_HW_ERR)
3159 skge_error_irq(hw);
3160
3161 skge_write32(hw, B0_IMSK, hw->intr_mask);
3162 skge_read32(hw, B0_IMSK);
3163 out:
3164 spin_unlock(&hw->hw_lock);
3165
3166 return IRQ_RETVAL(handled);
3167 }
3168
3169 #ifdef CONFIG_NET_POLL_CONTROLLER
3170 static void skge_netpoll(struct net_device *dev)
3171 {
3172 struct skge_port *skge = netdev_priv(dev);
3173
3174 disable_irq(dev->irq);
3175 skge_intr(dev->irq, skge->hw);
3176 enable_irq(dev->irq);
3177 }
3178 #endif
3179
3180 static int skge_set_mac_address(struct net_device *dev, void *p)
3181 {
3182 struct skge_port *skge = netdev_priv(dev);
3183 struct skge_hw *hw = skge->hw;
3184 unsigned port = skge->port;
3185 const struct sockaddr *addr = p;
3186
3187 if (!is_valid_ether_addr(addr->sa_data))
3188 return -EADDRNOTAVAIL;
3189
3190 mutex_lock(&hw->phy_mutex);
3191 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3192 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
3193 dev->dev_addr, ETH_ALEN);
3194 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
3195 dev->dev_addr, ETH_ALEN);
3196
3197 if (hw->chip_id == CHIP_ID_GENESIS)
3198 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3199 else {
3200 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3201 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3202 }
3203 mutex_unlock(&hw->phy_mutex);
3204
3205 return 0;
3206 }
3207
3208 static const struct {
3209 u8 id;
3210 const char *name;
3211 } skge_chips[] = {
3212 { CHIP_ID_GENESIS, "Genesis" },
3213 { CHIP_ID_YUKON, "Yukon" },
3214 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3215 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3216 };
3217
3218 static const char *skge_board_name(const struct skge_hw *hw)
3219 {
3220 int i;
3221 static char buf[16];
3222
3223 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3224 if (skge_chips[i].id == hw->chip_id)
3225 return skge_chips[i].name;
3226
3227 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3228 return buf;
3229 }
3230
3231
3232 /*
3233 * Setup the board data structure, but don't bring up
3234 * the port(s)
3235 */
3236 static int skge_reset(struct skge_hw *hw)
3237 {
3238 u32 reg;
3239 u16 ctst, pci_status;
3240 u8 t8, mac_cfg, pmd_type;
3241 int i;
3242
3243 ctst = skge_read16(hw, B0_CTST);
3244
3245 /* do a SW reset */
3246 skge_write8(hw, B0_CTST, CS_RST_SET);
3247 skge_write8(hw, B0_CTST, CS_RST_CLR);
3248
3249 /* clear PCI errors, if any */
3250 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3251 skge_write8(hw, B2_TST_CTRL2, 0);
3252
3253 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3254 pci_write_config_word(hw->pdev, PCI_STATUS,
3255 pci_status | PCI_STATUS_ERROR_BITS);
3256 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3257 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3258
3259 /* restore CLK_RUN bits (for Yukon-Lite) */
3260 skge_write16(hw, B0_CTST,
3261 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3262
3263 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3264 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3265 pmd_type = skge_read8(hw, B2_PMD_TYP);
3266 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3267
3268 switch (hw->chip_id) {
3269 case CHIP_ID_GENESIS:
3270 switch (hw->phy_type) {
3271 case SK_PHY_XMAC:
3272 hw->phy_addr = PHY_ADDR_XMAC;
3273 break;
3274 case SK_PHY_BCOM:
3275 hw->phy_addr = PHY_ADDR_BCOM;
3276 break;
3277 default:
3278 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3279 pci_name(hw->pdev), hw->phy_type);
3280 return -EOPNOTSUPP;
3281 }
3282 break;
3283
3284 case CHIP_ID_YUKON:
3285 case CHIP_ID_YUKON_LITE:
3286 case CHIP_ID_YUKON_LP:
3287 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3288 hw->copper = 1;
3289
3290 hw->phy_addr = PHY_ADDR_MARV;
3291 break;
3292
3293 default:
3294 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3295 pci_name(hw->pdev), hw->chip_id);
3296 return -EOPNOTSUPP;
3297 }
3298
3299 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3300 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3301 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3302
3303 /* read the adapters RAM size */
3304 t8 = skge_read8(hw, B2_E_0);
3305 if (hw->chip_id == CHIP_ID_GENESIS) {
3306 if (t8 == 3) {
3307 /* special case: 4 x 64k x 36, offset = 0x80000 */
3308 hw->ram_size = 0x100000;
3309 hw->ram_offset = 0x80000;
3310 } else
3311 hw->ram_size = t8 * 512;
3312 }
3313 else if (t8 == 0)
3314 hw->ram_size = 0x20000;
3315 else
3316 hw->ram_size = t8 * 4096;
3317
3318 hw->intr_mask = IS_HW_ERR | IS_PORT_1;
3319 if (hw->ports > 1)
3320 hw->intr_mask |= IS_PORT_2;
3321
3322 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3323 hw->intr_mask |= IS_EXT_REG;
3324
3325 if (hw->chip_id == CHIP_ID_GENESIS)
3326 genesis_init(hw);
3327 else {
3328 /* switch power to VCC (WA for VAUX problem) */
3329 skge_write8(hw, B0_POWER_CTRL,
3330 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3331
3332 /* avoid boards with stuck Hardware error bits */
3333 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3334 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3335 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3336 hw->intr_mask &= ~IS_HW_ERR;
3337 }
3338
3339 /* Clear PHY COMA */
3340 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3341 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3342 reg &= ~PCI_PHY_COMA;
3343 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3344 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3345
3346
3347 for (i = 0; i < hw->ports; i++) {
3348 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3349 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3350 }
3351 }
3352
3353 /* turn off hardware timer (unused) */
3354 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3355 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3356 skge_write8(hw, B0_LED, LED_STAT_ON);
3357
3358 /* enable the Tx Arbiters */
3359 for (i = 0; i < hw->ports; i++)
3360 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3361
3362 /* Initialize ram interface */
3363 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3364
3365 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3366 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3367 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3368 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3369 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3370 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3371 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3372 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3373 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3374 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3375 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3376 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3377
3378 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3379
3380 /* Set interrupt moderation for Transmit only
3381 * Receive interrupts avoided by NAPI
3382 */
3383 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3384 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3385 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3386
3387 skge_write32(hw, B0_IMSK, hw->intr_mask);
3388
3389 mutex_lock(&hw->phy_mutex);
3390 for (i = 0; i < hw->ports; i++) {
3391 if (hw->chip_id == CHIP_ID_GENESIS)
3392 genesis_reset(hw, i);
3393 else
3394 yukon_reset(hw, i);
3395 }
3396 mutex_unlock(&hw->phy_mutex);
3397
3398 return 0;
3399 }
3400
3401 /* Initialize network device */
3402 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3403 int highmem)
3404 {
3405 struct skge_port *skge;
3406 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3407
3408 if (!dev) {
3409 printk(KERN_ERR "skge etherdev alloc failed");
3410 return NULL;
3411 }
3412
3413 SET_MODULE_OWNER(dev);
3414 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3415 dev->open = skge_up;
3416 dev->stop = skge_down;
3417 dev->do_ioctl = skge_ioctl;
3418 dev->hard_start_xmit = skge_xmit_frame;
3419 dev->get_stats = skge_get_stats;
3420 if (hw->chip_id == CHIP_ID_GENESIS)
3421 dev->set_multicast_list = genesis_set_multicast;
3422 else
3423 dev->set_multicast_list = yukon_set_multicast;
3424
3425 dev->set_mac_address = skge_set_mac_address;
3426 dev->change_mtu = skge_change_mtu;
3427 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3428 dev->tx_timeout = skge_tx_timeout;
3429 dev->watchdog_timeo = TX_WATCHDOG;
3430 dev->poll = skge_poll;
3431 dev->weight = NAPI_WEIGHT;
3432 #ifdef CONFIG_NET_POLL_CONTROLLER
3433 dev->poll_controller = skge_netpoll;
3434 #endif
3435 dev->irq = hw->pdev->irq;
3436
3437 if (highmem)
3438 dev->features |= NETIF_F_HIGHDMA;
3439
3440 skge = netdev_priv(dev);
3441 skge->netdev = dev;
3442 skge->hw = hw;
3443 skge->msg_enable = netif_msg_init(debug, default_msg);
3444 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3445 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3446
3447 /* Auto speed and flow control */
3448 skge->autoneg = AUTONEG_ENABLE;
3449 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3450 skge->duplex = -1;
3451 skge->speed = -1;
3452 skge->advertising = skge_supported_modes(hw);
3453
3454 hw->dev[port] = dev;
3455
3456 skge->port = port;
3457
3458 /* Only used for Genesis XMAC */
3459 INIT_WORK(&skge->link_thread, xm_link_timer, dev);
3460
3461 if (hw->chip_id != CHIP_ID_GENESIS) {
3462 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3463 skge->rx_csum = 1;
3464 }
3465
3466 /* read the mac address */
3467 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3468 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3469
3470 /* device is off until link detection */
3471 netif_carrier_off(dev);
3472 netif_stop_queue(dev);
3473
3474 return dev;
3475 }
3476
3477 static void __devinit skge_show_addr(struct net_device *dev)
3478 {
3479 const struct skge_port *skge = netdev_priv(dev);
3480
3481 if (netif_msg_probe(skge))
3482 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3483 dev->name,
3484 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3485 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3486 }
3487
3488 static int __devinit skge_probe(struct pci_dev *pdev,
3489 const struct pci_device_id *ent)
3490 {
3491 struct net_device *dev, *dev1;
3492 struct skge_hw *hw;
3493 int err, using_dac = 0;
3494
3495 err = pci_enable_device(pdev);
3496 if (err) {
3497 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3498 pci_name(pdev));
3499 goto err_out;
3500 }
3501
3502 err = pci_request_regions(pdev, DRV_NAME);
3503 if (err) {
3504 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3505 pci_name(pdev));
3506 goto err_out_disable_pdev;
3507 }
3508
3509 pci_set_master(pdev);
3510
3511 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3512 using_dac = 1;
3513 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3514 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3515 using_dac = 0;
3516 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3517 }
3518
3519 if (err) {
3520 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3521 pci_name(pdev));
3522 goto err_out_free_regions;
3523 }
3524
3525 #ifdef __BIG_ENDIAN
3526 /* byte swap descriptors in hardware */
3527 {
3528 u32 reg;
3529
3530 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3531 reg |= PCI_REV_DESC;
3532 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3533 }
3534 #endif
3535
3536 err = -ENOMEM;
3537 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3538 if (!hw) {
3539 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3540 pci_name(pdev));
3541 goto err_out_free_regions;
3542 }
3543
3544 hw->pdev = pdev;
3545 mutex_init(&hw->phy_mutex);
3546 INIT_WORK(&hw->phy_work, skge_extirq, hw);
3547 spin_lock_init(&hw->hw_lock);
3548
3549 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3550 if (!hw->regs) {
3551 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3552 pci_name(pdev));
3553 goto err_out_free_hw;
3554 }
3555
3556 err = skge_reset(hw);
3557 if (err)
3558 goto err_out_iounmap;
3559
3560 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3561 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3562 skge_board_name(hw), hw->chip_rev);
3563
3564 dev = skge_devinit(hw, 0, using_dac);
3565 if (!dev)
3566 goto err_out_led_off;
3567
3568 if (!is_valid_ether_addr(dev->dev_addr)) {
3569 printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
3570 pci_name(pdev));
3571 err = -EIO;
3572 goto err_out_free_netdev;
3573 }
3574
3575 err = register_netdev(dev);
3576 if (err) {
3577 printk(KERN_ERR PFX "%s: cannot register net device\n",
3578 pci_name(pdev));
3579 goto err_out_free_netdev;
3580 }
3581
3582 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3583 if (err) {
3584 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3585 dev->name, pdev->irq);
3586 goto err_out_unregister;
3587 }
3588 skge_show_addr(dev);
3589
3590 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3591 if (register_netdev(dev1) == 0)
3592 skge_show_addr(dev1);
3593 else {
3594 /* Failure to register second port need not be fatal */
3595 printk(KERN_WARNING PFX "register of second port failed\n");
3596 hw->dev[1] = NULL;
3597 free_netdev(dev1);
3598 }
3599 }
3600 pci_set_drvdata(pdev, hw);
3601
3602 return 0;
3603
3604 err_out_unregister:
3605 unregister_netdev(dev);
3606 err_out_free_netdev:
3607 free_netdev(dev);
3608 err_out_led_off:
3609 skge_write16(hw, B0_LED, LED_STAT_OFF);
3610 err_out_iounmap:
3611 iounmap(hw->regs);
3612 err_out_free_hw:
3613 kfree(hw);
3614 err_out_free_regions:
3615 pci_release_regions(pdev);
3616 err_out_disable_pdev:
3617 pci_disable_device(pdev);
3618 pci_set_drvdata(pdev, NULL);
3619 err_out:
3620 return err;
3621 }
3622
3623 static void __devexit skge_remove(struct pci_dev *pdev)
3624 {
3625 struct skge_hw *hw = pci_get_drvdata(pdev);
3626 struct net_device *dev0, *dev1;
3627
3628 if (!hw)
3629 return;
3630
3631 if ((dev1 = hw->dev[1]))
3632 unregister_netdev(dev1);
3633 dev0 = hw->dev[0];
3634 unregister_netdev(dev0);
3635
3636 spin_lock_irq(&hw->hw_lock);
3637 hw->intr_mask = 0;
3638 skge_write32(hw, B0_IMSK, 0);
3639 skge_read32(hw, B0_IMSK);
3640 spin_unlock_irq(&hw->hw_lock);
3641
3642 skge_write16(hw, B0_LED, LED_STAT_OFF);
3643 skge_write8(hw, B0_CTST, CS_RST_SET);
3644
3645 flush_scheduled_work();
3646
3647 free_irq(pdev->irq, hw);
3648 pci_release_regions(pdev);
3649 pci_disable_device(pdev);
3650 if (dev1)
3651 free_netdev(dev1);
3652 free_netdev(dev0);
3653
3654 iounmap(hw->regs);
3655 kfree(hw);
3656 pci_set_drvdata(pdev, NULL);
3657 }
3658
3659 #ifdef CONFIG_PM
3660 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3661 {
3662 struct skge_hw *hw = pci_get_drvdata(pdev);
3663 int i, wol = 0;
3664
3665 pci_save_state(pdev);
3666 for (i = 0; i < hw->ports; i++) {
3667 struct net_device *dev = hw->dev[i];
3668
3669 if (netif_running(dev)) {
3670 struct skge_port *skge = netdev_priv(dev);
3671
3672 netif_carrier_off(dev);
3673 if (skge->wol)
3674 netif_stop_queue(dev);
3675 else
3676 skge_down(dev);
3677 wol |= skge->wol;
3678 }
3679 netif_device_detach(dev);
3680 }
3681
3682 skge_write32(hw, B0_IMSK, 0);
3683 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3684 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3685
3686 return 0;
3687 }
3688
3689 static int skge_resume(struct pci_dev *pdev)
3690 {
3691 struct skge_hw *hw = pci_get_drvdata(pdev);
3692 int i, err;
3693
3694 pci_set_power_state(pdev, PCI_D0);
3695 pci_restore_state(pdev);
3696 pci_enable_wake(pdev, PCI_D0, 0);
3697
3698 err = skge_reset(hw);
3699 if (err)
3700 goto out;
3701
3702 for (i = 0; i < hw->ports; i++) {
3703 struct net_device *dev = hw->dev[i];
3704
3705 netif_device_attach(dev);
3706 if (netif_running(dev)) {
3707 err = skge_up(dev);
3708
3709 if (err) {
3710 printk(KERN_ERR PFX "%s: could not up: %d\n",
3711 dev->name, err);
3712 dev_close(dev);
3713 goto out;
3714 }
3715 }
3716 }
3717 out:
3718 return err;
3719 }
3720 #endif
3721
3722 static struct pci_driver skge_driver = {
3723 .name = DRV_NAME,
3724 .id_table = skge_id_table,
3725 .probe = skge_probe,
3726 .remove = __devexit_p(skge_remove),
3727 #ifdef CONFIG_PM
3728 .suspend = skge_suspend,
3729 .resume = skge_resume,
3730 #endif
3731 };
3732
3733 static int __init skge_init_module(void)
3734 {
3735 return pci_register_driver(&skge_driver);
3736 }
3737
3738 static void __exit skge_cleanup_module(void)
3739 {
3740 pci_unregister_driver(&skge_driver);
3741 }
3742
3743 module_init(skge_init_module);
3744 module_exit(skge_cleanup_module);
This page took 0.10827 seconds and 6 git commands to generate.